Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Tidal Energy  

Science Journals Connector (OSTI)

Tidal energy, as interpreted in this essay, is considered to be the artificial extraction of energy from: either the rise or fall of the sea surface under the influence of tides or the extraction of energy from t...

Ian G. Bryden

2012-01-01T23:59:59.000Z

2

Tidal Energy  

Science Journals Connector (OSTI)

Tidal energy, as interpreted in this essay, is considered to be the artificial extraction of energy from: either the rise or fall of the sea surface under the influence of tides or the extraction of energy from t...

Ian G. Bryden

2013-01-01T23:59:59.000Z

3

Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Add description List of Tidal Energy Incentives Retrieved from "http:en.openei.orgwindex.php?titleTidalEnergy&oldid267201" Category: Articles with outstanding TODO tasks...

4

Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal...  

Open Energy Info (EERE)

Energy Tropical Tidal Test Centre, Jump to: navigation, search 1 Retrieved from "http:en.openei.orgwindex.php?titleClarenceStraitTidalEnergyProject,TenaxEnergyTropica...

5

Tidal Energy Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tidal Energy Basics Tidal Energy Basics Tidal Energy Basics August 16, 2013 - 4:26pm Addthis Photo of the ocean rising along the beach. Some of the oldest ocean energy technologies use tidal power. All coastal areas experience two high tides and two low tides over a period of slightly more than 24 hours. For those tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about 40 sites on Earth with tidal ranges of this magnitude. Currently, there are no tidal power plants in the United States, but conditions are good for tidal power generation in the Pacific Northwest and the Atlantic Northeast regions. Tidal Energy Technologies Tidal energy technologies include barrages or dams, tidal fences, and tidal

6

Tidal Heating of Extra-Solar Planets  

E-Print Network [OSTI]

Extra-solar planets close to their host stars have likely undergone significant tidal evolution since the time of their formation. Tides probably dominated their orbital evolution once the dust and gas had cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget that governed the planet's physical properties, including its radius, which in many cases may be measured by observing transit events. Typically, tidal heating increases as a planet moves inward toward its star and then decreases as its orbit circularizes. Here we compute the plausible heating histories for several planets with measured radii, using the same tidal parameters for the star and planet that had been shown to reconcile the eccentricity distribution of close-in planets with other extra-solar planets. Several planets are discussed, including for example HD 209458 b, which may have undergone substantial tidal heating during the past billion years, perhaps enough to explain its large measured radius. Our models also show that GJ 876 d may have experienced tremendous heating and is probably not a solid, rocky planet. Theoretical models should include the role of tidal heating, which is large, but time-varying.

Brian Jackson; Richard Greenberg; Rory Barnes

2008-02-29T23:59:59.000Z

7

Tidal Energy Research  

SciTech Connect (OSTI)

This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

Stelzenmuller, Nickolas [Univ of Washington; Aliseda, Alberto [Univ of Washington; Palodichuk, Michael [Univ of Washington; Polagye, Brian [Univ of Washington; Thomson, James [Univ of Washington; Chime, Arshiya [Univ of Washington; Malte, Philip [Univ of washington

2014-03-31T23:59:59.000Z

8

Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY...  

Office of Scientific and Technical Information (OSTI)

Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION Marine & Hydrokinetic Technology Readiness Initiative DE-EE0003636 TIDAL...

9

Tocardo Tidal Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Tocardo Tidal Energy Ltd Address: De Weel 20 Place: Zijdewind Zip: 1736KB Region: Netherlands Sector: Marine and Hydrokinetic Phone Number: 31 226 423411 Website: http:...

10

Atmospheric heat redistribution and collapse on tidally locked rocky planets  

E-Print Network [OSTI]

Atmospheric collapse is likely to be of fundamental importance to tidally locked rocky exoplanets but remains understudied. Here, general results on the heat transport and stability of tidally locked terrestrial-type atmospheres are reported. First, the problem is modeled with an idealized 3D general circulation model (GCM) with gray gas radiative transfer. It is shown that over a wide range of parameters the atmospheric boundary layer, rather than the large-scale circulation, is the key to understanding the planetary energy balance. Through a scaling analysis of the interhemispheric energy transfer, theoretical expressions for the day-night temperature difference and surface wind speed are created that reproduce the GCM results without tuning. Next, the GCM is used with correlated-k radiative transfer to study heat transport for two real gases (CO2 and CO). For CO2, empirical formulae for the collapse pressure as a function of planetary mass and stellar flux are produced, and critical pressures for atmospher...

Wordsworth, Robin

2014-01-01T23:59:59.000Z

11

European Wave and Tidal Energy Conference  

Broader source: Energy.gov [DOE]

The European Wave and Tidal Energy Conference (EWTEC) series are international, technical and scientific conferences, focussed on ocean renewable energy and widely respected for their commitment to...

12

Sandia National Laboratories: Tidal Energy Resource Assessment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of current speed * temporal variation of power density * temporal variation of turbulence intensity * tidal energy resource assessment * Verdant Power Inc. Comments are closed....

13

Tidal Energy Limited | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Limited (TEL) Tidal Energy Limited (TEL) Place Cardiff, Wales, United Kingdom Zip CF23 8RS Product Tidal stream device developer. Coordinates 51.48125°, -3.180734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.48125,"lon":-3.180734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

14

Tidal Energy Test Platform | Open Energy Information  

Open Energy Info (EERE)

Test Platform Test Platform Jump to: navigation, search Basic Specifications Facility Name Tidal Energy Test Platform Overseeing Organization University of New Hampshire Hydrodynamics Hydrodynamic Testing Facility Type Offshore Berth Water Type Saltwater Cost(per day) Contact POC Special Physical Features The Tidal Testing Platform is presently a 10.7m long x 3m wide pontoon barge with a derrick and an opening for deploying tidal energy devices. The platform is intentionally configured to be adaptive for the changing needs of different devices. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None

15

Tidal Electric | Open Energy Information  

Open Energy Info (EERE)

Electric Electric Jump to: navigation, search Name Tidal Electric Place London, Greater London, United Kingdom Zip SW19 8UY Product Developed a technology named 'tidal lagoons' to build tidal electric projects. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

Energy storage inherent in large tidal turbine farms  

Science Journals Connector (OSTI)

...Research articles 1006 154 139 140 Energy storage inherent in large tidal turbine...in channels have short-term energy storage. This storage lies in the inertia...channels. inertia|renewable energy|storage|tidal|current|power| 1...

2014-01-01T23:59:59.000Z

17

MHK Technologies/Tidal Defense and Energy System TIDES | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Tidal Defense and Energy System TIDES MHK Technologies/Tidal Defense and Energy System TIDES < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Defense and Energy System TIDES.jpg Technology Profile Primary Organization Oceana Energy Company Project(s) where this technology is utilized *MHK Projects/Astoria Tidal Energy *MHK Projects/Cape Islands Tidal Energy Project *MHK Projects/Central Cook Inlet Tidal Energy Project *MHK Projects/Icy Passage Tidal Energy Project *MHK Projects/Kachemak Bay Tidal Energy Project *MHK Projects/Kendall Head Tidal Energy *MHK Projects/Kennebec *MHK Projects/Penobscot Tidal Energy Project *MHK Projects/Portsmouth Area Tidal Energy Project *MHK Projects/Wrangell Narrows Tidal Energy Project Technology Resource Click here Current/Tidal

18

Assessment of Energy Production Potential from Tidal Streams...  

Broader source: Energy.gov (indexed) [DOE]

this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion...

19

TIDAL HEATING OF EXTRASOLAR PLANETS Brian Jackson, Richard Greenberg, and Rory Barnes  

E-Print Network [OSTI]

TIDAL HEATING OF EXTRASOLAR PLANETS Brian Jackson, Richard Greenberg, and Rory Barnes Lunar and gas cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget governing

Barnes, Rory

20

Tidal Sails AS | Open Energy Information  

Open Energy Info (EERE)

Sails AS Sails AS Jump to: navigation, search Name Tidal Sails AS Address Standgaten 130 Place Haugesund Zip 5531 Sector Marine and Hydrokinetic Phone number +32 474 98 06 16 Website http://www.tidalsails.com Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Tidal Sails This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Tidal_Sails_AS&oldid=678479" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies What links here Related changes Special pages Printable version Permanent link Browse properties

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Tidal energy from the Severn Estuary  

Science Journals Connector (OSTI)

... , a tidal power scheme could possess much of the flexibility of highly versatile, conventional hydroelectric stations, and many types of project have been suggested. To assess in 1974 the ... opt for thermal energy schemes (few are even now able to rely on further conventional hydroelectric sources, and stations which require fossil fuels are unlikely to be favoured in large ...

T. L. Shaw

1974-06-21T23:59:59.000Z

22

Hydra Tidal Energy Technology AS | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Technology AS Tidal Energy Technology AS Jump to: navigation, search Name Hydra Tidal Energy Technology AS Address PO Box 399 Place Harstad Zip 9484 Sector Marine and Hydrokinetic Year founded 2001 Phone number (+47) 77 06 08 08 Website http://http://www.hydratidal.i Region Norway LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: MORILD Demonstration Plant Morild 2 This company is involved in the following MHK Technologies: MORILD 2 Floating Tidal Power System Morild Power Plant This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Hydra_Tidal_Energy_Technology_AS&oldid=678333

23

Tidal Heating of Terrestrial Extra-Solar Planets and Implications for their Habitability  

E-Print Network [OSTI]

The tidal heating of hypothetical rocky (or terrestrial) extra-solar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth's, which may enhance the planet's habitability. In other cases, excessive tidal heating may result in Io-like planets with violent volcanism, probably rendering them unsuitable for life. On water-rich planets, tidal heating may generate sub-surface oceans analogous to Europa's with similar prospects for habitability. Tidal heating may enhance the outgassing of volatiles, contributing to the formation and replenishment of a planet's atmosphere. To address these issues, we model the tidal heating and evolution of hypothetical extra-solar terrestrial planets. The results presented here constrain the orbital and physical properties required for planets to be habitable.

Brian Jackson; Rory Barnes; Richard Greenberg

2008-08-20T23:59:59.000Z

24

Appraising the extractable tidal energy resource of the UK's western coastal waters  

Science Journals Connector (OSTI)

...streams has also been explored. renewable energy|tidal energy|barrages or...paramount that all viable sources of renewable energy are fully exploited. Towards...target for the UK of 15 per cent renewable energies (heating/cooling, transport...

2013-01-01T23:59:59.000Z

25

Earth Tidal Analysis | Open Energy Information  

Open Energy Info (EERE)

Earth Tidal Analysis Earth Tidal Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Earth Tidal Analysis Details Activities (6) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Enables estimation of in-situ reservoir elastic parameters. Stratigraphic/Structural: Hydrological: Enables estimation of in-situ reservoir hydraulic parameters. Thermal: Dictionary.png Earth Tidal Analysis: Earth tidal analysis is the measurement of the impact of tidal and barometric fluctuations on effective pore volume in a porous reservoir. Other definitions:Wikipedia Reegle

26

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...  

Office of Science (SC) Website

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project in North America Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR...

27

A review of the tidal current energy resource in Norway  

Science Journals Connector (OSTI)

As interest in renewable energy sources is steadily on the rise, tidal current energy is receiving more and more attention from politicans, industrialists, and academics. In this article, the conditions for and potential of tidal currents as an energy resource in Norway are reviewed. There having been a relatively small amount of academic work published in this particular field, closely related topics such as the energy situation in Norway in general, the oceanography of the Norwegian coastline, and numerical models of tidal currents in Norwegian waters are also examined. Two published tidal energy resource assessments are reviewed and compared to a desktop study made specifically for this review based on available data in pilot books. The argument is made that tidal current energy ought to be an important option for Norway in terms of renewable energy.

Mrten Grabbe; Emilia Lalander; Staffan Lundin; Mats Leijon

2009-01-01T23:59:59.000Z

28

MHK Projects/Kendall Head Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Kendall Head Tidal Energy Kendall Head Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

29

Tidal Energy Resource Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

dalresourcegtrchaas.ppt More Documents & Publications Ocean current resource assessment Free Flow Energy (TRL 1 2 3 Component) - Design and Development of a Cross-Platform...

30

MHK Technologies/TidalStar | Open Energy Information  

Open Energy Info (EERE)

TidalStar TidalStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage TidalStar.jpg Technology Profile Primary Organization Bourne Energy Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The horizontal axis TidalStar device uses a bidirectional twin rotor turbine to produce approximately 50 kW at peak capacity in both ebb and flood tides Technology Dimensions Length (m) 6 Width (m) 6 Freeboard (m) 1 Technology Nameplate Capacity (MW) 5 Device Testing Date Submitted 46:38.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/TidalStar&oldid=681677

31

MHK Projects/Cohansey River Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cohansey River Tidal Energy Cohansey River Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3829,"lon":-75.2995,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

32

MHK Projects/Highlands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Project Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3432,"lon":-73.9977,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

33

MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Piscataqua Tidal Hydrokinetic Energy Project Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1055,"lon":-70.7912,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

34

MHK Projects/Wiscasset Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Wiscasset Tidal Energy Plant Wiscasset Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8146,"lon":-69.8697,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

35

MHK Projects/Nantucket Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Nantucket Tidal Energy Plant Nantucket Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.389,"lon":-70.5134,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

36

MHK Projects/Kingsbridge Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Kingsbridge Tidal Energy Project Kingsbridge Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1008,"lon":-74.0495,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

37

MHK Projects/Rockaway Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Rockaway Tidal Energy Plant Rockaway Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5667,"lon":-73.922,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

38

MHK Projects/Muskeget Channel Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Muskeget Channel Tidal Energy Muskeget Channel Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3501,"lon":-70.3995,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

39

MHK Projects/Killisnoo Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Killisnoo Tidal Energy Killisnoo Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.4724,"lon":-134.56,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

40

MHK Projects/Housatonic Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Housatonic Tidal Energy Plant Housatonic Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2713,"lon":-73.0883,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MHK Projects/Tidal Energy Project Portugal | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Project Portugal Tidal Energy Project Portugal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.702,"lon":-9.13445,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

42

MHK Projects/Penobscot Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Penobscot Tidal Energy Project Penobscot Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5404,"lon":-68.7838,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

43

MHK Projects/Cape May Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cape May Tidal Energy Cape May Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9668,"lon":-74.963,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

44

MHK Projects/Salem Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Salem Tidal Energy Salem Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5739,"lon":-75.5438,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

45

MHK Projects/Angoon Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Angoon Tidal Energy Plant Angoon Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.5034,"lon":-134.58,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

46

MHK Projects/Seaflow Tidal Energy System | Open Energy Information  

Open Energy Info (EERE)

Seaflow Tidal Energy System Seaflow Tidal Energy System < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.2353,"lon":-3.8356,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

47

MHK Projects/East Foreland Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

East Foreland Tidal Energy East Foreland Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.2223,"lon":-151.905,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

48

MHK Projects/Cuttyhunk Tidal Energy Plant | Open Energy Information  

Open Energy Info (EERE)

Cuttyhunk Tidal Energy Plant Cuttyhunk Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7778,"lon":-70.8489,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

49

MHK Projects/Wrangell Narrows Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Wrangell Narrows Tidal Energy Project Wrangell Narrows Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.6324,"lon":-132.936,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

50

MHK Projects/Astoria Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Astoria Tidal Energy Astoria Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7172,"lon":-73.9703,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

51

MHK Projects/Cook Inlet Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Cook Inlet Tidal Energy Cook Inlet Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.6893,"lon":-151.437,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

52

MHK Projects/Admirality Inlet Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Admirality Inlet Tidal Energy Project Admirality Inlet Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.1169,"lon":-122.76,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

53

Energy Department Announces Funding for Demonstration and Testing of Advanced Wave and Tidal Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $10 million to strengthen the U.S. marine and hydrokinetic (MHK) energy industry, including wave and tidal energy sources.

54

Energy potential of a tidal fence deployed near a coastal headland  

Science Journals Connector (OSTI)

...192 Theme Issue New research in tidal current energy compiled and edited by AbuBakr Bahaj Energy potential of a tidal fence deployed near a...a Theme Issue New research in tidal current energy . Enhanced tidal streams close to coastal headlands...

2013-01-01T23:59:59.000Z

55

Tidal Generation Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Ltd Jump to: navigation, search Name Tidal Generation Ltd Address University Gate East Park Row Place Bristol, United Kingdom Zip BS1 5UB Sector Marine and Hydrokinetic Product Tidal Generation is developing a 1MW fully submerged tidal turbine to generate electricity from tidal currents in water depths up to 50m. Phone number 4.41E+11 Website http://www.tidalgeneration.co. Coordinates 42.55678°, -88.050449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.55678,"lon":-88.050449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Tidal Energy DOE Science Showcase - Tidal Energy Point absorbers generate electricity by converting the energy in waves using a float that rides the waves and is attached to a moored conversion device. The Department of Energy's Water Power Program Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from Tidal Streams in the United States, Energy Citations Database Georgia Tech's Tidal Energy Resources Database U.S. Renewable Resources Atlas , NREL Tidal energy research in WorldWideScience.org OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading...

57

MHK Technologies/Rotech Tidal Turbine RTT | Open Energy Information  

Open Energy Info (EERE)

Rotech Tidal Turbine RTT Rotech Tidal Turbine RTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Rotech Tidal Turbine RTT.jpg Technology Profile Primary Organization Lunar Energy Project(s) where this technology is utilized *MHK Projects/Lunar Energy St David s Peninsula Pembrokeshire South Wales UK *MHK Projects/Lunar Energy Wando Hoenggan Waterway South Korea Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description he Rotech Tidal Turbine (RTT) is a bi-directional horizontal axis turbine housed in a symmetrical venturi duct. The Venturi duct draws the existing ocean currents into the RTT in order to capture and convert energy into electricity. Use of a gravity foundation will allow the RTT to be deployed quickly with little or no seabed preparation at depths in excess of 40 meters. This gives the RTT a distinct advantage over most of its competitors and opens up a potential energy resource that is five times the size of that available to companies using pile foundations.

58

MHK Technologies/Scotrenewables Tidal Turbine SRTT | Open Energy  

Open Energy Info (EERE)

Scotrenewables Tidal Turbine SRTT Scotrenewables Tidal Turbine SRTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Scotrenewables Tidal Turbine SRTT.jpg Technology Profile Primary Organization Scotrenewables Project(s) where this technology is utilized *MHK Projects/Scotrenewables EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Scotrenewables Tidal Turbine (SRTT) system is a free-floating rotor-based tidal current energy converter. The concept in its present configuration involves dual counter-rotating horizontal axis rotors driving generators within sub-surface nacelles, each suspended from separate keel and rotor arm sections attached to a single surface-piercing cylindrical buoyancy tube. The device is anchored to the seabed via a yoke arrangement. A separate flexible power and control umbilical line connects the device to a subsea junction box. The rotor arm sections are hinged to allow each two-bladed rotor to be retracted so as to be parallel with the longitudinal axis of the buoyancy tube, giving the system a transport draught of less than 4.5m at full-scale to facilitate towing the device into harbors for maintenance.

59

MHK Technologies/Tidal Stream | Open Energy Information  

Open Energy Info (EERE)

Stream Stream < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream.jpg Technology Profile Primary Organization Tidal Stream Project(s) where this technology is utilized *MHK Projects/Thames at Chiswick Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The TidalStream SST (Semi-Submersible Turbine) is designed for deep water, typically 60m+ (e.g., Pentland Firth) where it is too deep to mount turbines rigidly to the seabed and too rough for surface floaters to survive. Tidal Stream SST consists of turbines connected to unique semi-submersible spar buoys that are moored to the seabed using anchors through swing-arms. This ensures automatic alignment to the tidal flow to maximize energy capture. By blowing the water ballast, the device will rise, rotate, and float to the surface still tethered to the base to allow for on- or off-site maintenance. By releasing the tether arm the device can be towed to a harbor at the end of its life or for major repair or exchange.

60

List of Tidal Energy Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 538 Tidal Energy Incentives. CSV (rows 1-500) CSV (rows 501-538) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Environmental Regulations Connecticut Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Biomass/Biogas

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT  

SciTech Connect (OSTI)

The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPCs TidGen Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Projects economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

Wright, Bruce Albert [Aleutian Pribilof Islands Association] [Aleutian Pribilof Islands Association

2014-05-07T23:59:59.000Z

62

New Interactive Map Reveals U.S. Tidal Energy Resources | Department of  

Broader source: Energy.gov (indexed) [DOE]

Interactive Map Reveals U.S. Tidal Energy Resources Interactive Map Reveals U.S. Tidal Energy Resources New Interactive Map Reveals U.S. Tidal Energy Resources July 7, 2011 - 10:50am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology Mike Reed Water Power Program Manager, Water Power Program Tidal energy -- a renewable, predictable resource available up and down America's coastlines -- holds great promise for clean energy generation. And now, a first of its kind database gives researchers deeper insight into the potential of this energy resource for the United States.

63

Assessment of Energy Production Potential from Tidal Streams in the United States  

Broader source: Energy.gov [DOE]

The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.

64

MHK Technologies/KESC Tidal Generator | Open Energy Information  

Open Energy Info (EERE)

KESC Tidal Generator KESC Tidal Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage KESC Tidal Generator.jpg Technology Profile Primary Organization Kinetic Energy Systems Project(s) where this technology is utilized *MHK Projects/Newfound Harbor Project Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Tidal Generator is based on free flow hydrodynamics for regions that have flood and ebb tides. Strategically attached to bridges, pilings, river, channel, or sea bottoms, this multi-directional generator contains two sets of turbine blades. As the tide flows inward the inward turbine blades opens to maximum rotor diameter while the outward turbine closes into the outward cone-shaped hub to create a hydro dynamically clean surface for water to flow without drag. The center diameter is 75% of the diameter of the turbine blades at full rotor extension for stability.

65

MHK Technologies/Tidal Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Turbine.jpg Technology Profile Primary Organization Aquascientific Project(s) where this technology is utilized *MHK Projects/Race Rocks Demonstration Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description Turbine is positioned by anchoring and cabling Energy extraction from flow that is transverse to the rotation axis Turbines utilize both lift and drag Mooring Configuration Gravity base although other options are currently being explored Technology Dimensions Device Testing Date Submitted 10/8/2010

66

MHK Technologies/Tidal Hydraulic Generators THG | Open Energy Information  

Open Energy Info (EERE)

Generators THG Generators THG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Hydraulic Generators THG.jpg Technology Profile Primary Organization Tidal Hydraulic Generators Ltd Project(s) where this technology is utilized *MHK Projects/Ramsey Sound Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The concept of generating energy in this way is made unique by our novel design feature. The generator, devised in 1998, is a hydraulic accumulator system, involving relatively small revolving blades which gather power to a central collector, where electricity is generated. The generator, which is situated under water, is 80 metres square, stands at 15 metres high, and is designed to run for a minimum of ten years without service.

67

MHK Technologies/Tidal Delay | Open Energy Information  

Open Energy Info (EERE)

Delay Delay < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Delay.png Technology Profile Primary Organization Woodshed Technologies Ltd Technology Resource Click here Current Technology Type Click here Overtopping Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Tidal Delay utilizes an existing natural land formation such as a peninsula or isthmus that creates a natural tidal barrier separating moving rising and falling bodies of seawater As the seawater on each side of the natural barrier rises and falls the device captures the energy resulting from the difference in water levels across the barrier using proven hydroelectric technology The device utilizes a standard impulse turbine installed in siphon pipe over under the natural barrier

68

Energy Department Invests $16 Million to Harness Wave and Tidal Energy |  

Broader source: Energy.gov (indexed) [DOE]

6 Million to Harness Wave and Tidal 6 Million to Harness Wave and Tidal Energy Energy Department Invests $16 Million to Harness Wave and Tidal Energy August 29, 2013 - 2:35pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United States and responsible development of this clean, renewable energy

69

Energy Department Invests $16 Million to Develop Wave and Tidal Energy  

Broader source: Energy.gov (indexed) [DOE]

6 Million to Develop Wave and Tidal 6 Million to Develop Wave and Tidal Energy Technologies Energy Department Invests $16 Million to Develop Wave and Tidal Energy Technologies August 29, 2013 - 12:00pm Addthis Image of machinery to generate energy using tides. As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides, and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United

70

Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York  

Science Journals Connector (OSTI)

Abstract This study demonstrates a site resource assessment to examine the temporal variation of the current speeds, current directions, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4ms?1, and a turbulence intensity of 15% at a reference mean current of 2ms?1. Flood and ebb flow directions are nearly bi-directional, with a higher current speed during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and the power densities derived from the current measurements can be significantly influenced by the length of the time window used for averaging the current speed data. Furthermore, the theoretical power density at the site, derived from the current speed measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. This discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.

