Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Heat Recovery Steam Generator Simulation  

E-Print Network [OSTI]

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs...

Ganapathy, V.

2

Waste heat recovery steam curves with unfired HRSGs  

SciTech Connect (OSTI)

A compilation of waste heat recovery steam curves for a sampling of gas turbines ranging in output from around 1 MW to more than 200 MW is presented. The gas turbine output data shown with each set of curves differs from the values given in the Performance Specifications section of the Handbook. That's because the values have been calculated to reflect the effects of a 4 inch inlet and 10 inch outlet pressure drop on power output (lower), heat rate (higher), mass flow (higher), and exhaust temperature (higher).

Not Available

1993-01-01T23:59:59.000Z

3

Towards model-based control of a steam Rankine process for engine waste heat recovery  

E-Print Network [OSTI]

Towards model-based control of a steam Rankine process for engine waste heat recovery Johan Peralez steam process for exhaust gas heat recovery from a spark-ignition engine, focusing in particular results on a steam process for SI engines, [3] on generic control issues and [4] which provides a comp

Paris-Sud XI, Université de

4

Waste Steam Recovery  

E-Print Network [OSTI]

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally...

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

5

Issues in heat recovery steam generator system noise  

Science Journals Connector (OSTI)

A heat recovery steam generator (HRSG) is a fundamental component of all combustion turbine?based combined cycle power plants. While its primary purpose is to convert exhaust gas heat to steam an important secondary function is to reduce noise emissions from the combustion turbine exhaust. This source at about 155 dB (overall) re: 1 pW for a 100?MW turbine is the highest noise emission source in any combustion turbine plant. Therefore the residual exhaust noise emissions leaving the HRSG walls and stack exit must be predicted with acceptable accuracy to determine the total plant noise level. The sources involved in this prediction methodology will be discussed. The issues include source power levels wall and duct transmission loss and the noise reduction characteristics through the HRSG flow path. Special measurement techniques required to quantify HRSG noise emissions are described. Whereas the HRSG is mainly a passive device that attenuates combustion turbine exhaust noise two HRSG generated sources steam venting and supplemental duct firing will also be discussed. [See NOISE?CON Proceedings for full paper.

George F. Hessler Jr.

1997-01-01T23:59:59.000Z

6

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine cycle  

E-Print Network [OSTI]

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine steam process for exhaust gas heat recovery from a spark-ignition (SI) engine, from a prototyping of a practical supervi- sion and control system for a pilot Rankine steam process for exhaust gas heat recovery

Paris-Sud XI, Université de

7

Energy Savings By Recovery of Condensate From Steam Heating System  

E-Print Network [OSTI]

and reduces steam supply, saving 4061 tons of industrial water per year. The total saved steam amounts to 25.~ of the total amount of steM supply. The total saved cost is 39616 yuan per year; the total saved amount of coal is 329.9 tons per year... and reduces steam supply, saving 4061 tons of industrial water per year. The total saved steam amounts to 25.~ of the total amount of steM supply. The total saved cost is 39616 yuan per year; the total saved amount of coal is 329.9 tons per year...

Cheng, W. S.; Zhi, C. S.

8

Combined Heat and Power Plant Steam Turbine  

E-Print Network [OSTI]

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

9

Economizer recirculation for low-load stability in heat recovery steam generator  

SciTech Connect (OSTI)

An economizer system is described for heating feedwater in a heat recovery steam generator which consists of: at least first and second economizer tube planes; each of the economizer tube planes including a plurality of generally parallel tubes; the tubes being generally vertically disposed; each of the economizer tube planes including a top header and a bottom header; all of the plurality of tubes in each economizer tube plane being connected in parallel to their top and bottom headers whereby parallel feedwater flow through the plurality of tubes between the top and bottom headers is enabled; one of the top and bottom headers being an inlet header; a second of the top and bottom headers being an outlet header; a boiler feed pump; the boiler feed pump being effective for applying a flow of feedwater to the inlet header; means for serially interconnecting the economizer tube planes; the means for serially interconnecting including means for flowing the feedwater upward and downward in tubes of alternating ones of the economizer tube planes between the inlet header and the outlet header; means for conveying heated feedwater from the outlet header to a using process; means for recirculating at least a portion of the heated feedwater from the outlet header to an inlet of the boiler feed pump; and the means for recirculating including means for relating the portion to a steam load in the using process whereby an increased flow is produced through all of the economizer tube planes at values of the steam load below a predetermined value and a condition permitting initiation of reverse flow in any of the tubes is substantially reduced.

Cuscino, R.T.; Shade, R.L. Jr.

1986-04-15T23:59:59.000Z

10

Use Feedwater Economizers for Waste Heat Recovery: Office of Industrial Technologies (OIT) Steam Energy Tips No.3  

SciTech Connect (OSTI)

A feedwater economizer reduces steam boiler fuel requirements by transferring heat from the flue gas to incoming feedwater. Boiler flue gases are often rejected to the stack at temperatures more than 100 F to 150 F higher than the temperature of the generated steam. Generally, boiler efficiency can be increased by 1% for every 40 F reduction in flue gas temperature. By recovering waste heat, an economizer can often reduce fuel requirements by 5% to 10% and pay for itself in less than 2 years. The table provides examples of the potential for heat recovery.

Not Available

2002-03-01T23:59:59.000Z

11

Recover heat from steam reforming  

SciTech Connect (OSTI)

Steam reforming is one of the most important chemical processes--it is used in the manufacture of ammonia, hydrogen, methanol, and many chemicals made from hydrogen and carbon monoxide. Furthermore, many current trends will increase its importance. For example, methanol for addition to gasoline is likely to be produced by steam reforming. Because steam reforming occurs at high temperatures--typically 750 C--900 C--it generates a large amount of waste heat. Clearly, heat recovery is crucial to process economics. A typical 50,000 Nm[sup 3]/h hydrogen plant using natural gas feed has a radiant heat duty of about 50 MW. At a radiant efficiency of 50% and fuel cost of $3/GJ, this means that the reformer fires $9 million worth of fuel per year. Obviously, this amount of fuel justifies a close loot at ways to reduce costs. This article first provides a brief overview of steam reforming. It then outlines the available heat-recovery options and explains how to select the best method.

Fleshman, J.D. (Foster Wheeler USA Corp., Livingston, NJ (United States))

1993-10-01T23:59:59.000Z

12

" "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 8.3;" 3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," " ," " "NAICS Code(a)","Subsector and Industry","Establishments(b)","Establishments with Any Cogeneration Technology in Use(c)","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know"

13

Use Feedwater Economizers for Waste Heat Recovery  

SciTech Connect (OSTI)

This revised ITP tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

14

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

15

Industrial Steam System Heat-Transfer Solutions  

Broader source: Energy.gov [DOE]

This brief provides an overview of considerations for selecting the best heat-transfer equipment for various steam systems and applications.

16

Can You Afford Heat Recovery?  

E-Print Network [OSTI]

many companies to venture into heat recovery projects without due consideration of the many factors involved. Many of these efforts have rendered less desirable results than expected. Heat recovery in the form of recuperation should be considered...

Foust, L. T.

1983-01-01T23:59:59.000Z

17

[Waste water heat recovery system  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

18

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

19

Control system for fluid heated steam generator  

DOE Patents [OSTI]

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, J.F.; Koenig, J.F.

1984-05-29T23:59:59.000Z

20

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

22

Heat Pump for High School Heat Recovery  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-12-1 Heat Pump for High School Bathroom Heat Recovery Kunrong Huang Hanqing Wang Xiangjiang Zhou Associate professor Professor Professor School...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

23

Combined heat recovery and make-up water heating system  

SciTech Connect (OSTI)

A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

Kim, S.Y.

1988-05-24T23:59:59.000Z

24

Low Level Heat Recovery Technology  

E-Print Network [OSTI]

level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

O'Brien, W. J.

1982-01-01T23:59:59.000Z

25

Influence of steam injection through exhaust heat recovery on the design performance of solid oxide fuel cell gas turbine hybrid systems  

Science Journals Connector (OSTI)

This study analyzed the influence of steam injection on the performance of hybrid systems combining a solid oxide fuel cell and a gas turbine. Two different ... the effects of injecting steam, generated by recovering

Sung Ku Park; Tong Seop Kim; Jeong L. Sohn

2009-02-01T23:59:59.000Z

26

EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in  

Broader source: Energy.gov (indexed) [DOE]

741: Seattle Steam Company Combined Heat and Power at Post 741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington Summary This EA evaluates the environmental impacts of a proposal to provide an American Recovery Act and Reinvestment Act of 2009 financial assistance grant to Seattle Steam Company to facilitate the installation of a combined heat and power plant in downtown Seattle, Washington. NOTE: This project has been cancelled. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download June 16, 2010 EA-1741: Draft Environmental Assessment Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington (June 2010)

27

Waste Heat Recovery from Refrigeration  

E-Print Network [OSTI]

heat recovery from refrigeration machines is a concept which has great potential for implementation in many businesses. If a parallel requirement for refrigeration and hot water exists, the installation of a system to provide hot water as a by...

Jackson, H. Z.

1982-01-01T23:59:59.000Z

28

Waste Heat Recovery Opportunities for Thermoelectric Generators  

Broader source: Energy.gov [DOE]

Thermoelectrics have unique advantages for integration into selected waste heat recovery applications.

29

Cogeneration from glass furnace waste heat recovery  

SciTech Connect (OSTI)

In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

Hnat, J.G.; Cutting, J.C.; Patten, J.S.

1982-06-01T23:59:59.000Z

30

Steam injection method and apparatus for recovery of oil  

SciTech Connect (OSTI)

A method and apparatus for recovering oil from an oil bearing formation utilizing steam injected into the formation. A working fluid is heated at the surface to produce a reversible, chemical reaction, particularly a reforming reaction in a reforming/methanation reaction cycle. The products of the reforming reaction are transported at near ambient temperatures to a downhole heat exchanger through which water is circulated. There a catalyst triggers the methanation reaction, liberating heat energy to convert the water to steam. The products of the methanation reaction are recirculated to the surface to repeat the cycle. In one embodiment the products of the methanation reaction are injected into the formation along with the steam. Various catalysts, and various systems for heating the working fluid are disclosed.

Meeks, T.; Rhoades, C.A.

1983-02-08T23:59:59.000Z

31

Locating Heat Recovery Opportunities  

E-Print Network [OSTI]

and for the years ahead is the de~ice known as the "Reat Pump," the "Reverse Ran,kine Cycle," or the "Vapor Compression System." ~'ctu? ally, all of these are the same thing. En-ergy level is restored by application of a ce~tain amount of prime energy (shaft... level Rankine cycle or bot toming cycle could have an application. Figure 11 shows the same hot process waste water heat source and the same disengaging drum that was shown in Figure 10. Instead of compressing the vapor, however, it is expanded...

Waterland, A. F.

1981-01-01T23:59:59.000Z

32

Drain Water Heat Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

33

Drain Water Heat Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

34

Options for Generating Steam Efficiently  

E-Print Network [OSTI]

This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment...

Ganapathy, V.

35

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolytic cell, designed to integrate waste heat recovery (i.e a microbial heat recovery cell or MHRC), can operate as a fuel cell and convert effluent streams into...

36

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

A Better Steam Engine: Designing a Distributed Concentrating2011 Abstract A Better Steam Engine: Designing a Distributedprovided for a steam Rankine cycle heat engine achieving 50%

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

37

Experience with organic Rankine cycles in heat recovery power plants  

SciTech Connect (OSTI)

Over the last 30 years, organic Rankine cycles (ORC) have been increasingly employed to produce power from various heat sources when other alternatives were either technically not feasible or economical. These power plants have logged a total of over 100 million turbine hours of experience demonstrating the maturity and field proven technology of the ORC cycle. The cycle is well adapted to low to moderate temperature heat sources such as waste heat from industrial plants and is widely used to recover energy from geothermal resources. The above cycle technology is well established and applicable to heat recovery of medium size gas turbines and offers significant advantages over conventional steam bottoming cycles.

Bronicki, L.Y.; Elovic, A.; Rettger, P.

1996-11-01T23:59:59.000Z

38

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect (OSTI)

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

Not Available

2005-09-01T23:59:59.000Z

39

Finding More Free Steam From Waste Heat  

E-Print Network [OSTI]

Corning & Midland Plant Thermal Heat Recovery Oxidation Process Opportunities Implementing Improvements Demonstrating Success Questions About me Mike Stremlow Midland Site Energy Leader Senior mechanical engineer at Dow Corning charged...-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Questions Mike Stremlow, Midland Site Energy Leader Dow Corning Corporation PO Box 994 Midland, MI 48686 mike.stremlow@dowcorning.com (989)496-5662 18 ESL-IE-14-05-01 Proceedings...

Stremlow, M. D.

2014-01-01T23:59:59.000Z

40

Enhanced Oil Recovery through Steam Assisted Gravity Drainage January 22, 2014  

E-Print Network [OSTI]

Enhanced Oil Recovery through Steam Assisted Gravity Drainage January 22, 2014 A Comparative Study Of Continuous And Cyclic Steam Injection With Trapping Of Oil Phase Muhammad Adil Javed Summary of Thesis Enhanced oil recovery (EOR) through steam-assisted gravity drainage (SAGD) has become an important in

Cirpka, Olaf Arie

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery...

42

Vehicle Technologies Office: Waste Heat Recovery | Department...  

Broader source: Energy.gov (indexed) [DOE]

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

43

Further experimental studies of steam-propane injection to enhance recovery of Morichal oil  

E-Print Network [OSTI]

In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's results showed that, compared with steam injection alone, steam-propane...

Ferguson,Mark Anthony

2012-06-07T23:59:59.000Z

44

Industrial Heat Pumps for Steam and Fuel Savings  

Broader source: Energy.gov [DOE]

This brief introduces heat-pump technology and its application in industrial processes as part of steam systems. The focus is on the most common applications, with guidelines for initial identification and evaluation of the opportunities being provided.

45

RTO heat recovery system decreases production costs and provides payback  

SciTech Connect (OSTI)

Application of a heat recovery system to an existing regenerative thermal oxidizer (RTO) was considered, tested, and selected for decreasing production costs at a pressure sensitive tape manufacturing facility. Heat recovery systems on RTO's are less common than those on other thermal oxidizers (e.g., recuperative) because RTO's, by the nature of the technology, usually provide high thermal efficiencies (without the application of external heat recovery systems). In this case, the production processes were integrated with the emission controls by applying an external heat recovery system and by optimizing the design and operation of the existing drying and cure ovens, RTO system, and ductwork collection system. Integration of these systems provides an estimated annual production cost savings of over $400,000 and a simplified capital investment payback of less than 2 years, excluding possible savings from improved dryer operations. These additional process benefits include more consistent and simplified control of seasonal dryer performance and possibly production throughput increases. The production costs savings are realized by substituting excess RTO heat for a portion of the infrared (IR) electrical heat input to the dryers/ovens. This will be accomplished by preheating the supply air to the oven zones with the excess RTO heat (i.e., heat at the RTO exceeding auto-thermal conditions). Several technologies, including direct air-to-air, indirect air-to-air, hot oil-to-air, waste heat boiler (steam-to-air) were evaluated for transferring the excess RTO heat (hot gas) to the ovens. A waste heat boiler was selected to transfer the excess RTO heat to the ovens because this technology provided the most economical, reliable, and feasible operation. Full-scale production test trials on the coating lines were performed and confirmed the IR electrical costs could be reduced up to 70%.

Lundquist, P.R.

1999-07-01T23:59:59.000Z

46

A Multistage Steam Reformer Utilizing Solar Heat  

Science Journals Connector (OSTI)

Today a large amount of the required hydrogen or synthesis gas (mixture of hydrogen and carbonmonoxide) is won by steam reforming of low hydrocarbons, especially methane. Hereby the mixture of hydrocarbons and...

W. Jger; U. Leuchs; W. Siebert

1987-01-01T23:59:59.000Z

47

Waste Heat Recovery from Industrial Process Heating Equipment -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

48

Design Considerations for Industrial Heat Recovery Systems  

E-Print Network [OSTI]

in these high-quality waste heat streams, at today's oil prices, is approximately 12 billion dollars per year. Heat recovery is perhaps one of the largest energy conservation opportunities available to U. S. industries today. The author reviews basic heat...

Bywaters, R. P.

1979-01-01T23:59:59.000Z

49

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Broader source: Energy.gov (indexed) [DOE]

Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pd...

50

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

51

An Overview of Thermoelectric Waste Heat Recovery Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

52

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

53

An Analytical Model for Simulating Heavy-Oil Recovery by Cyclic Steam Injection Using Horizontal Wells, SUPRI TR-118  

SciTech Connect (OSTI)

In this investigation, existing analytical models for cyclic steam injection and oil recovery are reviewed and a new model is proposed that is applicable to horizontal wells. A new flow equation is developed for oil production during cyclic steaming of horizontal wells. The model accounts for the gravity-drainage of oil along the steam-oil interface and through the steam zone. Oil viscosity, effective permeability, geometry of the heated zone, porosity, mobile oil saturation, and thermal diffusivity of the reservoir influence the flow rate of oil in the model. The change in reservoir temperature with time is also modeled, and it results in the expected decline in oil production rate during the production cycle as the reservoir cools. Wherever appropriate, correlations and incorporated to minimize data requirements. A limited comparison to numerical simulation results agrees well, indicating that essential physics are successfully captured. Cyclic steaming appears to be a systematic met hod for heating a cold reservoir provided that a relatively uniform distribution of steam is obtained along the horizontal well during injection. A sensitivity analysis shows that the process is robust over the range of expected physical parameters.

Diwan, Utpal; Kovscek, Anthony R.

1999-08-09T23:59:59.000Z

54

An Introduction to Waste Heat Recovery  

E-Print Network [OSTI]

our dependence on petroleum-based fuels, paper, glass, and agricultural and automotive and hence improve our merchandise .trade balance. equipment industries have all had proven success with heat recovery projects. Solar, wind, geothermal, oil shale...

Darby, D. F.

55

Industrial Heat Recovery with Organic Rankine Cycles  

E-Print Network [OSTI]

Rising energy costs are encouraging energy intensive industries to investigate alternative means of waste heat recovery from process streams. The use of organic fluids in Rankine cycles offers improved potential for economical cogeneration from...

Hnat, J. G.; Patten, J. S.; Cutting, J. C.; Bartone, L. M.

1982-01-01T23:59:59.000Z

56

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

57

The nuclear heated steam reformer Design and semitechnical operating experiences  

Science Journals Connector (OSTI)

Good operating experiences of the EVA I- and EVA II-plant have been described. Therin the comparison of the different catalyst concepts has been given. Further the behaviour of the bundle of EVA II plant by isolation of individual reformer tubes as well as the performance of the bundle under transient conditions have been explained. Different design concepts for a nuclear heated steam reformer based on the concentric tubes and baffles have been given. Main points of studies are constructional details, thermohydraulic of the bundle and stress analysis. It can be shown that the present standard of knowledge allows the application of the steam reformer for coal refinement with nuclear heat.

J. Singh; H.F. Niessen; R. Harth; H. Fedders; H. Reutler; W. Panknin; W.D. Mller; H.G. Harms

1984-01-01T23:59:59.000Z

58

Water recovery using waste heat from coal fired power plants.  

SciTech Connect (OSTI)

The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

2011-01-01T23:59:59.000Z

59

Further experimental studies of steam-propane injection to enhance recovery of Morichal oil.  

E-Print Network [OSTI]

??In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's (more)

Ferguson,Mark Anthony

2012-01-01T23:59:59.000Z

60

Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil.  

E-Print Network [OSTI]

??In the past few years, research has been conducted at Texas A&M University on steam-propane injection to enhance oil recovery from the Morichal field, Venezuela, (more)

Tinss, Judicael Christopher

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Experimental Study of Steam Surfactant Flood for Enhancing Heavy Oil Recovery After Waterflooding  

E-Print Network [OSTI]

surfactant flow due to the reduced steam override effect as well as reduced interfacial tension between oil and water in the formation. To investigate the ability to improve recovery of 20.5oAPI California heavy oil with steam surfactant injection, several...

Sunnatov, Dinmukhamed

2010-07-14T23:59:59.000Z

62

SteamMaster: Steam System Analysis Software  

E-Print Network [OSTI]

STEAMMASTER: STEAM SYSTEM ANALYSIS SOFTW ARE Greg Wheeler Associate Professor Oregon State University Corvallis, OR 9733 I ABSTRACT As director of Oregon's ]ndustrial Assessment Center, [ have encountered many industrial steam systems during... plant visits. We analyze steam systems and make recommendations to improve system efficiency. [n nearly 400 industrial assessments, we have recommended 210 steam system improvements, excluding heat recovery, that would save $1.5 million/year with a...

Wheeler, G.

63

RESEARCH ARTICLE OPEN ACCESS Optimization of Boiler Blowdown and Blowdown Heat Recovery in Textile Sector  

E-Print Network [OSTI]

Boilers are widely used in most of the processing industries like textile, for the heating applications. Surat is the one of the largest textile processing area in India. In textile industries coal is mainly used for the steam generation. In a textile industry normally a 4 % of heat energy is wasted through blowdown. In the study conducted in steam boilers in textile industries in surat location, 1.5 % of coal of total coal consumption is wasted in an industry by improper blowdwon. This thesis work aims to prevent the wastage in the coal use by optimizing the blowdown in the boiler and maximizing the recovery of heat wasting through blowdown.

Sunudas T; M G Prince

64

Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

65

Overheating in Hot Water- and Steam-Heated Multifamily Buildings  

SciTech Connect (OSTI)

Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

Dentz, J.; Varshney, K.; Henderson, H.

2013-10-01T23:59:59.000Z

66

Heat transfer and film cooling with steam injection  

E-Print Network [OSTI]

for both coolants was determined for similar blowing rates and was used as a basis for comparisons. Heat transfer coefficients were calcula- ted from the experimental data using a transient analysis. DEDICATION To my wife and family. ACKNOWLEDGEMENTS... LIST OF TABLES PAGE TABLE 1 Variation in the Blowing Rate ------------ 55 TABLE 2 TABLE 3 Typical Air Film Cooling Effectiveness Data Typical Steam Film Cooling Effectiveness Data 62 62 1X LIST OF FIGURES PAGE Figure 1 Comparison of Heat...

Conklin, Gary Eugene

1982-01-01T23:59:59.000Z

67

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

organic Rankine cycle waste heat power conversion system. Cycle (ORC) System for Waste Heat Recovery. Journal ofRankine Cycles in Waste Heat Uti- lizing Processes.

Luong, David

2013-01-01T23:59:59.000Z

68

Condensing Heat Exchangers Optimize Steam Boilers  

E-Print Network [OSTI]

The development of fluorocarbon resin covered tubes has advanced to the point where full scale marketing in connection with condensing heat exchangers has begun. Field installations show simple paybacks of one to one and a half years with resulting...

Sullivan, B.; Sullivan, P. A.

1983-01-01T23:59:59.000Z

69

Design of Heat Exchanger for Heat Recovery in CHP Systems  

E-Print Network [OSTI]

The objective of this research is to review issues related to the design of heat recovery unit in Combined Heat and Power (CHP) systems. To meet specific needs of CHP systems, configurations can be altered to affect different factors of the design...

Kozman, T. A.; Kaur, B.; Lee, J.

70

Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace  

SciTech Connect (OSTI)

This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

2014-01-01T23:59:59.000Z

71

Steam reformers heated by helium from high temperature reactors  

Science Journals Connector (OSTI)

The manifold possibilities of the application of helium-heated steam reformers combined with high temperature nuclear reactors are elucidated in this article. It is shown that the thermodynamic interpretation of the processes does not cause difficulties because of the good heat transfer in helium at high pressure and that helium peak temperatures of 950C are sufficient for carrying out the process. The mechanical design of the reformer tube does not lead to problems because the helium and process pressures are so chosen as to be approximately equal. The problems of hydrogen and tritium permeation as well as the contamination of the reformer tube with solid fission products seem to be solvable using the knowledge available at present. Furthermore, the various possibilities for the design arrangements of helium-heated reformer tube furnaces are shown. The status of development attained to date is outlined and in conclusion there is a survey regarding the next steps to be taken in steam reformer technology.

K. Kugeler; M. Kugeler; H.F. Niessen; K.H. Hammelmann

1975-01-01T23:59:59.000Z

72

IMPROVED STEAM APPARATUS FOR HEATING AND VENTILATING  

Science Journals Connector (OSTI)

...iilprovenments in these heaters, The hleatei is...all parts of the heater. The pipes in the...foot of pipe. In operation for heating andl...at or towards the cold outer v but it must...changes in the weather always have a serious...passing through the heater causes such a rapid...

1889-05-03T23:59:59.000Z

73

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network [OSTI]

Waste Heat Recovery Power Generation with WOWGen? Business Overview WOW operates in the energy efficiency field - one of the fastest growing energy sectors in the world today. The two key products - WOWGen? and WOWClean? provide more... energy at cheaper cost and lower emissions. ? WOWGen? - Power Generation from Industrial Waste Heat ? WOWClean? - Multi Pollutant emission control system Current power generation technology uses only 35% of the energy in a fossil fuel...

Romero, M.

74

Rod Bundle Heat Transfer: Steady-State Steam Cooling Experiments  

SciTech Connect (OSTI)

Through the joint efforts of the Pennsylvania State University and the United States Nuclear Regulatory Commission, an experimental rod bundle heat transfer (RBHT) facility was designed and built. The rod bundle consists of a 7 x 7 square pitch array with spacer grids and geometry similar to that found in a modern pressurized water reactor. From this facility, a series of steady-state steam cooling experiments were performed. The bundle inlet Reynolds number was varied from 1 400 to 30 000 over a pressure range from 1.36 to 4 bars (20 to 60 psia). The bundle inlet steam temperature was controlled to be at saturation for the specified pressure and the fluid exit temperature exceeded 550 deg. C in the highest power tests. One important quantity of interest is the local convective heat transfer coefficient defined in terms of the local bulk mean temperature of the flow, local wall temperature, and heat flux. Steam temperatures were measured at the center of selected subchannels along the length of the bundle by traversing miniaturized thermocouples. Using an analogy between momentum and energy transport, a method was developed for relating the local subchannel centerline temperature measurement to the local bulk mean temperature. Wall temperatures were measured using internal thermocouples strategically placed along the length of each rod and the local wall heat flux was obtained from an inverse conduction program. The local heat transfer coefficient was calculated from the data at each rod thermocouple location. The local heat transfer coefficients calculated for locations where the flow was fully developed were compared against several published correlations. The Weisman and El-Genk correlations were found to agree best with the RBHT steam cooling data, especially over the range of turbulent Reynolds numbers. The effect of spacer grids on the heat transfer enhancement was also determined from instrumentation placed downstream of the spacer grid locations. The local heat transfer was found to be greatest at locations immediately downstream of the grid, and as the flow moved further downstream from the grid it became more developed, thus causing the heat transfer to diminish. The amount of heat transfer enhancement was found to depend not only on the spacer grid design, but also on the local Reynolds number. It was seen that decreasing Reynolds number leads to greater heat transfer enhancement. (authors)

Spring, J.P.; McLaughlin, D.M. [The Pennsylvania State University, 201 Shields Building University Park, PA 16802 (United States)

2006-07-01T23:59:59.000Z

75

Rankine cycle waste heat recovery system  

DOE Patents [OSTI]

This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

Ernst, Timothy C.; Nelson, Christopher R.

2014-08-12T23:59:59.000Z

76

Waste-heat recovery in batch processes using heat storage  

SciTech Connect (OSTI)

The waste-heat recovery in batch processes has been studied using the pinch-point method. The aim of the work has been to investigate theoretical and practical approaches to the design of heat-exchanger networks, including heat storage, for waste-heat recovery in batch processes. The study is limited to the incorporation of energy-storage systems based on fixed-temperature variable-mass stores. The background for preferring this to the alternatives (variable-temperature fixed-mass and constant-mass constant-temperature (latent-heat) stores) is given. It is shown that the maximum energy-saving targets as calculated by the pinch-point method (time average model, TAM) can be achieved by locating energy stores at either end of each process stream. This theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. A simple procedure for determining a number of heat-storage tanks sufficient to achieve the maximum energy-saving targets as calculated by the pinch-point method is described. This procedure relies on combinatorial considerations, and could therefore be labeled the combinatorial method for incorporation of heat storage in heat-exchanger networks. Qualitative arguments justifying the procedure are presented. For simple systems, waste-heat recovery systems with only three heat-storage temperatures (a hot storage, a cold storage, and a heat store at the pinch temperature) often can achieve the maximum energy-saving targets. Through case studies, six of which are presented, it is found that a theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. The description of these six cases is intended to be sufficiently detailed to serve as benchmark cases for development of alternative methods.

Stoltze, S.; Mikkelsen, J.; Lorentzen, B.; Petersen, P.M.; Qvale, B. [Technical Univ. of Denmark, Lyngby (Denmark). Lab. for Energetics

1995-06-01T23:59:59.000Z

77

Resource recovery waste heat boiler upgrade  

SciTech Connect (OSTI)

The waste heat boilers installed in a 360 TPD waste to energy plant were identified as the bottle neck for an effort to increase plant capacity. These boilers were successfully modified to accommodate the increase of plant capacity to 408 TPD, improve steam cycle performance and reduce boiler tube failures. The project demonstrated how engineering and operation can work together to identify problems and develop solutions that satisfy engineering, operation, and financial objectives. Plant checking and testing, design review and specification development, installation and operation results are presented.

Kuten, P.; McClanahan, D.E. [Fluor Daniel, Inc., Houston, TX (United States); Gehring, P.R.; Toto, M.L. [SRRI, Springfield, MA (United States); Davis, J.J. [Deltak, Minon, MN (United States)

1996-09-01T23:59:59.000Z

78

Sundstrand waste heat recovery system  

SciTech Connect (OSTI)

The two programs discussed in this report deal with the use of organic Rankine cycle systems as a means of producing electrical or mechanical power from energy in industrial processes' exhaust. Both programs deal with the design, development, demonstration, and economic evaluation of a 600kWe organic Rankine cycle system designed to recover energy from the exhaust of industrial processes with exhaust gas temperatures of 600/sup 0/F or above. The work done has, through the successful operation of the units installed, demonstrated the technical feasibility of utilizing an organic Rankine cycle bottoming system as a means of conserving energy through waste heat utilization. Continued operation at several sites has also demonstrated the soundness of the design, overall system reliability, and low operating cost. In addition, the basis under which this technology is economically viable in industrial applications was established. As a result of market studies and experience gained from the application of the units addressed in this report, it is concluded that there is a significant market for the equipment at the installed cost level of $1200/kWe to $1500/kWe and that this goal is achievable in the proper manufacturing environment. 54 figs., 2 tabs.

