Sample records for heat table c1

  1. Table 26. Natural gas home customer-weighted heating degree...

    Gasoline and Diesel Fuel Update (EIA)

    92 Created on: 3262015 1:21:33 PM Table 26. Natural gas home customer-weighted heating degree days New England Middle Atlantic East North Central West North Central South...

  2. Description of 2003 CBECS Detailed Tables and Categories of Data

    Gasoline and Diesel Fuel Update (EIA)

    floorspace heated, cooled, and lit, and energy-using equipment types (heating, cooling, water heating, lighting, and refrigeration). Tables C1-C12 and C1A-C12A contain energy usage...

  3. Physics 1114: Unit 7 Homework Use the table in your text for specific heat capacity values.

    E-Print Network [OSTI]

    Mansell, Edward "Ted"

    at 20 C? [Specific heat capacity of air = 703 J/(kg C ) at constant volume.] 7. What is the specific of a heat engine and a heat pump. Include QH, QC, TH, TC, and W. What is the major difference in your two not the same? 6. Determine the maximum coefficient of performance of a heat pump used to heat the inside

  4. "Table HC8.5 Space Heating Usage Indicators by Urban/Rural Location...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by UrbanRural Location, 2005" " Million U.S. Housing Units" ,,"UrbanRural Location (as Self-Reported)" ,"Housing Units (millions)" "Space Heating...

  5. "Table HC10.5 Space Heating Usage Indicators by U.S. Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Space Heating Usage...

  6. "Table HC9.5 Space Heating Usage Indicators by Climate Zone...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000...

  7. "Table HC4.5 Space Heating Usage Indicators by Renter-Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing...

  8. "Table HC3.5 Space Heating Usage Indicators by Owner-Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing...

  9. "Table HC14.5 Space Heating Usage Indicators by West Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used" "Heat Pump",0.6,"Q","N","Q" "Central Warm-Air Furnace",2.3,0.6,"Q",0.5 "SteamHot Water System","Q","Q","N","Q" "Built-in Electric Units",2.2,0.7,"Q",0.5 "Built-in Pipeless...

  10. "Table HC12.5 Space Heating Usage Indicators by Midwest Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used" "Heat Pump",0.6,"Q","Q","Q" "Central Warm-Air Furnace",2.3,0.9,0.5,0.3 "SteamHot Water System","Q","Q","Q","N" "Built-in Electric Units",2.2,0.6,0.4,0.3 "Built-in Pipeless...

  11. "Table HC13.5 Space Heating Usage Indicators by South Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Heat Pump",0.6,0.4,0.3,"Q","N" "Central Warm-Air Furnace",2.3,0.7,0.3,0.2,"Q" "SteamHot Water System","Q","N","N","N","N" "Built-in Electric Units",2.2,0.4,0.3,"Q","N" "Built-in...

  12. "Table HC15.5 Space Heating Usage Indicators by Four Most Populated...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Heat Pump",0.6,"N","N","N","Q" "Central Warm-Air Furnace",2.3,"Q","Q","Q",0.3 "SteamHot Water System","Q","N","N","N","N" "Built-in Electric Units",2.2,"Q","Q","N",0.3 "Built-in...

  13. "Table HC11.5 Space Heating Usage Indicators by Northeast Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used" "Heat Pump",0.6,"N","N","N" "Central Warm-Air Furnace",2.3,"Q","Q","Q" "SteamHot Water System","Q","Q","Q","Q" "Built-in Electric Units",2.2,0.4,"Q",0.2 "Built-in Pipeless...

  14. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  15. "Table HC11.4 Space Heating Characteristics by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal4362 Home324

  16. "Table HC11.8 Water Heating Characteristics by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal436278 Water

  17. "Table HC12.4 Space Heating Characteristics by Midwest Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal4362780324

  18. Table Search (or Ranking Tables)

    E-Print Network [OSTI]

    Halevy, Alon

    ;Table Search #3 #12;Outline · Goals of table search · Table search #1: Deep Web · Table search #3 search Table search #1: Deep Web · Table search #3: (setup): Fusion Tables · Table search #2: WebTables ­Version 1: modify document search ­Version 2: recover table semantics #12;Searching the Deep Web store

  19. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 6: Process Heat and Hydrogen Co-Generation PIRTs

    SciTech Connect (OSTI)

    Forsberg, Charles W [ORNL; Gorensek, M. B. [Savannah River National Laboratory (SRNL); Herring, S. [Idaho National Laboratory (INL); Pickard, P. [Sandia National Laboratories (SNL)

    2008-03-01T23:59:59.000Z

    A Phenomena Identification and Ranking Table (PIRT) exercise was conducted to identify potential safety-0-related physical phenomena for the Next Generation Nuclear Plant (NGNP) when coupled to a hydrogen production or similar chemical plant. The NGNP is a very high-temperature reactor (VHTR) with the design goal to produce high-temperature heat and electricity for nearby chemical plants. Because high-temperature heat can only be transported limited distances, the two plants will be close to each other. One of the primary applications for the VHTR would be to supply heat and electricity for the production of hydrogen. There was no assessment of chemical plant safety challenges. The primary application of this PIRT is to support the safety analysis of the NGNP coupled one or more small hydrogen production pilot plants. However, the chemical plant processes to be coupled to the NGNP have not yet been chosen; thus, a broad PIRT assessment was conducted to scope alternative potential applications and test facilities associated with the NGNP. The hazards associated with various chemicals and methods to minimize risks from those hazards are well understood within the chemical industry. Much but not all of the information required to assure safe conditions (separation distance, relative elevation, berms) is known for a reactor coupled to a chemical plant. There is also some experience with nuclear plants in several countries that have produced steam for industrial applications. The specific characteristics of the chemical plant, site layout, and the maximum stored inventories of chemicals can provide the starting point for the safety assessments. While the panel identified events and phenomena of safety significance, there is one added caveat. Multiple high-temperature reactors provide safety-related experience and understanding of reactor safety. In contrast, there have been only limited safety studies of coupled chemical and nuclear plants. The work herein provides a starting point for those studies; but, the general level of understanding of safety in coupling nuclear and chemical plants is less than in other areas of high-temperature reactor safety.

  20. TABLE OF CONTENTS ABSTRACT . . .. . . .. . . . . . . . . . . . . . . . . . . . . . v

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ............................................... 12 Water-Source Heat Pump Performance ............................ 18 Air-Source Heat Pump QUARTZ CONTENT OF SEDIMENTARY ROCK LAYERS ........ 17 TABLE 10. PROPERTIES OF SEDIMENTARY ROCK LAYERS OF PERFORMANCE OF WATER-SOURCE HEAT PUMP .............................. ................. 23 FIGURE 2. NODAL

  1. Attachment C1

    Office of Environmental Management (EM)

    C1 WASTE CHARACTERIZATION TESTING METHODS Waste Isolation Pilot Plant Hazardous Waste Permit March 13, 2013 (This page intentionally blank) Waste Isolation Pilot Plant Hazardous...

  2. Attachment C1

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of Training AprilUnion Call to Make1: DOEA PageC1 WASTE

  3. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  4. "Table HC10.4 Space Heating Characteristics by U.S. Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal43 Lighting24

  5. "Table HC10.5 Space Heating Usage Indicators by U.S. Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal43

  6. "Table HC10.8 Water Heating Characteristics by U.S. Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal436 Air78

  7. "Table HC11.5 Space Heating Usage Indicators by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal4362 Home3245

  8. "Table HC12.5 Space Heating Usage Indicators by Midwest Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal43627803245

  9. "Table HC4.8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home72 Home8 Water Heating

  10. "RSE Table C1.1. Relative Standard Errors for Table C1.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B Winter13434.1.

  11. Table Contents Page i 2013 Nonresidential Compliance Manual January 2014

    E-Print Network [OSTI]

    Table B-1 Room Air Conditioner, Room Air-Conditioning Heat Pump, Packaged Terminal Air Conditioner ....................................................................................11 Table B-2 Standards for Room Air Conditioners and Room Air-Conditioning Heat Pumps...........12 Table B-3 Standards for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps

  12. Complement C1q subcomponent subunit A

    E-Print Network [OSTI]

    Chandrasekhar, Anjana; Dinasrapu, Ashok Reddy; Tenner, Andrea J; Subramaniam, Shankar

    2012-01-01T23:59:59.000Z

    ability of the (C1r–C1s) 2 tetramer to bind C1q (Valck etin equilibrium with the tetramer of serine proteases C1r 2ability of the (C1r–C1s) 2 tetramer to bind C1q (Valck et

  13. Heat Integrate Heat Engines in Process Plants

    E-Print Network [OSTI]

    Hindmarsh, E.; Boland, D.; Townsend, D. W.

    ~C. T min Table 3. Problem Table Algorithm Applied to Petrochemicals Process Interval GJ ltiour 'Temperatures ! C! 2 ) ? ~ Cold. Hot Aecumulated Heat Heat FJ.owa Interval Streams StrePlS Deficit. Input OUtput -OUtt!utInput. 20 30 -2... of heat which can be passed on in this manner is performed in column 2 and column 3 of Table 3. It is initially assumed that the heat input from external utilities is zero. This is represented in Table 3 by a zero input to the top interval. Having...

  14. Amplitude analyses of the decays ?c1?????? and ?c1??'????

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adams, G. S.; Napolitano, J.; Ecklund, K. M.; Insler, J.; Muramatsu, H.; Park, C. S.; Pearson, L. J.; Thorndike, E. H.; Ricciardi, S.; Thomas, C.; et al

    2011-12-01T23:59:59.000Z

    Using a data sample of 2.59×10? ?(2S) decays obtained with the CLEO-c detector, we perform amplitude analyses of the complementary decay chains ?(2S)???c1; ?c1?????? and ?(2S)???c1; ?c1??'????. We find evidence for an exotic P-wave ?'? amplitude, which, if interpreted as a resonance, would have parameters consistent with the ??(1600) state reported in other production mechanisms. We also make the first observation of the decay a?(980)??'? and measure the ratio of branching fractions B(a?(980)??'?)/B(a?(980)???)=0.064±0.014±0.014. The ?? spectrum produced with a recoiling ? is compared to that with ?' recoil.

  15. c1a.xls

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    have the end use, not consumption specifically for that particular end use. HVAC Heating, Ventilation, and Air Conditioning. Due to rounding, data may not sum to...

  16. 2003 CBECS RSE Tables

    Gasoline and Diesel Fuel Update (EIA)

    of the Excel tables (access from main detailed tables page) or in PDF format here: Building Characteristics for All Buildings (Tables A1-A8) RSE Tables: PDF, 16 pages, 312KB...

  17. Table 7

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:1 Table 7 Created on:

  18. General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbelllong version)ConfinementGeneral Tables The

  19. "Table HC1.3 Heated Floorspace Usage Indicators, 2005" " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal

  20. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01T23:59:59.000Z

    passive solar heating and cooling" Technology development issolar heating and cooling systems, J TABLE II-3 TechnologyTechnology development for passive solar heating and cooling

  1. Passive solar heating analysis

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, R.W.; Mc Farland, R.D.; Wray, W.O.

    1984-01-01T23:59:59.000Z

    This book discusses about the design of solar heating systems. The terms and symbols are clearly defined. Step-by-step procedures are indicated. Worked examples are given with tables, graphs, appendixes.

  2. Tabled Execution in Scheme

    SciTech Connect (OSTI)

    Willcock, J J; Lumsdaine, A; Quinlan, D J

    2008-08-19T23:59:59.000Z

    Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.

  3. Appendix B Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B Right-of-Way Tower Configuration Tables and Figures Page B-1 Table B-1 West Alternative Tower Configurations Segment Segment Length (miles) Section (Tower to Tower) Additional...

  4. Appendix C.1 THE LEAD LABORATORY

    E-Print Network [OSTI]

    Appendix C.1 THE LEAD LABORATORY By PATRICK J. PARSONS, Ph.D.1 J. JULIAN CHISOLM, JR., M.D.2 Role of the Laboratory Laboratories measure lead concentrations in either clinical samples between the clinical and environmental lead laboratories and the issues that they face. Often

  5. Environmental Justice Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... H-1 Table H-1. Poverty Thresholds in 1999 by Size of Family and Number of Related Children Under 18 Years...

