Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Direct Refrigeration from Heat Recovery Using 2-Stage Absorption Chillers  

E-Print Network [OSTI]

Although the cost of some fossil fuels has moderated, the importance of energy conservation by heat recovery has not diminished. The application of waste heat generated steam to produce chilled water is not new. However, there is a newly developed...

Hufford, P. E.

1983-01-01T23:59:59.000Z

2

Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery  

SciTech Connect (OSTI)

An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

2008-06-20T23:59:59.000Z

3

LPG recovery from refinery flare by waste heat powered absorption refrigeration  

SciTech Connect (OSTI)

A waste heat powered ammonia Absorption Refrigeration Unit (ARU) has commenced operation at the Colorado Refining Company in Commerce City, Colorado. The ARU provides 85 tons of refrigeration at 30 F to refrigerate the net gas/treat gas stream, thereby recovering 65,000 barrels per year of LPG which formerly was flared or burned as fuel. The ARU is powered by the 290 F waste heat content of the reform reactor effluent. An additional 180 tons of refrigeration is available at the ARU to debottleneck the FCC plant wet gas compressors by cooling their inlet vapor. The ARU is directly integrated into the refinery processes, and uses enhanced, highly compact heat and mass exchange components. The refinery's investment will pay back in less than two years from increased recovery of salable product, and CO{sub 2} emissions are decreased by 10,000 tons per year in the Denver area.

Erickson, D.C.; Kelly, F.

1998-07-01T23:59:59.000Z

4

New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement  

SciTech Connect (OSTI)

Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

2014-01-01T23:59:59.000Z

5

Low Level Heat Recovery Technology  

E-Print Network [OSTI]

level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

O'Brien, W. J.

1982-01-01T23:59:59.000Z

6

Locating Heat Recovery Opportunities  

E-Print Network [OSTI]

Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

Waterland, A. F.

1981-01-01T23:59:59.000Z

7

Absorption heat pump system  

DOE Patents [OSTI]

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, G.

1982-06-16T23:59:59.000Z

8

Absorption heat pump system  

DOE Patents [OSTI]

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, Gershon (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

9

Mass and Heat Recovery  

E-Print Network [OSTI]

In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

Hindawai, S. M.

2010-01-01T23:59:59.000Z

10

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

11

Absorption heat pump system  

DOE Patents [OSTI]

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

1984-01-01T23:59:59.000Z

12

Olefin recovery via chemical absorption  

SciTech Connect (OSTI)

The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

Barchas, R. [Stone & Webster Engineering Corporation, Houston, TX (United States)

1998-06-01T23:59:59.000Z

13

Challenges in Industrial Heat Recovery  

E-Print Network [OSTI]

This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

Dafft, T.

2007-01-01T23:59:59.000Z

14

Can You Afford Heat Recovery?  

E-Print Network [OSTI]

many companies to venture into heat recovery projects without due consideration of the many factors involved. Many of these efforts have rendered less desirable results than expected. Heat recovery in the form of recuperation should be considered...

Foust, L. T.

1983-01-01T23:59:59.000Z

15

[Waste water heat recovery system  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

16

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

17

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

18

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

19

Commercialization of Industrialized Absorption Heat Pumps in the US  

E-Print Network [OSTI]

COMMERCIALIZATION OF INDUSTRIAL ABSORPTION HEAT PUMPS IN THE US MALCOLM G. PETTIGREW LITWIN ENGINEERS &CONSTRUCTORS, INC. HOUSTON, ABSTRACT The recovery of waste heat through absorption heat pumping is quite appeal ing to U.S. industry.... However, although this technology has been successfully applied in Europe and Japan, a cauti ous atmosphere wi 11 continue to prevail in the U.S. until the first absorption heat pump is built and successfully demonstrates it's viability...

Pettigrew, M. G.

20

Absorption-heat-pump system  

DOE Patents [OSTI]

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, G.; Perez-Blanco, H.

1983-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Heat Recovery Steam Generator Simulation  

E-Print Network [OSTI]

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs...

Ganapathy, V.

22

Waste Heat Recovery from Refrigeration  

E-Print Network [OSTI]

heat recovery from refrigeration machines is a concept which has great potential for implementation in many businesses. If a parallel requirement for refrigeration and hot water exists, the installation of a system to provide hot water as a by...

Jackson, H. Z.

1982-01-01T23:59:59.000Z

23

Industrial Heat Recovery - 1982  

E-Print Network [OSTI]

like: "Vertical, natural circulation boilers are intrinsically mbre reliable than horizontal, forced circula tion boilers.",4 and " it will be seen that horizontal tubes have much lower heat fluxes at burnout than do vertical ones, though...-steam density difference dia gram (Figure 1) has been presented repeat edly in order to indicate a significant density difference between the two phases (even close to the critical pressure) which induces natural circulation. However, this diagra...

Csathy, D.

1982-01-01T23:59:59.000Z

24

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolytic cell, designed to integrate waste heat recovery (i.e a microbial heat recovery cell or MHRC), can operate as a fuel cell and convert effluent streams into...

25

Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Automotive Waste Heat Recovery Develop Thermoelectric Technology for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery...