Not Available

1984-03-01T23:59:59.000Z

79

HEAT RECOVERY FROM WASTE WATER BY MEANS OF A RECUPERATIVE HEAT EXCHANGER AND A HEAT PUMP  

Science Journals Connector (OSTI)

ABSTRACT The useful heat of warm waste water is generally transferred to cold water using a recuperative heat exchanger. Depending on its design, the heat exchanger is able to utilise up to 90% of the waste heat potential available. The electric energy needed to operate such a system is more than compensated for by an approximately 50-fold gain of useful heat. To increase substantially the waste heat potential available and the amount of heat recovered, the system for recuperative heat exchange can be complemented by a heat pump. Such a heat recovery system on the basis of waste water is being operated in a public indoor swimming pool. Here the recuperative heat exchanger accounts for about 60%, the heat pump for about 40% of the toal heat reclaimed. The system consumes only 1 kWh of electric energy to supply 8 kWh of useful heat. In this way the useful heat of 8 kWh is compensated for by the low consumption of primary energy of 2.8 kWh. Due to the installation of an automatic cleaning device, the heat transfer surfaces on the waste water side avoid deposits so that the troublesome maintenance work required in other cases on the heat exchangers is not required. KEYWORDS Shower drain water, recuperative heat recovery, heat recovery by means of a heat pump, combination of both types of heat recovery, automatic cleaning device for the heat exchangers, ratio of useful heat supply vs. electric energy consumption, economic consideration.

K. Biasin; F.D. Heidt

1988-01-01T23:59:59.000Z

80

2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program...  

Broader source: Energy.gov (indexed) [DOE]

Documents & Publications Automotive Waste Heat Conversion to Power Program Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Development of a 100-Watt High...

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces  

Broader source: Energy.gov [DOE]

This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems.

82

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Broader source: Energy.gov (indexed) [DOE]

for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development...

83

[Waste water heat recovery system]. Final report, September 30, 1992  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

84

Downward two-phase flow effects in heat-loss and pressure-drop modeling of steam injection wells  

SciTech Connect (OSTI)

Modelling of the pressure drop and heat loss in steam injection wells has undergone a gradual evolution since the heavy interest in enhanced oil recovery by steam injection in the mid-60's. After briefly reviewing the evolution of steam models this paper presents a model which advances the state-of-the-art of steam modelling. The main advance presented in this paper is modelling the effects of the various flow regimens that occur during steam injection. The paper describes the formulation of a two-phase downward vertical flow pressure drop model which is not limited by the ''no-slip'' homogeneous flow assumptions in most previously published models. By using different correlations for mist, bubble, and slug flow, improved pressure drop calculations result, which in turn improve temperature predictions. The paper describes how the model handles temperature predictions differently in the single and two-phase steam flow situations. The paper also describes special features in the model to account for layered soil properties, soil dry out, cyclic injection, coupling heat losses, and reflux boiling in wet annuli. Two examples problems are presented which illustrate some of these features.

Galate, J.W.; Mitchell, R.F.

1985-03-01T23:59:59.000Z

85

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents [OSTI]

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

86

Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil  

E-Print Network [OSTI]

In the past few years, research has been conducted at Texas A&M University on steam-propane injection to enhance oil recovery from the Morichal field, Venezuela, which contains 13.5 ?API gravity oil. Experimental results show that a 5:100 propane...

Tinss, Judicael Christopher

2001-01-01T23:59:59.000Z

87

Dynamic stability experiments in sodium-heated steam generators. [LMFBR  

SciTech Connect (OSTI)

Seventy-two dynamic stability tests were performed in the sodium-heated boiling-water test facility at Argonne National Laboratory. A full-scale LMFBR steam generator tube was employed as the test section operating over the water parameter ranges of 6.9 to 15.9 MPa pressure and 170 to 800 kg/m/sup 2/.s mass flux. The stability thresholds from the test compared well to the predictions of a modified version of a correlation equation recently published by other investigators. Typical experimental data and the modified correlation equation are presented.

France, D.M.; Roy, R.; Carlson, R.D.; Chiang, T.

1984-01-01T23:59:59.000Z

88

Potential benefits of a resource-recovery facility coupled with district heating in Detroit, Michigan  

SciTech Connect (OSTI)

The City of Detroit, Michigan, announced plans for a 2.7-Gg/d (3000-ton/d) Resource Recovery Facility to be located in the central part of the city. The facility will process and burn waste collected by the municipal forces. Steam generated in the facility's boilers will be used to produce electricity; the surplus electricity will be sold to the Detroit Edison Company. When needed by the Central Heating System (CHS), large portions of the steam can be extracted from the turbine and sold to the Detroit Edison Company. The facility will meet its primary purpose of greatly relieving Detroit's solid waste disposal problem. A second very important benefit is that it will be a source of reasonably priced steam for the CHS, which serves the downtown area. Detroit is now in a local depression, and the downtown areas have suffered urban decay. The city is focusing on the redevelopment of these areas, and a viable, cost-effective district heating system would be a major asset. Currently, the CHS is losing money, although it charges relatively high rates for steam, because it uses primarily natural gas to generate steam. The economic feasibility of converting the CHS's relatively oil boiler units to burn coal, a much cheaper fuel, is doubtful. The Resource Recovery Facility can provide CHS with a major part of its steam needs at competitive prices in the near future. This would do much to relieve the CHS's financial problems and help it to become a viable system. This, in turn, would assist the city in the redevelopment of the downtown areas. An overall strategy for district heating in Detroit is being developed. It is suggested that a comprehensive study of a regional district heating system in the city be made.

McLain, H.A.; Brinker, M.J.; Gatton, D.W.

1982-09-01T23:59:59.000Z

89

Thermoelectric recovery of waste heat -- Case studies  

SciTech Connect (OSTI)

The use of waste heat as an energy source for thermoelectric generation largely removes the constraint for the wide scale application of this technology imposed by its relatively low conversion efficiency (typically about 5%). Paradoxically, in some parasitic applications, a low conversion efficiency can be viewed as a distinct advantage. However, commercially available thermoelectric modules are designed primarily for refrigerating applications and are less reliable when operated at elevated temperatures. Consequently, a major factor which determines the economic competitiveness of thermoelectric recovery of waste heat is the cost per watt divided by the mean-time between module failures. In this paper is reported the development of a waste, warm water powered thermoelectric generator, one target in a NEDO sponsored project to economically recover waste heat. As an application of this technology case studies are considered in which thermoelectric generators are operated in both active and parasitic modes to generate electrical power for a central heating system. It is concluded that, in applications when the supply of heat essentially is free as with waste heat, thermoelectrics can compete economically with conventional methods of electrical power generation. Also, in this situation, and when the generating system is operated in a parasitic mode, conversion efficiency is not an important consideration.

Rowe, M.D.; Min, G.; Williams, S.G.K.; Aoune, A. [Cardiff School of Engineering (United Kingdom). Div. of Electronic Engineering; Matsuura, Kenji [Osaka Univ., Suita, Osaka (Japan). Dept. of Electrical Engineering; Kuznetsov, V.L. [Ioffe Physical-Technical Inst., St. Petersburg (Russian Federation); Fu, L.W. [Tsinghua Univ., Beijing (China). Microelectronics Inst.

1997-12-31T23:59:59.000Z

90

Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)  

SciTech Connect (OSTI)

A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

Not Available

2012-04-01T23:59:59.000Z

91

Bond Graph Model of a Vertical U-Tube Steam Condenser Coupled with a Heat Exchanger  

E-Print Network [OSTI]

level. Steam condensers are integral part of any nuclear and thermal power plant utilising steam A simulation model for a vertical U-tube steam condenser in which the condensate is stored at the bottom well and thus the bottom well acts as a heat exchanger. The storage of hydraulic and thermal energies

Paris-Sud XI, Université de

92

Wastewater heat recovery method and apparatus  

DOE Patents [OSTI]

This invention is comprised of a heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, J.W.

1991-01-01T23:59:59.000Z

93

Evaluation of a fluidized-bed waste-heat recovery system. A technical case study  

SciTech Connect (OSTI)

The US DOE Office of Industrial Technologies (OIT) sponsors research and development (R&D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Large amounts of heat escape regularly through the waste-gas streams of industrial processes, particularly those processes that use furnaces, kilns, and calciners. Recovering this waste heat will conserve energy; however, the extremely high temperatures and corrosive nature of many flue and exhaust gases make conventional heat recovery difficult. One solution is a waste-heat recovery system that can withstand the high temperatures and rids itself of corrosion-causing particulates. OIT and Aerojet Energy Conversion Company recently completed a joint project to develop just such a system and to evaluate its long-term operation. This technology, called fluidized-bed waste-heat recovery (FBWHR), offers several advantages over conventional heat recovery, including high gas-side heat-transfer coefficients and a self-cleaning capability. The FBWHR system can recover heat from high-temperature, dirty waste-gas streams, such as those found in the metals, glass, cement, chemical, and petroleum-refining industries. In this multiyear R&D project, Aerojet designed and fabricated an FBWHR system that recovers heat from the corrosive flue gases of aluminum melt furnaces to produce process steam for the plant. The system was installed on a 34-million-Btu/h furnace used to melt aluminum scrap at ALCOA`s Massena, New York plant. During a successful one-year field test, the system produced 26 million lb of 175-psig saturated steam, recovering as much as 28% of the fuel energy input to the furnace.

Not Available

1992-04-01T23:59:59.000Z

94

Evaluation of a fluidized-bed waste-heat recovery system  

SciTech Connect (OSTI)

The US DOE Office of Industrial Technologies (OIT) sponsors research and development (R D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Large amounts of heat escape regularly through the waste-gas streams of industrial processes, particularly those processes that use furnaces, kilns, and calciners. Recovering this waste heat will conserve energy; however, the extremely high temperatures and corrosive nature of many flue and exhaust gases make conventional heat recovery difficult. One solution is a waste-heat recovery system that can withstand the high temperatures and rids itself of corrosion-causing particulates. OIT and Aerojet Energy Conversion Company recently completed a joint project to develop just such a system and to evaluate its long-term operation. This technology, called fluidized-bed waste-heat recovery (FBWHR), offers several advantages over conventional heat recovery, including high gas-side heat-transfer coefficients and a self-cleaning capability. The FBWHR system can recover heat from high-temperature, dirty waste-gas streams, such as those found in the metals, glass, cement, chemical, and petroleum-refining industries. In this multiyear R D project, Aerojet designed and fabricated an FBWHR system that recovers heat from the corrosive flue gases of aluminum melt furnaces to produce process steam for the plant. The system was installed on a 34-million-Btu/h furnace used to melt aluminum scrap at ALCOA's Massena, New York plant. During a successful one-year field test, the system produced 26 million lb of 175-psig saturated steam, recovering as much as 28% of the fuel energy input to the furnace.

Not Available

1992-04-01T23:59:59.000Z

95

Combined Flue Gas Heat Recovery and Pollution Control Systems  

E-Print Network [OSTI]

in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

Zbikowski, T.

1979-01-01T23:59:59.000Z

96

An Experimental Investigation of the Thermodynamical Properties of Super-Heated Steam. On the Cooling of Saturated Steam by Free Expansion  

Science Journals Connector (OSTI)

...research-article An Experimental Investigation of the Thermodynamical Properties of Super-Heated Steam. On the Cooling of Saturated Steam by Free Expansion John H. Grindley The Royal Society is collaborating with JSTOR to digitize, preserve...

1900-01-01T23:59:59.000Z

97

Hydrocarbon steam reforming using series steam superheaters  

SciTech Connect (OSTI)

In a process for steam reforming of a hydrocarbon gas feedstream wherein: the hydrocarbon gas feedstream is partially reformed at elevated temperatures in indirect heat exchange with hot combustion gases in a direct fired primary reforming furnace provided with a convection section for recovery of excess heat from said combustion gases; and the partially reformed feedstream is then further reformed in the presence of an oxygen-containing gas and steam in a secondary reformer to form a secondary reformer gaseous effluent; the improvement which comprises recovering waste heat from said secondary reformer effluent gas and from said primary reforming combustion products by heating a high pressure saturated steam in a first steam superheating zone by indirect heat exchange with at least a portion of said secondary reformer effluent gas to form a first superheated steam stream; and further heating said first superheated steam in a second steam superheating zone by indirect heat exchange with at least a portion of said primary reformer hot combustion gases for form a second superheated steam stream.

Osman, R. M.

1985-10-08T23:59:59.000Z

98

High Efficiency Microturbine with Integral Heat Recovery - Presentatio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 2011 CHPIndustrial Distributed Energy R&D Portfolio Review - Summary Report AMO Peer Review,...

99

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INDUSTRIAL TECHNOLOGIES PROGRAM Improved Heat Recovery in Biomass-Fired Boilers Reducing Superheater Corrosion to Enable Maximum Energy Effi ciency This project will develop...

100

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Industrial waste heat recovery and cogeneration involving organic Rankine cycles  

Science Journals Connector (OSTI)

This paper proposes a systematic approach for energy integration involving waste heat recovery through an organic Rankine cycle (ORC). The proposed approach is based...

Csar Giovani Gutirrez-Arriaga

2014-08-01T23:59:59.000Z

102

Overview of Fords Thermoelectric Programs: Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging,...

103

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites...

104

Development of Thermoelectric Technology for Automotive Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement.

105

Thermoeconomic optimization of sensible heat thermal storage for cogenerated waste-to-energy recovery  

SciTech Connect (OSTI)

This paper investigates the feasibility of employing thermal storage for cogenerated waste-to-energy recovery such as using mass-burning water-wall incinerators and topping steam turbines. Sensible thermal storage is considered in rectangular cross-sectioned channels through which is passed unused process steam at 1,307 kPa/250 C (175 psig/482 F) during the storage period and feedwater at 1,307 kPa/102 C (175 psig/216 F) during the recovery period. In determining the optimum storage configuration, it is found that the economic feasibility is a function of mass and specific heat of the material and surface area of the channel as well as cost of material and fabrication. Economic considerations included typical cash flows of capital charges, energy revenues, operation and maintenance, and income taxes. Cast concrete is determined to be a potentially attractive storage medium.

Abdul-Razzak, H.A. [Texas A and M Univ., Kingsville, TX (United States). Dept. of Mechanical and Industrial Engineering; Porter, R.W. [Illinois Inst. of Tech., chicago, IL (United States). Dept. of Mechanical and Aerospace Engineering

1995-10-01T23:59:59.000Z

106

Performance investigation of a cogeneration plant with the efficient and compact heat recovery system  

Science Journals Connector (OSTI)

This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity (ii) steam (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator (ii) an absorption chiller (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments both part load and full load of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

2012-01-01T23:59:59.000Z

107

List of Heat recovery Incentives | Open Energy Information  

Open Energy Info (EERE)

recovery Incentives recovery Incentives Jump to: navigation, search The following contains the list of 174 Heat recovery Incentives. CSV (rows 1 - 174) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial Custom Project Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Boilers Central Air conditioners Chillers Custom/Others pending approval Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Processing and Manufacturing Equipment Refrigerators Yes AEP Ohio - Commercial Self Direct Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government

108

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

Energy; Grid systems; Optimization; Heat flow; Financialof grid power and by utilizing combined heat and power (CHP)

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

109

Analysis of Steam Heating of a Two-Layer TBP/N-Paraffin/Nitric Acid Mixtures  

SciTech Connect (OSTI)

This report presents an analysis of steam heating of a two-layer tri-n-butyl phosphate (TBP)/n-paraffin-nitric acid mixture.The purpose of this study is to determine if the degree of mixing provided by the steam jet or by bubbles generated by the TBP/nitric acid reaction is sufficient to prevent a runaway reaction.

Laurinat, J.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Hassan, N.M.; Rudisill, T.S.; Askew, N.M.

1998-07-22T23:59:59.000Z

110

A direct steam heat option for hydrothermal treatment of municipal solid waste  

SciTech Connect (OSTI)

A conceptual process for producing a gasifiable slurry from raw municipal solid waste (MSW) using direct steam heating is outlined. The process is based on the hydrothermal decomposition of the organic matter in the MSW, which requires the MSW to be heated to 300-350{degrees}C in the presence of water. A process model is developed and it is shown, based on preliminary estimates of the hydrothermal reaction stoichiometry, that a process using multiple pressure vessels, which allows recovery of waste heat, results in a process capable of producing a product slurry having a 40 wt % solids content with no waste water emissions. Results for a variety of process options and process parameters are presented. It is shown that the addition of auxiliary feedstock to the gasifier, along with the MSW derived slurry, results in more efficient gasification. It is estimated that 2.6 kmol/s of hydrogen can be produced from 30 kg/s (2600 tonne/day) of MSW and 16 kg/s of heavy oil. Without the additional feedstock, heavy oil in this case, only 0.49 kmol/s of hydrogen would be produced.

Thorsness, C.B.

1995-04-12T23:59:59.000Z

111

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation  

E-Print Network [OSTI]

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

Xu, Xianfan

112

Type A: Magma-heated, Dry Steam Resource | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Type A: Magma-heated, Dry Steam Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type A: Magma-heated, Dry Steam Resource Dictionary.png Type A: Magma-heated, Dry Steam Resource: No definition has been provided for this term. Add a Definition Brophy Occurrence Models This classification scheme was developed by Brophy, as reported in Updating the Classification of Geothermal Resources.[1] Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C: Caldera Resource Type D: Sedimentary-hosted, Volcanic-related Resource Type E: Extensional Tectonic, Fault-Controlled Resource

113

Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater  

DOE Patents [OSTI]

A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

1995-09-12T23:59:59.000Z

114

Chemical recovery process using break up steam control to prevent smelt explosions  

DOE Patents [OSTI]

An improvement in a chemical recovery process in which a hot liquid smelt is introduced into a dissolving tank containing a pool of green liquor. The improvement comprises preventing smelt explosions in the dissolving tank by maintaining a first selected superatmospheric pressure in the tank during normal operation of the furnace; sensing the pressure in the tank; and further impinging a high velocity stream of steam upon the stream of smelt whenever the pressure in the tank decreases below a second selected superatmospheric pressure which is lower than said first pressure.

Kohl, Arthur L. (Woodland Hills, CA); Stewart, Albert E. (Eagle Rock, CA)

1988-08-02T23:59:59.000Z

115

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

power generation with combined heat and power applications,of carbon tax on combined heat and power adoption by a131(1), 2-25. US Combined Heat and Power Association (

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

116

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

of fossil fuel sources of waste heat and other lossesthat this is only the waste heat from fossil generation,an estimate of the total waste heat from fossil generation

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

117

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System Combined Heat and Power System by Zachary Mills Norwood Doctor of Philosophy in the Energy and Resources of analysis of Distributed Concentrating Solar Combined Heat and Power (DCS-CHP) systems is a design

California at Berkeley, University of

118

Fluidized bed steam reactor including two horizontal cyclone separators and an integral recycle heat exchanger  

SciTech Connect (OSTI)

A reactor is described comprising: a vessel; a first furnace section disposed in said vessel; a second furnace section disposed in said vessel; means in each of said furnace sections for receiving a combustible fuel for generating heat and combustion gases; a first heat recovery area located adjacent said furnace sections; a second heat recovery area located adjacent said furnace sections; means for passing said combustion gases from said first furnace section to said first heat recovery area; and means for passing said combustion gases from said second furnace section to said second heat recovery area.

Gorzegno, W.P.

1993-06-15T23:59:59.000Z

119

In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)  

DOE Patents [OSTI]

A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

Robertson, Eric P

2011-05-24T23:59:59.000Z

120

MHTGR steam generator on-line heat balance, instrumentation and function  

SciTech Connect (OSTI)

Instrumentation is used to measure the Modular High Temperature Gas-Cooled Reactor (MHTGR) steam generator dissimilar metal weld temperature during start-up testing. Additional instrumentation is used to determine an on-line heat balance which is maintained during the 40 year module life. In the process of calibrating the on-line heat balance, the helium flow is adjusted to yield the optimum boiling level in the steam generator relative to the dissimilar metal weld. After calibration is complete the weld temperature measurement is non longer required. The reduced boiling level range results in less restrictive steam generator design constraints.

Klapka, R.E.; Howard, W.W.; Etzel, K.T. (General Atomics, San Diego, CA (United States)); Basol, M.; Karim, N.U. (ABB-CENP, Chattanooga, TN (United States))

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Increase of unit efficiency by improved waste heat recovery  

SciTech Connect (OSTI)

For coal-fired power plants with flue gas desulfurization by wet scrubbing and desulfurized exhaust gas discharge via cooling tower, a further improvement of new power plant efficiency is possible by exhaust gas heat recovery. The waste heat of exhaust gas is extracted in a flue gas cooler before the wet scrubber and recovered for combustion air and/or feedwater heating by either direct or indirect coupling of heat transfer. Different process configurations for heat recovery system are described and evaluated with regard to net unit improvement. For unite firing bituminous coal an increase of net unit efficiency of 0.25 to 0.7 percentage points and for lignite 0.7 to 1.6 percentage points can be realized depending on the process configurations of the heat recovery systems.

Bauer, G.; Lankes, F.

1998-07-01T23:59:59.000Z

122

E-Print Network 3.0 - advanced steam systems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conference Summary: recovery. As stable steam supply to the paper mill and the district heating system needs to be assured... conditions. In second instance, the control...

123

A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery  

Science Journals Connector (OSTI)

Abstract In this paper, after a short review of waste heat recovery technologies from diesel engines, the heat exchangers (HEXs) used in exhaust of engines is introduced as the most common way. So, a short review of the technologies that increase the heat transfer in \\{HEXs\\} is introduced and the availability of using them in the exhaust of engines is evaluated and finally a complete review of different \\{HEXs\\} which previously were designed for increasing the exhaust waste heat recovery is presented. Also, future view points for next \\{HEXs\\} designs are proposed to increase heat recovery from the exhaust of diesel engines.

M. Hatami; D.D. Ganji; M. Gorji-Bandpy

2014-01-01T23:59:59.000Z

124

Microsoft Word - Seattle Steam Draft EA for concurrence-6-16...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The exhaust gas from the turbine would be routed to a once-through (heat recovery) steam generator, which would be equipped with natural gas-fired duct burners to increase steam...

125

Cascade heat recovery with coproduct gas production  

DOE Patents [OSTI]

A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

1986-10-14T23:59:59.000Z

126

Waste Heat Recovery from Refrigeration in a Meat Processing Facility  

E-Print Network [OSTI]

A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat...

Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

1980-01-01T23:59:59.000Z

127

Multi-physics modeling of thermoelectric generators for waste heat recovery applications  

Broader source: Energy.gov [DOE]

Model developed provides effective guidelines to designing thermoelectric generation systems for automotive waste heat recovery applications

128

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Broader source: Energy.gov (indexed) [DOE]

(ex: organic Rankine cycle) High installed KW capital Low temperature waste heat (<100C) is not practicable Further efficiency loss in electrolytic conversion to...

129

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

130

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

Steam Turbine . . . . . .and A. Ghaffari. Steam Turbine Model. Simulation= m ? v (h in ? h out ) Steam Turbine As with the pump, the

Luong, David

2013-01-01T23:59:59.000Z

131

Low Level Heat Recovery Through Heat Pumps and Vapor Recompression  

E-Print Network [OSTI]

The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

Gilbert, J.

1980-01-01T23:59:59.000Z

132

Heat Integration and Heat Recovery at a Large Chemical Manufacturing Plant  

E-Print Network [OSTI]

in the hydrogenation process. The hydrogenation process uses a catalyst to react the purified phenol with hydrogen, forming a mixture of cyclohexanone and cyclohexanol. The reaction is exothermic and is cooled with water to control the rate of reaction... Process Heat Recovery The process heat recovery opportunity was identified in the hydrogenation process. The hydrogenation process contains an exothermic reaction which is cooled with water to control the rate of reaction. The heated water...

Togna, K .A.

2012-01-01T23:59:59.000Z

133

In vivo recovery and half-life time of a steam-treated factor IX concentrate in hemophilia B patients  

Science Journals Connector (OSTI)

Factor IX (FIX) recovery and half-life was measured in ten hemophilia B patients under standardized conditions. Each patient received a steam-treated high-purity factor IX concentrate at a dose of 1939 U/kg b...

M. Khler; E. Seifried; P. Hellstern; G. Pindur; C. Miyashita; S. Mrsdorf

1988-12-01T23:59:59.000Z

134

The Economics of Steam Vs. Electric Pipe Heating  

E-Print Network [OSTI]

To properly design a pipe heating system, the basic principles of heat transfer from an insulated pipe must be understood. The three methods of heat flow are conduction, convection (both forced and natural) and radiation. The total heat loss from a...

Schilling, R. E.

135

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling  

E-Print Network [OSTI]

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling telluride TEMs. Key words: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from

Xu, Xianfan

136

ENERGY ABSORBER HEAT PUMP SYSTEM TO SUPPLEMENT HEAT RECOVERY SYSTEMS IN AN INDOOR SWIMMING POOL  

Science Journals Connector (OSTI)

ABSTRACT Compared with convontional indoor swimming pools with traditional plant engineering, the Schwalmtal indoor swimming pool has a final energy consumption of just 40%. This low consumption is achieved by improved insulation of the building's enveloping surface, through the operation of systems for the recovery of heat from drain water and waste air as well as by the operation of a heat pump system to gain ambient heat. The decentralised heat recovery systems met between 40 and 80% of the heat requirements in the supply areas where they were used. The electric heat pump system, which is operated in the bivalent mode in parallel to a heating boiler, could generate 75% of the heat provided by the central heating circuit to meet the residual heat requirements. The report illustrates the structure of the residual heat requirements of the central heating circuit. A description is given of the measured coefficients of performance of the brine/water heat pump connected by a brine circuit with two different energy absorber types - energy stack and energy roof. Finally, the ambient energy gained with the absorbers is broken down into the various kinds of heat gains from radiation, convection, condensation etc. KEYWORDS Energy absorber; energy stack; energy roof; heat pump; heat recovery systems; indoor swimming pool; energy engineering concept.

K. Leisen

1988-01-01T23:59:59.000Z

137

Property:Heat Recovery Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Systems Jump to: navigation, search Property Name Heat Recovery Systems Property Type Page Description Distributed Data heat recovery systems Pages using the property "Heat Recovery Systems" Showing 25 pages using this property. (previous 25) (next 25) C Capstone C30 + Unifin + Capstone C60 + Unifin HX + D Distributed Generation Study/10 West 66th Street Corp + Built-in + Distributed Generation Study/615 kW Waukesha Packaged System + Sondex PHE-Type SL140-TM-EE-190 +, Sondex PHE-Type SL140-TM-EE-150 +, Cain UTR1-810A17.5SSP + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Built-in + Distributed Generation Study/Arrow Linen + Built-in + Distributed Generation Study/Dakota Station (Minnegasco) + Unifin + Distributed Generation Study/Elgin Community College + Beaird Maxim Model TRP-12 +

138

Steam Systems | Department of Energy  

Office of Environmental Management (EM)

Reduction: Opportunities and Issues How to Calculate the True Cost of Steam Industrial Heat Pumps for Steam and Fuel Savings Industrial Steam System Heat-Transfer Solutions...

139

Heat-Exchanger Network Synthesis Involving Organic Rankine Cycle for Waste Heat Recovery  

Science Journals Connector (OSTI)

This article aims to present a mathematical model for the synthesis of a heat-exchanger network (HEN) which can be integrated with an organic Rankine cycle (ORC) for the recovery of low-grade waste heat from the heat surplus zone of the background ...

Cheng-Liang Chen; Feng-Yi Chang; Tzu-Hsiang Chao; Hui-Chu Chen; Jui-Yuan Lee

2014-04-23T23:59:59.000Z

140

Choose the best heat-recovery method for thermal oxidizers  

SciTech Connect (OSTI)

Thermal oxidation is current the most economically favorable add-on method of controlling hydrocarbon air emissions of moderate to low concentration (below 10,000 ppm). This concentration range covers emissions from a wide variety of chemical process industries (CPI) sources, including dryers, reactor vents, tank vents, and coaters. Thermal oxidizer systems consist of three basic sub-systems--burner, combustion chamber, and primary heat recovery. Selecting the type of primary heat recovery is probably the most important decision in the design of a thermal oxidizer, and requires consideration of a wide range of factors. The two most widely used types of primary heat recovery--recuperative and regenerative--each have distinct advantages and disadvantages. In general, recuperative oxidizers are simpler and less costly to purchase, whereas regenerative oxidizers offer substantially lower operating costs. Selecting between recuperative and regenerative heat recovery requires balancing a number of factors, such as capital and operating costs, exhaust gas composition and temperature, and secondary heat demand. This article provides guidance on when, where, and how to use each.

Klobucar, J.M.

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Waste Heat Recovery Submerged Arc Furnaces (SAF)  

E-Print Network [OSTI]

designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btus required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified...

O'Brien, T.

2008-01-01T23:59:59.000Z

142

Pilot scale study on steam explosion and mass balance for higher sugar recovery from rice straw  

Science Journals Connector (OSTI)

Abstract Pretreatment of rice straw on pilot scale steam explosion has been attempted to achieve maximum sugar recovery. Three different reaction media viz. water, sulfuric acid and phosphoric acid (0.5%, w/w) were explored for pretreatment by varying operating temperature (160, 180 and 200C) and reaction time (5 and 10min). Using water and 0.5% SA showed almost similar sugar recovery (?87%) at 200 and 180C respectively. However, detailed studies showed that the former caused higher production of oligomeric sugars (13.56g/L) than the later (3.34g/L). Monomeric sugar, followed the reverse trend (7.83 and 11.62g/L respectively). Higher oligomers have a pronounced effect in reducing enzymatic sugar yield as observed in case of water. Mass balance studies for water and SA assisted SE gave total saccharification yield as 81.8% and 77.1% respectively. However, techno-economical viability will have a trade-off between these advantages and disadvantages offered by the pretreatment medium.

Sandeep Sharma; Ravindra Kumar; Ruchi Gaur; Ruchi Agrawal; Ravi P. Gupta; Deepak K. Tuli; Biswapriya Das

2015-01-01T23:59:59.000Z

143

Steam Power Stations for Electricity and Heat Generation  

Science Journals Connector (OSTI)

Power plants produce electricity, process heat or district heating, according to their task (Stultz and Kitto 1992). Electric power is the only product of a condensation power plant and the main product of a p...

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

144

Heat recovery and seed recovery development project: preliminary design report (PDR)  

SciTech Connect (OSTI)

The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

1981-06-01T23:59:59.000Z

145

Method for controlling exhaust gas heat recovery systems in vehicles  

DOE Patents [OSTI]

A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

Spohn, Brian L.; Claypole, George M.; Starr, Richard D

2013-06-11T23:59:59.000Z

146

Waste Heat Recovery in Cement Plants By Fluidized Beds  

E-Print Network [OSTI]

. This is particularly true in the cement industry. Cement manufacture consists of mining and grinding rocks, melting them to form clinkers, then grinding those clinkers to a powder. Through recovery of waste heat and inclusion of technology such as flash calciners...