  6. Global Analysis of Heat Shock Response in Desulfovibrio vulgaris Hildenborough.

    E-Print Network [OSTI]

    Chhabra, S.R.

    2010-01-01T23:59:59.000Z

    A novel class of heat and secretion stress-responsive genesas a thermometer of heat stress and modulates the activityenhanced at 60 min of heat stress. From Table 3, it appears

  7. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9. Table

  8. Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. Coal Stocks at Manufacturing:: Total U.S..

  9. Cooperative Research in C1 Chemistry

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2000-10-27T23:59:59.000Z

    C1 chemistry refers to the conversion of simple carbon-containing materials that contain one carbon atom per molecule into valuable products. The feedstocks for C1 chemistry include natural gas, carbon dioxide, carbon monoxide, methanol and synthesis gas (a mixture of carbon monoxide and hydrogen). Synthesis gas, or syngas, is produced primarily by the reaction of natural gas, which is principally methane, with steam. It can also be produced by gasification of coal, petroleum coke, or biomass. The availability of syngas from coal gasification is expected to increase significantly in the future because of increasing development of integrated gasification combined cycle (IGCC) power generation. Because of the abundance of remote natural gas, the advent of IGCC, and environmental advantages, C1 chemistry is expected to become a major area of interest for the transportation fuel and chemical industries in the relatively near future. The CFFLS will therefore perform a valuable national service by providing science and engineering graduates that are trained in this important area. Syngas is the source of most hydrogen. Approximately 10 trillion standard cubic feet (SCF) of hydrogen are manufactured annually in the world. Most of this hydrogen is currently used for the production of ammonia and in a variety of refining and chemical operations. However, utilization of hydrogen in fuel cells is expected to grow significantly in the next century. Syngas is also the feedstock for all methanol and Fischer-Tropsch plants. Currently, world consumption of methanol is over 25 million tons per year. There are many methanol plants in the U.S. and throughout the world. Methanol and oxygenated transportation fuel products play a significant role in the CFFLS C1 program. Currently, the only commercial Fischer-Tropsch plants are overseas, principally in South Africa (SASOL). However, new plants are being built or planned for a number of locations. One possible location for future F-T plant development in the U.S. is in the Alaskan oil fields.

  10. 2003 CBECS Detailed Tables: Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    c12-pdf c12.xls c12.html Electricity (Tables C13-C22) set10.pdf Table C13. Total Electricity Consumption and Expenditures c13.pdf c13.xls c13.html Table C14. Electricity...

  11. TABLE OFCONTENTS Contract Information

    E-Print Network [OSTI]

    Polly, David

    ....................................... 3 Your Room Assignments .......................................................... 4 Air Conditioner ................................................... 4 Consolidation ......................................................... 4 Heating &Air

  12. COOPERATIVE RESEARCH IN C1 CHEMISTRY

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2001-04-30T23:59:59.000Z

    Faculty and students from five universities (Kentucky, West Virginia, Utah, Pittsburgh and Auburn) are collaborating on a basic research program to develop novel C1 chemistry processes for the production of clean, high quality transportation fuel. An Industrial Advisory Board (IAB) with members from Chevron, Eastman Chemical, Energy International, Teir Associates, and the Department of Defense has been formed to provide practical guidance to the program. The program has two principal objectives. (1) Develop technology for conversion of C1 source materials (natural gas, synthesis gas, carbon dioxide and monoxide, and methanol) into clean, high efficiency transportation fuel. (2) Develop novel processes for producing hydrogen from natural gas and other hydrocarbons. Some of the principal accomplishments of the program in its first two years are: (1) The addition of acetylenic compounds in Fischer-Tropsch synthesis is found to produce significant amounts of oxygenated products in FT diesel fuels. Such oxygenated products should decrease particulate matter (PM) emissions. (2) Nanoscale, binary, Fe-based catalysts supported on alumina have been shown to have significant activity for the decomposition of methane into pure hydrogen and potentially valuable multi-walled carbon nanotubes. (3) Catalytic synthesis processes have been developed for synthesis of diethyl carbonate, higher ethers, and higher alcohols from C1 source materials. Testing of the effect of adding these oxygenates to diesel fuel on PM emissions has begun using a well-equipped small diesel engine test facility. (4) Supercritical fluid (SCF) FT synthesis has been conducted under SCF hexane using both Fe and Co catalysts. There is a marked effect on the hydrocarbon product distribution, with a shift to higher carbon number products. These and other results are summarized.

  13. Tables of thermodynamic properties of sodium

    SciTech Connect (OSTI)

    Fink, J.K.

    1982-06-01T23:59:59.000Z

    The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units.

  14. Table of Contents

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considersTable 1: Points of Entry/Exit andTable

  15. Table_of_Contents

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considersTable 1: Points of Entry/ExitTable of

  16. 1997 Housing Characteristics Tables Housing Unit Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    6.1 20.5 Kerosene ... 3.4 4.6 2.9 4.0 4.9 1.8 18.8 Solar ... 0.7 Q Q Q Q 1.6 46.2 Main Heating Fuel...

  17. FINAL STAFF PAPER A New Generation of Combined Heat

    E-Print Network [OSTI]

    , distributed generation #12;iv #12;v TABLE OF CONTENTS Page Acknowledgements FINAL STAFF PAPER A New Generation of Combined Heat and Power: Policy Planning. Neff , Bryan. A New Generation of Combined Heat and Power: Policy Planning for 2030. 2012. California

  18. Cost Recovery Charge (CRC) Calculation Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost Recovery Charge (CRC) Calculation Table Updated: March 20, 2015 FY 2016 February 2015 CRC Calculation Table (pdf) Final FY 2015 CRC Letter & Table (pdf) Note: The Cost...

  19. Advanced Vehicle Technologies Awards Table

    Broader source: Energy.gov [DOE]

    The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project.

  20. Mentoring Guide TABLE OF CONTENTS

    E-Print Network [OSTI]

    Dasgupta, Dipankar

    Mentoring Guide 1 #12;TABLE OF CONTENTS Introduction...........................................................................................................3 CCFA Mentoring Guide.........................................................................................3 Why Do I Need A Mentor

  1. 1999 CBECS Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 1998 Tables

  2. TABLE OF CONTENTS CALIFORNIA CODE OF REGULATIONS ADMINISTRATIVE REGULATIONS

    E-Print Network [OSTI]

    #12;#12;i TABLE OF CONTENTS CALIFORNIA CODE OF REGULATIONS ADMINISTRATIVE REGULATIONS Section 10............................................. Admin-7 Section 10-106 -- Locally Adopted Energy Standards Product U-Values, Solar Heat Gain Coefficient, and Air Leakage....... Admin-12 Section 10-112 -- Criteria

  3. Table 16. U.S. Coke Exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910. Average3.5.6.

  4. Table 18. U.S. Coal Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.

  5. Table 20. Coal Imports by Customs District

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9. Average

  6. Table 21. U.S. Coke Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9. Average1.

  7. Table 7. U.S. Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9. Average1.2.7.

  8. 4. Heat exchangers; Steam, steam processes

    E-Print Network [OSTI]

    Zevenhoven, Ron

    pictures: KJ05 Temperature distributions of fluid in (a) counterflow, (b) parallel flow, and (c) 1 shell pass and 2 tubes passes. #12;7/74 Heat exchangers: Geometries /3 Temperature distribution in a counter

  9. FY 2008 Laboratory Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment ofAppropriationBudgetLaboratory Table

  10. FY 2009 State Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FY 2008State Tables

  11. FY 2009 Statistical Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FY 2008State TablesStatistical

  12. Microsoft Word - table_08

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20 40 60 807 Created on:3 Table

  13. A=19 Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not observed)95TI07)95TI07)72AJ02) (SeeTables

  14. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action(InsertAbout theSystems3, Revision 0 i TABLE OF

  15. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action(InsertAbout theSystems3, Revision 0 i TABLE

  16. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action(InsertAbout theSystems3, Revision 0 i TABLE5,

  17. 1992 CBECS Detailed Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to7. Electricity4.Rocky6 AprilTables

  18. 8He General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 U . SHe General Tables

  19. 9Be General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 U . SHeBBe General Table

  20. Table of Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D Alloys &8-5070P3. U.S.7. U.S.8.5TABLE

  1. Table of Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D Alloys &8-5070P3. U.S.7. U.S.8.5TABLE2

  2. Lyapunov optimizing measures for C1 expanding maps of the

    E-Print Network [OSTI]

    Wright, Francis

    Lyapunov optimizing measures for C1 expanding maps of the circle Oliver Jenkinson and Ian D. Morris Abstract. For a generic C1 expanding map of the circle, the Lyapunov maximizing measure is unique, fully/Z, and let M(T) denote the set of T-invariant Borel probability measures. For any µ M(T), its Lyapunov

  3. THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUSSOLUTIONS DATABASE

    SciTech Connect (OSTI)

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.

    1988-05-01T23:59:59.000Z

    Tables of consistent thermodynamic property values for nuclear waste isolation are given. The tables include critically assessed values for Gibbs energy of formation. enthalpy of formation, entropy and heat capacity for minerals; solids; aqueous ions; ion pairs and complex ions of selected actinide and fission decay products at 25{sup o}C and zero ionic strength. These intrinsic data are used to calculate equilibrium constants and standard potentials which are compared with typical experimental measurements and other work. Recommendations for additional research are given.

  4. Table 9. U.S. Steam Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9. Table 8.2.9.

  5. C1EE02421C 5060..5067

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOI: 10.1039c1ee02421c This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the...

  6. table3.1

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel234 Fuel

  7. table3.2

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel234 Fuel

  8. FNANO12 Table of Contents Table of Contents

    E-Print Network [OSTI]

    Reif, John H.

    Bardram Software tools for automated design of dynamic nucleic acid systems Table of Contents In Silico Design, In Vitro Characterization and Ex-Vivo Studies of Functional RNA-based Nanoparticles

  9. FY 2015 Summary Control Table by Appropriation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Control Table by Appropriation (dollars in thousands - OMB Scoring) Summary Control Table by Appropriation Page 1 FY 2015 Congressional Request FY 2013 FY 2014 FY 2014 FY...

  10. Automation of BESSY scanning tables

    E-Print Network [OSTI]

    Hanton, J

    1981-01-01T23:59:59.000Z

    A microprocessor M6800 is used for the automation of scanning and premeasuring BESSY tables. The tasks achieved by the microprocessor are: control of spooling of the four asynchronous film winding devices and switching on and off the 4 projection lamps; preprocessing of the data coming from a bipolar coordinates measuring device; bidirectional interchange of information between the operator, the BESSY table and the DEC PDP 11/34 mini computer controlling the scanning operations; control of the magnification on the table by swapping the projection lenses of appropriate focal lengths and the associated light boxes (under development). In connection with the last of these, study is being made for the use of BESSY tables for accurate measurements (+/- 5 microns), by encoding the displacements of the projection lenses. (0 refs).

  11. A visualization comparison of convective flow boiling heat transfer augmentation devices

    E-Print Network [OSTI]

    Lundy, Brian Franklin

    1998-01-01T23:59:59.000Z

    The qualitative effects of inset-table heat transfer phics. augmentation devices on vertical in-tube convective flow boiling flow regimes, transition mechanisms, and heat transfer are presented in this study. Three twisted tapes with twist ratios...

  12. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat...

  13. Gille-SIO 221C 1 Objective Mapping: Anisotropic Statistics

    E-Print Network [OSTI]

    Gille, Sarah T.

    Gille-SIO 221C 1 Objective Mapping: Anisotropic Statistics Objective mapping discussions often assume that covariance statistics are isotropic and homogeneous. However, in the ocean and atmosphere. The equations used to carry out objective mapping are easily modified to allow for anisotropic statistics

  14. C-1 2003 SITE ENVIRONMENTAL REPORT Radiological Data Methodologies

    E-Print Network [OSTI]

    Homes, Christopher C.

