National Library of Energy BETA

Sample records for heat recovery steam

  1. Heat recovery steam generator outlet temperature control system for a combined cycle power plant

    SciTech Connect (OSTI)

    Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

    1986-04-01

    This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

  2. Use Feedwater Economizers for Waste Heat Recovery - Steam Tip Sheet #3

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  3. Economizer recirculation for low-load stability in heat recovery steam generator

    SciTech Connect (OSTI)

    Cuscino, R.T.; Shade, R.L. Jr.

    1986-04-15

    An economizer system is described for heating feedwater in a heat recovery steam generator which consists of: at least first and second economizer tube planes; each of the economizer tube planes including a plurality of generally parallel tubes; the tubes being generally vertically disposed; each of the economizer tube planes including a top header and a bottom header; all of the plurality of tubes in each economizer tube plane being connected in parallel to their top and bottom headers whereby parallel feedwater flow through the plurality of tubes between the top and bottom headers is enabled; one of the top and bottom headers being an inlet header; a second of the top and bottom headers being an outlet header; a boiler feed pump; the boiler feed pump being effective for applying a flow of feedwater to the inlet header; means for serially interconnecting the economizer tube planes; the means for serially interconnecting including means for flowing the feedwater upward and downward in tubes of alternating ones of the economizer tube planes between the inlet header and the outlet header; means for conveying heated feedwater from the outlet header to a using process; means for recirculating at least a portion of the heated feedwater from the outlet header to an inlet of the boiler feed pump; and the means for recirculating including means for relating the portion to a steam load in the using process whereby an increased flow is produced through all of the economizer tube planes at values of the steam load below a predetermined value and a condition permitting initiation of reverse flow in any of the tubes is substantially reduced.

  4. Use Feedwater Economizers for Waste Heat Recovery: Office of Industrial Technologies (OIT) Steam Energy Tips No.3

    SciTech Connect (OSTI)

    Not Available

    2002-03-01

    A feedwater economizer reduces steam boiler fuel requirements by transferring heat from the flue gas to incoming feedwater. Boiler flue gases are often rejected to the stack at temperatures more than 100 F to 150 F higher than the temperature of the generated steam. Generally, boiler efficiency can be increased by 1% for every 40 F reduction in flue gas temperature. By recovering waste heat, an economizer can often reduce fuel requirements by 5% to 10% and pay for itself in less than 2 years. The table provides examples of the potential for heat recovery.

  5. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    DOE Patents [OSTI]

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  6. " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," "

  7. ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 8.3;" " Unit: Percents." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "

  8. Waste Heat Recovery

    Office of Environmental Management (EM)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  9. Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3. Public

  10. Use Feedwater Economizers for Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedwater Economizers for Waste Heat Recovery Use Feedwater Economizers for Waste Heat Recovery This tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #3 Use Feedwater Economizers for Waste Heat Recovery (January 2012) (381.06 KB) More Documents & Publications Consider Installing a Condensing Economizer Considerations When Selecting a Condensing Economizer

  11. Steam Technical Brief: Industrial Steam System Heat-Transfer Solutions

    SciTech Connect (OSTI)

    2010-06-25

    This BestPractices Steam Technical Brief provides an overview of considerations for selecting the best heat-transfer solution for various applications.

  12. Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine

    DOE Patents [OSTI]

    Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel

    2002-01-01

    The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

  13. Heat recovery casebook

    SciTech Connect (OSTI)

    Lawn, J.

    1980-10-01

    Plants and factories could apply a great variety of sources and uses for valuable waste heat. Applications may be evaluated on the basis of real use for a specific waste heat, high-enough temperature and quality of work, and feasibility of mechanical heat transfer method. Classification may be by temperature, application, heat-transfer equipment, etc. Many buildings and industrial processes lend themselves well to heat-recovery strategies. Five case histories describe successful systems used by the Continental Corporation Data Center; Nabisco, Inc.; Kasper Foundry Company; Seven Up Bottling Company of Indiana; and Lehr Precision Tool company. (DCK)

  14. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  15. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, James F.; Koenig, John F.

    1985-01-01

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  16. [Waste water heat recovery system

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  17. Industrial Steam System Heat-Transfer Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat-Transfer Solutions Industrial Steam System Heat-Transfer Solutions This brief provides an overview of considerations for selecting the best heat-transfer equipment for various steam systems and applications. Industrial Steam System Heat-Transfer Solutions (June 2003) (442.68 KB) More Documents & Publications Industrial Steam System Process-Control Schemes Considerations When Selecting a Condensing Economizer Steam Pressure Reduction: Opportunities and Issues

  18. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for ...

  19. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  20. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, James W.

    1992-01-01

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  1. Combined heat recovery and make-up water heating system

    SciTech Connect (OSTI)

    Kim, S.Y.

    1988-05-24

    A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

  2. Steam Technical Brief: Industrial Heat Pumps for Steam and Fuel Savings

    SciTech Connect (OSTI)

    2010-06-25

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  3. Strength recovery of cement composites in steam and carbonate environments

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tom Butcher

    2016-04-28

    The data include compressive strength and Young's Modulus recoveries in steam and carbonate environments at 270degC for four chemically different cement composites after imposed controlled damaged.

  4. Nuclear-energy application studied as source of injection steam for heavy-oil recovery

    SciTech Connect (OSTI)

    Perrett, R.J.; Gledhill, P.R.; Dawson, P.; Stephenson, D.J.

    1981-08-03

    This study into the feasibility of adapting a well-proven nuclear reactor as a centralized source of injection steam for the recovery of heavy oil has shown that the reactor modifications are practicable and well within the bounds of current technology. The gas-cooled reactor is capable of meeting the highest steam supply pressure requirement and it possesses a high degree of inherent safety. The injection of steam for the recovery of heavy oil is the most well developed of the available options. At current price levels of oil and uranium, nuclear heat can be generated at a fraction of the running costs of oil fired thermal plant. Taken over a project lifetime of 25 years for the field model used for this assessment, the improved earnings for the nuclear option could amount to as much as /10 billion. The program requirements for a typical development have been examined and the construction times for the gas reactor steam plant, the oil-field development and the upgrading plant are compatible at between five and six years. The economic advantage of steam generation by nuclear energy gives a further recovery breakthrough. It becomes possible to continue the steam drive process up to much more adverse recovery ratios of steam quantity injected for unit oil produced if nuclear energy is employed.

  5. Design of Hybrid Steam-In Situ Combustion Bitumen Recovery Processes

    SciTech Connect (OSTI)

    Yang Xiaomeng; Gates, Ian D.

    2009-09-15

    Given enormous capital costs, operating expenses, flue gas emissions, water treatment and handling costs of thermal in situ bitumen recovery processes, improving the overall efficiency by lowering energy requirements, environmental impact, and costs of these production techniques is a priority. Steam-assisted gravity drainage (SAGD) is the most widely used in situ recovery technique in Athabasca reservoirs. Steam generation is done on surface and consequently, because of heat losses, the energy efficiency of SAGD can never be ideal with respect to the energy delivered to the sandface. An alternative to surface steam generation is in situ combustion (ISC) where heat is generated within the formation through injection of oxygen at a sufficiently high pressure to initiate combustion of bitumen. In this manner, the heat from the combustion reactions can be used directly to mobilize the bitumen. As an alternative, the heat can be used to generate steam within the formation which then is the agent to move heat in the reservoir. In this research, alternative hybrid techniques with simultaneous and sequential steam-oxygen injection processes are examined to maximize the thermal efficiency of the recovery process. These hybrid processes have the advantage that during ISC, steam is generated within the reservoir from injected and formation water and as a product of oxidation. This implies that ex situ steam generation requirements are reduced and if there is in situ storage of combustion gases, that overall gas emissions are reduced. In this research, detailed reservoir simulations are done to examine the dynamics of hybrid processes to enable design of these processes. The results reveal that hybrid processes can lower emitted carbon dioxide-to-oil ratio by about 46%, decrease the consumed natural gas-to-oil ratio by about 73%, reduce the cumulative energy-to-oil ratio by between 40% and 70% compared to conventional SAGD, and drop water consumption per unit oil produced

  6. Cover Heated, Open Vessels - Steam Tip Sheet #19

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO steam tip sheet on covering heated, open vessels provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  7. Enhancing Heat Recovery for Thermoelectric Devices | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Recovery for Thermoelectric Devices Enhancing Heat Recovery for Thermoelectric Devices Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research ...

  8. Building America Expert Meeting: Multifamily Hydronic and Steam Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls and Distribution Retrofits | Department of Energy Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits Building America Expert Meeting: Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits This expert meeting was conducted on July 13, 2011 by the ARIES Collaborative in New York City. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family

  9. Combined Heat and Power Technology Fact Sheets Series: Steam Turbines

    Broader source: Energy.gov (indexed) [DOE]

    Steam Turbines Steam turbines are a mature technology and have been used since the 1880s for electricity production. Most of the electricity generated in the United States is produced by steam turbines integrated in central station power plants. In addition to central station power, steam turbines are also commonly used for combined heat and power (CHP) instal- lations (see Table 1 for summary of CHP attributes). Applications Based on data from the CHP Installation Database, 1 there are 699

  10. Recover Heat from Boiler Blowdown, Energy Tips: STEAM, Steam...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Recover Heat from Boiler Blowdown Heat can be recovered from boiler blowdown by using a heat exchanger to preheat boiler makeup water. Any boiler with continuous blowdown ...

  11. Drain-Water Heat Recovery | Department of Energy

    Energy Savers [EERE]

    Heat & Cool Water Heating Drain-Water Heat Recovery Drain-Water Heat Recovery Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. ...

  12. Cover Heated, Open Vessels, Energy Tips: STEAM, Steam Tip Sheet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Cover Heated, Open Vessels Open vessels that contain heated liquids often have high heat loss due to surface evaporation. Both energy and liquid losses are reduced by covering ...

  13. EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide an American Recovery Act and Reinvestment Act of 2009 financial assistance grant to Seattle Steam Company to facilitate the installation of a combined heat and power plant in downtown Seattle, Washington. NOTE: This Project has been cancelled.

  14. Recover Heat from Boiler Blowdown - Steam Tip Sheet #10

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on recovering heat from boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  15. Cummins Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Cummins Waste Heat Recovery Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_nelson.pdf (295.89 KB) More Documents & Publications Exhaust Energy Recovery Exhaust Energy Recovery Exhaust Energy Recovery

  16. Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Develop Thermoelectric Technology for Automotive Waste Heat Recovery ...

  17. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  18. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound ...

  19. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  20. Drain-Water Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool Water Heating Drain-Water Heat Recovery ... Diagram of a drain water heat recovery system. Any hot water ... Drain-water (or greywater) heat recovery systems capture ...

  1. EERE Success Story-Steel Mill Powered by Waste Heat Recovery System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Steel Mill Powered by Waste Heat Recovery System EERE Success Story-Steel Mill Powered by Waste Heat Recovery System May 16, 2013 - 12:00am Addthis EERE worked with ArcelorMittal USA, Inc. to install an efficient recovery boiler to burn blast furnace gases generated during iron-making operations to produce electricity and steam onsite at the company's Indiana Harbor Steel Mill in East Chicago, Indiana. The steam is being used to drive existing turbogenerators onsite,

  2. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Broader source: Energy.gov (indexed) [DOE]

    Air Products and Chemicals, Inc. - Allentown, PA A microbial reverse electrodialysis technology ... Bio-Electrochemical Integration of Waste Heat Recovery, Waste-To-Energy Conversion, ...

