Sample records for heat tidal energy

  1. Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal...

    Open Energy Info (EERE)

    Test Centre, Jump to: navigation, search 1 Retrieved from "http:en.openei.orgwindex.php?titleClarenceStraitTidalEnergyProject,TenaxEnergyTropicalTidalTestCentre,&o...

  2. Tidal Heating of Extra-Solar Planets

    E-Print Network [OSTI]

    Brian Jackson; Richard Greenberg; Rory Barnes

    2008-02-29T23:59:59.000Z

    Extra-solar planets close to their host stars have likely undergone significant tidal evolution since the time of their formation. Tides probably dominated their orbital evolution once the dust and gas had cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget that governed the planet's physical properties, including its radius, which in many cases may be measured by observing transit events. Typically, tidal heating increases as a planet moves inward toward its star and then decreases as its orbit circularizes. Here we compute the plausible heating histories for several planets with measured radii, using the same tidal parameters for the star and planet that had been shown to reconcile the eccentricity distribution of close-in planets with other extra-solar planets. Several planets are discussed, including for example HD 209458 b, which may have undergone substantial tidal heating during the past billion years, perhaps enough to explain its large measured radius. Our models also show that GJ 876 d may have experienced tremendous heating and is probably not a solid, rocky planet. Theoretical models should include the role of tidal heating, which is large, but time-varying.

  3. Tidal Energy Research

    SciTech Connect (OSTI)

    Stelzenmuller, Nickolas [Univ of Washington; Aliseda, Alberto [Univ of Washington; Palodichuk, Michael [Univ of Washington; Polagye, Brian [Univ of Washington; Thomson, James [Univ of Washington; Chime, Arshiya [Univ of Washington; Malte, Philip [Univ of washington

    2014-03-31T23:59:59.000Z

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  4. Sandia National Laboratories: tidal energy resource assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resource assessment Tidal Energy Resource Assessment in the East River Tidal Strait, New York On April 1, 2014, in Energy, News, News & Events, Partnership, Renewable Energy, Water...

  5. Viscoelastic Models of Tidally Heated Exomoons

    E-Print Network [OSTI]

    Dobos, Vera

    2015-01-01T23:59:59.000Z

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life is intensely studied on Solar System moons such as Europa or Enceladus, where the surface ice layer covers tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. For studying the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models, because it takes into account the temperature dependency of the tidal heat flux, and the melting of the inner material. With the use of this model we introduced the circumplanetary Tidal Temperate Zone (TTZ), that strongly depends on the orbital period of the moon, and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ usi...

  6. Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyoThornwood,Tianfu PVOverseeingTidal

  7. Resonant Oscillations and Tidal Heating in Coalescing Binary Neutron Stars

    E-Print Network [OSTI]

    Dong Lai

    1994-04-25T23:59:59.000Z

    Tidal interaction in a coalescing neutron star binary can resonantly excite the g-mode oscillations of the neutron star when the frequency of the tidal driving force equals the intrinsic g-mode frequencies. We study the g-mode oscillations of cold neutron stars using recent microscopic nuclear equations of state, where we determine self-consistently the sound speed and Brunt-V\\"ais\\"al\\"a frequency in the nuclear liquid core. The properties of the g-modes associated with the stable stratification of the core depend sensitively on the pressure-density relation as well as the symmetry energy of the dense nuclear matter. The frequencies of the first ten g-modes lie approximately in the range of $10-100$ Hz. Resonant excitations of these g-modes during the last few minutes of the binary coalescence result in energy transfer and angular momentum transfer from the binary orbit to the neutron star. The angular momentum transfer is possible because a dynamical tidal lag develops even in the absence of fluid viscosity. However, since the coupling between the g-mode and the tidal potential is rather weak, the amount of energy transfer during a resonance and the induced orbital phase error are very small. Resonant excitations of the g-modes play an important role in tidal heating of binary neutron stars. Without the resonances, viscous dissipation is effective only when the stars are close to contact. The resonant oscillations result in dissipation at much larger orbital separation. The actual amount of tidal heating depends on the viscosity of the neutron star. Using the microscopic viscosity, we find that the binary neutron stars are heated to a temperature $\\sim 10^8$ K before they come into contact.

  8. Tidal heating in multilayered terrestrial exoplanets

    SciTech Connect (OSTI)

    Henning, Wade G.; Hurford, Terry, E-mail: wade.g.henning@nasa.gov [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2014-07-01T23:59:59.000Z

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R{sub E} is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  9. Atmospheric heat redistribution and collapse on tidally locked rocky planets

    E-Print Network [OSTI]

    Wordsworth, Robin

    2014-01-01T23:59:59.000Z

    Atmospheric collapse is likely to be of fundamental importance to tidally locked rocky exoplanets but remains understudied. Here, general results on the heat transport and stability of tidally locked terrestrial-type atmospheres are reported. First, the problem is modeled with an idealized 3D general circulation model (GCM) with gray gas radiative transfer. It is shown that over a wide range of parameters the atmospheric boundary layer, rather than the large-scale circulation, is the key to understanding the planetary energy balance. Through a scaling analysis of the interhemispheric energy transfer, theoretical expressions for the day-night temperature difference and surface wind speed are created that reproduce the GCM results without tuning. Next, the GCM is used with correlated-k radiative transfer to study heat transport for two real gases (CO2 and CO). For CO2, empirical formulae for the collapse pressure as a function of planetary mass and stellar flux are produced, and critical pressures for atmospher...

  10. Sandia National Laboratories: tidal energy converters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  11. Tidal Stream | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyoThornwood,TianfuTidal Sails AS

  12. Assessment of Energy Production Potential from Tidal Streams...

    Energy Savers [EERE]

    Tidal Streams in the United States Assessment of Energy Production Potential from Tidal Streams in the United States The project documented in this report created a national...

  13. Relativistic tidal heating of Hamiltonian quasi-local boundary expressions

    E-Print Network [OSTI]

    So, Lau Loi

    2015-01-01T23:59:59.000Z

    Purdue and Favata calculate the tidal heating used certain classical pseudotensors. Booth and Creighton employed the quasi-local mass formalism of Brown and York to demonstrate the same subject. All of them give the result matched with the Newtonian theory. Here we present another Hamiltonian quasi-local boundary expressions and all give the same desired value. This indicates that the tidal heating is unique as Thorne predicted. Moreover, we discovered that the pseudo-tensor method and quasi-local method are fundamentally different.

  14. Relativistic tidal heating of Hamiltonian quasi-local boundary expressions

    E-Print Network [OSTI]

    Lau Loi So

    2015-05-19T23:59:59.000Z

    Purdue and Favata calculate the tidal heating used certain classical pseudotensors. Booth and Creighton employed the quasi-local mass formalism of Brown and York to demonstrate the same subject. All of them give the result matched with the Newtonian theory. Here we present another Hamiltonian quasi-local boundary expressions and all give the same desired value. This indicates that the tidal heating is unique as Thorne predicted. Moreover, we discovered that the pseudo-tensor method and quasi-local method are fundamentally different.

  15. Tidal Energy Resource Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department ThirdCosts | Department ofTidal Energy

  16. TIDAL HEATING OF EXTRASOLAR PLANETS Brian Jackson, Richard Greenberg, and Rory Barnes

    E-Print Network [OSTI]

    Barnes, Rory

    TIDAL HEATING OF EXTRASOLAR PLANETS Brian Jackson, Richard Greenberg, and Rory Barnes Lunar and gas cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget governing

  17. Modeling the Effects of Tidal Energy Extraction on Estuarine Hydrodynamics in a Stratified Estuary

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2013-08-15T23:59:59.000Z

    A three-dimensional coastal ocean model with a tidal turbine module was used in this paper to study the effects of tidal energy extraction on temperature and salinity stratification and density driven two-layer estuarine circulation. Numerical experiments with various turbine array configurations were carried out to investigate the changes in tidally mean temperature, salinity and velocity profiles in an idealized stratified estuary that connects to coastal water through a narrow tidal channel. The model was driven by tides, river inflow and sea surface heat flux. To represent the realistic size of commercial tidal farms, model simulations were conducted based on a small percentage of the total number of turbines that would generate the maximum extractable energy in the system. Model results indicated that extraction of tidal energy will increase the vertical mixing and decrease the stratification in the estuary. Extraction of tidal energy has stronger impact on the tidally-averaged salinity, temperature and velocity in the surface layer than the bottom. Energy extraction also weakens the two-layer estuarine circulation, especially during neap tides when tidal mixing the weakest and energy extraction is the smallest. Model results also show that energy generation can be much more efficient with higher hub height with relatively small changes in stratification and two-layer estuarine circulation.

  18. Tidal Heating of Terrestrial Extra-Solar Planets and Implications for their Habitability

    E-Print Network [OSTI]

    Brian Jackson; Rory Barnes; Richard Greenberg

    2008-08-20T23:59:59.000Z

    The tidal heating of hypothetical rocky (or terrestrial) extra-solar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth's, which may enhance the planet's habitability. In other cases, excessive tidal heating may result in Io-like planets with violent volcanism, probably rendering them unsuitable for life. On water-rich planets, tidal heating may generate sub-surface oceans analogous to Europa's with similar prospects for habitability. Tidal heating may enhance the outgassing of volatiles, contributing to the formation and replenishment of a planet's atmosphere. To address these issues, we model the tidal heating and evolution of hypothetical extra-solar terrestrial planets. The results presented here constrain the orbital and physical properties required for planets to be habitable.

  19. Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal Test

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity of Holyoke,Monroe,CityCityCentre, |

  20. Regulation of Tidal and Wave Energy Projects (Maine)

    Broader source: Energy.gov [DOE]

    State regulation of tidal and wave energy projects is covered under the Maine Waterway Development and Conservation Act (MWDCA), and complements regulation by the Federal Energy Regulation...

  1. Tidal Electric | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyoThornwood,Tianfu PV

  2. Tidal Sails AS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyoThornwood,TianfuTidal Sails AS Jump to:

  3. TidalStream | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to: navigation, searchNewTidal

  4. Resonant oscillations and tidal heating in coalescing binary neutron stars

    E-Print Network [OSTI]

    Lai, D

    1994-01-01T23:59:59.000Z

    Tidal interaction in a coalescing neutron star binary can resonantly excite the g-mode oscillations of the neutron star when the frequency of the tidal driving force equals the intrinsic g-mode frequencies. We study the g-mode oscillations of cold neutron stars using recent microscopic nuclear equations of state, where we determine self-consistently the sound speed and Brunt-V\\"ais\\"al\\"a frequency in the nuclear liquid core. The properties of the g-modes associated with the stable stratification of the core depend sensitively on the pressure-density relation as well as the symmetry energy of the dense nuclear matter. The frequencies of the first ten g-modes lie approximately in the range of 10-100 Hz. Resonant excitations of these g-modes during the last few minutes of the binary coalescence result in energy transfer and angular momentum transfer from the binary orbit to the neutron star. The angular momentum transfer is possible because a dynamical tidal lag develops even in the absence of fluid viscosity. ...

  5. Numerical and Experimental Investigation of Tidal Current Energy Extraction 

    E-Print Network [OSTI]

    Sun, Xiaojing

    2008-01-01T23:59:59.000Z

    Numerical and experimental investigations of tidal current energy extraction have been conducted in this study. A laboratory-scale water flume was simulated using commercial computational fluid dynamics (CFD) code FLUENT. ...

  6. Tidal Energy Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe

  7. Tidal Energy Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty Ltd Jump to: navigation, search Name:

  8. Tocardo Tidal Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty LtdOpenHabitat Jump to:USC

  9. Tidal Energy Test Platform | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyoThornwood,Tianfu PVOverseeing

  10. Tidal Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department ThirdCosts | Department of

  11. Overview of Ocean Wave and Tidal Energy Lingchuan Mei

    E-Print Network [OSTI]

    Lavaei, Javad

    Overview of Ocean Wave and Tidal Energy Lingchuan Mei Department of Electrical Engineering Columbia with the climate change has led us to the exploration of new renewable energy in the past few decades. Oceans of this paper is to briefly overview the technology development of the ocean energy exploration, focusing on two

  12. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT

    SciTech Connect (OSTI)

    Wright, Bruce Albert [Aleutian Pribilof Islands Association] [Aleutian Pribilof Islands Association

    2014-05-07T23:59:59.000Z

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

  13. Mon. Not. R. Astron. Soc. 391, 237245 (2008) doi:10.1111/j.1365-2966.2008.13868.x Tidal heating of terrestrial extrasolar planets and implications for their

    E-Print Network [OSTI]

    Barnes, Rory

    these issues, we model the tidal heating and evolution of hypothetical extrasolar terrestrial planets, Greenberg & Barnes 2008b). If such a planet is on an eccentric orbit, the dissipation of tidal energy within extrasolar planets are observed to be larger than theoretical modelling predicts (e.g. Bodenheimer, E

  14. Tidal power

    SciTech Connect (OSTI)

    Hammons, T.J. (Glasgow Univ., Scotland (United Kingdom))

    1993-03-01T23:59:59.000Z

    The paper reviews the physics of tidal power considering gravitational effects of moon and sun; semidiurnal, diurnal, and mixed tides; and major periodic components that affect the tidal range. Shelving, funneling, reflection, and resonance phenomena that have a significant effect on tidal range are also discussed. The paper then examines tidal energy resource for principal developments estimated from parametric modeling in Europe and worldwide. Basic parameters that govern the design of tidal power schemes in terms of mean tidal range and surface area of the enclosed basin are identified. While energy extracted is proportional to the tidal amplitude squared, requisite sluicing are is proportional to the square root of the tidal amplitude. Sites with large tidal amplitudes are therefore best suited for tidal power developments, whereas sites with low tidal amplitudes have sluicing that may be prohibitive. It is shown that 48% of the European tidal resource is in the United Kingdom, 42% in France and 8% in Ireland, other countries having negligible potential. Worldwide tidal resource is identified. Tidal barrage design and construction using caissons is examined, as are alternative operating modes (single-action generation, outflow generation, flood generation, two-way generation, twin basin generation, pumping, etc), development trends and possibilities, generation cost at the barrage boundary, sensitivity to discount rates, general economics, and markets. Environmental effects, and institutional constraints to the development of tidal barrage schemes are also discussed.

  15. Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

    2014-09-30T23:59:59.000Z

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

  16. Tidal Hydraulic Generators Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyoThornwood,Tianfu

  17. Pennamaquan Tidal Power LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCN TechnologyFrance)

  18. Tidal Generation Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty Ltd Jump to: navigation, search

  19. Earth Tidal Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to:(RES-AEI) |Rock GeothermalExploration

  20. Pulse Tidal formerly Pulse Generation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon TwitterZip JumpProwindPuda Coal IncPulse Tidal

  1. MHK Projects/BW2 Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AK ProjectMS ProjectJerseyBW2 Tidal

  2. MHK Projects/Orient Point Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <|Galway Bay IE <Orcadian WaveTidal

  3. MHK Technologies/KESC Tidal Generator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagship <HelixKESC Tidal Generator <

  4. MHK Technologies/TidalStar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHKDUCK <TidalStar < MHK

  5. Tidal Stream Power Web GIS Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyoThornwood,TianfuTidal Sails AS Jump

  6. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  7. aluminum heat exchangers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Exchangers, Heat Transfer, Energy, Phase Change and multiphase process, Renewable energy (Solan, Tidal), Energy Storage, Conversion Cessi, Paola 62 Dealing with...