    C-1 2003 SITE ENVIRONMENTAL REPORT APPENDIX C Radiological Data Methodologies DOSE CALCULATION to calculate annual disper- sions for the midpoint of a given sector and distance. Facility Protection Agency Exposure Factors Handbook (EPA 1996). RADIOLOGICAL DATA PROCESSING Radiation events occur

  15. Kinetics of hyperpolarized 13 C1-pyruvate transport

    E-Print Network [OSTI]

    Frydman, Lucio

    and their metabolic products, whereas gradient-based techniques can localize the spatial source of these spectralKinetics of hyperpolarized 13 C1-pyruvate transport and metabolism in living human breast cancer) Metabolic fluxes can serve as specific biomarkers for detecting malignant transformations, tumor progression

  16. Num. Name Grid 0005 Franklin House C -1

    E-Print Network [OSTI]

    Arnold, Jonathan

    Num. Name Grid 0000 0005 Franklin House C - 1 0019 Hodgson Oil Building D - 1 0020 Phi Kappa Hall C Center C - 2 0082 Hull Street Deck B - 2 0090 Geology Hydrothermal Lab C - 2 0101 Chicopee Main Building Biological Sciences Building C - 3, D - 3 1001 Chemistry C - 3 1002 Geography and Geology C - 3 1003 Physics

  17. IntroductiontoProcessEngineering(PTG) 4. Heat exchangers;

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Temperature distributions of fluid in (a) counterflow, (b) parallel flow, and (c) 1 shell pass and 2 tubes Temperature distribution in a counter-flow heat exchanger. Note: the exit temperature TC,o of the cold stream

  18. A PC simulation of heat transfer and temperature distribution in a circulating wellbore

    E-Print Network [OSTI]

    Pierce, Robert Duane

    1987-01-01T23:59:59.000Z

    for Varying Drill Pipe 59 Outer Diameter TABLE 4 - Well Data Summary For Varying Mud Flow Rate TABLE 5 ? Mell Data Summary For Varying Heat Transfer 60 62 Coefficient (Pipe) 65 TABLE 6 ? Well Data Summary For Varying Heat Transfer Coefficient (Annulus.... 2 - Introductory menu of program Fig. 3 - Program master menu Fig. 4 ? Change/view parameters menu Fig. 5 ? Drilling fluid parameters menu Fig. 6 ? Drill pipe parameters menu Fig. 7 ? Mellbore/formation parameters menu Fig. 8 - Casing...

  19. Water heat pipe frozen startup and shutdown transients with internal temperature, pressure and visual observations

    E-Print Network [OSTI]

    Reinarts, Thomas Raymond

    1989-01-01T23:59:59.000Z

    with Internal Temperature, Pressure and Visual Observations. IDecember 1989) Thomas Raymond Reinarts, B. S. , Texas A8M University Chair of Advisory Committee: Dr. Frederick Best In a set of transient heat pipe experiments vapor space and wick... LIST OF TABLES Page Table 1. Outer Aluminum Wall Temperatures Observed and Predicted 79 Table 2. Summary of Measured Dryout, Rewet and Melting Front 126 Velocities LIST OF FIGURES Figure 1. Typical Heat Pipe Diagram Figure 2. Curvature of Vapor...

  20. A PC simulation of heat transfer and temperature distribution in a circulating wellbore 

    E-Print Network [OSTI]

    Pierce, Robert Duane

    1987-01-01T23:59:59.000Z

    for Varying Drill Pipe 59 Outer Diameter TABLE 4 - Well Data Summary For Varying Mud Flow Rate TABLE 5 ? Mell Data Summary For Varying Heat Transfer 60 62 Coefficient (Pipe) 65 TABLE 6 ? Well Data Summary For Varying Heat Transfer Coefficient (Annulus.... 2 - Introductory menu of program Fig. 3 - Program master menu Fig. 4 ? Change/view parameters menu Fig. 5 ? Drilling fluid parameters menu Fig. 6 ? Drill pipe parameters menu Fig. 7 ? Mellbore/formation parameters menu Fig. 8 - Casing...

  1. Observation of ?c1 Decays into Vector Meson Pairs ??, ?? and, ??

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ablikim, M.; Achasov, M. N.; An, L.; An, Q.; An, Z. H.; Bai, J. Z.; Baldini, R.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Cao, G. F.; Cao, X. X.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denysenko, I.; Destefanis, M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, M. Y.; Fan, R. R.; Fang, J.; Fang, S. S.; Feng, C. Q.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Greco, M.; Grishin, S.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kavatsyuk, M.; Komamiya, S.; Kuehn, W.; Lange, J. S.; Leung, J. K. C.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Lei; Li, N. B.; Li, Q. J.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, X. T.; Liu, B. J.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, G. C.; Liu, H.; Liu, H. B.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K.; Liu, K. Y.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Y. W.; Liu, Yong; Liu, Z. A.; Liu, Z. Q.; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, T.; Ma, X.; Ma, X. Y.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Muchnoi, N. Yu.; Nefedov, Y.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pelizaeus, M.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pun, C. S. J.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Sonoda, S.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tang, X. F.; Tian, H. L.; Toth, D.; Varner, G. S.; Wan, X.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Wen, Q. G.; Wen, S. P.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, W.; Wu, Z.; Xiao, Z. J.; Xie, Y. G.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Y.; Xu, Z. R.; Xu, Z. Z.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, M.; Yang, T.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, L.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, Jiawei; Zhao, Jingwei; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhao, Z. L.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhong, L.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.; Zweber, P.

    2011-08-01T23:59:59.000Z

    Using (106±4)×10? ?(3686) events accumulated with the BESIII detector at the BEPCII e?e? collider, we present the first measurement of decays of ?c1 to vector meson pairs ??, ??, and ??. The branching fractions are measured to be (4.4±0.3±0.5)×10??, (6.0±0.3±0.7)×10??, and (2.2±0.6±0.2)×10??, for ?c1 ???, ??, and ??, respectively, which indicates that the hadron helicity selection rule is significantly violated in ?cJ decays. In addition, the measurement of ?cJ??? provides the first indication of the rate of doubly OZI-suppressed ?cJ decay. Finally, we present improved measurements for the branching fractions of ?c0 and ?c2 to vector meson pairs.

  2. Table of Contents INTRODUCTION 2

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    #12;1 Table of Contents INTRODUCTION 2 SECTION ONE: PRINCIPLES OF GOOD PRACTICE 4 SECTION TWO, it offers a practical guide to staff and volunteers who work with children by outlining a number of fundamental principles of good practice, highlighting the key elements of each one and discussing the issues

  3. EIA - Annual Energy Outlook (AEO) 2013 Data Tables

    Gasoline and Diesel Fuel Update (EIA)

    Floorspace, and Equipment Efficiency XLS Table 24. Industrial Sector Macroeconomic Indicators XLS Table 25. Refining Industry Energy Consumption XLS Table 26. Food Industry...

  4. SOFA 2 Documentation Table of contents

    E-Print Network [OSTI]

    SOFA 2 Documentation Table of contents 1 Overview...................................................................................................................... 2 2 Documentation............................................................................................................. 2 3 Other documentation and howtos

  5. The Interactive Dining Table Florian Echtler

    E-Print Network [OSTI]

    Deussen, Oliver

    into the table lamp for sensing interaction and a small LED-based projector mounted on the ceiling for displaying

  6. Chemistry Department Assessment Table of Contents

    E-Print Network [OSTI]

    Bogaerts, Steven

    0 Chemistry Department Assessment May, 2006 Table of Contents Page Executive Summary 1 Prelude 1 Mission Statement and Learning Goals 1 Facilities 2 Staffing 3 Students: Chemistry Majors and Student Taking Service Courses Table: 1997-2005 graduates profile Table: GRE Score for Chemistry Majors, 1993

  7. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  8. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  9. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  10. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  11. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"A50. Table

  12. Table 11. U.S. Metallurgical Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910. Average Price1.

  13. Table 13. U.S. Coal Exports by Customs District

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910. Average3. U.S.

  14. Table 14. Steam Coal Exports by Customs District

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910. Average3.

  15. Table 15. Metallurgical Coal Exports by Customs District

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910. Average3.5.

  16. Table 17. Average Price of U.S. Coke Exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910. Average3.5.6.7.

  17. Table 19. Average Price of U.S. Coal Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9. Average Price

  18. Table 22. Average Price of U.S. Coke Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9. Average1.2.

  19. Table 8. Average Price of U.S. Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9.

  20. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a Geologic5/15/2013May 7,Operations from

  1. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a Geologic5/15/2013May 7,Operations

  2. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a Geologic5/15/2013May 7,Operations8

  3. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a Geologic5/15/2013May 7,Operations838

  4. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a Geologic5/15/2013May 7,Operations8385

  5. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a Geologic5/15/2013May

  6. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a Geologic5/15/2013May6 from (1991AJ01):

  7. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a Geologic5/15/2013May6 from

  8. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a Geologic5/15/2013May6 from7AJ02):

  9. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a Geologic5/15/2013May6

  10. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a Geologic5/15/2013May60AJ01): Some

  11. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a Geologic5/15/2013May60AJ01):

  12. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a Geologic5/15/2013May60AJ01):3TI07):

  13. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a

  14. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a5TI07): Electromagnetic transitions in

  15. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a5TI07): Electromagnetic transitions

  16. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGE Creating a5TI07): Electromagnetic

  17. Heating system

    SciTech Connect (OSTI)

    Nishman, P.J.

    1983-03-08T23:59:59.000Z

    A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

  18. Benchmark of the Convex C-1 mini supercomputer

    SciTech Connect (OSTI)

    Simmons, M.L.; Lubeck, OlM.

    1986-01-01T23:59:59.000Z

    In July 1985, we benchmarked the Convex C-1 computer at the Convex plant in Richardson, Texas. The machine is marketed as a mini-supercomputer executing a UNIX operating system. The architecture includes vector functional units, 16-million 64-bit words of physical memory and 64 kbytes of set-associative cache between main memory and the CPU. The standard one-processor Los Alamos benchmarks were executed and timed in both single-precision (32-bit) and double-precision (64-bit) floating-point mode. Subsequent to the July benchmark, the machine architecture was changed to expand the cache bypass for vector memory accesses. The benchmarks were redone in October 1985 to include the significant architecture modification. The results in this paper are from the latest benchmark.

  19. CBECS Buildings Characteristics --Revised Tables

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved ReservesBuildings Use Tables (24

  20. CBECS Buildings Characteristics --Revised Tables

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved ReservesBuildings Use Tables

  1. 2003 CBECS Detailed Tables: Summary

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y M E2003 Detailed Tables 2003

  2. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConference |6:Welcome to the3421,097

  3. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConference |6:Welcome to

  4. ARM - Instrument - s-table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40mgovInstrumentsmwr3c DocumentationgovInstrumentsrain DocumentationgovInstrumentss-table

  5. Microsoft Word - table_13.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of28 Third23 Table

  6. Microsoft Word - table_14.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of28 Third23 Table4

  7. Microsoft Word - table_15.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of28 Third23 Table40

  8. Microsoft Word - table_18.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of28 Third235 Table

  9. Microsoft Word - table_19.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of28 Third235 Table7

  10. Microsoft Word - table_21.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S. Department of28 Third2359 Table

  11. Climate-Soil-Vegetation Control on Groundwater Table Dynamics and its Feedbacks in a Climate Model

    SciTech Connect (OSTI)

    Leung, Lai-Yung R.; Huang, Maoyi; Qian, Yun; Liang, Xu

    2010-01-29T23:59:59.000Z

    Among the three dynamically linked branches of the water cycle, including atmospheric, surface, and subsurface water, groundwater is the largest reservoir and an active component of the hydrologic system. Because of the inherent slow response time, groundwater may be particularly relevant for long time-scale processes such as multi-years or decadal droughts. This study uses regional climate simulations with and without surface water – groundwater interactions for the conterminous U.S. to assess the influence of climate, soil, and vegetation on groundwater table dynamics, and its potential feedbacks to regional climate. Analysis shows that precipitation has a dominant influence on the spatial and temporal variations of groundwater table depth (GWT). The simulated GWT is found to decrease sharply with increasing precipitation. Our simulation also shows some distinct spatial variations that are related to soil porosity and hydraulic conductivity. Vegetation properties such as minimum stomatal resistance, and root depth and fraction are also found to play an important role in controlling the groundwater table. Comparing two simulations with and without groundwater table dynamics, we find that groundwater table dynamics mainly influences the partitioning of soil water between the surface (0 – 0.5 m) and subsurface (0.5 – 5 m) rather than total soil moisture. In most areas, groundwater table dynamics increases surface soil moisture at the expense of the subsurface, except in regions with very shallow groundwater table. The change in soil water partitioning between the surface and subsurface is found to strongly correlate with the partitioning of surface sensible and latent heat fluxes. The evaporative fraction (EF) is generally higher during summer when groundwater table dynamics is included. This is accompanied by increased cloudiness, reduced diurnal temperature range, cooler surface temperature, and increased cloud top height. Although both convective and non-convective precipitation are enhanced, the higher EF changes the partitioning to favor more non-convective precipitation, but this result could be sensitive to the convective parameterization used. Compared to simulations without groundwater table dynamics, the dry bias in the summer precipitation is slightly reduced over the central and eastern U.S. Groundwater table dynamics can provide important feedbacks to atmospheric processes, and these feedbacks are stronger in regions with deeper groundwater table, because the interactions between surface and subsurface are weak when the groundwater table is deep. This increases the sensitivity of surface soil moisture to precipitation anomalies, and therefore enhances land surface feedbacks to the atmosphere through changes in soil moisture and evaporative fraction. By altering the groundwater table depth, land use change and groundwater withdrawal can alter land surface response and feedback to the climate system.