  3. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

  4. Industrial Heat Pumps for Steam and Fuel Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps for Steam and Fuel Savings Industrial Heat Pumps for Steam and Fuel Savings This brief introduces heat-pump technology and its application in industrial processes as part of steam systems. The focus is on the most common applications, with guidelines for initial identification and evaluation of the opportunities being provided. Industrial Heat Pumps for Steam and Fuel Savings (June 2003) (445.24 KB) More Documents & Publications This thermoelastic system provides a promising

  5. Heat recovery anti-icing system

    SciTech Connect (OSTI)

    Cummins, J.R.

    1982-05-11

    A heat recovery anti-icing system is disclosed. The heat recovery system includes a blower which removes air from the air flow path of a combustion turbine power generating system and circulates the air through a heat exchanger located in the exhaust stack of the combustion turbine. The heated air circulating through the heat exchanger is returned to an inlet filter compartment in the air flow path so as to maintain the temperature of the air in the inlet filter compartment at an elevated level.

  6. List of Heat recovery Incentives | Open Energy Information

    Open Energy Info (EERE)

    Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Energy Storage Nuclear Wind Heat recovery Fuel Cells using Renewable Fuels No Agricultural Energy Efficiency...

  7. An Overview of Thermoelectric Waste Heat Recovery Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D ...

  8. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Capstone Turbine...

  9. Wastewater heat recovery method and apparatus (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Wastewater heat recovery method and apparatus Title: Wastewater heat recovery method and apparatus You are accessing a document from the Department of Energy's (DOE) DOE ...

  10. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  11. Property:Heat Recovery Utility | Open Energy Information

    Open Energy Info (EERE)

    search Property Name Heat Recovery Utility Property Type Page Description The purpose of Distributed Generation heat recovery This is a property of type Page. Retrieved from...

  12. Heat pipes for industrial waste heat recovery

    SciTech Connect (OSTI)

    Merrigan, M.A.

    1981-01-01

    Development work on the high temperature ceramic recuperator at Los Alamos National Laboratory is described and involved material investigations, fabrication methods development, compatibility tests, heat pipe operation, and the modeling of application conditions based on current industrial usage. Solid ceramic heat pipes, ceramic coated refractory pipes, and high-temperature oxide protected metallic pipes have been investigated. Economic studies of the use of heat-pipe based recuperators in industrial furnaces have been conducted and payback periods determined as a function of material, fabrication, and installation cost.

  13. Water recovery using waste heat from coal fired power plants.

    SciTech Connect (OSTI)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  14. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect (OSTI)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  15. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    In this project, the ARIES Building America team collected apartment temperature data from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. Data was analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating in an effort to answer the question, "What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?" This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort.

  16. Dynamic Underground Stripping: In situ steam sweeping and electrical heating to remediate a deep hydrocarbon spill

    SciTech Connect (OSTI)

    Yow, J.L. Jr.; Aines, R.D.; Newmark, R.L.; Udell, K.S.; Ziagos, J.P.

    1994-07-01

    Dynamic Underground Stripping is a combination of in situ steam injection, electrical resistance heating, and fluid extraction for rapid removal and recovery of subsurface contaminants such as solvents or fuels. Underground imaging and other measurement techniques monitor the system in situ for process control. Field tests at a deep gasoline spill at Lawrence Livermore National Laboratory recovered over 7000 gallons of gasoline during several months of field operations. Preliminary analysis of system cost and performance indicate that Dynamic Underground Stripping compares favorably with conventional pump-and-treat and vacuum extraction schemes for removing non-aqueous phase liquids such as gasoline from deep subsurface plumes.

  17. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

  18. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003_deer_algrain.pdf (5.77 MB) More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology An Engine System Approach to Exhaust Waste Heat Recovery

  19. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and ...

  20. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

  1. Rankine cycle waste heat recovery system

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  2. Rankine cycle waste heat recovery system

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  3. Rankine cycle waste heat recovery system

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-05-10

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  4. Drain-Water Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Water Heating » Drain-Water Heat Recovery Drain-Water Heat Recovery Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water

  5. Recovery of Water from Boiler Flue Gas Using Condensing Heat...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers Citation Details In-Document Search Title: Recovery of Water from Boiler Flue Gas Using ...

  6. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOE Patents [OSTI]

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  7. Method for cutting steam heat losses during cyclic steam injection of wells. Fourth quarterly report

    SciTech Connect (OSTI)

    1995-02-01

    Effective Gravel-packing of horizontal wells is difficult to achieve, using conventional pre-slotted liners, yet it is generally required in the soft Heavy Oil reservoir rocks of California, where cyclic steam injection has been proven to be the most cost-effective oil recovery method. The proposed method of gravel placement behind a non-perforated liner, which is later perforated {open_quotes}in situ{close_quotes} with a new tool operated by coiled-tubing, is expected to greatly reduce costs resulting from sand production in horizontal wells operated under cyclic steam injection. The detailed configuration of the prototype tool is described. It includes two pairs of cutting wheels at the ends of spring-loaded pivoting arms, which are periodically pressed through the liner wall and shortly thereafter retracted, while the coiled tubing is being pulled-out. For each operating cycle of the hydraulically-operated tool, this results in a set of four narrow slots parallel to the liner axis, in two perpendicular diametral planes. The shape of the edges of each slot facilitates bridging by the gravel particles, for a more effective and compacted gravel-packing. The tool includes a few easily-assembled parts machined from surface-hardened alloy steel presenting great toughness, selected from those used in die making. The operation of the system and potential future improvements are outlined. The method of fabrication, detailed drawings and specifications are given. They will serve as a basis for negotiating subcontracts with qualified machine shops.

  8. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf (177.31 KB) More Documents ...

  9. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Broader source: Energy.gov (indexed) [DOE]

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Development of Cost-Competitive ...

  10. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical ...

  11. [Waste water heat recovery system]. Final report, September 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  12. Development of Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement. deer08_gundlach.pdf (1 MB) More Documents & Publications Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry Develop Thermoelectric

  13. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy 2 DEER Conference Presentation: Caterpillar Inc. 2002_deer_hopmann.pdf (828.29 KB) More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology An Engine System Approach to Exhaust Waste Heat Recovery

  14. An Information Dependant Computer Program for Engine Exhaust Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Heating | Department of Energy An Information Dependant Computer Program for Engine Exhaust Heat Recovery for Heating An Information Dependant Computer Program for Engine Exhaust Heat Recovery for Heating A computer program was developed to help engineers at rural Alaskan village power plants to quickly evaluate how to use exhaust waste heat from individual diesel power plants. deer09_avadhanula.pdf (95.11 KB) More Documents & Publications Modular Low Cost High Energy Exhaust Heat

  15. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Improved Heat Recovery in Biomass-Fired Boilers Reducing Superheater Corrosion to Enable Maximum Energy Effi ciency This project will develop materials and coatings to reduce corrosion and improve the life span of boiler superheater tubes exposed to high-temperature biomass exhaust. This improvement in boiler ef ciency will reduce fuel consumption, fuel cost, and CO 2 emissions. Introduction Industrial boilers are commonly used to make process steam, provide

  16. Waste Heat Reduction and Recovery for Improving Furnace Efficiency,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief | Department of Energy Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief This technical brief is a guide to help plant operators reduce waste heat

  17. Wastewater heat recovery method and apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-01-01

    This invention is comprised of a heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  18. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOE Patents [OSTI]

    Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  19. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOE Patents [OSTI]

    Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

    1995-09-12

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

  20. Clean Boiler Water-side Heat Transfer Surfaces - Steam Tip Sheet #7

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  1. Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Industry | Department of Energy and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_yang.pdf (803.83 KB) More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Develop Thermoelectric Technology for Automotive

  2. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy ... Engineering and Materials for Automotive Thermoelectric Applications Electrical and ...

  3. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry On Thermoelectric Properties of p-Type Skutterudites Development of Thermoelectric ...

  4. High Efficiency Microturbine with Integral Heat Recovery - Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Presentation by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 ...

  5. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  6. DOE Offers $15 Million Geothermal Heat Recovery Opportunity ...

    Energy Savers [EERE]

    DOE Offers 15 Million Geothermal Heat Recovery Opportunity August 25, 2010 - 11:11am Addthis Photo of geothermal power plant. DOE's Geothermal Technologies Program announced on ...

  7. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Capstone Turbine Corporation, in collaboration with Oak Ridge National Laboratory and NASA Glenn ...

  8. MHTGR steam generator on-line heat balance, instrumentation and function

    SciTech Connect (OSTI)

    Klapka, R.E.; Howard, W.W.; Etzel, K.T. ); Basol, M.; Karim, N.U. )

    1991-09-01

    Instrumentation is used to measure the Modular High Temperature Gas-Cooled Reactor (MHTGR) steam generator dissimilar metal weld temperature during start-up testing. Additional instrumentation is used to determine an on-line heat balance which is maintained during the 40 year module life. In the process of calibrating the on-line heat balance, the helium flow is adjusted to yield the optimum boiling level in the steam generator relative to the dissimilar metal weld. After calibration is complete the weld temperature measurement is non longer required. The reduced boiling level range results in less restrictive steam generator design constraints.

  9. Recovery of tritium dissolved in sodium at the steam generator of fast breeder reactor

    SciTech Connect (OSTI)

    Oya, Y.; Oda, T.; Tanaka, S.; Okuno, K.

    2008-07-15

    The tritium recovery technique in steam generators for fast breeder reactors using the double pipe concept was proposed. The experimental system for developing an effective tritium recovery technique was developed and tritium recovery experiments using Ar gas or Ar gas with 10-10000 ppm oxygen gas were performed using D{sub 2} gas instead of tritium gas. It was found that deuterium permeation through two membranes decreased by installing the double pipe concept with Ar gas. By introducing Ar gas with 10000 ppm oxygen gas, the concentration of deuterium permeation through two membranes decreased by more than 1/200, compared with the one pipe concept, indicating that most of the deuterium was scavenged by Ar gas or reacted with oxygen to form a hydroxide. However, most of the hydroxide was trapped at the surface of the membranes because of the short duration of the experiment. (authors)

  10. Chemical recovery process using break up steam control to prevent smelt explosions

    DOE Patents [OSTI]

    Kohl, Arthur L.; Stewart, Albert E.

    1988-08-02

    An improvement in a chemical recovery process in which a hot liquid smelt is introduced into a dissolving tank containing a pool of green liquor. The improvement comprises preventing smelt explosions in the dissolving tank by maintaining a first selected superatmospheric pressure in the tank during normal operation of the furnace; sensing the pressure in the tank; and further impinging a high velocity stream of steam upon the stream of smelt whenever the pressure in the tank decreases below a second selected superatmospheric pressure which is lower than said first pressure.

  11. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    DOE Patents [OSTI]

    Robertson, Eric P

    2011-05-24

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  12. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    SciTech Connect (OSTI)

    Makarov, A. N.