Fraley, L. D.; Ksiao, H. K.; Thunem, C. B.

1984-01-01T23:59:59.000Z

147

Alternative Heat Recovery Options for Single-Stage Spray Dryers  

E-Print Network [OSTI]

describes an analysis performed at a milk products plant, where a spray dryer is used to produce powdered milk. Discussed approaches include air-to-air and air-liquid-air recuperates. Key issues include heat recovery potential, capital costs, overall payback...

Wagner, J. R.

1984-01-01T23:59:59.000Z

148

High Temperature Heat Recovery Systems Using Ceramic Recuperators  

E-Print Network [OSTI]

Ceramic shell and tube recuperators capable of providing up to 1800oF (980oC) preheated combustion air and operating at process gas inlet temperatures of up to 2800oF (1540oC) have shown themselves to be cost effective waste heat recovery devices...

Young, S. B.; Bjerklie, J. W.; York, W. A.

1980-01-01T23:59:59.000Z

149

Industrial Plate Exchangers Heat Recovery and Fouling  

E-Print Network [OSTI]

by choosing a more suitable material of construction. Plate exchangers being economic on surface area are able to use materials such as stainless steels, titanium,hastelloy,incolloy etc.without excessive cost. Normally the more e~pensive the material... it to the plate exchanger which is easy to open and clean. During the late sixties the first plate heat exchangers were used for acid cooling direct. These had plates of Hastelloy C and gaskets of Viton rubber. These were generally restricted to an acid...

Cross, P. H.

1981-01-01T23:59:59.000Z

150

Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers  

SciTech Connect (OSTI)

The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or cut line to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel tubes. Also, these fluctuating air flow patterns can result in deposition of black liquor on the wall tubes, and during periods when deposition is high, there is a noticeable increase in the concentrations of sulfur-bearing gases like hydrogen sulfide and methyl mercaptan. Laboratory studies have shown that chromized and aluminized surface treatments on carbon steel improve the resistance to sulfidation attack. Studies of superheater corrosion and cracking have included laboratory analyses of cracked tubes, laboratory corrosion studies designed to simulate the superheater environment and field tests to study the movement of superheater tubes and to expose a corrosion probe to assess the corrosion behavior of alternate superheater alloys, particularly alloys that would be used for superheaters operating at higher temperatures and higher pressures than most current boilers. In the laboratory corrosion studies, samples of six alternate materials were immersed in an aggressive, low melting point salt mixture and exposed for times up to 336 h, at temperatures of 510, 530 or 560C in an inert or reactive cover gas. Using weight change and results of metallographic examination, the samples were graded on their resistance to the various environments. For the superheater corrosion probe studies, samples of the same six materials were exposed on an air-cooled corrosion probe exposed in the superheater section of a recovery boiler for 1000 h. Post exposure examination showed cracking and/or subsurface attack in the samples exposed at the higher temperatures with the attack being more severe for samples 13 exposed above the first melting temperature of the deposits that collected on the superheater tubes. From these superheater studies, a ranking was developed for the six materials tested. The task addressing cracking and corrosion of primary air port tubes that was part of this project produced results that have been extensively implemented in recovery boilers in North America, the Nordic countries and many other parts of the world. By utilizing these results, boilers ar

Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

2007-12-31T23:59:59.000Z

151

Building America Expert Meeting: Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits  

Broader source: Energy.gov [DOE]

This expert meeting was conducted on July 13, 2011 by the ARIES Collaborative in New York City. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort.

152

Method for cutting steam heat losses during cyclic steam injection of wells. Second quarterly report  

SciTech Connect (OSTI)

The Midway-Sunset Field (CA) is the largest Heavy Oil field in California and steam injection methods have been successfully used for more than 30 years to produce the Heavy Oil from many of its unconsolidated sand reservoirs. In partnership with another DOE/ERIP grantee, our Company has acquired an 80 ac. lease in the SE part of this field, in order to demonstrate our respective technologies in the Monarch sand, of Miocene Age, which is one of the reservoirs targeted by the DOE Class 3 Oil Program. This reservoir contains a 13 API oil, which has a much higher market value, as a Refinery Feedstock, than the 5 to 8 API Vaca Tar, used only as road paving material. This makes it easier to justify the required investment in a vertical well equipped with two horizontal drainholes. The economic viability of such a project is likely to be enhanced if Congress approves the export to Japan of a portion of the 27 API (1% Sulfur) AK North Slope oil, which currently is landed in California in preference to lighter and sweeter Far East imported crudes. This is a major cause of the depressed prices for California Heavy Oil in local refineries, which have reduced the economic viability of all EOR methods, including steam injection, in California. Two proposals, for a Near-Term (3 y.) and for a Mid-Term (6 y.) project respectively, were jointly submitted to the DOE for Field Demonstration of the Partners` new technologies under the DOE Class 3 Oil Program. The previous design of a special casing joint for the Oxnard field well was reviewed and adapted to the use of existing Downhole Hardware components from three suppliers, instead of one. The cost of drilling and completion of a well equipped with two horizontal drainholes was re-evaluated for the conditions prevailing in the Midway Sunset field, which are more favorable than in the Oxnard field, leading to considerable reductions in drilling rig time and cost.

Not Available

1994-08-01T23:59:59.000Z

153

Waste Heat Recovery Using a Circulating Heat Medium Loop  

E-Print Network [OSTI]

thing of the past. This paper presents results of a refinery-wide survey to identify potential high temperature heat sources that are not being recovered and low temperature systems that consume fuel. The best candidates in each category were connected...

Manning, E., Jr.

1981-01-01T23:59:59.000Z

154

Steam Turbine Cogeneration  

E-Print Network [OSTI]

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

155

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents [OSTI]

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

156

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents [OSTI]

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

157

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

with a reciprocat- ing steam engine (SE). Energy, 34:13155 ? 1): the steam flows out of the engine, and the pressure

Luong, David

2013-01-01T23:59:59.000Z

158

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles  

Broader source: Energy.gov [DOE]

Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

159

Quantitative description of steam channels after steam flooding  

Science Journals Connector (OSTI)

Steam channeling is one of the main barriers for EOR after steam flooding. In order to enhance the oil recovery in steam flooded reservoirs, steam channel volumes should be precisely known. In ... methods has bee...

Qiang Zheng; HuiQing Liu; Fang Li; Qing Wang

2013-05-01T23:59:59.000Z

160

Protecting the Investment in Heat Recovery with Boiler Economizers  

E-Print Network [OSTI]

voice concern over the long term security of an investment in flue gas heat recovery equipment. The concern generally involves the ability of an economizer or air heater to continue to perform efficiently without corrosion. The recognized economic..., temperatures of the flue gas and water, and the potential for corrosion. This paper will discuss the economic and practical considerations of an economizer installation. WHY INSTALL AN ECONOMIZER? An economizer is reckoned to be a financial ad vantage...

Roethe, L. A.

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced Burners and Combustion Controls for Industrial Heat Recovery Systems  

E-Print Network [OSTI]

ADVANCED BURNERS AND COMBUSTION CONTROLS FOR INDUSTRIAL HEAT RECOVERY SYSTEMS J.L.FERRI GTE PRODUCTS CORPORATION TOWANDA, PA ABSTRACT When recuperators are installed on indus trial furnaces, burners and ratio control systems must... recuperators by demonstrating their technical and economi cal feasibility in well monitored field installations (1). During the contract, it became evident to GTE that a systems approach (recuperator, burner, and con troIs) is necessary to be accepted...

Ferri, J. L.

162

An evaluation of the benefits of combined steam and fireflooding as a recovery process for heavy oils  

SciTech Connect (OSTI)

Lack of oil mobility is a major problem with in situ combustion field projects, since the combustion front displaces oil into an essentially unheated reservoir. One way of ensuring oil mobility is to utilize steam injection during the early life of the process, and then switch to combustion when heated communication paths have been developed. The in situ combustion characteristics of cores from the Primrose reservoir of Northeastern Alberta were investigated in a comprehensive series of 22 combustion tube tests. The program was carried out in order to evaluate the effectiveness of fireflooding in both cores that had been preheated to the extent that the oil was mobile and in those which were steam-flooded prior to dry combustion. Both normal- and 95% oxygen-enriched air were evaluated. Wet combustion tests were performed utilizing both liquid water and steam injection. The effects of parameters such as pressure, oxygen enrichment and injection flux on the combustion characteristics were examined. This paper will discuss the results of this study, which show that steam co-injection is more effective at lowering the oxygen requirement than was combustion following steam. Additionally, the cores which were preheated exhibited similar oxygen requirements to those which were presteamed to a near-residual saturation.

Moore, R.G.; Laureshen, C.J.; Belgrave, J.D.M.; Ursenbach, M.G. [Univ. of Calgary, Alberta (Canada); Jha, K.N. [Dept. of Natural Resources Canada, Ottawa (Canada)

1995-02-01T23:59:59.000Z

163

Numerical simulation of heat transfer performance of an air-cooled steam condenser in a thermal power plant  

Science Journals Connector (OSTI)

Numerical simulation of the thermal-flow characteristics and heat transfer performance is made of an air-cooled steam condenser (ACSC) in a thermal power plant by considering the effects of ambient wind speed and...

Xiufeng Gao; Chengwei Zhang; Jinjia Wei; Bo Yu

2009-09-01T23:59:59.000Z

164

Study of reactions of activated Mg-based powders in heated steam  

Science Journals Connector (OSTI)

Abstract Activated Mg-based powders are prepared by high-energy milling and characterised with XRD, SEM, TG and BET techniques. This study focus on reactions of Mg-based powders with flowing steam that is heated at 500, 600, and 700C in a transparent pipe furnace. Morphologies and phases of solid reaction products are analysed by SEM, XRD, and residual metal content, and ignition delay times are measured. Experimental results show that all Mg-based powders oxidise at 500C and ignite at 600C. At 700C, all samples burn completely to form magnesium oxide (MgO) within 5min. Residual metal contents and ignition delay times of all samples decrease with increasing temperature, and ignition delay times of activated Mg-based materials containing cobalto-cobaltic oxide (Co3O4) are only 22s at 700C. Milled Mg powders are more reactive in heated steam than unmilled Mg powders, and the addition of Co3O4 further increases magnesium reactivity in heated steam.

Hai-tao Huang; Mei-shuai Zou; Xiao-yan Guo; Rong-jie Yang; Yun-kai Li

2014-01-01T23:59:59.000Z

165

Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ground Source Heat Pump Demonstration Projects to someone by E-mail Ground Source Heat Pump Demonstration Projects to someone by E-mail Share Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Facebook Tweet about Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Twitter Bookmark Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Google Bookmark Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Delicious Rank Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Digg Find More places to share Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on AddThis.com...

166

The case for endurance testing of sodium-heated steam generators  

SciTech Connect (OSTI)

It is generally believed that a nuclear power comeback before the end of the century will be through the vehicle of the light water reactor (LWR). The newer designs, with their important technical and economic advances, should attract wide interest and result in commercial success for the manufacturers and their utility customers. To develop the liquid-metal fast breeder reactor (LMFBR), approximately $30 billion has been spent worldwide, a third of which has been spent in the US. As a result of this considerable investment, most of the technical obstacles to deployment of the LMFBR have been removed with a few exceptions, one of which is the long-term performance of sodium-heated steam generators. Of the difficulties that have beset the current vintage of nuclear power plants, the performance of steam generators in pressurized water reactors (PWRs) was the most egregious. There was very little development testing and no model testing of PWR steam generators. Development occurred in the plants themselves resulting in many outages and more than $5 billion in lost revenue and replacement power costs. As a result, the electric utility industry is certain to exercise caution regarding acquisition of the LMFBR and will demand strong objective evidence of steam generator reliability. Only long-term endurance testing of prototypic models under prototypic conditions will satisfy this demand.

Onesto, A.T.; Zweig, H.R.; Gibbs, D.C. (Energy Technology Engineering Center, Canoga Park, CA (United States))

1992-01-01T23:59:59.000Z

167

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

Expander Models The components that generate power from steam expansion can be classified into two categories: turbo-

Luong, David

2013-01-01T23:59:59.000Z

168

Thermal Recovery Methods  

SciTech Connect (OSTI)

Thermal Recovery Methods describes the basic concepts of thermal recovery and explains the injection patterns used to exploit reservoir conditions. Basic reservoir engineering is reviewed with an emphasis on changes in flow characteristics caused by temperature. The authors discuss an energy balance for steam and combustion drive, and they explain in situ reactions. Heat loss, combustion drive, and steam displacement also are examined in detail, as well as cyclic steam injection, downhole ignition, well heating, and low-temperature oxidation. Contents: Thermal processes; Formation and reservoir evaluations; Well patterns and spacing; Flow and process equations; Laboratory simulation of thermal recovery; Heat loss and transmission; Displacement and production; Equipment; Basic data for field selection; Laboratory evaluation of combustion characteristics; Thermal properties of reservoirs and fluids.

White, P.D.; Moss, J.T.

1983-01-01T23:59:59.000Z

169

Heat Recovery From Arc Furnaces Using Water Cooled Panels  

E-Print Network [OSTI]

to maintain a constant cooling water supply temperature in the cold well. The cooling tower fans can be manually reversed on slow speed for de-icing the cooling tower in winter to remove ice buildup on the slats. Level controller LL-2 shuts down pumps PI...HEAT RECOVERY FROM ARC FURNACES USING WATER COOLED PANELS D. F. Darby Deere & Company Moline, Illinois ABSTRACT In 1980-81, the John Deere Foundry at East Moline underwent an expansion program that in creased its capacity by over 60...

Darby, D. F.

170

A ground-coupled storage heat pump system with waste heat recovery  

SciTech Connect (OSTI)

This paper reports on an experimental single-family residence that was constructed to demonstrate integration of waste heat recovery and seasonal energy storage using both a ventilating and a ground-coupled heat pump. Called the Idaho energy Conservation Technology House, it combines superinsulated home construction with a ventilating hot water heater and a ground coupled water-to-water heat pump system. The ground heat exchangers are designed to economically promote seasonal and waste heat storage. Construction of the house was completed in the spring of 1989. Located in Moscow, Idaho, the house is occupied by a family of three. The 3,500 ft{sup 2} (325 m{sup 2}) two-story house combines several unique sub-systems that all interact to minimize energy consumption for space heating and cooling, and domestic hot water.

Drown, D.C.; Braven, K.R.D. (Univ. of Idaho, ID (US)); Kast, T.P. (Thermal Dynamic Towers, Boulder, CO (US))

1992-02-01T23:59:59.000Z

171

A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery  

Science Journals Connector (OSTI)

Abstract After conducting an in-depth analysis of the conventional boiler cold-end design for waste heat recovery, this work proposed a new conceptual boiler cold-end design integrated with the steam cycle in a 1000MW CFPP, in which the preheating of air was divided into high-temperature air preheater (HTAP), main air preheater (MAP) and low-temperature air preheater (LTAP). The HTAP and an economizer were installed in separate flue ducts, and the low temperature economizer (LTE) was situated between the MAP and the LTAP in the main flue duct to heat the condensed water. In the proposed boiler cold-end design, the flue gas waste heat was not only used to heat condensed water, but also to further preheat the combustion air. The air temperature at the air-preheater outlet increases and part of the steam bleeds with high exergy can be saved, resulting in greater energy-savings and better economics. Results showed that, for a typical 1000MW CFPP in China, using the proposed boiler cold-end design for waste heat recovery could produce 13.3MWe additional net power output with a heat rate reduction of approximately 112.0kJ/kWh and could yield a net benefit of up to $85.8M per year, which is much greater than those of the conventional cases. Exergy destruction is also reduced from 49.9MWth in the conventional boiler cold-end design to 39.6MWth in the proposed design.

Yongping Yang; Cheng Xu; Gang Xu; Yu Han; Yaxiong Fang; Dongke Zhang

2015-01-01T23:59:59.000Z

172

Analyzing the efficiency of a heat pump assisted drain water heat recovery system that uses a vertical inline heat exchanger  

Science Journals Connector (OSTI)

Abstract The purpose of the present study is to accumulate knowledge on how a drain water heat recovery system using a vertical inline heat exchanger and a heat pump performs under different drain water flow profile scenarios. Investigating how the intermittent behavior of the drain water influences the performance for this type of system is important because it gives insight on how the system will perform in a real life situation. The scenarios investigated are two 24h drain water flow rate schedules and one shorter schedule representing a three minute shower. The results from the present paper add to the knowledge on how this type of heat recovery system performs in a setting similar to a multi-family building and how sizing influences the performance. The investigation shows that a heat recovery system of this type has the possibility to recover a large portion of the available heat if it has been sized to match the drain water profile. Sizing of the heat pump is important for the system performance; sizing of the storage tank is also important but not as critical.

Jrgen Wallin; Joachim Claesson

2014-01-01T23:59:59.000Z

173

Steam-Methane Reformer Kinetic Computer Model with Heat Transfer and Geometry Options  

SciTech Connect (OSTI)

A kinetic computer model of a steam/methane reformer has been developed as a design and analytical tool for a fuel cell system's fuel conditioner. This model has reaction, geometry, flow arrangement, and heat transfer options. Model predictions have been compared to previous experimental data, and close agreement was obtained. Initially, the Leva-type, packed-bed, heat transfer correlations were used. However, calculations based upon the reacting, reformer gases indicate a considerably higher heat transfer coefficient for this reforme design. Data analysis from similar designs in the literature also shows this phenomenon. This is thought to be reaction-induced effect, brought about by the changing of gas composition, the increased gas velocity, the lower catalyst temperature during reaction, and the higher thermal and reaction gradients involved in compact fuel cell reformer designs. Future experimental work is planned to verify the model's predictions further.

Murray, A.P.; Snyder, T.S.

1985-04-01T23:59:59.000Z

174

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler  

SciTech Connect (OSTI)

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

Andrew Seltzer

2005-01-01T23:59:59.000Z

175

Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines  

SciTech Connect (OSTI)

Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced ''adiabatic'' diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum improvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

Bailey, M.M.

1985-07-01T23:59:59.000Z

176

Analysis of IECC2003 Chiller Heat Recovery for Service Water Heating Requirement for New York State  

SciTech Connect (OSTI)

The state of New York asked the U.S. Department of Energy to evaluate the cost-effectiveness of the requirement for Heat Recovery for Service Water Heating that exists in the 2003 International Energy Conservation Code to determine whether this requirement should be adopted into the New York State Energy Code. A typical hotel application that would trigger this requirement was examined using whole building simulation software to generate baseline annual chiller and service hot water loads, and a spreadsheet was used to examine the energy savings potential for heat recovery using hourly load files from the simulation. An example application meeting the code requirement was developed, and the energy savings, energy cost savings, and first costs for the heat recovery installation were developed. The calculated payback for this application was 6.3 years using 2002 New York state average energy costs. This payback met the minimum requirements for cost effectiveness established for the state of New York for updating the commercial energy conservation code.

Winiarski, David W.

2004-08-15T23:59:59.000Z

177

Oxidation and Volatilization from Tungsten Brush High Heat Flux Armor During High Temperature Steam Exposure  

SciTech Connect (OSTI)

Tungsten brush accommodates thermal stresses and high heat flux in fusion reactor components such as plasma facing surfaces or armor. However, inherently higher surface areas are introduced with the brush design. We have tested a specific design of tungsten brush in steam between 500 and 1100C. Hydrogen generation and tungsten volatilization rates were determined to address fusion safety issues. The brush prepared from 3.2-mm diameter welding rods had a packing density of 85 percent. We found that both hydrogen generation and tungsten volatilization from brush, fixtured to represent a unit within a larger component, were less than projections based upon the total integrated surface area (TSA). Steam access and the escape of hydrogen and volatile oxide from void spaces within the brush are restricted compared to specimens with more direct diffusion pathways to the test environment. Hydrogen generation rates from restrained specimens based on normal surface area (NSA) remain about five times higher than rates based on total surface areas from specimens with direct steam access. Volatilization rates from restrained specimens based upon normal surface area (NSA) were only 50 percent higher than our historic cumulative maximum flux plot (CMFP) for tungsten. This study has shown that hydrogen generation and tungsten volatilization from brush do not scale according to predictions with previously determined rates, but in fact, with higher packing density could approach those from flat surfaces.

Smolik, Galen Richard; Pawelko, Robert James; Anderl, Robert Andrew; Petti, David Andrew

2000-05-01T23:59:59.000Z

178

Analysis of heat recovery in supermarket refrigeration system using carbon dioxide as refrigerant.  

E-Print Network [OSTI]

?? The aim of this study is to investigate the heat recovery potential in supermarket refrigeration systems using CO2 as refrigerants. The theoretical control strategy (more)

Abdi, Amir

2014-01-01T23:59:59.000Z

179

Cylinder wall waste heat recovery from liquid-cooled internal combustion engines utilizing thermoelectric generators.  

E-Print Network [OSTI]

?? This report is a dissertation proposal that focuses on the energy balance within an internal combustion engine with a unique coolant-based waste heat recovery (more)

Armstead, John Randall

2012-01-01T23:59:59.000Z

180

Industrial Waste Heat Recovery by Use of Organic Rankine Cycles (ORC)  

Science Journals Connector (OSTI)

The project is a combined analytical and experimental programme to investigate the feasibility of the Organic Rankine Cycle principle for waste heat recovery in industry....

Dipl.-Phys. G. Huppmann

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Use Feedwater Economizers for Waste Heat Recovery | Department...  

Broader source: Energy.gov (indexed) [DOE]

(January 2012) More Documents & Publications Consider Installing a Condensing Economizer Considerations When Selecting a Condensing Economizer Use Steam Jet Ejectors or...

182

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network [OSTI]

IOUT *MEBP *STC(QAAN. R )-STEAM TURBINE CALC. ~ETFQMIN~5 ST~KJ/S) 1JC. /(GROSS STEAM TURBINE POWER PRODUCTION) STEA~ GENprogram then prints the steam turbine results. All flows in

Dayan, J.

2011-01-01T23:59:59.000Z

183

Energy savings in one-pipe steam heating systems fitted with high-capacity air vents. Final report  

SciTech Connect (OSTI)

Multifamily buildings heated by one-pipe steam systems experience significant temperature gradients from apartment to apartment, often reaching 15{degrees}F. As a result, many tenants are to cold, or if the heating system output is increased so as to heat the coldest apartment adequately, too hot. While both are undesirable, the second is particularly so because it wastes energy. It was thought that insufficient air venting of the steam pipes contributed to the gradient. Theoretically, if steam mains and risers are quickly vented, steam will reach each radiator at approximately the same time and balance apartment temperatures. The project`s objective was to determine if the installation of large-capacity air vents at the ends of steam mains and risers would economically reduce the temperature gradient between apartments and reduce the amount of space heating energy required. The test was conducted by enabling and disabling air vents biweekly in 10 multifamily buildings in New York City between December 1992 to May 1993. The temperatures of selected apartments and total space heating energy were compared during each venting regime. There was no difference in energy consumption between ``vents on`` and ``vents off`` periods (see Tables 2 and 5); however, there was a reduction in the maximum spread of apartment temperatures.

Not Available

1994-09-01T23:59:59.000Z

184

Gas-bubble disease in three fish species inhabiting the heated discharge of a steam-electric station using hypolimnetic cooling water  

Science Journals Connector (OSTI)

White bass (Morone chrysops), bluegill (Lepomis macrochirus), and largemouth bass (Micropterus salmoides...) inhabiting the heated discharge canal of Duke Power Company's Marshall Steam Station, Lake Norman, Nort...

M. C. McINERNY

1990-01-01T23:59:59.000Z

185

Experimental study of Morichal heavy oil recovery using combined steam and propane injection.  

E-Print Network [OSTI]

??Considerable research and testing have been conducted for the improvement of basic thermal recovery processes and for the development and application of other methods of (more)

Goite Marcano, Jose Gregorio

2012-01-01T23:59:59.000Z

186

Property:Heat Recovery Rating | Open Energy Information  

Open Energy Info (EERE)

Rating Rating Jump to: navigation, search This is a property of type Number. Pages using the property "Heat Recovery Rating" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + 300,000 + Distributed Generation Study/615 kW Waukesha Packaged System + 2,500,000 + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + 46,105 + Distributed Generation Study/Arrow Linen + 3,000,000 + Distributed Generation Study/Dakota Station (Minnegasco) + 290,000 + Distributed Generation Study/Elgin Community College + 11,200,000 + Distributed Generation Study/Emerling Farm + 2,000,000 + Distributed Generation Study/Floyd Bennett + 230,000 + Distributed Generation Study/Harbec Plastics + 3,750,000 + Distributed Generation Study/Hudson Valley Community College + 32,500,000 +

187

Process Waste Heat Recovery in the Food Industry - A System Analysis  

E-Print Network [OSTI]

An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

Lundberg, W. L.; Mutone, G. A.

1983-01-01T23:59:59.000Z

188

Enhancement of automotive exhaust heat recovery by thermoelectric devices  

SciTech Connect (OSTI)

In an effort to improve automobile fuel economy, an experimental study is undertaken to explore practical aspects of implementing thermoelectric devices for exhaust gas energy recovery. A highly instrumented apparatus consisting of a hot (exhaust gas) and a cold (coolant liquid) side rectangular ducts enclosing the thermoelectric elements has been built. Measurements of thermoelectric voltage output and flow and surface temperatures were acquired and analyzed to investigate the power generation and heat transfer properties of the apparatus. Effects of inserting aluminum wool packing material inside the hot side duct on augmentation of heat transfer from the gas stream to duct walls were studied. Data were collected for both the unpacked and packed cases to allow for detection of packing influence on flow and surface temperatures. Effects of gas and coolant inlet temperatures as well as gas flow rate on the thermoelectric power output were examined. The results indicate that thermoelectric power production is increased at higher gas inlet temperature or flow rate. However, thermoelectric power generation decreases with a higher coolant temperature as a consequence of the reduced hot-cold side temperature differential. For the hot-side duct, a large temperature gradient exists between the gas and solid surface temperature due to poor heat transfer through the gaseous medium. Adding the packing material inside the exhaust duct enhanced heat transfer and hence raised hot-side duct surface temperatures and thermoelectric power compared to the unpacked duct, particularly where the gas-to-surface temperature differential is highest. Therefore it is recommended that packing of exhaust duct becomes common practice in thermoelectric waste energy harvesting applications.

Ibrahim, Essam [Alabama A& M University, Normal; Szybist, James P [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

189

Investigating Methods of Heat Recovery from Low-Temperature PEM Fuel Cells in CHP Applications  

SciTech Connect (OSTI)

Heat recovery from low-temperature proton exchange membrane (PEM) fuel cells poses a number of challenges. In response to these challenges, thermodynamic assessments of proposed heat recovery methods are studied in the context of combined heat and power (CHP) for building applications. Preheating combustion air in conjunction with desiccant dehumidification and absorption cooling technologies is one of the two strategies examined in this study. The other approach integrates the PEM fuel cell with a water-loop heat pump (WLHP) for direct heat recovery. As the primary objective, energy-saving potentials of the adopted heat recovery strategies are estimated with respect to various benchmarks. The quantified energy-saving potentials are translated into effective CHP performance indices and compared with those typically specified by the manufacturers for service hot water applications. The need for developing CHP performance protocols is also discussed in light of the proposed energy recovery techniques - thereby, accomplishing the secondary objective.

Jalalzadeh-Azar, A. A.

2004-01-01T23:59:59.000Z

190

CHARACTERIZATION OF ELEVATED TEMPERATURE PROPERTIES OF HEAT EXCHANGER AND STEAM GENERATOR ALLOYS  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. High temperature tensile testing of Alloy 617 has been conducted over a range of temperatures. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. Creep, fatigue, and creep-fatigue properties of Alloy 617 have been measured as well, with the goal of determining the influence of the temperature, strain rate and atmosphere on the creep fatigue life of Alloy 617. Elevated temperature properties and implications for codification of the alloys will be described.

J.K. Wright; L.J. Carroll; C.J. Cabet; T. Lillo; J.K. Benz; J.A. Simpson; A. Chapman; R.N. Wright

2012-10-01T23:59:59.000Z

191

The Beckett System Recovery and Utilization of Low Grade Waste Heat From Flue Gas  

E-Print Network [OSTI]

. During low demand periods, the unit is gas-fired and produces 150 psi steam at high efficiency. In the fall, the heat exchanger is converted to accept flue gas from the large original water tube boilers. The flue gas heats water, which preheats make...

Henderson, W. R.; DeBiase, J. F.

1983-01-01T23:59:59.000Z

192

Waste heat recovery: Textile industry. (Latest citations from World Textile Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning descriptions and evaluations of waste heat recovery operations used in the textile industry. Heat recovery and utilization from wastewater streams, flue gas, finishing processes, dyeing operations, and air jet systems are presented. The use of waste heat for space heating and process preheating is considered. (Contains a minimum of 162 citations and includes a subject term index and title list.)

Not Available

1993-08-01T23:59:59.000Z

193

Development of Design Criteria for Fluid Induced Structural Vibration in Steam Generators and Heat Exchangers  

SciTech Connect (OSTI)

OAK-B135 Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers. In the nuclear industry, steam generators are often affected by this problem. However, flow-induced vibration is not limited to nuclear power plants, but to any type of heat exchanger used in many industrial applications such as chemical processing, refrigeration and air conditioning. Specifically, shell and tube type heat exchangers experience flow-induced vibration due to the high velocity flow over the tube banks. Flow-induced vibration in these heat exchangers leads to equipment breakdown and hence expensive repair and process shutdown. The goal of this research is to provide accurate measurements that can help modelers to validate their models using the measured experimental parameters and thereby develop better design criteria for avoiding fluid-elastic instability in heat exchangers. The research is divided between two primary experimental efforts, the first conducted using water alone (single phase) and the second using a mixture of air or steam and water as the working fluid (two phase). The outline of this report is as follows: After the introduction to fluid-elastic instability, the experimental apparatus constructed to conduct the experiments is described in Chapter 2 along with the measurement procedures. Chapter 3 presents results obtained on the tube array and the flow loop, as well as techniques used in data processing. The project performance is described and evaluated in Chapter 4 followed by a discussion of publications and presentations relevant to the project in Chapter 5, while the conclusions and recommendations for future work are presented in Chapter 6.