  12. Faculty of Technology Heat Engineering Laboratory course 424512 E Ron Zevenhoven c.s.

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Faculty of Technology Heat Engineering Laboratory course 424512 E Ron Zevenhoven c.s. April 2009 of Technology Heat Engineering Laboratory course 424512 E Ron Zevenhoven c.s. April 2009 2/4 where Ti (n in the figure below, and the numerical values in the table: continues.... #12;Faculty of Technology Heat

  13. Environmental Regulatory Update Table, August 1991

    SciTech Connect (OSTI)

    Houlberg, L.M., Hawkins, G.T.; Salk, M.S.

    1991-09-01T23:59:59.000Z

    This Environmental Regulatory Update Table (August 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  14. Environmental Regulatory Update Table, September 1991

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-10-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  15. Environmental regulatory update table, March 1989

    SciTech Connect (OSTI)

    Houlberg, L.; Langston, M.E.; Nikbakht, A.; Salk, M.S.

    1989-04-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  16. Environmental regulatory update table, July 1991

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-08-01T23:59:59.000Z

    This Environmental Regulatory Update Table (July 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  17. Environmental Regulatory Update Table, December 1989

    SciTech Connect (OSTI)

    Houlbert, L.M.; Langston, M.E. (Tennessee Univ., Knoxville, TN (USA)); Nikbakht, A.; Salk, M.S. (Oak Ridge National Lab., TN (USA))

    1990-01-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  18. Environmental Regulatory Update Table, April 1989

    SciTech Connect (OSTI)

    Houlberg, L.; Langston, M.E.; Nikbakht, A.; Salk, M.S.

    1989-05-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  19. A climatic heat budget study of the Gulf of Mexico

    E-Print Network [OSTI]

    Etter, Paul Courtney

    1975-01-01T23:59:59.000Z

    of heat storage (G ) is calo~ lated apparently for the first time directly by use of available bathythermograph (BT) data. Heat flux di rergence due to currents (0 ), calculated as a residual in the heat budget equation, is small. The monthly mean... surface ( CA) . . 16 C. The rate of heat storage (Q ) 32 0. Solution of the oceanic heat budget 39 Comparison with Earlier Studies Summary 56 References Appendix A App ndix 3 Vita 61 79 vi LIST OF TA. '3LES Table Page Number of observations...

  20. TABLE20.CHP:Corel VENTURA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    due to independent rounding. Sources: Energy Information Administration (EIA) Form EIA-814, "Monthly Imports Report." 266 Table 20. Imports of Crude Oil and Petroleum...

  1. TABLE27.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    due to independent rounding. Sources: Energy Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and the U.S. Bureau of the Census. 410 Table 27....

  2. TABLE53.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 53. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between July 2004 Crude Oil ... 0 383 0...

  3. Peer Mentor Handbook Table of Contents

    E-Print Network [OSTI]

    Lin, Zhiqun

    Peer Mentor Handbook #12;Table of Contents Learning Communities Characteristics ..............................................................................................4 Skills for Effective Mentors ...............................................................................................................7 Ethical Considerations for the Peer Mentor

  4. TABLE54.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Administration (EIA) Forms EIA-812, "Monthly Product Pipeline Report," and EIA-813, Monthly Crude Oil Report." Table 54. Movements of Crude Oil and Petroleum Products by Pipeline...

  5. TABLE11.CHP:Corel VENTURA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    (Thousand Barrels) Table 11. PAD District II-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum January-July 2004 Products, Crude Oil...

  6. TABLE15.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 15. PAD District III-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

  7. TABLE19.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 19. PAD District IV-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

  8. TABLE OF CONTENTS NIST Map ...................................................................................................................................................3

    E-Print Network [OSTI]

    TABLE OF CONTENTS NIST Map the Power Grid PML TIME SPEAKER UNIVERSITY TITLE LAB 3:00P Brian Weinstein American University Temperature

  9. JOURNAL DE PHYSIQUE Colloque C1, supplbment au no 4, Tome 38, Avril 1977, page C1-139 MOSSBAUER SPECTROSCOPY OF Ni-FERRITE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    JOURNAL DE PHYSIQUE Colloque C1, supplbment au no 4, Tome 38, Avril 1977, page C1-139 MOSSBAUER Aut6noma de Mtxico Rbum6. - Les spectres d'absorption Mossbauer du ferrite de nickel et de ferrites Ni did not allow the hyperfine fields to be resolved. However, the Mossbauer spectra presented different

  10. JOURNAL DE PHYSIQUE Colloque C1, suppliment au no 4, Tome 38, Avril 1977, page C1-135 MOSSBAUER STUDY OF SPIN ALIGNMENT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    JOURNAL DE PHYSIQUE Colloque C1, suppliment au no 4, Tome 38, Avril 1977, page C1-135 MOSSBAUER les sites B lorsquele zinc substitubest sur les sites A. On utilise ici la spectroscopie Mossbauer Mossbauer Am = 0 disparaissent pour des champs appli- ques infkrieurs a 10kOe. Pour x = 0,3 ces raies

  11. Microwave heating apparatus and method

    DOE Patents [OSTI]

    Johnson, Andrew J. (Boulder, CO); Petersen, Robert D. (Thornton, CO); Swanson, Stephen D. (Brighton, CO)

    1990-01-01T23:59:59.000Z

    An apparatus is provided for heating and melting materials using microwave energy, and for permitting them to solidify. The apparatus includes a microwave energy source, a resonant cavity having an opening in its floor, a microwave energy choke encompassing the opening in the floor of the cavity, a metal container to hold the materials to be heated and melted, a turntable, and a lift-table. During operation, the combined action of the turntable and the lift-table position the metal container so that the top of the container is level with the floor of the cavity, is in substantial registration with the floor opening, and is encompassed by the microwave energy choke; thus, during operation, the interior of the container defines part of the resonant cavity. Additionally, a screw feeder, extending into the cavity and sheltered from microwave energy by a conveyor choke, may convey the materials to be heated to the container. Also, preferably, the floor of the resonant cavity may include perforatins, so that the offgases and dust generated in the apparatus may be removed from the resonant cavity by pulling outside air between the container choke and the exterior wall of the container into the resonant cavity and out from the cavity through the perforations.

  12. Global04_18983-SAND2011-8342C 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Pump Basics31/2007Global health response more

  13. PROPERTY TABLES AND CHARTS (SI UNITS) Table A1 Molar mass, gas constant, and

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Table A­20 Ideal-gas properties of carbon dioxide, CO2 Table A­21 Ideal-gas properties of carbon.1355 n-Butane C4H10 58.124 0.1430 425.2 3.80 0.2547 Carbon dioxide CO2 44.01 0.1889 304.2 7.39 0Appendix 1 PROPERTY TABLES AND CHARTS (SI UNITS) Table A­1 Molar mass, gas constant, and critical

  14. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01T23:59:59.000Z

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  15. Table 8.2. Cost and performance characteristics of new central station electricity generating technologies

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9. Table 8.2.

  16. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  17. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  18. Supplemental Tables to the Annual Energy Outlook

    Reports and Publications (EIA)

    2014-01-01T23:59:59.000Z

    The Annual Energy Outlook (AEO) Supplemental tables were generated for the reference case of the AEO using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets. Most of the tables were not published in the AEO, but contain regional and other more detailed projections underlying the AEO projections.

  19. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01T23:59:59.000Z

    Flows and stream conditions in steam power cycle. Table 4.1in the low-temperature reactor system. Steam power cycle 8.1Heat Storage System for a Solar Steam Power Plant." 12th

  20. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01T23:59:59.000Z

    heat available at night) Gas Turbine Work Table 3.2. StreamTurbine (small turbine) Gas Turbine Parasitic Power BFW PumpHours) Generator Terminals Gas Turbine Parasitic Power BFW

  1. Quantitative trait loci(qtl) analysis of yield components and heat tolerance in wheat (Triticum aestivum)

    E-Print Network [OSTI]

    Do, Jung Hwa

    2009-05-15T23:59:59.000Z

    component traits in the 62 RILs in four individual environments?.. 94 Table XV Summary of QTLs identified by composite interval mapping for heat tolerance based on simple score of yield and its component traits in the 62 RILs in four...

  2. Waste Heat Recovery From Stacks Using Direct-Contact Condensing Heat Exchange

    E-Print Network [OSTI]

    Thorn, W. F.

    is mainly for general interest and to illustrate the analysis methodology. Two key parameters from Table A-I are needed for a heat recovery analysis. First is the weight of water vapor in the flue gas per unit weight of fuel burned and the second... ........_ ...._ ...._ ...._ ...._ ...._ ....--1 200 260 300 360 400 460 600 660 HEAT RECOVERY UNIT INLET FLUE GAS TEMPERATURE, OF FJpre 2. Efficiency Variation With Heat Recovery Unit Inlet Flue Gas Temperature 428 ESL-IE-86-06-69 Proceedings from the Eighth Annual Industrial Energy...

  3. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

  4. table1.1_02

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps Furnaces1

  5. table1.2_02

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps Furnaces12

  6. table1.4_02

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps4 Number of

  7. table3.5_02

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel2345

  8. table3.6_02

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel23456

  9. table5.1_02

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel234561

  10. table5.2_02

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel234561

  11. table5.3_02

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel234561

  12. table5.4_02

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel234561

  13. table5.5_02

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel234561

  14. table5.6_02

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel234561

  15. table5.8_02

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel234561

  16. table7.8_02

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat145 Average678

  17. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    Gasoline and Diesel Fuel Update (EIA)

    table. 56 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  18. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    U.S. Energy Information Administration (EIA) Indexed Site

    table. 56 Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  19. Appendix B 1BStandards Tables 116-A and 116-B Page 1 2008 Residential Compliance Manual August 2009

    E-Print Network [OSTI]

    Residential Compliance Manual August 2009 TABLE 116-B DEFAULT SOLAR HEAT GAIN COEFFICIENT (SHGC) FRAME TYPE or on an existing back-up tank for a solar water-heating system, it shall have an R-value of at least R-12 or transparent panels shall use glass block values. #12;Appendix B ­ 2B§118 (d) and §118 (e) Page 2 2008

  20. Design optimization of residential-sized air-source heat pumps

    E-Print Network [OSTI]

    Boecker, Curtis Layne

    1987-01-01T23:59:59.000Z

    larger heat exchangers and increased fan motor efficiency. Variable-speed heat pumps offer the greatest potential for efficiency increases as improvements in the variable-speed compressors progress. ACKNOWLEDGEMENTS I would like to thank Dr. Dennis O... for your support throughout. vi TABLE OF CONTENTS CHAPTER INTRODUCTION THE HEAT PUMP THERMODYNAMIC CYCLE Page Compressor Heat Exchanger Expansion Device Additional Equipment COMPUTER MODEL SELECTION AND VALIDATION . . 13 General Model...