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  13. Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_crane.pdf (549.96 KB) More Documents & Publications Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency Gains in Vehicle Applications Automotive Waste Heat Conversion to Electric Power using Skutterudites, TAGS,

  14. Vehicle Technologies Office: Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency & Emissions » Vehicle Technologies Office: Waste Heat Recovery Vehicle Technologies Office: Waste Heat Recovery Along with high efficiency engine technologies and emission control, the Vehicle Technologies Office (VTO) is supporting research and development to increase vehicle fuel economy by recovering energy from engine waste heat. In current gasoline vehicles, only about 25 percent of the fuel's energy is used to drive the wheels; in contrast, more than 70 percent is lost

  15. Waste Heat Recovery System: Lightweight Thermal Energy Recovery (LIGHTER) System

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: GM is using shape memory alloys that require as little as a 10C temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built were too complex, required fluid baths, and had insufficient cycle life for practical use. GM is working to create a prototype that is practical for commercial applications and capable of operating with either air- or fluid-based heat sources. GMs shape memory alloy based heat engine is also designed for use in a variety of non-vehicle applications. For example, it can be used to harvest non-vehicle heat sources, such as domestic and industrial waste heat and natural geothermal heat, and in HVAC systems and generators.

  16. How three smart managers control steam costs

    SciTech Connect (OSTI)

    Kendall, R.

    1982-11-01

    Three steam-intensive companies report innovative ways to reduce steam-production costs. Goodyear Tire and Rubber Co. concentrated on regular maintenance, process modifications, and heat recovery, but also has an on-going policy of seeking further cost savings. Future efforts will explore computer-based boiler controls. Zenith Radio Corporation's color picture tube-making process uses 12% less steam after 700 mechanical steam traps were replaced with fixed-orifice traps. Petro-Tex Chemical Corp. reduced steam costs by monitoring and optimizing process units and by making capital investments to improve steam management. (DCK)

  17. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

  18. Open-loop heat-recovery dryer

    DOE Patents [OSTI]

    TeGrotenhuis, Ward Evan

    2013-11-05

    A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.

  19. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect (OSTI)

    Swindeman, R.W.; Ren, W.

    1996-06-01

    The objective of the research is to provide databases and design criteria to assist in the selection of optimum alloys for construction of components needed to contain process streams in advanced heat recovery and hot-gas cleanup systems. Typical components include: steam line piping and superheater tubing for low emission boilers (600 to 700{degrees}C), heat exchanger tubing for advanced steam cycles and topping cycle systems (650 to 800{degrees}C), foil materials for recuperators, on advanced turbine systems (700 to 750{degrees}C), and tubesheets for barrier filters, liners for piping, cyclones, and blowback system tubing for hot-gas cleanup systems (850 to 1000{degrees}C). The materials being examined fall into several classes, depending on which of the advanced heat recovery concepts is of concern. These classes include martensitic steels for service to 650{degrees}C, lean stainless steels and modified 25Cr-30Ni steels for service to 700{degrees}C, modified 25Cr-20Ni steels for service to 900{degrees}C, and high Ni-Cr-Fe or Ni-Cr-Co-Fe alloys for service to 1000{degrees}C.

  20. Performance of an Organic Rankine Cycle Waste Heat Recovery System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research ...

  1. Recovery Act-Funded Geothermal Heat Pump projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) was allocated funding from the American Recovery and Reinvestment Act to conduct research into ground source heat pump technologies and applications. Projects...

  2. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    High Efficiency Hybrid Vehicles | Department of Energy This project discusses preliminary experimental results to find how thermoelectrics can be applied ot future hybrid vehicles and the optimum design of such equipment using heat pipes deer09_kim.pdf (628.26 KB) More Documents & Publications Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles A Thermoelectric Generator with an Intermediate Heat Exchanger for Automotive Waste Heat

  3. Mist/steam cooling in a heated horizontal tube -- Part 1: Experimental system

    SciTech Connect (OSTI)

    Guo, T.; Wang, T.; Gaddis, J.L.

    2000-04-01

    To improve the airfoil cooling significantly for the future generation of advanced turbine systems (ATS), a fundamental experimental program has been developed to study the heat transfer mechanisms of mist/steam cooling under highly superheated wall temperatures. The mist/steam mixture was obtained by blending fine water droplets (3 {approximately} 15 {micro}m in diameter) with the saturated steam at 1.5 bars. Two mist generation systems were tested by using the pressure atomizer and the steam-assisted pneumatic atomizer, respectively. The test section, heated directly by a DC power supply, consisted of a thin-walled ({approximately} 0.9 mm), circular stainless steel tube with an ID of 20 mm and a length of 203 mm. Droplet size and distribution were measured by a phase Doppler particle analyzer (PDPA) system through view ports grafted at the inlet and the outlet of the test section. Mist transportation and droplet dynamics were studied in addition to the heat transfer measurements. The experiment was conducted with steam Reynolds numbers ranging from 10,000 to 35,000, wall superheat up to 300 C, and droplet mass ratios ranging from 1 {approximately} 6%.

  4. High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2016 High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2016 Capstone Turbine Corporation, in collaboration with Oak Ridge National Laboratory and NASA Glenn Research Center, developed a clean, cost-effective 370 kW microturbine with 42% net electrical efficiency and 85% total CHP efficiency. The microturbine technology maximizes usable exhaust energy and achieves ultra-low

  5. Identification of existing waste heat recovery and process improvement technologies

    SciTech Connect (OSTI)

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  6. High Efficiency Microturbine with Integral Heat Recovery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High Efficiency Microturbine with Integral Heat Recovery High Efficiency Microturbine with Integral Heat Recovery Introduction The U.S. economic market potential for distributed generation is significant. This market, however, remains mostly untapped in the commercial and small industrial buildings that are well suited for microturbines. Gas turbines have many advantages, including high power density, light weight, clean emissions, fuel flexibility, low vibration, low maintenance,

  7. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  8. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, William R.; Cassano, Anthony A.; Dunbobbin, Brian R.; Rao, Pradip; Erickson, Donald C.

    1986-01-01

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

  9. Method for cutting steam heat losses during cyclic steam injection of wells. Second quarterly report

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Midway-Sunset Field (CA) is the largest Heavy Oil field in California and steam injection methods have been successfully used for more than 30 years to produce the Heavy Oil from many of its unconsolidated sand reservoirs. In partnership with another DOE/ERIP grantee, our Company has acquired an 80 ac. lease in the SE part of this field, in order to demonstrate our respective technologies in the Monarch sand, of Miocene Age, which is one of the reservoirs targeted by the DOE Class 3 Oil Program. This reservoir contains a 13 API oil, which has a much higher market value, as a Refinery Feedstock, than the 5 to 8 API Vaca Tar, used only as road paving material. This makes it easier to justify the required investment in a vertical well equipped with two horizontal drainholes. The economic viability of such a project is likely to be enhanced if Congress approves the export to Japan of a portion of the 27 API (1% Sulfur) AK North Slope oil, which currently is landed in California in preference to lighter and sweeter Far East imported crudes. This is a major cause of the depressed prices for California Heavy Oil in local refineries, which have reduced the economic viability of all EOR methods, including steam injection, in California. Two proposals, for a Near-Term (3 y.) and for a Mid-Term (6 y.) project respectively, were jointly submitted to the DOE for Field Demonstration of the Partners` new technologies under the DOE Class 3 Oil Program. The previous design of a special casing joint for the Oxnard field well was reviewed and adapted to the use of existing Downhole Hardware components from three suppliers, instead of one. The cost of drilling and completion of a well equipped with two horizontal drainholes was re-evaluated for the conditions prevailing in the Midway Sunset field, which are more favorable than in the Oxnard field, leading to considerable reductions in drilling rig time and cost.

  10. Heat and Seed Recovery Technology Project

    SciTech Connect (OSTI)

    Swift, W.M.; Petrick, M.; Natesan, K.

    1993-01-01

    The objective of this work is to address technical issues related to both the MHD topping and bottoming cycles and to their integration. Design information will be obtained through modeling and experimentation. This information, together with the insults of long duration testing at DOE's Coal Fired Flow Facility (CFFF) and Component Development and Integration Facility (CDIF), can be used to reliably design the first-generation MHD retrofit plant. Work during the reporting period focused on the following tasks: (1) computer modeling of the integrated topping-cycle power train (combustor/nozzle/channel/diffuser); (2) evaluation of materials for the bottoming steam cycle; (3) systems analysis of an MHD/CO[sub 2] cyde; and (4) the completion of a topical report on the reactivation of the ANL superconducting magnet system. Accomplishments in these areas are described briefly.

  11. Heat and Seed Recovery Technology Project

    SciTech Connect (OSTI)

    Swift, W.M.; Petrick, M.; Natesan, K.

    1993-03-01

    The objective of this work is to address technical issues related to both the MHD topping and bottoming cycles and to their integration. Design information will be obtained through modeling and experimentation. This information, together with the insults of long duration testing at DOE`s Coal Fired Flow Facility (CFFF) and Component Development and Integration Facility (CDIF), can be used to reliably design the first-generation MHD retrofit plant. Work during the reporting period focused on the following tasks: (1) computer modeling of the integrated topping-cycle power train (combustor/nozzle/channel/diffuser); (2) evaluation of materials for the bottoming steam cycle; (3) systems analysis of an MHD/CO{sub 2} cyde; and (4) the completion of a topical report on the reactivation of the ANL superconducting magnet system. Accomplishments in these areas are described briefly.

  12. Getting the correct data. [Eros Data Center heat recovery system

    SciTech Connect (OSTI)

    Not Available

    1985-03-01

    The Eros Data Center Heat Recovery System is a merging of the computer room air conditioning system with the building heating, ventilation and air conditioning system in such a way as to utilize the heat off the computers to heat the building. The 6,000 sq. ft. computer room contains three computers and two high resolution film laser recorders. Computer room air conditioners are switched from free cooling chilled water cooling tower mode to compresser heat recovery, according to outside air temperature and the temperature of the condensing loop. Any excess heat in the condenser loop over 90 F is expelled by the computer, opening the outside air dampers, and lowering mixed air temperatures.

  13. Exhaust bypass flow control for exhaust heat recovery

    DOE Patents [OSTI]

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  14. Multi-physics modeling of thermoelectric generators for waste heat recovery applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Model developed provides effective guidelines to designing thermoelectric generation systems for automotive waste heat recovery applications

  15. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Waste Heat Recovery Systems for Fuel-Fired Furnaces Install Waste Heat Recovery Systems for Fuel-Fired Furnaces This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems. PROCESS HEATING TIP SHEET #8 Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (September 2005) (280.81 KB) More Documents & Publications Load Preheating Using Flue Gases from a Fuel-Fired Heating System Using

  16. Use of photovoltaics for waste heat recovery

    DOE Patents [OSTI]

    Polcyn, Adam D

    2013-04-16

    A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

  17. Distributed Generation with Heat Recovery and Storage

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2006-06-16

    Electricity produced by distributed energy resources (DER)located close to end-use loads has the potential to meet consumerrequirements more efficiently than the existing centralized grid.Installation of DER allows consumers to circumvent the costs associatedwith transmission congestion and other non-energy costs of electricitydelivery and potentially to take advantage of market opportunities topurchase energy when attractive. On-site, single-cycle thermal powergeneration is typically less efficient than central station generation,but by avoiding non-fuel costs of grid power and by utilizing combinedheat and power (CHP) applications, i.e., recovering heat from small-scaleon-site thermal generation to displace fuel purchases, DER can becomeattractive to a strictly cost-minimizing consumer. In previous efforts,the decisions facing typical commercial consumers have been addressedusing a mixed-integer linear program, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, andinformation (both technical and financial) on candidate DER technologies,DER-CAM minimizes the overall energy cost for a test year by selectingthe units to install and determining their hourly operating schedules. Inthis paper, the capabilities of DER-CAM are enhanced by the inclusion ofthe option to store recovered low-grade heat. By being able to keep aninventory of heat for use in subsequent periods, sites are able to lowercosts even further by reducing lucrative peak-shaving generation whilerelying on storage to meet heat loads. This and other effects of storageare demonstrated by analysis of five typical commercial buildings in SanFrancisco, California, USA, and an estimate of the cost per unit capacityof heat storage is calculated.