Catton, Ivan; Dhir, Vijay K.; Alquaddoomi, O.S.; Mitra, Deepanjan; Adinolfi, Pierangelo

2004-03-26T23:59:59.000Z

194

Development of one-dimensional computer code DESOPT for thermal hydraulic design of sodium-heated once through steam generators  

Science Journals Connector (OSTI)

Once-through Steam Generator (SG) is a critical component of Liquid Metal Fast Breeder Reactor (LMFBR) plant. It is a counter current heat exchanger, in which heat is transferred from the hot sodium flowing on the shell side to water/steam in tube side. High pressure subcooled water enters the SG tube from bottom, gets heated up to saturation, goes through nucleate boiling, dry out and post dry out heat transfer, getting converted to saturated steam and finally gets superheated. For this the process design needs to be carried out accurately. A computer code DESOPT has been developed for the process design of straight vertical, serpentine and helical geometries and validated against reported designs in literature. Recently a test facility to test a 5.5 MWt sodium heated steam generator has been commissioned. The predictions of the code have been compared with the measurements and found satisfactory. This paper brings out different heat transfer mechanisms in SG and describes the one-dimensional code, its validation based on literature and in-house tests and presents the results of comparison between predicted and actual operation at different part loads.

G. Vaidyanathan; A.L. Kothandaraman; L.S. Siva Kumar; V. Vinod; I.B. Noushad; K.K. Rajan; P. Kalyanasundaram

2010-01-01T23:59:59.000Z

195

Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems  

DOE Patents [OSTI]

Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

Meisner, Gregory P

2013-10-08T23:59:59.000Z

196

Heat recovery highlighted in state-of-the-art HVAC system  

SciTech Connect (OSTI)

The new $35 million corporate headquarters building of Steelcase, Inc., provides 385,000 sq. ft. of office space and support areas for more than 500 employees. The building embodies state-of-the-art energy storage and heat recovery systems, and the extensive use of computers to predict, monitor, and control space comfort conditions. The heat storage and recovery equipment are described.

Speyer, J.R.

1984-11-01T23:59:59.000Z

197

Model based methodology development for energy recovery in flash heat exchange systems  

E-Print Network [OSTI]

Model based methodology development for energy recovery in flash heat exchange systems Problem of energy efficiency in process operations. Where heat exchange is required between two streams and where with a condensing heat exchanger can be used when heat exchange is required between two streams and where at least

McCarthy, John E.

198

Pyrolysis, combustion and steam gasification of various types of scrap tires for energy recovery  

Science Journals Connector (OSTI)

The energy recovery from carbonaceous materials is considered as reliable energy source. In this context, pyrolysis, combustion and gasification characteristics of scrap truck and car tire samples were investigated using a thermo-gravimetric analyzer ...

Jayaraman KANDASAMY; Iskender Gkalp

2014-12-05T23:59:59.000Z

199

Biomass heat pipe reformerdesign and performance of an indirectly heated steam gasifier  

Science Journals Connector (OSTI)

Indirectly heated dual fluidized bed (DFB) gasifiers are a promising option for the production ... syngas, in particular in the small- and medium-scale range. The application of so-called ... pipes solves the key...

Jrgen Karl

2014-03-01T23:59:59.000Z

200

Connectionist Model to Estimate Performance of Steam-Assisted Gravity Drainage in Fractured and Unfractured Petroleum Reservoirs: Enhanced Oil Recovery Implications  

Science Journals Connector (OSTI)

Connectionist Model to Estimate Performance of Steam-Assisted Gravity Drainage in Fractured and Unfractured Petroleum Reservoirs: Enhanced Oil Recovery Implications ... The oil gravity ranges of the oils of current EOR methods have been compiled and the results are presented graphically. ...

Sohrab Zendehboudi; Amin Reza Rajabzadeh; Alireza Bahadori; Ioannis Chatzis; Maurice B. Dusseault; Ali Elkamel; Ali Lohi; Michael Fowler

2013-12-02T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

E-Print Network 3.0 - area steam line Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with an automatic crane... recovery. As stable steam supply to the paper mill and the district heating system needs to be assured Source: Columbia University - Waste-to-Energy...

202

Steel Mill Powered by Waste Heat Recovery System  

Office of Energy Efficiency and Renewable Energy (EERE)

ArcelorMittal USA reduces carbon dioxide emissions by 340,000 tons annually with new efficient recovery boiler.

203

Mathematical modeling and heat transfer experiments for an annular bed methane-steam reformer  

SciTech Connect (OSTI)

A new type of catalytic reactor has been proposed for conducting endothermic chemical reactions. The reactor catalyst bed is in the form of a tubular reactor with an annular cross-section. Heat is supplied to the catalyst bed by countercurrent flowing gases on opposite sides of the annulus walls. This study consisted of the development of a mathematical model to describe the performance of an annular bed reactor employing the methane-steam reforming reaction for the production of hydrogen. The model is two-dimensional, and predicts both axial and radial temperature and concentration profiles throughout the reactor. The model was used to perform parameter sensitivity studies, reactor size optimization, and reactor scaleup.

Summers, W.A.

1986-01-01T23:59:59.000Z

204

Cogeneration Waste Heat Recovery at a Coke Calcining Facility  

E-Print Network [OSTI]

hard surface overlays on their impellers and scrolls to prevent erosion. The use of linings was selected after a comprehensive study was performed investi gating the expected wear on unlined equipment, additional cost of linings, frequency of main... is provided fr the pump discharge head r for of the bypass steam e tering carbon steel steam sal s line line of the refine is feet long. The st am is metered by a primary venturi flow nozzle, essure transmitters, and temperature elements ne r...

Coles, R. L.

205

Waste Heat Recovery by Organic Fluid Rankine Cycle  

E-Print Network [OSTI]

In organic vapor cycles, the compression work is often comparatively more important than in steam cycles. The efficiency of the pump should not be neglected. T, , Tr2 " Tr " 3 "" " 12 '--_L----L__-i tc Qv,>Qv2~Qv3 flowrole 'lturb ' 0.85 12~ 3JO... In organic vapor cycles, the compression work is often comparatively more important than in steam cycles. The efficiency of the pump should not be neglected. T, , Tr2 " Tr " 3 "" " 12 '--_L----L__-i tc Qv,>Qv2~Qv3 flowrole 'lturb ' 0.85 12~ 3JO...

Verneau, A.

1979-01-01T23:59:59.000Z

206

The case for endurance testing of sodium-heated steam generators  

SciTech Connect (OSTI)

After operating pressurized water reactor (PWR) steam generators in U.S. nuclear plants during the past 33 years and plugging thousands of tubes and replacing numerous steam generators at immense costs, utility and steam generator designers are now confident that they can design, build, and operate PWR steam generators successfully. Deployment of liquid-metal fast breeder reactors (LMFBRs) will likely follow the same scenario if long-term testing is not performed and development completed prior to commercial deployment. A case is made for endurance testing of steam generators to be used in future LMFBRs.

Onesto, A.T.; Zweig, H.R.; Gibbs, D.C. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Division.); Carlson, R.D. (Argonne National Lab., IL (United States)); Rodwell, E. (Electric Power Research Inst., Palo Alto, CA (United States)); Kakarala, C.R. (Babcock and Wilcox Co., Barberton, OH (United States))

1993-08-01T23:59:59.000Z

207

Dual Loop Parallel/Series Waste Heat Recovery System  

Broader source: Energy.gov [DOE]

This system captures all the jacket water, intercooler, and exhaust heat from the engine by utilizing a single condenser to reject leftover heat to the atmosphere.

208

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas. How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature? Links: The technology of Condensing Flue Gas Heat Recovery natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building

209

Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control  

Broader source: Energy.gov [DOE]

Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging, durability, and systems integration

210

High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

211

Use of Thermal Energy Storage to Enhance the Recovery and Utilization of Industrial Waste Heat  

E-Print Network [OSTI]

evaluation involving process data from 12 industrial plants to determine if thermal energy storage (TES) systems can be used with commercially available energy management equipment to enhance the recovery and utilization of industrial waste heat. Results...

McChesney, H. R.; Bass, R. W.; Landerman, A. M.; Obee, T. N.; Sgamboti, C. T.

1982-01-01T23:59:59.000Z

212

High Efficiency Microturbine with Integral Heat Recovery- Presentation by Capstone Turbine Corporation, June 2011  

Broader source: Energy.gov [DOE]

Presentation on High Efficiency Microturbine with Integral Heat Recovery, given by John Nourse of Capstone Turbine Corporation, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

213

Method and apparatus for fuel gas moisturization and heating  

DOE Patents [OSTI]

Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

214

Blow-down tests in a sodium-heated steam generator tube. [LMFBR  

SciTech Connect (OSTI)

The design of steam generators for liquid metal fast breeder reactor (LMFBR) electric power plants is based on both normal load operation and plant transient conditions. Perhaps the most severe transient to which an LMFBR steam generator may be subjected is known as the water-side isolation and dump transient, often called the blow-down transient. LMFBR steam generators must be designed to accommodate a small but finite number of the blow-down transients. The purpose of this investigation was to perform a blow-down experiment in a well instrumented, full scale, single tube model of an LMFBR steam generator. The data may be used directly in steam generator design and as a validation point for steam generator mathematical models in plant transient computer codes.

France, D.M.; Carlson, R.D.; Chiang, T.

1983-01-01T23:59:59.000Z

215

Recovery of stranded heavy oil by electromagnetic heating.  

E-Print Network [OSTI]

??High oil-viscosity is a major concern for the recovery of oil from heavy-oil reservoirs. Introducing energy to the formation has proven to be an effective (more)

Carrizales, Maylin Alejandra

2012-01-01T23:59:59.000Z

216

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

141 Open ORC Systemfor Open Organic Rankine Cycle (ORC)138 Evaporatorof an Organic Rankine Cycle (ORC) System for Waste Heat

Luong, David

2013-01-01T23:59:59.000Z

217

Efficiently generate steam from cogeneration plants  

SciTech Connect (OSTI)

As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1997-05-01T23:59:59.000Z

218

Steam atmosphere drying exhaust steam recompression system  

DOE Patents [OSTI]

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

1994-03-08T23:59:59.000Z

219

Energy-efficient heat recovery systems for air conditioning of indoor swimming pools  

SciTech Connect (OSTI)

Analysis of a conventional air-conditioning system for indoor swimming pools during the summer season is presented. The analysis showed that the cooling load is characterized by a large latent heat fraction. As a result, a reheating process must be used downstream of the cooling coil to achieve the proper design comfort condition in the pool area. This, in turn, increases the energy requirement per unit cooling load of the pool. Two heat recovery systems are proposed to reduce this energy. In the first system, ambient air is used for the reheating process in an air-to-air heat exchanger. In the second system, mixed air--recirculated and ambient air--is used for the reheating process. Heat recovery efficiency is defined as an index of the energy savings resulting from the use of the heat recovery system compared to that of a conventional air-conditioning system. At a wide range of ambient conditions it is found that the energy savings could be up to 70% of the energy required to operate a conventional air-conditioning system. A parametric study was carried out to size the air-to-air heat exchanger associated with these heat recovery systems, and the results showed that a heat exchanger having an effectiveness of 0.5 would give satisfactory results. The proposed heat recovery systems are also compared to the case of reheating using the heat rejection from the condenser of the refrigeration machine. The comparison showed that the proposed systems save more energy than reheating using the condenser heat. A typical case study is given to demonstrate the savings in energy consumption when these systems are used.

Elsayed, M.M.; El-Refaee, M.M. [Kuwait Univ., Safat (Kuwait). Mechanical Engineering Dept.; Borhan, Y.A. [Gulf Engineering Co., Safat (Kuwait)

1997-12-31T23:59:59.000Z

220

Sorption-enhanced steam reforming of hydrocarbons with autothermal sorbent regeneration in a moving heat wave of a catalytic combustion reaction  

Science Journals Connector (OSTI)

A novel technological concept of sorption-enhanced steam reforming of hydrocarbons is suggested. The peculiarity of the concept ... carbon dioxide scavenger in the moving super-adiabatic heat wave of an exothermi...

Andrey N. Zagoruiko; Alexey G. Okunev

2007-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Exergyeconomic evaluation of heat recovery device in mechanical ventilation system  

Science Journals Connector (OSTI)

Abstract The paper presents new approach in evaluation of heat recovery devices in mechanical ventilation system. The evaluation is based on exergy balance equation and economic analysis, what requires application of one of multicriteria decision aid methodsweighted sum method. The proposed set of evaluation criteria consists of: driving exergy, simple payback time and investment cost. The proposed method is applied to compare the four variants of heat recovery device in inlet-exhaust mechanical ventilation system of the capacity of 10,000m3/h installed in residential part of hotel. The analysis is performed for four preference models. The results of the multicriteria evaluation indicate that counter flow plate heat exchanger and the rotating heat/mass regenerator are better solutions comparing with water loop heat exchanger and heat pipe heat exchanger. Counter flow plate heat exchanger is the most compromise solution for the two preference models PREF_00 (based on statistic approach) and PREF_03 (investment cost priority preference model). Rotating heat/mass regenerator is the most compromise solution for the preference model 01 (driving exergy priority preference model). The proposed method can be helpful in the choice of the most compromise solution of the heat recovery device in pre-design phase.

Tomasz M. Mrz; Anna Dutka

2015-01-01T23:59:59.000Z

222

A refrigerator-heat-pump desalination scheme for fresh-water and salt recovery  

Science Journals Connector (OSTI)

This study concerns a refrigerator-heat-pump desalination scheme (RHPDS), which allows energy-efficient recovery of fresh water and salt from the sea. In this scheme, a salt-water chamber is continuously refilled with sea water via atmospheric pressure. Sea water is evaporated into a vacuum chamber and the water vapor is condensed on top of a fresh-water chamber. A refrigerator-heat-pump circuit maintains the two water chambers at suitably different operating temperatures and allows efficient recovery of the latent heat of condensation. The scheme is analyzed with special consideration to potential exploitation of renewable energy sources such as solar and wind energy.

M. Reali

1984-01-01T23:59:59.000Z

223

Applications guide for waste heat recovery. Final Report, May-Dec. 1982  

SciTech Connect (OSTI)

The state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey is assessed. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed: also included is a description of anticipated future trends in organic Rankine cycle R D.

Moynihan, P.I.

1983-01-01T23:59:59.000Z

224

Recovery Act-Funded Geothermal Heat Pump projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Heat Pump Geothermal Heat Pump projects Recovery Act-Funded Geothermal Heat Pump projects The U.S. Department of Energy (DOE) was allocated funding from the American Recovery and Reinvestment Act to conduct research into ground source heat pump technologies and applications. Projects funded by the Recovery Act include: Historic Train Depot with a Hybrid System Funding amount: $1.7 million 1001 South 15th Street Associates LLC - New School and Performing Arts Theater The facility is a 23,000 square foot historic train depot requiring a GHP with 206 tons of cooling capacity. The hybrid GHP system incorporates a dry cooler to improve efficiency and life cycle effectiveness of the system by seasonally rebalancing the ground temperature. Grants Award Summary Massive Project with Massive Job Creation and Carbon Savings

225

Novel thermoelectric generator for stationary power waste heat recovery .  

E-Print Network [OSTI]

??Internal combustion engines produce much excess heat that is vented to the atmosphere through the exhaust fluid. Use of solid-state thermoelectric (TE) energy conversion technology (more)

Engelke, Kylan Wynn.

2010-01-01T23:59:59.000Z

226

2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program  

Broader source: Energy.gov (indexed) [DOE]

in Th Developing a System Architecture to Manage Wide Variations in Th ermal Power ermal Power Catalytic Converter Primary Heat Exchanger Rear Exhaust with Muffler Pump DCDC...

227

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

for Open Organic Rankine Cycle (ORC)138 Evaporatorand Simulation of an Organic Rankine Cycle (ORC) System forControl of Organic Rankine Cycles in Waste Heat Uti- lizing

Luong, David

2013-01-01T23:59:59.000Z

228

Heat recovery and the economizer for HVAC systems  

SciTech Connect (OSTI)

This articles examines why a combined heat reclaim/economizer system with priority to heat reclaim operation is most likely to result in the least annual total HVAC energy. PC-based, hour-by-hour simulation programs evaluate annual HVAC energy requirements when using combined operation of heat reclaim and economizer cycle, while giving priority to operation of either one. These simulation programs also enable the design engineer to select the most viable heat reclaim and/or economizer system for any given type of HVAC system serving the building internal load level, building geographical location and other building/system variables.

Anantapantula, V.S. (Emerson Electric Co., St. Louis, MO (United States). Alco Controls Div.); Sauer, H.J. Jr. (Univ. of Missouri, Rolla, MO (United States))

1994-11-01T23:59:59.000Z

229

Waste Heat Doesn't Have to be a Waste of Money- The American & Efird Heat Recovery Project: A First for the Textile Industry  

E-Print Network [OSTI]

& Efird, Inc., decided to upgrade their heat recovery system at its Dyeing & Finishing Plant in Mt. Holly, North Carolina. They chose an electric industrial process heat pump to enhance heat recovery and to lower operating costs. This application... of the industrial process heat pump was the first of its kind in the American textile industry and was the result of a three year cooperative effort between American & Efird, Inc. and Duke Power Company. This innovative application of heat pump technology has...

Smith, S. W.

230

Exergy Optimized Wastewater Heat Recovery: Minimizing Losses and Maximizing Performance  

E-Print Network [OSTI]

the heat using a batch process with an insulated tank containing a heat exchanger. The analysis is based on statistical annual hot water usage profiles. The system shows that the exergy available in warm wastewater can be optimized with specific tank size...

Meggers, F.

231

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

232

Financial analysis of the implementation of a Drain Water Heat Recovery unit in residential housing  

Science Journals Connector (OSTI)

Abstract One of the ways of diminishing energy consumption for hot water heating is the use of Drain Water Heat Recovery (DWHR) units. The aim of the use of these devices is thermal energy recovery from warm drain water and transferring it to incoming cold water. This paper presents the calculation model that allows the estimation of the financial efficiency of the project involving the construction of a shower Drain Water Heat Recovery system in a single-family dwelling house. The presented method of investment risk assessment can be used for decision making by individual users, designers and others. The study of the financial performance was carried out for the various parameters of the installation and the different heat recovery system configurations. From investors point of view the most beneficial option of heat recovery system installation is the system in which preheated water is fed to both the hot water heater and shower mixing valve. Additionally, it was proved that obtained financial results are affected by showering time and water consumption. DWHR units will be therefore particularly beneficial to apply in case of swimming pools, sports facilities or fitness clubs, where high rotation of users is observed.

Daniel S?y?; Sabina Kordana

2014-01-01T23:59:59.000Z

233

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network [OSTI]

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters...

Kumar, A.

1984-01-01T23:59:59.000Z

234

Thermally Activated Desiccant Technology for Heat Recovery and Comfort  

SciTech Connect (OSTI)

Desiccant cooling is an important part of the diverse portfolio of Thermally Activated Technologies (TAT) designed for conversion of heat for the purpose of indoor air quality control. Thermally activated desiccant cooling incorporates a desiccant material that undergoes a cyclic process involving direct dehumidification of moist air and thermal regeneration. Desiccants fall into two categories: liquid and solid desiccants. Regardless of the type, solid or liquid, the governing principles of desiccant dehumidification systems are the same. In the dehumidification process, the vapor pressure of the moist air is higher than that of the desiccant, leading to transfer of moisture from the air to the desiccant material. By heating the desiccant, the vapor pressure differential is reversed in the regeneration process that drives the moisture from the desiccant. Figure 1 illustrates a rotary solid-desiccant dehumidifier. A burner or a thermally compatible source of waste heat can provide the required heat for regeneration.

Jalalzadeh, A. A.

2005-11-01T23:59:59.000Z

235

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries  

SciTech Connect (OSTI)

The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

Adam Polcyn; Moe Khaleel

2009-01-06T23:59:59.000Z

236

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

higher efficiencies with wet steam, but turbines often seeand the efficiency of a small-scale turbine. ContinuingTurbine, which simply calculates output given a user-specified isentropic efficiency,

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

237

Thermal energy recovery of low grade waste heat in hydrogenation process; tervinning av lgvrdig spillvrme frn en hydreringsprocess.  

E-Print Network [OSTI]

?? The waste heat recovery technologies have become very relevant since many industrial plants continuously reject large amounts of thermal energy during normal operation which (more)

Hedstrm, Sofia

2014-01-01T23:59:59.000Z

238

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network [OSTI]

ABSTRACT Steam is the most transferring heat from But most steam systems LOWEST PRESSURE STEAM SAVES MORE BTU'S THAN YOU THINK Stafford J. Vallery Armstrong Machine Works Three Rivers, Michigan steam to do the process heating rather than...

Vallery, S. J.

239

A Waste Heat Recovery System for Light Duty Diesel Engines  

SciTech Connect (OSTI)

In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

2010-01-01T23:59:59.000Z

240

Energy recovery from waste incineration: Assessing the importance of district heating networks  

SciTech Connect (OSTI)

Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO{sub 2} accounts showed significantly different results: waste incineration in one network caused a CO{sub 2} saving of 48 kg CO{sub 2}/GJ energy input while in the other network a load of 43 kg CO{sub 2}/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

Fruergaard, T.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, T., E-mail: tha@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

2010-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, February 1-July 31, 1982  

SciTech Connect (OSTI)

The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

Cole, W. E.; DeSaro, R.; Griffith, J.; Joshi, C.

1982-08-01T23:59:59.000Z

242

Heat recovery from chillers cuts costs in sunbelt stores. [Rusty Pelican Restaurants, Irvine, CA  

SciTech Connect (OSTI)

Rusty Pelican Restaurants Incorporated, which owns and operates 18 seafood restaurants from its headquarters in Irvine California, will net a payback of three to four years on the installation of heat recovery systems in all nine of its California locations. The systems capture waste heat from the restaurants roof-top air conditioning units to heat domestic hot water, and are therefore being installed in Sunbelt locations where air conditioners are used most. On the average, the systems will cut electricity consumed by the air conditioning units by 15% and cut domestic hot water heating costs by 41 to 63%.

Poplett, J.

1985-04-22T23:59:59.000Z

243

Renewable energy of waste heat recovery system for automobiles  

Science Journals Connector (OSTI)

A system to recover waste heat comprised of eight thermoelectric generators (TEGs) to convert heat from the exhaust pipe of an automobile to electrical energy has been constructed. Simulations and experiments for the thermoelectric module in this system are undertaken to assess the feasibility of these applications. In order to estimate the temperature difference between thermoelectric elements a network of thermal resistors is constructed. The results assist in predicting power output of TEG module more precisely. Three configurations of heat sinks which are comprised of 10 22 and 44 fins are applied in this simulation. The results of the simulations show the average thermal resistance of these heat sinks in each section of the system with varied velocity of external flow. As the performance of a TEG module is influenced by an applied pressure through the effect of the thermal contact resistance we clamp the TE module to our experimental apparatus; the relation between power output and pressure applied in this case is presented. Besides simulations the system is designed and assembled. Measurements followed the connection of the system to the middle of an exhaust pipe. Through these simulations and experiments the power generated with a commercial TEG is presented. The results establish the fundamental development of materials that enhance the TEG efficiency for vehicles.

Cheng-Ting Hsu; Da-Jeng Yao; Ke-Jyun Ye; Ben Yu

2010-01-01T23:59:59.000Z

244

Save Energy Now in Your Steam Systems  

Broader source: Energy.gov [DOE]

This brief outlines typical ways to increase steam system efficiency through changes in distribution, generation, and recovery.

245

Design, construction and operation of lab scale cylindrical steam assisted gravity drainage model for heavy oil recovery  

Science Journals Connector (OSTI)

Based on a theoretical background [1,2], a lab scale cylindrical SAGD (steam assisted gravity drainage) model was designed, constructed and operated. There are six different parts in the apparatus: (1) water s...

Nansuk You; Songhun Yoon; Wonkyu Lee

2010-11-01T23:59:59.000Z

246

EXERGY ANALYSIS AND ENTROPY GENERATION MINIMIZATION OF THERMOELECTRIC WASTE HEAT RECOVERY FOR ELECTRONICS  

E-Print Network [OSTI]

Energy recovery from waste heat is attracting more and more attention. All electronic systems consume electricity but only a fraction of it is used for information processing and for human interfaces, such as displays. Lots of energy is dissipated as heat. There are some discussions on waste heat recovery from the electronic systems such as laptop computers. However the efficiency of energy conversion for such utilization is not very attractive due to the maximum allowable temperature of the heat source devices. This leads to very low limits of Carnot efficiency. In contrast to thermodynamic heat engines, Brayton cycle, free piston Stirling engines, etc., authors previously reported that thermoelectric (TE) can be a cost-effective device if the TE and the heat sink are co-optimized, and if some parasitic effects could be reduced. Since the heat already exists and it is free, the additional cost and energy payback time are the key measures to evaluate the value of the energy recovery system. In this report, we will start with the optimum model of the TE power generation system. Then, theoretical maximum output, cost impact and energy payback are evaluated in the examples of electronics system. Entropy Generation Minimization (EGM) is a method already familiar in thermal management of electronics. The optimum thermoelectric waste heat recovery design is compared with the EGM approach. Exergy analysis evaluates the useful energy flow in the optimum TE system. This comprehensive analysis is used to predict the potential future impact of the TE material development, as the dimensionless figure-ofmerit (ZT) is improved.

Kazuaki Yazawa; Ali Shakouri

247

Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing  

E-Print Network [OSTI]

discharges can be made more economically attrac tank holding several thousand gallons of water tive by incorporating thermal energy storage in a maintained at 128-130?F. This scald tank is con heat recovery system. Thermal energy storage can stantly... the ultimate energy end use. of wasting this hot water to the plant drain, a heat A project conducted by the Georgia Tech exchanger was installed at the Gold Kist plant to Engineering Experiment Station to demonstrate preheat scald tank makeup water...

Combes, R. S.; Boykin, W. B.

1980-01-01T23:59:59.000Z

248

Low Grade Heat Recovery- A Unique Approach at Polysar Limited  

E-Print Network [OSTI]

. The estimated annual savmgs IS In excess of $350,000. This paper describes the process optim!zation opportunities which resulted from Polysar's plant expansIOn and how this application of plate heat exchanger led to benefits that went much beyond energy... sensitive to the river condition. High feed water turbidity, resulting from yearly spring run off and turbulent river conditions from stonns, had led to reduced ion exchange train throughput capacity and increased frequency of sand filter backwash. (2...

Shyr, S.

249

Waste Heat Recovery in the Metal Working Industry  

E-Print Network [OSTI]

recuperators supplying four 3" burners. The smaller (1,500 lb. capacity) forge furnace was not equipped with eductors. No furnace pres sure control was used. This furnace had one 10,000 scfh recuperator supplying two 2~" hot air burners. The heat treat... furnaces were both constant com bustion air, throttled fuel control. The motor ized valve in the fuel line was positioned by a position proportioning temperature controller according to a manually set set point and thermo couple input. Both furnaces...

McMann, F. C.; Thurman, J.

1983-01-01T23:59:59.000Z

250

Demonstration of Heat Recovery in the Meat Industry  

E-Print Network [OSTI]

products, nut products, edible oils, chemicals, pharmaceuticals, animal and veterinary products, pet foods, detergents, feathers and down. Energy management has played an poultry leather, important rein the company's efforts to remain competikive... Annual Industrial Energy Technology Conference Volume II, Houston, TX, April 15-18, 1984 FIG. 1. THURLEY DIRECT CONTACT RECUPERATOR COOLED FLUE GASES AND WATER VAPOUR TO ATMOSPHERE 30 _ 40 D C HEAT RECUPERATOR I TO BOILER STACK FAN ___ DOMESTIC...

Molczan, T. J.; Scriven, A. P.; Magro, J.

1984-01-01T23:59:59.000Z

251

Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery  

SciTech Connect (OSTI)

An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

2008-06-20T23:59:59.000Z

252

Heat waste recovery system from exhaust gas of diesel engine to a reciprocal steam engine.  

E-Print Network [OSTI]

??This research project was about the combined organic Rankine cycle which extracted energy from the exhaust gas of a diesel engine. There was a study (more)

Duong, Tai Anh

2011-01-01T23:59:59.000Z

253

Downhole steam quality measurement  

DOE Patents [OSTI]

The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

1985-06-19T23:59:59.000Z

254

Thermal Energy Storage/Waste Heat Recovery Applications in the Cement Industry  

E-Print Network [OSTI]

, and the Portland Cement Association have studied the potential benefits of using waste heat recovery methods and thermal energy storage systems in the cement manufacturing process. This work was performed under DOE Contract No. EC-77-C-01-50S4. The study has been...

Beshore, D. G.; Jaeger, F. A.; Gartner, E. M.

1979-01-01T23:59:59.000Z

255

Office Building Uses Ice Storage, Heat Recovery, and Cold-Air Distribution  

E-Print Network [OSTI]

Ice storage offers many opportunities to use other tcchnologies, such as heat recovery and cold-air distribution. In fact, by using them, the designer can improve the efficiency and lower the construction cost of an ice system. This paper presents a...

Tackett, R. K.

1989-01-01T23:59:59.000Z

256

Development of a Waste Heat Recovery System for Light Duty Diesel Engines  

Broader source: Energy.gov [DOE]

Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system

257

Waste heat recovery from the exhaust of a diesel generator using Rankine Cycle  

Science Journals Connector (OSTI)

Abstract Exhaust heat from diesel engines can be an important heat source to provide additional power using a separate Rankine Cycle (RC). In this research, experiments were conducted to measure the available exhaust heat from a 40kW diesel generator using two off-the-shelf heat exchangers. The effectiveness of the heat exchangers using water as the working fluid was found to be 0.44 which seems to be lower than a standard one. This lower performance of the existing heat exchangers indicates the necessity of optimization of the design of the heat exchangers for this particular application. With the available experimental data, computer simulations were carried out to optimize the design of the heat exchangers. Two heat exchangers were used to generate super-heated steam to expand in the turbine using two orientations: series and parallel. The optimized heat exchangers were then used to estimate additional power considering actual turbine isentropic efficiency. The proposed heat exchanger was able to produce 11% additional power using water as the working fluid at a pressure of 15bar at rated engine load. This additional power resulted into 12% improvement in brake-specific fuel consumption (bsfc). The effects of the working fluid pressure were also investigated to maximize the additional power production. The pressure was limited to 15bar which was constrained by the exhaust gas temperature. However, higher pressure is possible for higher exhaust gas temperatures from higher capacity engines. This would yield more additional power with further improvements in bsfc. At 40% part load, the additional power developed was 3.4% which resulted in 3.3% reduction in bsfc.

Shekh Nisar Hossain; Saiful Bari

2013-01-01T23:59:59.000Z

258

The GTE Ceramic Recuperator for High Temperature Waste Heat Recovery  

E-Print Network [OSTI]

Steel Bllffalo Metal Casting Standard St.eel N.ati_onal Forge Ladish Co. Pr.Jt.t & \\.fllitney Ama", Specl."11t.v Metals Bethlehem Steel Cape Ann Forge Staolev Spring (TRw) Box Forge Reheat, Steel Box Forge Reheat, Steel 1 Box Forge Reheat...,807 1.9 1.8 31 St.andard Steel Burnham, PA Box forge. Reheat, Steel 32 National Forge Erie, PA Ladle Preheater. Steel :,.} Lad isb Co. Cyntbiaca, ....'Y Box Heat Treat, Steell 188.426 77,527 3. Pra t t & \\.on i tney East Hart.ford, CT Box...