Budi Gunawan; Vincent S. Neary; Jonathan Colby

2014-01-01T23:59:59.000Z

71

Category:Earth Tidal Analysis | Open Energy Information  

Open Energy Info (EERE)

Geothermalpower.jpg Looking for the Earth Tidal Analysis page? For detailed information on Earth Tidal Analysis, click here. Category:Earth Tidal Analysis Add.png Add a new Earth...

72

MHK Projects/Deception Pass Tidal Energy Hydroelectric Project | Open  

Open Energy Info (EERE)

Deception Pass Tidal Energy Hydroelectric Project Deception Pass Tidal Energy Hydroelectric Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.4072,"lon":-122.643,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

73

Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts  

SciTech Connect (OSTI)

In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

2014-09-30T23:59:59.000Z

74

Tidal Stream Power Web GIS Tool | Open Energy Information  

Open Energy Info (EERE)

Tidal Stream Power Web GIS Tool Tidal Stream Power Web GIS Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Tidal Stream Power Web GIS Tool Agency/Company /Organization: Georgia Tech Savannah Sector: Energy Focus Area: Renewable Energy Resource Type: Software/modeling tools User Interface: Website Website: www.tidalstreampower.gatech.edu/ Country: United States Web Application Link: www.tidalstreampower.gatech.edu/ Cost: Free UN Region: Northern America Coordinates: 32.167482°, -81.212405° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.167482,"lon":-81.212405,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

75

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project |  

Broader source: Energy.gov (indexed) [DOE]

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project July 24, 2012 - 1:12pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Today, Energy Secretary Steven Chu recognized the nation's first commercial, grid-connected tidal energy project off the coast of Eastport, Maine. Leveraging a $10 million investment from the Energy Department, Ocean Renewable Power Company (ORPC) will deploy its first commercial tidal energy device into Cobscook Bay this summer. The project, which injected $14 million into the local economy and has supported more than 100 local and supply chain jobs, represents the first tidal energy project in the United States with long-term contracts to sell electricity

76

Regulation of Tidal and Wave Energy Projects (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tidal and Wave Energy Projects (Maine) Tidal and Wave Energy Projects (Maine) Regulation of Tidal and Wave Energy Projects (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection State regulation of tidal and wave energy projects is covered under the Maine Waterway Development and Conservation Act (MWDCA), and complements

77

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

78

MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information  

Open Energy Info (EERE)

Deep Gen Tidal Turbines Deep Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal Generation Ltd Project(s) where this technology is utilized *MHK Projects/Tidal Generation Ltd EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The DEEP Gen 1 MW fully submerged tidal turbine best exploits resources in depths 30m The horizontal axis turbine is inexpensive to construct and easy to install due to the lightweight 80 tons MW support structure allows rapid removal and replacement of powertrains enabling safe maintenance in a dry environment and is located out of the wave zone for improved survivability

79

MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open Energy  

Open Energy Info (EERE)

Uldolmok Pilot Tidal Current Power Plant Uldolmok Pilot Tidal Current Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uldolmok Pilot Tidal Current Power Plant.jpg Technology Profile Primary Organization Korea East West Power Co LTD Technology Resource Click here Current Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description The tidal current power plant uses current energy that can be differentiated from a typical tidal power plant using marine energy The latter confines water in a dam and when released it gets processed in a turbine to produce electric power The tidal current power plant on the other hand does not need a dam thus concerns of social dislocations and degradation of ecosystems primarily endangering marine life can be avoided

80

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Broader source: Energy.gov (indexed) [DOE]

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Broader source: Energy.gov (indexed) [DOE]

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

82

MHK Technologies/Tidal Sails | Open Energy Information  

Open Energy Info (EERE)

Sails Sails < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Sails.jpg Technology Profile Primary Organization Tidal Sails AS Technology Resource Click here Current Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Tidal Sails device is a series of underwater sails affixed to wires strung across the tidal stream at an angle The sails are driven back and forth by the tidal flow between two stations at one of which the generator is installed Technology Dimensions Device Testing Date Submitted 26:04.6 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Sails&oldid=681675

83

MHK Technologies/Tidal Lagoons | Open Energy Information  

Open Energy Info (EERE)

Tidal Lagoons Tidal Lagoons < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Lagoons.jpg Technology Profile Primary Organization Tidal Electric Project(s) where this technology is utilized *MHK Projects/Dandong City *MHK Projects/Swansea Bay Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description idal Lagoons are situated a mile or more offshore in high tidal range areas, and use a rubble mound impoundment structure and low-head hydroelectric bulb turbines. Shallow tidal flats provide the most economical sites. Multi-cell Tidal Lagoons provide higher load factors (about 62%) and have the flexibility to shape the output curve in order to dispatch power in response to demand price signals. The impoundment structure is a conventional rubble mound breakwater (loose rock, concrete, and marine sheetpiles are among the types of appropriate materials for the impoundment structure), with ordinary performance specifications and is built from the most economical materials. The barrage is much shorter than an impoundment structure with the same output capacity, but the barrage is a much larger structure. The offshore tidal generator uses conventional low-head hydroelectric generation equipment and control systems. The equipment consists of a mixed-flow reversible bulb turbine, a generator, and the control system. Manufacturers/suppliers include Alstom, GE, Kvaerner, Siemens, Voith, Sulzer, and others.

84

Water Heating | Department of Energy  

Energy Savers [EERE]

Energy Saver Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs....

85

MHK Technologies/MORILD 2 Floating Tidal Power System | Open Energy  

Open Energy Info (EERE)

MORILD 2 Floating Tidal Power System MORILD 2 Floating Tidal Power System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MORILD 2 Floating Tidal Power System.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/Morild 2 Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Hydra Tidal´s Morild II tidal power plant technology at-a-glance: - A unique and patented floating tidal power plant - Prototype has an installed effect of 1,5 MW - Turbine diameter of 23 meters - Each turbine is pitchable - 4 turbines with a total of 8 turbine blades - Unique wooden turbine blades - The MORILD II can be anchored at different depths, thus it can be positioned in spots with ideal tidal stream conditions - The plant carries a sea vessel verification, and is both towable and dockable - The floating installation enables maintenance in surface position, and on site - The MORILD II will be remotely operated, and has on-shore surveillance systems - Technology patented for all relevant territories The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

86

Water Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to cut your water heating bill. Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's energy efficiency is determined by the energy...

87

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

88

Reservoir response to tidal and barometric effects | Open Energy  

Open Energy Info (EERE)

to tidal and barometric effects to tidal and barometric effects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Reservoir response to tidal and barometric effects Details Activities (2) Areas (2) Regions (0) Abstract: Solid earth tidal strain and surface loading due to fluctuations in barometric pressure have the effect, although extremely minute, of dilating or contracting the effective pore volume in a porous reservoir. If a well intersects the formation, the change in pore pressure can be measured with sensitive quartz pressure gauges. Mathematical models of the relevant fluid dynamics of the well-reservoir system have been generated and tested against conventional well pumping results or core data at the Salton Sea Geothermal Field (SSGF), California and at the Raft River,

89

MHK Technologies/Jiangxia Tidal Power Station | Open Energy Information  

Open Energy Info (EERE)

Jiangxia Tidal Power Station Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary Organization China Guodian Corporation Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description There are 6 bulb turbine generator units operating in both ebb and flood tides with a total installed capacity up to 3 9 MW Technology Dimensions Technology Nameplate Capacity (MW) 3 9 Device Testing Date Submitted 14:15.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Jiangxia_Tidal_Power_Station&oldid=681601

90

Global Calculation of Tidal Energy Conversion into Vertical Normal Modes  

Science Journals Connector (OSTI)

A direct calculation of the tidal generation of internal waves over the global ocean is presented. The calculation is based on a semianalytical model, assuming that the internal tide characteristic slope exceeds the bathymetric slope (subcritical ...

Saeed Falahat; Jonas Nycander; Fabien Roquet; Moundheur Zarroug

2014-12-01T23:59:59.000Z

91

Severn Tidal Power Group STpg | Open Energy Information  

Open Energy Info (EERE)

Power Group STpg Jump to: navigation, search Name: Severn Tidal Power Group STpg Region: United Kingdom Sector: Marine and Hydrokinetic Website: http:http:www.reuk.co.uks This...

92

MHK Technologies/Sabella subsea tidal turbine | Open Energy Information  

Open Energy Info (EERE)

subsea tidal turbine subsea tidal turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Description It is characterised by a turbine configuration on the seafloor, without impinging on the surface. These turbines are stabilised by gravity and/or are anchored according to the nature of the seafloor. They are pre-orientated in the direction of the tidal currents, and the profile of their symmetrical blades helps to capture the ebb and flow. The rotor activated, at slow speeds (10 to 15 rpm), by the tides powers a generator, which exports the electricity produced to the coast via a submarine cable anchored and embedded at its landfall.

93

MHK Technologies/Tidal Stream Turbine | Open Energy Information  

Open Energy Info (EERE)

Stream Turbine Stream Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream Turbine.jpg Technology Profile Primary Organization StatoilHydro co owned by Hammerfest Strong Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A fully operational 300kW prototype tidal turbine has been running in Norway since 2003 and has achieved good results It s the world s first tidal turbine to supply electricity directly to the onshore grid In the autumn of 2008 Hammerfest Str�m signed an intention agreement with Scottish Power to further develop tidal technology in the UK A 1 MW turbine is currently under development

94

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Broader source: Energy.gov (indexed) [DOE]

16: Ocean Renewable Power Company Maine, LLC Cobscook Bay 16: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

95

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Broader source: Energy.gov (indexed) [DOE]

1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay 1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

96

MHK Technologies/Tidal Barrage | Open Energy Information  

Open Energy Info (EERE)

Barrage Barrage < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Barrage.jpg Technology Profile Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description No information provided Technology Dimensions Device Testing Date Submitted 01:04.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Barrage&oldid=681672" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

97

Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Pumps Heat Pumps Heat Pumps Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Learn more about how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces and air conditioners. Several types of heat pumps are available, including air-source; geothermal; ductless, mini-split; and absorption heat pumps. Learn more about the different options and how to use your heat pump efficiently to save money and energy at home. Featured Heat Pump Systems A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

98

Modeling Tidal Stream Energy Extraction and its Effects on Transport Processes in a Tidal Channel and Bay System Using a Three-dimensional Coastal Ocean Model  

SciTech Connect (OSTI)

This paper presents a numerical modeling study for simulating in-stream tidal energy extraction and assessing its effects on the hydrodynamics and transport processes in a tidal channel and bay system connecting to coastal ocean. A marine and hydrokinetic (MHK) module was implemented in a three-dimensional (3-D) coastal ocean model using the momentum sink approach. The MHK model was validated with the analytical solutions for tidal channels under one-dimensional (1-D) conditions. Model simulations were further carried out to compare the momentum sink approach with the quadratic bottom friction approach. The effects of 3-D simulations on the vertical velocity profile, maximum extractable energy, and volume flux reduction across the channel were investigated through a series of numerical experiments. 3-D model results indicate that the volume flux reduction at the maximum extractable power predicted by the 1-D analytical model or two-dimensional (2-D) depth-averaged numerical model may be overestimated. Maximum extractable energy strongly depends on the turbine hub height in the water column, and which reaches a maximum when turbine hub height is located at mid-water depth. Far-field effects of tidal turbines on the flushing time of the tidal bay were also investigated. Model results demonstrate that tidal energy extraction has a greater effect on the flushing time than volume flux reduction, which could negatively affect the biogeochemical processes in estuarine and coastal waters that support primary productivity and higher forms of marine life.

Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.

2013-02-28T23:59:59.000Z

99

MHK Projects/Fishers Island Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Fishers Island Tidal Energy Project Fishers Island Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2379,"lon":-72.0599,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

100

MHK Projects/Spieden Channel Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Spieden Channel Tidal Energy Project Spieden Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.5341,"lon":-123.013,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

MHK Projects/Kachemak Bay Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Kachemak Bay Tidal Energy Project Kachemak Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

102

MHK Projects/Edgar Town Nantucket Tidal Energy | Open Energy Information  

Open Energy Info (EERE)

Edgar Town Nantucket Tidal Energy Edgar Town Nantucket Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3638,"lon":-70.2766,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

103

MHK Projects/San Francisco Bay Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Francisco Bay Tidal Energy Project Francisco Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.691,"lon":-122.311,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

104

MHK Projects/Cape Cod Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Cape Cod Tidal Energy Project Cape Cod Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7686,"lon":-70.5651,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

105

MHK Projects/Shelter Island Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Shelter Island Tidal Energy Project Shelter Island Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0453,"lon":-72.3748,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

106

MHK Projects/Guemes Channel Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Guemes Channel Tidal Energy Project Guemes Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.5343,"lon":-123.017,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

107

MHK Projects/Icy Passage Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Icy Passage Tidal Energy Project Icy Passage Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.4133,"lon":-135.737,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

108

MHK Projects/Roosevelt Island Tidal Energy RITE | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Island Tidal Energy RITE Roosevelt Island Tidal Energy RITE < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7639,"lon":-73.9466,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

109

MHK Projects/Indian River Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Hydrokinetic Energy Project Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6853,"lon":-75.0694,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

110

MHK Projects/Tacoma Narrows Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Narrows Tidal Energy Project Narrows Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.2591,"lon":-122.445,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

111

MHK Projects/Cape Islands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Islands Tidal Energy Project Islands Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4833,"lon":-70.7578,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

112

MHK Projects/Central Cook Inlet Alaska Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Energy Project Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

113

MHK Projects/Portsmouth Area Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Portsmouth Area Tidal Energy Project Portsmouth Area Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1081,"lon":-70.7776,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

114

MHK Projects/San Juan Channel Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

San Juan Channel Tidal Energy Project San Juan Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.5896,"lon":-123.012,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

115

MHK Projects/Long Island Sound Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Long Island Sound Tidal Energy Project Long Island Sound Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1674,"lon":-72.218,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

116

Effects of Localized Energy Extraction in an Idealized, Energetically Complete Numerical Model of an Ocean-Estuary Tidal System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

localized energy extraction in an localized energy extraction in an idealized, energetically complete numerical model of an ocean-estuary tidal system MHK Instrumentation, Measurement & Computer Modeling Workshop, Broomfield CO, July 10 2012 Mitsuhiro Kawase and Marisa Gedney Northwest National Marine Renewable Energy Center / School of Oceanography University of Washington Seattle WA 98195 United States * Far-field (Estuary-wide) - Changes in the tidal range - Changes in tidal currents  Near-field (Vicinity of the Device)  Flow redirection  Interaction with marine life  Impact on bottom sediments and benthos Environmental Effects of Tidal Energy Extraction * Reduction in tidal range can permanently expose/submerge tidal flats, altering nearshore habitats * Reduction in kinetic energy of

117

Definition: Heat | Open Energy Information  

Open Energy Info (EERE)

Heat Heat Jump to: navigation, search Dictionary.png Heat Heat is the form of energy that is transferred between systems or objects with different temperatures (flowing from the high-temperature system to the low-temperature system). Also referred to as heat energy or thermal energy. Heat is typically measured in Btu, calories or joules. Heat flow, or the rate at which heat is transferred between systems, has the same units as power: energy per unit time (J/s).[1][2][3][4] View on Wikipedia Wikipedia Definition In physics and chemistry, heat is energy in transfer between a system and its surroundings other than by work or transfer of matter. The transfer can occur in two simple ways, conduction, and radiation, and in a more complicated way called convective circulation. Heat is not a property

118

Heat Pumps | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhotoYinYang. If you live in a...

119

MHK Projects/Dorchester Maurice Tidal | Open Energy Information  

Open Energy Info (EERE)

Dorchester Maurice Tidal Dorchester Maurice Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3262,"lon":-74.938,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

120

MHK Projects/Orient Point Tidal | Open Energy Information  

Open Energy Info (EERE)

Orient Point Tidal Orient Point Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0748,"lon":-72.9461,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

MHK Projects/Gastineau Channel Tidal | Open Energy Information  

Open Energy Info (EERE)

Gastineau Channel Tidal Gastineau Channel Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.295,"lon":-134.407,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

122

MHK Projects/Paimpol Brehat tidal farm | Open Energy Information  

Open Energy Info (EERE)

Paimpol Brehat tidal farm Paimpol Brehat tidal farm < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.869,"lon":-2.98546,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

123

MHK Projects/Turnagain Arm Tidal | Open Energy Information  

Open Energy Info (EERE)

Turnagain Arm Tidal Turnagain Arm Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

124

MHK Projects/Lubec Narrows Tidal | Open Energy Information  

Open Energy Info (EERE)

Lubec Narrows Tidal Lubec Narrows Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8652,"lon":-66.9828,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

125

MHK Projects/Treat Island Tidal | Open Energy Information  

Open Energy Info (EERE)

Treat Island Tidal Treat Island Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

126

MHK Projects/Maurice River Tidal | Open Energy Information  

Open Energy Info (EERE)

Maurice River Tidal Maurice River Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3261,"lon":-74.9379,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

127

MHK Projects/Margate Tidal | Open Energy Information  

Open Energy Info (EERE)

Margate Tidal Margate Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3793,"lon":-74.4384,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

128

MHK Projects/BW2 Tidal | Open Energy Information  

Open Energy Info (EERE)

BW2 Tidal BW2 Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3264,"lon":-74.9336,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

129

MHK Projects/Avalon Tidal | Open Energy Information  

Open Energy Info (EERE)

Avalon Tidal Avalon Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1068,"lon":-74.7463,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

130

Energy Saver 101: Water Heating Infographic | Department of Energy  

Energy Savers [EERE]

Energy Saver 101: Water Heating Infographic Energy Saver 101: Water Heating Infographic Looking for ways to save money on water heating? Energy Saver 101: Water Heating infographic...

131

All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to  

Broader source: Energy.gov (indexed) [DOE]

All Eyes on Eastport: Tidal Energy Project Brings Change, All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community July 24, 2012 - 2:40pm Addthis Captain Gerald "Gerry" Morrison, Vice President of Perry Marine & Consctruction. | Photo Courtesy of Ocean Renewable Power Company. Captain Gerald "Gerry" Morrison, Vice President of Perry Marine & Consctruction. | Photo Courtesy of Ocean Renewable Power Company. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Today in Eastport, Maine, people are gathering to celebrate a project that will harness the power of the massive tides of Cobscook Bay to generate clean electricity. At a public dedication event this afternoon, Portland-based Ocean Renewable

132

Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report  

SciTech Connect (OSTI)

Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energyâ??s Wind and Hydropower Technologies Programâ??s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

Craig W. Collar

2012-11-16T23:59:59.000Z

133

Energy 101: Geothermal Heat Pumps  

SciTech Connect (OSTI)

An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

None

2011-01-01T23:59:59.000Z

134

Energy 101: Geothermal Heat Pumps  

ScienceCinema (OSTI)

An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

None

2013-05-29T23:59:59.000Z

135

Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Water Heating Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs Read more Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn how to buy the right size of water heater. Read more You can reduce your monthly water heating bills by selecting the appropriate water heater for your home or pool and by using some energy-efficient water heating strategies. Some simple do-it-yourself projects, like insulating hot water pipes and lowering your water heating temperature, can also help you save money and energy on your water heating.

136

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network [OSTI]

Waste heat Pyroelectric energy3 Pyroelectric Waste Heat Energy Harvesting Using Heat4 Pyroelectric Waste Heat Energy Harvesting Using Relaxor

Lee, Felix

2012-01-01T23:59:59.000Z

137

Impact of different tidal renewable energy projects on the hydrodynamic processes in the Severn Estuary, UK  

Science Journals Connector (OSTI)

The Severn Estuary, located in the UK between south east Wales and south west England, is an ideal site for tidal renewable energy projects, since this estuary has the third highest tidal range in the world, with a spring tidal range approaching 14m. The UK Government recently invited proposals for tidal renewable energy projects from the estuary and many proposals were submitted for consideration. Among the proposals submitted and subsequently shortlisted were: the CardiffWeston Barrage, the Fleming Lagoon and the Shoots Barrage, all three of which are nationally public interest. Therefore a two-dimensional finite volume numerical model, based on an unstructured triangular mesh, has been refined to study the hydrodynamic impact and flood inundation extent, post construction, of all three of these proposed tidal power projects. The model-predicted hydrodynamic processes have been analysed in detail, both without and with the structures, including the discharge processes at key sections, the contours of maximum and minimum water levels, the envelope curves of high and low water levels, the maximum tidal currents, the local velocity fields around the structures and the mean power output curves. Simulated results indicate that: (i) although the construction of the CardiffWeston Barrage would have an adverse impact on a range of environmental aspects, due to there being approximately a 50% decrease in the peak discharge entering the upstream region, it would reduce the maximum water levels upstream of the barrage by typically 0.31.2m, which could be positive in respect of coastal flooding; (ii) the construction of the Fleming Lagoon would have little influence on the hydrodynamic processes in the Severn Estuary; and (iii) the construction of the Shoots Barrage would decrease the maximum water levels upstream of the M4 bridge by between 0.3 and 1.0m, but it could lead to an increase in the maximum water levels downstream of the barrage by typically 2030cm.

Junqiang Xia; Roger A. Falconer; Binliang Lin

2010-01-01T23:59:59.000Z

138

Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project  

SciTech Connect (OSTI)

Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project TeamLGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Scienceundertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPCs proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPCs work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPCs East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Projects rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPCs projects in Cook Inlet.

Worthington, Monty [Project Director - AK] [Project Director - AK

2014-02-05T23:59:59.000Z

139

Design and feasibility study of a microgeneration system to obtain renewable energy from tidal currents  

Science Journals Connector (OSTI)

Tidal energy to obtain electrical energy is yet an unexploited renewable energy. Existing generator designs and prototypes are not feasible due to the high investment conditioned by their high rated powers and off-shore locations. In addition these prototypes are not readily available. This investigation presents a design of a microgeneration system with vertical axis microturbines. The design of the microturbines utilizes off-the-shelf electronic components thus reducing the initial investment. The nominal data for selection of power electronic components and the total energy that can be obtained in a year are calculated. The investigation also studies the feasibility of an 80?kW microgeneration system to be applied in Spain taking advantage of the actual electricity prices. The feasibility study quantifies the influence of the parameters: initial investment tidal current speed operation hours turbine efficiency price of electricity and number of microturbines obtaining the limiting values of the suitable scenarios.

2014-01-01T23:59:59.000Z

140

Overview of Ocean Wave and Tidal Energy Lingchuan Mei  

E-Print Network [OSTI]

resources such as solar and wind energy, waves and tides have the advantages of having much higher power stronger energy conversion devices lower in capital cost than for other renewable technologies and creating more job opportunities. For these major benefits the marine energy can provide us with, a great

Lavaei, Javad

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Heat Exchangers for Solar Water Heating Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems May 30, 2012 - 3:40pm Addthis Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because it is a good thermal conductor and has greater resistance to corrosion. Types of Heat Exchangers Solar water heating systems use three types of heat exchangers: Liquid-to-liquid A liquid-to-liquid heat exchanger uses a heat-transfer fluid that

142

Geothermal energy utilization with heat pipes  

Science Journals Connector (OSTI)

Several variants of heat pipes for utilization of geothermal energy and underground rock heat are studied. An...

L. L. Vasil'ev

1990-09-01T23:59:59.000Z

143

Process Heating Systems | Department of Energy  

Office of Environmental Management (EM)

Efficiency in Process Heating Systems Roadmap for Process Heating Technology Reduce Natural Gas Use in Your Industrial Process Heating Systems Save Energy Now in Your Process...

144

NREL Uses Computing Power to Investigate Tidal Power (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uses Computing Power to Uses Computing Power to Investigate Tidal Power Researchers at the National Renewable Energy Laboratory (NREL) have applied their knowledge of wind flow and turbulence to simulations of underwater tidal turbines. Inspired by similar simulations of wind turbine arrays, NREL researchers used their wind expertise, a supercomputer, and large-eddy simulation to study how the placement of turbines affects the power production of an underwater tidal turbine array. As tides ebb and flow, they create water currents that carry a significant amount of kinetic energy. To capture this energy, several companies are developing and deploying devices known as horizontal-axis tidal turbines, which resemble small wind turbines. These devices can be arranged in an array of multiple turbines to maximize the energy extracted in tidal

145

Tidal disruption jets as the source of Ultra-High Energy Cosmic Rays  

E-Print Network [OSTI]

Observations of the spectacular, blazar-like tidal disruption event (TDE) candidates Swift J1644+57 and J2058+05 show that the conditions required for accelerating protons to 10^{20} eV appear to be realized in the outer jet, and possibly in the inner jet as well. Direct and indirect estimates of the rate of jetted-TDEs, and of the energy they inject, are compatible with the observed flux of ultra-high energy cosmic rays (UHECRs) and the abundance of presently contributing sources. Thus TDE-jets can be a major source of UHECRs, even compabile with a pure proton composition.