  8. absorption heat exchange: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Exchangers, Heat Transfer, Energy, Phase Change and multiphase process, Renewable energy (Solan, Tidal), Energy Storage, Conversion Cessi, Paola 63 Dealing with...

  9. alloy heat exchanger: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Exchangers, Heat Transfer, Energy, Phase Change and multiphase process, Renewable energy (Solan, Tidal), Energy Storage, Conversion Cessi, Paola 53 Dealing with...

  10. HAWAIIAN OCEAN MIXING EXPERIMENT (HOME): FARFIELD PROGRAM HAWAIIAN TIDAL ENERGY BUDGET

    E-Print Network [OSTI]

    Dushaw, Brian

    precision to quantify the tidal power dissipated in the nearfield of the Ridge. The data are vitalHAWAIIAN OCEAN MIXING EXPERIMENT (HOME): FARFIELD PROGRAM HAWAIIAN TIDAL ENERGY BUDGET Principal and ocean acoustic tomography have brought a new dimension to the subject. We propose to measure the energy

  11. All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity...

    Office of Environmental Management (EM)

    Ocean Renewable Power Company will unveil its first commercial-scale tidal turbine before it is deployed underwater to generate power. The pilot project -- supported by...

  12. Tidal Energy System for On-Shore Power Generation

    SciTech Connect (OSTI)

    Bruce, Allan J

    2012-06-26T23:59:59.000Z

    Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-scale, for ti

  13. Modeling the Energy Output from an In-Stream Tidal Turbine Farm

    E-Print Network [OSTI]

    Ye Li; Barbara J. Lence; Sander M. Calisal

    Abstract—This paper is based on a recent paper presented in the 2007 IEEE SMC conference by the same authors [1], discussing an approach to predicting energy output from an instream tidal turbine farm. An in-stream tidal turbine is a device for harnessing energy from tidal currents in channels, and functions in a manner similar to a wind turbine. A group of such turbines distributed in a site is called an in-stream tidal turbine farm which is similar to a wind farm. Approaches to estimating energy output from wind farms cannot be fully transferred to study tidal farms, however, because of the complexities involved in modeling turbines underwater. In this paper, we intend to develop an approach for predicting energy output of an in-stream tidal turbine farm. The mathematical formulation and basic procedure for predicting power output of a stand-alone turbine 1 is presented, which includes several highly nonlinear terms. In order to facilitate the computation and utilize the formulation for predicting power output from a turbine farm, a simplified relationship between turbine distribution and turbine farm energy output is derived. A case study is then conducted by applying the numerical procedure to predict the energy output of the farms. Various scenarios are implemented according to the environmental conditions in Seymour Narrows, British Columbia, Canada. Additionally, energy cost results are presented as an extension. Index Terms—renewable energy, in-stream turbine, tidal current, tidal power, vertical axis turbine, farm system modeling, in-stream tidal turbine farm 1 A stand-alone turbine refers to a turbine around which there is no other turbine that might potentially affect the performance of this turbine.

  14. Sandia Energy - Tidal Energy Resource Assessment in the East River Tidal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstituteThree-Dimensional GrapheneStrait, New

  15. air-to-air heat exchangers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Exchangers, Heat Transfer, Energy, Phase Change and multiphase process, Renewable energy (Solan, Tidal), Energy Storage, Conversion Cessi, Paola 62 Dealing with...

  16. air-cooled heat exchangers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Exchangers, Heat Transfer, Energy, Phase Change and multiphase process, Renewable energy (Solan, Tidal), Energy Storage, Conversion Cessi, Paola 66 Dealing with...

  17. air-to-air heat exchanger: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Exchangers, Heat Transfer, Energy, Phase Change and multiphase process, Renewable energy (Solan, Tidal), Energy Storage, Conversion Cessi, Paola 62 Dealing with...

  18. Maine Project Takes Historic Step Forward in U.S. Tidal Energy...

    Energy Savers [EERE]

    contracts will be in place for 20 years -- making them the first long-term tidal energy power purchase agreements in the United States. The implications of these agreements are...

  19. A Modeling Study of the Potential Water Quality Impacts from In-Stream Tidal Energy Extraction

    SciTech Connect (OSTI)

    Wang, Taiping; Yang, Zhaoqing; Copping, Andrea E.

    2013-11-09T23:59:59.000Z

    To assess the effects of tidal energy extraction on water quality in a simplified estuarine system, which consists of a tidal bay connected to the coastal ocean through a narrow channel where energy is extracted using in-stream tidal turbines, a three-dimensional coastal ocean model with built-in tidal turbine and water quality modules was applied. The effects of tidal energy extraction on water quality were examined for two energy extraction scenarios as compared with the baseline condition. It was found, in general, that the environmental impacts associated with energy extraction depend highly on the amount of power extracted from the system. Model results indicate that, as a result of energy extraction from the channel, the competition between decreased flushing rates in the bay and increased vertical mixing in the channel directly affects water quality responses in the bay. The decreased flushing rates tend to cause a stronger but negative impact on water quality. On the other hand, the increase of vertical mixing could lead to higher bottom dissolved oxygen at times. As the first modeling effort directly aimed at examining the impacts of tidal energy extraction on estuarine water quality, this study demonstrates that numerical models can serve as a very useful tool for this purpose. However, more careful efforts are warranted to address system-specific environmental issues in real-world, complex estuarine systems.

  20. Energy 101: Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe ...

  1. European Wave and Tidal Energy Conference | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (EWTEC) series are international, technical and scientific conferences, focussed on ocean renewable energy and widely respected for their commitment to maintain high...

  2. Sandia Energy - High Fidelity Evaluation of Tidal Turbine Performance for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobalHeatIndustry

  3. MHK Projects/Cook Inlet Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMAREC Jump34.3719°,Convent,Tribes IRR

  4. MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:Energy Information BasinRiver

  5. MHK Projects/Rockaway Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:Energy Information BasinRiver571°,NULLRockaway

  6. MHK Projects/Seaflow Tidal Energy System | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:Energy InformationSEAREV Pays de la

  7. Verdant-Roosevelt Island Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate HomeVela Jump to:I Wind Farm Jump

  8. Hydra Tidal Energy Technology AS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9 CorporationHydra Fuel Cell

  9. MHK Projects/Cuttyhunk Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation

  10. Modeling Tidal Stream Energy Extraction and its Effects on Transport Processes in a Tidal Channel and Bay System Using a Three-dimensional Coastal Ocean Model

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.

    2013-02-28T23:59:59.000Z

    This paper presents a numerical modeling study for simulating in-stream tidal energy extraction and assessing its effects on the hydrodynamics and transport processes in a tidal channel and bay system connecting to coastal ocean. A marine and hydrokinetic (MHK) module was implemented in a three-dimensional (3-D) coastal ocean model using the momentum sink approach. The MHK model was validated with the analytical solutions for tidal channels under one-dimensional (1-D) conditions. Model simulations were further carried out to compare the momentum sink approach with the quadratic bottom friction approach. The effects of 3-D simulations on the vertical velocity profile, maximum extractable energy, and volume flux reduction across the channel were investigated through a series of numerical experiments. 3-D model results indicate that the volume flux reduction at the maximum extractable power predicted by the 1-D analytical model or two-dimensional (2-D) depth-averaged numerical model may be overestimated. Maximum extractable energy strongly depends on the turbine hub height in the water column, and which reaches a maximum when turbine hub height is located at mid-water depth. Far-field effects of tidal turbines on the flushing time of the tidal bay were also investigated. Model results demonstrate that tidal energy extraction has a greater effect on the flushing time than volume flux reduction, which could negatively affect the biogeochemical processes in estuarine and coastal waters that support primary productivity and higher forms of marine life.

  11. European Wave and Tidal Energy Conference | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt | Department of Energy

  12. List of Tidal Energy Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other Alternative FuelEnergysource History

  13. MHK Projects/Admirality Inlet Tidal Energy Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) WindLowM2EInformation Admirality

  14. MHK Projects/Angoon Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AK Project

  15. MHK Projects/Astoria Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AK ProjectMS Project State/ProvinceYork

  16. MHK Projects/Cape May Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AKBrough Head Wave FarmCanal

  17. MHK Projects/Cohansey River Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AKBrough HeadCentreville OPTCohansey

  18. MHK Projects/East Foreland Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHK Projects JumpDeltaStreamLA

  19. MHK Projects/Highlands Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound, NYMananBend Project <

  20. MHK Projects/Housatonic Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound, NYMananBend

  1. MHK Projects/Kendall Head Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound,Ironton LightKempe BendOcean

  2. MHK Projects/Killisnoo Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound,Ironton LightKempeKenner

  3. MHK Projects/Kingsbridge Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound,Ironton

  4. MHK Projects/Muskeget Channel Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <| OpenMarisol PeruCrossingMuskeget

  5. MHK Projects/Nantucket Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <| OpenMarisolNJBPU 1

  6. MHK Projects/Penobscot Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <|Galway Bay IEVerona Island, ME Project

  7. MHK Projects/Salem Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet.7413°, -155.488° Project

  8. MHK Projects/Tidal Energy Project Portugal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to: navigation,Thames

  9. MHK Projects/Wiscasset Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to:Vicksburg BendWillapa Bay

  10. MHK Projects/Wrangell Narrows Tidal Energy Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to:Vicksburg BendWillapa

  11. Modeling of In-stream Tidal Energy Development and its Potential Effects in Tacoma Narrows, Washington, USA

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.; Geerlofs, Simon H.

    2014-10-01T23:59:59.000Z

    Understanding and providing proactive information on the potential for tidal energy projects to cause changes to the physical system and to key water quality constituents in tidal waters is a necessary and cost-effective means to avoid costly regulatory involvement and late stage surprises in the permitting process. This paper presents a modeling study for evaluating the tidal energy extraction and its potential impacts on the marine environment in a real world site - Tacoma Narrows of Puget Sound, Washington State, USA. An unstructured-grid coastal ocean model, fitted with a module that simulates tidal energy devices, was applied to simulate the tidal energy extracted by different turbine array configurations and the potential effects of the extraction at local and system-wide scales in Tacoma Narrows and South Puget Sound. Model results demonstrated the advantage of an unstructured-grid model for simulating the far-field effects of tidal energy extraction in a large model domain, as well as assessing the near-field effect using a fine grid resolution near the tidal turbines. The outcome shows that a realistic near-term deployment scenario extracts a very small fraction of the total tidal energy in the system and that system wide environmental effects are not likely; however, near-field effects on the flow field and bed shear stress in the area of tidal turbine farm are more likely. Model results also indicate that from a practical standpoint, hydrodynamic or water quality effects are not likely to be the limiting factor for development of large commercial-scale tidal farms. Results indicate that very high numbers of turbines are required to significantly alter the tidal system; limitations on marine space or other environmental concerns are likely to be reached before reaching these deployment levels. These findings show that important information obtained from numerical modeling can be used to inform regulatory and policy processes for tidal energy development.

  12. Energy 101: Geothermal Heat Pumps

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  13. Energy 101: Geothermal Heat Pumps

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  14. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    SciTech Connect (OSTI)

    Craig W. Collar

    2012-11-16T23:59:59.000Z

    Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy�s Wind and Hydropower Technologies Program�s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

  15. Area Solar energy production BACKGROUND -All renewable energies, except for geothermal and tidal, derive their energy from the sun. By harnessing the power of

    E-Print Network [OSTI]

    Keinan, Alon

    Area Solar energy production ­ BACKGROUND - All renewable energies installations. Advantages: · A renewable form of energy - "Locks up" carbon, except for geothermal and tidal, derive their energy from the sun

  16. Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA

    SciTech Connect (OSTI)

    Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.

    2012-06-05T23:59:59.000Z

    Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.

  17. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    SciTech Connect (OSTI)

    Worthington, Monty [Project Director - AK] [Project Director - AK

    2014-02-05T23:59:59.000Z

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPC’s work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPC’s East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Project’s rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPC’s projects in Cook Inlet.

  18. Hydropower, Wave and Tidal Technologies Available for Licensing - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy yearsCoordinationInnovation

  19. MHK Projects/Paimpol Brehat tidal farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:Energy Information Basin BayWaveConnect

  20. MHK Projects/Treat Island Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:Energy InformationSEAREV Pays deTreat Island

  1. Severn Tidal Power Group STpg | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlers

  2. Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project

    SciTech Connect (OSTI)

    Barrett, Stephen B.; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy; Roland, I.; and Terray, E, Ph.D.

    2012-12-29T23:59:59.000Z

    The Islands of Martha�¢����s Vineyard and Nantucket are separated from the Massachusetts mainland by Vineyard and Nantucket Sounds; water between the two islands flows through Muskeget Channel. The towns of Edgartown (on Martha�¢����s Vineyard) and Nantucket recognize that they are vulnerable to power supply interruptions due to their position at the end of the power grid, and due to sea level rise and other consequences of climate change. The tidal energy flowing through Muskeget Channel has been identified by the Electric Power Research Institute as the strongest tidal resource in Massachusetts waters. The Town of Edgartown proposes to develop an initial 5 MW (nameplate) tidal energy project in Muskeget Channel. The project will consist of 14 tidal turbines with 13 providing electricity to Edgartown and one operated by the University of Massachusetts at Dartmouth for research and development. Each turbine will be 90 feet long and 50 feet high. The electricity will be brought to shore by a submarine cable buried 8 feet below the seabed surface which will landfall in Edgartown either on Chappaquiddack or at Katama. Muskeget Channel is located between Martha�¢����s Vineyard and Nantucket. Its depth ranges between 40 and 160 feet in the deepest portion. It has strong currents where water is transferred between Nantucket Sound and the Atlantic Ocean continental shelf to the south. This makes it a treacherous passage for navigation. Current users of the channel are commercial and recreational fishing, and cruising boats. The US Coast Guard has indicated that the largest vessel passing through the channel is a commercial scallop dragger with a draft of about 10 feet. The tidal resource in the channel has been measured by the University of Massachusetts-Dartmouth and the peak velocity flow is approximately 5 knots. The technology proposed is the helical Gorlov-type turbine positioned with a horizontal axis that is positively buoyant in the water column and held down by anchors. This is the same technology proposed by Ocean Renewable Power Company in the Western Passage and Cobscook Bay near Eastport Maine. The blades rotate in two directions capturing the tides energy both during flood and ebb tides. The turbines will be anchored to the bottom and suspended in the water column. Initial depth of the turbines is expected to be about 25 feet below the surface to avoid impacting navigation while also capturing the strongest currents. The Town of Edgartown was initially granted a Preliminary Permit by the Federal Energy Regulatory Commission (FERC) on March 1, 2008, and has recently received a second permit valid through August 2014. The Preliminary Permit gives Edgartown the exclusive right to apply for a power generation license for power generated from the hydrokinetic energy in the water flowing in this area. Edgartown filed a Draft Pilot License Application with FERC on February 1, 2010 and an Expanded Environmental Notification Form with the Massachusetts Environmental Policy Act (MEPA) Office at the same time. It expects to file a Final License Application in late 2013. Harris Miller Miller & Hanson (HMMH) of Burlington Massachusetts is acting as the Project Manager for the Town of Edgartown and collaborating with other partners of the project including the University of Massachusetts - Dartmouth's Marine Renewable Energy Center and the Massachusetts Clean Energy Center. HMMH was awarded a grant under the Department of Energy's Advanced Water Program to conduct marine science and hydrokinetic site-specific environmental studies for projects actively seeking a FERC License. HMMH, on behalf of the Town, is managing this comprehensive study of the marine environment in Muskeget Channel and potential impacts of the tidal project on indicator species and habitats. The University of Massachusetts School of Marine Science and Technology (SMAST) conducted oceanographic studies of tidal currents, tide level, benthic habit