  1. DE-AC30-11CC40015 SECTION C OPERATION OF DUF6 C-1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C DESCRIPTIONSPECIFICATIONSWORK STATEMENT C.1 OBJECTIVE The Contractor shall operate depleted uranium hexafluoride (DUF6) conversion facilities on DOE property at Paducah,...

  2. Characterization of the C1 and C2 waste tanks located in the BVEST system at ORNL

    SciTech Connect (OSTI)

    Keller, J.M.; Giaquinto, J.M.

    1998-02-01T23:59:59.000Z

    There was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report discusses the analytical characterization data for the supernatant and sludge in the BVEST waste tanks C-1 and C-2. The isotopic data presented in this report supports the position that fissile isotopes of uranium ({sup 233}U and {sup 235}U) and plutonium ({sup 239}Pu and {sup 241}Pu) were denatured as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the sludge in tanks C1 and C2 was found to be hazardous based on RCRA characteristics and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. Additional characteristics of the C1 and C2 sludge inventory relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.

  3. Experimental and theoretical investigations of microwave heating

    E-Print Network [OSTI]

    Kota, Bhagat Chandra

    2004-09-30T23:59:59.000Z

    the variation of the computed time response of the thermocouple with variation of the heat transfer coefficient. It can be seen that the response gets slower as the heat transfer coefficient is decreased and vice versa... and vice versa. Table 4.3 Variation of Time Constant with Diameter of Thermocouple Used Diameter (inch) Time constant(sec) 0.02 1.55 0.022 1.705 0.018 1.395 15 Variation of response with D 0 20 40 60 80 100 120 0 5 10 15 20 25...

  4. Heat Transfer Boundary Conditions in the RELAP5-3D Code

    SciTech Connect (OSTI)

    Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

    2008-05-01T23:59:59.000Z

    The heat transfer boundary conditions used in the RELAP5-3D computer program have evolved over the years. Currently, RELAP5-3D has the following options for the heat transfer boundary conditions: (a) heat transfer correlation package option, (b) non-convective option (from radiation/conduction enclosure model or symmetry/insulated conditions), and (c) other options (setting the surface temperature to a volume fraction averaged fluid temperature of the boundary volume, obtaining the surface temperature from a control variable, obtaining the surface temperature from a time-dependent general table, obtaining the heat flux from a time-dependent general table, or obtaining heat transfer coefficients from either a time- or temperature-dependent general table). These options will be discussed, including the more recent ones.

  5. FY 2015 Summary Control Table by Organization

    Energy Savers [EERE]

    5 Summary Control Table by Organization (dollars in thousands - OMB Scoring) Summary Control by Organization Page 1 FY 2015 Congressional Request FY 2013 FY 2014 FY 2014 FY 2014 FY...

  6. TABLES3.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    S3. Crude Oil and Petroleum Product Imports, 1988 - Present (Thousand Barrels per Day) See footnotes at end of table. 1988 Average ... 300 58 345 343 92 80 0 0 1989...

  7. Model for thermally driven heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.; Otis, D.R.

    1985-01-01T23:59:59.000Z

    A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data. 38 references, 10 figures, 1 table.

  8. Qualified Energy Conservation Bond State-by-State Summary Tables

    Broader source: Energy.gov [DOE]

    Provides a list of qualified energy conservation bond state summary tables. Author: Energy Programs Consortium

  9. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  10. Geothermal heating

    SciTech Connect (OSTI)

    Aureille, M.

    1982-01-01T23:59:59.000Z

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  11. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  12. Water and Space Heating Heat Pumps

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  13. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  14. Appendix A. Hydraulic Properties Statistics Tables Table A1. Hydraulic properties statistics for the alluvium (Stephens et al.).

    E-Print Network [OSTI]

    A-1 Appendix A. Hydraulic Properties Statistics Tables Table A1. Hydraulic properties statistics Deviation .1708 4.274 28.95 Harmonic Mean Number of Observations 9 8 8 2 2 2 2 2 Table A2. Hydraulic.3×10-5 Number of Observations 10 10 10 34 34 4 4 4 #12;A-2 Table A3. Hydraulic properties statistics

  15. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26T23:59:59.000Z

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  16. TableHC14.5.xls

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Do Not Have Heating Equpment... 1.2 0.7 Q 0.7 Have Space Heating Equpment... 109.8 23.4 7.5 16.0 Use Space Heating...

  17. Exact controllability of the superlinear heat equation 1 Statement of ...

    E-Print Network [OSTI]

    2008-05-11T23:59:59.000Z

    y Xr (0,T ;V')? C(1+ a ?)K [ F Lr (Lr (V) + y L2(H2)?C(H1)]. ... Assume p be a solution of (2.1) associated to p0 ? L2(?) and f ? L2(Q). ...... J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Roy. Soc.

  18. Dead heat

    SciTech Connect (OSTI)

    Oppenheimer, M.; Boyle, R.H.

    1990-01-01T23:59:59.000Z

    This paper reports on the prospect of global warming. This paper proposes a workable solution, and a road map for getting there. The author explains how we became addicted to fossil fuels and evokes a bleak picture should this dependence continue. But the book also explores how industry can become a vehicle for solving, instead of precipitating, the global environmental crisis. The decoupling of energy from pollution can be accomplished without sacrificing prosperity by powering the economy with solar energy. Dead Heat takes us step by step to a greenhouse-friendly world fueled only by the sun.

  19. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  20. Segmented heat exchanger

    DOE Patents [OSTI]

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14T23:59:59.000Z

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  1. Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation

    SciTech Connect (OSTI)

    Xing, Lu [Oklahoma State University; Cullin, James [Oklahoma State University; Spitler, Jeffery [Oklahoma State University; Im, Piljae [ORNL; Fisher, Daniel [Oklahoma State University

    2011-01-01T23:59:59.000Z

    A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

  2. C1-Approximationof Seafloor Surfaces With Large Variations Christian Gout' and Dimitri Komatitsch2

    E-Print Network [OSTI]

    Komatitsch, Dimitri

    C1-Approximationof Seafloor Surfaces With Large Variations Christian Gout' and Dimitri Komatitsch2 ' Department of Applied Mathematics, IJniversit6 de Pau, E.R.S. 2055-CNRS, 64000 Pau, France, Christian.gout

  3. C-1 2001 SITE ENVIRONMENTAL REPORT APPENDIX C: RADIOLOGICAL DATA METHODOLOGIES

    E-Print Network [OSTI]

    Homes, Christopher C.

    C-1 2001 SITE ENVIRONMENTAL REPORT APPENDIX C: RADIOLOGICAL DATA METHODOLOGIES DOSE CALCULATION sector and distance. Facility-specificradionuclidereleaserates(incuries per year [Ci/yr]) were also used 1996). RADIOLOGICAL DATA PROCESSING Radiation events occur in a random fashion

  4. Geothermal heat pumps for heating and cooling

    SciTech Connect (OSTI)

    Garg, S.C.

    1994-03-01T23:59:59.000Z

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building`s energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  5. Fast mix table construction for material discretization

    SciTech Connect (OSTI)

    Johnson, S. R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2013-07-01T23:59:59.000Z

    An effective hybrid Monte Carlo-deterministic implementation typically requires the approximation of a continuous geometry description with a discretized piecewise-constant material field. The inherent geometry discretization error can be reduced somewhat by using material mixing, where multiple materials inside a discrete mesh voxel are homogenized. Material mixing requires the construction of a 'mix table,' which stores the volume fractions in every mixture so that multiple voxels with similar compositions can reference the same mixture. Mix table construction is a potentially expensive serial operation for large problems with many materials and voxels. We formulate an efficient algorithm to construct a sparse mix table in O(number of voxels x log number of mixtures) time. The new algorithm is implemented in ADVANTG and used to discretize continuous geometries onto a structured Cartesian grid. When applied to an end-of-life MCNP model of the High Flux Isotope Reactor with 270 distinct materials, the new method improves the material mixing time by a factor of 100 compared to a naive mix table implementation. (authors)

  6. Table of Contents ODS Scholars 1

    E-Print Network [OSTI]

    Chapman, Michael S.

    Table of Contents ODS Scholars 1 Endowed Lecture 1 Senju 3 Research Awards 4 Dr. Stewart 5 OHSU (see page two) 2011 ODS Scholars Announced May 2 The $300,000 gift from the ODS Companies provides five students recently were selected as ODS Scholars for 2011-2012. The awardees were announced at the third

  7. Section 4. Inventory Table of Contents

    E-Print Network [OSTI]

    Section 4. Inventory Table of Contents 4.1 Existing Legal Protections........................................................................................................... 14 #12;Draft Umatilla/Willow Subbasin Plan May 28, 2004 4. Inventory of Existing Activities The following section contains information derived from an inventory questionnaire that was sent

  8. Philosophy 57 Greensheet (Syllabus) Table of Contents

    E-Print Network [OSTI]

    Fitelson, Branden

    Philosophy 57 Greensheet (Syllabus) Table of Contents: Instructor Information Course Home Page Greensheet Page Page 1 of 3http://philosophy.wisc.edu/fitelson/57/syllabus.htm #12;I highly recommend using/syllabus.htm #12;Your 2 lowest quiz grades will be dropped ( , your 5 best quiz scores will be averaged). i

  9. CONTROL OF HAZARDOUS ENERGY Table Of Contents

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Sep 13 i Section 12 CONTROL OF HAZARDOUS ENERGY Table Of Contents Section: Page 12.A General.................. .............................................. ... .12-1 12.B Hazardous Energy.......................................................12-6 #12;EM 385-1-1 XX Sep 13 12-1 SECTION 12 CONTROL OF HAZARDOUS ENERGY 12.A GENERAL 12.A.01 When

  10. A reconstruction of the tables of Thompson's

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A reconstruction of the tables of Thompson's Logarithmetica Britannica (1952) Denis Roegel 20-21Dec2011 #12;hal-00654453,version1-21Dec2011 #12;1 Alexander John Thompson (1885­19??) Alexander John Thompson was born in 1885 in Plaistow, Essex, England. In 1920, he joined the statistical staff

  11. TABLE OF CONTENTS Organizational Profile i

    E-Print Network [OSTI]

    Magee, Joseph W.

    1 #12;2 TABLE OF CONTENTS Organizational Profile i Leadership 1 1.1a. Vision, Values and Mission 1 1.1b. Communication and Organizational Performance 3 1.2a. Organizational Governance 3 1.2b. Legal employees with ORGANIZATIONAL PROFILE $26 million in revenue. Most of that revenue was generated by its

  12. Table of hyperfine anomaly in atomic systems

    SciTech Connect (OSTI)

    Persson, J.R., E-mail: jonas.persson@ntnu.no

    2013-01-15T23:59:59.000Z

    This table is a compilation of experimental values of magnetic hyperfine anomaly in atomic and ionic systems. The last extensive compilation was published in 1984 by Büttgenbach [S. Büttgenbach, Hyperfine Int. 20 (1984) 1] and the aim here is to make an up to date compilation. The literature search covers the period up to January 2011.