  18. Distributed Generation with Heat Recovery and Storage

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-07-29

    Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

  19. Study of condensation heat transfer following a main steam line break inside containment

    SciTech Connect (OSTI)

    Cho, J.H.; Elia, F.A. Jr.; Lischer, D.J.

    1995-09-01

    An alternative model for calculating condensation heat transfer following a main stream line break (MSLB) accident is proposed. The proposed model predictions and the current regulatory model predictions are compared to the results of the Carolinas Virginia Tube Reactor (CVTR) test. The very conservative results predicted by the current regulatory model result from: (1) low estimate of the condensation heat transfer coefficient by the Uchida correlation and (2) neglecting the convective contribution to the overall heat transfer. Neglecting the convection overestimates the mass of steam being condensed and does not permit the calculation of additional convective heat transfer resulting from superheated conditions. In this study, the Uchida correlation is used, but correction factors for the effects of convection an superheat are derived. The proposed model uses heat and mass transfer analogy methods to estimate to convective fraction of the total heat transfer and bases the steam removal rate on the condensation heat transfer portion only. The results predicted by the proposed model are shown to be conservative and more accurate than those predicted by the current regulatory model when compared with the results of the CVTR test. Results for typical pressurized water reactors indicate that the proposed model provides a basis for lowering the equipment qualification temperature envelope, particularly at later times following the accident.

  20. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  1. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, Paul W.; Bannister, Ronald L.

    1995-01-01

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  2. High efficiency, quasi-instantaneous steam expansion device utilizing fossil or nuclear fuel as the heat source

    SciTech Connect (OSTI)

    Claudio Filippone, Ph.D.

    1999-06-01

    Thermal-hydraulic analysis of a specially designed steam expansion device (heat cavity) was performed to prove the feasibility of steam expansions at elevated rates for power generation with higher efficiency. The steam expansion process inside the heat cavity greatly depends on the gap within which the steam expands and accelerates. This system can be seen as a miniaturized boiler integrated inside the expander where steam (or the proper fluid) is generated almost instantaneously prior to its expansion in the work-producing unit. Relatively cold water is pulsed inside the heat cavity, where the heat transferred causes the water to flash to steam, thereby increasing its specific volume by a large factor. The gap inside the heat cavity forms a special nozzle-shaped system in which the fluid expands rapidly, accelerating toward the system outlet. The expansion phenomenon is the cause of ever-increasing fluid speed inside the cavity system, eliminating the need for moving parts (pumps, valves, etc.). In fact, the subsequent velocity induced by the sudden fluid expansion causes turbulent conditions, forcing accelerating Reynolds and Nusselt numbers which, in turn, increase the convective heat transfer coefficient. When the combustion of fossil fuels constitutes the heat source, the heat cavity concept can be applied directly inside the stator of conventional turbines, thereby greatly increasing the overall system efficiency.

  3. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review emrgtech06_reedy_040213.pdf (403.24 KB) More Documents & Publications Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review Buildings Performance Database - 2013 BTO Peer Review Department of Energy

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy

  4. Method for controlling exhaust gas heat recovery systems in vehicles

    DOE Patents [OSTI]

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  5. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ace_45_yang.pdf (1.15 MB) More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Solid-State Energy Conversion Overview

  6. Heat recovery and seed recovery development project: preliminary design report (PDR)

    SciTech Connect (OSTI)

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

    1981-06-01

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  7. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers

    SciTech Connect (OSTI)

    Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

    2007-12-31

    The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel

  8. Combined Heat and Power System Achieves Millions in Cost Savings...

    Broader source: Energy.gov (indexed) [DOE]

    natural gas-fired CHP system consisting of a 34 MW combustion turbine, a 210,000-pound-per-hour (pph) heat recovery steam generator, and an 11 MW steam turbine generator. ...

  9. Combined Heat and Power System Achieves Millions in Cost Savings...

    Broader source: Energy.gov (indexed) [DOE]

    a new energy future." 2 - Former U.S. Congressman Chet Edwards Texas A&M's CHP system includes a gas turbine generator, heat recovery steam generator, and steam turbine generator. ...

  10. Managing steam: An engineering guide to industrial, commercial, and utility systems

    SciTech Connect (OSTI)

    Makansi, J.

    1985-01-01

    This book is a guide to steam production, utilization, handling, transport, system optimization, and condensation and recovery. This book incudes a description of how steam, condensate, and hot water are used in various industrial, commercial, institutional, and utility sectors and explains how steam is generated and distributed. Waste-heat recovery, fluidized-bed boilers, and cogeneration systems and boiler control theory are discussed. The book also describes different types of valves, valve components, regulators, steam traps, and metering devices available for managing steam and condensate and discusses maintaining steam systems for optimum service and longer life.

  11. Waste Heat Recovery. Technology and Opportunities in U.S. Industry

    SciTech Connect (OSTI)

    Johnson, Ilona; Choate, William T.; Davidson, Amber

    2008-03-01

    This study was initiated in order to evaluate RD&D needs for improving waste heat recovery technologies. A bottomup approach is used to evaluate waste heat quantity, quality, recovery practices, and technology barriers in some of the largest energyconsuming units in U.S. manufacturing. The results from this investigation serve as a basis for understanding the state of waste heat recovery and providing recommendations for RD&D to advance waste heat recovery technologies.

  12. Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

  13. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    SciTech Connect (OSTI)

    Swenson, Allen; Darlow, Rick; Sanchez, Angel; Pierce, Michael; Sellers, Blake

    2014-12-19

    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  14. 3M: Hutchinson Plant Focuses on Heat Recovery and Cogeneration during Plan-Wide Energy-Efficiency Assessment

    SciTech Connect (OSTI)

    2003-06-01

    3M performed a plant-wide energy efficiency assessment at its Hutchinson, Minnesota, plant to identify energy- and cost-saving opportunities. Assessment staff developed four separate implementation packages that represented various combinations of energy-efficiency projects involving chiller consolidation, air compressor cooling improvements, a steam turbine used for cogeneration, and a heat recovery boiler for two of the plant's thermal oxidizers. Staff estimated that the plant could save 6 million kWh/yr in electricity and more than 200,000 MMBtu/yr in natural gas and fuel oil, and avoid energy costs of more than $1 million during the first year.

  15. 3M: Hutchinson Plant Focuses on Heat Recovery and Cogeneration During Plant-Wide Energy-Efficiency Assessment

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    3M performed a plant-wide energy efficiency assessment at its Hutchinson, Minnesota, plant to identify energy- and cost-saving opportunities. Assessment staff developed four separate implementation packages that represented various combinations of energy-efficiency projects involving chiller consolidation, air compressor cooling improvements, a steam turbine used for cogeneration, and a heat recovery boiler for two of the plant's thermal oxidizers. Staff estimated that the plant could save 6 million kWh/yr in electricity and more than 200,000 MMBtu/yr in natural gas and fuel oil, and avoid energy costs of more than$1 million during the first year.

  16. Secondary heat recovery from low-permeability high-temperature reservoir: A possible project in the Larderello Field, Italy

    SciTech Connect (OSTI)

    Gianelli, G.; Squarci, P.; Capocecera, P.

    1997-12-31

    A project of fracture stimulation and secondary heat recovery from the metamorphic reservoir of the Larderello geothermal field could be developed in a next future. Geological and geophysical data suggest that the stimulation can enhance permeability and that the water injection can be recovered as steam. In particular, the area of the project is characterized by the presence of an important seismic reflector which has been explained assuming the presence of fractured rocks filled with high pressure fluids. Extensional and hydraulic fractures can present at temperatures of 300-350{degrees}C, and this makes the experiment of extreme interest.

  17. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    SciTech Connect (OSTI)

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case has its own

  18. Resource Conservation and Recovery Act industrial site environmental restoration site characterization report - area 6 steam cleaning effluent ponds

    SciTech Connect (OSTI)

    1996-09-01

    The Area 6 North and South Steam Cleaning Effluent Ponds (SCEPs) are historic disposal units located at the Nevada Test Site (NTS) in Nye County, Nevada. The NTS is operated by the U.S. Department of Energy, Nevada Operations Office (DOE/NV) which has been required by the Nevada Division of Environmental Protection (NDEP) to characterize the site under the requirements of the Resource Conservation and Recovery Act (RCRA) Part B Permit for the NTS and Title 40 Code of Federal Regulations, Part 265.

  19. CHARACTERIZATION OF ELEVATED TEMPERATURE PROPERTIES OF HEAT EXCHANGER AND STEAM GENERATOR ALLOYS

    SciTech Connect (OSTI)

    J.K. Wright; L.J. Carroll; C.J. Cabet; T. Lillo; J.K. Benz; J.A. Simpson; A. Chapman; R.N. Wright

    2012-10-01

    The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. High temperature tensile testing of Alloy 617 has been conducted over a range of temperatures. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. Creep, fatigue, and creep-fatigue properties of Alloy 617 have been measured as well, with the goal of determining the influence of the temperature, strain rate and atmosphere on the creep fatigue life of Alloy 617. Elevated temperature properties and implications for codification of the alloys will be described.

  20. Optimal operation of a concurrent-flow corn dryer with a drying heat pump using superheated steam

    SciTech Connect (OSTI)

    Moraitis, C.S. [Systelligence Consultants and Research Associates, Volos (Greece); Akritidis, C.B. [Dept. of Hydraulics and Agricultural Engineering, Thessaloniki (Greece)

    1998-07-01

    A numerical model of a concurrent-flow dryer of corn using superheated steam as drying medium is solved applying a shooting technique, so as to satisfy boundary conditions imposed by the optimal design of a drying heat pump. The drying heat pump is based on the theory of minimum energy cycles. The solution of the model proves the applicability of the heat pump to a concurrent-flow dryer, achieving a Specific Energy Consumption as low as 1080 kJ/kg.

  1. Apparatus and methods for supplying auxiliary steam in a combined cycle system

    SciTech Connect (OSTI)

    Gorman, William G.; Carberg, William George; Jones, Charles Michael

    2002-01-01

    To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

  2. Low-temperature waste-heat recovery in the food and paper industries

    SciTech Connect (OSTI)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  3. Analysis of IECC2003 Chiller Heat Recovery for Service Water Heating Requirement for New York State

    SciTech Connect (OSTI)

    Winiarski, David W.