Dorazio, R. E.; Gonzalez, J. M.; Ferri, J. L.; Rebello, W. J.; Ally, M. R.

1984-01-01T23:59:59.000Z

259

Waste heat recovery system for recapturing energy after engine aftertreatment systems  

SciTech Connect (OSTI)

The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

Ernst, Timothy C.; Nelson, Christopher R.

2014-06-17T23:59:59.000Z

260

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

of the rejected waste heat from power generation. (c)and for use of the waste heat, a condenser is muchcycle ? t Fraction of waste heat recovered from Rankine

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

working fluid to power a remote heat engine, as the fluidCHP options. Having a remote heat engine has many advantages

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

262

New and Existing Buildings Heating and Cooling Opportunities: Dedicated Heat Recovery Chiller  

Broader source: Energy.gov (indexed) [DOE]

Langfitt Langfitt U S Department of State Overseas Buildings Operations Mechanical Engineering Division *Engineers are working Harder AND Smarter *New Energy Economy *Heating Is Where The Opportunity Is  39% of total US energy goes into non-residential buildings.  Gas for heating is about 60% of energy used in a building  Gas for heating is at least 25% of total energy used in the US. Heat Generation System Heat Disposal System What's Wrong With This Picture? Keep the heat IN the system Don't run main plant equipment until necessary ! Less rejected heat Less gas consumption High Temp >160F with conventional boilers Hydronic heating... condensing style modular boilers. The entire heating system... designed for low temperature water, recommend maximum temperature of 135ºF.

263

Improving steam turbine efficiency  

SciTech Connect (OSTI)

This paper describes the condition of a significant number of fossil steam turbines operating in the United States and the maintenance practices used to improve their performance. Through the use of steam path audits conducted by the authors` company and by several utilities, a large data base of information on turbine heat rate, casing efficiency, and maintenance practices is available to help the power generation industry understand how different maintenance practices and steam path damage impact turbine performance. The data base reveals that turbine cycle heat rate is typically 5.23% poorer than design just prior to major outages. The degraded condition of steam turbines presents an opportunity for utilities to improve heat rate and reduce emissions without increasing fuel costs. The paper describes what losses typically contribute to the 5.23% heat rate degradation and how utilities can recover steam turbine performance through maintenance actions aimed at improving steam path efficiency.

Cioffi, D.H.; Mitchell, D.R.; Whitecar, S.C. [Encotech, Inc., Schenectady, NY (United States)

1995-06-01T23:59:59.000Z

264

Steam System Modeler | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency (%) Isentropic Efficiency (%) Blowdown Rate (%) Deaerator Vent Rate (%) Heat Loss (%) Condensate Return (%) Steam Mass Flow Feedwater Mass Flow Initial HP Steam...

265

New tube bundle heat transfer correlations and flow regime maps for a Once Through Steam Generator  

E-Print Network [OSTI]

? hydraulic behavior of a, nuclear reactor coolant system. Therefore, extensive analytical and experimental research has been performed to investigate the thermal ? hydraulic behavior of the steam generators dur- ing operational and accident transients... light water reactor system transient analysis code for use in rule making, licensing audit calcula- tions, evaluation of operator guidelines, and as a basis for a, nuclear plant analyzer . The code is used extensively at the Idaho National Engineering...

Blanchat, Thomas Kevin

2012-06-07T23:59:59.000Z

266

Steam System Balancing and Tuning  

Broader source: Energy.gov (indexed) [DOE]

Steam System Balancing and Steam System Balancing and Tuning Building America Stakeholder Meeting Austin, TX Jayne Choi, Energy Analyst, CNT Energy March 2, 2012 PARR Current collaboration with GTI as a part of the PARR Building America team - Steam Systems Balancing and Tuning Study - Heating season 2011-2012 Background In Chicago, heating is the focus of residential energy use Of the 470,000 multifamily units in the Chicago region, at least 70,000 of those are steam heated Old steam systems invariably suffer from imbalance - Tenants must use supplemental heat or open their windows to cool their apartments during the heating season Buildings are often overheated Problem Statement (CNT Energy) Steam Heating Steam heat was the best option for buildings constructed between 1900 and 1930

267

An Information Dependant Computer Program for Engine Exhaust Heat Recovery for Heating  

Broader source: Energy.gov [DOE]

A computer program was developed to help engineers at rural Alaskan village power plants to quickly evaluate how to use exhaust waste heat from individual diesel power plants.

268

Feasibility study of heat pumps for waste heat recovery in industry.  

E-Print Network [OSTI]

??Includes abstract. A case study was thus carried out at an applicable local industry (brewery) to assess the feasibility of implementing the heat pump for (more)

De Waal, Devin.

2012-01-01T23:59:59.000Z

269

Integration of biomass fast pyrolysis and precedent feedstock steam drying with a municipal combined heat and power plant  

Science Journals Connector (OSTI)

Abstract Biomass fast pyrolysis (BFP) is a promising pre-treatment technology for converting biomass to transport fuel and in the future also for high-grade chemicals. BFP can be integrated with a municipal combined heat and power (CHP) plant. This paper shows the influence of BFP integration on a CHP plant's main parameters and its effect on the energetic and environmental performance of the connected district heating network. The work comprises full- and part-load operation of a CHP plant integrated with BFP and steam drying. It also evaluates different usage alternatives for the BFP products (char and oil). The results show that the integration is possible and strongly beneficial regarding energetic and environmental performance. Offering the possibility to provide lower district heating loads, the operation hours of the plant can be increased by up to 57%. The BFP products should be sold rather than applied for internal use as this increases the district heating network's primary energy efficiency the most. With this integration strategy future CHP plants can provide valuable products at high efficiency and also can help to mitigate global CO2 emissions.

Thomas Kohl; Timo P. Laukkanen; Mika P. Jrvinen

2014-01-01T23:59:59.000Z

270

Waste Heat Recovery From Stacks Using Direct-Contact Condensing Heat Exchange  

E-Print Network [OSTI]

-06-69 Proceedings from the Eighth Annual Industrial Energy Technology Conference, Houston, TX, June 17-19, 1986 Solid fuels generally show lower recovery potential and, in the case of coals, contain sulfur as well. Wood fuels have high fuel-borne moisture content...

Thorn, W. F.

271

Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures  

SciTech Connect (OSTI)

Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the dump valve on these two appliances would have eliminated uncertainty in knowing when waste water was flowing and the recovery system operated. The study also suggested that capture of dryer exhaust heat to heat incoming air to the dryer should be examined as an alternative to using drying exhaust energy for water heating. The study found that over a 6-week test period, the system in each house was able to recover on average approximately 3000 W-h of waste heat daily from these appliance and showers with slightly less on simulated weekdays and slightly more on simulated weekends which were heavy wash/dry days. Most of these energy savings were due to the shower/GFX operation, and the least savings were for the dishwasher/GFX operation. Overall, the value of the 3000 W-h of displaced energy would have been $0.27/day based on an electricity price of $.09/kWh. Although small for today s convention house, these savings are significant for a home designed to approach maximum affordable efficiency where daily operating costs for the whole house are less than a dollar per day. In 2010 the actual measured cost of energy in one of the simulated occupancy houses which waste heat recovery testing was undertaken was $0.77/day.

Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

2012-09-01T23:59:59.000Z

272

Corrosion of heat-recovery exchangers in swimming-pool-hall ventilation systems. Research report  

SciTech Connect (OSTI)

The report concludes an investigation of the corrosion resistance of heat-recovery exchangers operating in swimming-pool-hall atmospheres. An interim report was published in August 1981. The trends detected then have been confirmed and it is concluded that exchangers using copper for both tubes and fins have adequate corrosion resistance and can be expected to remain efficient and structurally sound for more than ten years. Aluminium is shown to be unsuitable as a fin material because of its susceptibility to localized dissimilar metal corrosion when in contact with the copper tubes. Some of the steel components in the heat recovery chamber are apt to corrode badly and need to be protected, or else made out of non-corrodible materials. It is also important to filter the incoming air to prevent the exchangers becoming contaminated by airborne detritus.

Bird, T.L.

1985-09-01T23:59:59.000Z

273

Minimum variance control of organic Rankine cycle based waste heat recovery  

Science Journals Connector (OSTI)

Abstract In this paper, an online self-tuning generalized minimum variance (GMV) controller is proposed for a 100KW waste heat recovery system with organic Rankine cycle (ORC). The ORC process model is formulated by the controlled autoregressive moving average (CARMA) model whose parameters are identified using the recursive least squares (RLS) algorithm with forgetting factor. The generalized minimum variance algorithm is applied to regulate ORC based waste heat recovery system. The contributions of this work are twofold: (1) the proposed control strategy is formulated under the data-driven framework, which does not need the precise mathematic model; (2) this proposed method is applied to handle tracking set-point variations and process disturbances by improved minimum objective GMV function. The performance of GMV controller is compared with the PID controller. The simulation results show that the proposed strategy can achieve satisfactory set-point tracking and disturbance rejection performance.

Guolian Hou; Shanshan Bi; Mingming Lin; Jianhua Zhang; Jinliang Xu

2014-01-01T23:59:59.000Z

274

Waste heat recovery systems in the sugar industry: An Indian perspective  

SciTech Connect (OSTI)

This article identifies the key role of the sugar industry in the rural development of developing countries. The Indian sugar industry, already second largest among the country`s processing industries, shows even greater potential, according to the Plan Documents (shown in a table). The potential of waste heat in sugar processing plants, which produce white crystal sugar using the double sulphitation clarification process, is estimated at 5757.9 KJ/kg of sugar. Efficient waste heat recovery (WHR) systems could help arrest the trend of increasing production costs. This would help the sugar industry not only in India, but in many other countries as well. The innovative methods suggested and discussed briefly in this article include dehydration of prepared cane, bagasse drying, and juice heating using waste heat. These methods can reduce the cost of energy in sugar production by at least 10% and improve efficiency and productivity.

Madnaik, S.D.; Jadhav, M.G. [Walchand Inst. of Tech., Maharashtra (India)

1996-04-01T23:59:59.000Z

275

Electromagnetic Induction Heat Generation of Nano?ferrofluid and Other Stimulants for Heavy Oil Recovery  

Science Journals Connector (OSTI)

Nano?ferrofluid and graphite?fluid are proposed to be used as stimulants for heavy oil recovery processes using electromagnetic induction. The heat generation in the stimulants will be used for reducing the viscosity of heavy oil. The temperature increase of the stimulants are observed with the presence of electromagnetic induction. These increments are better compared to those of the varying concentration of salt water (brine) usually exist in the oil reservoir.

A. A. Pramana; D. Abdassah; S. Rachmat; A. Mikrajuddin

2010-01-01T23:59:59.000Z

276

Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop  

SciTech Connect (OSTI)

This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

Donna Post Guillen

2012-11-01T23:59:59.000Z

277

Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers  

SciTech Connect (OSTI)

Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers.

Uvan Catton; Vijay K. Dhir; Deepanjan Mitra; Omar Alquaddoomi; Pierangelo Adinolfi

2004-04-06T23:59:59.000Z

278

An Analysis of the Use of Fluidized-Bed Heat Exchangers for Heat Recovery  

E-Print Network [OSTI]

attention and maintenance and the installation of an adequate control system. A general FBWHB design methodology is presented along with a preliminary engineering design for a space heating application. A flowsheet, mass balance, and equipment sizes...

Vogel, G. J.; Grogan, P. J.

1980-01-01T23:59:59.000Z

279

Thermodynamic and heat transfer analysis of heat recovery from engine test cell by Organic Rankine Cycle  

Science Journals Connector (OSTI)

During manufacture of engines, evaluation of engine performance is essential. This is accomplished in test cells. During the test, a significant portion of heat energy released by the fuel is wasted. In this stud...

Naser Shokati; Farzad Mohammadkhani; Navid Farrokhi

2014-12-01T23:59:59.000Z

280

New and Existing Buildings Heating and Cooling Opportunities: Dedicated Heat Recovery Chiller  

Broader source: Energy.gov [DOE]

Presentation covers the new and existing buildings heating and cooling opportunities and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. One of the main objectives of Budget Period I was to return the Pru Fee property to economic production and establish a baseline productivity with cyclic steaming. By the end of the second quarter 1996, all Pru producers except well 101 had been cyclic steamed two times. Each steam cycle was around 10,000 barrels of steam (BS) per well. No mechanical problems were found in the existing old wellbores. Conclusion is after several years of being shut-in, the existing producers on the Pru lease are in reasonable mechanical condition, and can therefore be utilized as viable producers in whatever development plan we determine is optimum. Production response to cyclic steam is very encouraging in the new producer, however productivity in the old producers appears to be limited in comparison.

Schamel, S.

1996-11-01T23:59:59.000Z

282

An attempt to minimize the temperature gradient along a plug-flow methane/steam reforming reactor by adopting locally controlled heating zones  

Science Journals Connector (OSTI)

Plug flow reactors are very common in the chemical process industry, including methane/steam reforming applications. Their operation presents many challenges, such as a strong dependence of temperature and composition distribution on the inlet conditions. The strongly endothermic methane/steam reforming reaction might result in a temperature drop at the inlet of the reactor and consequently the occurrence of large temperature gradients. The strongly non-uniform temperature distribution due to endothermic chemical reaction can have tremendous consequences on the operation of the reactor, such as catalyst degradation, undesired side reactions and thermal stresses. To avoid such unfavorable conditions, thermal management of the reactor becomes an important issue. To carry out thermal management properly, detailed modeling and corresponding numerical analyses of the phenomena occurring inside the reforming system is required. This paper presents experimental and numerical studies on the methane/steam reforming process inside a plug-flow reactor. To optimize the reforming reactors, detailed data about the entire reforming process is required. In this study the kinetics of methane/steam reforming on the Ni/YSZ catalyst was experimentally investigated. Measurements including different thermal boundary conditions, the fuel flow rate and the steam- to-methane ratios were performed. The reforming rate equation derived from experimental data was used in the numerical model to predict gas composition and temperature distribution along the steam-reforming reactor. Finally, an attempt was made to control the temperature distribution by adopting locally controlled heating zones.

M Mozdzierz; G Brus; A Sciazko; Y Komatsu; S Kimijima; J S Szmyd

2014-01-01T23:59:59.000Z

283

Simulation of processes in natural-circulation circuits of heat-recovery boilers of combined cycle power plants  

Science Journals Connector (OSTI)

Mathematical fundamentals of development of models of natural-circulation circuits of heat-recovery boilers are considered. Processes in the high-pressure circuit of a P-96 boiler are described.

E. K. Arakelyan; A. S. Rubashkin; A. S. Obuvaev; V. A. Rubashkin

2009-02-01T23:59:59.000Z

284

Cogen/chilled-water plant heats, cools, electrifies campus  

SciTech Connect (OSTI)

This article describes replacement of the University of California at Los Angeles' aging boiler and refrigeration equipment with a central chiller/combined-cycle cogeneration plant. The topics of the article include the work scope, the chilled water plant including absorption and steam turbine driven centrifugal chillers, and the cogeneration plant including two packaged combustion turbines, two heat-recovery steam generators and one steam turbogenerator.

Johnson, D.N. (Univ. of California, Los Angeles (United States)); Bakker, V.

1993-04-01T23:59:59.000Z

285

Increasing Oil Productivity Through Electromagnetic Induction Heat Generation of Salt Water as a Stimulant for Heavy Oil Recovery  

Science Journals Connector (OSTI)

Brine is usually exist in the oil reservoir. Varying salinity brine are used as stimulants for heavy oil recovery processes using electromagnetic induction heating. The heated heavy oil is floating on top of the brine since it becomes less viscous and lighter. As the temperature increased more heavy oil is produced/recovered. An increasing salinity of brine will result in more recovery of heavy oil.

2010-01-01T23:59:59.000Z

286

LPG recovery from refinery flare by waste heat powered absorption refrigeration  

SciTech Connect (OSTI)

A waste heat powered ammonia Absorption Refrigeration Unit (ARU) has commenced operation at the Colorado Refining Company in Commerce City, Colorado. The ARU provides 85 tons of refrigeration at 30 F to refrigerate the net gas/treat gas stream, thereby recovering 65,000 barrels per year of LPG which formerly was flared or burned as fuel. The ARU is powered by the 290 F waste heat content of the reform reactor effluent. An additional 180 tons of refrigeration is available at the ARU to debottleneck the FCC plant wet gas compressors by cooling their inlet vapor. The ARU is directly integrated into the refinery processes, and uses enhanced, highly compact heat and mass exchange components. The refinery's investment will pay back in less than two years from increased recovery of salable product, and CO{sub 2} emissions are decreased by 10,000 tons per year in the Denver area.

Erickson, D.C.; Kelly, F.

1998-07-01T23:59:59.000Z

287

Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery  

SciTech Connect (OSTI)

HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

None

2011-12-19T23:59:59.000Z

288

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

and decreased cost of heat and electricity grid (Casten andgrid. Chapter 1 begins with analysis of the relative demand for electricity and heatheat can be cost-effectively stored with available technologies. (c) DCS-CHP thus can ameliorate grid-

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

289

New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement  

SciTech Connect (OSTI)

Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

2014-01-01T23:59:59.000Z

290

Recativation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modem reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Schamel, Steven

1997-03-24T23:59:59.000Z

291

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steam was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objective of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Schamel, Steven

1999-07-08T23:59:59.000Z

292

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

This project reactivates ARCO?s idle Pru Fee property in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery was initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and the recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Steven Schamel

1997-07-29T23:59:59.000Z

293

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

1999-02-01T23:59:59.000Z

294

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

This project reactivates ARCO?s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Creties Jenkins; Doug Sprinkel; Milind Deo; Ray Wydrinski; Robert Swain

1997-10-21T23:59:59.000Z

295

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2.  

SciTech Connect (OSTI)

The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 ???????????????????????????????? September 2004. ???????????????????????????????· Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. ???????????????????????????????· Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. ???????????????????????????????· Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. ???????????????????????????????· Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. ???????????????????????????????· Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. ???????????????????????????????· Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform

Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu; Huang, Xuedong; Penha, Rosani, L.; Perillo, Sergio, R.; Zhao, Ke

2005-06-03T23:59:59.000Z

296

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.  

SciTech Connect (OSTI)

The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. (6) Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform. (7) Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. (8) Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. (9) Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. A journal manuscript was submitted for publication. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.

Belle R. Upadhyaya; J. Wesley Hines

2004-09-27T23:59:59.000Z

297

PC-based control system complements NGL heat-recovery project  

SciTech Connect (OSTI)

Valero Hydrocarbons has employed a PC-based control system to realize the energy-savings potential of a heat-recovery project at its Corpus Christi, Tex., NGL fractionator (CCF). Valero Hydrocarbons' CCF was originally placed on-line in 1966. The operation of CCF as an isobutane-butane-natural gasoline fractionation complex started in 1982 after the plant's recovery section was replaced by the cryogenic unit at the nearby Shoup plant. The plant is still a significant Gulf Coast NGL processor, having a rated throughput of 10,000 b/d of the isobutane and heavier feedstock. The plant has operated successfully, however, at rates up to 11,300 b/d.

Young, R.M.

1988-05-02T23:59:59.000Z

298

Performance improvement of combined cycle power plant based on the optimization of the bottom cycle and heat recuperation  

Science Journals Connector (OSTI)

Many F class gas turbine combined cycle (GTCC) power plants are built in ... the efficiency improvement of GTCC plant. A combined cycle with three-pressure reheat heat recovery steam ... HRSG inlet gas temperatur...

Wenguo Xiang; Yingying Chen

2007-03-01T23:59:59.000Z

299

Steam management in composite mature steam floods, Midway Sunset field  

SciTech Connect (OSTI)

Vogel noted that oil production rates in many steam floods are not predictable from steam injection rates and must be estimated on some other basis. He presented a conservative method, based on simple models assuming instantaneous steam overlay, to calculate heat requirements once the oil rate is known. By more accurately describing the reservoir being flooded and the steam flood process, Vogel`s method was refined resulting in significant steam savings for SWEPI`s leasehold in the northern part of the Midway Sunset field. Analytical expressions are presented for (1) the heat required to support a steam chest descending into an oil column, (2) the heating of a cap or base rock already partially heated by an adjacent steam flood and (3) the heating of a cap or base rock which is exposed to a uniformly growing steam zone. A method is also described to operate a mature steam flood at a constant oil steam ratio while scavenging some heat stored in the steam zone.

Dorp, J.J. van; Roach, R.H.

1995-12-31T23:59:59.000Z

300

Light weight and economical exhaust heat exchanger for waste heat recovery using mixed radiant and convective heat transfer  

Broader source: Energy.gov [DOE]

A hybrid heat exchanger is designed to keep highly stressed materials around the working fluid at a moderate temperature so that it can operate at higher working fluid pressure.

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Evaluation of potential and consequences of steam bump in high heat waste tanks and assessment and validation of GOTH computer code  

SciTech Connect (OSTI)

This report describes the thermal hydraulic analysis performed using the GOTH computer code to evaluate the potential and consequences of steam bumps in high heat waste tanks. The analysis was performed for three different sludge volumes that correspond to the current sludge volume in tank AZ-101, combined sludge volumes of tank AZ-101 and tank AZ-102 and the projected consolidated sludge volume of tank C-106 and tank AY-102. For each case, the steam bump potential was evaluated starting the simulation with a realistic best estimate initial temperature distribution as well as with a conservative potentially possible axial temperature distribution in the sludge. To include further conservatism in estimating the consequent release of radioactive material, steam bump analyses were also performed suppressing steam condensation with subcooled liquid in waste. In addition,calculations were performed with in leakage flow paths corresponding to open risers and pump and sluice pit cover blocks as well as with normal in leakage flow paths due to drain pipes and infiltration paths. Therefore, the report presents the steam bump evaluations encompassing from an extremely conservative case of initiating a steam bump with local saturation temperature throughout the sludge with condensation suppressed and open risers to a realistic potential case with loss of cooling of initiating at steam bump with only the bottom layer with local saturation temperature with condensation included considering only the normal in leakage flow paths. The results show that in all cases the consequences from an energetic bump may not be acceptable, and the safe operation should include keeping peak sludge temperatures below local saturation values. The report also includes a brief description of the capability and validation of models used in the GOTH computer code.

Sathyanarayana, K., Westinghouse Hanford

1996-07-15T23:59:59.000Z

302

Fluidized-bed waste-heat recovery system development: Final report  

SciTech Connect (OSTI)

A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize the energy, which is applicable to all processes, is to preheat the combustion air for the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) system is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, recirculating alumina particles are heated by the flue gas in a raining bed. The hot particles are then removed from the bed and placed in a fluidized bed where they are fluidized by the combustion air. Through this process, the combustion air is preheated. The cooled particles are then returned to the raining bed. Initial development of this concept is for the aluminum smelting industry. In this final report, the design, development, fabrication, and installation of a full-scale FBWHR system is detailed.

Patch, K.D.; Cole, W.E.

1988-06-01T23:59:59.000Z

303

Optimization of waste heat recovery boiler of a combined cycle power plant  

SciTech Connect (OSTI)

This paper describes the details of a procedure developed for optimization of a waste heat recovery boiler (WHRB) of a combined cycle power plant (CCPP) using the program for performance prediction of a typical CCPP, details of which have been presented elsewhere (Seyedan et al., 1994). In order to illustrate the procedure, the optimum design of a WHRB for a typical CCPP (employing dual-pressure bottoming cycle) built by a prominent Indian company, has been carried out. The present design of a WHRB is taken as the base design and the newer designs generated by this procedure are compared with it to assess the extent of cost reduction possible.

Seyedan, B.; Dhar, P.L.; Gaur, R.R. [Indian Inst. of Tech., New Delhi (India). Dept. of Mechanical Engineering; Bindra, G.S. [Bharat Heavy Electrical Ltd., New Delhi (India)

1996-07-01T23:59:59.000Z

304

Solar Steam Nanobubbles  

Science Journals Connector (OSTI)

Solar Steam Nanobubbles ... The generated steam may also be used to drive a turbine directly for electricity generation. ... Furthermore, sputtering at gassolid and gasliquid interfaces may occur, and thermal desorption at the metalwater interface may affect the heat transfer as well. ...

Albert Polman

2013-01-02T23:59:59.000Z

305

Application guide for waste heat recovery with organic Rankine cycle equipment. Final report May-Dec 82  

SciTech Connect (OSTI)

This report assesses the state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed; also included is a description of anticipated future trends in organic Rankine cycle RandD.

Moynihan, P.I.

1983-01-15T23:59:59.000Z

306

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

Edward Levy; Harun Bilirgen; John DuPoint

2011-03-31T23:59:59.000Z

307

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. Condensed flue gas water treatment needs and costs. Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. Results of cost-benefit studies of condensing heat exchangers.

Levy, Edward; Bilirgen, Harun; DuPont, John

2011-03-31T23:59:59.000Z

308

Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels  

Science Journals Connector (OSTI)

The process of steam raising as a source of heat or means of generating electricity using combustible fuels began with the turn of the century. From the very beginning, impurities in the fuels were responsible for added maintenance, a reduction in rate of heat transfer and corrosion due to fireside deposits of sintered or molten ash. The nature and severity of deposit formation, i.e. slagging and fouling, changed as the fuels and their impurities changed, the steam raising process evolved and the steam generators increased in size and efficiency. With the introduction of computer science, the empirical art of ash deposition from impurities in combustion gases is rapidly being transformed into the science of mineral transformation and ash deposition. This manuscript presents in chronological order an overview of the art of ash deposition while firing coal, the mechanistic approach to the problem, the recent introduction of sophisticated analytical procedures, and modeling of mineral transformations, and ash deposition underway. Adaptation of fuels such as ash oil, petroleum coke, municipal waste, wood and biomass to the steam raising process are presented individually in the order in which they were introduced. Empirical indices presently used to characterize the slagging or fouling potentials of impurities in fuels are present. Fundamental data are provided where necessary to illustrate mechanisms for ash deposition. An extensive list of key references is offered for those wishing to investigate details of any particular aspect of fireside slagging, fouling or corrosion.

Richard W. Bryers

1996-01-01T23:59:59.000Z

309

A Method for Simulating Heat Recovery Systems Using AirModel in Implementations of the ASHRAE Simplified Energy Analysis Procedure  

E-Print Network [OSTI]

exchanger to verify the return air ratio. In this comparison, the recovered energy from the return air was equalized with the heat transfer of the heat exchanger model. An example of this methodology was used to simulate the HVAC system with a heat... to be measured for further investigation to verify the AirModel simulation. This method can be applied in Energy Plus and other simulation tools/software to simulate the building exhaust energy recovery. Acknowledgements The work of this paper...

Liu, C.; Zeig, M.; Claridge, D. E.; Wei, G.; Bruner, H.; Turner, W. D.

2005-01-01T23:59:59.000Z

310

Secretary Chu Announces Nearly $50 Million of Recovery Act Funding to Accelerate Deployment of Geothermal Heat Pumps  

Broader source: Energy.gov [DOE]

During a visit to Fort Wayne, Indiana, where he toured a manufacturer of geothermal heating pumps (GHPs), U.S. Energy Secretary Steven Chu today announced nearly $50 million from the American Reinvestment and Recovery Act to advance commercial deployment of the renewable heating and cooling systems, which use energy from below the Earths surface to move heat either into or away from the home or building.

311

Building America Expert Meeting Final Report: Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits  

Broader source: Energy.gov (indexed) [DOE]

Hydronic Hydronic Heating in Multifamily Buildings Jordan Dentz The ARIES Collaborative October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

312

Steam reforming analyzed  

SciTech Connect (OSTI)

This paper reports that maximum steam reformer operation without excessive coking reactions requires careful control of thermodynamic and kinetic conditions. Regardless of the syngas-based feedstock composition, carbon formation problems can be avoided while increasing reformer CO or H{sub 2} production. Steam reforming technology is best understood via: Primary steam reformer developments, Kinetics of methane steam reforming, Simulation of an industrial steam/CO{sub 2} reformer, Example conditions (steam/CO{sub 2} reforming), Thermodynamic approach (minimum to steam ratio). Hydrogen and carbon monoxide are two of the most important building blocks in the chemical industry. Hydrogen is mainly used in ammonia and methanol synthesis and petroleum refining. Carbon monoxide is used to produce pains, plastics, foams, pesticides and insecticides, to name a few. Production of H{sub 2} and CO is usually carried out by the following processes: Steam reforming (primary and secondary) of hydrocarbons, Partial oxidation of hydrocarbons, Coal gasification. Coal gasification and partial oxidation do not use catalysts and depend on partial combustion of the feedstock to internally supply reaction heat. Secondary (autothermal) reforming is a type of steam reforming that also uses the heat of partial combustion but afterwards uses a catalyst of promote the production of hydrogen and CO.

Wagner, E.S. (KTI Corp., San Dimas, CA (US)); Froment, G.F. (Ghent Rijksuniversiteit (Belgium))

1992-07-01T23:59:59.000Z

313

Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit  

Science Journals Connector (OSTI)

Abstract The recently-built school buildings have adopted novel heat recovery ventilator and air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification and indoor air quality indicated by the CO2 concentration have been numerically modeled concerning the effects of delivering ventilation flow rate and supplying air temperature. Numerical results indicate that the promotion of mechanical ventilation rate can simultaneously boost the dilution of indoor air pollutants and the non-uniformity of indoor thermal and pollutant distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air conditioning unit decreases with the increasing temperatures of supplying air. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented.

Yang Wang; Fu-Yun Zhao; Jens Kuckelkorn; Di Liu; Li-Qun Liu; Xiao-Chuan Pan

2014-01-01T23:59:59.000Z

314

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope & Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft (Figure 1), but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

Schamel, Steven

1999-11-09T23:59:59.000Z

315

Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes  

Broader source: Energy.gov [DOE]

A project to develop a microbial heat recovery cell (MHRC) system prototype using wastewater effluent samples from candidate facilities to produce either electric power or hydrogen

316

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region. In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft, but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

Steven Schamel

1998-02-27T23:59:59.000Z

317

Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1982-31 January 1983  

SciTech Connect (OSTI)

The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

Cole, W.E.; DeSaro, R.; Joshi, C.

1983-02-01T23:59:59.000Z

318

Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1981-31 January 1982  

SciTech Connect (OSTI)

The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

Cole, W. E.; DeSaro, R.; Joshi, C.