  13. Schedule Worksheet -Table of Contents Subject Description

    E-Print Network [OSTI]

    Pittendrigh, Barry

    Subject Description NUPH NUPH-Nuclear Pharmacy NUR NUR-Nursing OBHR OBHR-Orgnztnl Bhvr &Hum Resrce OLS OLS Description CLPH CLPH-Clinical Pharmacy CMCI CMCI-CIC Common Market CMPL CMPL-Comparative Literature CNIT CNIT Sci NS NS-Naval Science NUCL NUCL-Nuclear Engineering #12;Schedule Worksheet - Table of Contents

  14. Schedule Worksheet -Table of Contents Subject Description

    E-Print Network [OSTI]

    Ginzel, Matthew

    ;Schedule Worksheet - Table of Contents Subject Description NUPH NUPH-Nuclear Pharmacy NUR NUR-Nursing NUTR Description CLPH CLPH-Clinical Pharmacy CMCI CMCI-CIC Common Market CMPL CMPL-Comparative Literature CNIT CNIT-Music History & Theory NRES NRES-Natural Res & Environ Sci NS NS-Naval Science NUCL NUCL-Nuclear Engineering #12

  15. VEHICLE SERVICES POLICY Table of Contents

    E-Print Network [OSTI]

    Shihadeh, Alan

    VEHICLE SERVICES POLICY Table of Contents 1. Policy 2. Procedures a. Vehicle Services Oversight b. Vehicle Maintenance and Inspection c. Authorized Drivers d. Responsibilities Back to Top (To download requirements for AUB's vehicles, the University has adopted a policy of centralizing these activities under one

  16. Streiffer's Job Market Sampler Table of Contents

    E-Print Network [OSTI]

    Streiffer, Robert

    Streiffer's Job Market Sampler Table of Contents · Cover letters addressing a variety of jobs Dean Sigman, I am writing to apply for position number 8, advertised in Jobs for Philosophers, volume. Respectfully yours, Robert Streiffer (rstreiff@mit.edu) #12;Cover letter for a job listing which

  17. VEHICLES, MACHINERY AND EQUIPMENT Table Of Contents

    E-Print Network [OSTI]

    US Army Corps of Engineers

    of a license/permit for each piece of equipment, an Operator Equipment Qualification Record (DA Form 348EM 385-1-1 XX Sep 13 i Section 18 VEHICLES, MACHINERY AND EQUIPMENT Table Of Contents Section: Page...................................................................18-16 18.G Machinery And Mechanized Equipment.........................18-16 18.H Drilling Equipment

  18. WORK PLATFORMS and SCAFFOLDING Table Of Contents

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Sep 13 i Section 22 WORK PLATFORMS and SCAFFOLDING Table Of Contents Section: Page 22 (Personnel) Platforms...................22-33 22.L Elevating Work Platforms..............................................22-33 22.M Vehicle-Mounted Elevating And Rotating Work Platforms (Aerial Devices

  19. TABLE52.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    2. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products by PAD a Distillate stocks located in the "Northeast Heating Oil Reserve" are not included....

  20. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01T23:59:59.000Z

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump working fluid is reactive...

  1. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  2. Fusion Tables : new ways to collaborate on structured data

    E-Print Network [OSTI]

    Kidon, Jonathan Goldberg

    2010-01-01T23:59:59.000Z

    Fusion Tables allows data collaborators to create, merge, navigate and set access control permissions on structured data. This thesis focuses on the collaboration tools that were added to Googles Fusion Tables. The ...

  3. MemTable : contextual memory in group workspaces

    E-Print Network [OSTI]

    Hunter, Seth E

    2009-01-01T23:59:59.000Z

    This thesis presents the design and implementation of MemTable, an interactive touch table that supports co-located group meetings by capturing both digital and physical interactions in its memory. The goal of the project ...

  4. Environmental Regulatory Update Table, January/February 1992

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1992-03-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action. This table is for January/February 1992.

  5. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

  6. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  7. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  8. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  9. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

  10. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  11. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  12. Effective July 1, 2013 Table of Organization: College of Law

    E-Print Network [OSTI]

    Stanier, Charlie

    Effective July 1, 2013 Table of Organization: College of Law Dean Gail Agrawal Assistant to the Dean Legal Clinic Julie Kramer {See Clinic Table for organization} Special Assistant to the Dean Gerhild Krapf Centers {See separate tables for organization} Assoc. Dean for Research Assoc. Dean Assoc

  13. Heat Pump for High School Heat Recovery 

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  14. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    -expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat...

  15. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  16. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  17. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  18. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  19. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    transient the heat transfer model. T h i s required the roofto develop and calibrate heat transfer models to be able toE S station, the heat transfer models described i n sections

  20. Integral CFLs performance in table lamps

    SciTech Connect (OSTI)

    Page, E.; Driscoll, D.; Siminovitch, M.

    1997-03-01T23:59:59.000Z

    This paper focuses on performance variations associated with lamp geometry and distribution in portable table luminaires. If correctly retrofit with compact fluorescent lamps (CFLs), these high use fixtures produce significant energy savings, but if misused, these products could instead generate consumer dissatisfaction with CFLs. It is the authors assertion that the lumen distribution of the light source within the luminaires plays a critical role in total light output, fixture efficiency and efficacy, and, perhaps most importantly, perceived brightness. The authors studied nearly 30 different integral (screw-based) CFLs available on the market today in search of a lamp, or group of lamps, which work best in portable table luminaires. The findings conclusively indicate that horizontally oriented CFLs outperform all other types of CFLs in nearly every aspect.

  1. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16T23:59:59.000Z

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  2. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  3. Outside heat transfer coefficients for atmospheric coolers

    E-Print Network [OSTI]

    George, David Mark

    1950-01-01T23:59:59.000Z

    for the same conditions of operation is given by Robinson ()i. 9). TABLE I Comparison of various authors' values of outside heat transfer coefficients Btugour x square foot x F ~ ) Adams (1 ) 1001 1041 915 74, 6 1021 981 910 Clarke 945 997 841... ozeventing any recycling of the wet air. "M~4~ 1 f jc, : 1 C. X L, w 38 Cooled water fro~ the tower is centrifugally pmnoed through a 2 inch pipe to a rotameter and a I and operated control valve, Figure 8, before entering a 1 1/g inch by 5 foot...

  4. Table 10. Average Price of U.S. Steam Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910. Average Price

  5. Table 12. Average Price of U.S. Metallurgical Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910. Average

  6. Heat Recovery Consideration for Process Heaters and Boilers

    E-Print Network [OSTI]

    Kumar, A.

    1983-01-01T23:59:59.000Z

    trioxide concentration 510 ESL-IE-83-04-78 Proceedings from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 I I I I I I I .1 I === C> 1_> TABLE 3 - Operating Data for Tail Gas Incinerator STACK ----c... to meet national goals. In the short term, conservation is essentially the only option, not only to buy time to develop new reserves and alternative supplies, but also to move toward more efficient use of energy and existin nonrenewable resources. We...

  7. Table of Contents 2 csssi Opens

    E-Print Network [OSTI]

    modern heating and cooling systems. Sterling Memorial Library was designed during a period when only and to last fifteen months. Progress will be reported in Nota Bene, on the Library's website, and through

  8. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  9. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  10. Mass and Heat Recovery 

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  11. UNIVERSITY OF FLORIDA 6C1-3.071 Finance and Administration; Construction; Acquisition of Construction

    E-Print Network [OSTI]

    Watson, Craig A.

    1 RULES OF UNIVERSITY OF FLORIDA 6C1-3.071 Finance and Administration; Construction; Acquisition of Construction Management Services (1) Professional Qualifications Statement. The University uses a standard qualifications statement, Construction Manager Qualifications Supplement Form QS-CM 001, Revised June 26, 2002

  12. C-1 SITE ENVIRONMENTAL REPORT 2000 APPENDIX C: RADIOLOGICAL DATA METHODOLOGIES

    E-Print Network [OSTI]

    Homes, Christopher C.

    C-1 SITE ENVIRONMENTAL REPORT 2000 APPENDIX C: RADIOLOGICAL DATA METHODOLOGIES APPENDIX C: Radiological Data Methodologies DOSE CALCULATION - ATMOSPHERIC RELEASE PATHWAY The effective dose equivalent. Facility-specific radionu- clide release rates (in curies per year [Ci/yr]) were also used. All annual site

  13. C-1 2002 SITE ENVIRONMENTAL REPORT APPENDIX C: RADIOLOGICAL DATA METHODOLOGIES

    E-Print Network [OSTI]

    Homes, Christopher C.

    C-1 2002 SITE ENVIRONMENTAL REPORT APPENDIX C: RADIOLOGICAL DATA METHODOLOGIES APPENDIX C Radiological Data Methodologies DOSE CALCULATION - ATMOSPHERIC RELEASE PATHWAY The effective dose equivalent. Facility-specificradionuclidereleaserates(incu- ries per year [Ci/yr]) were also used.All annual site

  14. Beyond the c=1 Barrier in Two-Dimensional Quantum Gravity

    E-Print Network [OSTI]

    G. Thorleifsson; B. Petersson

    1997-09-20T23:59:59.000Z

    We introduce a simple model of touching random surfaces, by adding a chemical potential rho for ``minimal necks'', and study this model numerically coupled to a Gaussian model in d-dimensions (for central charge c = d = 0, 1 and 2). For c 1+.

  15. Gille-SIO 221C 1 Wind Forcing of Geostrophic Currents

    E-Print Network [OSTI]

    Gille, Sarah T.

    Gille-SIO 221C 1 Wind Forcing of Geostrophic Currents Some of the strongest and most variable winds between ACC transport and wind forcing. What is the phase relationshp between U and x ? 3. What in the world blow over the Antarctic Circumpolar Current. How does the current respond to fluctuations in wind

  16. JOURNAL D E PHYSIQUE Colloque C1, supplement au no 3, Tome 48, mars 1987

    E-Print Network [OSTI]

    Boyer, Edmond

    , artificial ice frozen from distilled water, monocrystalline glacial ice, bubbly lake ice and sea ice [2JOURNAL D E PHYSIQUE Colloque C1, supplement au no 3, Tome 48, mars 1987 ELASTIC CONSTANTS OF ICE of the elastic constants of ice Ih in the full pressure range of phase stability 0 - 2.8 kbar. The percentage

  17. THE FBI TRANSFORM ON COMPACT C 1 MANIFOLDS JARED WUNSCH AND MACIEJ ZWORSKI

    E-Print Network [OSTI]

    Zworski, Maciej

    THE FBI TRANSFORM ON COMPACT C 1 MANIFOLDS JARED WUNSCH AND MACIEJ ZWORSKI 1. Introduction In this paper we discuss the Fourier-Bros-Iagolnitzer (FBI) transform on smooth, boundaryless manifolds-compactness of the cotangent bundle. By reviewing the basic constructions of the FBI transform theory, we hope to make

  18. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    SciTech Connect (OSTI)

    M. J. Appel and J. M. Capron

    2007-07-25T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

  19. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01T23:59:59.000Z

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  20. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14T23:59:59.000Z

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  1. Mass and Heat Recovery

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    - 1 - MASS AND HEAT RECOVERY SYSTEM SALAH MAHMOUD HINDAWI DIRECTOR HINDAWI FOR ENGINEERING SERVICES & CONTRACTING NEW DAMIETTA , EGYPT ABSTRACT : In the last few years heat recovery was under spot . and in air conditioning fields... ) as a heat recovery . and I use the water as a mass recovery . The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines . THE BENEFIT OF THIS SYSTEM ARE : 1) Using the heat energy from...

  2. TABLE53.CHP:Corel VENTURA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV - DailyPercent 0 0 09.Table 53.

  3. TABLE54.CHP:Corel VENTURA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV - DailyPercent 0 0 09.Table

  4. Federal Buildings Supplemental Survey -- Publication and Tables

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller2009 2010 2011Overview >

  5. FY 2009 Control Table by Appropriation

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FY 2008 Current27Control Table

  6. Help:Tables | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefei Sungrow PowersourceSubObjects JumpTables

  7. Table of Contents for Desk Guide

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considersTable 1: Points of Entry/Exit

  8. State Historical Tables for 2001 - 2003

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConference |6: "Regulating3 Released:

  9. State Historical Tables for 2001 - 2004

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConference |6: "Regulating3 Released:4

  10. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConference |6:WelcomeArkansas":

  11. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConference

  12. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled NameplateTotal

  13. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled

  14. Table 13. Coal Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled: Associated-dissolved:

  15. Summary Statistics Table 1. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade21 Louisiana LouisianaCubicCubicYear Jan

  16. Tables, Graphs, and Problems | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D Alloys &8-5070P3. U.S.7.Tables, Graphs,

  17. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 1: Main Report

    SciTech Connect (OSTI)

    Ball, Sydney J [ORNL

    2008-03-01T23:59:59.000Z

    A phenomena identification and ranking table (PIRT) process was conducted for the Next Generation Nuclear Plant (NGNP) design. This design (in the conceptual stage) is a modular high-temperature gas-cooled reactor (HTGR) that generates both electricity and process heat for hydrogen production. Expert panels identified safety-relevant phenomena, ranked their importance, and assessed the knowledge levels in the areas of accidents and thermal fluids, fission-product transport and dose, high-temperature materials, graphite, and process heat for hydrogen production. This main report summarizes and documents the process and scope of the reviews, noting the major activities and conclusions. The identified phenomena, analyses, rationales, and associated ratings of the phenomena, plus a summary of each panel's findings, are presented. Individual panel reports for these areas are provided as attached volumes to this main report and provide considerably more detail about each panel's deliberations as well as a more complete listing of the phenomena that were evaluated.