  3. Category:Earth Tidal Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png Add aTechniquesand Aliasespage?

  4. First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project in

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrentEmergencyU.S.U.S. DOEField

  5. MHK Projects/Avalon Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AK ProjectMS ProjectJersey Project

  6. MHK Projects/Deception Pass Tidal Energy Hydroelectric Project | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHK Projects Jump to:Notnac,

  7. MHK Projects/Dorchester Maurice Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHK Projects JumpDeltaStream <

  8. MHK Projects/Gastineau Channel Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound, NY ProjectAdamsGastineau

  9. MHK Projects/Lubec Narrows Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <

  10. MHK Projects/Margate Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <| Open

  11. MHK Projects/Maurice River Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <| OpenMarisol Peru SHP <Maurice

  12. MHK Projects/Pennamaquan Tidal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <|Galway Bay IE

  13. MHK Projects/Tidal Generation Ltd EMEC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to: navigation,Thames is now working

  14. MHK Projects/Turnagain Arm Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to: navigation,Thames is

  15. MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlane <Turbines < MHK Technologies

  16. MHK Technologies/Jiangxia Tidal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagship <Helix

  17. MHK Technologies/Rotech Tidal Turbine RTT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagshipNARECRho Cee < MHK

  18. MHK Technologies/Sabella subsea tidal turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagshipNARECRho Cee <SystemRiversubsea

  19. MHK Technologies/Scotrenewables Tidal Turbine SRTT | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagshipNARECRho CeeInformation

  20. MHK Technologies/Tidal Barrage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHKDUCK < MHKBarrage.jpg Technology

  1. MHK Technologies/Tidal Delay | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHKDUCK < MHKBarrage.jpg

  2. MHK Technologies/Tidal Hydraulic Generators THG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHKDUCK < MHKBarrage.jpgTHG < MHK

  3. MHK Technologies/Tidal Lagoons | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHKDUCK < MHKBarrage.jpgTHG <

  4. MHK Technologies/Tidal Sails | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHKDUCK < MHKBarrage.jpgTHG <Sails

  5. MHK Technologies/Tidal Stream Turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHKDUCK < MHKBarrage.jpgTHG

  6. MHK Technologies/Tidal Stream | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHKDUCK < MHKBarrage.jpgTHGStream.jpg

  7. MHK Technologies/Tidal Turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHKDUCK <

  8. Reservoir response to tidal and barometric effects | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewable

  9. The Wash Tidal Barrier Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformationPolicyREDD+ Book JumpTimken Company

  10. Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3 HanfordHarry S.Heat Pumps Heat

  11. Industrial Distributed Energy: Combined Heat & Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about the Department of Energy’s Industrial Technologies Program and its Combined Heat and Power program.

  12. Hydropower, Wave and Tidal Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage in CarbonLaboratories'Hydropower, Wave and

  13. Reference Model #1 - Tidal Energy: Resource Dr. Brian Polagye

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved JustificationBio-Inspired Solar FuelReduceReference

  14. Tidal inlet processes and deposits along a low energy coastline: easter Barataria Bight, Louisiana

    SciTech Connect (OSTI)

    Moslow, T.F.; Levin, D.R.

    1985-01-01T23:59:59.000Z

    Historical, seismic and vibracore data were used to determine the geologic framework of sand deposits along the predominantly muddy coastline of eastern Barataria Bight, Louisiana. Three inlet types with distinct sand body geometries and morphologies were identified and are found 1) at flanking barrier island systems spread laterally across the front of interdistributary bays; 2) in old distributary channels; 3) at overwash breaches; or 4) combination of these. Barataria Bight, a sheltered barrier island shoreline embayment with limited sand supply, minimal tidal range (36 cm) and low wave energies (30 cm) can be used to show examples of each inlet type. Barataria Pass and Quatre Bayou Pass are inlets located in old distributary channels. However, Barataria Pass has also been affected by construction between barrier islands. Pass Ronquille is located where the coastline has transgressed a low area in the delta plain. This breach is situated in a hydraulically efficient avenue between the Gulf and Bay Long behind it. Pass Abel is a combination of a low-profile barrier breach and the reoccupation of an old distributary channel. Shelf and shoreline sands are reworked from abandoned deltaic distributaries and headlands. Inner shelf sands are concentrated in thick (10 m) shore-normal relict distributary channels with fine grained cross-bedded and ripple laminated sand overlain by burrowed shelf muds. Shoreface sand deposits occur as 2-3 m thick, fine-grained, coarsening upward and burrowed ebb-tidal delta sequences and shore-parallel relict tidal inlet channels filled through lateral accretion.

  15. MHK Projects/Willapa Bay Tidal Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to:Vicksburg BendWillapa Bay Tidal Power

  16. MHK Technologies/Sihwa tidal barrage power plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHK Technologies Jump to:Sihwa tidal

  17. TIDAL ENERGY SITE RESOURCE ASSESSMENT: TECHNICAL SPECIFICATIONS, BEST PRACTICES AND CASE STUDIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D Alloys & Heterostructures |TIDAL ENERGY

  18. Broadband Acoustic Environment at a Tidal Energy Site in Puget Sound

    SciTech Connect (OSTI)

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.

    2012-04-04T23:59:59.000Z

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines. Several monitoring technologies are being considered to determine the presence of SRKW near the turbines. Broadband noise level measurements are critical for determining design and operational specifications of these technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array from three different cruises during high tidal period in February, May, and June 2011. The ambient noise level decreases approximately 25 dB re 1 ?Pa per octave from frequency ranges of 1 kHz to 70 kHz, and increases approximately 20 dB re 1 ?Pa per octave for the frequency from 70 kHz to 200 kHz. The difference of noise pressure levels in different months varies from 10 to 30 dB re 1 ?Pa for the frequency range below 70 kHz. Commercial shipping and ferry vessel traffic were found to be the most significant contributors to sound pressure levels for the frequency range from 100 Hz to 70 kHz, and the variation could be as high as 30 dB re 1 ?Pa. These noise level measurements provide the basic information for designing and evaluating both active and passive monitoring systems proposed for deploying and operating for tidal power generation alert system.

  19. Solar Water Heating Webinar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weatherization Assistance Program Pilot Projects Solar Water Heating Webinar Solar Water Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL)...

  20. District Heating with Renewable Energy Webinar

    Broader source: Energy.gov [DOE]

    This no cost Community Renewable Energy Success Stories webinar on "District Heating with Renewable Energy" presented by the Energy Department will feature two presentations. The first will discuss...

  1. Home Heating | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of greatHome DesignHeating

  2. Radiant Heating | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for| Department ofRightsSmart SensorsHeating Radiant

  3. Sandia Energy - Heat Exchanger Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobalHeat Exchanger

  4. EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine

    Broader source: Energy.gov [DOE]

    Draft Environmental AssessmentThis EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions.

  5. Energy 101: Geothermal Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground)...

  6. Heat Transfer Interface for Thermo-Solar Energy - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Solar Thermal Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Heat Transfer Interface for Thermo-Solar Energy Lawrence Berkeley...

  7. Osmotic Heat Engine for Energy Production from Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Osmotic Heat Engine for Energy Production from Low Temperature Geothemal Resources Osmotic Heat Engine for Energy Production from Low Temperature Geothemal Resources Osmotic Heat...

  8. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    SciTech Connect (OSTI)

    Neary, Vincent S [ORNL; Gunawan, Budi [Oak Ridge National Laboratory (ORNL)

    2011-09-01T23:59:59.000Z

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  9. Energy-efficient water heating

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

  10. Overland Tidal Power Generation Using Modular Tidal Prism

    SciTech Connect (OSTI)

    Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

    2010-03-01T23:59:59.000Z

    Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

  11. LABORATORY I: CONSERVATION OF ENERGY AND HEAT

    E-Print Network [OSTI]

    Minnesota, University of

    Lab I - 1 LABORATORY I: CONSERVATION OF ENERGY AND HEAT In 1101 labs, you used conservation of energy to determine whether or not the internal energy of a system changed during an interaction. In these labs, you will investigate more closely the behavior of a system's internal energy. In particular, you

  12. Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30T23:59:59.000Z

    Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  13. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    real-world thermostat settings and heat energy consumptionto real-world behaviours. The actual energy consumption goesworld data indicates that the houses heated during the night had higher annual heat energy consumption.

  14. Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost High Energy Exhaust Heat Thermoelectric Generator with Closed-Loop Exhaust By-Pass System Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with...

  15. Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy...

    Energy Savers [EERE]

    Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under...

  16. Heating Oil Reserve History | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAMResourceEmploymentHealth, Safety,HeatHeating

  17. Author's personal copy Pyroelectric waste heat energy harvesting using heat conduction

    E-Print Network [OSTI]

    Pilon, Laurent

    Author's personal copy Pyroelectric waste heat energy harvesting using heat conduction Felix Y. Lee heat harvesting Olsen cycle a b s t r a c t Waste heat can be directly converted into electrical energy Ltd. All rights reserved. 1. Introduction Large amounts of waste heat are released as a by

  18. MHK Projects/Clarence Strait Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMAREC Jump34.3719°,Convent,

  19. MHK Projects/Indian River Tidal Hydrokinetic Energy Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMARECInformationGriffinCA

  20. MHK Projects/Roosevelt Island Tidal Energy RITE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:Energy Information

  1. MHK Projects/Tidal Energy Device Evaluation Center TIDEC | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:Energy InformationSEAREV Pays de

  2. MHK Technologies/Tidal Defense and Energy System TIDES | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECO Auger <SmarTurbine <

  3. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02ReportWaste-to-Energy and FuelDepartmentEnergy Saver »

  4. MHK Projects/Cape Cod Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AKBrough Head Wave Farm <CETOCETO3

  5. MHK Projects/Cape Islands Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AKBrough Head Wave Farm

  6. MHK Projects/Central Cook Inlet Alaska Tidal Energy Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AKBrough Head WaveInformation

  7. MHK Projects/Central Cook Inlet Tidal Energy Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AKBrough Head

  8. MHK Projects/Edgar Town Nantucket Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHK Projects

  9. MHK Projects/Fishers Island Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound, NY Project State/Province

  10. MHK Projects/Guemes Channel Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound, NYManan ChannelObispoGuemes

  11. MHK Projects/Icy Passage Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound, NYMananBendHuffmanIcy

  12. MHK Projects/Kachemak Bay Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound,Ironton Light

  13. MHK Projects/Long Island Sound Tidal Energy Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound,IrontonKrotzLeancon

  14. MHK Projects/Portsmouth Area Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <|Galway Bay IEVeronaClarence <

  15. MHK Projects/San Francisco Bay Tidal Energy Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet.7413°, -155.488°

  16. MHK Projects/San Juan Channel Tidal Energy Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet.7413°, -155.488°Information WA

  17. MHK Projects/Shelter Island Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet.7413°,Scotlandville BendBillia Croo,New

  18. MHK Projects/Spieden Channel Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet.7413°,Scotlandville.9078°,

  19. MHK Projects/Tacoma Narrows Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to: navigation, searchJintangTE4Narrows

  20. Energy Department Invests $16 Million to Harness Wave and Tidal Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |in STEM Education |DepartmentSolarDepartment of Energy

  1. Water Heating | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews &AppliancesYourAbout

  2. Future Heating | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A S JumpWindfarmFundicion Nodular del NorteFuture

  3. DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy, Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice of Scientific andScientificScientific

  4. Heat Exchangers for Solar Water Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,GlenLearning andDesign inImage of a heat

  5. Heat pumps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEIHas BeenLegalHeard County,Grainpumps Jump to:

  6. Heat recovery | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEIHas BeenLegalHeard County,Grainpumps Jump

  7. CenterPoint Energy- Residential Gas Heating Rebates

    Broader source: Energy.gov [DOE]

    CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

  8. Energy Efficient HVAC System for Distributed Cooling/Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices 2012 DOE...

  9. TVA Partner Utilities- Energy Right Heat Pump Program

    Broader source: Energy.gov [DOE]

    The Tennessee Valley Authority (TVA) energy right Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation,...

  10. TVA Partner Utilities- Energy Right Heat Pump Program

    Broader source: Energy.gov [DOE]

    The Tennessee Valley Authority (TVA) ''energy right'' Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation,...

  11. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

  12. Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

  13. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    come from space heating within homes (Boardman, 2007). If weassociated with heating the home must be an imperative. Theheating and hot water energy consumption of the homes (Zack

  14. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    USA MODELLING THE IMPACT OF USER BEHAVIOUR ON HEAT ENERGY CONSUMPTIONUSA The second point of interest to research was modelling the excess energy consumptionUSA Figure 3. Actual heating and hot water energy consumption

  15. Lecture Ch. 2a Energy and heat capacity

    E-Print Network [OSTI]

    Russell, Lynn

    machine! Conservation of energy! Definition of energy! Uniqueness of work values! Q = 0,W = 0 ! "E = 0 ! E1 Lecture Ch. 2a · Energy and heat capacity ­ State functions or exact differentials ­ Internal energy vs. enthalpy · 1st Law of thermodynamics ­ Relate heat, work, energy · Heat/work cycles (and path

  16. Lecture Ch. 2a Energy and heat capacity

    E-Print Network [OSTI]

    Russell, Lynn

    of energy Definition of energy Uniqueness of work values Q = 0,W = 0 E = 0 E2 = E1 Q = 0 E = W Wrev1 Lecture Ch. 2a · Energy and heat capacity ­ State functions or exact differentials ­ Internal energy vs. enthalpy · 1st Law of thermodynamics ­ Relate heat, work, energy · Heat/work cycles (and path

  17. EnergyUnited- Residential Energy Efficient Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    EnergyUnited offers rebates to residential customers who upgrade to high efficiency heat pumps. Rebates range from $150 - $300, varying by efficiency. The rebate form can be found on the program...

  18. Heat Pump System Basics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAMResourceEmploymentHealth, Safety,Heat Pump

  19. Hot Water Heating System Operation and Energy Conservation 

    E-Print Network [OSTI]

    Shao, Z.; Chen, H.; Wei, P.

    2006-01-01T23:59:59.000Z

    heating period, and temperature-flow adjustment with frequency control. The study shows the most energy efficient operating method is a variable flow heating system, which should be popularized to the heating field....

  20. Idaho Falls Power- Energy Efficient Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power offers zero interest loans to all eligible customers for the purchase and installation of energy efficient heat pumps. The Heat Pump Program applies to heating or cooling in...

  1. Energy Department Actions to Deploy Combined Heat and Power,...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative U.S. Department of Energy...