Farrar, Glennys R

2014-01-01T23:59:59.000Z

146

Definition: Heat pump | Open Energy Information  

Open Energy Info (EERE)

pump pump Jump to: navigation, search Dictionary.png Heat pump Heating and/or cooling equipment that, during the heating season, draws heat into a building from outside and, during the cooling season, ejects heat from the building to the outside[1] View on Wikipedia Wikipedia Definition A heat pump is a device that transfers heat energy from a heat source to a heat sink against a temperature gradient. Heat pumps are designed to move thermal energy opposite the direction of spontaneous heat flow. A heat pump uses some amount of external high-grade energy to accomplish the desired transfer of thermal energy from heat source to heat sink. While compressor-driven air conditioners and freezers are familiar examples of heat pumps, the term "heat pump" is more general and applies to

147

Industrial Distributed Energy: Combined Heat & Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Information about the Department of Energys Industrial Technologies Program and its Combined Heat and Power program.

148

Key issues of tidal energy and factors affecting it globally with civil structures  

Science Journals Connector (OSTI)

This paper focus on some of the key challenges to be met in the development of marine energy, it present prototype form to being a widely deployed contributor to future energy supply of the world. Large-scale wave and tidal current prototypes have been demonstrated around the world, but marine renewable energy technology is still 10-15 years behind that of wind energy. However, having started later, the developing technology can make use of more advanced science and engineering, and it is therefore reasonable to expect rapid progress. Many scientific advances are required to meet these challenges and their likelihood is explored based on current and future capabilities. The paper incorporating aspects of technology, power production effects and capital cost factor implications. The aim is to give grounding in the nature of the industry, the current state of the industry and the key factors which will potentially shape and limit the growth of the industry. This is achieved by evaluating tidal power from technological, environmental and socioeconomic viewpoints.

Kiranben V. Patel; Suvin M. Patel

2010-01-01T23:59:59.000Z

149

Estimation of annual energy output from a tidal barrage using two different methods  

Science Journals Connector (OSTI)

In recent years, there have been growing international challenges relating to climate change and global warming, with a conflict developing between the need to create a low-carbon economy and rapid depleting reserves of fossil fuels. In addition to these challenges there continues to be the added complexity of a significant global increase in energy demand. Marine renewable energy from tidal barrages is carbon-free and has the potential to make a significant contribution to energy supplies now and in the future. Therefore, it is appropriate to evaluate the total energy that can be extracted from such barrages. In this study two different methods are proposed to estimate the total annual energy output from a barrage, including a theoretical estimation based on the principle associated with tidal hydrodynamics, and a numerical estimation based on the solutions obtained from a 2D hydrodynamic model. The proposed Severn Barrage in the UK was taken as a case study, and these two methods were applied to estimate the potential annual energy output from the barrage. The predicted results obtained using the two methods indicate that the magnitude of the annual energy output would range from 13 to 16TWh, which is similar to the value of 15.6TWh reported by the Department of Energy and Climate Change, in the UK. Further investigations show that the total annual energy output would increase by about 15% if a higher discharge coefficient were to be adopted for the sluice gates, or if the turbine performance were to be improved. However, the estimated annual energy output could exceed the value of 16TWh if future technological advances in both sluice gate construction and turbine performance are included.

Junqiang Xia; Roger A. Falconer; Binliang Lin; Guangming Tan

2012-01-01T23:59:59.000Z

150

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network [OSTI]

3 Pyroelectric Waste Heat Energy Harvesting Using Heat4 Pyroelectric Waste Heat Energy Harvesting Using RelaxorWaste heat Pyroelectric energy

Lee, Felix

2012-01-01T23:59:59.000Z

151

Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Earth Tidal Analysis At Raft River Geothermal Area(1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters. References Hanson, J. M. (29 May 1980) Reservoir response to tidal and barometric effects

152

Heat Pump System Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump System Basics Heat Pump System Basics Heat Pump System Basics August 19, 2013 - 11:02am Addthis Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate heat, heat pumps can provide up to four times the amount of energy they consume. Air-Source Heat Pump Transfers heat between the inside of a building and the outside air. Ductless Mini-Split Heat Pump Ductless versions of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead of the outside air temperature. Addthis Related Articles A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

153

Solar Water Heating Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Weatherization Assistance Program Pilot Projects Solar Water Heating Webinar Solar Water Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL)...

154

District Heating with Renewable Energy Webinar  

Broader source: Energy.gov [DOE]

This no cost Community Renewable Energy Success Stories webinar on "District Heating with Renewable Energy" presented by the Energy Department will feature two presentations. The first will discuss...

155

Heating System Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

156

Heating System Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

157

LABORATORY I: CONSERVATION OF ENERGY AND HEAT  

E-Print Network [OSTI]

Lab I - 1 LABORATORY I: CONSERVATION OF ENERGY AND HEAT In 1101 labs, you used conservation are in thermal equilibrium · Use the latent heat to determine the internal energy change of a system during conservation of energy, you can then determine the metal's specific heat. However, you know that some energy

Minnesota, University of

158

Energy Saver 101: Home Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Saver 101: Home Heating Energy Saver 101: Home Heating Energy Saver 101: Home Heating Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That means making smart decisions about your home's heating system can have a big impact on your energy bills. Our Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. Download individual sections of the infographic or a high resolution version now. homeHeating.pdf homeHeating_slide-01.png homeHeating_slide-02.png homeHeating_slide-03.png homeHeating_slide-04.png homeHeating_slide-05.png

159

Definition: District heat | Open Energy Information  

Open Energy Info (EERE)

District heat District heat Jump to: navigation, search Dictionary.png District heat A heating system that uses steam or hot water produced outside of a building (usually in a central plant) and piped into the building as an energy source for space heating, hot water or another end use.[1][2][3] View on Wikipedia Wikipedia Definition District heating (less commonly called teleheating) is a system for distributing heat generated in a centralized location for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels but increasingly biomass, although heat-only boiler stations, geothermal heating and central solar heating are also used, as well as nuclear power. District heating plants can provide higher efficiencies and better

160

Drain Water Heat Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Drain Water Heat Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

162

Home Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Home Heating Everything you need to know about home heating, including how heating systems work, the different types on the market and proper maintenance. Read more Thermostats...

163

Heat Pump Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heaters Water Heaters Heat Pump Water Heaters May 4, 2012 - 5:21pm Addthis A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for me? Heat pump water heaters can be two to three times more energy efficient than conventional electric storage water heaters. Heat pump water heaters work in locations that remain in the 40º-90ºF range year-round. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore, they can be two to

164

Healthcare Energy: Spotlight on Reheat and Heating  

Broader source: Energy.gov [DOE]

The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. Read highlights from monitoring heating and reheating energy.

165

Home Heating Hints | Department of Energy  

Energy Savers [EERE]

Energy What are the key facts? Programmable thermostats, performing an air leak test, and removing blockages from heating registers can save you money and energy this...

166

Energy Saver 101: Home Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Energy Saver 101: Home Heating Energy Saver 101: Home Heating Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That means making smart decisions about your home's heating system can have a big impact on your energy bills. Our Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. Download individual sections of the infographic or a high resolution version now. homeHeating.pdf homeHeating_slide-01.png homeHeating_slide-02.png homeHeating_slide-03.png homeHeating_slide-04.png homeHeating_slide-05.png

167

Earth Tidal Analysis At Salton Sea Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

80) 80) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Salton Sea Geothermal Area (1980) Exploration Activity Details Location Salton Sea Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the reservoir response to tidal and barometric effects Notes Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters.

168

High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA  

Science Journals Connector (OSTI)

Abstract The first and a crucial step in development of tidal power, which is now attracting more and more attention worldwide, is a reliable survey of temporal and spatial distribution of tidal energy along coastlines. This paper first reviews the advance in assessment of tidal energy, in particular marine hydrokinetic (MHK) energy, and discusses involved challenges and necessary approaches, and then it makes a thorough survey as an illustrative case study on distributions and top sites of MHK energy within the Might-Atlantic-Bight (MAB) with emphasis on the New Jersey (NJ) coastlines. In view of the needs in actual development of tidal power generation and sensitivity of tidal power to flow speed, the former being proportional to the third power of the latter, a high-resolution and detailed modeling is desired. Data with best available accuracy for coastlines, bathymetry, tributaries, etc. are used, meshes as fine as 20m and less for the whole NJ coast are generated, and the unstructured grid finite volume coastal ocean model (FVCOM) and high performance computing (HPC) facilities are employed. Besides comparison with observation data, a series of numerical tests have been made to ensure reliability of the modeling results. A detailed tidal energy distribution and a list of top sites for tidal power are presented. It is shown that indeed sea-level-rise (SLR) affects the tidal energy distribution significantly. With SLR of 0.5m and 1m, tidal energy in NJ coastal waters increases by 21% and 43%, respectively, and the number of the top sties tends to decrease along the barrier islands facing the Atlantic Ocean and increase in the Delaware Bay and the Delaware River. On the basis of these results, further discussions are made on future development for accurate assessment of tidal energy.

H.S. Tang; S. Kraatz; K. Qu; G.Q. Chen; N. Aboobaker; C.B. Jiang

2014-01-01T23:59:59.000Z

169

Heat Pump Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pump Systems Pump Systems Heat Pump Systems May 16, 2013 - 5:33pm Addthis A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar. A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar. What does this mean for me? Heat pumps can supply heat, cooling, and hot water. Your climate and site will determine the type of heat pump most appropriate for your home. For climates with moderate heating and cooling needs, heat pumps offer an energy-efficient alternative to furnaces and air conditioners. Like your refrigerator, heat pumps use electricity to move heat from a cool space to a warm space, making the cool space cooler and the warm space warmer. During the heating season, heat pumps move heat from the cool outdoors into

170

#AskEnergySaver: Home Water Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electric systems, like solar electric and onsite wind power, have substantial energy loss when converting electricity to heat. With solar thermal water heating, there are a...

171

Heating & Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cooling Cooling Heating & Cooling Heating and cooling account for about 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Learn more about the principles of heating and cooling. Heating and cooling account for about 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Learn more about the principles of heating and cooling. Did you know that heating and cooling accounts for more than half of the energy use in a typical U.S. home, making it the largest energy expense for most homes? Energy Saver shares tips and advice on ways you can reduce your heating and cooling costs, putting more money in your wallet.

172

Tips: Heating and Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Heating and Cooling Tips: Heating and Cooling Tips: Heating and Cooling May 30, 2012 - 7:38pm Addthis Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Heating and cooling your home uses more energy and costs more money than any other system in your home -- typically making up about 54% of your

173

Radiant Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

174

Radiant Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

175

Active Solar Heating Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Active Solar Heating Basics Active Solar Heating Basics Active Solar Heating Basics August 16, 2013 - 3:23pm Addthis There are two basic types of active solar heating systems based on the type of fluid-either liquid or air-that is heated in the solar energy collectors. The collector is the device in which a fluid is heated by the sun. Liquid-based systems heat water or an antifreeze solution in a "hydronic" collector, whereas air-based systems heat air in an "air collector." Both of these systems collect and absorb solar radiation, then transfer the solar heat directly to the interior space or to a storage system, from which the heat is distributed. If the system cannot provide adequate space heating, an auxiliary or back-up system provides the additional heat. Liquid systems are more often used when storage is included, and are well

176

EnergyUnited - Residential Energy Efficient Heat Pump Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

EnergyUnited - Residential Energy Efficient Heat Pump Rebate EnergyUnited - Residential Energy Efficient Heat Pump Rebate Program EnergyUnited - Residential Energy Efficient Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate 2 per dwelling Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Heat Pumps (14 SEER): $150 Heat Pumps (15 SEER +): $300 Provider EnergyUnited EnergyUnited offers rebates to residential customers who upgrade to high efficiency heat pumps. Rebates range from $150 - $300, varying by efficiency. The rebate form can be found on the program website and must be completed by the installing HVAC contractor. Each unit will require a separate form in order to qualify for rebates. Systems must be

177

Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Tidal Analysis At Raft River Geothermal Area Tidal Analysis At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis To estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. Notes A new practical method has been developed. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of

178

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

heating heating Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)[1] Contents 1 Space Heating 2 Passive Solar Space Heating 3 Active Solar Space Heating 4 References Space Heating A solar space-heating system can consist of a passive system, an active system, or a combination of both. Passive systems are typically less costly and less complex than active systems. However, when retrofitting a building, active systems might be the only option for obtaining solar energy. Passive Solar Space Heating Passive solar space heating takes advantage of warmth from the sun through design features, such as large south-facing windows, and materials in the floors or walls that absorb warmth during the day and release that warmth

179

Slough Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Slough Heat and Power Jump to: navigation, search Name: Slough Heat and Power Place: SL1 4TU, England, United Kingdom Zip: SL1 4TU Sector: Renewable Energy Product: String...

180

Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Heat Pumps Geothermal Heat Pumps Geothermal Heat Pumps June 24, 2012 - 5:08pm Addthis Watch how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. How does it work? A geothermal heat pump uses the constant below ground temperature of soil or water to heat and cool your home. Geothermal heat pumps (GHPs), sometimes referred to as GeoExchange, earth-coupled, ground-source, or water-source heat pumps, have been in use since the late 1940s. They use the constant temperature of the earth as the exchange medium instead of the outside air temperature. This allows the system to reach fairly high efficiencies (300% to 600%) on the coldest winter nights, compared to 175% to 250% for air-source heat pumps on cool

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Bartholomew Heating and Cooling | Open Energy Information  

Open Energy Info (EERE)

Heating and Cooling Heating and Cooling Jump to: navigation, search Name Bartholomew Heating and Cooling Place Linwood, NJ Website http://bartholomewheatingandco References Bartholomew Heating and Cooling[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Bartholomew Heating and Cooling is a company located in Linwood, NJ. References ↑ "Bartholomew Heating and Cooling" Retrieved from "http://en.openei.org/w/index.php?title=Bartholomew_Heating_and_Cooling&oldid=381585" Categories: Clean Energy Organizations Companies Organizations

182

Hands-on Energy Adaptation Toolkit (HEAT) | Open Energy Information  

Open Energy Info (EERE)

Hands-on Energy Adaptation Toolkit (HEAT) Hands-on Energy Adaptation Toolkit (HEAT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hands-on Energy Adaptation Toolkit (HEAT) Agency/Company /Organization: Energy Sector Management Assistance Program of the World Bank Sector: Energy Focus Area: Renewable Energy Topics: Adaptation, Implementation, Pathways analysis Resource Type: Guide/manual Website: esmap.org/esmap/node/312 Hands-on Energy Adaptation Toolkit (HEAT) Screenshot References: HEAT[1] Background "HEAT- A Hands-on Energy Adaptation Toolkit is designed to lead you through as assessment of climate vulnerabilities and adaptation options in the energy sector of your country. HEAT can help you raise awareness among key stakeholders and initiate dialogue on energy sector adaptation.

183

Energy 101: Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps January 4, 2011 - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Quick Facts Heat pump systems can lower energy bills by up to 70% over traditional types of heating systems. During this time of year, many homeowners are searching for ways to reduce steep heating costs. One of the options they should consider during the

184

Energy 101: Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps January 4, 2011 - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Quick Facts Heat pump systems can lower energy bills by up to 70% over traditional types of heating systems. During this time of year, many homeowners are searching for ways to reduce steep heating costs. One of the options they should consider during the

185

Definition: Passive solar heating | Open Energy Information  

Open Energy Info (EERE)

solar heating solar heating Jump to: navigation, search Dictionary.png Passive solar heating Using the sun's energy to heat a building; the windows, walls, and floors can be designed to collect, store, and distribute solar energy in the form of heat in the winter (and also to reject solar heat in the summer).[1] View on Wikipedia Wikipedia Definition Related Terms Daylighting, Passive Solar, heat, energy References ↑ http://www.energysavers.gov/your_home/designing_remodeling/index.cfm/mytopic=10250 Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Passive_solar_heating&oldid=480581" Category: Definitions What links here Related changes Special pages Printable version Permanent link

186

Heating Oil Reserve | Department of Energy  

Energy Savers [EERE]

Energy Support Center issued a solicitation to companies willing to provide the storage tanks, heating stocks, or a combination. Contracts were awarded and, by October 13, 2000,...

187

Energy 101: Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Heat Pumps Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Addthis Description An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together. Duration 2:32 Topic Tax Credits, Rebates, Savings Heating & Cooling Geothermal Consumption Credit Energy Department Video MR. : We all want to save money heating or cooling our house or office, right? The answer may be under your feet, literally. Much of the heating and cooling can come from the ground, below the surface, with something called a geothermal heat pump. You see, below the frost line

188

#AskEnergySaver: Home Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

your AskEnergySaver questions on home heating. | Image courtesy of Sarah Gerrity, Energy Department. Allison Lantero Allison Lantero Digital Content Specialist, Office of...

189

MHK Technologies/Sihwa tidal barrage power plant | Open Energy Information  

Open Energy Info (EERE)

Sihwa tidal barrage power plant Sihwa tidal barrage power plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sihwa tidal barrage power plant.jpg Technology Profile Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description Sihwa TBPP operates only on flood tide generation which produces electrical power during the flood tide the water is discharged back from basin to sea during ebb tide Technology Dimensions Technology Nameplate Capacity (MW) 254 Device Testing Date Submitted 59:41.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Sihwa_tidal_barrage_power_plant&oldid=681654

190

Tips: Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Water Heating Tips: Water Heating Tips: Water Heating May 2, 2012 - 4:53pm Addthis Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Water heating is the second largest energy expense in your home. It typically accounts for about 18% of your utility bill. There are four ways to cut your water heating bills: use less hot water, turn down the thermostat on your water heater, insulate your water heater, or buy a new, more efficient model. Water Heating Tips Install aerating, low-flow faucets and showerheads. Repair leaky faucets promptly; a leaky faucet wastes gallons of

191

Tips: Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Tips: Water Heating May 2, 2012 - 4:53pm Addthis Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Water heating is the second largest energy expense in your home. It typically accounts for about 18% of your utility bill. There are four ways to cut your water heating bills: use less hot water, turn down the thermostat on your water heater, insulate your water heater, or buy a new, more efficient model. Water Heating Tips Install aerating, low-flow faucets and showerheads. Repair leaky faucets promptly; a leaky faucet wastes gallons of

192

Electric Resistance Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Resistance Heating Electric Resistance Heating Electric Resistance Heating June 24, 2012 - 4:51pm Addthis Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Electric resistance heating converts nearly 100% of the energy in the electricity to heat. However, most electricity is produced from coal, gas, or oil generators that convert only about 30% of the fuel's energy into electricity. Because of electricity generation and transmission losses, electric heat is often more expensive than heat produced in the home or business using combustion appliances, such as natural gas, propane, and oil furnaces. If electricity is the only choice, heat pumps are preferable in most

193

Method for converting heat energy to mechanical energy with monochlorotetrafluoroethane  

SciTech Connect (OSTI)

Monochlorotetrafluoroethane is useful as a power fluid with particular suitability for large scale Rankine cycle applications based on systems with moderate temperature heat sources. The fluid is utilized in a Rankine cycle application by vaporizing the fluid by passing the same in heat exchange relationship with a heat source and utilizing the kinetic energy of the resulting expanding vapors to perform work. In this manner heat energy is converted to mechanical energy.

Allen, R.A.; Murphy, K.P.; Stiel, L.I.

1980-09-30T23:59:59.000Z

194

Chapter 17 - Nuclear heat energy  

Science Journals Connector (OSTI)

Abstract This chapter delves into the important heating processes within a nuclear power plant. Applying Fouriers law of heat conduction permits determining temperature distributions within the nuclear fuel rods. In contrast, convective cooling occurs on the rod surface. The coolant, cladding and fuel temperature distributions through a reactor are determined. Besides heat transfer in the reactor core, some power plants employ heat exchangers to generate steam that is fed to a turbine-generator to produce electricity. As a consequence of the second law of thermodynamics, thermal power plants reject condenser heat to the environment through mechanisms such as cooling towers.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

195

Electric Resistance Heating Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

196

Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Geothermal Heat Pumps Geothermal Heat Pumps June 24, 2012 - 5:08pm Addthis Watch how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. How does it work? A geothermal heat pump uses the constant below ground temperature of soil or water to heat and cool your home. Geothermal heat pumps (GHPs), sometimes referred to as GeoExchange, earth-coupled, ground-source, or water-source heat pumps, have been in use since the late 1940s. They use the constant temperature of the earth as the exchange medium instead of the outside air temperature. This allows the system to reach fairly high efficiencies (300% to 600%) on the coldest

197

Electric Resistance Heating Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

198

Natural Zeolites in Solar Energy Heating, Cooling, and Energy Storage  

Science Journals Connector (OSTI)

...thereby reducing the energy consumption by almost half. The concept...heat, or any type of fossil fuel. This heat pump has two operating...of the internal combustion engine as the heat source for the...utilizing the waste heat of the engine with a 60 sec cycling time...

Dimiter I. Tchernev

199

TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS  

SciTech Connect (OSTI)

Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10{sup 5}-10{sup 6} years.

Fuller, Jim; Lai Dong [Department of Astronomy, Cornell University, Ithaca, NY 14850 (United States)

2012-09-01T23:59:59.000Z

200

Heat Pump Water Heating Modeling in EnergyPlus  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump Water Heater Modeling Heat Pump Water Heater Modeling in EnergyPlus Building America Residential Energy Efficiency Stakeholder Meeting Eric Wilson Craig Christensen March 1, 2012 2 Modeling Issues Results Motivation Heat Pump Water Heater Modeling... 3 Gap: Existing analysis tools cannot accurately model HPWHs with reasonable runtime. 4 What have we achieved so far? Laboratory Evaluations 14 x Field Monitoring 5 Closing the Gap Laboratory Evaluations 6 sec timestep hourly timestep 14 x Field Monitoring CARB 6 Why is modeling important? * Performance varies: Can't just use EF * System interaction o HPWH affects building heating and cooling o Space conditions affect HPWH performance 7 Modeling Goals * Manage Risks o Accuracy o Run time o Occupant satisfaction * Flexibility to explore the effects of:

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Overland Tidal Power Generation Using Modular Tidal Prism  

SciTech Connect (OSTI)

Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

2010-03-01T23:59:59.000Z

202

Energy-efficient water heating  

SciTech Connect (OSTI)

This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

NONE

1995-01-01T23:59:59.000Z

203

Heat pumps | Open Energy Information  

Open Energy Info (EERE)

pumps Jump to: navigation, search TODO: Add description List of Heat pumps Incentives Retrieved from "http:en.openei.orgwindex.php?titleHeatpumps&oldid26717...

204

Energy 101: Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Heat Pumps Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Addthis Below is the text version for the Energy 101: Geothermal heat pumps video. The video opens with "Energy 101: Geothermal Heat Pumps." This is followed by an illustration of a house panning to a man standing beside it. We all want to save money heating and cooling our house or office. Right? The answer may be under your feet. Literally. The ground under the man's feet is shown in cross-section. A geothermal heat pump appears in this cross-sectional illustration of the ground. Much of the heating and cooling can come from the ground - below the surface with something called... a geothermal heat pump. The video shows the Earth rotating, then revealed in cross-section. The video then returns to the house with the cross-section of the ground with a

205

Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect (OSTI)

Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

2011-09-30T23:59:59.000Z

206

Energy storage for desalination processes powered by renewable energy and waste heat sources  

Science Journals Connector (OSTI)

Abstract Desalination has become imperative as a drinking water source for many parts of the world. Due to the large quantities of thermal energy and high quality electricity requirements for water purification, the desalination industry depends on waste heat resources and renewable energy sources such as solar collectors, photovoltaic arrays, geothermal and wind and tidal energy sources. Considering the mismatch between the source supply and demand and intermittent nature of these energy resources, energy storage is a must for reliable and continuous operation of desalination facilities. Thermal energy storage (TES) requires a suitable medium for storage and circulation while the photovoltaic/wind generated electricity needs to be stored in batteries for later use. Desalination technologies that utilize thermal energy and thus require storage for uninterrupted process operation are multi-stage flash distillation (MSF), multi-effect evaporation (MED), low temperature desalination (LTD) and humidificationdehumidification (HD) and membrane distillation (MD). Energy accumulation, storage and supply are the key components of energy storage concept which improve process performance along with better resource economics, and minimum environmental impact. Similarly, the battery energy storage (BES) is essential to store electrical energy for electrodialysis (ED), reverse osmosis (RO) and mechanical vapor compression (MVC) technologies. This research-review paper provides a critical review on current energy storage options for different desalination processes powered by various renewable energy and waste heat sources with focus on thermal energy storage and battery energy storage systems. Principles of energy storage (thermal and electrical energy) are discussed with details on the design, sizing, and economics for desalination process applications.