  18. Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage 

    E-Print Network [OSTI]

    Han, Z.; Zheng, M.; Liu, W.; Wang, F.

    2006-01-01T23:59:59.000Z

    Assisted Heat Pump Heating System with Latent Heat Storage. In this system, solar energy is the major heat source for a heat pump, and the supplementary heat source is soil. The disagreement in time between the space heat load and heat collected by solar...

  19. Effects of heat on the rheological and stability properties of cultured buttermilk

    E-Print Network [OSTI]

    Pan, Shelley Hsi-Ling

    1979-01-01T23:59:59.000Z

    from skimmilk heated at low and high temperatures. The force-deformation curves for typical buttermilk gels are presented for skimmilk 0 heated at 63 C for 30 minutes is presented in Figure 3 and 0 at 85 C for 30 minutes is presented in Figure 4... are demonstrated in Table 1. The data for milks heated at 0 74 C for 30 minutes are included to provide an intermediate heat treatment. The force-deformation curves used to cal- culate viscosity by the back-extrusion method showed slight increases...

  20. International energy indicators. [Statistical tables and graphs

    SciTech Connect (OSTI)

    Bauer, E.K. (ed.)

    1980-05-01T23:59:59.000Z

    International statistical tables and graphs are given for the following: (1) Iran - Crude Oil Capacity, Production and Shut-in, June 1974-April 1980; (2) Saudi Arabia - Crude Oil Capacity, Production, and Shut-in, March 1974-Apr 1980; (3) OPEC (Ex-Iran and Saudi Arabia) - Capacity, Production and Shut-in, June 1974-March 1980; (4) Non-OPEC Free World and US Production of Crude Oil, January 1973-February 1980; (5) Oil Stocks - Free World, US, Japan, and Europe (Landed, 1973-1st Quarter, 1980); (6) Petroleum Consumption by Industrial Countries, January 1973-December 1979; (7) USSR Crude Oil Production and Exports, January 1974-April 1980; and (8) Free World and US Nuclear Generation Capacity, January 1973-March 1980. Similar statistical tables and graphs included for the United States include: (1) Imports of Crude Oil and Products, January 1973-April 1980; (2) Landed Cost of Saudi Oil in Current and 1974 Dollars, April 1974-January 1980; (3) US Trade in Coal, January 1973-March 1980; (4) Summary of US Merchandise Trade, 1976-March 1980; and (5) US Energy/GNP Ratio, 1947 to 1979.

  1. Environmental regulatory update table, September--October 1992

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Lewis, E.B.; Salk, M.S.

    1992-11-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  2. Environmental Regulatory Update Table, January--February 1993

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.; Danford, G.S.; Lewis, E.B.

    1993-03-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  3. Environmental Regulatory Update Table, November--December 1992

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Lewis, E.B.; Salk, M.S.

    1993-01-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly wit information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  4. Environmental Regulatory Update Table, January--February 1994

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.; Danford, G.S.; Lewis, E.B.

    1994-03-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations ad contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  5. Environmental Regulatory Update Table, November--December 1993

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.; Danford, G.S.; Lewis, E.B.

    1994-01-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  6. Environmental regulatory update table, July/August 1994

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Bock, R.E.; Salk, M.S.

    1994-09-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  7. Environmental regulatory update table: September/October 1994

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Bock, R.E.; Salk, M.S.

    1994-11-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  8. Environmental regulatory update table, March--April 1994

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Bock, R.E. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.; Salk, M.S. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

    1994-03-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  9. Environmental Regulatory Update Table, May--June 1994

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Bock, R.E.; Salk, M.S.

    1994-07-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bimonthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  10. Environmental Regulatory Update Table, July--August 1992

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Lewis, E.B.; Salk, M.S.

    1992-09-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  11. Environmental Regulatory Update Table, March/April 1992

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1992-05-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  12. Environmental Regulatory Update Table, September/October 1993

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.; Danford, G.S.; Lewis, E.B.

    1993-11-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operation and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  13. Environmental sciences division: Environmental regulatory update table July 1988

    SciTech Connect (OSTI)

    Langston, M.E.; Nikbakht, A.; Salk, M.S.

    1988-08-01T23:59:59.000Z

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  14. PTG exam 9 April 2014 short answers 123. Heat given off = surface * heat transfer coefficient * temperature = A * h * T

    E-Print Network [OSTI]

    Zevenhoven, Ron

    depends on Grnumber Gr = gL3 T/2 = 1,09109 , with given (~ 1/T), and L = 0.75 m. GrPr = 0,78109 > 108 . Nu (average for surface) = 0,13(GrPr)1/3 = 119 gives h (average for surface) = 4,14 W/m2 K Finally this gives with A = 2,25 m2 , heat given off = 186,3 W. 124. Using the steam tables

  15. HEATING6 verification

    SciTech Connect (OSTI)

    Bryan, C.B.; Childs, K.W.; Giles, G.E.

    1986-12-01T23:59:59.000Z

    The HEATING series of general purpose, finite-difference, conduction heat transfer codes have been in use for many years. During this time the codes have been used extensively, and a general confidence has been developed in regard to their accuracy. However, there has never been a formal verification in a published, citable document. This report documents just such a verification study for the latest code in the HEATING series, HEATING6. This study confirms that HEATING6 is capable of producing accurate results for a large class of heat transfer problems. 11 refs., 170 figs., 82 tabs.

  16. Heat Pump for High School Heat Recovery

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    ) [3] Yayun FAN. Experimental study on a heat pump technology in solar thermal utilization[J]. Acta Energiae Solaris Sinica, Oct.,2002; Vol.23,No.5 ? 581-585.(In Chinese) [4] Nengxi JIANG. Air-conditioning Heat Pump Technology and Its Applications...

  17. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    250 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  18. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1998 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  19. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    - - - - W W - - - - - - See footnotes at end of table. 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State 292 Energy...

  20. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    220 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  1. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1998 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

  2. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1995 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  3. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  4. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    220 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  5. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration Petroleum Marketing Annual 1995 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  6. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    134 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  7. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    220 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  8. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1998 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  9. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    - - - - W W - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

  10. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  11. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1999 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  12. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - - - 64.7 64.7 - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

  13. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    - - - - - - - - - - - - See footnotes at end of table. 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 116 Energy Information...

  14. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  15. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  16. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  17. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    250 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  18. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1999 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

  19. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration Petroleum Marketing Annual 1995 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  20. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    134 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  1. Table of contents 1 What is software architecture? ......................................................................... 1

    E-Print Network [OSTI]

    Dustdar, Schahram

    Table of contents 1 What is software architecture? ......................................................................... 1 1.1 Software architecture as abstraction ............................................................ 2 1.2 Software architecture as blueprint

  2. Figure 3-11 South Table Mountain Utilities Map

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Existing Buildings Electrical Figure 3-11 South Table Mountain Utilities Map Sewer Communication Water Surface Drainage Storm Water WATER TANK FACILITIES QUAKER STREET OLD QUA RRY...

  3. SuStainability table of contentS

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    SuStainability table of contentS executive Summary-Related Sustainability Options ........................................... 41 Information Technology Infrastucture #12;sustainability 2 Private Giving

  4. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  5. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  6. Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables

    Reports and Publications (EIA)

    2008-01-01T23:59:59.000Z

    The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

  7. EIA - Annual Energy Outlook (AEO) 2012 Data Tables

    Gasoline and Diesel Fuel Update (EIA)

    75. Imported Liquids by Source XLS Table 76. Conversion Factors XLS About the Annual Energy Outlook Contact information and staff Press release AEO2012 Early Release AEO2012...

  8. EIA - Annual Energy Outlook (AEO) 2011 Data Tables

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    75. Imported Liquids by Source XLS Table 76. Conversion Factors XLS About the Annual Energy Outlook Contact Information and Staff About the National Energy Modeling System (NEMS)...

  9. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  10. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

  11. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  12. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  13. EIA - Annual Energy Outlook (AEO) 2013 Data Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Income and Employment by Region Table 74. Conversion Factors About the Annual Energy Outlook Contact information and staff Press release Press conference presentation...

  14. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1998 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  15. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  16. Table I: Technical Targets for Catalyst Coated Membranes (CCMs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive Table I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive Technical targets for fuel cell...

  17. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-03-31T23:59:59.000Z

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

  18. Observation of ?c1 Decays into Vector Meson Pairs ??, ?? and, ??

    SciTech Connect (OSTI)

    Ablikim, M.; Achasov, M. N.; An, L.; An, Q.; An, Z. H.; Bai, J. Z.; Baldini, R.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Cao, G. F.; Cao, X. X.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denysenko, I.; Destefanis, M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, M. Y.; Fan, R. R.; Fang, J.; Fang, S. S.; Feng, C. Q.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Greco, M.; Grishin, S.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kavatsyuk, M.; Komamiya, S.; Kuehn, W.; Lange, J. S.; Leung, J. K. C.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Lei; Li, N. B.; Li, Q. J.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, X. T.; Liu, B. J.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, G. C.; Liu, H.; Liu, H. B.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K.; Liu, K. Y.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Y. W.; Liu, Yong; Liu, Z. A.; Liu, Z. Q.; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, T.; Ma, X.; Ma, X. Y.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Muchnoi, N. Yu.; Nefedov, Y.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pelizaeus, M.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pun, C. S. J.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Sonoda, S.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tang, X. F.; Tian, H. L.; Toth, D.; Varner, G. S.; Wan, X.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Wen, Q. G.; Wen, S. P.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, W.; Wu, Z.; Xiao, Z. J.; Xie, Y. G.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Y.; Xu, Z. R.; Xu, Z. Z.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, M.; Yang, T.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, L.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, Jiawei; Zhao, Jingwei; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhao, Z. L.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhong, L.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.; Zweber, P.

    2011-08-01T23:59:59.000Z

    Using (106±4)×10? ?(3686) events accumulated with the BESIII detector at the BEPCII e?e? collider, we present the first measurement of decays of ?c1 to vector meson pairs ??, ??, and ??. The branching fractions are measured to be (4.4±0.3±0.5)×10??, (6.0±0.3±0.7)×10??, and (2.2±0.6±0.2)×10??, for ?c1 ???, ??, and ??, respectively, which indicates that the hadron helicity selection rule is significantly violated in ?cJ decays. In addition, the measurement of ?cJ??? provides the first indication of the rate of doubly OZI-suppressed ?cJ decay. Finally, we present improved measurements for the branching fractions of ?c0 and ?c2 to vector meson pairs.

  19. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Broader source: Energy.gov [DOE]

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  20. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  1. DistrictHeating Nuevasaladecalderasydistribucin

    E-Print Network [OSTI]

    Fraguela, Basilio B.