  2. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

  3. Geothermal Heat Pump Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Pump Basics Geothermal Heat Pump Basics

  4. Heating & Cooling | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3 HanfordHarry S.Heat Pumps

  5. Tips: Heat Pumps | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews & Solar SolarHeat Pumps Tips:

  6. Tips: Heating and Cooling | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews & Solar SolarHeat Pumps

  7. Heat Pump Systems | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome| DepartmentPump Systems Heat Pump Systems

  8. Heat Pump Water Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy Completing theWhiz!NRELEnergyLike aHeatThe

  9. Solar pool heating | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shrenik Industries JumpSohampool heating Jump to:

  10. The Cascade of Tidal Energy from Low to High Modes on a Continental Slope SAMUEL M. KELLY* AND JONATHAN D. NASH

    E-Print Network [OSTI]

    affiliation: University of Western Australia, Crawley, Australia. Corresponding author address: Samuel M. Kelly, University of Western Australia, M015 SESE, 35 Stirling Hwy., Crawley, WA 6009, Australia. EThe Cascade of Tidal Energy from Low to High Modes on a Continental Slope SAMUEL M. KELLY

  11. Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion

    E-Print Network [OSTI]

    Lee, Felix

    2012-01-01T23:59:59.000Z

    High-e?ciency direct conversion of heat to electrical energyJ. Yu and M. Ikura, “Direct conversion of low-grade heat tois concerned with direct conversion of thermal energy into

  12. Heat Pump Water Heater using Solid-State Energy Converters |...

    Energy Savers [EERE]

    Heat Pump Water Heater using Solid-State Energy Converters Heat Pump Water Heater using Solid-State Energy Converters Sheetak will work on developing a full scale prototype of its...

  13. Property:HeatSource | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDate Jump to:Property Edit withpurpose ofHeatSource

  14. Slough Heat and Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation SlimSlough Heat and Power Jump to:

  15. Heat Pipe Technology for Energy Conservation in the Process Industry

    E-Print Network [OSTI]

    Price, B. L. Jr.

    HEAT PIPE TECHNOLOGY FOR ENERGY CONSERVATION IN THE PROCESS INDUSTRY Berwin L. Price. Jr. Q-dot Corporation Garland. Texas ABSTRACT Many applications for heat pipe technology have emerged in the relatively short time this technology has been... and utility industries. The heat pipe offers a unique. efficient heat transfer device that can recover valuable thermal energy resulting in reduced equipment and operating costs. Q-dot is the world leader in heat pipe technology and we have applied our...

  16. ITP Distributed Energy: Combined Heat and Power Market Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Governor COMBINED HEAT AND POWER MARKET ASSESSMENT Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: ICF International,...

  17. Combined Heat and Power, Waste Heat, and District Energy

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) technologies and their applications.

  18. Energy Efficiency Supporting Policy and Heat Pumping Technology in Japan

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    % improvement energy consumption per real GDP of Japan> Ref: METI/ Energy Data Modeling Centre, comprehensive energy statistics *Total consumption of primary energy (tons in crude oil equivalent) / real GDP heating , 25% Cooling, 2% Water heating, 29% Power, etc., 36% cooking , 8% Energy consumption by end- use

  19. 1 | September 2013 | des courantsWave energyTidal turbines

    E-Print Network [OSTI]

    ), the goal is to maximize energy production in order to reduce the COE (Cost Of Energy), which is the key element in making OTEC a turnkey industrial reality. Energy production depends on both instantaneous

  20. #AskEnergySaver: Home Water Heating | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNewsEnergy AnsweringWater Heating

  1. Heat Pump Water Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,GlenLearning andDesign inImage of a heatHow aA

  2. Advanced Rotating Heat Exchangers | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T,FACT S HEET FACT S HEET FACT S HEET|Rotating Heat

  3. Home Heating Hints | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar PowerCommercial ColdEnergySavvyResearchHomeHome Heating

  4. Geothermal Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey CampbelllongApplyingGeorgeGeothermal Heat Pumps

  5. Radiant Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified11 Connecticut Ave NW,Radiant Heating Basics

  6. Application of Industrial Heat Improving energy efficiency of

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    compared with Residential Heat Pumps High energy efficiency = high coefficient of performance (COP) (eApplication of Industrial Heat Pumps Improving energy ­ efficiency of industrial processes . H.J. Laue Information Centre on Heat Pumps and Refrigeration IZW e.V. #12;2 Welcome Achema Congress 2012

  7. Heating Energy Meter Validation for Apartments

    E-Print Network [OSTI]

    Cai, B.; Li, D.; Hao, B.

    2006-01-01T23:59:59.000Z

    Household heat metering is the core of heating system reform. Because of many subjective and objective factors, household heat metering has not been put into practice to a large extent in China. In this article, the research subjects are second...

  8. Heating Energy Meter Validation for Apartments 

    E-Print Network [OSTI]

    Cai, B.; Li, D.; Hao, B.

    2006-01-01T23:59:59.000Z

    Household heat metering is the core of heating system reform. Because of many subjective and objective factors, household heat metering has not been put into practice to a large extent in China. In this article, the research subjects are second...

  9. Geothermal Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it work? A geothermal heat pump uses the constant below ground temperature of soil or water to heat and cool your home. Geothermal heat pumps (GHPs), sometimes referred to as...

  10. The Analysis and Assessment on Heating Energy Consumption of SAT 

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01T23:59:59.000Z

    The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using...

  11. The Analysis and Assessment on Heating Energy Consumption of SAT

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01T23:59:59.000Z

    The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using...

  12. Assessment of Energy Production Potential from Tidal Streams in the United

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat 1PowerofSystems |AsApril 1,and SpentStates |

  13. Assessment of Energy Production Potential from Tidal Streams in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat 1PowerofSystems |AsApril 1,and SpentStates

  14. Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South,Earlsboro, Oklahoma: EnergyEnergy

  15. Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South,Earlsboro, Oklahoma: EnergyEnergyInformation Raft

  16. Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South,Earlsboro, Oklahoma: EnergyEnergyInformation

  17. Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing

    E-Print Network [OSTI]

    Combes, R. S.; Boykin, W. B.

    1980-01-01T23:59:59.000Z

    from waste heat streams for reuse in the processing operations. This paper addresses the recovery of waste heat and the storage of thermal energy as a means of energy conservation in food processing. An energy conservation project in a poultry...

  18. New Interactive Map Reveals U.S. Tidal Energy Resources | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDynNet-Zero Campus atEnergy NewofSummary

  19. MOWII Webinar: OCGen Prototype Testing: Evaluating Buoyancy Pod/Tension Leg Platforms for Tidal Energy Development

    Broader source: Energy.gov [DOE]

    Ocean Renewable Power Company (ORPC) will present the results of the company's design, permitting, and testing of a mooring system for ocean energy devices in partnership with the U.S. Department...

  20. ITP Industrial Distributed Energy: Cooling, Heating, and Power...

    Broader source: Energy.gov (indexed) [DOE]

    United States Government or any agency thereof. Abstract Investigators analyzed the energy consumption and end-user economics of Cooling, Heating, and Power (CHP) systems in...

  1. Energy Portfolio Standards and the Promotion of Combined Heat...

    Broader source: Energy.gov (indexed) [DOE]

    2009 U.S. Environmental Protection Agency (EPA) Combined Heat and Power (CHP) Partnership paper covers Energy Portfolio Standards (EPS) which are becoming a widely applied method...

  2. Correlation Of Surface Heat Loss And Total Energy Production...

    Open Energy Info (EERE)

    Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Correlation...

  3. Piedmont EMC- Residential Energy Efficient Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Piedmont Electric Membership Corporation (PEMC) offers a financial incentive for residential members to install energy efficient heat pumps and compact fluorescent lighting in eligible homes....

  4. 5 Cool Things about Solar Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    or deductions for solar energy systems. Solar heating systems reduce the amount of air pollution and greenhouse gases that generally come from the use of fossil fuels for...

  5. Revamping Pre-Heat Trains for Energy Saving

    E-Print Network [OSTI]

    Yeap, B. L.; Wilson, I.; Pretty, B.; Polley, G. T.

    In this paper we look at the principles underlying the revamping of pre-heat trains to save energy through increased heat recovery. For brevity, we do not consider throughput changes. Only pre-heat train performance is considered. The interaction...

  6. Energy Saving Guidelines for Portland State University Heating and Ventilation

    E-Print Network [OSTI]

    Caughman, John

    Energy Saving Guidelines for Portland State University Heating and Ventilation Conditioned spaces will be heated to a temperature range of 67-70 in the winter and cooled, where applicable, to a temperature range will not be allowed, unless approval from FPM has been granted for cases where spaces cannot otherwise be heated

  7. Energy 101: Geothermal Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCool Roofs Energy 101: Cool Roofs AddthisFuelHeat

  8. Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in807 DE899 06 Revision 0U7114-

  9. MHK Projects/Half Moon Cove Tidal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound, NYManan Passamaquoddy Bay

  10. MHK Projects/Hammerfest Strom UK Tidal Stream | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound, NYManan Passamaquoddy

  11. MHK Projects/Homeowner Tidal Power Elec Gen | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound, NYMananBend Project

  12. MHK Projects/Town of Wiscasset Tidal Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to: navigation,Thames is nowSheepscot

  13. MHK Projects/Ward s Island Tidal Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to:Vicksburg Bend < MHK ProjectsWECs

  14. MHK Technologies/MORILD 2 Floating Tidal Power System | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagship <HelixKESC

  15. MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHKDUCKInformation MadaTech

  16. Earth Tidal Analysis At Salton Sea Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South,Earlsboro, Oklahoma:

  17. Earth Tidal Analysis At East Mesa Geothermal Area (1984) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to:(RES-AEI) |Rock Geothermal

  18. Geothermal Heat Pump Profitability in Energy Services

    SciTech Connect (OSTI)

    None

    1997-11-01T23:59:59.000Z

    If geothermal heat pumps (GHPs) are to make a significant mark in the market, we believe that it will be through energy service pricing contracts offered by retailcos. The benefits of GHPs are ideally suited to energy service pricing (ESP) contractual arrangements; however, few retailcos are thoroughly familiar with the benefits of GHPs. Many of the same barriers that have prevented GHPs from reaching their full potential in the current market environment remain in place for retailcos. A lack of awareness, concerns over the actual efficiencies of GHPs, perceptions of extremely high first costs, unknown records for maintenance costs, etc. have all contributed to limited adoption of GHP technology. These same factors are of concern to retailcos as they contemplate long term customer contracts. The central focus of this project was the creation of models, using actual GHP operating data and the experience of seasoned professionals, to simulate the financial performance of GHPs in long-term ESP contracts versus the outcome using alternative equipment. We have chosen two case studies, which may be most indicative of target markets in the competitive marketplace: A new 37,000 square foot office building in Toronto, Ontario; we also modeled a similar building under the weather conditions of Orlando, Florida. An aggregated residential energy services project using the mass conversion of over 4,000 residential units at Ft. Polk, Louisiana. Our method of analyses involved estimating equipment and energy costs for both the base case and the GHP buildings. These costs are input in to a cash flow analysis financial model which calculates an after-tax cost for the base and GHP case. For each case study customers were assumed to receive a 5% savings over their base case utility bill. A sensitivity analysis was then conducted to determine how key variables affect the attractiveness of a GHP investment.

  19. Assessment of Energy Production Potential from Tidal Streams in the United

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWind Siting Articles about Wind SitingBStates |

  20. Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.

  1. All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM -Alicia Moulton About Us

  2. Heat Exchangers for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power ProjectHawai'i EstablishesChillerEast WingHeat

  3. All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJune 17,Agenda Agenda Agenda AgendaAlbertLocal Community |

  4. Geothermal Energy--Clean Power From the Earth's Heat

    E-Print Network [OSTI]

    Geothermal Energy--Clean Power From the Earth's Heat Circular 1249 U.S. Department of the Interior U.S. Geological Survey #12;Geothermal Energy--Clean Power From the Earth's Heat By Wendell A-in-publication data are on file with the Library of Congress (http://www.loc.gov/). Cover--Coso geothermal plant, Navy

  5. OPTIMAi UTILIZATION OF SOLAR ENERGY IN HEATING AND COOLINGOF BUILDINGS

    E-Print Network [OSTI]

    Moore, John Barratt

    OPTIMAi UTILIZATION OF SOLAR ENERGY IN HEATING AND COOLINGOF BUILDINGS C. Byron Winn Gearold R Wales, Australia ABSTRACT The Colorado State University Solar House has to minimizing the use of auxiliary energy required been studied with respect for heating and cooling. The approach

  6. Geothermal Heat Pumps - Heating Mode | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion StudyForecasting.Energy InDOE Geothermalofsummer,

  7. Directly Imaging Tidally Powered Migrating Jupiters

    E-Print Network [OSTI]

    Dong, Subo; Socrates, Aristotle

    2012-01-01T23:59:59.000Z

    We show that ongoing direct imaging experiments may detect a new class of long-period, highly luminous, tidally powered extrasolar gas giants. Even though they are hosted by Gyr-"old" main-sequence stars, they can be as "hot" as young Jupiters at ~100 Myr, the prime targets of direct imaging surveys. These planets, with years-long orbits, are presently migrating to "feed" the "hot Jupiters" in steady state. Their existence is expected from a class of "high-e" migration mechanisms, in which gas giants are excited to highly eccentric orbits and then shrink their semi-major axis by factor of ~ 10-100 due to tidal dissipation at successive close periastron passages. The dissipated orbital energy is converted to heat, and if it is deposited deep enough into the planet atmosphere, the planet likely radiates steadily at luminosity ~2-3 orders of magnitude larger than that of our Jupiter during a typical Gyr migration time scale. Their large orbital separations and expected high planet-to-star flux ratios in IR make ...

  8. Annual Energy Consumption Analysis and Energy Optimization of a Solar-Assisted Heating Swimming Pool 

    E-Print Network [OSTI]

    Zuo, Z.; Hu, W.; Meng, O.

    2006-01-01T23:59:59.000Z

    This paper is concerned with the energy efficiency calculations and optimization for an indoor solar-assisted heating swimming pool in GuangZhou. The heating energy requirements for maintaining the pool constant temperature were investigated, which...

  9. Annual Energy Consumption Analysis and Energy Optimization of a Solar-Assisted Heating Swimming Pool

    E-Print Network [OSTI]

    Zuo, Z.; Hu, W.; Meng, O.

    2006-01-01T23:59:59.000Z

    This paper is concerned with the energy efficiency calculations and optimization for an indoor solar-assisted heating swimming pool in GuangZhou. The heating energy requirements for maintaining the pool constant temperature were investigated, which...

  10. #tipsEnergy: Saving on Home Heating Costs | Department of Energy

    Energy Savers [EERE]

    tipsEnergy: Saving on Home Heating Costs tipsEnergy: Saving on Home Heating Costs November 23, 2012 - 3:37pm Addthis Rebecca Matulka Rebecca Matulka Former Digital Communications...

  11. Energy Saver 101: Home Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen| DepartmentTrackingSeptemberSpace heating is

  12. Energy Saver 101: Water Heating Infographic | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen| DepartmentTrackingSeptemberSpace heating

  13. Community Renewable Energy Success Stories Webinar: District Heating with Renewable Energy (text version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text version of the webinar titled "District Heating with Renewable Energy," originally presented on November 20, 2012.