1982-02-01T23:59:59.000Z

319

CFD analysis of the effects of the flow distribution and heat losses on the steam reforming of methanol in catalytic (Pd/ZnO) microreactors  

Science Journals Connector (OSTI)

Abstract A three-dimensional computational fluid dynamics (CFD) simulation study of the effects of the flow distribution and the heat losses on the performance of microchannels and microslits reactors for the steam reforming of methanol (SRM) over Pd/ZnO is presented. Several flow distributing headers covering a wide range of the flow diffuser expansion angle (?) have been considered. Large values of ? lead to flow maldistribution characterized by jet flow resulting in negative effects on the SRM conversion and hydrogen yield, especially for the microslits at high reaction temperatures and space velocities. Simulations have also evidenced that heat losses constitute a critical issue for microreactors operation, particularly at low space velocities. Heat losses may reach very high values, above 8090% of the energy supplied to the microreactor, with the consequence that it may be necessary to provide up to 9times the heat of the SRM reaction to achieve high methanol conversions.

I. Uriz; G. Arzamendi; P.M. Diguez; F.J. Echave; O. Sanz; M. Montes; L.M. Ganda

2014-01-01T23:59:59.000Z

320

Electromagnetic Heating Methods for Heavy Oil Reservoirs  

SciTech Connect (OSTI)

The most widely used method of thermal oil recovery is by injecting steam into the reservoir. A well-designed steam injection project is very efficient in recovering oil, however its applicability is limited in many situations. Simulation studies and field experience has shown that for low injectivity reservoirs, small thickness of the oil-bearing zone, and reservoir heterogeneity limits the performance of steam injection. This paper discusses alternative methods of transferring heat to heavy oil reservoirs, based on electromagnetic energy. They present a detailed analysis of low frequency electric resistive (ohmic) heating and higher frequency electromagnetic heating (radio and microwave frequency). They show the applicability of electromagnetic heating in two example reservoirs. The first reservoir model has thin sand zones separated by impermeable shale layers, and very viscous oil. They model preheating the reservoir with low frequency current using two horizontal electrodes, before injecting steam. The second reservoir model has very low permeability and moderately viscous oil. In this case they use a high frequency microwave antenna located near the producing well as the heat source. Simulation results presented in this paper show that in some cases, electromagnetic heating may be a good alternative to steam injection or maybe used in combination with steam to improve heavy oil production. They identify the parameters which are critical in electromagnetic heating. They also discuss past field applications of electromagnetic heating including technical challenges and limitations.

Sahni, A.; Kumar, M.; Knapp, R.B.

2000-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

An experimental study of waste heat recovery from a residential refrigerator  

SciTech Connect (OSTI)

This paper describes the design, construction, and testing of an integrated heat recovery system which has been designed both to enhance the performance of a residential refrigerator and simultaneously to provide preheated water for an electric hot water heater. A commercial, indirect-heated hot water tank was retrofitted with suitable tubing to permit it to serve as a water cooled condenser for a residential refrigerator. This condenser operates in parallel with the air-cooled condenser tubing of the refrigerator so that either one or the other is active when the refrigerator is running. The refrigerator was housed in a controlled-environment chamber, and it was instrumented so that its performance could be monitored carefully in conjunction with the water pre-heating system. The system has been tested under a variety of hot water usage protocols, and the resulting data set has provided significantly insight into issues associated with commercial implementation of the concept. For the case of no water usage, the system was able to provide a 35 C temperature rise in the storage tank after about 100 hours of continuous operation, with no detectable deterioration of the refrigerator performance. Preliminary tests with simulations of high water usage, low water usage, and family water usage indicate a possible 18--20% energy savings for hot water over a long period of operation. Although the economic viability for such a system in a residential environment would appear to be sub-marginal, the potential for such a system associated with commercial-scale refrigeration clearly warrants further study, particularly for climates for which air conditioning heat rejection is highly seasonal.

Clark, R.A.; Smith, R.N.; Jensen, M.K. [Rensselaer Polytechnic Inst., Troy, NY (United States)

1996-12-31T23:59:59.000Z

322

A newly designed economizer to improve waste heat recovery: A case study in a pasteurized milk plant  

Science Journals Connector (OSTI)

Abstract An economizer is normally employed to perform heat recovery from hot exhaust gases to cold fluid. In this work, a newly designed economizer is devised to achieve high heat recovery in a pasteurized milk plant. In the economizer, the hot exhaust gas is divided into two channels flowing up on the left and right sides. After that, it is moving down passing over aligned banks of tubes, which water is flowing inside, in a triple passes fashion. Moreover, three dimensional (3D) models with heat transfer including fluid dynamic have been developed, validated by actual plant data and used to evaluate the performance of the economizer. Simulation results indicate that the newly designed economizer can recover the heat loss of 38% and can achieve the cost saving of 13%.

Sathit Niamsuwan; Paisan Kittisupakorn; Iqbal M. Mujtaba

2013-01-01T23:59:59.000Z

323

WASTE HEAT RECOVERY USING THERMOELECTRIC DEVICES IN THE LIGHT METALS INDUSTRY  

SciTech Connect (OSTI)

Recently discovered thermoelectric materials and associated manufacturing techniques (nanostructures, thin-film super lattice, quantum wells...) have been characterized with thermal to electric energy conversion efficiencies of 12-25+%. These advances allow the manufacture of small-area, high-energy flux (350 W/cm2 input) thermoelectric generating (TEG) devices that operate at high temperatures (~750C). TEG technology offers the potential for large-scale conversion of waste heat from the exhaust gases of electrolytic cells (e.g., Hall-Hroult cells) and from aluminum, magnesium, metal and glass melting furnaces. This paper provides an analysis of the potential energy recovery and of the engineering issues that are expected when integrating TEG systems into existing manufacturing processes. The TEG module must be engineered for low-cost, easy insertion and simple operation in order to be incorporated into existing manufacturing operations. Heat transfer on both the hot and cold-side of these devices will require new materials, surface treatments and design concepts for their efficient operation.

Choate, William T.; Hendricks, Terry J.; Majumdar, Rajita

2007-05-01T23:59:59.000Z

324

A Spin on Technology: Extracting Value from Wasted Heat | Department of  

Broader source: Energy.gov (indexed) [DOE]

A Spin on Technology: Extracting Value from Wasted Heat A Spin on Technology: Extracting Value from Wasted Heat A Spin on Technology: Extracting Value from Wasted Heat November 12, 2010 - 2:12pm Addthis Ener-G-Rotors has developed a system that converts hot water and steam into electricity. | File photo Ener-G-Rotors has developed a system that converts hot water and steam into electricity. | File photo Joshua DeLung What are the key facts? This new system allows manufacturers to convert heated wastewater and steam to energy. $834,000 Recovery Act tax credit is helping Ener-G-Rotors startup to commercialize their product. A three year return on investment equals $42,000 savings on average each year using the GEN4 System. Wastewater and steam can be a challenging resource for manufacturers to manage. The heated wastewater and steam are either lost or must be cooled

325

Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from a Heavy-Duty  

E-Print Network [OSTI]

Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from and efficiency of those systems. The system considered here is an Organic Rankine Cycle (ORC) for recovering internal combustion engines presented in [1]. The system considered here is an Organic Rankine Cycle (ORC

Paris-Sud XI, Université de

326

Final Scientific/Technical Report [Recovery Act: Districtwide Geothermal Heating Conversion  

SciTech Connect (OSTI)

The Recovery Act: Districtwide Geothermal Heating Conversion project performed by the Blaine County School District was part of a larger effort by the District to reduce operating costs, address deferred maintenance items, and to improve the learning environment of the students. This project evaluated three options for the ground source which were Open-Loop Extraction/Re-injection wells, Closed-Loop Vertical Boreholes, and Closed-Loop Horizontal Slinky approaches. In the end the Closed-Loop Horizontal Slinky approach had the lowest total cost of ownership but the majority of the sites associated with this project did not have enough available ground area to install the system so the second lowest option was used (Open-Loop). In addition to the ground source, this project looked at ways to retrofit existing HVAC systems with new high efficiency systems. The end result was the installation of distributed waterto- air heat pumps with water-to-water heat pumps installed to act as boilers/chillers for areas with a high ventilation demand such as they gymnasiums. A number of options were evaluated and the lowest total cost of ownership approach was implemented in the majority of the facilities. The facilities where the lowest total cost of ownership approaches was not selected were done to maintain consistency of the systems from facility to facility. This project had a number of other benefits to the Blaine County public. The project utilizes guaranteed energy savings to justify the levy funds expended. The project also developed an educational dashboard that can be used in the classrooms and to educate the community on the project and its performance. In addition, the majority of the installation work was performed by contractors local to Blaine County which acted as an economic stimulus to the area during a period of recession.

Chatterton, Mike

2014-02-12T23:59:59.000Z

327

Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report  

SciTech Connect (OSTI)

The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

NONE

1995-01-01T23:59:59.000Z

328

FEMP-FTA--Steam Trap Performance Assessment  

Broader source: Energy.gov (indexed) [DOE]

Steam Trap Function Steam Trap Function Steam traps are automatic valves used in every steam system to remove conden- sate, air, and other non-condensable gases while preventing or minimizing the passing of steam. If condensate is allowed to collect, it reduces the flow capacity of steam lines and the thermal capacity of heat transfer equipment. In addition, excess condensate can lead to "water hammer," with potentially destructive and dangerous results. Air that remains after system startup reduces steam pressure and temperature and may also reduce the thermal capacity of heat transfer equipment. Non-condensable gases, such as oxygen and carbon dioxide, cause corrosion. Steam that passes through the trap provides no heating ser- vice. This effectively reduces the heating capacity

329

Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer  

SciTech Connect (OSTI)

Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

Not Available

1981-10-01T23:59:59.000Z

330

Weight and power optimization of steam bottoming cycle for offshore oil and gas installations  

Science Journals Connector (OSTI)

Abstract Offshore oil and gas installations are mostly powered by simple cycle gas turbines. To increase the efficiency, a steam bottoming cycle could be added to the gas turbine. One of the keys to the implementation of combined cycles on offshore oil and gas installations is for the steam cycle to have a low weight-to-power ratio. In this work, a detailed combined cycle model and numerical optimization tools were used to develop designs with minimum weight-to-power ratio. Within the work, single-objective optimization was first used to determine the solution with minimum weight-to-power ratio, then multi-objective optimization was applied to identify the Pareto frontier of solutions with maximum power and minimum weight. The optimized solution had process variables leading to a lower weight of the heat recovery steam generator while allowing for a larger steam turbine and condenser to achieve a higher steam cycle power output than the reference cycle. For the multi-objective optimization, the designs on the Pareto front with a weight-to-power ratio lower than in the reference cycle showed a high heat recovery steam generator gas-side pressure drop and a low condenser pressure.

Lars O. Nord; Emanuele Martelli; Olav Bolland

2014-01-01T23:59:59.000Z

331

Steam turbine: Alternative emergency drive for the secure removal of residual heat from the core of light water reactors in ultimate emergency situation  

SciTech Connect (OSTI)

In 2011 the nuclear power generation has suffered an extreme probation. That could be the meaning of what happened in Fukushima Nuclear Power Plants. In those plants, an earthquake of 8.9 on the Richter scale was recorded. The quake intensity was above the trip point of shutting down the plants. Since heat still continued to be generated, the procedure to cooling the reactor was started. One hour after the earthquake, a tsunami rocked the Fukushima shore, degrading all cooling system of plants. Since the earthquake time, the plant had lost external electricity, impacting the pumping working, drive by electric engine. When operable, the BWR plants responded the management of steam. However, the lack of electricity had degraded the plant maneuvers. In this paper we have presented a scheme to use the steam as an alternative drive to maintain operable the cooling system of nuclear power plant. This scheme adds more reliability and robustness to the cooling systems. Additionally, we purposed a solution to the cooling in case of lacking water for the condenser system. In our approach, steam driven turbines substitute electric engines in the ultimate emergency cooling system. (authors)

Souza Dos Santos, R. [Instituto de Engenharia Nuclear CNEN/IEN, Cidade Universitaria, Rua Helio de Almeida, 75 - Ilha do Fundiao, 21945-970 Rio de Janeiro (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores / CNPq (Brazil)

2012-07-01T23:59:59.000Z

332

Numerical analysis of hydrogen production via methane steam reforming in porous media solar thermochemical reactor using concentrated solar irradiation as heat source  

Science Journals Connector (OSTI)

Abstract The calorific value of syngas can be greatly upgraded during the methane steam reforming process by using concentrated solar energy as heat source. In this study, the Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupling method is developed to investigate the hydrogen production performance via methane steam reforming in porous media solar thermochemical reactor which includes the mass, momentum, energy and irradiative transfer equations as well as chemical reaction kinetics. The local thermal non-equilibrium (LTNE) model is used to provide more temperature information. The modified P1 approximation is adopted for solving the irradiative heat transfer equation. The MCRT method is used to calculate the sunlight concentration and transmission problems. The fluid phase energy equation and transport equations are solved by Fluent software. The solid phase energy equation, irradiative transfer equation and chemical reaction kinetics are programmed by user defined functions (UDFs). The numerical results indicate that concentrated solar irradiation on the fluid entrance surface of solar chemical reactor is highly uneven, and temperature distribution has significant influence on hydrogen production.

Fuqiang Wang; Jianyu Tan; Yong Shuai; Liang Gong; Heping Tan

2014-01-01T23:59:59.000Z

333

Study of integrated metal hydrides heat pump and cascade utilization of liquefied natural gas cold energy recovery system  

Science Journals Connector (OSTI)

The traditional cold energy utilization of the liquefied natural gas system needs a higher temperature heat source to improve exergy efficiency, which barricades the application of the common low quality thermal energy. The adoption of a metal hydride heat pump system powered by low quality energy could provide the necessary high temperature heat and reduce the overall energy consumption. Thus, an LNG cold energy recovery system integrating metal hydride heat pump was proposed, and the exergy analysis method was applied to study the case. The performance of the proposed integration system was evaluated. Moreover, some key factors were also theoretically investigated about their influences on the system performance. According to the results of the analysis, some optimization directions of the integrated system were also pointed out.

Xiangyu Meng; Feifei Bai; Fusheng Yang; Zewei Bao; Zaoxiao Zhang

2010-01-01T23:59:59.000Z

334

LNG Vaporizer Utilizing Vacuum Steam Condensing  

Science Journals Connector (OSTI)

This report concerns the field test results of a new type of peak-shaving LNG vaporizer (VSV) whose heat source is ... heat of vacuum steam to vaporize and superheat LNG within heat transfer tubes. Prior to the.....

Y. Miyata; M. Hanamure; H. Kujirai; Y. Sato

1991-01-01T23:59:59.000Z

335

BOILER BLOW-DOWN FLASH RECOVERY  

E-Print Network [OSTI]

Malelanes boiler blow-down flash, which was previously rejected to atmosphere, is now recovered into the turbo-alternator exhaust steam range and used for process heating duty. Various flash vapour recovery options have been evaluated for operability, maintainability and cost effectiveness. The design considerations for the blow-down vessel and the valve and piping configuration, which resulted from a Hazop Study, are explained. The recovery of 1.6 tons per hour of boiler blowdown flash equates to R260 000 per annum in coal savings.

I Singh; F Weyers

336

Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

SciTech Connect (OSTI)

We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

Gregory Meisner

2011-08-31T23:59:59.000Z

337

Locating hot and cold-legs in a nuclear powered steam generation system  

DOE Patents [OSTI]

A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

Ekeroth, D.E.; Corletti, M.M.

1993-11-16T23:59:59.000Z

338

Combined heat recovery and dry scrubbing for MWCs to meet the new EPA guidelines  

SciTech Connect (OSTI)

Both the UK and US Municipal Waste Combuster (MWC) markets have undergone upgraded regulatory control. In the UK, the government`s Integrated Pollution Control (IPC) regime, enforced by the 1990 Environmental Protection Act (EPA) Standard IPR5/3 moved control of emissions of MWCs from local councils to the government Environmental Authority (EA). Existing MWCs had until December 1, 1996 to complete environmental upgrades. Simultaneously, the European Community (EC) was finalizing more stringent legislation to take place in the year 2001. In the US, the 1990 Clean Air Act amendments required the Environmental Protection Agency (EPA) to issue emission guidelines for new and existing facilities. Existing facilities are likely to have only until the end of 1999 to complete upgrades. In North America, Procedair Industries Corp had received contracts from Kvaerner EnviroPower AB, for APC systems of four new Refuse Derived Fuel (RDF) fluid bed boilers that incorporated low outlet temperature economizers as part of the original boiler equipment. The Fayetteville, North Carolina facility was designed for 200,000 tpy. What all these facilities have in common is low economizer outlet temperatures of 285{degrees}F coupled with a Total Dry Scrubbing System. MWC or RDF facilities using conventional spray dryer/fabric filter combinations have to have economizer gas outlet temperatures about 430{degrees}F to allow for evaporation of the lime slurry in the spray dryer without the likelihood of wall build up or moisture carry over. Since the Totally Dry Scrubbing System can operate with economizer gas outlet temperatures about 285{degrees}F, the added energy available for sale from adding low outlet temperature economizer heat recovery can be considerable. This paper focuses on Procedair`s new plant and retrofit experience using `Dry Venturi Reactor/Fabric Filter` combinations with the lower inlet temperature operating conditions.

Finnis, P.J. [Procedair Industries Corp., Louisville, KY (United States); Heap, B.M. [Procedair Limited, Wombourne (United Kingdom)

1997-12-01T23:59:59.000Z

339

Thermally-enhanced oil recovery method and apparatus  

DOE Patents [OSTI]

A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

Stahl, Charles R. (Scotia, NY); Gibson, Michael A. (Houston, TX); Knudsen, Christian W. (Houston, TX)

1987-01-01T23:59:59.000Z

340

Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report  

SciTech Connect (OSTI)

A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

Nick Rosenberry, Harris Companies

2012-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation  

Broader source: Energy.gov [DOE]

Large-dimension, high-ZT BiTe and Pb-based nanocomposites produced with a low-cost scalable process were used for development and testing of TE module prototypes, and demonstration of a waste heat recovery system

342

Determining the maximal capacity of a combined-cycle plant operating with afterburning of fuel in the gas conduit upstream of the heat-recovery boiler  

Science Journals Connector (OSTI)

The effect gained from afterburning of fuel in the gas conduit upstream of the heat-recovery boiler used as part of a PGU-450T combined-cycle plant is considered. The results obtained from ... electric and therma...

V. M. Borovkov; N. M. Osmanova

2011-01-01T23:59:59.000Z

343

Extending the erosion-corrosion service life of the tube system of heat-recovery boilers used as part of combined-cycle plants  

Science Journals Connector (OSTI)

We present the results from an analysis of damageability and determination of dominating mechanisms through which thinning occurs to the metal of elements used in the tube system of heat recovery boilers used as ...

G. V. Tomarov; A. V. Mikhailov; E. V. Velichko; V. A. Budanov

2010-01-01T23:59:59.000Z

344

Performance Analysis of Exhaust Waste Heat Recovery System for Stationary CNG Engine Based on Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract In order to improve the electric efficiency of a stationary compressed natural gas (CNG) engine, a set of organic Rankine cycle (ORC) system with internal heat exchanger (IHE) is designed to recover exhaust energy that is used to generate electricity. R416A is selected as the working fluid for the waste heat recovery system. According to the first and second laws of thermodynamics, the performances of the ORC system for waste heat recovery are discussed based on the analysis of engine exhaust waste heat characteristics. Subsequently, the stationary CNG engine-ORC with IHE combined system is presented. The electric efficiency and the brake specific fuel consumption (BSFC) are introduced to evaluate the operating performances of the combined system. The results show that, when the evaporation pressure is 3.5MPa and the engine is operating at the rated condition, the net power output and the thermal efficiency of the ORC system with IHE can reach up to 62.7kW and 12.5%, respectively. Compared with the stationary CNG engine, the electric efficiency of the combined system can be increased by a maximum 6.0%, while the BSFC can be reduced by a maximum 5.0%.

Songsong Song; Hongguang Zhang; Zongyong. Lou; Fubin Yang; Kai Yang; Hongjin Wang; Chen Bei; Ying Chang; Baofeng Yao

2014-01-01T23:59:59.000Z

345

High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests  

SciTech Connect (OSTI)

As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

Duffy, T.; Schneider, P.

1996-01-01T23:59:59.000Z

346

Superheated steam power plant with steam to steam reheater. [LMFBR  

SciTech Connect (OSTI)

A desuperheater is disposed in a steam supply line supplying superheated steam to a shell and tube reheater.

Silvestri, G.J.

1981-06-23T23:59:59.000Z

347

Steamed dinosaur eggs  

Science Journals Connector (OSTI)

... a Cretaceous hatchery shows that some dinosaurs liked their nesting sites steam-heated by geothermal vents. A paper in Nature Communications today says that certain dinosaurs regularly returned to ... vents. A paper in Nature Communications today says that certain dinosaurs regularly returned to geothermal fields to shape nests and deposit eggs more than 100 million years ago. ...

Rex Dalton

2010-06-29T23:59:59.000Z

348

Fluidized-bed waste-heat recovery system development. Semiannual report, February 1, 1983-July 31, 1983  

SciTech Connect (OSTI)

A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize this energy, which is applicable to all processes, is to preheat the combustion air from the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry. In this report, the accomplishments of the proceeding six-month period are described.

Cole, W. E.; De Saro, R.; Joshi, C.

1983-08-01T23:59:59.000Z

349

Low pressure combustor for generating steam downhole  

SciTech Connect (OSTI)

A compact catalytic combustor for generating steam downhole in an oil reservoir has steam generating tubes that are attached to a metal catalyst support. The metal support comprises sheets of metal that are spaced apart and transverse to the tubes. Heat from combustion is generated on the metal sheets and is conducted to the steam generating tubes. The steam is injected into the oil reservoir. The combustion gas is vented to ground level.

Retallick, W.B.

1983-03-22T23:59:59.000Z

350

Indoor air environment and night cooling energy efficiency of a southern German passive public school building operated by the heat recovery air conditioning unit  

Science Journals Connector (OSTI)

Abstract The recently built school building has adopted a novel heat recovery air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification have been numerically investigated concerning the effects of the heat flow flux of passive cooling within the ceiling concrete in the classroom due to night ventilation in summer which could result in cooling energy storage. Numerical results indicate that the promotion of passive cooling can simultaneously decrease the volume averaged indoor temperatures and the non-uniformity of indoor thermal distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air-cooling unit decreases with the increasing temperatures of exhaust air and the heat flux value for passive cooling within the classroom ceiling concrete. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented.

Yang Wang; Fu-Yun Zhao; Jens Kuckelkorn; Xiao-Hong Li; Han-Qing Wang

2014-01-01T23:59:59.000Z

351

NSF/DOE Thermoelectrics Partnership: Purdue ? GM Partnership on Thermoelectrics for Automotive Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Reviews results in developing commercially viable thermoelectric generators for efficient conversion of automotive exhaust waste heat to electricity

352

Computational and experimental test of self starting regimes for the in-house needs of the PGU-450 steam-gas unit at the Kaliningrad TTs-2 Heating and Power Plant during supply disruptions  

Science Journals Connector (OSTI)

The major stages of a computational test of the self starting regimes for the in-house needs of unit No. 1 of the 450 MW steam-gas unit at the Kaliningrad TTs-2 Heating and Electric Power Plant during supply ...

S. N. Sakharov; V. A. Kuzmichev

2008-05-01T23:59:59.000Z

353

Heat engine Device that transforms heat into work.  

E-Print Network [OSTI]

, and rocket engines are heat engines. So are steam engines and turbines #12;2 refrigerator Device that uses by steam turbines. Steam turbines, jet engines and rocket engines use a Brayton cycle #12;4 Steam turbines1 Heat engine Device that transforms heat into work. It requires two energy reservoirs at different

Winokur, Michael

354

Influence of steam injection and hot gas bypass on the performance and operation of a combined heat and power system using a recuperative cycle gas turbine  

Science Journals Connector (OSTI)

The influence of steam injection and hot gas bypass on the performance and operation of ... power (CHP) system using a recuperative cycle gas turbine was investigated. A full off-design analysis ... in steam gene...

Soo Young Kang; Jeong Ho Kim; Tong Seop Kim

2013-08-01T23:59:59.000Z

355

Wet ethanol in HCCI engines with exhaust heat recovery to improve the energy balance of ethanol fuels  

Science Journals Connector (OSTI)

This study explores the use of wet ethanol as a fuel for HCCI engines while using exhaust heat recovery to provide the high input energy required for igniting wet ethanol. Experiments were conducted on a 4-cylinder Volkswagen engine modified for HCCI operation and retrofitted with an exhaust gas heat exchanger connected to one cylinder. Tested fuel blends ranged from 100% ethanol to 80% ethanol by volume, with the balance being water. These blends are directly formed in the process of ethanol production from biomass. Comprehensive data was collected for operating conditions ranging from intake pressures of 1.42.0bar and equivalence ratios from 0.25 to 0.55. The heat exchanger was used to preheat the intake air allowing HCCI combustion without electrical air heating. The results suggest that the best operating conditions for the HCCI engine and heat exchanger system in terms of high power output, low ringing, and low nitrogen oxide emissions occur with high intake pressures, high equivalence ratios, and highly delayed combustion timings. Removing the final 20% of water from ethanol is a major energy sink. The results of this study show that HCCI engines can use ethanol fuels with up to 20% water while maintaining favorable operating conditions. This can remove the need for the most energy-intensive portion of the water removal process.

Samveg Saxena; Silvan Schneider; Salvador Aceves; Robert Dibble

2012-01-01T23:59:59.000Z

356

Burning mill sludge in a fluidized-bed incinerator and waste-heat-recovery system; Ten years of successful operation  

SciTech Connect (OSTI)

This paper reports on burning mill sludge in a fluidized-bed incinerator and waste-heat-recovery system. In the late 1970s, the Lielahti sulfite mill of G.A. Serlachius Corp. (now Metsa Serla Oy) began investigating alternative methods of sludge disposal. The mill had an annual capacity of 100,000 tons of bleached pulp, generated 80,000 tons of by-product lignin sulfonates, and specialized in dissolving pulps. Because of the end product's high quality requirements, the mill had a low pulp yield and high losses in the form of both dissolved and suspended solids.

Nickull, O. (Metsa Serla, Oy (FI)); Lehtonen, O. (Tampella Ltd., Tampere (FI)); Mullen, J. (Tampella Keeler, Williamsport, PA (US))

1991-03-01T23:59:59.000Z

357

High vacuum indirectly-heated rotary kiln for the removal and recovery of mercury from air pollution control scrubber waste  

SciTech Connect (OSTI)

SepraDyne corporation (Denton, TX, US) has conducted pilot-scale treatability studies of dewatered acid plant blowdown sludge generated by a copper smelter using its recently patented high temperature and high vacuum indirectly-heated rotary retort technology. This unique rotary kiln is capable of operating at internal temperatures up to 850 C with an internal pressure of 50 torr and eliminates the use of sweep gas to transport volatile substances out of the retort. By removing non-condensables such as oxygen and nitrogen at relatively low temperatures and coupling the process with a temperature ramp-up program and low temperature condensation, virtually all of the retort off-gases produced during processing can be condensed for recovery. The combination of rotation, heat and vacuum produce the ideal environment for the rapid volatilization of virtually all organic compounds, water and low-to-moderate boiling point metals such as arsenic, cadmium and mercury.

Hawk, G.G.; Aulbaugh, R.A. [Scientific Consulting Labs., Inc., Farmers Branch, TX (United States)] [Scientific Consulting Labs., Inc., Farmers Branch, TX (United States)

1998-12-31T23:59:59.000Z

358

Energy recovery during expansion of compressed gas using power plant low-quality heat sources  

DOE Patents [OSTI]

A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

2006-03-07T23:59:59.000Z

359

An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles  

Broader source: Energy.gov [DOE]

Discusses isostatic pressing for scalable TE elements, properties characterization of nanostructured ZnO materials, and heat exchanger designs to improve device efficiency

360

New Technology Demonstration of Microturbine with Heat Recovery at Fort Drum, New York  

SciTech Connect (OSTI)

This report replaces PNNL-14417 and documents a project to demonstrate and evaluate a combined heat and power-configured microturbine system.

Friedrich, Michele; Armstrong, Peter R.; Smith, David L.

2004-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications  

Broader source: Energy.gov [DOE]

Progress in reliable high temperature segmented thermoelectric devices and potential for producing electricity from waste heat from energy intensive industrial processes and transportation vehicles exhaust are discussed

362

,,,"with Any"," Steam Turbines Supplied by Either Conventional...  

U.S. Energy Information Administration (EIA) Indexed Site

or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,,"...

363

Steam Plant Conversion Eliminating Campus Coal Use  

E-Print Network [OSTI]

high-efficiency NG/fuel oil boilers · Slight reduction in steam production capacity · Requires: Building heating Domestic hot water Lab sterilization UT's Steam Plant #12;· Powered by 5 boilers: 2 emissions standard (Boiler MACT): · For existing boilers w/ heat input capacity of 10 MMBtu/hr or greater

Dai, Pengcheng

364

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

365

Quantifying Combined Heat and Power (CHP) activity  

Science Journals Connector (OSTI)

In CHP plants without heat rejection facilities power, output is complementary to the recovery of heat, and all activity is cogeneration. CHP plants with heat rejection facilities can operate a mix of cogeneration and condensing activities. Quantifying the energy flows of both activities properly requires knowledge of the design power-to-heat ratios of the CHP processes (steam and gas turbines, combustion engines). The ratios may be multiple, non-linear or extend into the virtual domain of the production possibility sets of the plants. Quantifying cogeneration in CCGT plants reveals a definition conflict but consistent solutions are available.

Aviel Verbruggen

2007-01-01T23:59:59.000Z

366

Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600MW power plant  

Science Journals Connector (OSTI)

This paper presents a case study of recovering the waste heat of the exhaust flue gas before entering a flue gas desulphurizer (FGD) in a 600MW power plant. This waste heat can be recovered by installing a low pressure economizer (LPE) to heat the condensed water which can save the steam extracted from the steam turbine for heating the condensed water and then extra work can be obtained. The energy and water savings and the reduction of CO2 emission resulted from the LPE installation are assessed for three cases in a 600MW coal-fired power plant with wet stack. Serpentine pipes with quadrate finned extensions are selected for the LPE heat exchanger which has an overall coefficient of heat transfer of 37W/m2K and the static pressure loss of 781Pa in the optimized case. Analysis results show that it is feasible to install \\{LPEs\\} in the exhaust flue gas system between the pressurizing fan and the FGD, which has little negative impacts on the unit. The benefits generated include saving of standard coal equivalent (SCE) at 24g/(kWh) and saving of water at 2535t/h under full load operation with corresponding reduction of CO2 emission.