    2004-08-15

    The state of New York asked the U.S. Department of Energy to evaluate the cost-effectiveness of the requirement for Heat Recovery for Service Water Heating that exists in the 2003 International Energy Conservation Code to determine whether this requirement should be adopted into the New York State Energy Code. A typical hotel application that would trigger this requirement was examined using whole building simulation software to generate baseline annual chiller and service hot water loads, and a spreadsheet was used to examine the energy savings potential for heat recovery using hourly load files from the simulation. An example application meeting the code requirement was developed, and the energy savings, energy cost savings, and first costs for the heat recovery installation were developed. The calculated payback for this application was 6.3 years using 2002 New York state average energy costs. This payback met the minimum requirements for cost effectiveness established for the state of New York for updating the commercial energy conservation code.

  4. Overview of Fords Thermoelectric Programs: Waste Heat Recovery...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control Thermoelectric HVAC for Light-Duty Vehicle Applications Automotive Thermoelectric Generators ...

  5. Recovery and utilization of cellulosic feedstock from steam classified municipal solid wastes

    SciTech Connect (OSTI)

    Eley, M.H.; Guinn, G.R.; Bagchi, J.

    1994-12-31

    Steam classification is a process for treatment of commingled municipal solid wastes that transforms the pulp and paper materials and most food and soft yard wastes into a fairly uniform product. After processing and partial drying, most of the transformed cellulosic material can be easily separated from the non-biomass materials by conventional screening and air classification to yield a biomass feedstock. The focus of this report is the enzymatic hydrolysis of the cellulosic component of this feedstock to produce glucose for fermentation to ethanol. Several commercially available cellulases were tested on the feedstock, and optimum conditions were found for glucose production, including enzyme loading, feedstock concentration, hydrolysis rate, conversion efficiency, and glucose yield.

  6. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    DOE Patents [OSTI]

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  7. Comparison of freezing control strategies for residential air-to-air heat recovery ventilators

    SciTech Connect (OSTI)

    Phillips, E.G.; Bradley, L.C. ); Chant, R.E. ); Fisher, D.R.

    1989-01-01

    A comparison of the energy performance of defrost and frost control strategies for residential air-to-air heat recovery ventilators (HRV) has been carried out by using computer simulations for various climatic conditions. This paper discusses the results and conclusions from the comparisons and their implications for the heat recovery ventilator manufacturers and system designers.

  8. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Compression, blowdown Open cycle Miscellaneous Manufacturing of drinking water Desalination of sea water Mechanical Vapor Compression, Open cycle Steam-stripping of waste ...

  9. Continuous-wave radar to detect defects within heat exchangers and steam generator tubes.

    SciTech Connect (OSTI)

    Nassersharif, Bahram (New Mexico State University, Las Cruces, NM); Caffey, Thurlow Washburn Howell; Jedlicka, Russell P.; Garcia, Gabe V. (New Mexico State University, Las Cruces, NM); Rochau, Gary Eugene

    2003-01-01

    A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The experimental program resulted in a completed product development schedule and the design of an experimental apparatus for studying handling of the probe and data acquisition. These tests were completed as far as the prototypical probe performance allowed. The prototype probe design did not have sufficient sensitivity to detect a defect signal using the defined radar technique and did not allow successful completion of all of the project milestones. The best results from the prototype probe could not detect a tube defect using the radar principle. Though a more precision probe may be possible, the cost of design and construction was beyond the scope of the project. This report describes the probe development and the status of the design at the termination of the project.

  10. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  11. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, Frederick E.; Smolensky, Leo A.; Doyle, Edward F.; DiBella, Francis A.

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  12. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces;...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical ...

  13. Dual Loop Parallel/Series Waste Heat Recovery System

    Broader source: Energy.gov [DOE]

    This system captures all the jacket water, intercooler, and exhaust heat from the engine by utilizing a single condenser to reject leftover heat to the atmosphere.

  14. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    When the energy transfer reaches its practical limit, the spent combustion gases are ... reduction in furnace heat losses will be multiplied by the overall available heat factor. ...

  15. Steel Mill Powered by Waste Heat Recovery System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficient recovery boiler. Locations Indiana Partners ArcelorMittal USA, Inc. EERE Investment 31.6 million Clean Energy Sector Energy-saving homes, buildings, and manufacturing

  16. Development of a Waste Heat Recovery System for Light Duty Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy a Waste Heat Recovery System for Light Duty Diesel Engines Development of a Waste Heat Recovery System for Light Duty Diesel Engines Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system deer09_briggs.pdf (291.32 KB) More Documents & Publications Performance of an

  17. Performance of an Organic Rankine Cycle Waste Heat Recovery System for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Diesel Engines | Department of Energy an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-04_briggs.pdf (486.62 KB) More Documents & Publications Development of a Waste Heat Recovery System for Light Duty Diesel

  18. Effects of Zircaloy oxidation and steam dissociation on PWR core heat-up under conditions simulating uncovered fuel rods

    SciTech Connect (OSTI)

    Viskanta, R.; Mohanty, A.K.

    1986-04-01

    The studies described in this report identify the regimes of slow transients in a partially uncovered core of a PWR. The threshold height and onset time for oxidation of the cladding of a fuel rod have been evaluated. The effects of oxidation in increasing the decay heat load, component temperature, reduction of cladding thickness and generation of hydrogen have been estimated. The condition for steam starvation has been determined. At high uncovered core heights, typically say 2.8 m for a geometry simulating the TMI-2 type of reactor, the solid and coolant temperatures can reach the limits of steam dissociation. The effects of radiation heat exchange between cladding and coolant, Zircaloy oxidation, steam dissociation, gap conductance between fuel and cladding and system pressure on the heatup of fuel rods have been investigated. The time for uncovering a certain core height is taken as the independent parameter. It is seen that if the uncovering process is allowed to continue beyond 9 minutes corresponding to an uncovered height of 1.9 m, onset of cladding oxidation can be a reality. These values provide a guideline for the response time of the emergency core cooling systems. 10 refs., 22 figs.

  19. Method and apparatus for fuel gas moisturization and heating

    DOE Patents [OSTI]

    Ranasinghe, Jatila; Smith, Raub Warfield

    2002-01-01

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  20. Development of a Waste Heat Recovery System for Light Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of ...

  1. Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging, durability, and systems integration

  2. High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

  3. Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control

    Broader source: Energy.gov [DOE]

    Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging, durability, and systems integration

  4. An Engine System Approach to Exhaust Waste Heat Recovery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Summarizes progress in design, analysis, and testing of individual component building blocks of waste heat recovery system for a 10% improvement in heavy-duty diesel engine. deer08_kruiswyk.pdf (1.52

  5. High Efficiency Microturbine with Integral Heat Recovery- Presentation by Capstone Turbine Corporation, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on High Efficiency Microturbine with Integral Heat Recovery, given by John Nourse of Capstone Turbine Corporation, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  6. Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by GenTherm at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermoelectric waste heat recovery...

  7. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    SciTech Connect (OSTI)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    (53:35:12). And for an H2O2 distillation process, the two promising fluids are Trifluoroethanol (TFE) + Triethylene Glycol Dimethyl ether (DMETEG) and Ammonia+ Water. Thermo-physical properties calculated by Aspen+ are reasonably accurate. Documentation of the installation of pilot-plants or full commercial units were not found in the literature for validating thermo-physical properties in an operating unit. Therefore, it is essential to install a pilot-scale unit to verify thermo-physical properties of working fluid pairs and validate the overall efficiency of the thermal heat pump at temperatures typical of distillation processes. For an HO2 process, the ammonia-water heat pump system is more compact and preferable than the TFE-DMETEG heat pump. The ammonia-water heat pump is therefore recommended for the H2O2 process. Based on the complex nature of the heat recovery system, we anticipated that capital costs could make investments financially unattractive where steam costs are low, especially where co-generation is involved. We believe that the enhanced heat transfer equipment has the potential to significantly improve the performance of TEE crystallizers, independent of the absorption heat-pump recovery system. Where steam costs are high, more detailed design/cost engineering will be required to verify the economic viability of the technology. Due to the long payback period estimated for the TEE open system, further studies on the TEE system are not warranted unless there are significant future improvements to heat pump technology. For the H2O2 distillation cycle heat pump waste heat recovery system, there were no significant process constraints and the estimated 5 years payback period is encouraging. We therefore recommend further developments of application of the thermal heat pump in the H2O2 distillation process with the focus on the technical and economic viability of heat exchangers equipped with the state-of-the-art enhancements. This will require additional funding for

  8. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Waste Heat Recovery Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Systems Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Waste Heat Recovery Systems is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6

  9. High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems on Combustion Engines | Department of Energy High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines This poster reports on recent developments, achievements, and capabilities within a virtual environment to predict the dynamic behavior of the Rankine cycle within real driving cycles. p-11_janssens.pdf (168.59 KB) More Documents &

  10. Recovery of Water from Boiler Flue Gas Using Condensing Heat...

    Office of Scientific and Technical Information (OSTI)

    DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water ...

  11. Best Management Practice #8: Steam Boiler Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Steam Boiler Systems Best Management Practice 8: Steam Boiler Systems Steam boilers are commonly used in large heating systems, institutional kitchens, or in facilities where ...

  12. RELAP5-3D Modeling of Heat Transfer Components (Intermediate Heat Exchanger and Helical-Coil Steam Generator) for NGNP Application

    SciTech Connect (OSTI)

    N. A. Anderson; P. Sabharwall

    2014-01-01

    The Next Generation Nuclear Plant project is aimed at the research and development of a helium-cooled high-temperature gas reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an intermediate heat exchanger to a secondary loop. Using RELAP5-3D, a model was developed for two of the heat exchanger options a printed-circuit heat exchanger and a helical-coil steam generator. The RELAP5-3D models were used to simulate an exponential decrease in pressure over a 20 second period. The results of this loss of coolant analysis indicate that heat is initially transferred from the primary loop to the secondary loop, but after the decrease in pressure in the primary loop the heat is transferred from the secondary loop to the primary loop. A high-temperature gas reactor model should be developed and connected to the heat transfer component to simulate other transients.

  13. Quantum Well Thermoelectrics and Waste Heat Recovery | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Recent Progress in the Development of High Efficiency Thermoelectrics High Temperature Thermoelectric ...

  14. Heat recovery and the economizer for HVAC systems

    SciTech Connect (OSTI)

    Anantapantula, V.S. . Alco Controls Div.); Sauer, H.J. Jr. )

    1994-11-01

    This articles examines why a combined heat reclaim/economizer system with priority to heat reclaim operation is most likely to result in the least annual total HVAC energy. PC-based, hour-by-hour simulation programs evaluate annual HVAC energy requirements when using combined operation of heat reclaim and economizer cycle, while giving priority to operation of either one. These simulation programs also enable the design engineer to select the most viable heat reclaim and/or economizer system for any given type of HVAC system serving the building internal load level, building geographical location and other building/system variables.

  15. DOE Offers $15 Million Geothermal Heat Recovery Opportunity

    Broader source: Energy.gov [DOE]

    DOE's Geothermal Technologies Program announced on August 20 a $15 million funding opportunity to research and develop innovative methods of extracting heat from geothermal resources. DOE is...

  16. Wastewater heat recovery method and apparatus (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters ...

  17. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  18. Feasibility of Thermoelectrics for Waste Heat Recovery in Conventional Vehicles

    SciTech Connect (OSTI)

    Smith, K.; Thornton, M.