  14. 12th Annual Wave & Tidal 2015

    Broader source: Energy.gov [DOE]

    The UK is currently the undisputed global leader in marine energy, with more wave and tidal stream devices installed than the rest of the world combined. This leading position is built on an...

  15. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01T23:59:59.000Z

    Technology Roadmap. Energy-efficient Buildings: Heating andtechnology for both improving occupants’ thermal comfort and simultaneously reducing buildings’ heating and

  16. Capture of Heat Energy from Diesel Engine Exhaust

    SciTech Connect (OSTI)

    Chuen-Sen Lin

    2008-12-31T23:59:59.000Z

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data, the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

  17. HEAT THAT GROWS ON TREES Short description of timber energy

    E-Print Network [OSTI]

    with higher quality wood use. Energy wood data for 2001 Consumption of energy wood in 2001 2500000 m3 wood.3 % of total energy consumption in Switzerland or around 5% of the country's heating requirements% Switzerland 48% 25% 12% Abroad 0% 59% 74% Total 100% 100% 100% 0 1 2 3 4 5 6 7 8 Consumption of energy wood

  18. Heat pipe dehumidification for supermarket energy savings

    E-Print Network [OSTI]

    Oliver, Eric M. (Eric Michael)

    1994-01-01T23:59:59.000Z

    This thesis examines the possibility of using a heat pipe installed in the air conditioning unit of a supermarket to increase the level of dehumidification of the inside air. This dehumidification is expected to reduce the ...

  19. Chemical heat pump and chemical energy storage system

    DOE Patents [OSTI]

    Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

    1985-08-06T23:59:59.000Z

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  20. Analysis of Energy-Rescued Potential of a Hot Water Heating Network

    E-Print Network [OSTI]

    Han, J.; Wang, D.; Tian, G.

    2006-01-01T23:59:59.000Z

    Architecture energy consumption occupies a big ratio of overrall energy consumption, while heating energy consumption is a main part of it. Therefore, analyzing the generation of heat waste is important. In this paper, based on a test of a heating...

  1. Tidal Wetlands Regulations (Connecticut)

    Broader source: Energy.gov [DOE]

    Most activities occurring in or near tidal wetlands are regulated, and this section contains information on such activities and required permit applications for proposed activities. Applications...

  2. Thermal Solar Energy Systems for Space Heating of Buildings 

    E-Print Network [OSTI]

    Gomri, R.; Boulkamh, M.

    2010-01-01T23:59:59.000Z

    In this study, the simulation and the analysis of a solar flat plate collectors combined with a compression heat pump is carried out. The system suggested must ensure the heating of a building without the recourse to an auxiliary energy source...

  3. Beaches Energy Services- Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Beaches Energy Services offers a solar water heating rebate to their residential customers. This $500 rebate applies to new systems which are properly installed and certified. New construction and...

  4. A Geothermal District-Heating System and Alternative Energy Research...

    Open Energy Info (EERE)

    District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A...

  5. Union Power Cooperative- Residential Energy Efficient Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Union Power Cooperative offers low interest loans to help its residential customers finance new, energy-efficient heat pumps. Interest rates, currently at 9%, will be fixed for the term of the loan...

  6. Going Ductless with Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    conditioners less and less. To cut costs and energy consumption, we had a ductless heat pump installed in our bedroom. We liked it so much that we had an identical unit...

  7. Northwest Energy Efficiency Alliance- Smart Water Heat Rebate Program (Montana)

    Broader source: Energy.gov [DOE]

    The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying...

  8. Northwest Energy Efficiency Alliance- Smart Water Heat Rebate Program (Idaho)

    Broader source: Energy.gov [DOE]

    The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying...

  9. Northwest Energy Efficiency Alliance- Smart Water Heat Rebate Program (Oregon)

    Broader source: Energy.gov [DOE]

    The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying...

  10. Northwest Energy Efficiency Alliance- Smart Water Heat Rebate Program (Washington)

    Broader source: Energy.gov [DOE]

    The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying...

  11. IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    00149 -1- 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH R-1234yf Sorina Mortada, Ph.D. student, Center for Energy and Processes Abstract: Significant improvements in energy performance of air-to-air heat pumps are the major reason

  12. Energy Recovery By Direct Contact Gas-Liquid Heat Exchange

    E-Print Network [OSTI]

    Fair, J. R.; Bravo, J. L.

    ENERGY RECOVERY BY DIRECf CONTACf GAS-LIQUID HEAT EXCHANGE James R. Fair and Jose L. Bravo Separations Research Program The University o/Texas at Austin Austin, Texas ABSIRACf Energy from hot gas discharge streams can be recovered... by transfer directly to a coolant liquid in one of several available gas-liquid contacting devices. The design of the device is central to the theme of this paper, and experimental work has verified that the analogy between heat transfer and mass transfer...

  13. Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water

    E-Print Network [OSTI]

    Cawley, R.

    heaters. The methods presented demonstrate how integrated systems can be of value in reducing daily summertime peaks. INTRODUCTION A need for descriptors to evaluate systems that condition space and heat domestic water has been recognized for several... added to and used by the water from the desuperheated refrigerant - heat normally provided by the electric water heater's resistance elements. DESCRIPTION OF EQUIPMENT The system considered for this study is best described by U.S. Patent No. 4...

  14. Analysis of Energy-Rescued Potential of a Hot Water Heating Network 

    E-Print Network [OSTI]

    Han, J.; Wang, D.; Tian, G.

    2006-01-01T23:59:59.000Z

    and electricity factory in Jinan, we analyze the energy waste caused by hydraulic power maladjustment and improper control of heating temperature in heating season. We conclude that proper adjustment of the heating network and controlling the heating supply...

  15. Nanofluids for Heat Transfer - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck PlatooningJefferson7593Energy Storage Energy

  16. Waste Heat Recovery System: Lightweight Thermal Energy Recovery (LIGHTER) System

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: GM is using shape memory alloys that require as little as a 10°C temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built were too complex, required fluid baths, and had insufficient cycle life for practical use. GM is working to create a prototype that is practical for commercial applications and capable of operating with either air- or fluid-based heat sources. GM’s shape memory alloy based heat engine is also designed for use in a variety of non-vehicle applications. For example, it can be used to harvest non-vehicle heat sources, such as domestic and industrial waste heat and natural geothermal heat, and in HVAC systems and generators.

  17. Tips: Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    half of us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total)....

  18. Geothermal Heat Pumps | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAM DOEof Energy Georgia:Exploration

  19. One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes

    E-Print Network [OSTI]

    California at Davis, University of

    One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net at the core of a zero-net-energy demonstration home designed to generate enough electricity to also power policy initiatives to advance zero net energy homes as standard practice. #12;As heat pump systems become

  20. The Use of Aluminum Process Reject Heat as the Source of Energy for a District Heating System 

    E-Print Network [OSTI]

    McCabe, J.; Olszewski, M.

    1980-01-01T23:59:59.000Z

    Rocket Research Company (RRC) is investigating the use of industrial process reject heat as a source of energy for large scale district heating. The District heating System is a network of closed-loop hot water pipes that recover energy from...

  1. Heat Pump Clothes Dryer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power ProjectHawai'i EstablishesChillerEast WingHeatClothes

  2. Heat Pump Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power ProjectHawai'i EstablishesChillerEastHomesHeat Pump

  3. Tips: Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe| Department ofAir Ducts Tips:Heat Pumps

  4. Tips: Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe| Department ofAir Ducts Tips:Heat

  5. Tips: Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe| Department ofAirTips: ShoppingWater Heating

  6. Using Plate Heat Exchangers to Increase Energy Efficiency

    E-Print Network [OSTI]

    Bailey, K.

    result in a heat exchanger that is extremely economical and efficient, especially in energy recovery applications where low LMTD's are common. This paper will review PHE design and construction and show how PHE's can be used to recover energy in many...

  7. CSP Heat Integration for Baseload Renewable Energy Deployment

    Broader source: Energy.gov [DOE]

    In October 2013, DOE announced an award under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program to advance the state of the art in CSP hybrid plants, which incorporate thermal and or chemical energy from a CSP system into a fossil fueled power generation system, managed by the SunShot Initiative.

  8. Dehumidifying Heat Pipes | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome | Department of EnergySolar2

  9. Swimming Pool Heating | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idaho |Energy Supercomputers:of

  10. Water Heating Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUMEWORKFORCENovember 5, 2014water energyA

  11. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004) |1978) | Open EnergyPumps

  12. Bartholomew Heating and Cooling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France:Barstow, California: Energy Resources

  13. Heating & Cooling | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 T STATEEnergy SaverFall andFundingEnergy

  14. Enhancing Electrical Supply by Pumped Storage in Tidal Lagoons

    E-Print Network [OSTI]

    MacKay, David J.C.

    to demand into high­value demand­following power; and second, it can simultaneously serve as a tidal power/3/07 Summary The principle that the net energy delivered by a tidal pool can be increased by pumping extra stop blowing for two days at a time? Chemical or kinetic­energy storage systems are an economical way

  15. Enhancing Electrical Supply by Pumped Storage in Tidal Lagoons

    E-Print Network [OSTI]

    MacKay, David J.C.

    to demand into high-value demand-following power; and second, it can simultaneously serve as a tidal power/3/07 Summary The principle that the net energy delivered by a tidal pool can be increased by pumping extra stop blowing for two days at a time? Chemical or kinetic-energy storage systems are an economical way

  16. Tidal Conversion at a Submarine Ridge FRANOIS PTRLIS

    E-Print Network [OSTI]

    Young, William R.

    that control the tidally powered radiation of in- ternal gravity waves (the "tidal conversion") from received 30 July 2003, in final form 20 January 2004) ABSTRACT The radiative flux of internal wave energy tide over submarine topography is a main source of the mechanical energy required to power the internal

  17. JET Experiments to Assess Finite Larmor Radius Effects on Resonant Ion Energy Distribution during ICRF Heating

    E-Print Network [OSTI]

    JET Experiments to Assess Finite Larmor Radius Effects on Resonant Ion Energy Distribution during ICRF Heating

  18. Barr and Showman: Heat Transfer in Europa's Icy Shell 405 Heat Transfer in Europa's Icy Shell

    E-Print Network [OSTI]

    Europa's ice shell controls the thermal evolution of its interior and provides a source of energy surface features with steady-state thermal convection is challeng- ing, even with tidal heating, because convects, can the ocean be thermodynamically stable? What role might compositional heterogeneity play

  19. Energy Conservation Program for Consumer Products: Energy Conservation Standards for Direct Heating Equipment and Pool Heaters, Request for Information

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Energy Conservation Standards for Direct Heating Equipment and Pool Heaters, Request for Information

  20. Pseudo dynamic transitional modeling of building heating energy demand using artificial neural network

    E-Print Network [OSTI]

    Paudel, Subodh; Elmtiri, Mohamed; Kling, Wil L; Corre, Olivier Le; Lacarriere, Bruno

    2014-01-01T23:59:59.000Z

    R. Satake, Prediction of energy demands using neural networkof Building Heating Energy Demand Using Artificial Neuralknow energy flows and energy demand of the buildings for the

  1. Geothermal-Heat Extraction As a source of renewable energy, geothermal-heat extraction has become increasingly

    E-Print Network [OSTI]

    Kornhuber, Ralf

    Geothermal-Heat Extraction As a source of renewable energy, geothermal-heat extraction has become increasingly important in recent years. Proper design of a geothermal system, be it for deep or for shallow

  2. Franklin Heating Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy ParkForkedFranklin Electric Coop

  3. Tips: Water Heating | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews &Appliances Tips:SmartWater

  4. Absorption Heat Pumps | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1A Potential Path toDepartmentUsus About

  5. Active Solar Heating | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1A Potential Path

  6. Electric Resistance Heating | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome | Documents MemorandumEEOElectric

  7. Heat Distribution Systems | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome| Department

  8. Home Heating Hints | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome| DepartmentPump

  9. Wood and Pellet Heating | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|IdahotheWhat is the FOIA ? What

  10. Heat Pump Clothes Dryer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy Completing theWhiz!NRELEnergy

  11. Heat Pump System Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy Completing theWhiz!NRELEnergyLike a

  12. Heating System Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy Completing theWhiz!NRELEnergyLike

  13. Solar Space Heat | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to: navigation,PanelsLight Energy Systems

  14. Solar Thermal Process Heat | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to: navigation,PanelsLight EnergyJumpProcess

  15. Tips: Water Heating | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactive LiquidSavingsAugustPhase 2ATFTips

  16. Process Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartmentEnergyLoanEffectsBest operating

  17. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004) |1978) | Open

  18. Korea District Heating Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistecKilaraKoRentaKorchip CorpKorea

  19. Solar Pool Heating | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sro Jump to:SolarSolar Plants

  20. Water-Heating Dehumidifier - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsDNitrateEnergyNews3Industrial

  1. Raymond Plumbing & Heating | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRay County, Missouri: Energy

  2. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    DOE Patents [OSTI]

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08T23:59:59.000Z

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  3. PECO Energy (Gas) – Heating Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The PECO Smart Gas Efficiency Upgrade Program offers rebates and incentives to commercial or residential customers that install an ENERGY STAR qualified high-efficiency natural gas furnace or...

  4. Heat Pump Research Center For Environmental Energy

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    & Renewable Energy #12;Spinoff Companies CEEE Organization 3 Board of Visitors Integrated Systems Optimization · Solar Cooling and Solar Decathlon · Water Retention · Plate HX Test Facility · Separate Sensible. Consortium Solar Cooling Efficiency Comparison #12;Preferred Collector Concentrated Photovoltaic

  5. Ocean Tidal Dissipation and its Role in Solar System Satellite Evolution

    E-Print Network [OSTI]

    Chen, Erinna

    2013-01-01T23:59:59.000Z

    dominant contributor to the ocean energy dissipation (see §dominant contributor to the ocean energy dissipation (see §of interest, e.g. the ocean kinetic energy and tidal

  6. Tidal | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to: navigation, searchNewTidal Home

  7. Aquifer thermal energy (heat and chill) storage

    SciTech Connect (OSTI)

    Jenne, E.A. (ed.)

    1992-11-01T23:59:59.000Z

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  8. Electric Resistance Heating Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4DimitriJune 30,NEW! EnergyIndustryElectric

  9. Combined Heat and Power | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEventsConcentratingAgreement |CombiResearch

  10. Solar Water Heat | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to:Voltaic Malaysia Sdn Bhd Jump

  11. Solar space heating | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to:Voltaic Malaysia Sdn Bhdspace cooling

  12. Advanced Rotating Heat Exchangers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2Partners in the Spotlight Novelis2 U.S.||Lead

  13. Solar space heating | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSodaAtlassourceResource

  14. Green Heat Solutions Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:EthanolHabits Jump to:

  15. Passive Solar Space Heat | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) JumpPalcanPassiv Systems

  16. Wood Heating Fuel Exemption | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008Ms. KesslerKimWomenTinaResidential

  17. Property:HeatRate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:DocketFlowGpmGrossGen JumpRating Jump

  18. Integrated Module Heat Exchanger | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry Research Project IntegratedSystem: (1)Module

  19. Solar Heating Contractor Licensing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWork ForceSectorProcessDepartmentEfficient

  20. Indication of anomalous heat energy production in a reactor device

    E-Print Network [OSTI]

    Giuseppe Levi; Evelyn Foschi; Torbjörn Hartman; Bo Höistad; Roland Pettersson; Lars Tegnér; Hanno Essén

    2013-06-07T23:59:59.000Z

    An experimental investigation of possible anomalous heat production in a special type of reactor tube named E-Cat HT is carried out. The reactor tube is charged with a small amount of hydrogen loaded nickel powder plus some additives. The reaction is primarily initiated by heat from resistor coils inside the reactor tube. Measurement of the produced heat was performed with high-resolution thermal imaging cameras, recording data every second from the hot reactor tube. The measurements of electrical power input were performed with a large bandwidth three-phase power analyzer. Data were collected in two experimental runs lasting 96 and 116 hours, respectively. An anomalous heat production was indicated in both experiments. The 116-hour experiment also included a calibration of the experimental set-up without the active charge present in the E-Cat HT. In this case, no extra heat was generated beyond the expected heat from the electric input. Computed volumetric and gravimetric energy densities were found to be far above those of any known chemical source. Even by the most conservative assumptions as to the errors in the measurements, the result is still one order of magnitude greater than conventional energy sources.