Veera Gnaneswar Gude

2014-01-01T23:59:59.000Z

207

Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Earth Tidal Analysis At Raft River Geothermal Area Earth Tidal Analysis At Raft River Geothermal Area (1984) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. In the present work, change in external stress is estimated from

208

Energy Saver 101 Infographic: Home Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Saver 101 Infographic: Home Heating Saver 101 Infographic: Home Heating Energy Saver 101 Infographic: Home Heating December 16, 2013 - 10:48am Addthis Our new Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. | Infographic by Sarah Gerrity, Energy Department. Our new Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. | Infographic by Sarah Gerrity, Energy Department. Rebecca Matulka Rebecca Matulka

209

Energy Department Announces $8 Million to Develop Advanced Components for Wave, Tidal, and Current Energy Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $8 million in available funding to spur innovation in next-generation marine and hydrokinetic control and component technologies. In the United States, waves, tides, and ocean currents represent a largely untapped renewable energy resource that could provide clean, affordable energy to homes and businesses across the country's coastal regions.

210

Solar pool heating | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Solar pool heating Jump to: navigation, search Pool Heating is a great use for solar energy. Solar pool heating systems can be very effective and inexpensive. The pool itself is the thermal storage unit and the existing pump that the pool uses will circulate the water through the solar collectors. Pool Covers Having a good pool cover is one of the best ways to conserve energy and use solar energy to heat the pool. If you don't have a pool cover the solar energy being used will be wasted and you will be using three times as much energy that is necessary. Solar Sun Rings- instead of using a full pool cover sun rings are

211

Future Heating | Open Energy Information  

Open Energy Info (EERE)

Heating Heating Jump to: navigation, search Name Future Heating Place London, England, United Kingdom Sector Solar Product Designs and installs solar passive water heating systems. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Waste Heat as Energy Source  

Science Journals Connector (OSTI)

References on waste heat utilization were compiled, covering citations from the NTIS data base for the period 1964 to March 1978. The bibliography contains 253 abstracts, 37 of which are new entries to the pre...

Prof. Dr. Anthony Delyannis; Dr. Euridike-Emmy Delyannis

1980-01-01T23:59:59.000Z

213

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Solar space heating (Redirected from - Solar Ventilation Preheat) Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)[1] Contents 1 Space Heating 2 Passive Solar Space Heating 3 Active Solar Space Heating 4 References Space Heating A solar space-heating system can consist of a passive system, an active system, or a combination of both. Passive systems are typically less costly and less complex than active systems. However, when retrofitting a building, active systems might be the only option for obtaining solar

214

Geothermal Energy: Clean Power from the Earth's Heat | Open Energy...  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Report: Geothermal Energy: Clean Power from the Earth's Heat Abstract Societies in the 21st century require enormous...

215

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Internal tidal energy fluxes in the South China Sea from density  

E-Print Network [OSTI]

tide. Semidiurnal energy density is largest along a ray path which co- incides with generation sites of the largest internal tides in the ocean, with depth-integrated energy fluxes >60 kW m-1 , are gener- atedJOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Internal tidal energy fluxes

Johnston, Shaun

216

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Broader source: Energy.gov (indexed) [DOE]

Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pd...

217

ITP Industrial Distributed Energy: Combined Heat and Power -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of...

218

AMO Industrial Distributed Energy: Combine Heat and Power: A...  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Solution Combined Heat and Power August 2012 Combined Heat and Power: A Clean Energy Solution 1 Contents Executive Summary ......

219

Definition: Heat exchanger | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Heat exchanger Jump to: navigation, search Dictionary.png Heat exchanger A device for transferring thermal energy (heat) from one fluid (liquid or gas) to another, when the two fluids are physically separated; such as a radiator.[1][2] View on Wikipedia Wikipedia Definition A heat exchanger is a piece of equipment built for efficient heat transfer from one medium to another. The media may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power plants, chemical plants, petrochemical plants, petroleum refineries [bp, shell, sasol], natural gas processing, and sewage treatment. The classic example

220

MHK Projects/Town of Wiscasset Tidal Resources | Open Energy Information  

Open Energy Info (EERE)

Town of Wiscasset Tidal Resources Town of Wiscasset Tidal Resources < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8028,"lon":-69.7833,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

MHK Projects/Homeowner Tidal Power Elec Gen | Open Energy Information  

Open Energy Info (EERE)

Homeowner Tidal Power Elec Gen Homeowner Tidal Power Elec Gen < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4468,"lon":-69.6933,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

222

MHK Projects/Hammerfest Strom UK Tidal Stream | Open Energy Information  

Open Energy Info (EERE)

Hammerfest Strom UK Tidal Stream Hammerfest Strom UK Tidal Stream < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.3781,"lon":-3.43597,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

223

MHK Projects/Ward s Island Tidal Power Project | Open Energy Information  

Open Energy Info (EERE)

Ward s Island Tidal Power Project Ward s Island Tidal Power Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7818,"lon":-73.9316,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

224

Earth Tidal Analysis At East Mesa Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At East Mesa Geothermal Area (1984) Exploration Activity Details Location East Mesa Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is

225

MHK Projects/Willapa Bay Tidal Power Project | Open Energy Information  

Open Energy Info (EERE)

Willapa Bay Tidal Power Project Willapa Bay Tidal Power Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.7161,"lon":-124.038,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

226

MHK Projects/Half Moon Cove Tidal Project | Open Energy Information  

Open Energy Info (EERE)

Half Moon Cove Tidal Project Half Moon Cove Tidal Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9062,"lon":-66.99,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

227

Industrial Distributed Energy: Combined Heat & Power  

Broader source: Energy.gov (indexed) [DOE]

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

228

List of Passive Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 278 Passive Solar Space Heat Incentives. CSV (rows 1 - 278) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy and Energy Conservation Patent Exemption (Corporate) (Massachusetts) Industry Recruitment/Support Massachusetts Commercial Biomass Fuel Cells Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Municipal Solid Waste Passive Solar Space Heat Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy and Energy Conservation Patent Exemption (Personal) (Massachusetts) Industry Recruitment/Support Massachusetts General Public/Consumer Biomass

229

Tidal Dissipation in Rotating Giant Planets  

Science Journals Connector (OSTI)

Many extrasolar planets orbit sufficiently close to their host stars that significant tidal interactions can be expected, resulting in an evolution of the spin and orbital properties of the planets. The accompanying dissipation of energy can also be an important source of heat, leading to the inflation of short-period planets and even mass loss through Roche lobe overflow. Tides may therefore play an important role in determining the observed distributions of mass, orbital period, and eccentricity of the extrasolar planets. In addition, tidal interactions between gaseous giant planets in the solar system and their moons are thought to be responsible for the orbital migration of the satellites, leading to their capture into resonant configurations. Traditionally, the efficiency of tidal dissipation is simply parameterized by a quality factor Q, which depends, in principle, in an unknown way on the frequency and amplitude of the tidal forcing. In this paper we treat the underlying fluid dynamical problem with the aim of determining the efficiency of tidal dissipation in gaseous giant planets such as Jupiter, Saturn, or the short-period extrasolar planets. Efficient convection enforces a nearly adiabatic stratification in these bodies, which may or may not contain solid cores. With some modifications, our approach can also be applied to low-mass stars with extended convective envelopes. In cases of interest, the tidal forcing frequencies are typically comparable to the spin frequency of the planet but are small compared to its dynamical frequency. We therefore study the linearized response of a slowly and possibly differentially rotating planet to low-frequency tidal forcing. Convective regions of the planet support inertial waves, which possess a dense or continuous frequency spectrum in the absence of viscosity, while any radiative regions support generalized Hough waves. We formulate the relevant equations for studying the excitation of these disturbances and present a set of illustrative numerical calculations of the tidal dissipation rate. We argue that inertial waves provide a natural avenue for efficient tidal dissipation in most cases of interest. In the presence of a solid core, the excited disturbance tends to be localized on a web of rays rather than resembling a smooth eigenfunction. The resulting value of Q depends, in principle, in a highly erratic way on the forcing frequency, but we provide analytical and numerical evidence that the frequency-averaged dissipation rate may be asymptotically independent of the viscosity in the limit of small Ekman number. For a smaller viscosity, the tidal disturbance has a finer spatial structure and individual resonances are more pronounced. In short-period extrasolar planets, tidal dissipation via inertial waves becomes somewhat less efficient once they are spun down to a synchronous state. However, if the stellar irradiation of the planet leads to the formation of a radiative outer layer that supports generalized Hough modes, the tidal dissipation rate can be enhanced, albeit with significant uncertainty, through the excitation and damping of these waves. The dissipative mechanisms that we describe offer a promising explanation of the historical evolution and current state of the Galilean satellites, as well as the observed circularization of the orbits of short-period extrasolar planets.

G. I. Ogilvie; D. N. C. Lin

2004-01-01T23:59:59.000Z

230

Definition: Solar Water Heating | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Solar Water Heating Jump to: navigation, search Dictionary.png Solar Water Heating A low-energy intensive system that uses solar rays to heat water. It is a viable option in developing countries[1] View on Wikipedia Wikipedia Definition Solar water heating (SWH) or solar hot water (SHW) systems comprise several innovations and many mature renewable energy technologies that have been well established for many years. SWH has been widely used in Australia, Austria, China, Cyprus, Greece, India, Israel, Japan and Turkey. In a "close-coupled" SWH system the storage tank is horizontally mounted immediately above the solar collectors on the roof. No pumping is required as the hot water naturally rises into the tank through thermosiphon flow.

231

Solar Energy as Heat Source  

Science Journals Connector (OSTI)

A monography on Distillation of water using solar energy was published [1]. A review was presented on the most important and recent studies on solar distillation [2]. Solar water desalination plants of the gre...

Prof. Dr. Anthony Delyannis; Dr. Euridike-Emmy Delyannis

1980-01-01T23:59:59.000Z

232

Lecture Ch. 2a Energy and heat capacity  

E-Print Network [OSTI]

1 Lecture Ch. 2a · Energy and heat capacity ­ State functions or exact differentials ­ Internal energy vs. enthalpy · 1st Law of thermodynamics ­ Relate heat, work, energy · Heat/work cycles (and path integrals) ­ Energy vs. heat/work? ­ Adiabatic processes ­ Reversible P-V work ! define entropy Curry

Russell, Lynn

233

Lecture Ch. 2a Energy and heat capacity  

E-Print Network [OSTI]

1 Lecture Ch. 2a · Energy and heat capacity ­ State functions or exact differentials ­ Internal energy vs. enthalpy · 1st Law of thermodynamics ­ Relate heat, work, energy · Heat/work cycles (and path integrals) ­ Energy vs. heat/work? ­ Adiabatic processes ­ Reversible "P-V" work define entropy Curry

Russell, Lynn

234

Energy Efficient Integration of Heat Pumps into Solar District Heating Systems with Seasonal Thermal Energy Storage  

Science Journals Connector (OSTI)

Abstract Solar district heating (SDH) with seasonal thermal energy storage (STES) is a technology to provide heat for space heating and domestic hot water preparation with a high fraction of renewable energy. In order to improve the efficiency of such systems heat pumps can be integrated. By preliminary studies it was discovered, that the integration of a heat pump does not always lead to improvements from an overall energy perspective, although the operation of the heat pump increases the efficiency of other components of the system e. g. the STES or the solar collectors. Thus the integration of heat pumps in SDH systems was investigated in detail. Usually, the heat pumps are integrated in such a way, that the STES is used as low temperature heat source. No other heat sources from the ambience are used and only that amount of energy consumed by the heat pump is additionally fed into the system. In the case of an electric driven heat pump, this is highly questionable concerning economic and CO2-emission aspects. Despite that fact the operation of the heat pump influences positively the performance of other components in the system e. g. the STES and makes them more efficient. If the primary energy consumption of the heat pump is lower than the energetic benefits of all other components, the integration makes sense from an energetic point of view. A detailed assessment has been carried out to evaluate the most promising system configurations for the integration of a heat pump. Based on this approach a system concept was developed in which the integration of the heat pump is energetically further improved compared to realised systems. By means of transient system simulations this concept was optimised with regard to the primary energy consumption. A parameter study of this new concept has been performed to identify the most sensitive parameters of the system. The main result and conclusion are that higher solar fractions and also higher primary energy savings can be achieved by SDH systems using heat pumps compared systems without heat pumps.

Roman Marx; Dan Bauer; Harald Drueck

2014-01-01T23:59:59.000Z

235

Federal Energy Management Program: New and Underutilized Heating,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heating, Ventilation, and Air Conditioning Technologies to Heating, Ventilation, and Air Conditioning Technologies to someone by E-mail Share Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Facebook Tweet about Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Twitter Bookmark Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Google Bookmark Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Delicious Rank Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Digg Find More places to share Federal Energy Management Program: New and

236

#AskEnergySaver: Home Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on how ventilation and air leakage impact a home's energy use. 1. How can I recover my loss heat from my furnace exhaust? -- from @DezGardner007 on Twitter IW: The simplest way...

237

My Energy Audit, Part 1: Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

My Energy Audit, Part 1: Heating My Energy Audit, Part 1: Heating My Energy Audit, Part 1: Heating June 6, 2012 - 2:05pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory My utility company offers a free energy audit, of which I finally took advantage. It was mostly discussion about different ways to save energy, with inspection of a few areas of the house (not quite as comprehensive as the utility company's website indicated it would be, but it was, after all, free). The auditor had a table of my electric bills for the last two years (I forgot to ask for a copy, but I've got several years' worth of bills, and I've started to create my own table anyway). It clearly showed that my winter bills are very high compared to my summer bills. Since I don't have air conditioning, the difference is primarily due to furnace use during the

238

My Energy Audit, Part 1: Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

My Energy Audit, Part 1: Heating My Energy Audit, Part 1: Heating My Energy Audit, Part 1: Heating June 6, 2012 - 2:05pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory My utility company offers a free energy audit, of which I finally took advantage. It was mostly discussion about different ways to save energy, with inspection of a few areas of the house (not quite as comprehensive as the utility company's website indicated it would be, but it was, after all, free). The auditor had a table of my electric bills for the last two years (I forgot to ask for a copy, but I've got several years' worth of bills, and I've started to create my own table anyway). It clearly showed that my winter bills are very high compared to my summer bills. Since I don't have air conditioning, the difference is primarily due to furnace use during the

239

Natural Gas Heat Pump and Air Conditioner | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Heat Pump and Air Conditioner Natural Gas Heat Pump and Air Conditioner Lead Performer: Thermolift - Stony Brook, NY Partners: -- New York State Energy Research &...

240

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Liquid Metal Heat Exchanger for Geologic Deposits - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heating apparatus that efficiently heats subterranean geological deposits, such as oil shale, to extract hydrocarbons for energy needs. The apparatus provides more efficient...

242

Ground heat exchanger design for direct geothermal energy systems .  

E-Print Network [OSTI]

??Direct geothermal energy systems use the ground to heat and cool buildings. Ground-source heat pump (GSHP) systems are the most widespread form of direct geothermal (more)

COLLS, STUART

2013-01-01T23:59:59.000Z

243

Energy Portfolio Standards and the Promotion of Combined Heat...  

Broader source: Energy.gov (indexed) [DOE]

Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009 Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White...

244

Energy Department Actions to Deploy Combined Heat and Power,...  

Broader source: Energy.gov (indexed) [DOE]

Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 -...

245

The Big Picture on Process Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

& Publications Install Waste Heat Recovery Systems for Fuel-Fired Furnaces Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems...

246

5 Cool Things about Solar Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

5 Cool Things about Solar Heating 5 Cool Things about Solar Heating 5 Cool Things about Solar Heating March 26, 2013 - 3:08pm Addthis Solar heating systems can be a cost-effective way to heat your home. | Photo courtesy of Solar Design Associates, Inc. Solar heating systems can be a cost-effective way to heat your home. | Photo courtesy of Solar Design Associates, Inc. Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Read Energy Saver's article on solar heating systems to see whether see whether active solar heating is a good option for you. Most people are familiar with solar photovoltaic panels, but far fewer know about using solar as a source of heat in their homes. Active solar heating uses solar energy to heat fluid or air, which then transfers the solar heat

247

U.S. SOLAR ENERGY HEATS UP  

Science Journals Connector (OSTI)

U.S. SOLAR ENERGY HEATS UP ... The solar incentives now last for eight more years and allow businesses, residents, and utilities to deduct from their federal tax bills 30% of the cost of a solar energy system. ... Previously, utilities could not directly get the federal break, and benefits for home owners who wanted rooftop solar panels were capped at $2,000 for a system likely to cost $25,000 to $35,000. ...

JEFF JOHNSON

2008-10-20T23:59:59.000Z

248

Partial energies fluctuations and negative heat capacities  

E-Print Network [OSTI]

We proceed to a critical examination of the method used in nuclear fragmentation to exhibit signals of negative heat capacity. We show that this method leads to unsatisfactory results when applied to a simple and well controlled model. Discrepancies are due to incomplete evaluation of potential energies.

Xavier Campi; H. Krivine; E. Plagnol; N. Sator

2004-08-03T23:59:59.000Z

249

Modelling the impact of user behaviour on heat energy consumption  

E-Print Network [OSTI]

strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

2011-01-01T23:59:59.000Z

250

ITP Industrial Distributed Energy: Combined Heat and Power: Effective...  

Broader source: Energy.gov (indexed) [DOE]

Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future Report describing the...

251

Measurement of the Rates of Production and Dissipation of Turbulent Kinetic Energy in an Energetic Tidal Flow: Red Wharf Bay Revisited  

Science Journals Connector (OSTI)

Simultaneous measurements of the rates of turbulent kinetic energy (TKE) dissipation (?) and production (P) have been made over a period of 24 h at a tidally energetic site in the northern Irish Sea in water of 25-m depth. Some ? profiles from ?5 ...

Tom P. Rippeth; John H. Simpson; Eirwen Williams; Mark E. Inall

2003-09-01T23:59:59.000Z

252

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 499 Solar Space Heat Incentives. CSV (rows 1 - 499) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat

253

ENERGY ABSORBER HEAT PUMP SYSTEM TO SUPPLEMENT HEAT RECOVERY SYSTEMS IN AN INDOOR SWIMMING POOL  

Science Journals Connector (OSTI)

ABSTRACT Compared with convontional indoor swimming pools with traditional plant engineering, the Schwalmtal indoor swimming pool has a final energy consumption of just 40%. This low consumption is achieved by improved insulation of the building's enveloping surface, through the operation of systems for the recovery of heat from drain water and waste air as well as by the operation of a heat pump system to gain ambient heat. The decentralised heat recovery systems met between 40 and 80% of the heat requirements in the supply areas where they were used. The electric heat pump system, which is operated in the bivalent mode in parallel to a heating boiler, could generate 75% of the heat provided by the central heating circuit to meet the residual heat requirements. The report illustrates the structure of the residual heat requirements of the central heating circuit. A description is given of the measured coefficients of performance of the brine/water heat pump connected by a brine circuit with two different energy absorber types - energy stack and energy roof. Finally, the ambient energy gained with the absorbers is broken down into the various kinds of heat gains from radiation, convection, condensation etc. KEYWORDS Energy absorber; energy stack; energy roof; heat pump; heat recovery systems; indoor swimming pool; energy engineering concept.

K. Leisen

1988-01-01T23:59:59.000Z

254

Heat energy Q: -energy exchanged between systems if they have a different temperature  

E-Print Network [OSTI]

About heat Heat energy Q: - energy exchanged between systems if they have a different temperature - heat flows from higher to lower temperature - without temperature difference, no heat is exchanged If a system is receiving or releasing heat, then this heat is called a) Sensible heat, if the system changes

Boyd, Sylke

255

Implications of Heat Flow Studies for Geothermal Energy Prospects  

Science Journals Connector (OSTI)

There is a close interrelation between the phenomena of heat generation, storage of heat, transport of heat and the temperature field in the crust. For evaluating the geothermal energy potential of a given area t...

O. Kappelmeyer

1979-01-01T23:59:59.000Z

256

List of Solar Pool Heating Incentives | Open Energy Information  

Open Energy Info (EERE)

Heating Incentives Heating Incentives Jump to: navigation, search The following contains the list of 118 Solar Pool Heating Incentives. CSV (rows 1 - 118) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Personal Property Tax Exemption (Michigan) Property Tax Incentive Michigan Commercial Industrial Biomass CHP/Cogeneration Fuel Cells Microturbines Photovoltaics

257

Property:HeatRate | Open Energy Information  

Open Energy Info (EERE)

HeatRate HeatRate Jump to: navigation, search This is a property of type Number. Pages using the property "HeatRate" Showing 25 pages using this property. (previous 25) (next 25) A AES Mendota Biomass Facility + 17,873.6 + APS Biomass I Biomass Facility + 8,911 + Acme Landfill Biomass Facility + 12,916.67 + Adrian Energy Associates LLC Biomass Facility + 13,170.6 + Agrilectric Power Partners Ltd Biomass Facility + 17,327.1 + Al Turi Biomass Facility + 15,600.2 + Alabama Pine Pulp Biomass Facility + 15,826.23 + Albany Landfill Gas Utilization Project Biomass Facility + 11,913.9 + Altamont Gas Recovery Biomass Facility + 10,500 + American Canyon Power Plant Biomass Facility + 10,886.8 + American Ref-Fuel of Delaware Valley Biomass Facility + 18,674.9 +

258

Raymond Plumbing & Heating | Open Energy Information  

Open Energy Info (EERE)

Raymond Plumbing & Heating Raymond Plumbing & Heating Jump to: navigation, search Name Raymond Plumbing & Heating Address 1351 Broadway Place Lorain, Ohio Zip 44052 Sector Geothermal energy, Solar Product Installation; Maintenance and repair Phone number 440-244-5584 Website http://raymondplumbing.com Coordinates 41.4590763°, -82.1691563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4590763,"lon":-82.1691563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

260

Heat Pump Water Heater using Solid-State Energy Converters |...  

Energy Savers [EERE]

Heat Pump Water Heater using Solid-State Energy Converters Heat Pump Water Heater using Solid-State Energy Converters Sheetak will work on developing a full scale prototype of its...

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CHP, Waste Heat & District Energy  

Broader source: Energy.gov (indexed) [DOE]

CHP Technologies and Applications CHP Technologies and Applications 25 Oct 11 Today's Electric Grid What is CHP * ASHRAE Handbook: "Combined heat and power (CHP). Simultaneous production of electrical or mechanical energy and useful thermal energy from a single energy stream." * CHP is not a single technology but a suite of technologies that can use a variety of fuels to generate electricity or power at the point of use. * CHP technology can be deployed quickly, cost-effectively, and with few geographic limitations. 11/1/2011 Slide 6 5/20/11 Slide 7 What is CHP? * On-site generation of Power and Thermal Energy from a single fuel source * 'Conventional' grid based generators are located remote from thermal applications while CHP plants are located close to thermal applications

262

JULY 2005 1 An estimate of tidal energy lost to turbulence at the Hawaiian Ridge  

E-Print Network [OSTI]

relation- ship between the energy in the semi-diurnal internal tide (E) and the depth of the ridge. This is roughly 15% of the energy estimated to be lost from the barotropic tide. 1. Introduction energy get removed from the ocean. Oceanic tides put energy into the ocean at a rate of 3.5 TW (Munk

Klymak, Jody M.