26

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric...

27

DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS  

E-Print Network [OSTI]

DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS K. Dao, M.ABSORPTION AIR CONDITIONERS AND HEAT PUMPS* K. DAO, M.

Dao, K.

2013-01-01T23:59:59.000Z

28

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with...

29

Absorptive Recycle of Distillation Waste Heat  

E-Print Network [OSTI]

condenser operates above ambient temperature, the rejected heat also contains unused availability. By incorporating an absorption heat pump (AHP) into the distillation process, these sources of unused availability can be tapped so as to recycle (and hence...

Erickson, D. C.; Lutz, E. J., Jr.

1982-01-01T23:59:59.000Z

30

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network [OSTI]

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

Ruch, M. A.

1981-01-01T23:59:59.000Z

31

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

32

High Efficiency Microturbine with Integral Heat Recovery - Presentatio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery -...

33

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

34

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

35

An Overview of Thermoelectric Waste Heat Recovery Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

36

Cascade heat recovery with coproduct gas production  

DOE Patents [OSTI]

A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

1986-10-14T23:59:59.000Z

37

Cascade heat recovery with coproduct gas production  

DOE Patents [OSTI]

A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

Brown, William R. (Zionsville, PA); Cassano, Anthony A. (Allentown, PA); Dunbobbin, Brian R. (Allentown, PA); Rao, Pradip (Allentown, PA); Erickson, Donald C. (Annapolis, MD)

1986-01-01T23:59:59.000Z

38

absorption heat pump: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heating capacity k jet nozzle Closed Cycles: AbsorptionAdsorption heat pump thermal compressor driven by waste heat1 Industrial heat pumps in Germany - potentials,...

39

Absorption Heat Pumping- Have You Tried It?  

E-Print Network [OSTI]

The concept of a thermal powered absorption heat pump is not a new or revolutionary idea. It has been successfully demonstrated in the lab and prototypes have been installed in the field. Units have been successfully applied in a number...

Davis, R. C.

40

Heat Pump for High School Heat Recovery  

E-Print Network [OSTI]

The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Use Feedwater Economizers for Waste Heat Recovery  

SciTech Connect (OSTI)

This revised ITP tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

42

Industrial Heat Recovery with Organic Rankine Cycles  

E-Print Network [OSTI]

Rising energy costs are encouraging energy intensive industries to investigate alternative means of waste heat recovery from process streams. The use of organic fluids in Rankine cycles offers improved potential for economical cogeneration from...

Hnat, J. G.; Patten, J. S.; Cutting, J. C.; Bartone, L. M.

1982-01-01T23:59:59.000Z

43

Heat Recovery Design Considerations for Cogeneration Systems  

E-Print Network [OSTI]

The design and integration of the heat recovery section, which includes the steam generation, auxiliary firing, and steam turbine modules, is critical to the overall performance and economics of cogeneration, systems. In gas turbine topping...

Pasquinelli, D. M.; Burns, E. D.

44

Recovery Act-Funded Water Heating Projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into water heating technologies and applications. Projects funded by the...

45

An Introduction to Waste Heat Recovery  

E-Print Network [OSTI]

our dependence on petroleum-based fuels, paper, glass, and agricultural and automotive and hence improve our merchandise .trade balance. equipment industries have all had proven success with heat recovery projects. Solar, wind, geothermal, oil shale...

Darby, D. F.

46

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

47

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat...

48

DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS  

E-Print Network [OSTI]

SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS K.Driven Absorption Air-Conditioner", K. Dao, M. Simmons, R.SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS* K.

Dao, K.

2013-01-01T23:59:59.000Z

49

Waste Heat Reduction and Recovery for Improving Furnace Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and...

50

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

organic Rankine cycle waste heat power conversion system. ”Cycle (ORC) System for Waste Heat Recovery. ” Journal ofRankine Cycles in Waste Heat Uti- lizing Processes. ”

Luong, David

2013-01-01T23:59:59.000Z

51

Design of Heat Exchanger for Heat Recovery in CHP Systems  

E-Print Network [OSTI]

The objective of this research is to review issues related to the design of heat recovery unit in Combined Heat and Power (CHP) systems. To meet specific needs of CHP systems, configurations can be altered to affect different factors of the design...

Kozman, T. A.; Kaur, B.; Lee, J.

52

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network [OSTI]

Waste Heat Recovery Power Generation with WOWGen? Business Overview WOW operates in the energy efficiency field - one of the fastest growing energy sectors in the world today. The two key products - WOWGen? and WOWClean? provide more... energy at cheaper cost and lower emissions. ? WOWGen? - Power Generation from Industrial Waste Heat ? WOWClean? - Multi Pollutant emission control system Current power generation technology uses only 35% of the energy in a fossil fuel...

Romero, M.