  1. Progress Energy Florida- SunSense Solar Water Heating with EnergyWise

    Broader source: Energy.gov [DOE]

    Progress Energy Florida (PEF) launched the ''Solar Water Heating with EnergyWise Program'' in February 2007 to encourage its residential customers to participate in its load control program and...

  2. EA-1774: Energy Conservation Program: Energy Conservation Standards for Direct Heating Equipment

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the adoption of amended energy conservation standards as required by The Energy Policy and Conservation Act, as amended) for direct heating equipment,...

  3. Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing 

    E-Print Network [OSTI]

    Combes, R. S.; Boykin, W. B.

    1980-01-01T23:59:59.000Z

    Modern food processing operations often require that the temperature of the processed foodstuff be raised or lowered. These operations result in energy consumption by refrigeration or heating systems, and a portion of this energy can be recovered...

  4. Duke Energy Florida- SunSense Solar Water Heating with EnergyWise

    Broader source: Energy.gov [DOE]

    Duke Energy Florida (DEF) launched the Solar Water Heating with EnergyWise Program in February 2007 to encourage its residential customers to participate in its load control program and install a...

  5. An Energy Savings Model for the Heat Treatment of Castings

    SciTech Connect (OSTI)

    Y. Rong; R. Sisson; J. Morral; H. Brody

    2006-12-31T23:59:59.000Z

    An integrated system of software, databases, and design rules have been developed, verified, and to be marketed to enable quantitative prediction and optimization of the heat treatment of aluminum castings to increase quality, increase productivity, reduce heat treatment cycle times and reduce energy consumption. The software predicts the thermal cycle in critical locations of individual components in a furnace, the evolution of microstructure, and the attainment of properties in heat treatable aluminum alloy castings. The model takes into account the prior casting process and the specific composition of the component. The heat treatment simulation modules can be used in conjunction with software packages for simulation of the casting process. The system is built upon a quantitative understanding of the kinetics of microstructure evolution in complex multicomponent alloys, on a quantitative understanding of the interdependence of microstructure and properties, on validated kinetic and thermodynamic databases, and validated quantitative models.

  6. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O; Bell, Alexander; Bollinger, Benjamin R; Shang, Andrew; Chmiel, David; Richter, Horst; Magari, Patrick; Cameron, Benjamin

    2013-07-02T23:59:59.000Z

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  7. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O.; Bell, Alexander; Bollinger, Benjamin R.

    2012-08-07T23:59:59.000Z

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  8. CenterPoint Energy (Gas)- Residential Heating and Hot Water Rebates

    Broader source: Energy.gov [DOE]

    CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

  9. Active Solar Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM LoanActive Financial Assistance

  10. Swimming Pool Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment ofEnergy State

  11. Electric Resistance Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient

  12. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01T23:59:59.000Z

    Technology Roadmap. Energy-efficient Buildings: Heating andH, Zhai Y. Enabling energy-efficient approaches to thermalEnergy-efficient comfort with a heated/cooled chair: results

  13. Thermal Energy Corporation Combined Heat and Power Project

    SciTech Connect (OSTI)

    E. Bruce Turner; Tim Brown; Ed Mardiat

    2011-12-31T23:59:59.000Z

    To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nationâ??s best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission â?? providing top quality medical care and instruction â?? without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power outages. TECOâ??s operation is the largest Chilled Water District Energy System in the United States. The company used DOEâ??s funding to help install a new high efficiency CHP system consisting of a Combustion Turbine and a Heat Recovery Steam Generator. This CHP installation was just part of a larger project undertaken by TECO to ensure that it can continue to meet TMCâ??s growing needs. The complete efficiency overhaul that TECO undertook supported more than 1,000 direct and indirect jobs in manufacturing, engineering, and construction, with approximately 400 of those being jobs directly associated with construction of the combined heat and power plant. This showcase industrial scale CHP project, serving a critical component of the nationâ??s healthcare infrastructure, directly and immediately supported the energy efficiency and job creation goals established by ARRA and DOE. It also provided an unsurpassed model of a district energy CHP application that can be replicated within other energy intensive applications in the industrial, institutional and commercial sectors.

  14. Electric Resistance Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6:Energy Eighth AnnualELECTRICElectricElectric

  15. Heating Oil Reserve | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,GlenLearning andDesign inImage of a

  16. Check Heat Transfer Surfaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSSDepartment of Energy5-4-20129Burner Air to

  17. Winter Heating Fuels - Energy Information Administration

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25, 2012 MEMORANDUMWestern4

  18. Radiant Heating Basics | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo.Frequency | DepartmentOE-3:

  19. Absorption Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001 Energy Management Standard »Cooling

  20. Cummins Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts for theofPhotovoltaicsMay 16, 2013

  1. Absorption Heat Pump Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:Whether you're a16-17, 201529, 2015 8:00AM EDT toTheWith693Absorption

  2. Water Heating Projects | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium TransferonUS-IndiaVALUE STUDY4,DepartmentDepartment ofWaterWaterHVAC,

  3. Training: Process Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe|of Energy

  4. Heating System Basics | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FYAffairs,Assessment Hazle Spindle, LLCHeat PumpHeather

  5. MICROCHANNEL EXPANDED HEAT EXCHANGER - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You Back LoveM od einPHYSICS

  6. Recirculation of Factory Heat and Air to Reduce Energy Consumption 

    E-Print Network [OSTI]

    Thiel, G. R.

    1983-01-01T23:59:59.000Z

    ---- -- - ------ RECIRCULATION OF FACTORY HEAT AND AIR TO REDUCE ENERGY CONSUMPTION Gregory R. Thiel Eltron Mfg. Inc. Fort Thomas, KY. ABSTRACT Two methods for achieving substantial energy savings through recirculation techniques are discussed... challenging conditions: Because they are constructed to op erate "dripping wet", Eltron' s pro prietary "Conductive Precipitate" models can resume normal air clean ing operation immediately after each water washing cycle. They are the only...

  7. Industrial process heating energy analysis, 1989. Topical report

    SciTech Connect (OSTI)

    Not Available

    1991-05-01T23:59:59.000Z

    The study was initiated to analyze and compare the major process heat trends and applications in U.S. industry at a level of detail sufficient to enable GRI to select industries and process heat technologies where potential R D efforts could have the greatest impact on the efficient use of natural gas and thus improve the competitive position of natural gas technologies. This study was conducted as an update of earlier studies from 1980 and 1985 that estimated the amount of process heat energy consumed by industry. Process heat applications were divided into fifteen major categories, which cover a wide range of applications used in over 16 major industry groups (2-digit SICs). Most of the process heat categories cover a wide variety of technologies that are capable of achieving the same result using different fuel types. In addition, many technologies are used in more than one type of process heat application (e.g., rotary kilns are used for both calcining and ore roasting).

  8. Indication of anomalous heat energy production in a reactor device

    E-Print Network [OSTI]

    Levi, Giuseppe; Hartman, Torbjörn; Höistad, Bo; Pettersson, Roland; Tegnér, Lars; Essén, Hanno

    2013-01-01T23:59:59.000Z

    An experimental investigation of possible anomalous heat production in a special type of reactor tube named E-Cat HT is carried out. The reactor tube is charged with a small amount of hydrogen loaded nickel powder plus some additives. The reaction is primarily initiated by heat from resistor coils inside the reactor tube. Measurement of the produced heat was performed with high-resolution thermal imaging cameras, recording data every second from the hot reactor tube. The measurements of electrical power input were performed with a large bandwidth three-phase power analyzer. Data were collected in two experimental runs lasting 96 and 116 hours, respectively. An anomalous heat production was indicated in both experiments. The 116-hour experiment also included a calibration of the experimental set-up without the active charge present in the E-Cat HT. In this case, no extra heat was generated beyond the expected heat from the electric input. Computed volumetric and gravimetric energy densities were found to be fa...

  9. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect (OSTI)

    Shawn M. Allan; Patricia M. Strickland; Holly S. Shulman

    2009-11-11T23:59:59.000Z

    Ceralink Inc. developed FastFuse™, a rapid, new, energy saving process for lamination of glass and composites using radio frequency (RF) heating technology. The Inventions and Innovations program supported the technical and commercial research and development needed to elevate the innovation from bench scale to a self-supporting technology with significant potential for growth. The attached report provides an overview of the technical and commerical progress achieved for FastFuse™ during the course of the project. FastFuse™ has the potential to revolutionize the laminate manufacturing industries by replacing energy intensive, multi-step processes with an energy efficient, single-step process that allows higher throughput. FastFuse™ transmits RF energy directly into the interlayer to generate heat, eliminating the need to directly heat glass layers and the surrounding enclosures, such as autoclaves or vacuum systems. FastFuse™ offers lower start-up and energy costs (up to 90% or more reduction in energy costs), and faster cycles times (less than 5 minutes). FastFuse™ is compatible with EVA, TPU, and PVB interlayers, and has been demonstrated for glass, plastics, and multi-material structures such as photovoltaics and transparent armor.

  10. Hydrodynamic analysis of a vertical axis tidal current turbine 

    E-Print Network [OSTI]

    Gretton, Gareth I.

    2009-01-01T23:59:59.000Z

    Tidal currents can be used as a predictable source of sustainable energy, and have the potential to make a useful contribution to the energy needs of the UK and other countries with such a resource. One of the technologies ...

  11. Dynamic Simulation and Analysis of Heating Energy Consumption in a Residential Building 

    E-Print Network [OSTI]

    Liu, J.; Yang, M.; Zhao, X.; Zhu, N.

    2006-01-01T23:59:59.000Z

    In winter, much of the building energy is used for heating in the north region of China. In this study, the heating energy consumption of a residential building in Tianjin during a heating period was simulated by using the EnergyPlus energy...

  12. Dynamic Simulation and Analysis of Heating Energy Consumption in a Residential Building

    E-Print Network [OSTI]

    Liu, J.; Yang, M.; Zhao, X.; Zhu, N.

    2006-01-01T23:59:59.000Z

    In winter, much of the building energy is used for heating in the north region of China. In this study, the heating energy consumption of a residential building in Tianjin during a heating period was simulated by using the EnergyPlus energy...

  13. MSL F693 F01 French Tidal Power CRN # 36273 Station

    E-Print Network [OSTI]

    Kowalik, Zygmunt

    MSL F693 F01 French Tidal Power CRN # 36273 Station 3 CREDITS Zygmunt Kowalik A new course on TIDES. Such application has raised many questions about an environmental impact of tidal power development. The course a function of the changes in the sun- earth-moon system, caused by dissipation of the tidal energy

  14. Heat Pump Water Heater Using Solid-State Energy Converters

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy Completing theWhiz!NRELEnergyLike aHeat

  15. Save on Home Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess Heating SystemsMoney withSave

  16. List of Solar Space Heat Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other Alternative FuelEnergy JumpsourceSpace Heat

  17. Simulating the energy savings potential in domestic heating scenarios in Switzerland

    E-Print Network [OSTI]

    and ventilation, as well as the heat gains due to internal gains, solar gains and the heating system. In Section 5Simulating the energy savings potential in domestic heating scenarios in Switzerland Wilhelm a new methodology to prepare weather data for simulating the energy consumption of a heating system when

  18. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    also S.6.l Tidal Energy Only two tidal power electricityCalifornia's energy supply. These In summary, tidal power isTidal Power, Plenum Press, New York, 1972. Al Groncki, USDA, Figures presented at the Conference on Energy

  19. TIDAL TURBULENCE SPECTRA FROM A COMPLIANT MOORING

    SciTech Connect (OSTI)

    Thomson, Jim; Kilcher, Levi; Richmond, Marshall C.; Talbert, Joe; deKlerk, Alex; Polagye, Brian; Guerra, Maricarmen; Cienfuegos, Rodrigo

    2013-06-13T23:59:59.000Z

    A compliant mooring to collect high frequency turbulence data at a tidal energy site is evaluated in a series of short demon- stration deployments. The Tidal Turbulence Mooring (TTM) improves upon recent bottom-mounted approaches by suspend- ing Acoustic Doppler Velocimeters (ADVs) at mid-water depths (which are more relevant to tidal turbines). The ADV turbulence data are superior to Acoustic Doppler Current Profiler (ADCP) data, but are subject to motion contamination when suspended on a mooring in strong currents. In this demonstration, passive stabilization is shown to be sufficient for acquiring bulk statistics of the turbulence, without motion correction. With motion cor- rection (post-processing), data quality is further improved; the relative merits of direct and spectral motion correction are dis- cussed.

  20. #AskEnergySaver: Home Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, so are our bestPolicies ActHeating

  1. Environmental impact assessment and process simulation of the tidal current energy resource in the Strait of Messina 

    E-Print Network [OSTI]

    El-Geziry, Tarek Mohamed Ahmed

    2010-01-01T23:59:59.000Z

    Interest in exploring renewable energy resources has increased globally, especially with recent worldwide intentions to maintain the global climate. Looking at the oceans as a vast sustainable clean energy resource to ...

  2. Energy Saver 101 Infographic: Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energy Incentive Programs,EnergyAugustPublicEnergyEnergy Saver

  3. Energy Saver 101: Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energy Incentive Programs,EnergyAugustPublicEnergyEnergyHome

  4. #AskEnergySaver: Home Heating | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNewsEnergy Answering

  5. Work and energy gain of heat-pumped quantized amplifiers

    E-Print Network [OSTI]

    David Gelbwaser-Klimovsky; Robert Alicki; Gershon Kurizki

    2013-10-09T23:59:59.000Z

    We investigate heat-pumped single-mode amplifiers of quantized fields in high-Q cavities based on non-inverted two-level systems. Their power generation is shown to crucially depend on the capacity of the quantum state of the field to accumulate useful work. By contrast, the energy gain of the field is shown to be insensitive to its quantum state. Analogies and differences with masers are explored.

  6. Space Heating and Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossaryProgramRussiaSpace Heating and Cooling Basics Space

  7. Benefits of Combined Heat and Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWind SitingVerificationCombined Heat & Power

  8. Heating Oil and Propane Update - Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Petroleum Reports Heating Oil and Propane Update Weekly heating oil and propane prices are only collected during the heating season, which extends from October through March....