Chaojun Wang; Boshu He; Shaoyang Sun; Ying Wu; Na Yan; Linbo Yan; Xiaohui Pei

2012-01-01T23:59:59.000Z

367

Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus  

SciTech Connect (OSTI)

The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method where relevant air-side parameters were controlled while collecting output performance data at discreet points of steady-state operation. The primary metrics include system power consumption and zonal heating and cooling capacity. Using this test method, the measured total cooling capacity was somewhat lower than reported by the manufacturer. The measured power was found to be equal to or greater than the manufacturers indicated power. Heating capacity measurements produced similar results. The air-side performance metric was total cooling and heating energy since the computer model uses those same metrics as input to the model. Although the sensible and latent components of total cooling were measured, they are not described in this report. The test methodology set the thermostat set point temperature very low for cooling and very high for heating to measure full-load performance and was originally thought to provide the maximum available capacity. Manufacturers stated that this test method would not accurately measure performance of VRF systems which is now believed to be a true statement. Near the end of the project, an alternate test method was developed to better represent VRF system performance as if field installed. This method of test is preliminarily called the Load Based Method of Test where the load is fixed and the indoor conditions and unit operation are allowed to fluctuate. This test method was only briefly attempted in a laboratory setting but does show promise for future lab testing. Since variable-speed air-conditioners and heat pumps include an on-board control algorithm to modulate capacity, these systems are difficult to test. Manufacturers do have the ability to override internal components to accommodate certification procedures, however, it is unknown if the resulting operation is replicated in the field, or if so, how often. Other studies have shown that variable-speed air-conditioners and heat pumps do out perform their single-speed counterparts though these field studies leave as many questions as they do provide answers. The measure

Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

2013-09-30T23:59:59.000Z

368

In situ recovery from residually heated sections in a hydrocarbon containing formation  

DOE Patents [OSTI]

Methods of treating a tar sands formation is described herein. The methods may include providing heat to a first section of a hydrocarbon layer in the formation from a plurality of heaters located in the first section of the formation. Heat is transferred from the heaters so that at least a first section of the formation reaches a selected temperature. At least a portion of residual heat from the first section transfers from the first section to a second section of the formation. At least a portion of hydrocarbons in the second section are mobilized by providing a solvation fluid and/or a pressurizing fluid to the second section of the formation.

Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX); Ryan, Robert Charles (Houston, TX)

2010-12-14T23:59:59.000Z

369

PREDICTIVE MODELS. Enhanced Oil Recovery Model  

SciTech Connect (OSTI)

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2 carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3 in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4 polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5 steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

Ray, R.M. [DOE Bartlesville Energy Technology Technology Center, Bartlesville, OK (United States)

1992-02-26T23:59:59.000Z

370

Industrial Steam Power Cycles Final End-Use Classification  

E-Print Network [OSTI]

Final end uses of steam include two major classifications: those uses that condense the steam against heat transfer surfaces to provide heat to an item of process or service equipment; and those that require a mass flow of steam for stripping...

Waterland, A. F.

1983-01-01T23:59:59.000Z

371

A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles  

Science Journals Connector (OSTI)

This paper presents an investigation on the utilization of waste heat from a gas turbine-modular helium reactor (GT-MHR) using different arrangements of organic Rankine cycles (ORCs) for power production. The con...

Mortaza Yari; S. M. S. Mahmoudi

2011-02-01T23:59:59.000Z

372

Optimal Organic Rankine Cycle Installation Planning for Factory Waste Heat Recovery  

Science Journals Connector (OSTI)

As Taiwans industry developed rapidly, the energy demand also rises simultaneously. In the production process, theres a lot of energy consumed in the process. Formally, the energy used in generating the heat in...

Yu-Lin Chen; Chun-Wei Lin

2013-01-01T23:59:59.000Z

373

An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles  

Broader source: Energy.gov [DOE]

Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

374

Radiant heating and cooling, displacement ventilation with heat recovery and storm water cooling: An environmentally responsible HVAC system  

SciTech Connect (OSTI)

This paper describes the design, operation, and performance of an HVAC system installed as part of a project to demonstrate energy efficiency and environmental responsibility in commercial buildings. The systems installed in the 2180 m{sup 2} office building provide superior air quality and thermal comfort while requiring only half the electrical energy of conventional systems primarily because of the hydronic heating and cooling system. Gas use for the building is higher than expected because of longer operating hours and poor performance of the boiler/absorption chiller.

Carpenter, S.C.; Kokko, J.P. [Enermodal Engineering Ltd., Kitchener, Ontario (Canada)

1998-12-31T23:59:59.000Z

375

Solving chemical and mechanical problems of PWR steam generators  

SciTech Connect (OSTI)

Steam generators in power plants, based on pressurized water reactors (PWRs), transfer heat from a primary coolant system (pressurized water) to a secondary coolant system. Primary coolant water is heated in the core and passes through the steam generator that transfers heat to the secondary coolant water to make steam. The steam then drives a turbine that turns an electric generator. Steam is condensed and returned to the steam generator as feedwater. Two types of PWR steam generators are in use: recirculating steam generators (RSGs) and once-through steam generators (OTSGs). Since most of the units are vertical, only vertical units are discussed in this article. Some vertical units have operated with a minimum of problems, while others have experienced a variety of corrosion and mechanically-induced problems that have caused unscheduled outages and expensive repairs.

Green, S.J.

1987-07-01T23:59:59.000Z

376

Lightning Dock Geothermal Space Heating Project: Lightning Dock...  

Open Energy Info (EERE)

and home heating systems, which consisted of pumping geothermal water and steam through passive steam heaters, and convert the systems to one using modern heat exchange units. It...

377

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Jaoquin Basin, California. Annual report, June 13, 1995--June 13, 1996  

SciTech Connect (OSTI)

This project reactivates ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Deo, M.; Jenkins, C.; Sprinkel, D.; Swain, R.; Wydrinski, R.; Schamel, S.

1998-09-01T23:59:59.000Z

378

GCFR steam generator conceptual design  

SciTech Connect (OSTI)

The gas-cooled fast reactor (GCFR) steam generators are large once-through heat exchangers with helically coiled tube bundles. In the GCFR demonstration plant, hot helium from the reactor core is passed through these units to produce superheated steam, which is used by the turbine generators to produce electrical power. The paper describes the conceptual design of the steam generator. The major components and functions of the design are addressed. The topics discussed are the configuration, operating conditions, design criteria, and the design verification and support programs.

Holm, R.A.; Elliott, J.P.

1980-01-01T23:59:59.000Z

379

Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design  

SciTech Connect (OSTI)

The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

Jurns, John M. [European Spallation Source ESS AB, P.O. Box 176, 221 00 Lund (Sweden); Bck, Harald [Sweco Industry AB, P.O. Box 286, 201 22 Malm (Sweden); Gierow, Martin [Lunds Energikoncernen AB, P.O. Box 25, 221 00 Lund (Sweden)

2014-01-29T23:59:59.000Z

380

The Analysis and Development of Large Industrial Steam Systems  

E-Print Network [OSTI]

Chemicals, petroleum, pulp and paper, and many other industries depend heavily on extensive complex steam systems for thermal and mechanical energy delivery. Steam's versatility and desirable characteristics as both a heat transfer medium and a...

Waterland, A. F.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles  

Science Journals Connector (OSTI)

Organic Rankine Cycles (ORCs) are particularly suitable for recovering energy from low-grade heat sources. This paper describes the behavior of a small-scale ORC used to recover energy from a variable flow rate and temperature waste heat source. A traditional static model is unable to predict transient behavior in a cycle with a varying thermal source, whereas this capability is essential for simulating an appropriate cycle control strategy during part-load operation and start and stop procedures. A dynamic model of the ORC is therefore proposed focusing specifically on the time-varying performance of the heat exchangers, the dynamics of the other components being of minor importance. Three different control strategies are proposed and compared. The simulation results show that a model predictive control strategy based on the steady-state optimization of the cycle under various conditions is the one showing the best results.

Sylvain Quoilin; Richard Aumann; Andreas Grill; Andreas Schuster; Vincent Lemort; Hartmut Spliethoff

2011-01-01T23:59:59.000Z

382

Solar's combined-cycle system utilizes novel steam-generator concept  

SciTech Connect (OSTI)

As escalating fuel costs force equipment users to seek more efficient prime movers, the combined-cycle system will become increasingly attractive because it retains the advantages of simple-cycle gas turbines - low installation costs, high availability, low maintenance, and low emission levels - while adding 40% power output from the steam-based system operated on the turbine exhaust. Solar Turbines International has sought to develop an automated, remote-control combined-cycle system that can be easily retrofitted to existing simple-cycle power stations. The key component giving the system its advantages over the hazardous, complex steam-drum-type boiler systems is a once-through dual-pressure steam-generator device that eliminates the need for drums and elaborate control mechanisms. Forty identical parallel tube circuits suspended from a single frame are connected to common inlet and discharge manifolds; the individual circuits are made of dual high- and low-pressure bundles, with each bundle having economizer, vaporizer, and superheating sections. The 40 circuits comprise one complete steam-generator module core matrix. By injecting the superheated low-pressure steam into the latter stages of the steam turbine, the dual-pressure feature improves the heat recovery by more than 12% over conventional devices. The only water treatment that the corrosion-resistant tube material requires is the removal of dissolved solids.

Not Available

1980-06-01T23:59:59.000Z

383

Keywordscondensation tube, surface modification, waste heat and condensation water recovery system  

E-Print Network [OSTI]

merge to form water thin film on tube condenser surface. The condensing mechanism will change from high efficiency dropwise condensation to low efficiency filmwise condensation. In this proposal, surface system is one of the most important facilities in power plants. High efficiency waste heat

Leu, Tzong-Shyng "Jeremy"

384

Feasibility of Thermoelectrics for Waste Heat Recovery in Hybrid Vehicles: Preprint  

SciTech Connect (OSTI)

Using advanced materials, thermoelectric conversion of efficiencies on the order of 20% may be possible in the near future. Thermoelectric generators offer potential to increase vehicle fuel economy by recapturing a portion of the waste heat from the engine exhaust and generating electricity to power vehicle accessory or traction loads.

Smith, K.; Thornton, M.

2007-12-01T23:59:59.000Z

385

Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery  

Science Journals Connector (OSTI)

Abstract The performance of the ORC (organic Rankine cycle) systems using zeotropic mixtures as working fluids for recovering waste heat of flue gas from industrial boiler is examined on the basis of thermodynamics and thermo-economics under different operating conditions. In order to explore the potential of the mixtures as the working fluids in the ORC, the effects of various mixtures with different components and composition proportions on the system performance have been analyzed. The results show that the compositions of the mixtures have an important effect on the ORC system performance, which is associated with the temperature glide during the phase change of mixtures. From the point of thermodynamics, the performance of the ORC system is not always improved by employing the mixtures as the working fluids. The merit of the mixtures is related to the restrictive conditions of the ORC, different operating conditions results in different conclusions. At a fixed pinch point temperature difference, the small mean heat transfer temperature difference in heat exchangers will lead to a larger heat transfer area and the larger total cost of the ORC system. Compared with the ORC with pure working fluids, the ORC with the mixtures presents a poor economical performance.

You-Rong Li; Mei-Tang Du; Chun-Mei Wu; Shuang-Ying Wu; Chao Liu

2014-01-01T23:59:59.000Z

386

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers ProMIS/Project No.: DE-NT0005648  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edward Levy Edward Levy Principal Investigator Director, Lehigh University Energy Research Center RecoveRy of WateR fRom BoileR flue Gas usinG condensinG Heat excHanGeRs PRomis/PRoject no.: de-nt0005648 Background As the United States' population grows and demand for electricity and water increases, power plants located in some parts of the country will find it increasingly difficult to obtain the large quantities of water needed to maintain operations. Most of the water used in a thermoelectric power plant is used for cooling, and the U.S. Department of Energy (DOE) has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. Many coal-fired power plants operate with stack temperatures in the 300 °F range to minimize fouling and corrosion problems due to sulfuric acid condensation and to

387

Skutterudite Thermoelectric Generator For Automotive Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

388

Solar hybrid steam injection gas turbine (STIG) cycle  

Science Journals Connector (OSTI)

Solar heat at moderate temperatures around 200C can be utilized for augmentation of conventional steam-injection gas turbine power plants. Solar concentrating collectors for such an application can be simpler and less expensive than collectors used for current solar power plants. We perform a thermodynamic analysis of this hybrid cycle. High levels of steam-to-air ratio are investigated, leading to high power augmentation compared to the simple cycle and to conventional STIG. The Solar Fraction can reach up to 50% at the highest augmentation levels. The overall conversion efficiency from heat to electricity (average over fuel and solar contributions) can be in the range of 4055% for typical candidate turbines. The incremental efficiency (corresponding to the added steam beyond conventional STIG) is in the range of 2237%, corresponding to solar-to-electricity efficiency of about 1524%, similar to and even exceeding current solar power plants using higher temperature collectors. The injected water can be recovered and recycled leading to very low water consumption of the cycle, but a very low cost condenser is required to make water recovery feasible.

Maya Livshits; Abraham Kribus

2012-01-01T23:59:59.000Z

389

Achieve Steam System Excellence- Steam Overview  

Broader source: Energy.gov [DOE]

This fact sheet describes a steam systems approach to help companies operate and maintain their industrial steam plants and thermal manufacturing processes more efficiently.

390

HP Steam Trap Monitoring  

E-Print Network [OSTI]

Consumption Peak Demand Mgt Peak Demand Mgt Similar Weather Day Analysis Metering and Verafication Steam Meter Monitoring ? Peak Demand Management ? Steam Consumption Management ? Steam Bill Verification ? Measurement and Verification ... Consumption Peak Demand Mgt Peak Demand Mgt Similar Weather Day Analysis Metering and Verafication Steam Meter Monitoring ? Peak Demand Management ? Steam Consumption Management ? Steam Bill Verification ? Measurement and Verification ...

Pascone, S.

2011-01-01T23:59:59.000Z

391

Thermodynamic analysis of a low-pressure economizer based waste heat recovery system for a coal-fired power plant  

Science Journals Connector (OSTI)

Abstract An LPE (low-pressure economizer) based waste heat recovery system for a CFPP (coal-fired power plant) is investigated thermodynamically. With the installation of LPE in the flue before the FGD (flue gas desulfurizer), the heat contained in the exhaust flue gas can be recovered effectively and the water consumption can be reduced in the FGD resulted from the temperature dropped flue gas. The impacts on the related apparatuses after installing LPE in a CFPP are analyzed and the internal relationships among correlated parameters are presented. The efficiencies of LPE installed in a CFPP evaluated by the first law, the second law and the thermal equilibrium efficiencies are also compared and analyzed. A detailed case study based on a 350MW CFPP unit is presented and the variations of the thermal performance after the installation of LPE are investigated. The results show that the second law and the thermal equilibrium efficiencies are increased which can be indicators to evaluate the performance of the LPE system while the first law efficiency is decreased after installing LPE. Results also show that the saving of SCE (standard coal equivalent) is 3.85g/(kWh) for this CFPP unit under full load after installing LPE.

Chaojun Wang; Boshu He; Linbo Yan; Xiaohui Pei; Shinan Chen

2014-01-01T23:59:59.000Z

392

Steam Conservation and Boiler Plant Efficiency Advancements  

E-Print Network [OSTI]

leakage is controlled by daily monitoring of make-up water volume. All recent heating water distribution projects have utilized above-ground, fiberglass insulated piping on elevated pipe support structures in order to avoid the potential corrosion...-insulated piping on elevated pipe support structures in order to avoid the potential corrosion and leakage issues associated with underground steam distribution. STEAM COST The remaining challenge was to minimize annual steam costs in order to enhance...

Fiorino, D. P.

393

OpenEI Community - natural gas+ condensing flue gas heat recovery+ water  

Open Energy Info (EERE)

Increase Natural Gas Increase Natural Gas Energy Efficiency http://en.openei.org/community/group/increase-natural-gas-energy-efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas.How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature?read more natural gas+ condensing flue gas heat

394

Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques  

SciTech Connect (OSTI)

This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

Stanford University; Department of Energy Resources Engineering Green Earth Sciences

2007-09-30T23:59:59.000Z

395

PBMR as an Ideal Heat Source for High-Temperature Process Heat Applications  

SciTech Connect (OSTI)

The Pebble Bed Modular Reactor (PBMR) is an advanced helium-cooled, graphite-moderated High Temperature Gas-cooled Reactor (HTGR). A 400 MWt PBMR Demonstration Power Plant (DPP) for the production of electricity is being developed in South Africa. This PBMR technology is also an ideal heat source for process heat applications, including Steam Methane Reforming, steam for Oil Sands bitumen recovery, Hydrogen Production and co-generation (process heat and/or electricity and/or process steam) for petrochemical industries. The cycle configuration used to transport the heat of the reactor to the process plant or to convert the reactor's heat into electricity or steam directly influences the cycle efficiency and plant economics. The choice of cycle configuration depends on the process requirements and is influenced by practical considerations, component and material limitations, maintenance, controllability, safety, performance, risk and cost. This paper provides an overview of the use of a PBMR reactor for process applications and possible cycle configurations are presented for applications which require high temperature process heat and/or electricity. (authors)

Correia, Michael; Greyvenstein, Renee [PBMR - Pty Ltd., 1279 Mike Crawford Avenue, Centurion, 0046 (South Africa); Silady, Fred; Penfield, Scott [Technology Insights, 6540 Lusk Blvd, Suite C-102, San Diego, California 92121 (United States)

2006-07-01T23:59:59.000Z

396

EA-1769: Battleground Energy Recovery Project, Harris County, Texas |  

Broader source: Energy.gov (indexed) [DOE]

69: Battleground Energy Recovery Project, Harris County, Texas 69: Battleground Energy Recovery Project, Harris County, Texas EA-1769: Battleground Energy Recovery Project, Harris County, Texas Summary This EA evaluates the environmental impacts of a proposal to provide $1.94 million in cost-shared funding to the Houston Advanced Research Center for the Battleground Energy Recovery Project, which would produce 8 megawatts of electricity from high pressure steam generated by capturing heat that is currently lost at the Clean Harbors Deer Park facility. The proposed project was selected by the DOE's Office of Energy Efficiency and Renewable Energy to advance research and demonstration of energy efficiency and renewable energy technologies. Public Comment Opportunities No public comment opportunities available at this time.

397

Marine propulsion device with engine heat recovery system and streamlining hull closures  

SciTech Connect (OSTI)

A Marine Jet Propulsion System for use as an inboard engine for boats is herein described. An engine or motor means is attached in a driving relationship to a pump and thrust output apparatus. Heat generated by and rejected by the engine or motor is passed into the pump base for dissipation into the outputted jet thrust stream. Air and/or exhaust gas from the engine is ejected around the jet output stream to reduce against-the-hull turbulence and jet stream or thrust energy losses. Streamlining hull closures for the jet pump intake and output ports are provided to reduce system hull drag when not in use and to limit marine organism growth inside the pump.

Haynes, H. W.

1985-11-12T23:59:59.000Z

398

Catalytic steam reforming of hydrocarbons  

SciTech Connect (OSTI)

The hot effluent from the catalytic steam reforming of a major portion of a fluid hydrocarbon feed stream in the reformer tubes of a primary reformer, or said effluent after secondary reforming thereof, is mixed with the hot effluent from the catalytic steam reforming of the remaining portion of the feed discharged from the reformer tubes of a primary reformer-exchanger. The combined gas steam is passed on the shell side of the reformer-exchanger countercurrently to the passage of feed in the reformer tubes thereof, thus supplying the heat for the reforming of the portion of the feed passed through the reformer tubes of the reformerexchanger. At least about 2/3 of the hydrocarbon feed stream is passed to the reformer tubes of said primary reformer, heated by radiant heat transfer and/or by contact with combustion gases, at a steam/hydrocarbon mole ratio of about 2-4/1. The remainder of said feed stream is passed to the reformer tubes of said reformer -exchanger at a steam/hydrocarbon mole ratio of about 3-6/1. The reformer shell of the reformer-exchanger is internally insulated by a refractory lining or by use of a double shell with passage of water or a portion of the feed material between the inner and outer shells. There is no significant difference between the pressure inside and outside of the reformer tubes of said primary reformer-exchanger.

Fuderer, A.

1982-06-29T23:59:59.000Z

399

Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery  

SciTech Connect (OSTI)

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. During this past quarter, work continued on: the development of relative permeabilities during steam displacement; the optimization of recovery processes in heterogeneous reservoirs by using optical control methods; and in the area of chemical additives, work continued on the behavior of non-Newtonian fluid flow and on foam displacements in porous media.

Yortsos, Y.C.

1996-12-31T23:59:59.000Z

400

Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery  

SciTech Connect (OSTI)

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. During this quarter work continued on: development of relative permeabilities during steam injection; optimization of recovery processes in heterogeneous reservoirs by using optimal control methods; and behavior of non-Newtonian fluid flow and on foam displacements in porous media.

NONE

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects  

E-Print Network [OSTI]

1.4 Heat Pipes for Waste Heat Recovery..analysis involving waste heat recovery of solar energyOverview of Industrial Waste Heat Recovery Technologies for

Armijo, Kenneth Miguel

2011-01-01T23:59:59.000Z

402

Steam System Survey Guide  

Broader source: Energy.gov [DOE]

This guide provides technical information for steam system operational personnel and plant energy managers on some of the major opportunities available to improve the energy efficiency and productivity of industrial steam systems. The guide covers five main areas of investigation: (1) profiling a steam system, (2) identifying steam properties for the steam system, (3) improving boiler operations, (4) improving resource utilization in the steam system, and (5) investigating energy losses in the steam distribution system.

403

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

SciTech Connect (OSTI)

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

Not Available

2004-11-01T23:59:59.000Z

404

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

Broader source: Energy.gov [DOE]

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

405

Steam Path Audits on Industrial Steam Turbines  

E-Print Network [OSTI]

steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits... not extend the turbine outage. To assure that all of the turbine audit data are available, the audit engineer must be at the turbine site the day the steam path is first exposed. A report of the opening audit findings is generated to describe the as...

Mitchell, D. R.

406

Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust  

DOE Patents [OSTI]

Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

Meisner, Gregory P; Yang, Jihui

2014-02-11T23:59:59.000Z

407

In search for sustainable globally cost-effective energy efficient building solar system Heat recovery assisted building integrated PV powered heat pump for air-conditioning, water heating and water saving  

Science Journals Connector (OSTI)

Abstract Obtained as a research result of conducted project, this paper presents an innovative, energy efficient multipurpose system for a sustainable globally cost-effective building's solar energy use and developed methodology for its dynamic analysis and optimization. The initial research and development goal was to create a cost-effective technical solution for replacing fossil fuel and electricity with solar energy for water heating for different purposes (for pools, sanitary water, washing) in one SPA. After successful realization of the initial goal, the study was proceeded and as a result, the created advanced system has been enriched with AC performance. The study success was based on understanding and combined measurements and by BPS made predictions of AC loads and solar radiation dynamics as well as on the determination of the synergetic relations between all relevant quantities. Further, by the performed BPS dynamic simulations for geographically spread buildings locations, it has been shown that the final result of the conducted scientific engineering R&D work has been the created system of confirmed prestigious to the sustainability relevant performance globally cost-effective building integrated photovoltaic powered heat pump (HP), assisted by waste water heat recovery, for solar AC, water heating and saving.

Marija S. Todorovic; Jeong Tai Kim

2014-01-01T23:59:59.000Z

408

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Broader source: Energy.gov (indexed) [DOE]

Overview and Overview and Federal Sector Deployment Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company Bob Slattery Oak Ridge National Laboratory CHP is an integrated energy system that:  is located at or near a facility  generates electrical and/or mechanical power  recovers waste heat for ◦ heating ◦ cooling ◦ dehumidification  can utilize a variety of technologies and fuels  is also referred to as cogeneration The on-site simultaneous generation of two forms of energy (heat and electricity) from a single fuel/energy source Defining Combined Heat and Power (CHP) Steam Electricity Fuel Prime Mover & Generator Heat Recovery Steam Boiler Conventional CHP

409

Solar Steam Reforming of Methane (SSRM) Program Proposals  

Science Journals Connector (OSTI)

Within the intended development work to supply solar HT process heat to industrial processes, especially chemical processes, the steam reforming process is considered suitable in particular.

A. Kalt

1987-01-01T23:59:59.000Z

410

Best Management Practice #8: Boiler and Steam Systems  

Broader source: Energy.gov [DOE]

Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

411

Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy  

Science Journals Connector (OSTI)

Abstract The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period and utilize it in the period between 17:00 and 24:00h. The transient behaviour of the system is simulated by the TRNSYS 16 software for winter period from 1st of November to 31st of March for Izmir city of Turkey. The obtained results show that the suggested ventilation system reduces energy consumption by 86% compared to the conventional ventilation system in which an electrical heater is used. The payback period of the suggested system is found to be 5 years and 8 months which is a promising result in favour of the solar energy usage in building ventilation systems.

Gamze Ozyogurtcu; Moghtada Mobedi; Baris Ozerdem

2014-01-01T23:59:59.000Z

412

Thomas Reddinger Director, Steam  

E-Print Network [OSTI]

Thomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

McConnell, Terry

413

Consider Steam Turbine Drives for Rotating Equipment: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No.21  

SciTech Connect (OSTI)

Steam turbines are well suited as prime movers for driving boiler feedwater pumps, forced or induced-draft fans, blowers, air compressors, and other rotating equipment. This service generally calls for a backpressure non-condensing steam turbine. The low-pressure steam turbine exhaust is available for feedwater heating, preheating of deaerator makeup water, and/or process requirements.

Not Available

2002-01-01T23:59:59.000Z

414

Steam systems in industry: Energy use and energy efficiency improvement potentials  

SciTech Connect (OSTI)

Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.

Einstein, Dan; Worrell, Ernst; Khrushch, Marta

2001-07-22T23:59:59.000Z

415

Best Management Practice: Boiler/Steam Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems October 7, 2013 - 3:17pm Addthis Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned. Operation and Maintenance Options To maintain water efficiency in operations and maintenance, Federal agencies should: Develop and implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop and implement a boiler tuning program to be completed a minimum of

416

Optimization and the effect of steam turbine outlet quality on the output power of a combined cycle power plant  

Science Journals Connector (OSTI)

Abstract A narrow path exists to a sustainable solution which passes through careful steps of efficiency improvement (resource management) and provides environmental friendly energies. Thermal power plants are more common in many power production sites around the world. Therefore, in this current research study a comprehensive thermodynamic modeling of a combined cycle power plant with dual pressure heat recovery steam generator is presented. Since the steam turbine outlet quality is a restrictive parameter, optimization of three cases with different steam quality are conducted and discussed. In other hand, energy and exergy analysis of each components for these three different cases estimated and compared. Obtained results show that it is really important to keep the quality of the vapor at turbine outlet constant in 88% for the results to be more realistic and also optimization and data are more technically feasible and applicable.

A. Ganjehkaviri; M.N. Mohd Jaafar; S.E. Hosseini

2015-01-01T23:59:59.000Z

417

Materials for Ultra-Supercritical Steam Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Advanced Ultra-Supercritical for Advanced Ultra-Supercritical Steam Power Plants Background The first ultra-supercritical (USC) steam plants in the U.S. were designed, constructed, and operated in the late 1950s. The higher operating temperatures and pressures in USC plants were designed to increase the efficiency of steam plants. However, materials performance problems forced the reduction of steam temperatures in these plants, and discouraged further developmental efforts on low heat-rate units.

418

Analysis and feasibility study of residential integrated heat and energy recovery ventilator with built-in economizer using an excel spreadsheet program  

Science Journals Connector (OSTI)

Abstract Currently, heat recovery ventilator (HRV) and energy recovery ventilator (ERV) are commonly studied. Nevertheless, there is limited information regarding the dual-core approach energy recovery. This paper investigates the feasibility of an integrated HRV and ERV system, namely HERV, with a built-in economizer used in the residential sector to reduce dependency on furnace and air conditioning systems. In order to achieve this goal, an excel-based analysis tool was developed, providing a quick estimate of system performance and comparison with the HRV and ERV that are currently being used in research houses. The potential of integrated heat and energy recovery ventilator was evaluated based on its calculated operating cost ratio (OCR) and its payback period. Results collected for Vancouver and Toronto, corresponding to temperate and continental climate, indicated that the \\{OCRs\\} of the HERV were four times smaller than the ERV's, meaning that the proposed system was cost-efficient. It was also evidenced that the high demand on the economizer resulted in higher energy saving and shorter payback period of the system. In conclusion, the integrated HERV system with a built-in economizer could be a feasible option for both temperate and continental climates.

Junlong Zhang; Alan S. Fung; Sumeet Jhingan

2014-01-01T23:59:59.000Z

419

Waste Heat Management Options for Improving Industrial Process Heating Systems  

Broader source: Energy.gov [DOE]

This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power.

420

Energy recovery from municipal solid waste and sewage sludge using multi-solid fluidized bed combustion technology  

SciTech Connect (OSTI)

This study was initiated to investigate the recovery of energy from municipal solid waste (MSW) and domestic sewage sludge (DSS) simultaneously by using Battelle's multi-solid fluidized-bed combustion (MS-FBC) technology. The concept was to recover energy as high and low pressure steam, simultaneously. High pressure steam would be generated from flue gas using a conventional tubular boiler. Low pressure steam would be generated by direct contact drying of DSS (as 4% solids) with hot sand in a fluidized bed that is an integral part of the MS-FBC process. It was proposed that high pressure steam could be used for district heating or electricity generation. The low pressure steam could be used for close proximity building heat. Alternatively, low pressure steam could be used to heat wastewater in a sewage treatment plant to enhance sedimentation and biological activity that would provide a captive market for this part of the recovered energy. The direct contact drying or tubeless steam generation eliminates fouling problems that are common during heat exchange with DSS. The MS-FBC process was originally developed for coal and was chosen for this investigation because its combustion rate is about three times that of conventional fluidized beds and it was projected to have the flexibility needed for accomplishing tubeless steam generation. The results of the investigation show that the MS-FBC process concept for the co-utilization of MSW and DSS is technically feasible and that the thermal efficiency of the process is 76 to 82% based on experiments conducted in a 70 to 85 lb/h pilot plant and calculations on three conceptual cases.

Not Available

1981-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Laboratory Heat Recovery System  

E-Print Network [OSTI]

In 1976 Continental Oil Company (now Conoco, Inc.) made a far reaching decision. Looking at the future needs of the country in the energy field, it decided to increase and improve its research and development facilities in order to be able to meet...

Burrows, D. B.; Mendez, F. J.

1981-01-01T23:59:59.000Z

422

Industrial Waste Heat Recovery  

E-Print Network [OSTI]

One hundred fifty reports were reviewed along with interviews of some twelve recuperator manufacturers and research organizations. Of the reports reviewed, the consensus was that the majority of recuperators used in the U.S. are constructed of 300...

Ward, M. E.; Solomon, N. G.; Tabb, E. S.

1980-01-01T23:59:59.000Z

423

Lighting a building with a single bulb : toward a system for illumination in the 21st c.; or, A centralized illumination system for the efficient decoupling and recovery of lighting related heat  

E-Print Network [OSTI]

Piping light represents the first tenable method for recovery and reutilization of lighting related heat. It can do this by preserving the energy generated at the lamp as radiative, departing from precedent and avoiding ...