    2009-04-01

    Thermoelectric (TE) generators convert heat directly into electricity when a temperature gradient is applied across junctions of two dissimilar metals. The devices could increase the fuel economy of conventional vehicles by recapturing part of the waste heat from engine exhaust and generating electricity to power accessory loads. A simple vehicle and engine waste heat model showed that a Class 8 truck presents the least challenging requirements for TE system efficiency, mass, and cost; these trucks have a fairly high amount of exhaust waste heat, have low mass sensitivity, and travel many miles per year. These factors help maximize fuel savings and economic benefits. A driving/duty cycle analysis shows strong sensitivity of waste heat, and thus TE system electrical output, to vehicle speed and driving cycle. With a typical alternator, a TE system could allow electrification of 8%-15% of a Class 8 truck's accessories for 2%-3% fuel savings. More research should reduce system cost and improve economics.

  19. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    SciTech Connect (OSTI)

    Thekdi, Arvind; Nimbalkar, Sachin U.

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  20. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  1. Ultramizer: Waste Heat Recovery System for Commercial and Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    removes pure water from the waste stream, which can then be reused to reduce makeup water demand. The recovered latent heat energy can be used to reduce energy input for...

  2. Combined heat and power systems that consist of biomass fired fluidised bed combustors and modern steam engines

    SciTech Connect (OSTI)

    Joseph, S.D.; Errey, S.; Thomas, M.; Kruger, P.

    1996-12-31

    Biomass energy is widely used in many processing industries in the ASEAN region. The residue produced by agricultural and wood processing plant is either inefficiently combusted in simple furnaces or in the open, or disposed of in land fill sites or in rivers. Many of these industries are paying high prices for electricity in rural areas and/or supply is unreliable. An ASEAN/Australian cooperation program has been under way for the last ten years to introduce clean burning biomass fired heat and/or combined heat and power equipment. It aims to transfer Australian know how in the design and manufacture of fluidised bed CHP technology to the ASEAN region. The main participants involved in the program include SIRIM and UKM in Malaysia, PCIERD, FPRI and Asia Ratan in the Philippines, King Monkutt Institute of Technology (KMITT) in Thailand, LIPI and ITB in Indonesia, and the University of Singapore. In this paper an outline of the program will be given including results of market research and development undertaken into fluidised bed combustion, the proposed plant design and costings, and research and development undertaken into modem steam engine technology. It will be shown that all of the projects to be undertaken are financially viable. In particular the use of simple low cost high efficient steam engines ensures that the smaller CHP plant (50-100 kWe) can be viable.

  3. Save Energy Now in Your Steam Systems

    Broader source: Energy.gov [DOE]

    This brief outlines typical ways to increase steam system efficiency through changes in distribution, generation, and recovery.

  4. A Waste Heat Recovery System for Light Duty Diesel Engines

    SciTech Connect (OSTI)

    Briggs, Thomas E; Wagner, Robert M; Edwards, Kevin Dean; Curran, Scott; Nafziger, Eric J

    2010-01-01

    In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

  5. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect (OSTI)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  6. A Highly Efficient Six-Stroke Internal Combustion Engine Cycle with Water Injection for In-Cylinder Exhaust Heat Recovery

    SciTech Connect (OSTI)

    Conklin, Jim; Szybist, James P

    2010-01-01

    A concept is presented here that adds two additional strokes to the four-stroke Otto or Diesel cycle that has the potential to increase fuel efficiency of the basic cycle. The engine cycle can be thought of as a 4 stroke Otto or Diesel cycle followed by a 2-stroke heat recovery steam cycle. Early exhaust valve closing during the exhaust stroke coupled with water injection are employed to add an additional power stroke at the end of the conventional four-stroke Otto or Diesel cycle. An ideal thermodynamics model of the exhaust gas compression, water injection at top center, and expansion was used to investigate this modification that effectively recovers waste heat from both the engine coolant and combustion exhaust gas. Thus, this concept recovers energy from two waste heat sources of current engine designs and converts heat normally discarded to useable power and work. This concept has the potential of a substantial increase in fuel efficiency over existing conventional internal combustion engines, and under appropriate injected water conditions, increase the fuel efficiency without incurring a decrease in power density. By changing the exhaust valve closing angle during the exhaust stroke, the ideal amount of exhaust can be recompressed for the amount of water injected, thereby minimizing the work input and maximizing the mean effective pressure of the steam expansion stroke (MEPsteam). The value of this exhaust valve closing for maximum MEPsteam depends on the limiting conditions of either one bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens to discard the spent gas mixture in the sixth stroke. The range of MEPsteam calculated for the geometry of a conventional gasoline spark-ignited internal combustion engine and for plausible water injection parameters is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this

  7. Counter flow cooling drier with integrated heat recovery

    DOE Patents [OSTI]

    Shivvers, Steve D.

    2009-08-18

    A drier apparatus for removing water or other liquids from various materials includes a mixer, drying chamber, separator and regenerator and a method for use of the apparatus. The material to be dried is mixed with a heated media to form a mixture which then passes through the chamber. While passing through the chamber, a comparatively cool fluid is passed counter current through the mixture so that the mixture becomes cooler and drier and the fluid becomes hotter and more saturated with moisture. The mixture is then separated into drier material and media. The media is transferred to the regenerator and heated therein by the hot fluid from the chamber and supplemental heat is supplied to bring the media to a preselected temperature for mixing with the incoming material to be dried. In a closed loop embodiment of the apparatus, the fluid is also recycled from the regenerator to the chamber and a chiller is utilized to reduce the temperature of the fluid to a preselected temperature and dew point temperature.

  8. Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery

    SciTech Connect (OSTI)

    Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

    2008-06-20

    An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

  9. Use of hydrogen-free carbon monoxide with steam in recovery of heavy oil at low temperatures

    SciTech Connect (OSTI)

    Hyne, J. B.; Tyrer, J. D.

    1984-12-11

    A process for recovering oil from a subterranean heavy oil-containing reservoir is provided, wherein steam and carbon monoxide are injected into the reservoir at a temperature less than about 260/sup 0/ C. At these low temperatures, the steam and hydrogen-free carbon monoxide are found to react in the reservoir, by the water gas reaction, to form carbon dioxide and hydrogen. These products both have upgrading effects on the heavy oil, enhancing its quality and producibility. At the low temperatures of the process, gasification and polymerization of the heavy oil are minimized.

  10. Modeling of coupled heat and mass transfers with phase change in a porous medium: Application to superheated steam drying

    SciTech Connect (OSTI)

    Daurelle, J.V.; Topin, F.; Occelli, R. [IUSTI, Marseille (France)

    1998-01-01

    The physical model is based on balance equations at the representative elementary volume. The considered medium has three phases (liquid, solid, and gas). The gas phase includes two components (air and vapor). The authors use the mass balance equations on air and water (liquid and steam) as well as the heat equation in order to describe the phenomena. The system of equations is closed via classical relations in these media, which leads to a three-equation system with coupled nonlinear partial derivatives. The authors have applied this model to superheated steam drying. A solution model of the coupled nonlinear equation system based on the finite element method in a two-dimensional configuration was developed and validated. This approach allows one to determine all the variables of the problem. It is a complementary tool of analysis that opens access to nonmeasurable variables, such as the phase change rate. This computation model was applied to a configuration studied experimentally. The numerical and experimental results agree in nondimensional time. This double approach has enabled them to point out and evaluate new mechanisms typical of this drying method.

  11. Potential use of California lignite and other alternate fuel for enhanced oil recovery. Phase I and II. Final report. [As alternative fuels for steam generation in thermal EOR

    SciTech Connect (OSTI)

    Shelton, R.; Shimizu, A.; Briggs, A.

    1980-02-01

    The Nation's continued reliance on liquid fossil fuels and decreasing reserves of light oils gives increased impetus to improving the recovery of heavy oil. Thermal enhanced oil recovery EOR techniques, such as steam injection, have generally been the most effective for increasing heavy oil production. However, conventional steam generation consumes a large fraction of the produced oil. The substitution of alternate (solid) fuels would release much of this consumed oil to market. This two-part report focuses on two solid fuels available in California, the site of most thermal EOR - petroleum coke and lignite. Phase I, entitled Economic Analysis, shows detailed cost comparisons between the two candidate fuels and also with Western coal. The analysis includes fuels characterizations, process designs for several combustion systems, and a thorough evaluation of the technical and economic uncertainties. In Phase II, many technical parameters of petroleum coke combustion were measured in a pilot-plant fluidized bed. The results of the study showed that petroleum coke combustion for EOR is feasible and cost effective in a fluidized bed combustor.

  12. Building America Expert Meeting: Multifamily Hydronic and Steam...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits Building America Expert Meeting: Multifamily Hydronic and Steam Heating Controls and Distribution ...

  13. Industrial Steam System Heat-Transfer SolutionsL: A BestPractices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... standards with fouling on the heat- transfer surface. The fouling factor is typically a modest additional cost compared to the value it can provide to the process operation. ...

  14. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2

    SciTech Connect (OSTI)

    Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu

    2005-06-03

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 September 2004. Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance.Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. Development of advanced signal processing methods using

  15. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  16. Experimental investigation of a reticulated porous alumina heat exchanger for high temperature gas heat recovery

    SciTech Connect (OSTI)

    Banerjee, A; Chandran, RB; Davidson, JH

    2015-01-22

    The present study presents an experimental study of a prototype counter-flow heat exchanger designed to recover sensible heat from inert and reactive gases flowing through a high temperature solar reactor for splitting CO2. The tube-in-tube heat exchanger is comprised of two concentric alumina tubes, each filled with reticulated porous alumina with a nominal porosity of 80% and pore density of 5 pores per inch (ppi). The RPC provides high heat transfer surface area per unit volume (917 m(-1)) with low pressure drop. Measurements include the permeability, inertial coefficient, overall heat transfer coefficient, effectiveness and pressure drop. For laminar flow and an inlet gas temperature of 1240 K, the overall heat transfer coefficients are 36-41 W m(-2) K-1. The measured performance is in good agreement with a prior CFD model of the heat exchanger. (C) 2014 Elsevier Ltd. All rights reserved.

  17. Optimization of the operation of a drying heat pump using superheated steam

    SciTech Connect (OSTI)

    Moraitis, C.S.; Akritidis, C.B.

    1997-05-01

    A numerical solution of a model which describes the optimal operation of a novel concept of heat pump for drying applications based on the theory of minimum energy cycles is presented. The thermodynamic cycle of the drying heat pump involves vapor condensation in a Laval nozzle, removal of the liquid phase in a separator as well as compression of the working medium, which is superheated vapor.

  18. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    SciTech Connect (OSTI)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  19. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.