    DistrictHeating Nuevasaladecalderasydistribución decaloreneláreauniversitariade AZapateira Jesús, difusión. DISTRICT HEATING O CALEFACCIÓN DE BARRIO #12;MATERIALIZACIÓN INTEGRACIÓN VISUAL DE ELEMENTOS rendimiento global de la instalación. - Contabilización de pérdidas en tuberías de distribución. #12;DISTRICT

  2. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01T23:59:59.000Z

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  3. MA HEAT Loan Overview

    Broader source: Energy.gov [DOE]

    Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

  4. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23T23:59:59.000Z

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  5. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

    1985-01-01T23:59:59.000Z

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  6. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29T23:59:59.000Z

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  7. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  8. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10T23:59:59.000Z

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  9. Acoustic Heating Peter Ulmschneider

    E-Print Network [OSTI]

    Ulmschneider, Peter

    mechanisms. 1. The acoustic heating theory Only a few years after Edlen's (1941) discovery that the solar acoustic wave radiation- · b. field acoustic wave Figure 1. Panel a: Acoustic heating in late-type stars: effective temperature TeJ f, gravity g and mixing length parameter fr. Panel b: Acoustic heating in early

  10. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  11. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  12. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01T23:59:59.000Z

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  13. JOURNAL DE PHYSIQUE Colloque C1, suppl6ment au no 3, Tome 48, mars 1987

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ]. A Peltier cell, which acts as a heat sink, is placed in contactwith a plate, onto which are frozen twopreoriented singlecrystal seeds,or a bicrystal seed. The Peltier cell and plate are placed on top of a beaker

  14. A reconstruction of the tables of the Shuli Jingyun

    E-Print Network [OSTI]

    Boyer, Edmond

    ­1722) and covering almost all mathematical knowledge known in China at that time. It was part of a larger collection movable copper type [23, p. 76], but the tables were certainly printed with xylography.2 The Shuli Jingyun was imported in other countries, such as 1 We have consulted the original tables at the Institut des Hautes

  15. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  16. Electrodril system field test program. Phase II: Task C-1-deep drilling system demonstration. Final report for Phase II: Task C-1

    SciTech Connect (OSTI)

    Taylor, P D

    1981-04-01T23:59:59.000Z

    The Electrodril Deep Drilling System field test demonstrations were aborted in July 1979, due to connector problems. Subsequent post test analyses concluded that the field replacable connectors were the probable cause of the problems encountered. The designs for both the male and female connectors, together with their manufacturing processes, were subsequently modified, as was the acceptance test procedures. A total of nine male and nine female connectors were manufactured and delivered during the 2nd Quarter 1980. Exhaustive testing was then conducted on each connector as a precursor to formal qualification testing conducted during the month of October 1980, at the Brown Oil Tool test facility located in Houston, Texas. With this report, requirements under Phase II, Task C-1 are satisfied. The report documents the results of the connector qualification test program which was successfully completed October 28, 1980. In general, it was concluded that connector qualification had been achieved and plans are now in progress to resume the field test demonstration program so that Electrodril System performance predictions and economic viability can be evaluated.

  17. List of Figures .... ....... .. ........ .. .. ...................... v List of Tables ...................................... ................... .............. ii

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    and Recommendations .................................................... 3 2.1 Heat Pump Performance Observed Using .............................................................. 8 3.1 Experimental Setup ............................................ 8 3.2 Heat Pump to Heat Pump Electrical Circuit ... ...................13 3.3 Instrumentation

  18. LIST OF FIGURES ............................................... .. v LIST OF TABLES ..... ..... ..................................... vii

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    .5 GE heat pump instrumentation .............................. 14 5.1 Carrier supply duct air velocity System Error ................... 15 5. CARRIER HEAT PUMP TESTING ..................................... 17 6. GE HEAT PUMP TESTING ........................................ 23 7. EVALUATION OF TEST DATA

  19. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  20. Applied heat transfer

    SciTech Connect (OSTI)

    Ganapathy, V.

    1982-01-01T23:59:59.000Z

    Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

  1. FARM NET INCOME IMPACT OF SWITCHGRASS PRODUCTION AND CORN STOVER COLLECTION FOR HEAT AND POWER GENERATION

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    GENERATION by Mitchell A. Myhre A thesis submitted in partial fulfillment of the requirements for the degree and Corn Stover Collection for Heat and Power Generation Mitchell A. Myhre Advisor: Associate Professor. Last but not least I would like to thank my wife Lisa for her love and support. #12;iv Table

  2. Elucidating and Mapping Heat Tolerance in Wild Tetraploid Wheat (Triticum turgidum L.)

    E-Print Network [OSTI]

    Ali, Mohamed Badry Mohamed

    2012-02-14T23:59:59.000Z

    Component PWR Pedigree Wide Regression LD Linkage Disequilibrium AA Association Analysis viii TABLE OF CONTENTS Page ABSTRACT... ....................................... 9 Metabolic adaptation to heat stress ............................................... 11 Quantitative trait loci (QTL) and their importance for breeding .... 14 Simple sequence repeats (SSR) and their importance for breeding 15 Linkage map...

  3. Columbia University Flow Instability Experimental Program, Volume 10: Critical Heat Flux Test Program data tables

    SciTech Connect (OSTI)

    Coutts, D.A.

    1993-09-01T23:59:59.000Z

    This report is one of a series of reports which document the flow instability testing conducted by Columbia University during 1989 through 1992. This report volume provides a hardcopy version of the twenty-six electronic media data files: CO515(A-D).DAT, CO525(A-G). DAT, CO530(A-K).DAT, CO718(A-E).DAT.

  4. "Table HC7.5 Space Heating Usage Indicators by Household Income...

    U.S. Energy Information Administration (EIA) Indexed Site

    Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than...

  5. Table 5a. Total District Heat Consumption per Effective Occupied Square

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S. Vehicle FuelFoot, 1992 a.

  6. Table 5b. Relative Standard Errors for Total District Heat Consumption per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S. Vehicle FuelFoot, 1992

  7. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources &7,0171" "

  8. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources &7,0171" "0.

  9. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources &7,0171"

  10. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources &7,0171"2"

  11. Table A12. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources

  12. Table A12. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" " and End

  13. Table A13. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" " and End3.

  14. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" " and

  15. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" " and "

  16. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" " and

  17. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" " and2"

  18. Table A38. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" "

  19. Table A38. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" "2"

  20. Table A39. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType" "2"9.

  1. Table A41. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"

  2. Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"A50. Total Inputs

  3. Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"A50. Total2. Total

  4. Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"A50. Total2.

  5. Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"A50. Total2.Number

  6. Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"A50.

  7. Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14:9a.0 Home7

  8. Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14:9a.0 Home7.4 Space

  9. Table HC6.4 Space Heating Characteristics by Number of Household Members, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14:9a.0 Home7.4124

  10. Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14:9a.0 Home7.41245

  11. Table HC9.4 Space Heating Characteristics by Climate Zone, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14:9a.05a.4 Space

  12. Table A13. Total Consumption of Offsite-Produced Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1 "2"

  13. Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1 "2"4.Total

  14. Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of Electricity SoldTotal

  15. Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of Electricity

  16. Table A34. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of ElectricityPrimaryTotal

  17. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of

  18. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2" " (Estimates

  19. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2" " (Estimates

  20. Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2" "Total Inputs

  1. Table B28. Percent of Floorspace Heated, Number of Buildings and Floorspace, 199

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2".

  2. Table B37. Water Heating Equipment, Number of Buildings and Floorspace, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2".9. Percent

  3. "Table B21. Space-Heating Energy Sources, Floorspace, 1999"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1" "Shell Storage1.

  4. "Table B22. Primary Space-Heating Energy Sources, Number of Buildings, 1999"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1" "Shell Storage1.2. Primary

  5. "Table B23. Primary Space-Heating Energy Sources, Floorspace, 1999"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1" "Shell Storage1.2.

  6. "Table B26. Water-Heating Energy Sources, Floorspace, 1999"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1" "Shell Storage1.2.5.6.

  7. Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly Download:Stocks by3a.7 Million U.S..4

  8. Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly Download:Stocks by3a.7 Million

  9. Table HC6.4 Space Heating Characteristics by Number of Household Members, 2005

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly Download:Stocks by3a.7 Million04 Space

  10. Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly Download:Stocks by3a.7 Million04

  11. Table HC9.4 Space Heating Characteristics by Climate Zone, 2005

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly Download:Stocks by3a.76a. Home11 Home4

  12. "Table HC12.8 Water Heating Characteristics by Midwest Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space

  13. "Table HC13.4 Space Heating Characteristics by South Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances Housing1324

  14. "Table HC13.8 Water Heating Characteristics by South Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances78 Water

  15. "Table HC14.4 Space Heating Characteristics by West Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances783

  16. "Table HC14.8 Water Heating Characteristics by West Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances7835 Space678

  17. "Table HC7.5 Space Heating Usage Indicators by Household Income, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home72 Home8 Water0 Home25

  18. "Table HC9.5 Space Heating Usage Indicators by Climate Zone, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home72 Home8 Water00 Home25

  19. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  20. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01T23:59:59.000Z

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  1. Global Heat Kernel Estimate for Relativistic Stable Processes in Exterior Open Sets

    E-Print Network [OSTI]

    Chen, Zhen-Qing

    ,1 exterior open sets as well as for half-space-like open sets. The ideas of [8] have been adaptedGlobal Heat Kernel Estimate for Relativistic Stable Processes in Exterior Open Sets Zhen-Qing Chen for the transition densities of relativistic -stable processes with mass m (0, 1] in C1,1 exterior open sets

  2. Proceedings of the 1998 oil heat technology conference

    SciTech Connect (OSTI)

    McDonald, R.J.

    1998-04-01T23:59:59.000Z

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  3. DE-EM-0001971 WIPP M&O C-1 SECTION C PERFORMANCE WORK STATEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4Customer-Comments Sign8SeeBottomMechanicalC-1 SECTION

  4. Policies supporting Heat Pump Technologies

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

  5. Table-top Extreme Ultraviolet Laser Aerial Imaging of Lithographic Masks

    E-Print Network [OSTI]

    Brizuela, F.

    2012-01-01T23:59:59.000Z

    Table-top Extreme Ultraviolet Laser Aerial Imaging ofmasks realized using a table-top aerial imaging systembased on a table-top X=\\3.2 laser. © 2 0 0 9 Optical Society

  6. Optimization of Heat Exchangers

    SciTech Connect (OSTI)

    Ivan Catton

    2010-10-01T23:59:59.000Z

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  7. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  8. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  9. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06T23:59:59.000Z

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  10. Summer HeatSummer Heat Heat stress solutions

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    occur (then drink a lightly salted beverage like a sports drink). The water's temperature should be cool How should gardeners avoid becoming a safety threat to themselves and others when it's hot? Start to the heat. Become a weather watcher. Set up a small weather station (with a high/low thermom eter, rain

  11. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-03-31T23:59:59.000Z

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the first six months of the subject contract (DE-FC26-02NT-4159), from October 1, 2002 through March 31, 2003.

  12. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2005-03-31T23:59:59.000Z

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  13. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2004-03-31T23:59:59.000Z

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  14. TableHC9.8.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipalNumber of Water8 Water Heating

  15. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputs &FuturesU.S.Heating Oil &

  16. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputs &FuturesU.S.Heating Oil

  17. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputs &FuturesU.S.Heating OilNatural

  18. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputs &FuturesU.S.Heating

  19. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputs &FuturesU.S.HeatingRefinery,

  20. table1.3_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps

  1. table1.5_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps4 Number

  2. table10.10_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps4 Number0

  3. table10.11_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps4 Number01

  4. table10.12_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps4 Number012

  5. table10.13_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps4

  6. table10.1_021.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps4

  7. table10.2_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps42

  8. table10.3_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps423 Number

  9. table10.4_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps423 Number4

  10. table10.5_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps423

  11. table10.6_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps4236

  12. table10.7_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps42367

  13. table10.8_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps423678

  14. table10.9_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps4236789

  15. table11.1_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps42367891

  16. table11.3_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps423678913

  17. table11.4_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps4236789134

  18. table11.5_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat Pumps42367891345

  19. table11.6_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat

  20. table2.1_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel

  1. table2.2_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel2

  2. table2.3_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel23

  3. table2.4_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel234

  4. table3.3_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel234 Fuel

  5. table3.4_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel234

  6. table4.1_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel234561

  7. table4.2_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel234561

  8. table4.3_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel234561

  9. table5.7_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel234561

  10. table6.1_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel2345611

  11. table6.2_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1 Nonfuel23456112

  12. table6.3_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat1

  13. table6.4_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat14 Consumption

  14. table7.10_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat14 Consumption0

  15. table7.1_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat14 Consumption0

  16. table7.2_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat14 Consumption02

  17. table7.3_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat14 Consumption023

  18. table7.4_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat14

  19. table7.5_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat145 Average

  20. table7.6_02.xls

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,00064,7834)NewHeat145 Average6