263

ccsd00002099, Partial energies uctuations and negative heat  

E-Print Network [OSTI]

ccsd­00002099, version 3 ­ 3 Aug 2004 Partial energies uctuations and negative heat capacities X of potential energies. The possibility to observe negative heat capacities has been recently the object of much ensemble, heat capacities (proportional to the uc- tuations of the energy) are always positive

264

Absorption Heat Pump Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Absorption Heat Pump Basics Absorption Heat Pump Basics Absorption Heat Pump Basics August 19, 2013 - 11:11am Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption coolers available that work on the same principal, but are not reversible and cannot serve as a heat source. These are also called gas-fired coolers. How Absorption Heat Pumps Work Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

265

Absorption Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Absorption Heat Pumps Absorption Heat Pumps Absorption Heat Pumps June 24, 2012 - 2:11pm Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption (or gas-fired) coolers available that work on the same principle. Unlike some absorption heat pumps, however, these are not reversible and cannot serve as a heat source. Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

266

Tips: Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Pumps Heat Pumps Tips: Heat Pumps June 24, 2013 - 5:48pm Addthis Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps are the most efficient form of electric heating in moderate climates. Because they move heat rather than generate heat, heat pumps can provide equivalent space conditioning at as little as one quarter of the cost of operating conventional heating or cooling appliances. A heat pump does double duty as a central air conditioner by collecting the heat inside your house and pumping it outside. There are three types of heat pumps: air-to-air, water source, and geothermal. They collect heat from the air, water, or ground outside your

267

Absorption Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Absorption Heat Pumps Absorption Heat Pumps Absorption Heat Pumps June 24, 2012 - 2:11pm Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption (or gas-fired) coolers available that work on the same principle. Unlike some absorption heat pumps, however, these are not reversible and cannot serve as a heat source. Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

268

Federal Energy Management Program: New and Underutilized Water Heating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heating Technologies to someone by E-mail Water Heating Technologies to someone by E-mail Share Federal Energy Management Program: New and Underutilized Water Heating Technologies on Facebook Tweet about Federal Energy Management Program: New and Underutilized Water Heating Technologies on Twitter Bookmark Federal Energy Management Program: New and Underutilized Water Heating Technologies on Google Bookmark Federal Energy Management Program: New and Underutilized Water Heating Technologies on Delicious Rank Federal Energy Management Program: New and Underutilized Water Heating Technologies on Digg Find More places to share Federal Energy Management Program: New and Underutilized Water Heating Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Technology Deployment List Solid-State Lighting

269

Save Energy Now in Your Process Heating Systems  

SciTech Connect (OSTI)

This DOE Industrial Technologies Program fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial process heating systems.

Not Available

2006-01-01T23:59:59.000Z

270

Save Energy Now in Your Process Heating Systems  

Broader source: Energy.gov [DOE]

This fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial process heating systems.

271

Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under the Thermal Storage FOA, plans to develop a prototype thermal energy storage...

272

ITP Distributed Energy: Combined Heat and Power Market Assessment...  

Broader source: Energy.gov (indexed) [DOE]

Governor COMBINED HEAT AND POWER MARKET ASSESSMENT Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: ICF International,...

273

Tips: Heat Pumps | Department of Energy  

Energy Savers [EERE]

Tips: Heat Pumps Tips: Heat Pumps July 20, 2014 - 5:48pm Addthis Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity....

274

Passive Solar Space Heat | Open Energy Information  

Open Energy Info (EERE)

Passive Solar Space Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titlePassiveSolarSpaceHeat&oldid26718...

275

An Estimate of Tidal Energy Lost to Turbulence at the Hawaiian Ridge JODY M. KLYMAK  

E-Print Network [OSTI]

between the energy in the semidiurnal internal tide (E) and the depth-integrated dissipation (D. This is roughly 15% of the energy estimated to be lost from the barotropic tide. 1. Introduction One of the more. Oceanic tides put energy into the ocean at a rate of 3.5 TW Corresponding author address: J. Klymak

Kurapov, Alexander

276

Radiant Heating Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Radiant Heating Basics Radiant Heating Basics Radiant Heating Basics August 19, 2013 - 10:33am Addthis Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is also called infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Despite the name, radiant floor heating systems also depend heavily on convection, the natural circulation of heat within a room, caused by heat rising from the floor. Radiant floor

277

Radiant Heating Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Radiant Heating Basics Radiant Heating Basics Radiant Heating Basics August 19, 2013 - 10:33am Addthis Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is also called infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Despite the name, radiant floor heating systems also depend heavily on convection, the natural circulation of heat within a room, caused by heat rising from the floor. Radiant floor

278

Experimental Study on Energy Efficiency of Heat-source Tower Heat Pump Units in Winter Condition  

Science Journals Connector (OSTI)

Building energy consumption in China has been increasing rapidly. And a small increase in the operation efficiency of the air-conditioning system can substantially decrease it. In this paper a new type heat pump is developed to improve the performance ... Keywords: Heat-source tower, Heat pump, Seasonal energy efficiency ratio(SEER), Hermal properties

Li Nianping; Zhang Wenjie; Wang Lijie; Liu Qiuke; Hu Jinhua

2011-01-01T23:59:59.000Z

279

Freezing in the dark: Energy security and heating emergencies in Nova Scotia  

E-Print Network [OSTI]

assistance programs: ­ "Your energy rebate" ­ Heating Assistance Rebate Program (HARP) ­ Heat Smart

Hughes, Larry

280

List of Solar Water Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heat Incentives Solar Water Heat Incentives Jump to: navigation, search The following contains the list of 920 Solar Water Heat Incentives. CSV (rows 1-500) CSV (rows 501-920) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - GEOSmart Financing Program (Arizona) Utility Loan Program Arizona Residential Solar Water Heat Photovoltaics No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Cascade of Tidal Energy from Low to High Modes on a Continental Slope SAMUEL M. KELLY* AND JONATHAN D. NASH  

E-Print Network [OSTI]

The Cascade of Tidal Energy from Low to High Modes on a Continental Slope SAMUEL M. KELLY. Kelly, University of Western Australia, M015 SESE, 35 Stirling Hwy., Crawley, WA 6009, Australia. E-mail: samuel.kelly@uwa.edu.au JULY 2012 K E L L Y E T A L . 1217 DOI: 10.1175/JPO-D-11-0231.1 ? 2012 American

282

Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Ground Source Heat Pumps Ground Source Heat Pumps (Redirected from Geothermal Heat Pumps) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ground Source Heat Pumps Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps GSHP Links Related documents and websites An Information Survival Kit for the Prospective Geothemral Heat Pump Owner List of Heat Pumps Incentives List of Ground Source Heat Pumps Incentives Policy Makers' Guidebook for Geothermal Heating and Cooling Various ways to configure a geothermal heat pump system. (Source: The Geo-Heat Center's Survival Kit for the Prospective Geothemral Heat Pump

283

Water Heating Products and Services | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Products and Services Water Heating Products and Services Water Heating Products and Services May 29, 2012 - 7:04pm Addthis Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Use the following links to get product information and locate professional services for water heating. Product Information Solar Pool Heating Systems Florida Solar Energy Center Listing of solar pool heating systems evaluated by the Florida Solar Energy Center. Certified Solar Collectors and Systems Solar Rating and Certification Corporation Information on solar collectors and pool heating systems certified under the various Solar Rating and Certification Corporation's rating programs.

284

Water Heating Products and Services | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Products and Services Water Heating Products and Services Water Heating Products and Services May 29, 2012 - 7:04pm Addthis Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Use the following links to get product information and locate professional services for water heating. Product Information Solar Pool Heating Systems Florida Solar Energy Center Listing of solar pool heating systems evaluated by the Florida Solar Energy Center. Certified Solar Collectors and Systems Solar Rating and Certification Corporation Information on solar collectors and pool heating systems certified under the various Solar Rating and Certification Corporation's rating programs.

285

Waste Heat Energy Harvesting Using Olsen Cycle on PZN-5.5PT Single Crystals  

E-Print Network [OSTI]

energy converter for waste heat energy harvesting using co-L. Pyroelectric waste heat energy harvesting using heatNo.3, pp.035015, 2012. WASTE HEAT ENERGY HARVESTING USING

McKinley, Ian Meeker; Kandilian, Razmig; Pilon, Laurent

2012-01-01T23:59:59.000Z

286

MOWII Webinar: OCGen Prototype Testing: Evaluating Buoyancy Pod/Tension Leg Platforms for Tidal Energy Development  

Broader source: Energy.gov [DOE]

Ocean Renewable Power Company (ORPC) will present the results of the company's design, permitting, and testing of a mooring system for ocean energy devices in partnership with the U.S. Department...

287

Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Ground Source Heat Pumps Ground Source Heat Pumps Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ground Source Heat Pumps Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps GSHP Links Related documents and websites An Information Survival Kit for the Prospective Geothemral Heat Pump Owner List of Heat Pumps Incentives List of Ground Source Heat Pumps Incentives Policy Makers' Guidebook for Geothermal Heating and Cooling Various ways to configure a geothermal heat pump system. (Source: The Geo-Heat Center's Survival Kit for the Prospective Geothemral Heat Pump

288

Water Heating Basics | Department of Energy  

Energy Savers [EERE]

Water Heating Basics Water Heating Basics August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional...

289

Heating Energy Meter Validation for Apartments  

E-Print Network [OSTI]

Household heat metering is the core of heating system reform. Because of many subjective and objective factors, household heat metering has not been put into practice to a large extent in China. In this article, the research subjects are second...

Cai, B.; Li, D.; Hao, B.

2006-01-01T23:59:59.000Z

290

Operating and Maintaining Your Heat Pump | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Operating and Maintaining Your Heat Pump Operating and Maintaining Your Heat Pump Operating and Maintaining Your Heat Pump June 24, 2012 - 3:22pm Addthis Changing filters regularly is an important part of maintaining a heat pump system. | Photo courtesy of ©iStockphoto/BanksPhotos Changing filters regularly is an important part of maintaining a heat pump system. | Photo courtesy of ©iStockphoto/BanksPhotos What does this mean for me? Learn to operate and maintain your heat pump system properly to maximize energy and money savings. You can do many operational and maintenance tasks yourself. Proper operation of your heat pump will save energy. Do not set back the heat pump's thermostat if it causes the backup heating to come on -- backup heating systems are usually more expensive to operate. Continuous indoor

291

Solar Thermal Process Heat | Open Energy Information  

Open Energy Info (EERE)

Solar Thermal Process Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalProcessHeat&oldid267198" Category: Articles with outstanding TODO tasks...

292

Integrated Module Heat Exchanger | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Module Heat Exchanger Integrated Module Heat Exchanger 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

293

Heat Pump Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump Water Heaters Heat Pump Water Heaters Standardized Templates for Reporting Test Results heatpumpwaterheaterv1.7.xlsx More Documents & Publications Tankless Gas Water...

294

Geothermal Heat Pump Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump Basics Heat Pump Basics Geothermal Heat Pump Basics August 19, 2013 - 11:12am Addthis Text Version Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes-from scorching heat in the summer to sub-zero cold in the winter-the ground a few feet below the earth's surface remains at a relatively constant temperature. Depending on the latitude, ground temperatures range from 45°F (7°C) to 75°F (21°C). So, like a cave's, the ground's temperature is warmer than the air above it during winter and cooler than the air above it in summer. Geothermal heat pumps take advantage of this by exchanging heat with the earth through a ground heat exchanger. Geothermal heat pumps are able to heat, cool, and, if so equipped, supply

295

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Washington) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Washington) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 05/01/2012 State District of Columbia Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is

296

Beaches Energy Services - Solar Water Heating Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Beaches Energy Services - Solar Water Heating Rebate Program Beaches Energy Services - Solar Water Heating Rebate Program Beaches Energy Services - Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate One rebate per customer Rebates will not exceed purchase price Program Info State Florida Program Type Utility Rebate Program Rebate Amount Solar Water Heater: $500 Provider Beaches Energy Services Beaches Energy Services offers a solar water heating rebate to their residential customers. This $500 rebate applies to new systems which are properly installed and certified. New construction and solar pool heating systems do not qualify for the rebate payment. Systems must be installed by a licensed Florida contractor and must be FSEC certified. Rebates will not

297

MassSAVE - HEAT Loan Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

MassSAVE - HEAT Loan Program MassSAVE - HEAT Loan Program MassSAVE - HEAT Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Water Heating Windows, Doors, & Skylights Solar Maximum Rebate $25,000 Program Info State Massachusetts Program Type Utility Loan Program Rebate Amount HEAT (Micro Loan): $500 - $2,000 Heat (1-4 Unit, Owner Occupied): $2,000 - $25,000 Heat (1-4 Unit, Non-owner Occupied): $5,000 - $25,000 Provider MassSAVE Residential customers of Cape Light Compact, National Grid, NSTAR, Unitil and Western Massachusetts Electric Company may be eligible for zero-interest financing to help increase the energy efficiency of their

298

1 | September 2013 | des courantsWave energyTidal turbines  

E-Print Network [OSTI]

performance and the ability to maintain this performance through the lifetime of the power plant, at a high Symposium Honolulu ­ Hawaï sept 2013 Floating offshore wind Ocean thermal energy conversion DCNS - Ocean of the adopted technical solutions using both numerical simulations and representative trials. From their adpoted

299

Harmonized Emissions Analysis Tool (HEAT) | Open Energy Information  

Open Energy Info (EERE)

Harmonized Emissions Analysis Tool (HEAT) Harmonized Emissions Analysis Tool (HEAT) Jump to: navigation, search Tool Summary Name: Harmonized Emissions Analysis Tool (HEAT) Agency/Company /Organization: Local Governments for Sustainability Sector: Energy, Land Topics: Co-benefits assessment, - Health, GHG inventory, Implementation, Pathways analysis Resource Type: Software/modeling tools User Interface: Website Complexity/Ease of Use: Moderate Website: www.environmenttools.co.uk/directory/tool/name/harmonized-emissions-an Cost: Free Harmonized Emissions Analysis Tool (HEAT) Screenshot References: ICLEI-HEAT[1] Related Tools Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Prospective Outlook on Long-Term Energy Systems (POLES) ICCT Roadmap Model ... further results Find Another Tool

300

Heat Distribution Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Distribution Systems Distribution Systems Heat Distribution Systems May 16, 2013 - 5:26pm Addthis Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Heat is distributed through your home in a variety of ways. Forced-air systems use ducts that can also be used for central air conditioning and heat pump systems. Radiant heating systems also have unique heat distribution systems. That leaves two heat distribution systems -- steam radiators and hot water radiators. Steam Radiators Steam heating is one of the oldest heating technologies, but the process of boiling and condensing water is inherently less efficient than more modern systems, plus it typically suffers from significant lag times between the

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modeling the heating of the Green Energy Lab in Shanghai by the geothermal heat pump combined with the solar thermal energy and ground energy storage.  

E-Print Network [OSTI]

?? This work involves the study of heating systems that combine solar collectors, geothermal heat pumps and thermal energy storage in the ground. Solar collectors (more)

Yu, Candice Yau May

2012-01-01T23:59:59.000Z

302

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas and Oil Heating Systems Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system, ask your local utility or state energy office about the latest technologies on the market. For example, many newer models have designs for burners and heat exchangers that are more efficient during operation and cut heat loss when the equipment is off. Consider a sealed-combustion furnace -- they are safer and more efficient. Long-Term Savings Tip Install a new energy-efficient furnace to save money over the long term. Look for the ENERGY STAR® and EnergyGuide labels to compare efficiency and

303

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry, Energy Technologies, Franklin Contact: John Hules, JAHules@lbl.gov, +1 510 486 6008 2011-01-11-Heat-Battery.jpg A molecule of fulvalene diruthenium, seen in diagram, changes its configuration when it absorbs heat, and later releases heat when it snaps back to its original shape. Image: Jeffrey Grossman Broadly speaking, there have been two approaches to capturing the sun's energy: photovoltaics, which turn the sunlight into electricity, or solar-thermal systems, which concentrate the sun's heat and use it to boil water to turn a turbine, or use the heat directly for hot water or home

304

Definition: Combined heat and power | Open Energy Information  

Open Energy Info (EERE)

heat and power heat and power Jump to: navigation, search Dictionary.png Combined heat and power The production of electricity and heat from a single process. Almost synonymous with the term cogeneration, but slightly more broad. Under the Public Utility Regulatory Policies Act (PURPA), the definition of cogeneration is the production of electric energy and "another form of useful thermal energy through the sequential use of energy." Since some facilities produce both heat and power but not in a sequential fashion, the term CHP is used.[1][2][3] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition Cogeneration power plants produce electricity but do not waste the heat this process creates. The heat is used for district heating or other purposes, and thus the overall efficiency is improved. For example could

305

Marshfield Utilities - Heat Pump Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Marshfield Utilities - Heat Pump Rebate Program Marshfield Utilities - Heat Pump Rebate Program Marshfield Utilities - Heat Pump Rebate Program < Back Eligibility Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Ground Source Heat Pump: $550 Provider Marshfield Utilities Marshfield Utilities offers cash-back rewards for Ground Source Heat Pumps, as well as Focus on Energy program incentives. A rebate of $550 will be given to customers who purchase and install qualifying Ground Source Heat Pumps. Systems must meet the equipment standards of the program in order to receive a rebate. Contact Marshfield Utilities for more information and program requirements. Customers should view the Focus on Energy program web

306

Union Power Cooperative - Residential Energy Efficient Heat Pump Loan  

Broader source: Energy.gov (indexed) [DOE]

Union Power Cooperative - Residential Energy Efficient Heat Pump Union Power Cooperative - Residential Energy Efficient Heat Pump Loan Program Union Power Cooperative - Residential Energy Efficient Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate $7,500 Program Info State North Carolina Program Type Utility Loan Program Rebate Amount up to $7,500 Provider Union Power Cooperative Union Power Cooperative offers low interest loans to help its residential customers finance new, energy-efficient heat pumps. Interest rates, currently at 9%, will be fixed for the term of the loan. Loans can be up to $7,500 over five years. Customers pay back the loan with payments on monthly electric bills. There is a one time loan filing fee of $42. Contact

307

Active Solar Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Active Solar Heating Active Solar Heating Active Solar Heating June 24, 2012 - 5:58pm Addthis This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL What does this mean for me? If you live in a cold climate and have unobstructed access to the sun during the heating season, an active solar heating system might make sense for you. You can buy a manufactured active solar system or build your own.

308

Piedmont EMC- Residential Energy Efficient Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

Piedmont Electric Membership Corporation (PEMC) offers a financial incentive for residential members to install energy efficient heat pumps and compact fluorescent lighting in eligible homes....

309

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INDUSTRIAL TECHNOLOGIES PROGRAM Improved Heat Recovery in Biomass-Fired Boilers Reducing Superheater Corrosion to Enable Maximum Energy Effi ciency This project will develop...

310

#AskEnergySaver: Answering Your Home Heating Questions | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

month, we're answering your questions about home heating. | Graphic by Sarah Gerrity, Energy Department. Allison Lantero Allison Lantero Digital Content Specialist, Office of...

311

Correlation Of Surface Heat Loss And Total Energy Production...  

Open Energy Info (EERE)

Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Correlation...

312

Portland General Electric - Heat Pump Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Portland General Electric - Heat Pump Rebate Program Portland General Electric - Heat Pump Rebate Program Portland General Electric - Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Oregon Program Type Utility Rebate Program Rebate Amount $200 Provider Portland General Electric Portland General Electric's (PGE) Heat Pump Rebate Program offers residential customers a $200 rebate for an energy-efficient heat pump installed to PGE's standards by a PGE-approved contractor. The rebate is also available for replacing older, inefficient heat pump units. See the program web site or contact the utility for additional information on program incentives and guidelines. Other Information Heat pumps: 7.7 HSPF and 13 SEER minimum

313

Energy Department Invests to Save on Heating, Cooling and Lighting |  

Broader source: Energy.gov (indexed) [DOE]

to Save on Heating, Cooling and Lighting to Save on Heating, Cooling and Lighting Energy Department Invests to Save on Heating, Cooling and Lighting August 14, 2013 - 1:39pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's efforts to reduce energy bills for American families and businesses and reduce greenhouse gas emissions, the Energy Department today announced 12 projects to develop innovative heating, cooling and insulation technologies as well as open source energy efficiency software to help homes and commercial buildings save energy and money. These projects will receive an approximately $11 million Energy Department investment, matched by about $1 million in private sector funding. "Energy efficient technologies - from improved heating and cooling

314

Air-Source Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Air-Source Heat Pumps Air-Source Heat Pumps Air-Source Heat Pumps June 24, 2012 - 3:35pm Addthis When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhoto/YinYang. When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhoto/YinYang. What does this mean for me? If you live in a cooling climate, an air-source heat pump is a good choice. If you live in a heating climate, watch for advanced air-source heat pumps coming on the market that operate well in sub-freezing temperatures. An air-source heat pump can provide efficient heating and cooling for your

315

Revamping Pre-Heat Trains for Energy Saving  

E-Print Network [OSTI]

In this paper we look at the principles underlying the revamping of pre-heat trains to save energy through increased heat recovery. For brevity, we do not consider throughput changes. Only pre-heat train performance is considered. The interaction...

Yeap, B. L.; Wilson, I.; Pretty, B.; Polley, G. T.

316

Heat pumps and energy storage The challenges of implementation  

Science Journals Connector (OSTI)

The wider implementation of variable renewable energy sources such as wind across the UK and Ireland will demand interconnection, energy storage and more dynamic energy systems to maintain a stable energy system that makes full use of one of our best renewable energy resources. However large scale energy storage e.g. pumped storage may be economically challenging. Therefore can thermal energy storage deployed domestically fulfil an element of such an energy storage role? Current electricity pricing is based on a hourly timeframe which will be demonstrated to have some benefits for hot water heating from electrical water heaters in the first instance. However heat pumps linked to energy storage can displace fossil fuel heating systems and therefore the question is whether a renewable tariff based on excess wind for example is sufficient to operate heat pumps. An initial analysis of this scenario will be presented and its potential role in challenging aspects of fuel poverty.

Neil J Hewitt

2012-01-01T23:59:59.000Z

317

Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Combined Heat and Power Combined Heat and Power Jump to: navigation, search All power plants release a certain amount of heat during electricity generation. This heat can be used to serve thermal loads, such as building heating and hot water requirements. The simultaneous production of electrical (or mechanical) and useful thermal power from a single source is referred to as a combined heat and power (CHP) process, or cogeneration. Contents 1 Combined Heat and Power Basics 2 Fuel Types 2.1 Rural Resources 2.2 Urban Resources 3 CHP Technologies 3.1 Steam Turbine 3.2 Gas Turbine 3.3 Microturbine 3.4 Reciprocating Engine 4 Example CHP Systems[7] 4.1 University of Missouri (MU) 4.2 Princeton University 4.3 University of Iowa 4.4 Cornell University 5 Glossary 6 References Combined Heat and Power Basics

318

Solar Pool Heating | Open Energy Information  

Open Energy Info (EERE)

Retrieved from "http:en.openei.orgwindex.php?titleSolarPoolHeating&oldid267195" Category: Articles with outstanding TODO tasks...

319

Energy Star Building Upgrade Manual Heating and Cooling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9. Heating and 9. Heating and Cooling Revised January 2008 9.1 Overview 2 9.2 Central Cooling Systems 3 Chiller Plant Operations and Maintenance 4 Chiller Plant Retrofits 6 9.3 Central Heating Systems 10 Boiler System Operations and Maintenance 11 Boiler System Retrofits 11 Improving Furnace Efficiency 13 9.4 Unitary Systems 14 Packaged Rooftop Units 16 Split-System Packaged Units 18 Air-Source Heat Pumps 18 Ground-Source, Closed-Loop Heat Pumps 19 9.5 Additional Strategies 20 Air-Side Economizer 20 Energy Recovery 20 Desiccant Dehumidification 20 Night Precooling 21 Cool Storage 22 Evaporative Cooling 22 9.6 Summary 22 Bibliography 23 Glossary G-1 1 ENERGY STAR ® Building Manual ENERGY STAR ® Building Manual 9. Heating and Cooling 9.1 Overview Although heating and cooling systems provide a useful service by keeping occupants comfort-

320

Space Heating & Cooling Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Space Heating & Cooling Research Space Heating & Cooling Research Space Heating & Cooling Research The Emerging Technology team conducts research in space heating and cooling technologies, with a goal of realizing aggregate energy savings of 20% relative to a 2010 baseline. In addition to work involving the development of products, the U.S. Department of Energy (DOE), along with industry partners and researchers, develops best practices, tests, and guides designed to reduce market barriers and increase public awareness of these energy saving technologies. Research is currently focusing on: Geothermal Heat Pumps Photo of a home with a geothermal heat pump, showing how it can regulate the temperature of a home using the temperature underground to cool warm air or heat cold air.