    SciTech Connect (OSTI)

    Belle R. Upadhyaya; J. Wesley Hines

    2004-09-27

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal

  20. Simulation of the loss of RHR during midloop operations and the role of steam generators in decay heat removal

    SciTech Connect (OSTI)

    Raja, L.L.; Banerjee, S.; Hassan, Y.A. )

    1992-01-01

    Loss of residual heat removal (RHR) during midloop operations was simulated using the RELAP5/MOD3 thermal-hydraulic code for a typical four-loop pressurized water reactor (PWR) under reduced inventory level. Two cases are considered here: one for an intact reactor coolant system with no vents and the other for an open system with a vent in the pressurizer. The effect of air on the transients was studied, unlike the RETRAN analysis of core boiling during midloop operations performed by Fujita and Rice, which did not analyze the presence of air in the system. The steam generators have water in the secondary covering the U-tubes. The system gets pressurized once water starts boiling in the core with higher system pressures for the vent-closed case. Reflux condensation occurs in the U-tubes aiding decay heat removal and preventing complete uncovery of the core. Sudden pressurization of the hot leg and vessel upper head causes the reactor vessel to act as a manometer reducing the core level and raising the downcomer level. Fuel centerline and clad temperatures are below safety limits throughout the transients.

  1. Optimal recovery of the solution of the heat equation from inaccurate data

    SciTech Connect (OSTI)

    Magaril-Il'yaev, G G; Osipenko, Konstantin Yu

    2009-06-30

    The problem of optimal recovery of the solution of the heat equation in the entire space at a fixed instant of time from inaccurate observations of this solution at some other instants of time is investigated. Explicit expressions for an optimal recovery method and its error are given. The solution of a similar problem with a priori information about the temperature distribution at some instants of time is also given. In all cases the optimal method uses information about at most two observations. Bibliography: 22 titles.

  2. Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Schamel, S.

    1996-11-01

    This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program. One of the main objectives of Budget Period I was to return the Pru Fee property to economic production and establish a baseline productivity with cyclic steaming. By the end of the second quarter 1996, all Pru producers except well 101 had been cyclic steamed two times. Each steam cycle was around 10,000 barrels of steam (BS) per well. No mechanical problems were found in the existing old wellbores. Conclusion is after several years of being shut-in, the existing producers on the Pru lease are in reasonable mechanical condition, and can therefore be utilized as viable producers in whatever development plan we determine is optimum. Production response to cyclic steam is very encouraging in the new producer, however productivity in the old producers appears to be limited in comparison.

  3. Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures

    SciTech Connect (OSTI)

    Tomlinson, John J; Christian, Jeff; Gehl, Anthony C

    2012-09-01

    Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the

  4. Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

    SciTech Connect (OSTI)

    Donna Post Guillen

    2012-11-01

    This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

  5. Downhole steam injector

    DOE Patents [OSTI]

    Donaldson, A. Burl; Hoke, Donald E.

    1983-01-01

    An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

  6. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    SciTech Connect (OSTI)

    Hendricks, Terry; Choate, William T.

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  7. An Engine System Approach to Exhaust Waste Heat Recovery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_kruiswyk.pdf (1.21 MB) More Documents & Publications An Engine System Approach to Exhaust Waste Heat Recovery Engine System Approach to Exhaust Energy

  8. Steam System Survey Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... when compared to fuel-oil and natural-gas-fired boilers. ... form throughout the combustion and heat transfer processes. ... removal are steam jet ejectors and mechanical vacuum pumps. ...

  9. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    SciTech Connect (OSTI)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  10. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

    1999-02-01

    This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

  11. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Jenkins, Creties; Sprinkel, Doug; Deo, Milind; Wydrinski, Ray; Swain, Robert

    1997-10-21

    This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  12. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Schamel, Steven

    1997-07-29

    This project reactivates ARCO's idle Pru Fee property in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery was initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and the recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  13. Simulation of loss of RHR during midloop operations and the role of steam generators in decay heat removal using the RELAP5/MOD3 code

    SciTech Connect (OSTI)

    Hassan, Y.A.; Raja, L.L. . Dept. of Nuclear Engineering)

    1993-09-01

    Loss of residual heat removal during midloop operations was simulated for a typical four-loop pressurized water reactor operated under reduced inventory level using the RELAP5/MOD3 thermal-hydraulic code. Two cases are considered here: one for an intact reactor coolant system with no vents and the other for an open system with a vent in the pressurizer. The presence of air in the reactor coolant system is modeled, and its effect on the transients is calculated. The steam generators are considered under wet lay up with water in the secondary covering the U-tubes. The system is pressurized once the water starts boiling in the core. Higher system pressures are seen for the closed-vent case when compared with the open-vent case. Reflux condensation occurs in the steam generator U-tubes preventing complete uncovery of the core and aiding in decay heat removal. The total heat removed by the steam generators is one-third of that produced by the core. The hot leg and vessel upper head pressurization cause the reactor vessel to act as a manometer where the core level drops and the downcomer level rises. This phenomenon is seen at different transient times for the two cases. Since it occurs only for a brief period, the rest of the transient is unaffected. Fuel centerline and clad temperatures are observed to be below the accepted safety limits throughout both transients.

  14. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect (OSTI)

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  15. Assessment and development of an advanced heat pump for recovery of volatile organic compounds

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    This report documents Phase 1 of a project conducted by Mechanical Technology Incorporated (MTI) for the assessment and development of an advanced heat pump for recovery of VOC solvents from process gas streams. In Phase 1, MTI has evaluated solvent recovery applications within New York State (NYS), identified host sites willing to implement their application, and conducted a preliminary design of the equipment required. The design and applications were evaluated for technical and economic feasibility. The solvent recovery heat pump system concept resulting from the Phase 1 work is one of a mobile unit that would service multiple stationary adsorbers. A large percentage of solvent recovery applications within the state can be serviced by on-site carbon bed adsorbers that are desorbed at frequencies ranging from once per to once per month. In this way, many users can effectively share'' the substantial capital investment associated with the system's reverse Brayton hardware, providing it can be packaged as a mobile unit. In a typical operating scenario, a carbon adsorption module will be located permanently at the industrial site. The SLA will be ducted through the adsorber and the solvents removed, thus eliminating an air emission problem. Prior to VOC breakthrough, by schedule or by request, the mobile unit would arrive at the site to recover the concentrated solvent. An engine driven, natural gas fueled system, the mobile unit utilizes conditioned engine exhaust gases as the inert gas for desorption. Hot inert gas is directed through the carbon bed, heating it and volatilizing the adsorbed solvent. Using a revere Brayton-cycle refrigeration system to create low temperatures, the solvent vapors are condensed and collected from the inert gas stream. The solvent can then be recycled to the production process or sold for other uses and the adsorber returned to service.

  16. LPG recovery from refinery flare by waste heat powered absorption refrigeration

    SciTech Connect (OSTI)

    Erickson, D.C.; Kelly, F.

    1998-07-01

    A waste heat powered ammonia Absorption Refrigeration Unit (ARU) has commenced operation at the Colorado Refining Company in Commerce City, Colorado. The ARU provides 85 tons of refrigeration at 30 F to refrigerate the net gas/treat gas stream, thereby recovering 65,000 barrels per year of LPG which formerly was flared or burned as fuel. The ARU is powered by the 290 F waste heat content of the reform reactor effluent. An additional 180 tons of refrigeration is available at the ARU to debottleneck the FCC plant wet gas compressors by cooling their inlet vapor. The ARU is directly integrated into the refinery processes, and uses enhanced, highly compact heat and mass exchange components. The refinery's investment will pay back in less than two years from increased recovery of salable product, and CO{sub 2} emissions are decreased by 10,000 tons per year in the Denver area.

  17. Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

    SciTech Connect (OSTI)

    2011-12-19

    HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

  18. Light weight and economical exhaust heat exchanger for waste heat recovery using mixed radiant and convective heat transfer

    Broader source: Energy.gov [DOE]

    A hybrid heat exchanger is designed to keep highly stressed materials around the working fluid at a moderate temperature so that it can operate at higher working fluid pressure.

  19. Life cycle assessment of an energy-system with a superheated steam dryer integrated in a local district heat and power plant

    SciTech Connect (OSTI)

    Bjoerk, H.; Rasmuson, A.

    1999-07-01

    Life cycle assessment (LCA) is a method for analyzing and assessing the environmental impact of a material, product or service throughout the entire life cycle. In this study 100 GWh heat is to be demanded by a local heat district. A mixture of coal and wet biofuel is frequently used as fuel for steam generation (Case 1). A conversion of the mixed fuel to dried biofuel is proposed. In the district it is also estimated that it is possible for 4000 private houses to convert from oil to wood pellets. It is proposed that sustainable solution to the actual problem is to combine heat and power production together with an improvement in the quality of wood residues and manufacture of pellets. It is also proposed that a steam dryer is integrated to the system (Case 2). Most of the heat from the drying process is used by the municipal heating networks. In this study the environmental impact of the two cases is examined with LCA. Different valuation methods shows the Case 2 is an improvement over Case 1, but there is diversity in the magnitudes of environmental impact in the comparison of the cases. The differences depend particularly on how the emissions of CO{sub 2}, NO{sub x} and hydrocarbons are estimated. The impact of the organic compounds from the exhaust gas during the drying is estimated as low in all of the three used methods.

  20. Use a Vent Condenser to Recover Flash Steam Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use a Vent Condenser to Recover Flash Steam Energy (January 2012) (374.64 KB) More Documents & Publications Recover Heat from Boiler Blowdown Deaerators in Industrial Steam Systems ...

  1. Fluidized-bed waste-heat recovery system development: Final report

    SciTech Connect (OSTI)

    Patch, K.D.; Cole, W.E.

    1988-06-01

    A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize the energy, which is applicable to all processes, is to preheat the combustion air for the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) system is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, recirculating alumina particles are heated by the flue gas in a raining bed. The hot particles are then removed from the bed and placed in a fluidized bed where they are fluidized by the combustion air. Through this process, the combustion air is preheated. The cooled particles are then returned to the raining bed. Initial development of this concept is for the aluminum smelting industry. In this final report, the design, development, fabrication, and installation of a full-scale FBWHR system is detailed.

  2. A highly efficient alcohol vapor aspirating spark-ignition engine with heat recovery

    SciTech Connect (OSTI)

    Bergmann, H.K.

    1982-10-01

    The fuel properties of the lower alcohols indicate that both, straight methanol and ethanol are fundamentally unsuitable for utilization in the compression ignition process. In order to achieve the optimum possible benefit from the specific advantages of these alcohols, the alcohol-gas engine concept has been developed by Daimler-Benz. Due to partial recovery of the engine's waste heat by fuel vaporization and extreme lean burn capability, remarkable engine efficiencies are obtained. Design, performance, further development and installation of this system in prototype city buses are described.

  3. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  4. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  5. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Steven Schamel

    1998-02-27

    A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region. In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft, but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

  6. Demonstration of a 30-kW Microturbine with Heat Recovery in a 500-Soldier Barracks

    SciTech Connect (OSTI)

    Friedrich, Michele; Armstrong, Peter R.; Smith, David L.; Rowley, Steven

    2005-12-31

    A combined heat and power-configured microturbine system was evaluated as an alternative to grid-supplied electric power. While off-grid, the system provides auxiliary power for gas-fired boilers and a portion of the domestic hot water for a 500-man barracks and kitchen. One-time tests were made of sound levels, stack emissions and power quality. Steady-state generating capacity dropped faster than the ratings as the inlet air temperature approached 15°C, while generating efficiency, based on fuel higher heating value, did not drop as rapidly and was still almost 21% at 33°C. The microturbine must boost the fuel (natural gas) delivery pressure to 55 psig. During the one year of operation, four fuel compressors failed and there were repeated failures of the microturbine and heat recovery heat exchanger controls. Energy savings based on the measured performance and CY2003 utility rates were $2670 per year. This paper, which will be presented at the ASHRAE Annual Meeting in Orlando, Florida, Feb. 5-9, describes the results of this evaluation.