Levens, Kurt Antony, 1961-

1997-01-01T23:59:59.000Z

424

Development of high-temperature heat exchanger for hydrogen combustion turbine system  

SciTech Connect (OSTI)

New Rankine Cycle and Topping Regenerative Cycle are representative 500MW power generation systems for a hydrogen combustion turbine (HCT). The energy efficiency based on HHV of these is expected to be over 60% because the inlet temperature of turbine can be increased to 1,970K. These systems comprise various heat exchangers. Especially, the development of high temperature heat exchanger dealing with the high temperature and pressure steam is very important to realize the hydrogen combustion turbine system. The high-temperature heat exchanger of New Rankine Cycle is a supercritical heat recovery steam generator operating at pressure of 36MPa. This heat exchanger is heated by steam at temperature of 1,390K. On the other hand, Topping Regenerative Cycle has two high-temperature heat exchangers. One is a regenerator operating at pressure of 37MPa. The other is a regenerator operating at pressure of 5MPa. Both regenerators are heated by steam at temperature of 1,030K. The following are the principal development subject of high-temperature heat exchanger: (1) Improving the heat transfer characteristics to achieve the compact heat exchanger, and (2) Planning the heat exchanger structure suitable for the high thermal stress. To improve a heat transfer characteristic of the high-temperature heat exchangers, a parameter survey is conducted to optimize a tube arrangement and a fin configuration on tube outside and/or inside. The heat transfer areas are minimized through using the tubes with an extended heat transfer surface on both sides of a tube. Structural integrity is also estimated by conducting a structural analysis for the critical parts of the high-temperature heat exchangers.

Takakuwa, Akihiro; Mochida, Yoshio

1999-07-01T23:59:59.000Z

425

Simulation study on lignite-fired power system integrated with flue gas drying and waste heat recovery Performances under variable power loads coupled with off-design parameters  

Science Journals Connector (OSTI)

Abstract Lignite is a kind of low rank coal with high moisture content and low net heating value, which is mainly used for electric power generation. However, the thermal efficiency of power plants firing lignite directly is very low. Pre-drying is a proactive option, dehydrating raw lignite to raise its heating value, to improve the power plant thermal efficiency. A pre-dried lignite-fired power system integrated with boiler flue gas drying and waste heat recovery was proposed in this paper. The plant thermal efficiency could be improved by 1.51% at benchmark condition due to pre-drying and waste heat recovery. The main system performances under variable power loads were simulated and analyzed. Simulation results show that the improvement of plant thermal efficiency reduced to 1.36% at 50% full load. Moreover, the influences of drying system off-design parameters were simulated coupled with power loads. The variation tendencies of main system parameters were obtained. The influence of pre-drying degree (including moisture content of pre-dried lignite and raw lignite) on the plant thermal efficiency diminishes gradually with the decreasing power load. The dryer thermal efficiency and dryer exhaust temperature are also main factors and the influences on system parameters have been quantitatively analyzed.

Xiaoqu Han; Ming Liu; Jinshi Wang; Junjie Yan; Jiping Liu; Feng Xiao

2014-01-01T23:59:59.000Z

426

Methane-steam reforming  

SciTech Connect (OSTI)

A discussion covers steam reforming developments to the 1950's; the kinetics of methane-steam reforming, of the water-gas shift during methane-steam reforming, and of the carbon formation during methane-steam reforming, as approached by Akers and Camp.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

427

Technical and economic comparison of steam-injected versus combined- cycle retrofits on FT-4 engines  

SciTech Connect (OSTI)

The study discusses the findings of a conceptual site-specific investigation of the technical and economic aspects of converting the TPM FT4 simple cycle combustion turbines into either the steam injected gas turbine (SIGT) cycle or the combined cycle (CC). It describes the selection of the best retrofit alternatives through the evaluation and data analysis of a large number of sites and units at two utilities. Conceptual designs are performed on the best retrofit alternatives. Flow diagrams and general arrangement drawings are developed for various configurations utilizing drum type and once-through type multipressure heat recovery steam generators. Auxiliary power consumption and capital cost estimates are presented together with an economic evaluation and comparison of the retrofit alternatives. While the investigation is performed utilizing the FT4 combustion turbines, the steps presented in the report may be used as a guide for investigating the conversion of other gas turbines to either cycle at any utility site.

Silaghy, F.J. (Burns and Roe, Inc., Oradell, NJ (United States))

1992-01-01T23:59:59.000Z

428

Recovery Act - Geothermal Technologies Program:Ground Source...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps A detailled description of the...

429

Energy recovery and cogeneration from an existing municipal incinerator: Phase IIA progress report on final design  

SciTech Connect (OSTI)

A feasibility study was prepared on energy recovery and cogeneration from and existing municipal incinerator in Wayne County, Michigan. The mechanical, electrical, structural, and instruments an controls equipment designs were established in sufficient depth to arrive at a construction cost estimate. The designs are described. All of the flue gas generated from each incinerator is directed into a waste heat boiler that will generate steam. A waste heat boiler will be provided for each of the three incinerators. Steam from these waste heat boilers will supply energy to two turbine-generators, which, in turn, will supply auxiliary power to the incinerator plant; the balance of the power will be sold to Detroit Edison Company (DEC). Exhaust steam from each turbine will be directed into a surface condenser operating under vacuum. The water to be supplied to each condenser will be recirculated water that has been cooled by means of a cooling tower. Other cooling water that could be subjected to oil contamination will be supplied from a separate recirculating water system. The water in this system will be cooled by an evaporative condenser. The main steam, boiler feedwater, and condensate systems will be similar to those used in central power stations. Flow diagrams for all systems, together with heat balances, electrical one-line diagrams, and plant layouts, are included in the Appendix. Also included in the Appendix are instruments and controls logic diagrams. (MCW)

Not Available

1982-02-01T23:59:59.000Z

430

Enhanced-oil-recovery thermal processes, annex IV. Venezuela-MEM/USA-DOE fossil-energy report IV-1  

SciTech Connect (OSTI)

The Agreement between the United States and Venezuela was designed to further energy research and development in six areas. This report focuses on Annex IV - Enhanced-Oil-Recovery Thermal Processes which was divided into seven tasks. This report will discuss the information developed within Task I related to the Department of Energy providing data on the performance of insulated oil-well tubulars. Surface generated steam has been traditionally used in thermal enhanced oil recovery processes. In past years the tubing through which the steam is injected into the reservoir has been bare with relatively high heat losses. In recent years however various materials and designs for insulating the tubing to reduce heat losses have been developed. Evaluation of several of these designs in an instrumented test tower and in an oil field test environment was undertaken. These tests and the resulting data are presented.

Peterson, G.; Schwartz, E.

1983-04-01T23:59:59.000Z

431

Steam speaks!  

Science Journals Connector (OSTI)

... the effect which stabilizes detergent foam.) Because water conducts electricity via dissolved ions, an audio signal passed through such a solution should selectively heat its surface. His other scheme ... of a conductor. By modulatingan inaudibly high 'bias frequency'with the output from an audio amplifier, ...

David Jones

1995-07-06T23:59:59.000Z

432

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region.

Steven Schamel

1998-03-20T23:59:59.000Z

433

Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect (OSTI)

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region.

Steven Schamel

1998-08-31T23:59:59.000Z

434

Steam Oxidation of Advanced Steam Turbine Alloys  

SciTech Connect (OSTI)

Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650C to 800C) to steam at 34.5 MPa (650C to 760C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

Holcomb, Gordon R.

2008-01-01T23:59:59.000Z

435

Conceptual design selection and development of a latent-heat thermal-energy-storage subsystem for a saturated-steam solar receiver and load  

SciTech Connect (OSTI)

The following latent heat storage concepts are described and evaluated in comparison with each other and with an oil/rock sensible heat storage system: (1) passive tube intensive (shell-and-tube heat exchanger) with and without heat transfer enhanced by fins; (2) phase change material cans (or chubbs) with a biphenyl intermediate heat transfer fluid; (3) phase change material macroencapsulation in a containment tank full of tubes; (4) microencapsulation in a porous carrier; (5) direct contact heat exchange; and (6) systems using mechanical scrapers for removing solidified phase change material from container surfaces. A tube intensive system with heat transfer enhancement was selected, and the conceptual design and cost/performance estimates are given for it. A commercial scale unit is assessed, and design changes and corresponding costs are presented that would be required to make the system meet changed requirements. (LEW)

Not Available

1981-02-01T23:59:59.000Z

436

Steam turbine restart temperature maintenance system and method  

SciTech Connect (OSTI)

A restart temperature maintenance system is described for a steam turbine system; the steam turbine system comprising a steam turbine, the turbine including a rotation shaft, an outer metal shell means. The restart temperature maintenance system consists of: (a) fastener means affixed to the outer surface of the shell means at predetermined positions; (b) air gap spacer means affixed to the outer surface of the shell means, the air gap spacer means substantially covering the shell means; (c) a plurality of electric heating blanket means of predetermined size and shape positioned in insulative relationship over the air gap spacer means and the heating blanket means maintained in predetermined position by the fastener means; (d) heat sensor means affixed to the outer metal shell means of the steam turbine in predetermined position; (e) power supply means for supplying power to the heating blanket means; (f) heat sensor monitor and controller means connected in circuit between the power supply means and the heat sensor means.

McClelland, T.R.

1986-04-29T23:59:59.000Z

437

PipelineMarch 2013 Volume 5, Issue 2 COMBINED HEAT  

E-Print Network [OSTI]

generates electricity while also producing heat that will be used to create steam for University buildings growth has increased steam demand. Without the plant, demand will exceed reliable steam production that are reliable, sustainable and cost-effective. The Southeast Steam plant is the campus' sole steam production

Webb, Peter

438

Performance characterization of a pilot-scale oxygen enriched-air and steam blown gasification and combustion system.  

E-Print Network [OSTI]

??The use of air as biomass gasifying agent yields low heating value product gas and is only suitable for heat and power applications. Steam and (more)

Huynh, Cuong Van

2011-01-01T23:59:59.000Z

439

Effect of steam on supported metal catalysts  

SciTech Connect (OSTI)

In order to examine the effect of steam on supported metal catalysts, model supported metal catalysts of Ni, Co, or Fe on alumina have been heated in steam at 700/sup 0/C. The transmission electron micrographs show that for all these metals, patches of film extend from the crystallites. Prolonged heating results in the disappearance of the patches which probably spread as a contiguous film over the entire surface of the substrate. The degree of spreading is in the order: C0 > Ni > Fe. On subsequent heating in H/sub 2/, small crystallites were generated, probably via the rupture of the contiguous film. The contraction of the patches of film bridging two or several particles caused the coalescence of the latter. This subsequent heating in H/sub 2/ favors redispersion only when the heating time is sufficiently short. Prolonged heating in H/sub 2/ leads to the disappearance of the small particles.

Ruckenstein, E.; Hu, X.D.

1986-07-01T23:59:59.000Z

440

Steam Digest 2001  

SciTech Connect (OSTI)

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

Not Available

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sequential steam; An engineered cyclic steaming method  

SciTech Connect (OSTI)

Cyclic steam injection has been the most widely used EOR method in areas of the Potter sand in the Midway-Sunset field, Kern County, CA. This paper discusses the field pilot and the statistical and theoretical studies leading to the design of a sequential steaming process,plus the implementation of this process on three leases.

Jones, J. (Santa Fe Energy Resources Inc., Bakersfield, CA (US)); Cawthon, J. (Groundwater Resources Inc. (US))

1990-07-01T23:59:59.000Z

442

Materials Performance in USC Steam  

SciTech Connect (OSTI)

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

2010-05-01T23:59:59.000Z

443

Methodology of Regenerator Calculation for Use in Subcritical and Transcritical Organic Rankine Cycle for Low-Temperature Heat Recovery  

Science Journals Connector (OSTI)

A comparative study of different Cases (A1, A2, B, C1, C2, D) of regenerator calculating methodology has been carried out for use in subcritical and transcritical organic Rankine cycles(ORCs) driven by low-temperature heat sources. The applicable ranges ... Keywords: organic Rankine cycle (ORC), subcritical, transcritical, regenerator, low-temperature heat source

Tao Guo; Huaixin Wang; Shengjun Zhang; Shihai Yin

2010-06-01T23:59:59.000Z

444

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin Basin, California. Quarterly report, June 14--September 30, 1995  

SciTech Connect (OSTI)

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming will be used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase, a continuous steamflood enhanced oil recover will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class 3 reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. A summary of technical progress discusses the literature compilation, assembly of digitized log suites, development of a stratigraphic framework, installation of lease production facilities, return wells to production, drill producer and observation wells, and reservoir characterization.

Schamel, S.

1995-12-19T23:59:59.000Z

445

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin Basin, California. [Quarterly report], June 14, 1995--September 30, 1995  

SciTech Connect (OSTI)

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming will be used to re-establish baseline production within the reservoir characterization phase of the project. During the demonstration phase, a continuous steamflood enhanced oil recover will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. A summary of technical progress covers: geological and reservoir characterization, and reservoir simulation.

Schamel, S.

1996-01-19T23:59:59.000Z

446

Topping of a combined gas- and steam-turbine powerplant using a TAM combustor  

SciTech Connect (OSTI)

The objective of this program is to evaluate the engineering and economic feasibility of a thermionic array module (TAM) topped combustor for a gas turbine. A combined gas- and steam-turbine system was chosen for this study. The nominal output of the gas and steam turbines were 70 MW and 30 MW, respectively. The gas-turbine fuel was a coal-derived medium-Btu gas assumed to be from an oxygen blown Texaco coal-gasification process which produces pressurized gas with an approximate composition of 52% CO and 36% H/sub 2/. Thermionic converters are assumed to line the walls of the gas-turbine combustor, so that the high-temperature gases heat the thermionic converter emitter. The thermionic converters produce electricity while the rejected heat is used to preheat the combustion air. To maximize the production of power from the thermionic converter, the highest practical flame temperature is obtained by preheating the combustor air with the thermionic collectors and rich combustion. A portion of the air, which bypassed the combustor, is reintroduced to complete the combustion at a lower temperature and the mixed gases flow to the turbine. The exhaust gases from the turbine flow to the heat recovery boilers to the bottoming steam cycle. The gas and steam turbine system performance calculation was based on data from Brown Boveri Turbomachinery, Inc. The performance of the thermionic converters (TAM) for the reference case was based on actual measurements of converters fired with a natural gas flame. These converters have been operated in a test furnace for approximately 15,000 device hours.

Miskolczy, G.; Wang, C.C.; Lovell, B.T.; McCrank, J.

1981-03-01T23:59:59.000Z

447

The Engineered Approach to Energy and Maintenance Effective Steam Trapping  

E-Print Network [OSTI]

., Chemical Engineering 9/1/75. 4. Maintenance Engineering, May 1976. 5. "How Much Does Lost Steam Cost",Armstrong Machine works, Hydrocarbon Processing, p.129, Jan. 1976. 6. "Setter Steam Trapping Cuts Energy Waste", wesley Yates, Yarway Corp..., Georgia Tech Industrial Energy Extension Service, Chemical Engineering, 2/11/80. 10. ''Basic Facts & Enerqv Saving Tips" ,Lawrence R. O'Dell, Armstrong Machine Works, Heating/Piping/ Air Conditioning, May 1977. 11. Steam Trap Report - Energy Loss...

Krueger, R. G.; Wilt, G. W.

1980-01-01T23:59:59.000Z

448

Steam turbine upgrades: A utility based approach  

SciTech Connect (OSTI)

In the increasingly competitive power generation markets utilities must strive towards lower electricity generation costs, whilst relying on an aging steam turbine fleet. By the year 2000 more than 25% of the global steam turbine capacity will be older than 30 years. The heat rate of such units is generally considerably higher than that of equivalent new plant, and such equipment can be further disadvantaged by increased maintenance costs and forced outage rates. Over the past decade steam turbine conversion, modification, and upgrade packages have become an increasingly important part of the European steam turbine market. Furthermore, many utilities now realize that enhanced cost-effectiveness can often be obtained by moving away from the original equipment manufacturer (OEM), and the upgrading of other manufacturers' plant is now routine within the steam turbine industry. By working closely with customers, GE has developed a comprehensive range of steam turbine upgrade packages, including advanced design steampaths which can increase the performance of existing turbine installations to levels comparable with new plant. Such packages are tailor-made to the requirements of each customer, to ensure that the most cost-effective engineering solution is identified. This paper presents an overview of GE's state-of-the-art steam turbine technology, and continues to describe typical economic models for turbine upgrades.

Wakeley, G.R.

1998-07-01T23:59:59.000Z

449

Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittals Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

Seaman, John

2013-01-14T23:59:59.000Z

450

RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS  

SciTech Connect (OSTI)

The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

Anthony R. Kovscek; William E. Brigham

1999-06-01T23:59:59.000Z

451

Reducing the Environmental Impact of Biodiesel Production from Vegetable Oil by Use of a Solar-Assisted Steam Generation System with Heat Storage  

Science Journals Connector (OSTI)

utility equipment ... The utilities cost is $692?000/year, which represents 13.1% of the total cost . ... Absorption refrigeration is used to utilize excess process heat and external energy in the form of fossil and solar energy. ...

Robert Brunet; Ekaterina Antipova; Gonzalo Guilln-Goslbez; Laureano Jimnez

2012-11-01T23:59:59.000Z

452

Recovery Act State Memos Delaware  

Energy Savers [EERE]

go to energyempowers.govDelaware Recovery Act Success Stories ENERGYEMPOWERS.GOV less heat and cooling loss so our facility is more efficient." Buying domestically For the...

453

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

SciTech Connect (OSTI)

It has been suggested that enhanced geothermal systems (EGS) may be operated with supercritical CO{sub 2} instead of water as heat transmission fluid (D.W. Brown, 2000). Such a scheme could combine recovery of geothermal energy with simultaneous geologic storage of CO{sub 2}, a greenhouse gas. At geothermal temperature and pressure conditions of interest, the flow and heat transfer behavior of CO{sub 2} would be considerably different from water, and chemical interactions between CO{sub 2} and reservoir rocks would also be quite different from aqueous fluids. This paper summarizes our research to date into fluid flow and heat transfer aspects of operating EGS with CO{sub 2}. (Chemical aspects of EGS with CO{sub 2} are discussed in a companion paper; Xu and Pruess, 2010.) Our modeling studies indicate that CO{sub 2} would achieve heat extraction at larger rates than aqueous fluids. The development of an EGS-CO{sub 2} reservoir would require replacement of the pore water by CO{sub 2} through persistent injection. We find that in a fractured reservoir, CO{sub 2} breakthrough at production wells would occur rapidly, within a few weeks of starting CO{sub 2} injection. Subsequently a two-phase water-CO{sub 2} mixture would be produced for a few years,followed by production of a single phase of supercritical CO{sub 2}. Even after single-phase production conditions are reached,significant dissolved water concentrations will persist in the CO{sub 2} stream for many years. The presence of dissolved water in the production stream has negligible impact on mass flow and heat transfer rates.

Pruess, K.; Spycher, N.

2009-05-01T23:59:59.000Z

454

Exhaust Energy Recovery  

Broader source: Energy.gov [DOE]

Exhaust energy recovery proposed to achieve 10% fuel efficiency improvement and reduce or eliminate the need for increased heat rejectioncapacity for future heavy duty engines in Class 8 Tractors

455

Design of organic Rankine cycles for conversion of waste heat in a polygeneration plant .  

E-Print Network [OSTI]

??Organic Rankine cycles provide an alternative to traditional steam Rankine cycles for the conversion of low grade heat sources, where steam cycles are known to (more)

DiGenova, Kevin (Kevin J.)

2011-01-01T23:59:59.000Z

456

Modification of chemical and physical factors in steamflood to increase heavy oil recovery. Annual report, October 1, 1992--September 30, 1993  

SciTech Connect (OSTI)

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. Objectives of this work contract are to carry out new studies in the following areas: displacement and flow properties of fluids involving phase change in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. Specific projects address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. In the area of vapor-liquid flow, we present the continuation of work on the pore network modeling of bubble growth in porous media driven by the application of a prescribed heat flux or superheat. The scaling of bubble growth in porous media is also discussed. In another study we study the problem of steam injection in fractured systems using visualization in micromodels. The interplay of drainage, imbibition and bubble growth problems is discussed.

Yortsos, Y.C.

1994-10-01T23:59:59.000Z

457

Silica gel as a model surface for adsorption calorimetry of enhanced-oil-recovery systems. [Heat of immersion  

SciTech Connect (OSTI)

This report describes a method for studying interaction of fluids with surfaces by measuring the heat of immersion and then measuring simultaneously the surface excess and enthalpy of replacement for a series of binary solutions. The method of calculating surface excess is described. These techniques are applied to silica gel which has had different activation temperatures. Heating overnight to 400/sup 0/C results in a reproducible surface. The adsorption of n-butyl alcohol from toluene and from water upon these surfaces is compared.

Noll, L.A.; Burchfield, T.E.

1982-06-01T23:59:59.000Z

458

Production of D-lactic acid from sugarcane bagasse using steam-explosion  

Science Journals Connector (OSTI)

This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

Chizuru Sasaki; Ryosuke Okumura; Ai Asakawa; Chikako Asada; Yoshitoshi Nakamura

2012-01-01T23:59:59.000Z

459

Practical aspects of steam injection processes: A handbook for independent operators  

SciTech Connect (OSTI)

More than 80% of the total steam injection process operating costs are for the production of steam and the operation of surface and subsurface equipment. The proper design and operation of the surface equipment is of critical importance to the success of any steam injection operation. However, the published monographs on thermal recovery have attached very little importance to this aspect of thermal oil recovery; hence, a definite need exists for a comprehensive manual that places emphasis on steam injection field practices and problems. This handbook is an attempt to fulfill this need. This handbook explores the concept behind steam injection processes and discusses the information required to evaluate, design, and implement these processes in the field. The emphasis is on operational aspects and those factors that affect the technology and economics of oil recovery by steam. The first four chapters describe the screening criteria, engineering, and economics of steam injection operation as well as discussion of the steam injection fundamentals. The next four chapters begin by considering the treatment of the water used to generate steam and discuss in considerable detail the design, operation and problems of steam generations, distribution and steam quality determination. The subsurface aspects of steamflood operations are addressed in chapters 9 through 12. These include thermal well completion and cementing practices, insulated tubulars, and lifting equipment. The next two chapters are devoted to subsurface operational problems encountered with the use of steam. Briefly described in chapters 15 and 16 are the steam injection process surface production facilities, problems and practices. Chapter 17 discusses the importance of monitoring in a steam injection project. The environmental laws and issues of importance to steam injection operation are outlined in chapter 18.

Sarathi, P.S.; Olsen, D.K.

1992-10-01T23:59:59.000Z

460

Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery. [Quarterly report], January 1--March 31, 1996  

SciTech Connect (OSTI)

Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. During this quarter, we focused on the development of relative permeabilities during steam displacement. Two particular directions were pursued: One involves the derivation of relative permeabilities based on a recently completed work on the pore-level mechanics of steam displacement. Progress has been made to relate the relative permeabilities to effects such as heat transfer and condensation, which are specific to steam injection problems. The second direction involves the development of three-phase relative permeabilities using invasion percolation concepts. We have developed models that predict the specific dependence of the permeabilities of three immiscible phases (e.g. awe, water and gas) on saturations and the saturation history. Both works are still in progress. In addition, work continues in the analysis of the stability of phase change fronts in porous media using a macroscopic approach.

Yortsos, Y.C.

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels  

E-Print Network [OSTI]

Gasifier Intermediate products Low Energy Gas Final product Power Steam Gas Synthetic Liquids Spark and diesel engines Process Heat & Power Medium &

Suemanotham, Amornrat

2014-01-01T23:59:59.000Z

462

Water Vapor and Mechanical Work: A Comparison of Carnot and Steam Cycles OLIVIER PAULUIS  

E-Print Network [OSTI]

by the corresponding Carnot cycle. The Carnot and steam cycles can be combined into a mixed cycle that is forcedWater Vapor and Mechanical Work: A Comparison of Carnot and Steam Cycles OLIVIER PAULUIS Center in the atmosphere is discussed here by comparing two idealized heat engines: the Carnot cycle and the steam cycle

Pauluis, Olivier M.

463

A Look At Steam Usage in William's Athletic Facilities Patrick Morrissey  

E-Print Network [OSTI]

A Look At Steam Usage in William's Athletic Facilities Patrick Morrissey Geosciences 206 Final Project Professor Dethier May 18, 2010 #12;Introduction: This paper will examine steam usage trends that Towne FH and Lansing Chapman both draw their steam from an enclosed loop heating system.23

Aalberts, Daniel P.

464

Opportunities and IssuesBestPractices Technical Brief Steam Pressure Reduction: Opportunities and Issues  

E-Print Network [OSTI]

Steam generation systems are found in industry and in the commercial and institutional sectors. Some of these plants employ large watertube boilers to produce saturated steam at pressures of 250 pounds per square inch (psig) or lower. They distribute steam for use in process applications, building heating, humidification, domestic hot water, sterilization autoclaves, and air makeup coils.

A Bestpractices

465

Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Joaquin basin, California. Quarterly report, January 1--March 31, 1996  

SciTech Connect (OSTI)

This project will reactivate ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conduct a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. The objectives of the project are: (1) to return the shut-in portion of the reservoir to commercial production; (2) to accurately describe the reservoir and recovery process; and (3) convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. The producibility problems initially thought to be responsible for the low recovery in the Pru Fee property are: (a) the shallow dip of the bedding; (b) complex reservoir structure, (c) thinning pay zone; and (d) the presence of bottom water. The project is using tight integration of reservoir characterization and simulation modeling to evaluate the magnitude of and alternative solutions to these problems. Two main activities were brought to completion during the first quarter of 1996: (1) lithologic and petrophysical description of the core taken form the new well Pru 101 near the center of the demonstration site and (2) development of a stratigraphic model for the Pru Fee project area. In addition, the first phase of baseline cyclic steaming of the Pru Fee demonstration site was continued with production tests and formation temperature monitoring.

Schamel, S.

1996-06-28T23:59:59.000Z

466

Geothermal steam quality testing  

SciTech Connect (OSTI)

Geothermal steam quality and purity have a significant effect on the operational efficiency and life of geothermal steam turbines and accessory equipment. Poor steam processing can result in scaled nozzles/blades, erosion, corrosion, reduced utilization efficiency, and early fatigue failures accelerated by stress corrosion cracking (SCC). Upsets formed by undetected slugs of liquid entering the turbine can cause catastrophic failure. The accurate monitoring and determination of geothermal steam quality/purity is intrinsically complex which often results in substantial errors. This paper will review steam quality and purity relationships, address some of the errors, complexities, calibration and focus on: thermodynamic techniques for evaluating and monitoring steam quality by use of the modified throttling calorimeters.

Jung, D.B. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

1995-12-31T23:59:59.000Z

467

Steam generator support system  

DOE Patents [OSTI]

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

Moldenhauer, James E. (Simi Valley, CA)

1987-01-01T23:59:59.000Z

468

Steam generator support system  

DOE Patents [OSTI]

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

Moldenhauer, J.E.

1987-08-25T23:59:59.000Z

469

The Invisibility of Steam  

Science Journals Connector (OSTI)

Almost everyone knows that steam is visible. After all one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature falls below 100 C (under standard conditions).

Thomas B. Greenslade Jr.

2014-01-01T23:59:59.000Z

470

Energy Tips: Benchmark the Fuel Cost of Steam Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Type (sales unit) Type (sales unit) Energy Content Combustion (Btu/sales unit) Efficiency (%) Natural Gas (therm) 100,000 81.7 Natural Gas (cubic foot) 1,030 81.7 Distillate/No. 2 Oil (gallon) 138,700 84.6 Residual/No. 6 Oil (gallon) 149,700 86.1 Coal (ton) 27,000,000 87.6 Benchmark the Fuel Cost of Steam Generation Benchmarking the fuel cost of steam generation ($/1000 lbs of steam) is an effective way to assess the efficiency of your steam system. This cost is dependent upon fuel type, unit fuel cost, boiler efficiency, feedwater temperature, and steam pressure. This calculation provides a good first approximation for the cost of generating steam and serves as a tracking device to allow for boiler performance monitoring. Table 1 shows the heat input required to produce one pound of saturated

471

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect (OSTI)

The objective of this project is not just to produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production and production costs.

Schamel, S.

2001-01-09T23:59:59.000Z

472

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III  

SciTech Connect (OSTI)

The objective of the project is not just to commercially produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production volumes and costs.

Schamel, Steven; Deo, Milind; Deets, Mike

2002-02-21T23:59:59.000Z

473

Fire-flooding technologies in post-steam-injected heavy oil reservoirs  

Science Journals Connector (OSTI)

The mechanism and problems associated with development engineering of fire-flooding in post-steam-injected heavy oil reservoirs was studied using 1D & 3D physical simulation experiments and reservoir numerical simulation. The temperature of combustion zone decreased and high-temperature zone enlarged because there existed secondary water formed during steam injection, which could absorb and carry heat towards producers out of the combustion front during fire flooding, but high saturation of water in layers caused by secondary water had less influence on the quantity of fuel deposit and air consumption. In the process of 3D fire flooding experiment, air override was observed during the combustion front moving forward and resulted in a coke zone in the bottom of the layer, and the ultimate recovery factor reached 65% on fact that the remaining oil saturation within the coke zone was no more than 20%. The flooding model, well pattern, well spacing, and air injection rate were optimized according to the specific property and the existed well pattern in the post-steam-injected heavy oil reservoir, and the key techniques of ignition, lifting, and anticorrosion was also selected at the same time. The pilot of fire flooding in the H1 block in the Xinjiang Oilfield was carried out from 2009 based on these research works, and now begins to show better performance.

Wenlong Guan; Changfeng Xi; Yaping Chen; Xia Zhang; Muhetar; Jinzhong Liang; Jihong Huang; Jian Wu

2011-01-01T23:59:59.000Z

474

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... SteamCoal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... SteamCoal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

475

Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

Not Available

2011-10-01T23:59:59.000Z

476

Heat Distribution Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Distribution Systems Distribution Systems Heat Distribution Systems May 16, 2013 - 5:26pm Addthis Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Heat is distributed through your home in a variety of ways. Forced-air systems use ducts that can also be used for central air conditioning and heat pump systems. Radiant heating systems also have unique heat distribution systems. That leaves two heat distribution systems -- steam radiators and hot water radiators. Steam Radiators Steam heating is one of the oldest heating technologies, but the process of boiling and condensing water is inherently less efficient than more modern systems, plus it typically suffers from significant lag times between the

477

Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat  

SciTech Connect (OSTI)

This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the direct evaporator. A testbed was constructed and the prototype demonstrated at the