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

November 20, 2012 Webinar: District Heating with Renewable Energy |  

Broader source: Energy.gov (indexed) [DOE]

November 20, 2012 Webinar: District Heating with Renewable Energy November 20, 2012 Webinar: District Heating with Renewable Energy November 20, 2012 Webinar: District Heating with Renewable Energy This webinar was held November 20, 2012, and provided information on Indiana's Ball State University geothermal heat pump system, and a hot-water district heating system in St. Paul, Minnesota. Download the presentations below, watch the webinar (WMV 194 MB), or view the text version. Find more CommRE webinars. Paradigm Shift-Coal to Geothermal Ball State University in Indianapolis, Indiana, is converting its campus district heating and cooling system from a coal-fired steam boiler to a ground source geothermal system that produces simultaneously hot water for heating and chilled water for cooling. It will be the largest ground source

322

Residential Solar Water Heating Rebates | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Solar Water Heating Rebates Residential Solar Water Heating Rebates Residential Solar Water Heating Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $1,900 Program Info Funding Source New Hampshire Renewable Energy Fund (REF) Start Date 04/21/2010 Expiration Date When funding is exhausted State New Hampshire Program Type State Rebate Program Rebate Amount $1,500, $1,700 or $1,900, depending on annual estimated system output Provider New Hampshire Public Utilities Commission New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to 19.9 MMBTU; $1,700 for

323

Ductless, Mini-Split Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ductless, Mini-Split Heat Pumps Ductless, Mini-Split Heat Pumps Ductless, Mini-Split Heat Pumps June 24, 2012 - 4:19pm Addthis What does this mean for me? You can take advantage of the fact that -- unlike earlier versions -- newer models of ductless mini-split heat pumps operate effectively in cold temperatures. If you are building an addition or doing a major remodel and your home does not have heating and cooling ducts, a ductless mini-split heat pump may be a cost-effective, energy-efficient choice. Ductless, mini-split-system heat pumps (mini splits) make good retrofit add-ons to houses with "non-ducted" heating systems, such as hydronic (hot water heat), radiant panels, and space heaters (wood, kerosene, propane). They can also be a good choice for room additions where extending or

324

#AskEnergySaver: Answering Your Home Heating Questions | Department...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Us Now Addthis Now's your chance to ask Energy Department experts your questions about saving energy at home. This month, we're answering your questions about home heating. |...

325

Geothermal energy and district heating in Ny-lesund, Svalbard .  

E-Print Network [OSTI]

??This thesis presents the possibilities for using shallow geothermal energy for heating purposes in Ny-lesund. The current energy supply in Ny-lesund is a diesel generator, (more)

Iversen, Julianne

2013-01-01T23:59:59.000Z

326

Reduce Your Heating Bills with Better Insulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation October 3, 2008 - 11:09am Addthis John Lippert If you pay your own energy bills, you don't need to be reminded that energy prices are escalating. Energy price projections for this coming winter are not encouraging. According to the Energy Information Administration, residential natural gas prices during the upcoming heating season (October though March) are projected to average $14.93 per Mcf, an increase of about 17% compared to last year's heating season. Residential heating oil prices are projected to average $4.13 per gallon this winter, an increase of about 25%. What if you live in an all-electric house? Many utilities are continuing to pursue retail electricity rate increases in response to power generation

327

Space Heating and Cooling Products and Services | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

328

Space Heating and Cooling Products and Services | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

329

Space Heating and Cooling Products and Services | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

330

Reduce Your Heating Bills with Better Insulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation October 3, 2008 - 11:09am Addthis John Lippert If you pay your own energy bills, you don't need to be reminded that energy prices are escalating. Energy price projections for this coming winter are not encouraging. According to the Energy Information Administration, residential natural gas prices during the upcoming heating season (October though March) are projected to average $14.93 per Mcf, an increase of about 17% compared to last year's heating season. Residential heating oil prices are projected to average $4.13 per gallon this winter, an increase of about 25%. What if you live in an all-electric house? Many utilities are continuing to pursue retail electricity rate increases in response to power generation

331

CenterPoint Energy - Residential Gas Heating Rebates | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CenterPoint Energy - Residential Gas Heating Rebates CenterPoint Energy - Residential Gas Heating Rebates CenterPoint Energy - Residential Gas Heating Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Storage Tank Water Heater: $75 Tankless Water Heater: $500 Forced-Air Furnace: $400 - $600 Forced-Air Furnace (Back-Up System): $125 - $175 Hydronic Heating System: $400 Provider CenterPoint Energy CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage water heaters and tankless water heaters. All equipment must meet program requirements for efficiency and

332

Geothermal Energy--Clean Power From the Earth's Heat  

E-Print Network [OSTI]

G. Groat Director, U.S. Geological Survey #12;iv Conversion Factors Geothermal Energy--Clean Power From the Earth's Heat Circular 1249 U.S. Department of the Interior U.S. Geological Survey #12;Geothermal Energy--Clean Power From the Earth's Heat By Wendell A

333

Annual Energy Consumption Analysis and Energy Optimization of a Solar-Assisted Heating Swimming Pool  

E-Print Network [OSTI]

This paper is concerned with the energy efficiency calculations and optimization for an indoor solar-assisted heating swimming pool in GuangZhou. The heating energy requirements for maintaining the pool constant temperature were investigated, which...

Zuo, Z.; Hu, W.; Meng, O.

2006-01-01T23:59:59.000Z

334

Energy Department Turns Up the Heat and Power on Industrial Energy  

Broader source: Energy.gov (indexed) [DOE]

Department Turns Up the Heat and Power on Industrial Energy Department Turns Up the Heat and Power on Industrial Energy Efficiency Energy Department Turns Up the Heat and Power on Industrial Energy Efficiency March 13, 2013 - 12:19pm Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic courtesy of Sarah Gerrity, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic courtesy of Sarah Gerrity, Energy Department. Katrina Pielli Senior Policy Advisor, Office of Energy Efficiency and Renewable Energy What is Combined Heat and Power? Often called cogeneration or CHP, a combined heat and power system

335

Residential Energy Expenditures for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

Expenditures for Water Heating (2005) Expenditures for Water Heating (2005) Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. The data was collected as part of the Residential Energy Consumption Survey (RECS). RECS is a national survey that collects residential energy-related data. The survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the United States. Data were obtained from residential energy suppliers for each unit in the sample to produce the data. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB)

336

12th Annual Wave & Tidal 2015  

Broader source: Energy.gov [DOE]

The UK is currently the undisputed global leader in marine energy, with more wave and tidal stream devices installed than the rest of the world combined. This leading position is built on an...

337

Community Renewable Energy Success Stories Webinar: District Heating with Renewable Energy (text version)  

Office of Energy Efficiency and Renewable Energy (EERE)

Below is the text version of the webinar titled "District Heating with Renewable Energy," originally presented on November 20, 2012.

338

Wood and Pellet Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wood and Pellet Heating Wood and Pellet Heating Wood and Pellet Heating November 25, 2013 - 2:24pm Addthis A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie What does this mean for me? Wood or pellets may be an economical and environmentally sound heating fuel choice. If you live in an area where you can cut your own wood for heating, your fuel will be local and inexpensive. Today you can choose from a new generation of wood- and pellet-burning appliances that are cleaner burning, more efficient, and powerful enough to heat many average-sized, modern homes. Pellet fuel appliances burn small pellets that measure 3/8 to 1 inch in length. Choosing and Installing Wood- and Pellet-Burning Appliances

339

Waste Heat Energy Harvesting Using Olsen Cycle on PZN-5.5PT Single Crystals  

E-Print Network [OSTI]

energy converter for waste heat energy harvesting using co-Pilon, L. Pyroelectric waste heat energy harvesting usingNo.3, pp.035015, 2012. WASTE HEAT ENERGY HARVESTING USING

McKinley, Ian Meeker; Kandilian, Razmig; Pilon, Laurent

2012-01-01T23:59:59.000Z

340

Combined Heat and Power Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power Basics Combined Heat and Power Basics Combined Heat and Power Basics November 1, 2013 - 11:40am Addthis Combined heat and power (CHP), also known as cogeneration, is: A process flow diagram showing efficiency benefits of CHP CHP Process Flow Diagram The concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. A type of distributed generation, which, unlike central station generation, is located at or near the point of consumption. A suite of technologies that can use a variety of fuels to generate electricity or power at the point of use, allowing the heat that would normally be lost in the power generation process to be recovered to provide needed heating and/or cooling. CHP technology can be deployed quickly, cost-effectively, and with few

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lakeland Electric - Solar Water Heating Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lakeland Electric - Solar Water Heating Program Lakeland Electric - Solar Water Heating Program Lakeland Electric - Solar Water Heating Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date June 2010 State Florida Program Type Other Incentive Provider Lakeland Electric Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar equipment vendor, Regenesis Lakeland, LLC, to install solar water heaters on participating customers' homes. Lakeland Electric bills the customer $34.95 per month regardless of use. Each solar heater is metered and equipped with a heating element timer as a demand management feature. The $34.95 monthly charge is a bulk energy

342

Solar Water Heating Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Water Heating Incentive Program Solar Water Heating Incentive Program Solar Water Heating Incentive Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate Varies by sector, location, technology, and electric or gas provider; see below for details Program Info Start Date October 2003 State Oregon Program Type State Rebate Program Rebate Amount Varies by sector, water heating fuel, and electric or gas provider; see below for details Provider Energy Trust of Oregon Beginning in the fall of 2003, Energy Trust of Oregon's Solar Water Heating (SWH) Incentive Program offers incentives to customers of Pacific Power, PGE, NW Natural Gas and Cascade Natural Gas who install solar water or pool

343

Training: Process Heating Systems | Department of Energy  

Office of Environmental Management (EM)

Process Heating System Assessment - 1-day workshop Availability: Onsite instructor-led and online self-paced workshop This workshop provides an introduction to process...

344

Franklin Heating Station | Open Energy Information  

Open Energy Info (EERE)

Station Jump to: navigation, search Name: Franklin Heating Station Place: Minnesota References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861 Data Utility...

345

Heating and Cooling System Support Equipment Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics July 30, 2013 - 3:28pm Addthis Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use. Thermostats Programmable thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated according to a pre-set schedule. Visit the Energy Saver website for more information about thermostats and control systems in homes. Ducts Efficient and well-designed duct systems distribute air properly throughout a building, without leaking, to keep all rooms at a comfortable

346

Relationship Among Efficiency and Output Power of Heat Energy Converters  

E-Print Network [OSTI]

Relationship among efficiency and output power of heat-electric energy converters as well as of any converters for transforming of heat energy into any other kind of energy is considered. It is shown, that the parameter efficiency does not determine univocally the output power of a converter. It is proposed to use another parameter for determination of working ability of heat energy converters. It is shown, that high output power can not be achieved by any kind of Stirling-type converters in spite of their high efficiency.

Alexander Luchinskiy

2004-09-02T23:59:59.000Z

347

Gulf Power - Solar Thermal Water Heating Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Florida Program Type Utility Rebate Program Provider Energy Efficiency '''''This program reopened on October 3, 2011 for 2012 applications. Funding is limited and must be reserved through online application before the installation of qualifying solar water heating systems. See Gulf Power's [http://www.gulfpower.com/renewable/solarThermal.asp Solar Water Heating] web site for more information.''''' Gulf Power offers a Solar Thermal Water Heating rebate to customers who install water heaters. This program started after the original pilot

348

HVAC Optimized Heat Exchangers Research Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Optimized Heat Exchangers Research Optimized Heat Exchangers Research Project HVAC Optimized Heat Exchangers Research Project The U.S. Department of Energy is currently conducting research into heating, ventilation, and air conditioning (HVAC) optimized heat exchangers. The information generated in this study will demonstrate performance improvements that can be achieved through optimization of refrigerant circuitry for non-uniform inlet air distribution. The tubing circuitry on fin-tube heat exchangers used in residential space-conditioning systems is typically designed assuming uniform airflow through the finned passageways. However, the air flow in installed systems is highly non-uniform, resulting in mismatched refrigerant-air heat transfer that reduces the capacity of the heat exchanger and efficiency of

349

Conserving Energy and Heating Your Swimming Pool with Solar Energy (EREC Fact Sheet)  

SciTech Connect (OSTI)

This report is a fact sheet that explains the basics of how to energy efficiently and/or use solar energy to heat a swimming pool.

Stewart, K.; Hesse, P.

2000-07-10T23:59:59.000Z

350

List of Geothermal Heat Pumps Incentives | Open Energy Information  

Open Energy Info (EERE)

Heat Pumps Incentives Heat Pumps Incentives Jump to: navigation, search The following contains the list of 729 Geothermal Heat Pumps Incentives. CSV (rows 1-500) CSV (rows 501-729) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) Utility Rebate Program West Virginia Commercial Industrial Central Air conditioners Chillers Custom/Others pending approval Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Programmable Thermostats Commercial Refrigeration Equipment Ground Source Heat Pumps Yes AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate Programs (Arkansas) Utility Rebate Program Arkansas Commercial Fed. Government Industrial Institutional Local Government

351

Hot New Advances in Water Heating Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

352

Hot New Advances in Water Heating Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

353

Property:HeatSource | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:HeatSource Jump to: navigation, search Property Name HeatSource Property Type String Description A description of the resource heat source in the geothermal area. Describes what heats the geothermal fluid - whether it be a magmatic intrusion, a thin crust which brings the mantle closer to hydrologic systems, or only radiogenic influences (such as at Chena hot springs, Alaska). This is a property of type Page. Subproperties This property has the following 4 subproperties: C Coso Geothermal Area R Raft River Geothermal Area S Salt Wells Geothermal Area Steamboat Springs Geothermal Area Pages using the property "HeatSource" Showing 9 pages using this property. C Chena Geothermal Area + Radiogenic +

354

Status of Direct Heat Application Projects | Open Energy Information  

Open Energy Info (EERE)

Heat Application Projects Heat Application Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Status of Direct Heat Application Projects Abstract In order to promote the use of hydrothermal energy for direct heat applications, the U.S. Department of Energy (DOE) has funded twenty-two demonstration projects. Eight of these projects are administered by the San Francisco Operation Office of the Department of Energy (DOE-SAN) with technical support form the Energy Technology Engineering Center (ETEC) of Rockwell International. The projects are described and their status given. Author Kendal S. Robinson Published Journal Geothermal Resources Council Transactions, 1981 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Status of Direct Heat Application Projects

355

Energy Accounting for District Heating and Cooling Plants  

E-Print Network [OSTI]

ENERGY ACCOUNTING FOR DISTRICT HEATING AND COOLING PLANTS John A. Barrett, P.E. Manager, Central Plant Utilities University of Houston Houston, Texas Introduction Energy accounting combines engineering science with the insights of cost... Energy Technology Conference Houston, TX, April 22-25, 1979 The Science of Plant Utilities Control While the Weiss papers are not as specific to district heating and cooling plants as the preceding papers, they do treat other problem areas of interest...

Barrett, J. A.

1979-01-01T23:59:59.000Z

356

Author's personal copy Pyroelectric waste heat energy harvesting using heat conduction  

E-Print Network [OSTI]

pump, cryogenic refrigeration, and air liquefaction applications [3]. Organic Rankine cycles use heat harvesting Olsen cycle a b s t r a c t Waste heat can be directly converted into electrical energy by performing the Olsen cycle on pyroelectric materials. The Olsen cycle consists of two isothermal and two

Pilon, Laurent

357

Heat Controller: Proposed Penalty (2011-CE-1507) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Controller: Proposed Penalty (2011-CE-1507) Heat Controller: Proposed Penalty (2011-CE-1507) Heat Controller: Proposed Penalty (2011-CE-1507) April 22, 2011 DOE alleged in a Notice of Proposed Civil Penalty that Heat Controller, Inc. failed to certify a variety of room air conditioners as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Heat Controller: Proposed Penalty (2011-CE-1507) More Documents & Publications Heat Controller: Order (2011-CE-1507)

358

Dehumidifying Heat Pipes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dehumidifying Heat Pipes Dehumidifying Heat Pipes Dehumidifying Heat Pipes June 24, 2012 - 4:32pm Addthis In order to make a room comfortable in hot, humid climates, an air conditioner must lower the indoor humidity level as well as the air temperature. If an air conditioner fails to lower the humidity adequately, the air will be cool, but will feel uncomfortably damp. Inappropriately sized air conditioners are prone to this problem; large units quickly cool the air, but cycle off before they can properly dehumidify it. In extremely humid climates, even correctly sized air conditioning equipment could fail to maintain a home at a comfortable humidity level. One technology that addresses this problem is the dehumidifying heat pipe, a device that enables an air conditioner to dehumidify better and still

359

Tidal Wetlands Regulations (Connecticut)  

Broader source: Energy.gov [DOE]

Most activities occurring in or near tidal wetlands are regulated, and this section contains information on such activities and required permit applications for proposed activities. Applications...

360

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Oregon) Oregon) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Oregon) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 5/1/2012 State Oregon Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Residential Energy Consumption for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

for Water Heating (2005) for Water Heating (2005) Dataset Summary Description Provides total and average annual residential energy consumption for water heating in U.S. households in 2005, measured in both physical units and Btus. The data is presented for numerous categories including: Census Region and Climate Zone; Housing Unit Characteristics (type, year of construction, size, income, race, age); and Water Heater and Water-using Appliance Characteristics (size, age, frequency of use, EnergyStar rating). Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (5 years ago) Keywords Energy Consumption Residential Water Heating Data application/vnd.ms-excel icon 2005_Consumption.for_.Water_.Heating.Phys_.Units_EIA.Sep_.2008.xls (xls, 67.6 KiB)

362

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Montana) Montana) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Montana) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 5/1/2012 State Montana Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

363

Geothermal Heat Pump Grant Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Heat Pump Grant Program Geothermal Heat Pump Grant Program Geothermal Heat Pump Grant Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Residential Schools Maximum Rebate Residential: $3,000 Non-residential: $4,500 Program Info Funding Source Strategic Energy Investment Fund (SEIF) Start Date 2007 State Maryland Program Type State Rebate Program Rebate Amount Residential: $3,000 per project Non-residential: $90-$180 per ton (varies by system size) Provider Maryland Energy Administration The Maryland Energy Administration (MEA) offers rebates of $3,000 for residential geothermal heat pump systems and up to $4,500 for non-residential geothermal heat pump systems. The residential program offers a flat per system incentive ($3,000) for systems with up to 10 tons

364

Analysis of Energy-Rescued Potential of a Hot Water Heating Network  

E-Print Network [OSTI]

Architecture energy consumption occupies a big ratio of overrall energy consumption, while heating energy consumption is a main part of it. Therefore, analyzing the generation of heat waste is important. In this paper, based on a test of a heating...

Han, J.; Wang, D.; Tian, G.

2006-01-01T23:59:59.000Z

365

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network [OSTI]

to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy...

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

366

Energy Saving Guidelines for Portland State University Heating and Ventilation  

E-Print Network [OSTI]

Energy Saving Guidelines for Portland State University Heating and Ventilation Conditioned spaces when a space is not being occupied and be selected with energy efficiency and safety as top priorities scheduling team to consolidate activities into energy efficient buildings on campus. Purchasing When

Caughman, John

367

Chemical heat pump and chemical energy storage system  

DOE Patents [OSTI]

A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

1985-08-06T23:59:59.000Z

368

Cool Roofs and Heat Islands | Open Energy Information  

Open Energy Info (EERE)

Cool Roofs and Heat Islands Cool Roofs and Heat Islands Jump to: navigation, search Tool Summary Name: Cool Roofs Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency Topics: Resource assessment Website: eetd.lbl.gov/r-bldgsee-crhi.html References: [1] Logo: Cool Roofs "On warm summer days, a city can be 6 to 8°F warmer than its surrounding areas. This effect is called the urban heat island. Cool roof materials, pavements, and vegetation can reduce the heat island effect, save energy and reduce smog formation. The goal of this research is to develop cool materials to save energy and money." [1] The Cool Roof Calculator developed at the Oak Ridge National Laboratory is a useful tool for exploring the benefits of cool materials.

369

A Geothermal District-Heating System and Alternative Energy Research...  

Open Energy Info (EERE)

District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A...

370

Greening Heat and Power: An Integrated Approach to Decarbonizing Energy  

Science Journals Connector (OSTI)

While the need for climate-change mitigation cuts across all sectors of society, the infrastructure sectors, as significant producers or consumers of heat and power energy, must take special responsibility for ca...

Hillary Brown

2014-01-01T23:59:59.000Z

371

Signatures of Heating and Cooling Energy Consumption for Typical AHUs  

E-Print Network [OSTI]

An analysis is performed to investigate the signatures of different parameters on the heating and cooling energy consumption of typical air handling units (AHUs). The results are presented in graphic format. HVAC simulation engineers can use...

Wei, G.; Liu, M.; Claridge, D. E.

1998-01-01T23:59:59.000Z

372

Biomass Energy Small-Scale Combined Heat and Power Systems  

Science Journals Connector (OSTI)

Combined heat and power (CHP) generation is one of the essential pillar in a modern, sustainable, and environmentally friendly energy generation. This is due to the fact that cogeneration systems are energeti...

Daniel Bchner; Volker Lenz

2012-01-01T23:59:59.000Z

373

Biomass Energy Small-Scale Combined Heat and Power Systems  

Science Journals Connector (OSTI)

Combined heat and power (CHP) generation is one of the essential pillar in a modern, sustainable, and environmentally friendly energy generation. This is due to the fact that cogeneration systems are energeti...

Daniel Bchner; Volker Lenz

2013-01-01T23:59:59.000Z

374

Save on Home Water Heating | Department of Energy  

Office of Environmental Management (EM)

and money, or choose an on-demand hot water heater to save even more. Tips: Water Heating Solar energy systems are among the renewable and efficiency purchases that are...

375

Latent Heat or Phase Change Thermal Energy Storage  

Science Journals Connector (OSTI)

It has been explained in sections 1.6 and 1.6.2 how phase change materials (PCM) have considerably higher thermal energy storage densities compared to sensible heat storage materials and are able to absorb or rel...

H. P. Garg; S. C. Mullick; A. K. Bhargava

1985-01-01T23:59:59.000Z

376

Energy Saver 101 Infographic: Home Heating | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your...

377

Community Renewable Energy Success Stories Webinar: District Heating with  

Broader source: Energy.gov (indexed) [DOE]

District District Heating with Renewable Energy (text version) Community Renewable Energy Success Stories Webinar: District Heating with Renewable Energy (text version) Below is the text version of the webinar titled "District Heating with Renewable Energy," originally presented on November 20, 2012. Operator: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Hi, good afternoon everyone, and welcome to today's webinar sponsored by the U.S. Department of Energy. I'm Sarah Busche, and I'm here with Devin Egan. We're broadcasting live from the National Renewable Energy Lab in Golden, Colorado. And we're going to give everyone a few minutes to call in and log on, but while we do that, Devin's going to go over some of the logistics, and then we'll get started. Devin?

378

Design of a Heating System with Geothermal Energy and CO2 Capture:.  

E-Print Network [OSTI]

??Heating constitutes about 40% of the final energy consumption at TU Delft. In the present, the district heating system in campus obtains its energy from (more)

Reyes Lastiri, D.

2013-01-01T23:59:59.000Z

379

Prospects of energy savings in residential space heating  

Science Journals Connector (OSTI)

This paper presents some insight to the problem of heating of housing in Jordan. Residential space and water heating are dependent particularly upon the combustion of fossil fuels, which thereby contribute significantly to air pollution and the build-up of carbon dioxide in the atmosphere. The results of a recent survey were used to evaluate the energy demand and conservation in Jordanian residential buildings. Space heating accounts for 61% of the total residential energy consumption with kerosene being the most popular fuel used, followed by liquefied petroleum gas (LPG), for heating purposes. Unvented combustion appliances employed to provide space heating produce high levels of combustion by-products that often exceed acceptable concentrations, degraded indoor air quality and cause unnecessary exposure to toxic gases such as carbon monoxide. During 1999, the number of accidents in households due to the use of different energy forms accounted for about 40% of all accidents, except road accidents, in Jordan. In light of the fact that only 5% of dwellings in Jordan have been provided with wall insulation and none employ roof insulation, the overall heat transfer coefficients, and consequently heating loads, were estimated for a typical single house using different constructions for external walls. It is concluded that space heating load can be reduced by about 50%, when economically-viable insulating measures are applied to the building envelopes, i.e. to ceilings and walls. These lead to corresponding reductions in fossil fuels consumption and in emissions of air pollutants.