  7. Steam turbine: Alternative emergency drive for the secure removal of residual heat from the core of light water reactors in ultimate emergency situation

    SciTech Connect (OSTI)

    Souza Dos Santos, R.

    2012-07-01

    In 2011 the nuclear power generation has suffered an extreme probation. That could be the meaning of what happened in Fukushima Nuclear Power Plants. In those plants, an earthquake of 8.9 on the Richter scale was recorded. The quake intensity was above the trip point of shutting down the plants. Since heat still continued to be generated, the procedure to cooling the reactor was started. One hour after the earthquake, a tsunami rocked the Fukushima shore, degrading all cooling system of plants. Since the earthquake time, the plant had lost external electricity, impacting the pumping working, drive by electric engine. When operable, the BWR plants responded the management of steam. However, the lack of electricity had degraded the plant maneuvers. In this paper we have presented a scheme to use the steam as an alternative drive to maintain operable the cooling system of nuclear power plant. This scheme adds more reliability and robustness to the cooling systems. Additionally, we purposed a solution to the cooling in case of lacking water for the condenser system. In our approach, steam driven turbines substitute electric engines in the ultimate emergency cooling system. (authors)

  8. Airflow reduction during cold weather operation of residential heat recovery ventilators

    SciTech Connect (OSTI)

    McGugan, C.A.; Edwards, P.F.; Riley, M.A.

    1987-06-01

    Laboratory measurements of the performance of residential heat recovery ventilators have been carried out for the R-2000 Energy Efficient Home Program. This work was based on a preliminary test procedure developed by the Canadian Standards Association, part of which calls for testing the HRV under cold weather conditions. An environmental chamber was used to simulate outdoor conditions. Initial tests were carried out with an outdoor temperature of -20/sup 0/C; subsequent tests were carried out at a temperature of -25/sup 0/C. During the tests, airflows, temperatures, and relative humidities of airstreams entering and leaving the HRV, along with electric power inputs, were monitored. Frost buildup in the heat exchangers and defrost mechanisms, such as fan shutoff or recirculation, led to reductions in airflows. The magnitude of the reductions is dependent on the design of the heat exchanger and the defrost mechanism used. This paper presents the results of tests performed on a number of HRVs commercially available in Canada at the time of the testing. The flow reductions for the various defrost mechanisms are discussed.

  9. Modeling of reciprocating internal combustion engines for power generation and heat recovery

    SciTech Connect (OSTI)

    Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

    2013-02-01

    This paper presents a power generation and heat recovery model for reciprocating internal combustion engines (ICEs). The purpose of the proposed model is to provide realistic estimates of performance/efficiency maps for both electrical power output and useful thermal output for various capacities of engines for use in a preliminary CHP design/simulation process. The proposed model will serve as an alternative to constant engine efficiencies or empirical efficiency curves commonly used in the current literature for simulations of CHP systems. The engine performance/efficiency calculation algorithm has been coded to a publicly distributed FORTRAN Dynamic Link Library (DLL), and a user friendly tool has been developed using Visual Basic programming. Simulation results using the proposed model are validated against manufacturer’s technical data.

  10. Investigation of austenitic alloys for advanced heat recovery and hot-gas cleanup systems

    SciTech Connect (OSTI)

    Swindeman, R.W.

    1997-12-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, and modified alloy 800. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700 C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925 C with good weldability and ductility.

  11. Recovery of waste heat from industrial slags via modified float glass process

    SciTech Connect (OSTI)

    Serth, R.W.; Ctvrtnicek, T.E.; McCormick, R.J.; Zanders, D.L.

    1981-01-01

    A novel process for recovering waste heat from molten slags produced as by-products in the steel, copper, and elemental phosphorus industries is investigated. The process is based on technology developed in the glass industry for the commercial production of flat glass. In this process, energy is recovered from molten slag as it cools and solidifies on the surface of a pool of molten tin. In order to determine the technical and economic feasibility of the process, an energy recovery facility designed to handle the slag from a large elemental phosphorus plant is studied. Results indicate that the process is marginally economical at current energy price levels. A number of technical uncertainties in the process design are also identified. 9 refs.

  12. WASTE HEAT RECOVERY USING THERMOELECTRIC DEVICES IN THE LIGHT METALS INDUSTRY

    SciTech Connect (OSTI)

    Choate, William T.; Hendricks, Terry J.; Majumdar, Rajita

    2007-05-01

    Recently discovered thermoelectric materials and associated manufacturing techniques (nanostructures, thin-film super lattice, quantum wells...) have been characterized with thermal to electric energy conversion efficiencies of 12-25+%. These advances allow the manufacture of small-area, high-energy flux (350 W/cm2 input) thermoelectric generating (TEG) devices that operate at high temperatures (~750C). TEG technology offers the potential for large-scale conversion of waste heat from the exhaust gases of electrolytic cells (e.g., Hall-Hroult cells) and from aluminum, magnesium, metal and glass melting furnaces. This paper provides an analysis of the potential energy recovery and of the engineering issues that are expected when integrating TEG systems into existing manufacturing processes. The TEG module must be engineered for low-cost, easy insertion and simple operation in order to be incorporated into existing manufacturing operations. Heat transfer on both the hot and cold-side of these devices will require new materials, surface treatments and design concepts for their efficient operation.

  13. Final Scientific/Technical Report [Recovery Act: Districtwide Geothermal Heating Conversion

    SciTech Connect (OSTI)

    Chatterton, Mike

    2014-02-12

    The Recovery Act: Districtwide Geothermal Heating Conversion project performed by the Blaine County School District was part of a larger effort by the District to reduce operating costs, address deferred maintenance items, and to improve the learning environment of the students. This project evaluated three options for the ground source which were Open-Loop Extraction/Re-injection wells, Closed-Loop Vertical Boreholes, and Closed-Loop Horizontal Slinky approaches. In the end the Closed-Loop Horizontal Slinky approach had the lowest total cost of ownership but the majority of the sites associated with this project did not have enough available ground area to install the system so the second lowest option was used (Open-Loop). In addition to the ground source, this project looked at ways to retrofit existing HVAC systems with new high efficiency systems. The end result was the installation of distributed waterto- air heat pumps with water-to-water heat pumps installed to act as boilers/chillers for areas with a high ventilation demand such as they gymnasiums. A number of options were evaluated and the lowest total cost of ownership approach was implemented in the majority of the facilities. The facilities where the lowest total cost of ownership approaches was not selected were done to maintain consistency of the systems from facility to facility. This project had a number of other benefits to the Blaine County public. The project utilizes guaranteed energy savings to justify the levy funds expended. The project also developed an educational dashboard that can be used in the classrooms and to educate the community on the project and its performance. In addition, the majority of the installation work was performed by contractors local to Blaine County which acted as an economic stimulus to the area during a period of recession.

  14. Downhole steam injector. [Patent application

    SciTech Connect (OSTI)

    Donaldson, A.B.; Hoke, E.

    1981-06-03

    An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

  15. Superheated steam power plant with steam to steam reheater. [LMFBR

    SciTech Connect (OSTI)

    Silvestri, G.J.

    1981-06-23

    A desuperheater is disposed in a steam supply line supplying superheated steam to a shell and tube reheater.

  16. Best Management Practice #8: Steam Boiler Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

  17. Locating hot and cold-legs in a nuclear powered steam generation system

    DOE Patents [OSTI]

    Ekeroth, Douglas E.; Corletti, Michael M.

    1993-01-01

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.

  18. Locating hot and cold-legs in a nuclear powered steam generation system

    DOE Patents [OSTI]

    Ekeroth, D.E.; Corletti, M.M.

    1993-11-16

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

  19. Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report

    SciTech Connect (OSTI)

    1995-01-01

    The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

  20. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    SciTech Connect (OSTI)

    Khalifa, H.E.

    1983-12-01

    This report presents an evaluation of Brayton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. It is also shown that, if installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or $170/Bhp. Technical and economic barriers that would hinder the commercial introduction of bottoming systems were identified.

  1. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    SciTech Connect (OSTI)

    Duffy, T.; Schneider, P.

    1996-01-01

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  2. Steam reformer with catalytic combustor

    DOE Patents [OSTI]

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  3. Fast fluidized bed steam generator

    DOE Patents [OSTI]

    Bryers, Richard W. (Flemington, NJ); Taylor, Thomas E. (Bergenfield, NJ)

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  4. Heat Distribution Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool Home Heating Systems Heat Distribution Systems Heat Distribution Systems Radiators are used in steam and hot water heating. | Photo courtesy of iStockphoto...

  5. Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    SciTech Connect (OSTI)

    Gregory Meisner

    2011-08-31

    We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and

  6. NUCLEAR FLASH TYPE STEAM GENERATOR

    DOE Patents [OSTI]

    Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

    1962-09-01

    A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

  7. Combined heat recovery and dry scrubbing for MWCs to meet the new EPA guidelines

    SciTech Connect (OSTI)

    Finnis, P.J.; Heap, B.M.

    1997-12-01

    Both the UK and US Municipal Waste Combuster (MWC) markets have undergone upgraded regulatory control. In the UK, the government`s Integrated Pollution Control (IPC) regime, enforced by the 1990 Environmental Protection Act (EPA) Standard IPR5/3 moved control of emissions of MWCs from local councils to the government Environmental Authority (EA). Existing MWCs had until December 1, 1996 to complete environmental upgrades. Simultaneously, the European Community (EC) was finalizing more stringent legislation to take place in the year 2001. In the US, the 1990 Clean Air Act amendments required the Environmental Protection Agency (EPA) to issue emission guidelines for new and existing facilities. Existing facilities are likely to have only until the end of 1999 to complete upgrades. In North America, Procedair Industries Corp had received contracts from Kvaerner EnviroPower AB, for APC systems of four new Refuse Derived Fuel (RDF) fluid bed boilers that incorporated low outlet temperature economizers as part of the original boiler equipment. The Fayetteville, North Carolina facility was designed for 200,000 tpy. What all these facilities have in common is low economizer outlet temperatures of 285{degrees}F coupled with a Total Dry Scrubbing System. MWC or RDF facilities using conventional spray dryer/fabric filter combinations have to have economizer gas outlet temperatures about 430{degrees}F to allow for evaporation of the lime slurry in the spray dryer without the likelihood of wall build up or moisture carry over. Since the Totally Dry Scrubbing System can operate with economizer gas outlet temperatures about 285{degrees}F, the added energy available for sale from adding low outlet temperature economizer heat recovery can be considerable. This paper focuses on Procedair`s new plant and retrofit experience using `Dry Venturi Reactor/Fabric Filter` combinations with the lower inlet temperature operating conditions.

  8. Thermally-enhanced oil recovery method and apparatus

    DOE Patents [OSTI]

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  9. Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Nick Rosenberry, Harris Companies

    2012-05-04

    A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

  10. TRANSPORT AND PHASE EQUILIBRIA PROPERITIES FOR STEAM FLOODING...

    Office of Scientific and Technical Information (OSTI)

    are indispensable to design and improve oil recovery processes such as steam, hot ... and equilibrium properties of selected oilCOsub 2water mixtures at pressures up to ...