  9. Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript

    Broader source: Energy.gov [DOE]

    Transcript for a U.S. Department of Energy Webinar on Dec. 14, 2010, about residential geothermal heat pump retrofits

  10. Waste Heat Energy Harvesting Using Olsen Cycle on PZN-5.5PT Single Crystals

    E-Print Network [OSTI]

    McKinley, Ian Meeker; Kandilian, Razmig; Pilon, Laurent

    2012-01-01T23:59:59.000Z

    High-ef?ciency direct conversion of heat to electricalreports on direct thermal to electrical energy conversion by

  11. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01T23:59:59.000Z

    heat consumption of a low energy multifamily complex in Switzerland based on long-term experimental data,

  12. Shape memory alloy heat engines and energy harvesting systems

    DOE Patents [OSTI]

    Browne, Alan L; Johnson, Nancy L; Keefe, Andrew C; Alexander, Paul W; Sarosi, Peter Maxwell; Herrera, Guillermo A; Yates, James Ryan

    2013-12-17T23:59:59.000Z

    A heat engine includes a first rotatable pulley and a second rotatable pulled spaced from the first rotatable pulley. A shape memory alloy (SMA) element is disposed about respective portions of the pulleys at an SMA pulley ratio. The SMA element includes first spring coil and a first fiber core within the first spring coil. A timing cable is disposed about disposed about respective portions of the pulleys at a timing pulley ratio, which is different than the SMA pulley ratio. The SMA element converts a thermal energy gradient between the hot region and the cold region into mechanical energy.

  13. Conserving Energy by Recovering Heat from Hot Waste Gases

    E-Print Network [OSTI]

    Magnuson, E. E.

    1979-01-01T23:59:59.000Z

    supply, and 1150?1500 Cement kiln (wet process) 8oo~1100 isn't a shortage of energy then at least somewhat of a Copper reverberatory furnace 2000?~.'500 crisis? Diesel engine exhaust 1000?1200 Forge and billet.heating furnaces 1700?~ZOO... Temp. F aren't they really agreeing that there is going to be Ammonia oxidation process 1350?1475 an energy crisis? Steep price increases occur when Annealing furnace 1100?2000 Cement kiln (dry process) there are shortages, when demand exceeds...

  14. CO2 Heat Pump Water Heater | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report, March003MEAM,ofCO2 Heat Pump

  15. Ex Parte Communication Gas Heat SPVU Question | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof1-SCORECARD-09-21-11 Page5-03Department ofEnergyGas Heat

  16. Cool Roofs and Heat Islands | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands Jump to: navigation, search Tool

  17. Geothermal District Heating System City of Klamath Falls | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXAGarnetInformation District Heating System

  18. Industrial Steam System Heat-Transfer Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers toHeat Pumps

  19. Energy Saver 101 Infographic: Home Heating | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome | DocumentsElements ofin

  20. Healthcare Energy: Spotlight on Reheat and Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy Completing theWhiz!NREL partneredDepartmentSee

  1. Super Energy Saver Heat Pump - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8 Career DaySunShot

  2. Energy Saving Absorption Heat Pump Water Heater - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210EnergyEnergy Saver

  3. My Energy Audit, Part 1: Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - Technology ProjectEnergy Novel sensorStephanie

  4. Framework for Coupling Room Air Models to Heat Balance Model Load and Energy Calculations (RP-1222)

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Framework for Coupling Room Air Models to Heat Balance Model Load and Energy Calculations (RP in a program for hourly load calculations of a single thermal zone. The heat balance model for load and energy to heat balance model load and energy calculations," HVAC&R Research, 10(2), 91-111. #12;2 · Mixed

  5. Heat Pipe Technology for Energy Conservation in the Process Industry 

    E-Print Network [OSTI]

    Price, B. L. Jr.

    1985-01-01T23:59:59.000Z

    Many applications for heat pipe technology have emerged in the relatively short time this technology has been known. Heat pipes incorporated in heat exchangers have been used in tens of thousands of successful heat recovery systems. These systems...

  6. Heat Transfer Fluids for Solar Water Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,GlenLearning andDesign inImage of a heatHow

  7. Harvesting the Sun's Energy Through Heat as Well as Light | U...

    Office of Science (SC) Website

    Harvesting the Sun's Energy Through Heat as Well as Light Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC...

  8. Geothermal Energy: Clean Power from the Earth's Heat | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd to library WebWestern

  9. Hands-on Energy Adaptation Toolkit (HEAT) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoodsGuangzhou,GuizhouGuyana:HaeHalcyonHanHands-on

  10. Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2011-09-01T23:59:59.000Z

    In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  11. Distribution of Energy Spectra, Reynolds Stresses, Turbulence Production, and Dissipation in a Tidally Driven Bottom Boundary Layer

    E-Print Network [OSTI]

    , United Kingdom @Department of Earth and Planetary Science, The Johns Hopkins University, BaltimoreDistribution of Energy Spectra, Reynolds Stresses, Turbulence Production, and Dissipation is driven by a number of mechanisms including winds, tides, density gradients, swells, sea surface slope

  12. Pseudo Dynamic Transitional Modeling of Building Heating Energy Demand Using Artificial1 Neural Network2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Transitional Modeling of Building Heating Energy Demand Using Artificial1 Neural Network2 Subodh Paudel a, it is39 essential to know energy flows and energy demand of the buildings for the control of heating and40 cooling energy production from plant systems. The energy demand of the building system, thus,41

  13. Model based methodology development for energy recovery in flash heat exchange systems

    E-Print Network [OSTI]

    McCarthy, John E.

    Model based methodology development for energy recovery in flash heat exchange systems Problem with a condensing heat exchanger can be used when heat exchange is required between two streams and where at leastH, consistency etc.). To increase the efficiency of heat exchange, a cascade of these units in series can be used

  14. Rethinking energy conservation via an evaluation of the heating system: A

    E-Print Network [OSTI]

    Vellekoop, Michel

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Heating, Ventilation, and Air Conditioning (HVAC) . . . . . . . . . . . . 5 2.3.1 HeatRethinking energy conservation via an evaluation of the heating system: A Case Study of Zilverling Intan Permatasari The purpose of this research is to study the heating system in Zilverling building

  15. Performance Test and Energy Saving Analysis of a Heat Pipe Dehumidifier

    E-Print Network [OSTI]

    Zhao, X.; Li, Q.; Yun, C.

    2006-01-01T23:59:59.000Z

    Heat pipe technology applied to ventilation, dryness, and cooling and heating radiator in a building is introduced in this paper. A new kind of heat pipe dehumidifier is designed and tested. The energy-saving ratio with the heat pipe dehumidifier...

  16. Performance Test and Energy Saving Analysis of a Heat Pipe Dehumidifier 

    E-Print Network [OSTI]

    Zhao, X.; Li, Q.; Yun, C.

    2006-01-01T23:59:59.000Z

    Heat pipe technology applied to ventilation, dryness, and cooling and heating radiator in a building is introduced in this paper. A new kind of heat pipe dehumidifier is designed and tested. The energy-saving ratio with the heat pipe dehumidifier...

  17. Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels 

    E-Print Network [OSTI]

    Tora, Eman

    2012-02-14T23:59:59.000Z

    at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels...

  18. Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels

    E-Print Network [OSTI]

    Tora, Eman

    2012-02-14T23:59:59.000Z

    at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels...

  19. Energy Saving Glass Lamination via Selective Radio-Frequency Heating

    SciTech Connect (OSTI)

    Shulman, Holly S.; Allan, Shawn M.

    2009-11-11T23:59:59.000Z

    This Inventions and Innovations program supported the technical and commercial research and development needed to elevate Ceralink's energy saving process for flat glass lamination from bench scale to a self-supporting technology with significant potential for growth. Radio-frequency heating was any un-explored option for laminating glass prior to this program. With significant commercial success through time and energy savings in the wood, paper, and plastics industries, RF heating was found to have significant promise for the energy intensive glass lamination industry. A major technical goal of the program was to demonstrate RF lamination across a wide range of laminate sizes and materials. This was successfully accomplished, dispelling many skeptics' concerns about the abilities of the technology. Ceralink laminated panels up to 2 ft x 3 ft, with four sets processed simultaneously, in a 3 minute cycle. All major categories of interlayer materials were found to work with RF lamination. In addition to laminating glass, other materials including photovoltaic silicon solar cells, light emitting diodes, metallized glass, plastics (acrylic and polycarbonate), and ceramics (alumina) were found compatible with the RF process. This opens up a wide range of commercial opportunities beyond the initially targeted automotive industry. The dramatic energy savings reported for RF lamination at the bench scale were found to be maintained through the scale up of the process. Even at 2 ft x 3 ft panel sizes, energy savings are estimated to be at least 90% compared to autoclaving or vacuum lamination. With targeted promotion through conference presentations, press releases and internet presence, RF lamination has gained significant attention, drawing large audiences at American Ceramic Society meetings. The commercialization success of the project includes the establishment of a revenue-generating business model for providing process development and demonstrations for potential RF lamination users. A path to industrial energy benefits and revenue through industrial equipment sales was established in a partnership with Thermex Thermatron, a manufacturer of RF equipment.

  20. #AskEnergySaver: Home Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJune 17, 2015 SEABOnlyTipsWorking At DOE|April SaylorA homeThis

  1. Harvesting Energy from Abundant, Low Quality Sources of Heat - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanford LEED&soil HanfordHappyHarold PaulHarry

  2. Performance studies of a solar energy storing heat exchanger

    SciTech Connect (OSTI)

    Bushnell, D.L. (Northern Illinois Univ., DeKalb (USA))

    1988-01-01T23:59:59.000Z

    The design, construction, and performance of a solar energy storing heat exchanger is presented as a step toward a solar cooking concept. The solid-solid transition of pentaerythritol is the principal mechanism for energy storage. The methods for describing the system performance are explained and applied to a test system containing a controllable replacement for the solar input power. This first stage of the project will be followed by another in which the heat exchanger is connected to a concentrating array of CPC cylindrical troughs. Although a size appropriate to commercial cooking may prove easier to design from the point of view of economics in the US, the system discussed herein is sized for domestic use and addresses the question of what solar collector area and PCM mass are needed in order to provide adequate energy for several family-size meals with sufficient storage to cook at night and one or two days later. The performance is described from efficiency measurements and the determination of a figure of merit.

  3. Thermal Solar Energy Systems for Space Heating of Buildings

    E-Print Network [OSTI]

    Gomri, R.; Boulkamh, M.

    2010-01-01T23:59:59.000Z

    combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage...

  4. Heat Pump Swimming Pool Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,GlenLearning andDesign inImage of a heatHow a

  5. Heating Ventilation and Air Conditioning Efficiency | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on Armed Services U.S.Health, Safety, &ofHeating

  6. Engine Waste Heat Recovery Concept Demonstration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVACEnforcementEngaging Students in2 DOEEngineWaste Heat

  7. Air-Source Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof42.2Air-Source Heat Pump Basics

  8. System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump

    SciTech Connect (OSTI)

    Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

    2013-01-01T23:59:59.000Z

    To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

  9. Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock

    E-Print Network [OSTI]

    Kissock, Kelly

    1 Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock/or evaporation. A practical way of reducing heat loss is by insulating or covering the surfaces. This paper presents methods to quantify heat loss and energy savings from insulating hot surfaces and open tanks

  10. Efficiency improvement of a ground coupled heat pump system from energy management

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Efficiency improvement of a ground coupled heat pump system from energy management N. Pardo a,*, Á coupled heat pump Energy efficiency Numerical simulation a b s t r a c t The installed capacity of an air to improve the efficiency of a ground coupled heat pump air conditioning system by adapting its produced

  11. Author's personal copy Towards optimization of a pyroelectric energy converter for harvesting waste heat

    E-Print Network [OSTI]

    Pilon, Laurent

    Direct energy conversion Waste heat harvesting Ferroelectric materials Oscillating flow a b s t r a c for directly converting waste heat into electricity. The two-dimensional mass, momentum, and energy equations of waste heat as required by the second law of thermodynamics. For example, over 50% of the en- ergy

  12. INTEGRATED CO2 HEAT PUMP SYSTEMS FOR SPACE HEATING AND HOT WATER HEATING IN LOW-ENERGY HOUSES AND

    E-Print Network [OSTI]

    J. Stene

    designed as stand-alone systems, i.e. a heat pump water heater (HPWH) in combination with separate units

  13. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  14. Space Heating and Cooling Basics | Department of Energy

    Office of Environmental Management (EM)

    Homes & Buildings Space Heating and Cooling Basics Space Heating and Cooling Basics August 16, 2013 - 1:04pm Addthis A wide variety of technologies are available for heating and...

  15. Energy Efficient Design of a Waste Heat Rejection System

    E-Print Network [OSTI]

    Mehta, P.

    In small and medium sized manufacturing facilities, several situations exist where sources of waste heat and sinks needing heat transfer coexist. Examples of waste heat include but are not limited to: drained hot water streams from water cooled...

  16. Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States Haojie activities in buildings. One area directly affected by climate change is the energy consumption for heating data for use in building energy simulations by EnergyPlus. Two types of residential buildings and seven

  17. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    LBNL-5732E An in-depth Analysis of Space Heating Energy Use in Office Buildings Author(s), Hung Energy, Building Technologies Program, of the U.S. Department of Energy under Contract No. DE-AC02-05CH than 7 trillion Joules of site energy annually [USDOE]. Analyzing building space heating performance

  18. Method for compressing and heating a heating medium to be externally supplied to an engine while using the energy available in the hot exhaust gases of the engine

    SciTech Connect (OSTI)

    Carlquist, S. G.

    1985-06-04T23:59:59.000Z

    In a method for compressing and heating a heating medium to be externally supplied to an engine, while using the energy available in the hot exhaust gases of the engine, the exhaust gases are caused to expand in at least two expansion stages to emit energy for compressing the heating medium in at least two compression stages, heat is transmitted from the exhaust gases after the first expansion stage to the heating medium after the last compression stage, and the heating medium is thereafter supplied with additional heat in a heat-producing unit before it is led to the engine.

  19. Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System 

    E-Print Network [OSTI]

    Liu, G.; Guo, Z.; Hu, S.

    2006-01-01T23:59:59.000Z

    solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

  20. Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System

    E-Print Network [OSTI]

    Liu, G.; Guo, Z.; Hu, S.

    2006-01-01T23:59:59.000Z

    solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

  1. ITP Industrial Distributed Energy: Combined Heat and Power -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    goals chpaccomplishmentsbooklet.pdf More Documents & Publications High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Combined Heat and Power - A Decade...

  2. ITP Industrial Distributed Energy: Promoting Combined Heat and...

    Broader source: Energy.gov (indexed) [DOE]

    residential applications the heat can be used for domestic hot water, space heating, absorption cooling, or dehumidifying at the building where it is produced. CHP systems consist...

  3. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    SciTech Connect (OSTI)

    Aslanyan, V.; Tallents, G. J. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2014-06-15T23:59:59.000Z

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance.