Jamal O Jaber

2002-01-01T23:59:59.000Z

380

Studies in Tidal Power  

Science Journals Connector (OSTI)

... at Aber-vrach near Brest. The proposed barrage will be 150 metres long and the turbines will have a maximum output of about 1200 h.p. The tidal station is ... 1200 h.p. The tidal station is to be worked in conjunction with a second hydroelectric station utilising the waters of the river Diouris, which discharges into the estuary of ...

1924-01-26T23:59:59.000Z

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH  

E-Print Network [OSTI]

00149 -1- 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH R-1234yf Sorina Mortada, Ph.D. student, Center for Energy and Processes Abstract: Significant improvements in energy performance of air-to-air heat pumps are the major reason

Paris-Sud XI, Université de

382

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Idaho) Idaho) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Idaho) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 05/01/2012 State Idaho Program Type Non-Profit Rebate Program The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

383

Building Energy Software Tools Directory: Window Heat Gain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Heat Gain Window Heat Gain Window Heat Gain image Calculates the solar heat gain through vertical windows in temperate latitudes. Screen Shots Keywords Solar, window, energy Validation/Testing N/A Expertise Required None. Users Few (new program). Audience Architects, energy analysts. Input Location, window characteristics, ground characteristics. Output Daily/monthly heat gain through window. Computer Platform Web Programming Language JavaScript Strengths Allows default locations/windows/surfaces or custom user data. Incorporates lots of ASHRAE SHGF data that is otherwise burdensome to deal with. Weaknesses Only works for windows facing close to due north, south, east, or west. Doesn't address conductive losses or shading. Contact Company: Sustainable By Design Address: 3631 Bagley Avenue North

384

Going Ductless with Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Going Ductless with Heat Pumps Going Ductless with Heat Pumps Going Ductless with Heat Pumps November 2, 2009 - 9:06am Addthis John Lippert My home, unlike most homes in the United States, has no ducts. My wife and I bought the house nearly 20 years ago. Window air conditioners provided air conditioning during the hot muggy Washington, D.C., summers. Baseboard electric heaters provided heating in winter. Before a lot of you post your sympathies in the comments, let me say this: my house is well insulated and very air tight, as a whole house energy audit demonstrated about 15 years ago. Yet, even though electric baseboard heating is about 100% efficient, it is a costly way of heating a house. And as I got older, each year I enjoyed installing and removing the window air conditioners less and less.

385

Siting Your Solar Water Heating System | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Siting Your Solar Water Heating System Siting Your Solar Water Heating System Siting Your Solar Water Heating System May 30, 2012 - 2:46pm Addthis Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's warm and sunny most of the time -- like the southwestern United States -- your site still might have an adequate solar resource. If your building site has unshaded areas and

386

Siting Your Solar Water Heating System | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Siting Your Solar Water Heating System Siting Your Solar Water Heating System Siting Your Solar Water Heating System May 30, 2012 - 2:46pm Addthis Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's warm and sunny most of the time -- like the southwestern United States -- your site still might have an adequate solar resource. If your building site has unshaded areas and

387

#tipsEnergy: Saving on Home Heating Costs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Saving on Home Heating Costs Saving on Home Heating Costs #tipsEnergy: Saving on Home Heating Costs November 23, 2012 - 3:37pm Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs #tipsEnergy: Saving on Home Heating Costs A feature on the Energy Department's Twitter account, #tipsEnergy highlights ways to save energy and money at home. Once a month, we ask you to share your energy-saving tips so the larger energy community can learn from you, and we feature some of the best tips in a Storify. Storified by Energy Department · Fri, Nov 23 2012 12:37:07 As we head into December, the cold weather season is officially upon us, and nowhere is that more evident than on your utility bills. Home heating and cooling uses more energy than any other

388

Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy  

Broader source: Energy.gov (indexed) [DOE]

Native Village of Teller Addresses Heating Fuel Shortage, Improves Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security June 22, 2012 - 4:54pm Addthis The combination of the Native Village of Teller’s limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller fuel storage. Photo by Alexander Dane, NREL Native Village of Teller fuel storage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL

389

Savings Project: Lower Water Heating Temperature | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Savings Project: Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings $12-$30 annually for each 10ºF reduction Time to Complete 2 hours Overall Cost $0 Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Although some manufacturers set water heater thermostats at 140ºF, most households usually only require them to be set at 120ºF, which also slows mineral buildup and corrosion in your water heater and pipes. Water heated at 140ºF also poses a safety hazard-scalding. Savings resulting from turning down your water heater temperature are based

390

Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy  

Broader source: Energy.gov (indexed) [DOE]

Native Village of Teller Addresses Heating Fuel Shortage, Improves Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security June 22, 2012 - 4:54pm Addthis The combination of the Native Village of Teller’s limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller fuel storage. Photo by Alexander Dane, NREL Native Village of Teller fuel storage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL

391

Savings Project: Lower Water Heating Temperature | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lower Water Heating Temperature Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings $12-$30 annually for each 10ºF reduction Time to Complete 2 hours Overall Cost $0 Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Although some manufacturers set water heater thermostats at 140ºF, most households usually only require them to be set at 120ºF, which also slows mineral buildup and corrosion in your water heater and pipes. Water heated at 140ºF also poses a safety hazard-scalding. Savings resulting from turning down your water heater temperature are based

392

Energy Department Turns Up the Heat and Power on Industrial Energy...  

Energy Savers [EERE]

Department is investing in advanced energy-saving technologies like carbon fiber and 3D printing, we also see great potential in more traditional technologies -- like combined heat...

393

Using ''waste'' heat to conserve energy  

SciTech Connect (OSTI)

The organic Rankine cycle diesel bottoming system (DRCDBS) is being tested at the Naval Air Station in Bermuda for viability in operational use. The system uses heat recovered from the exhaust gases of diesel/generator sets to power a turbine/generator unit. The system will be demonstrated for three years before operational use. A schematic for the system is given. Its daily KWh hours performance is calculated. Logistic support--maintainence and training--are also treated. Potential sites are being studied.

Cooper, E.

1983-04-01T23:59:59.000Z

394

Solar Energy - Capturing and Using Power and Heat from the Sun...  

Broader source: Energy.gov (indexed) [DOE]

Solar Energy - Capturing and Using Power and Heat from the Sun Solar Energy - Capturing and Using Power and Heat from the Sun U.S. Department of Energy (DOE) Office of Energy...

395

#tipsEnergy: Ways to Save on Water Heating Costs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Costs Water Heating Costs #tipsEnergy: Ways to Save on Water Heating Costs February 20, 2013 - 5:09pm Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs #tipsEnergy: Ways to Save on Water Heating Costs Every month we ask the larger energy community to share their energy-saving tips, and we feature some of our favorite tips in a Storify. For this month's #tipsEnergy, we wanted to know how you save energy and money on water heating. Storified by Energy Department · Wed, Feb 20 2013 14:12:00 Hot water is essential to most of our lives: We use it to shower, run the dishwasher and wash clothes. Quite frequently, we use more hot water than we think -- the average rate hot water flows out of the kitchen faucet is 2 gallons per minute, and an eight-minute shower

396

Natural Zeolites in Solar Energy Heating, Cooling, and Energy Storage  

Science Journals Connector (OSTI)

...extensively to control the humidity of warehouses, hotels, supermarkets, electronic...day will provide about 1.5 kWh/m2 of heating and cooling...hot water needs in almost any climate area. Such a home, shown in...with a heat output of 0.262 kWh/kg, is most suitable for...

Dimiter I. Tchernev

397

The Unit Fuel Consumption Analysis and Energy Saving of the Building Heating  

Science Journals Connector (OSTI)

Now, when analyzing the ways of heating, we always aims at only energy supply or using, but the building heating ... , internet distribution and terminal using of the energy. Therefore, in view of the heating ......

Yuanyuan Jiang; Shaoxiang Zhou

2007-01-01T23:59:59.000Z

398

Chaos and Tidal Capture  

E-Print Network [OSTI]

We review the tidal capture mechanism for binary formation, an important process in globular cluster cores and perhaps open cluster cores. Tidal capture binaries may be the precursors for some of the low-mass X-ray binaries observed in abundance in globular clusters. They may also play an important role in globular cluster dynamics. We summarize the chaos model for tidal interaction (Mardling 1995, ApJ, 450, 722, 732), and discuss how this affects our understanding of the circularization process which follows capture.

Rosemary A. Mardling

1995-12-07T23:59:59.000Z

399

Cold Climate Heat Pump Research Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Emerging Technologies » Cold Climate Heat Pump Research Project Emerging Technologies » Cold Climate Heat Pump Research Project Cold Climate Heat Pump Research Project The U.S. Department of Energy is currently conducting research into cold climate heat pumps. The research is designed to overcome technical and economic barriers that limit market penetration in cold climates. Project Description This project seeks to develop a high-performance, cold climate heat pump technology using multi-stage compressor technology. Several vapor compression cycle configurations are being examined and optimized for superior performance. Target performance and preliminary results will be used to perform a detailed market assessment in order to investigate the national impact and potential market penetration. Project Partners Research is being undertaken through a cooperative research and development

400

Pacific Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Pacific www.pacificCHPTAP.org Terry Clapham California Center for Sustainable Energy 858-244-4872 terry.clapham@energycenter.org California Alameda County Santa Rita Jail, Dublin Burlingame Wastewater Treatment Plant, Burlingame Chiquita Water Reclamation Plant, Santa Margarita DGS Central Plant, Sacramento East Bay Municipal Utility District, Oakland East Bay Municipal Utility District WWTP, Oakland EMWD Microturbine Energy System, Riverside County

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Pacific Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Pacific www.pacificCHPTAP.org Terry Clapham California Center for Sustainable Energy 858-244-4872 terry.clapham@energycenter.org California Alameda County Santa Rita Jail, Dublin Burlingame Wastewater Treatment Plant, Burlingame Chiquita Water Reclamation Plant, Santa Margarita DGS Central Plant, Sacramento East Bay Municipal Utility District, Oakland East Bay Municipal Utility District WWTP, Oakland EMWD Microturbine Energy System, Riverside County

402

Southwest Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Southwest Region Combined Heat and Power Projects Southwest Region Combined Heat and Power Projects Southwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Southwest www.southwestCHPTAP.org Christine Brinker Southwest Energy Efficiency Project 720-939-8333 cbrinker@swenergy.org Arizona Ina Road Water Pollution Control Facility, Tucson University of Arizona, Tucson View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Arizona. Colorado Metro Wastewater Reclamation District, Denver MillerCoors, Golden New Belgium Brewery, Fort Collins Trailblazer Pipeline, Fort Collins View EEA's database of all known CHP installations in Colorado.

403

PECO Energy (Gas) Heating Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The PECO Smart Gas Efficiency Upgrade Program offers rebates and incentives to commercial or residential customers that install an ENERGY STAR qualified high-efficiency natural gas furnace or...

404

Heat Pump Research Center For Environmental Energy  

E-Print Network [OSTI]

Innovate Leveraging computing power to free engineers' creativity and intuition! Energy Efficiency Plastics 2 Ballard 13 Guentner 24 Modine 3 Bosch/FHP 14 HTPG 25 Petroleum Institute 4 Daikin + McQuay 15

Oak Ridge National Laboratory

405

Natural Currents Energy Services | Open Energy Information  

Open Energy Info (EERE)

Natural Currents Energy Services Natural Currents Energy Services Jump to: navigation, search Name Natural Currents Energy Services Address 24 Roxanne Blvd Place Highland Zip 12528 Sector Marine and Hydrokinetic Phone number 845-691-4008 Website http://www.naturalcurrents.com Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Angoon Tidal Energy Plant Avalon Tidal BW2 Tidal Cape Cod Tidal Energy Project Cape May Tidal Energy Cohansey River Tidal Energy Cuttyhunk Tidal Energy Plant Dorchester Maurice Tidal Fishers Island Tidal Energy Project Gastineau Channel Tidal Highlands Tidal Energy Project Housatonic Tidal Energy Plant

406

New energy and exergy parameters for geothermal district heating systems  

Science Journals Connector (OSTI)

This paper introduces four new parameters, namely energetic renewability ratio, exergetic renewability ratio, energetic reinjection ratio, and exergetic reinjection ratio for geothermal district energy systems. These parameters are applied to Edremit Geothermal District Heating System (GDHS) in Balikesir, Turkey for daily, monthly and yearly assessments and their variations are studied. In addition, the actual data are regressed to obtain some applied correlations for practical use. Some results follow: (i) Both energetic and exergetic renewability ratios decrease with decreasing temperature in heating season and increasing temperature in the summer. (ii) Both energetic and exergetic reinjection ratios increase with decreasing temperature for heating season and increase with increasing temperature for summer season.

C. Coskun; Zuhal Oktay; I. Dincer

2009-01-01T23:59:59.000Z

407

Geothermal-Heat Extraction As a source of renewable energy, geothermal-heat extraction has become increasingly  

E-Print Network [OSTI]

Geothermal-Heat Extraction As a source of renewable energy, geothermal-heat extraction has become increasingly important in recent years. Proper design of a geothermal system, be it for deep or for shallow well? 40 MWh/a are required for heating the building. Assume an energy efficiency of 70%. Create a 2D

Kornhuber, Ralf

408

Commercial Air-Source Heat Pumps, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

SciTech Connect (OSTI)

Energy efficiency purchasing specifications for federal procurements of commercial air-source heat pumps.

Not Available

2011-02-11T23:59:59.000Z

409

Conservation of Heat Energy at Hot Petroleum Products Terminals  

E-Print Network [OSTI]

optimum operating procedures to compare with present practices. 3. Develop a heat energy management information system. 4. Develop energy conservation expense/capital investment projects in order of attractiveness. STUDY APPROACH Comparison... REQUI REr1ENTS Additional effort will be required in 1981 to accomplish the overall objectives of this task force. The group will concentrate on changes in operating procedures to conserve fuel and on the development of an energy management...

Powell, J. C.; Graham, R. M.

1981-01-01T23:59:59.000Z

410

CenterPoint Energy - Business Gas Heating Rebates | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CenterPoint Energy - Business Gas Heating Rebates CenterPoint Energy - Business Gas Heating Rebates CenterPoint Energy - Business Gas Heating Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Boiler System, Modulating Boiler Burner, and Vent Dampeners: 25% of equipment cost Program Info Expiration Date 12/31/2013 State Arkansas Program Type Utility Rebate Program Rebate Amount Solutions Program: Varies Direct Install Measures: No cost to customers 85% to 91.9% Efficiency Boiler: $1,400/MMBtuh Input 92%+ Efficiency Boiler: $2000/MMBtuh Input Modulating Boiler Burners: $1,000/MMBtuh Input Vent Dampers: $250/boiler Boiler Controls: $150/system Storage Water Heater: $75 Tankless Water Heater: $500

411

Progress Energy Florida- SunSense Solar Water Heating with EnergyWise  

Broader source: Energy.gov [DOE]

Progress Energy Florida (PEF) launched the ''Solar Water Heating with EnergyWise Program'' in February 2007 to encourage its residential customers to participate in its load control program and...

412

Aquifer thermal energy storage costs with a seasonal heat source.  

SciTech Connect (OSTI)

The cost of energy supplied by an aquifer thermal energy storage (ATES) system from a seasonal heat source was investigated. This investigation considers only the storage of energy from a seasonal heat source. Cost estimates are based upon the assumption that all of the energy is stored in the aquifer before delivery to the end user. Costs were estimated for point demand, residential development, and multidistrict city ATES systems using the computer code AQUASTOR which was developed specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on ATES costs were: cost of purchased thermal energy; cost of capital; source temperature; system size; transmission distance; and aquifer efficiency. ATES-delivered energy costs are compared with the costs of hot water heated by using electric power or fuel-oils. ATES costs are shown as a function of purchased thermal energy. Both the potentially low delivered energy costs available from an ATES system and its strong cost dependence on the cost of purchased thermal energy are shown. Cost components for point demand and multi-district city ATES systems are shown. Capital and thermal energy costs dominate. Capital costs, as a percentage of total costs, increase for the multi-district city due to the addition of a large distribution system. The proportion of total cost attributable to thermal energy would change dramatically if the cost of purchased thermal energy were varied. It is concluded that ATES-delivered energy can be cost competitive with conventional energy sources under a number of economic and technical conditions. This investigation reports the cost of ATES under a wide range of assumptions concerning parameters important to ATES economics. (LCL)

Reilly, R.W.; Brown, D.R.; Huber, H.D.

1981-12-01T23:59:59.000Z

413

Indication of anomalous heat energy production in a reactor device  

E-Print Network [OSTI]

An experimental investigation of possible anomalous heat production in a special type of reactor tube named E-Cat HT is carried out. The reactor tube is charged with a small amount of hydrogen loaded nickel powder plus some additives. The reaction is primarily initiated by heat from resistor coils inside the reactor tube. Measurement of the produced heat was performed with high-resolution thermal imaging cameras, recording data every second from the hot reactor tube. The measurements of electrical power input were performed with a large bandwidth three-phase power analyzer. Data were collected in two experimental runs lasting 96 and 116 hours, respectively. An anomalous heat production was indicated in both experiments. The 116-hour experiment also included a calibration of the experimental set-up without the active charge present in the E-Cat HT. In this case, no extra heat was generated beyond the expected heat from the electric input. Computed volumetric and gravimetric energy densities were found to be far above those of any known chemical source. Even by the most conservative assumptions as to the errors in the measurements, the result is still one order of magnitude greater than conventional energy sources.

Giuseppe Levi; Evelyn Foschi; Torbjrn Hartman; Bo Histad; Roland Pettersson; Lars Tegnr; Hanno Essn

2013-06-07T23:59:59.000Z

414

Geothermal Heat Pump Tax Credit (Corporate) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Heat Pump Tax Credit (Corporate) Geothermal Heat Pump Tax Credit (Corporate) Geothermal Heat Pump Tax Credit (Corporate) < Back Eligibility Agricultural Commercial Residential Maximum Rebate 9,000 per system Annual aggregate cap of 2 million in total corporate and personal tax credits Program Info Start Date 1/1/2010 Expiration Date 12/31/2020 State New Mexico Program Type Corporate Tax Credit Rebate Amount 30% Provider New Mexico Energy, Minerals and Natural Resources Department [http://www.emnrd.state.nm.us/ECMD/LawsRegulationsExecutiveOrders/documen... HB 375], signed in April 2009, created a tax credit in New Mexico for geothermal heat pumps purchased and installed between January 1, 2010 and December 31, 2020 on property owned by the tax payer. The credit is worth 30% of the system's cost up to $9,000 and can be applied to individual or

415

Olene Gap Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Olene Gap Space Heating Low Temperature Geothermal Facility Olene Gap Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Olene Gap Space Heating Low Temperature Geothermal Facility Facility Olene Gap Sector Geothermal energy Type Space Heating Location Klamath County, Oregon Coordinates 42.6952767°, -121.6142133° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

416

LDS Church Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

LDS Church Space Heating Low Temperature Geothermal Facility LDS Church Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name LDS Church Space Heating Low Temperature Geothermal Facility Facility LDS Church Sector Geothermal energy Type Space Heating Location Almo, Idaho Coordinates 42.1001924°, -113.6336192° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

417

Baranof Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Baranof Space Heating Low Temperature Geothermal Facility Facility Baranof Sector Geothermal energy Type Space Heating Location Sitka, Alaska Coordinates 57.0530556°, -135.33° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

418

Southeast Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Southeast Region Combined Heat and Power Projects Southeast Region Combined Heat and Power Projects Southeast Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Southeast www.southeastCHPTAP.org Isaac Panzarella North Carolina State University 919-515-0354 ipanzarella@ncsu.edu Alabama View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Alabama. Arkansas Fourche Creek Wastewater Treatment Facility, Little Rock View EEA's database of all known CHP installations in Arkansas. Florida Howard F. Curren Advanced Wastewater Treatment Plant, Tampa Shands Hospital, Gainesville View EEA's database of all known CHP installations in Florida.

419

Union Light, Heat & Power Co | Open Energy Information  

Open Energy Info (EERE)

Union Light, Heat & Power Co Union Light, Heat & Power Co Jump to: navigation, search Name Union Light, Heat & Power Co Place Kentucky Utility Id 19446 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Union Light, Heat & Power Co (Kentucky). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

420

Melozi Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Melozi Space Heating Low Temperature Geothermal Facility Facility Melozi Sector Geothermal energy Type Space Heating Location Yukon, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Midwest Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Midwest Region Combined Heat and Power Projects Midwest Region Combined Heat and Power Projects Midwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Midwest www.midwestCHPTAP.org John Cuttica University of Illinois at Chicago 312-996-4382 cuttica@uic.edu Cliff Haefke University of Illinois at Chicago 312-355-3476 chaefk1@uic.edu Illinois Adkins Energy, Lena Advocate South Suburban Hospital, Hazel Crest Antioch Community High School, Antioch Elgin Community College, Elgin Evanston Township High School, Evanston Hunter Haven Farms, Inc., Pearl City Jesse Brown VA Medical Center, Chicago Lake Forest Hospital, Lake Forest

422

Ophir Creek Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Ophir Creek Space Heating Low Temperature Geothermal Facility Ophir Creek Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ophir Creek Space Heating Low Temperature Geothermal Facility Facility Ophir Creek Sector Geothermal energy Type Space Heating Location SW, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

423

Northwest Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Northwest Region Combined Heat and Power Projects Northwest Region Combined Heat and Power Projects Northwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Northwest www.northwestCHPTAP.org David Sjoding Washington State University 360-956-2004 sjodingd@energy.wsu.edu Alaska Alaska Village Electric Cooperative, Anvik Alaska Village Electric Cooperative, Grayling Exit Glacier - Kenai Fjords National Park, Seward Golovin City, Golovin Inside Passage Electric Cooperative, Angoon Kokhanok City, Kokhanok St. Paul Island, St. Paul Island Village Council, Kongiganak City Village Council, Kwigillingok City Village Council, Stevens Village

424

Ft Bidwell Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Ft Bidwell Space Heating Low Temperature Geothermal Facility Ft Bidwell Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ft Bidwell Space Heating Low Temperature Geothermal Facility Facility Ft Bidwell Sector Geothermal energy Type Space Heating Location Ft. Bidwell, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

425

YMCA Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

YMCA Space Heating Low Temperature Geothermal Facility YMCA Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name YMCA Space Heating Low Temperature Geothermal Facility Facility YMCA Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

426

An Energy Savings Model for the Heat Treatment of Castings  

SciTech Connect (OSTI)

An integrated system of software, databases, and design rules have been developed, verified, and to be marketed to enable quantitative prediction and optimization of the heat treatment of aluminum castings to increase quality, increase productivity, reduce heat treatment cycle times and reduce energy consumption. The software predicts the thermal cycle in critical locations of individual components in a furnace, the evolution of microstructure, and the attainment of properties in heat treatable aluminum alloy castings. The model takes into account the prior casting process and the specific composition of the component. The heat treatment simulation modules can be used in conjunction with software packages for simulation of the casting process. The system is built upon a quantitative understanding of the kinetics of microstructure evolution in complex multicomponent alloys, on a quantitative understanding of the interdependence of microstructure and properties, on validated kinetic and thermodynamic databases, and validated quantitative models.

Y. Rong; R. Sisson; J. Morral; H. Brody

2006-12-31T23:59:59.000Z

427

Reducing industrial energy use with thermoelectric diffusion heat pumps  

SciTech Connect (OSTI)

The described Peltier Effect Diffusion System (PEDS) employs an innovative unit geometry in conjunction with thermoelectric (TE) heat pumps having high operational efficiency. Significant system design dynamics are explored, including heat and mass transfer mechanisms, fluid dynamics, and unit sizing methodology. Finally, estimated operating performance is presented for some representative industrial applications which are well suited to availability-based efficiency evaluations, namely: desalination, multi-stage absorption cycle refrigeration systems and freeze-concentration processes. Peltier effect TE heat pumps provide multi-stage work input to separations. The PEDS utilizes electrically generated heat as the separating agent, and pumps this energy to successively higher availability levels, resulting in high overall COP and greatly improved thermodynamic efficiency. Process costs in terms of availability utilization can be identified. The described PEDS process offers a meaningful alternative to conventional mass transfer methods.