  4. Shape memory alloy heat engines and energy harvesting systems

    DOE Patents [OSTI]

    Browne, Alan L; Johnson, Nancy L; Shaw, John Andrew; Churchill, Christopher Burton; Keefe, Andrew C; McKnight, Geoffrey P; Alexander, Paul W; Herrera, Guillermo A; Yates, James Ryan; Brown, Jeffrey W

    2014-09-30T23:59:59.000Z

    A heat engine includes a first rotatable pulley and a second rotatable pulley spaced from the first rotatable pulley. A shape memory alloy (SMA) element is disposed about respective portions of the pulleys at an SMA pulley ratio. The SMA element includes a first wire, a second wire, and a matrix joining the first wire and the second wire. The first wire and the second wire are in contact with the pulleys, but the matrix is not in contact with the pulleys. A timing cable is disposed about respective portions of the pulleys at a timing pulley ratio, which is different than the SMA pulley ratio. The SMA element converts a thermal energy gradient between the hot region and the cold region into mechanical energy.

  5. Heat Pipe Impact on Dehumidification, Indoor Air Quality and Energy Savings 

    E-Print Network [OSTI]

    Cooper, J. T.

    1996-01-01T23:59:59.000Z

    HEAT PIPE IMPACT ON DEHUMIDIFICATION, INDOOR AIR QUALITY AND ENERGY SAVINGS by J. Thomas Cooper Heat Pipe Technology, Inc Alachua, Florida, USA TENTH SYMPOSIUM ON IMPROVING BUILDING SYSTEMS IN HOT AND HUMID CLIMATES MAY 13-14, 1996 FT....WORTH, TEXAS ABSTRACT Heat pipe impact on our ability to dehumidify, protect, and improve our indoor air quality and save energy in our building systems is tremendous. Projects all over the world in hot and humid climates are using heat pipes in both...

  6. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect (OSTI)

    Allan, Shawn M.; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27T23:59:59.000Z

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 ���°C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination id

  7. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect (OSTI)

    Allan, Shawn M.

    2012-02-27T23:59:59.000Z

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination identifying castable molds for

  8. Nonrotating black hole in a post-Newtonian tidal environment

    E-Print Network [OSTI]

    Stephanne Taylor; Eric Poisson

    2008-09-11T23:59:59.000Z

    We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian external spacetime. The tidal perturbation created by the external environment is treated as a small perturbation. At a large distance from the black hole, the gravitational field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The matching procedure produces the equations of motion for the black hole and the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the post-Newtonian environment; this could contain a continuous distribution of matter or any number of condensed bodies. We next specialize our discussion to a situation in which the black hole is a member of a post-Newtonian two-body system. As an application of our results, we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole, the rate at which it acquires mass as a result of its tidal interaction with the companion body.

  9. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01T23:59:59.000Z

    Central Air Conditioners and Heat Pumps Energy ConservationCentral Air Conditioners and Heat Pumps. Washington DC:Central Air Conditioners and Heat Pumps Energy Conservation

  10. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01T23:59:59.000Z

    Products: Central Air Conditioners and Heat Pumps EnergyResidential Central Air Conditioners and Heat Pumps.Products: Central Air Conditioners and Heat Pumps Energy

  11. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01T23:59:59.000Z

    experimental data, Energy and Buildings 36, 543-555. O.G.consumption for heating, Energy and Buildings 43, 2662-2672.reduction for a net zero energy building, ACEEE Summer Study

  12. Energy impacts of heat island reduction strategies in the Greater Toronto Area, Canada

    E-Print Network [OSTI]

    Konopacki, Steven; Akbari, Hashem

    2001-01-01T23:59:59.000Z

    1999. “Cool Home Features Bring Peak Energy Savings. ”Home Energy 16:22–27. Sherman, M. , D. Wilson and D. Kiel.Residential Heating and Cooling Energy Use in Four Canadian

  13. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01T23:59:59.000Z

    for thermal comfort. Energy and Buildings 2002;34:593-9.IEA. Technology Roadmap. Energy-efficient Buildings: HeatingH, Arens E, Webster T. Energy Savings from Extended Air

  14. 1 CO2 Heat Pump System for Space Heating and Hot Water Heating in Low-Energy Houses and Passive

    E-Print Network [OSTI]

    J. Stene

    2008-01-01T23:59:59.000Z

    designed as a stand-alone system, i.e. a heat pump water heater in combination with a separate unit for

  15. Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Temperature Radiant Heating Systems Milorad Boji1*, Dragan Cvetkovi1 , Jasmina Skerli1 , Danijela Nikoli1., University of Réunion Island, France * Corresponding email: bojic@kg.ac.rs Keywords: Low temperature heating, wall heating, floor heating, ceiling heating, EnergyPlus SUMMARY Low temperature heating panel systems

  16. Save Energy Now in Your Process Heating Systems; Industrial Technologies Program (ITP) BestPractices: Process Heating (Fact sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess Heating Systems Process heating

  17. On Variations of Space-heating Energy Use in Office Buildings

    SciTech Connect (OSTI)

    Lin, Hung-Wen; Hong, Tianzhen

    2013-05-01T23:59:59.000Z

    Space heating is the largest energy end use, consuming more than 7 quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However these variations are mostly driven by a few influential parameters related to building design and operation. The findings provide insights for building designers, owners, operators, and energy policy makers to make better decisions on energy-efficiency technologies to reduce space-heating energy use for both new and existing buildings.

  18. Alternative Energy Sources – Myths and Realities

    E-Print Network [OSTI]

    Youngquist, Walter

    1998-01-01T23:59:59.000Z

    Tidal power Fusion Ocean thermal energy conversion Need Forelectricity. Ocean Thermal energy Conversion (OTEC) Within

  19. Ion beam heated target simulations for warm dense matter physics and inertial fusion energy$

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Ion beam heated target simulations for warm dense matter physics and inertial fusion energy$ J Keywords: Ion beam heating Warm dense matter Inertial fusion energy targets Hydrodynamic simulation a b fusion energy-related beam-target coupling. Simulations of various target materials (including solids

  20. A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus

    SciTech Connect (OSTI)

    Raustad, Richard A. [Florida Solar Energy Center

    2013-01-01T23:59:59.000Z

    This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.

  1. Market penetration analysis for direct heat geothermal energy applications

    SciTech Connect (OSTI)

    Thomas, R.J.; Nelson, R.A.

    1981-06-01T23:59:59.000Z

    This study is concerned with the estimation of the National geothermal market potential and penetration in direct heat applications for residences and certain industry segments. An important aspect of this study is that the analysis considers both known and anticipated goethermal resources. This allows for an estimation of the longer-range potential for geothermal applications. Thus the approach and results of this study provide new insights and valuable information not obtained from more limited, site-specific types of analyses. Estimates made in this study track geothermal market potential and projected penetration from the present to the year 2020. Private sector commercialization of geothermal energy over this period requires assistance in the identification of markets and market sizes, potential users, and appropriate technical applications.

  2. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    dual compressor available on the market Compared with the selected building, a more energy efficient building will have lower space cooling and heating

  3. On Variations of Space-heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2014-01-01T23:59:59.000Z

    space temperature, occupant thermal comfort, cooling and heating loads, HVAC equipment sizes, energy consumption, utility cost, air emissions, water usage, renewable

  4. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01T23:59:59.000Z

    space temperature, occupant thermal comfort, cooling and heating loads, HVAC equipment sizes, energy consumption, utility cost, air emissions, water usage, renewable

  5. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    heat pump, and the energy consumption of the whole GSHP system given the accurate information of the building, GSHP system, weather data,

  6. North American Overview - Heat Pumps Role in Buildings Energy Efficiency Improvement

    SciTech Connect (OSTI)

    Baxter, Van D [ORNL; Bouza, Antonio [U.S. Department of Energy; Gigučre, Daniel [Natural Resources Canada; Hosatte, Sophie [Natural Resources Canada

    2011-01-01T23:59:59.000Z

    A brief overview of the situation in North America regarding buildings energy use and the current and projected heat pump market is presented. R&D and deployment strategies for heat pumps, and the impacts of the housing market and efficiency regulations on the heating and cooling equipment market are summarized as well.

  7. Heat Pipe Impact on Dehumidification, Indoor Air Quality and Energy Savings

    E-Print Network [OSTI]

    Cooper, J. T.

    1996-01-01T23:59:59.000Z

    . If a heat-pipe is used to transfer heat from the warm fresh air intake to the cold supply, not only is the reheat obtained free, but the fresh air gets substantial pre-cooling effect from the heat-pipe saving on the cooling energy required...

  8. Statistical properties of the energy exchanged between two heat baths coupled by thermal fluctuations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    particles kept at different temperatures and coupled by an elastic force. We measure the heat flowingStatistical properties of the energy exchanged between two heat baths coupled by thermal systems in contact with a single heat bath and driven out of equilibrium by external forces [1, 2, 3, 4, 5

  9. Hot Water Heating System Operation and Energy Conservation

    E-Print Network [OSTI]

    Shao, Z.; Chen, H.; Wei, P.

    2006-01-01T23:59:59.000Z

    Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

  10. November 20, 2012 Webinar: District Heating with Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar was held November 20, 2012, and provided information on Indiana's Ball State University geothermal heat pump system, and a hot-water district heating system in St. Paul, Minnesota....

  11. Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01T23:59:59.000Z

    Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40% of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, the Energy Information Administration has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. The Annual Energy Outlook 2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

  12. Heat Recovery and Indirect Evaporative Cooling for Energy Conservation

    E-Print Network [OSTI]

    Buckley, C. C.

    1984-01-01T23:59:59.000Z

    Two thirds of the waste heat sources in the U.S. are in the low temperature range of less than 200 deg F. A primary contributor of this heat is building exhaust. Heat pipe exchangers are ideally suited for recovering this waste. Plant comfort air...

  13. Heat-pump-centered integrated community energy systems: system development summary

    SciTech Connect (OSTI)

    Calm, J.M.

    1980-02-01T23:59:59.000Z

    An introduction to district heating systems employing heat pumps to enable use of low-temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service-water heating, and other thermal services. Otherwise-wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. These sources are abundant, and their use would conserve scarce resources and reduce adverse environmental impacts. More than one-quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less-scarce resources not practical in smaller, individual-building systems. Seven studies performed for the system development phase of the Department of Energy's Heat-Pump-Centered Integrated Community Energy Systems Project and to related studies are summarized. A concluding chapter tabulates data from these separately published studies.

  14. Tidally-induced warps in protostellar discs

    E-Print Network [OSTI]

    C. Terquem; J. Papaloizou; R. Nelson

    1998-10-01T23:59:59.000Z

    We review results on the dynamics of warped gaseous discs. We consider tidal perturbation of a Keplerian disc by a companion star orbiting in a plane inclined to the disc. The perturbation induces the precession of the disc, and thus of any jet it could drive. In some conditions the precession rate is uniform, and as a result the disc settles into a warp mode. The tidal torque also leads to the truncation of the disc, to the evolution of the inclination angle (not necessarily towards alignment of the disc and orbital planes) and to a transport of angular momentum in the disc. We note that the spectral energy distribution of such a warped disc is different from that of a flat disc. We conclude by listing observational effects of warps in protostellar discs.

  15. Hybrid Solar Lighting Provides Energy Savings and Reduces Waste Heat

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss [ORNL; Maxey, L Curt [ORNL; Earl, Dennis Duncan [ORNL; Beshears, David L [ORNL; Ward, Christina D [ORNL; Parks, James Edgar [ORNL

    2006-01-01T23:59:59.000Z

    ABSTRACT Artificial lighting is the largest component of electricity use in commercial U.S. buildings. Hybrid solar lighting (HSL) provides an exciting new means of reducing energy consumption while also delivering significant ancillary benefits associated with natural lighting in buildings. As more than half of all federal facilities are in the Sunbelt region (defined as having an average direct solar radiation of greater than 4 kWh/m2/day) and as more than half of all square footage available in federal buildings is also in the Sunbelt, HSL is an excellent technology fit for federal facilities. The HSL technology uses a rooftop, 4-ft-wide dish and secondary mirror that track the sun throughout the day (Fig. 1). The collector system focuses the sunlight onto 127 optical fibers. The fibers serve as flexible light pipes and are connected to hybrid light fixtures that have special diffusion rods that spread out the light in all directions. One collector powers about eight hybrid light fixtures-which can illuminate about 1,000 square feet. The system tracks at 0.1 accuracy, required by the two-mirror geometry to keep the focused beam on the fiber bundle. When sunlight is plentiful, the optical fibers in the luminaires provide all or most of the light needed in an area. During times of little or no sunlight, a sensor controls the intensity of the artificial lamps to maintain a desired illumination level. Unlike conventional electric lamps, the natural light produces little to no waste heat and is cool to the touch. This is because the system's solar collector removes the infrared light-the part of the spectrum that generates a lot of the heat in conventional bulbs-from the sunlight.

  16. A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System

    E-Print Network [OSTI]

    Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

    2006-01-01T23:59:59.000Z

    In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

  17. A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System 

    E-Print Network [OSTI]

    Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

    2006-01-01T23:59:59.000Z

    In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

  18. Emerging Technologies in Wood Energy Wood can already be used to produce heat and

    E-Print Network [OSTI]

    established technologies of District Energy and Combined Heat and Power plants. Using wood to makeEmerging Technologies in Wood Energy Wood can already be used to produce heat and electricity using such as flooring and siding. In Europe, torrefaction has been explored to produce an improved wood pellet

  19. Greening the terrestrial biosphere: simulated feedbacks on atmospheric heat and energy circulation

    E-Print Network [OSTI]

    Cowling, Sharon A.

    Greening the terrestrial biosphere: simulated feedbacks on atmospheric heat and energy circulation on atmospheric exchange of heat and moisture. Our CONTROL simulation had a mean global net primary production (NPP) of 56.3 GtCyr-1 which is half that of our scenario value of 115.1 GtCyr-1 . LAI and latent energy

  20. Techno-economic analysis of renewable energy source options for a district heating project

    SciTech Connect (OSTI)

    Ghafghazi, S. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [University of British Columbia, Vancouver

    2009-09-01T23:59:59.000Z

    With the increased interest in exploiting renewable energy sources for district heating applications, the economic comparison of viable options has been considered as an important step in making a sound decision. In this paper, the economic performance of several energy options for a district heating system in Vancouver, British Columbia, is studied. The considered district heating system includes a 10 MW peaking/ backup natural gas boiler to provide about 40% of the annual energy requirement and a 2.5 MW base-load system. The energy options for the base-load system include: wood pellet, sewer heat, and geothermal heat. Present values of initial and operating costs of each system were calculated over 25-year service life of the systems, considering depreciation and salvage as a negative cost item. It was shown that the wood pellet heat producing technologies provided less expensive energy followed by the sewer heat recovery, geothermal and natural gas systems. Among wood pellet technologies, the grate burner was a less expensive option than powder and gasifier technologies. It was found that using natural gas as a fuel source for the peaking/backup system accounted for more than 40% of the heat production cost for the considered district heating center. This is mainly due to the high natural gas prices which cause high operating costs over the service life of the district heating system. Variations in several economic inputs did not change the ranking of the technology options in the sensitivity analysis. However, it was found that the results were more sensitive to changes in operating costs of the system than changes in initial investment. It is economical to utilize wood pellet boilers to provide the base-load energy requirement of district heating systems Moreover, the current business approach to use natural gas systems for peaking and backup in district heating systems could increase the cost of heat production significantly.