Meckler, M.

1982-08-01T23:59:59.000Z

428

Health Spa Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Health Spa Space Heating Low Temperature Geothermal Facility Health Spa Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Health Spa Space Heating Low Temperature Geothermal Facility Facility Glenwood Springs Health Spa Sector Geothermal energy Type Space Heating Location Glenwood Springs, Colorado Coordinates 39.5505376°, -107.3247762° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

429

Bell Island Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bell Island Space Heating Low Temperature Geothermal Facility Facility Bell Island Sector Geothermal energy Type Space Heating Location Ketchikan, Alaska Coordinates 55.3422222°, -131.6461111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

430

Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review  

Science Journals Connector (OSTI)

The energy in flowing river streams, tidal currents or other artificial water channels is being considered as viable source of renewable power. Hydrokinetic conversion systems, albeit mostly at its early stage of development, may appear suitable in harnessing energy from such renewable resources. A number of resource quantization and demonstrations have been conducted throughout the world and it is believed that both in-land water resources and offshore ocean energy sector will benefit from this technology. In this paper, starting with a set of basic definitions pertaining to this technology, a review of the existing and upcoming conversion schemes, and their fields of applications are outlined. Based on a comprehensive survey of various hydrokinetic systems reported to date, general trends in system design, duct augmentation, and placement methods are deduced. A detailed assessment of various turbine systems (horizontal and vertical axis), along with their classification and qualitative comparison, is presented. In addition, the progression of technological advancements tracing several decades of R&D efforts are highlighted.

M.J. Khan; G. Bhuyan; M.T. Iqbal; J.E. Quaicoe

2009-01-01T23:59:59.000Z

431

Biomass Boiler to Heat Oregon School | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden Field Office What will the project do? The boiler system will have a capacity of up to 3 Million Metric British Thermal Units (MMBTU) per hour and will be fueled by locally derived wood-pellet feedstocks. A new school in Vernonia, Oregon is beginning to take form as the town

432

Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power Projects Combined Heat and Power Projects Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles. Search the project profiles database. Project profiles can be searched by state, CHP TAP, market sector, North American Industry Classification System (NAICS) code, system size, technology/prime mover, fuel, thermal energy use, and year installed. View a list of project profiles by market sector. To view project profiles by state, click on a state on the map or choose a state from the drop-down list below. "An image of the United States representing a select number of CHP project profiles on a state-by-state basis View Energy and Environmental Analysis Inc.'s (EEA) database of all known

433

Biomass Boiler to Heat Oregon School | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden Field Office What will the project do? The boiler system will have a capacity of up to 3 Million Metric British Thermal Units (MMBTU) per hour and will be fueled by locally derived wood-pellet feedstocks. A new school in Vernonia, Oregon is beginning to take form as the town

434

Cheap Fixes for Beating the Heat Indoors | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cheap Fixes for Beating the Heat Indoors Cheap Fixes for Beating the Heat Indoors Cheap Fixes for Beating the Heat Indoors July 25, 2013 - 11:20am Addthis Blinds are a great option for cooling your home in the summer. | Photo courtesy of ©iStockphoto/nycshooter Blinds are a great option for cooling your home in the summer. | Photo courtesy of ©iStockphoto/nycshooter Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy How can I participate? Instead of turning on the air conditioning, consider window treatments and fans to cool down your home. If your internal thermostat is melting like the rest of the U.S. right now, you probably could use some fanning, ice, or air conditioning. With that in mind, we are providing a rundown of the cheapest ways to keep your home

435

Treatment of psoriasis with light and heat energy (LHE): A preliminary study  

E-Print Network [OSTI]

tabletop device delivers a light energy fluence of 4-10 J/psoriasis with light and heat energy (LHE): A preliminaryefficacy of a novel Light and Heat Energy (LHE) selective-

Leviav, A; Wolf, R; Vilan, A

2004-01-01T23:59:59.000Z

436

Optimization of multiple turbine arrays in a channel with tidally reversing flow by numerical modelling with adaptive mesh  

Science Journals Connector (OSTI)

...tidal energy and wind energy. In a tidal channel...current and hence energy extraction. Also...flow compared with wind turbine arrays where...captured the most energy over a tidal cycle...a) Adaptive grid An initial grid was...large to reduce the impact of high vorticity...

2013-01-01T23:59:59.000Z

437

Idaho Falls Power - Energy Efficient Heat Pump Loan Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Idaho Falls Power - Energy Efficient Heat Pump Loan Program Idaho Falls Power - Energy Efficient Heat Pump Loan Program Idaho Falls Power - Energy Efficient Heat Pump Loan Program < Back Eligibility Commercial Industrial Institutional Nonprofit Residential Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Heat Pumps: $7,500 Ductless Heat Pumps: $5,000 Program Info State Idaho Program Type Utility Loan Program Rebate Amount $500 - $7,500 Provider Idaho Falls Power Idaho Falls Power offers zero interest loans to all eligible customers for the purchase and installation of energy efficient heat pumps. The Heat Pump Program applies to heating or cooling in existing buildings. Ducted, ductless, and geothermal heat pumps are all eligible for this offer. The program will loan up to 100% of the actual cost of installing heat pumps

438

OPTIMAi UTILIZATION OF SOLAR ENERGY IN HEATING AND COOLINGOF BUILDINGS  

E-Print Network [OSTI]

OPTIMAi UTILIZATION OF SOLAR ENERGY IN HEATING AND COOLINGOF BUILDINGS C. Byron Winn Gearold R fundamental optimization problems involved in the design of a solar building. The first is a parameter for the given system configu- ration and the opt the latter problem The CSU Solar parameters such as mal set

Moore, John Barratt

439

Energy Saving Glass Lamination via Selective Radio Frequency Heating  

SciTech Connect (OSTI)

Ceralink Inc. developed FastFuse, a rapid, new, energy saving process for lamination of glass and composites using radio frequency (RF) heating technology. The Inventions and Innovations program supported the technical and commercial research and development needed to elevate the innovation from bench scale to a self-supporting technology with significant potential for growth. The attached report provides an overview of the technical and commerical progress achieved for FastFuse during the course of the project. FastFuse has the potential to revolutionize the laminate manufacturing industries by replacing energy intensive, multi-step processes with an energy efficient, single-step process that allows higher throughput. FastFuse transmits RF energy directly into the interlayer to generate heat, eliminating the need to directly heat glass layers and the surrounding enclosures, such as autoclaves or vacuum systems. FastFuse offers lower start-up and energy costs (up to 90% or more reduction in energy costs), and faster cycles times (less than 5 minutes). FastFuse is compatible with EVA, TPU, and PVB interlayers, and has been demonstrated for glass, plastics, and multi-material structures such as photovoltaics and transparent armor.

Shawn M. Allan; Patricia M. Strickland; Holly S. Shulman

2009-11-11T23:59:59.000Z

440

HEAT - a low energy enhancement of the Pierre Auger Observatory  

E-Print Network [OSTI]

The High Elevation Auger Telescopes (HEAT) are three tiltable fluorescence telescopes which represent a low energy enhancement of the fluorescence telescope system of the southern site of the Pierre Auger Observatory in Argentina. The Pierre Auger Observatory is a hybrid cosmic ray detector consisting of 24 fluorescence telescopes to measure the fluorescence light of extensive air showers complemented by 1600 water Cherenkov detectors to determine the particle densities at ground. In this configuration air showers with a primary energy of 10^18 eV and above are investigated. By lowering the energy threshold by approximately one order of magnitude down to a primary energy of 10^17 eV, HEAT provides the possibility to study the cosmic ray energy spectrum and mass composition in a very interesting energy range, where the transition from galactic to extragalactic cosmic rays is expected to happen. The installation of HEAT was finished in 2009 and data have been taken continuously since September 2009. Within thes...

Meurer, C

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing  

E-Print Network [OSTI]

discharges can be made more economically attrac tank holding several thousand gallons of water tive by incorporating thermal energy storage in a maintained at 128-130?F. This scald tank is con heat recovery system. Thermal energy storage can stantly... the ultimate energy end use. of wasting this hot water to the plant drain, a heat A project conducted by the Georgia Tech exchanger was installed at the Gold Kist plant to Engineering Experiment Station to demonstrate preheat scald tank makeup water...

Combes, R. S.; Boykin, W. B.

1980-01-01T23:59:59.000Z

442

Restoration of Tidal Flow to Degraded Tidal Wetlands in Connecticut  

Science Journals Connector (OSTI)

Connecticuts tidal wetlands, ranging from salt marsh ... the states rivers (e.g., Connecticut, Quinnipiac, and Housatonic). Today, approximately 5900 hectares of tidal wetland occur in Connecticut, two thirds o...

Ron Rozsa

2012-01-01T23:59:59.000Z

443

Combined Heat and Power Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technical Assistance Combined Heat & Power Deployment Combined Heat and Power Basics Combined Heat and Power Basics Combined heat and power (CHP), also known as cogeneration,...

444

Indication of anomalous heat energy production in a reactor device  

E-Print Network [OSTI]

An experimental investigation of possible anomalous heat production in a special type of reactor tube named E-Cat HT is carried out. The reactor tube is charged with a small amount of hydrogen loaded nickel powder plus some additives. The reaction is primarily initiated by heat from resistor coils inside the reactor tube. Measurement of the produced heat was performed with high-resolution thermal imaging cameras, recording data every second from the hot reactor tube. The measurements of electrical power input were performed with a large bandwidth three-phase power analyzer. Data were collected in two experimental runs lasting 96 and 116 hours, respectively. An anomalous heat production was indicated in both experiments. The 116-hour experiment also included a calibration of the experimental set-up without the active charge present in the E-Cat HT. In this case, no extra heat was generated beyond the expected heat from the electric input. Computed volumetric and gravimetric energy densities were found to be fa...

Levi, Giuseppe; Hartman, Torbjrn; Histad, Bo; Pettersson, Roland; Tegnr, Lars; Essn, Hanno

2013-01-01T23:59:59.000Z

445

ECE 465: Realistic Sustainable Energy -Energy use in transportation,  

E-Print Network [OSTI]

- Wave and tidal power generation possibilities - Role of heat pipes in modern HVAC systems - RecyclingECE 465: Realistic Sustainable Energy - Energy use in transportation, HVAC and electric generation is detailed in units of kW-Hr - Alternative Energy sources for fuels and electric generation are covered

Schumacher, Russ

446

One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes  

E-Print Network [OSTI]

advances to commercialize stand-alone electric heat-pump storage hot water heaters. These systems offer design uses multiple systems and fuels to provide thermal services, the emerging generation of heat to experience this change as air-source heat-pump water heaters deliver obvious energy savings over electric

California at Davis, University of

447

Combined Heat and Power (CHP) Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology Development » Smart Grid » Distributed Technology Development » Smart Grid » Distributed Energy » Combined Heat and Power (CHP) Systems Combined Heat and Power (CHP) Systems The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light industrial, supermarkets, restaurants, hospitality, health care and high-tech industries. In high-tech industries such as telecommunications, commercial data processing and internet services, the use of electronic data and signal processing have become a cornerstone in the U.S. economy. These industries represent high potential for CHP and distributed energy due to their ultra-high reliability and power quality requirements and related large

448

Subtropical catastrophe: Significant loss of low-mode tidal energy at J. A. MacKinnon and K. B. Winters  

E-Print Network [OSTI]

] An idealized numerical study of a northward propagating internal tide reveals a dramatic loss of energy. Introduction [2] Breaking internal waves, whose energy is primarily provided by the wind and the tides away as a low mode internal tide. Where and by what mechanism the bulk of this energy is converted

MacKinnon, Jennifer

449

Feeling the Heat... From My TV Set | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Feeling the Heat... From My TV Set Feeling the Heat... From My TV Set Feeling the Heat... From My TV Set August 8, 2011 - 2:32pm Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory How many light bulbs does it take to equal the power output of a TV set? Or is it the other way around? The answer: It depends on the bulb and the TV. There are a few factors that determine the answer such as the wattage of the standard light bulb and the wattage of the TV. I was curious about the energy usage of my 48" LCD flat screen TV, since I can feel the heat coming off of it when it's on (which doesn't help me to feel cooler in the summer). I figured it must be using a ton of power! Older color TV sets with cathode ray tubes (CRTs) have an energy use range of 65-133 watts, depending on size: See the Typical Wattages of Various

450

Feeling the Heat... From My TV Set | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Feeling the Heat... From My TV Set Feeling the Heat... From My TV Set Feeling the Heat... From My TV Set August 8, 2011 - 2:32pm Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory How many light bulbs does it take to equal the power output of a TV set? Or is it the other way around? The answer: It depends on the bulb and the TV. There are a few factors that determine the answer such as the wattage of the standard light bulb and the wattage of the TV. I was curious about the energy usage of my 48" LCD flat screen TV, since I can feel the heat coming off of it when it's on (which doesn't help me to feel cooler in the summer). I figured it must be using a ton of power! Older color TV sets with cathode ray tubes (CRTs) have an energy use range of 65-133 watts, depending on size: See the Typical Wattages of Various

451

Lack of energy equipartition in homogeneous heated binary granular mixtures  

E-Print Network [OSTI]

We consider the problem of determining the granular temperatures of the components of a homogeneous binary heated mixture of inelastic hard spheres, in the framework of Enskog kinetic theory. Equations are derived for the temperatures of each species and their ratio, which is different from unity, as may be expected since the system is out of equilibrium. We focus on the particular heating mechanism where the inelastic energy loss is compensated by an injection through a random external force (``stochastic thermostat''). The influence of various parameters and their possible experimental relevance is discussed.

A. Barrat; E. Trizac

2002-05-21T23:59:59.000Z

452

TVA Partner Utilities - Energy Right Heat Pump Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

North Carolina North Carolina Program Type Utility Loan Program Rebate Amount Single Unit: 10,000 Multiple and Advanced Units: up to 12,500 The Tennessee Valley Authority (TVA) ''energy right'' Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation, performance, and weatherization standards ensure the appropriate sizing of equipment and operation of the system. TVA maintains a Quality Contractor Network (QCN) from which customers can choose an installer. Through a third-party lender, TVA provides financing for residential heat pumps with repayment on the customer's electric bill and a term of up to 10 years. The programs are independently administered by local power companies served by TVA.

453

List of Heat pumps Incentives | Open Energy Information  

Open Energy Info (EERE)

pumps Incentives pumps Incentives (Redirected from List of Heat Pumps Incentives) Jump to: navigation, search The following contains the list of 1213 Heat pumps Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1213) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) Utility Rebate Program Texas Commercial

454

TVA Partner Utilities - Energy Right Heat Pump Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Virginia Virginia Program Type Utility Loan Program Rebate Amount Single Unit: 10,000 Multiple and Advanced Units: up to 12,500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) ''energy right'' Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation, performance, and weatherization standards ensure the appropriate sizing of equipment and operation of the system. TVA maintains a Quality Contractor Network (QCN) from which customers can choose an installer. Through a third-party lender, TVA provides financing for residential heat pumps with repayment on the customer's electric bill and a term of up to 10 years. The programs are independently administered by local power companies served by TVA.

455

TVA Partner Utilities - Energy Right Heat Pump Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Tennessee Tennessee Program Type Utility Loan Program Rebate Amount Single Unit: 10,000 Multiple and Advanced Units: up to 12,500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) energy right Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation, performance, and weatherization standards ensure the appropriate sizing of equipment and operation of the system. TVA maintains a Quality Contractor Network (QCN) from which customers can choose an installer. Through a third-party lender, TVA provides financing for residential heat pumps with repayment on the customer's electric bill and a term of up to 10 years. The programs are independently administered by local power companies served by TVA.

456

TVA Partner Utilities - Energy Right Heat Pump Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Kentucky Kentucky Program Type Utility Loan Program Rebate Amount Single Unit: up to $10,000 Multiple and Advanced Units: up to $12,500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) energy right Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation, performance, and weatherization standards ensure the appropriate sizing of equipment and operation of the system. TVA maintains a Quality Contractor Network (QCN) from which customers can choose an installer. Through a third-party lender, TVA provides financing for residential heat pumps with repayment on the customer's electric bill and a term of up to 10 years. The programs are independently administered by local power companies served by TVA.

457

Geothermal Heat Pump Tax Credit (Personal) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Geothermal Heat Pump Tax Credit (Personal) Geothermal Heat Pump Tax Credit (Personal) < Back Eligibility Agricultural Commercial Residential Maximum Rebate 9,000 per system Annual aggregate cap of 2 million in total personal and corporate tax credits. Program Info Start Date 1/1/2010 Expiration Date 12/31/2020 State New Mexico Program Type Personal Tax Credit Rebate Amount 30% Provider New Mexico Energy, Minerals and Natural Resources Department [http://www.emnrd.state.nm.us/ECMD/LawsRegulationsExecutiveOrders/documen... HB 375], signed in April 2009, created a tax credit in New Mexico for geothermal heat pumps purchased and installed between January 1, 2010 and December 31, 2020 on property owned by the tax payer. The credit is worth 30% of the system's cost up to $9,000 and can be applied to individual or

458

TVA Partner Utilities - Energy Right Heat Pump Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Georgia Georgia Program Type Utility Loan Program Rebate Amount Single Unit: up to 10,000 Multiple and Advanced Units: up to 12,500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) ''energy right'' Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation, performance, and weatherization standards ensure the appropriate sizing of equipment and operation of the system. TVA maintains a Quality Contractor Network (QCN) from which customers can choose an installer. Through a third-party lender, TVA provides financing for residential heat pumps with repayment on the customer's electric bill and a term of up to 10 years. The programs are independently administered by local power companies served by TVA.

459

TVA Partner Utilities - Energy Right Heat Pump Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Alabama Alabama Program Type Utility Loan Program Rebate Amount Single Unit: up to $10,000 Multiple and Advanced Units: up to $12,500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) ''energy right'' Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation, performance, and weatherization standards ensure the appropriate sizing of equipment and operation of the system. TVA maintains a Quality Contractor Network (QCN) from which customers can choose an installer. Through a third-party lender, TVA provides financing for residential heat pumps with repayment on the customer's electric bill and a term of up to 10 years. The programs are independently administered by local power companies served by TVA.

460

Solar Water Heating System Maintenance and Repair | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating System Maintenance and Repair Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair May 30, 2012 - 2:35pm Addthis Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Solar energy systems require periodic inspections and routine maintenance to keep them operating efficiently. Also, from time to time, components may need repair or replacement. You should also take steps to prevent scaling, corrosion, and freezing. You might be able to handle some of the inspections and maintenance tasks on your own, but others may require a qualified technician. Ask for a cost estimate in writing before having any work done. For some systems, it may

Note: This page contains sample records for the topic "heat tidal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

TVA Partner Utilities - Energy Right Heat Pump Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Mississippi Mississippi Program Type Utility Loan Program Rebate Amount Single Unit: up to $10,000 Multiple and Advanced Units: up to $12,500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) ''energy right'' Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation, performance, and weatherization standards ensure the appropriate sizing of equipment and operation of the system. TVA maintains a Quality Contractor Network (QCN) from which customers can choose an installer. Through a third-party lender, TVA provides financing for residential heat pumps with repayment on the customer's electric bill and a term of up to 10 years. The programs are independently administered by local power companies served by TVA.

462

A numerical study of the barotropic tides and tidal energy distribution in the Indonesian seas with the assimilated finite volume coastal ocean model  

Science Journals Connector (OSTI)

The tides and tidal energetics in the Indonesian seas ... faithfully reproduced the general features of the barotropic tides in the Indonesian Seas. The mean root...2, S2, K1, and O1..., respectively. Analysis of...

Yang Ding; Xianwen Bao; Huaming Yu; Liang Kuang

2012-04-01T23:59:59.000Z

463

Combined tidal ice drift and ice-induced changes in the dynamics and energy of the combined tide on the Siberian continental shelf  

Science Journals Connector (OSTI)

The results of a simulation of the combined tidal ice drift corresponding to a linear superposition of the M 2, S 2, K 1, and O 1 harmonics of the t...

B. A. Kagan; D. A. Romanenkov; E. V. Sofina

2008-06-01T23:59:59.000Z

464

TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING  

SciTech Connect (OSTI)

A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.

Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo

2013-06-13T23:59:59.000Z

465

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |  

Broader source: Energy.gov (indexed) [DOE]

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 January 27, 2012 - 11:30am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program

466

Model based methodology development for energy recovery in flash heat exchange systems  

E-Print Network [OSTI]

Model based methodology development for energy recovery in flash heat exchange systems Problem of energy efficiency in process operations. Where heat exchange is required between two streams and where with a condensing heat exchanger can be used when heat exchange is required between two streams and where at least

McCarthy, John E.

467

Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics  

SciTech Connect (OSTI)

In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

Yang, Zhaoqing; Wang, Taiping

2011-09-01T23:59:59.000Z

468

Work and energy gain of heat-pumped quantized amplifiers  

E-Print Network [OSTI]

We investigate heat-pumped single-mode amplifiers of quantized fields in high-Q cavities based on non-inverted two-level systems. Their power generation is shown to crucially depend on the capacity of the quantum state of the field to accumulate useful work. By contrast, the energy gain of the field is shown to be insensitive to its quantum state. Analogies and differences with masers are explored.

David Gelbwaser-Klimovsky; Robert Alicki; Gershon Kurizki

2013-10-09T23:59:59.000Z

469

Electric Blanket vs. Space Heater: #EnergyFaceoff Round 3 Heats...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blanket vs. Space Heater: EnergyFaceoff Round 3 Heats Up Electric Blanket vs. Space Heater: EnergyFaceoff Round 3 Heats Up November 17, 2014 - 9:49am Q&A Which appliance do you...

470

Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Pumps (5.4 >< 20 Tons) Energy Cost Calculator for Commercial Heat Pumps (5.4 >< 20 Tons) Vary equipment size, energy cost, hours of operation, and or efficiency level....

471

Thermodynamic calculations. I: Using free-energy functions and heat-content functions  

Science Journals Connector (OSTI)

I: Using free-energy functions and heat-content functions ... Extensive tabulations of free-energy and heat content functions are readily available, and these functions are easy to use. ...

John L. Margrave

1955-01-01T23:59:59.000Z

472

Policy Makers' Guidebook for Geothermal Heating and Cooling | Open Energy  

Open Energy Info (EERE)

Policy Makers' Guidebook for Geothermal Heating and Cooling Policy Makers' Guidebook for Geothermal Heating and Cooling Jump to: navigation, search Tool Summary Name: Policy Makers' Guidebook for Geothermal Heating and Cooling Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Create a Vision, Evaluate Options, Develop Goals, Develop Finance and Implement Projects Resource Type: Guide/manual, Case studies/examples, Templates, Technical report User Interface: Website Website: www.nrel.gov/geothermal/publications.html Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

The Heating of the ICM: Energy Crisis and viable solutions  

E-Print Network [OSTI]

X-ray observations indicate that non-gravitational processes play a key role in the thermodynamics of the Intra Cluster Medium (ICM). The effect of non-gravitational processes is imprinted in the ICM as an entropy minimum, whose effects are visible in the Luminosity-Temperature relation and in the Entropy-Temperature relation. However, the X-ray emission alone cannot discriminate between different mechanisms and sources of heating. There are no answers at present to the following questions: how much non-gravitational energy per baryons is present in the ICM? When was this energy injected? Which are the sources of heating? The embarrassment in front of these questions is amplified by the fact that the most viable sources of heating, SNae and stellar winds, seem to be inefficient in bringing the ICM to the observed entropy level. We may call it the energy crisis. Here we review the main aspects of this crisis, listing possible solutions, including other sources, like AGNs and Radio Galaxies, or other mechanisms, like large scale shocks and selective cooling.

Paolo Tozzi

2001-09-05T23:59:59.000Z

474

Gravitational wave heating of stars and accretion discs  

Science Journals Connector (OSTI)

......suppression of the heating rate if the forcing period...accretion discs. black hole physics|gravitational waves...the tidal disruption rate of stars due to the refilling...the medium that the GW passes through. The dissipation rate of the GW energy gives......

Gongjie Li; Bence Kocsis; Abraham Loeb

2012-10-01T23:59:59.000Z

475

Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript  

Broader source: Energy.gov [DOE]

Transcript for a U.S. Department of Energy Webinar on Dec. 14, 2010, about residential geothermal heat pump retrofits

476
<