53

Investigating Methods of Heat Recovery from Low-Temperature PEM Fuel Cells in CHP Applications  

SciTech Connect (OSTI)

Heat recovery from low-temperature proton exchange membrane (PEM) fuel cells poses a number of challenges. In response to these challenges, thermodynamic assessments of proposed heat recovery methods are studied in the context of combined heat and power (CHP) for building applications. Preheating combustion air in conjunction with desiccant dehumidification and absorption cooling technologies is one of the two strategies examined in this study. The other approach integrates the PEM fuel cell with a water-loop heat pump (WLHP) for direct heat recovery. As the primary objective, energy-saving potentials of the adopted heat recovery strategies are estimated with respect to various benchmarks. The quantified energy-saving potentials are translated into effective CHP performance indices and compared with those typically specified by the manufacturers for service hot water applications. The need for developing CHP performance protocols is also discussed in light of the proposed energy recovery techniques - thereby, accomplishing the secondary objective.

Jalalzadeh-Azar, A. A.

2004-01-01T23:59:59.000Z

54

Waste-heat recovery in batch processes using heat storage  

SciTech Connect (OSTI)

The waste-heat recovery in batch processes has been studied using the pinch-point method. The aim of the work has been to investigate theoretical and practical approaches to the design of heat-exchanger networks, including heat storage, for waste-heat recovery in batch processes. The study is limited to the incorporation of energy-storage systems based on fixed-temperature variable-mass stores. The background for preferring this to the alternatives (variable-temperature fixed-mass and constant-mass constant-temperature (latent-heat) stores) is given. It is shown that the maximum energy-saving targets as calculated by the pinch-point method (time average model, TAM) can be achieved by locating energy stores at either end of each process stream. This theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. A simple procedure for determining a number of heat-storage tanks sufficient to achieve the maximum energy-saving targets as calculated by the pinch-point method is described. This procedure relies on combinatorial considerations, and could therefore be labeled the combinatorial method for incorporation of heat storage in heat-exchanger networks. Qualitative arguments justifying the procedure are presented. For simple systems, waste-heat recovery systems with only three heat-storage temperatures (a hot storage, a cold storage, and a heat store at the pinch temperature) often can achieve the maximum energy-saving targets. Through case studies, six of which are presented, it is found that a theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. The description of these six cases is intended to be sufficiently detailed to serve as benchmark cases for development of alternative methods.

Stoltze, S.; Mikkelsen, J.; Lorentzen, B.; Petersen, P.M.; Qvale, B. [Technical Univ. of Denmark, Lyngby (Denmark). Lab. for Energetics

1995-06-01T23:59:59.000Z

55

Rankine cycle waste heat recovery system  

DOE Patents [OSTI]

This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

Ernst, Timothy C.; Nelson, Christopher R.

2014-08-12T23:59:59.000Z

56

Heat Recovery Boilers for Process Applications  

E-Print Network [OSTI]

of the use of heat recovery due primarily to process considerations. On the other hand, cost and payback are main considerations in the case of gas turbine and incineration plants, where large quantities of gases are exhausted at temperatures varying from 800...

Ganapathy, V.; Rentz, J.; Flanagan, D.

57

An Integrated Low Level Heat Recovery System  

E-Print Network [OSTI]

A large amount of low level thermal energy is lost to air or water in a typical petroleum refinery. This paper discusses a complex integrated low level heat recovery system that is being engineered for installation in a large petroleum refinery...

Sierra, A. V., Jr.

1981-01-01T23:59:59.000Z

58

2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program...  

Broader source: Energy.gov (indexed) [DOE]

Documents & Publications Automotive Waste Heat Conversion to Power Program Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Development of a 100-Watt High...

59

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power...

60

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Presentation: Caterpillar Inc. 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel...

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

[Waste water heat recovery system]. Final report, September 30, 1992  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

62

E-Print Network 3.0 - absorption heat exchange Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center MOTIVATION ABSORPTION HEAT PUMP COMBINED CARNOT CYCLES... HEAT-DRIVEN HEAT PUMPS EXERGY DESTRUCTION IN ABSORPTION CYCLE PROCESSES ZERO-ORDER ABSORPTION...

63

Multi-stage quantum absorption heat pumps  

E-Print Network [OSTI]

It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized $N$-dimensional ideal heat pumps by merging $N-2$ elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths, and study their maximum achievable cooling power and the corresponding efficiency as a function of $N$. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

Luis A. Correa

2014-01-16T23:59:59.000Z

64

Low Temperature Heat Recovery for Boiler Systems  

E-Print Network [OSTI]

be economically heated to within 50 0 F of the entering flue gas temperature. Other less common, but practical, uses for energy include driving a low-temperature electric turbine cycle or an absorption chilling cycle. An improvement in boiler efficiency of 3...% to 8% can normally be realized by cooling boiler flue gasses down to llO o F_200 0 F. This recovers a large quantity of the available sensible heat in most boiler flue gas streams. Efficiency can be improv ed by up to 10% if flue gas is cooled down...

Shook, J. R.; Luttenberger, D. B.

65

Infiltration Heat Recovery in Building Walls: Computational Fluid Dynamics Investigations Results  

E-Print Network [OSTI]

LBNL-51324 Infiltration Heat Recovery in Building Walls: Computational Fluid Dynamics leading to partial recovery of heat conducted through the wall. The Infiltration Heat Recovery (IHR) factor was introduced to quantify the heat recovery and correct the conventional calculations

66

Thermoelectric recovery of waste heat -- Case studies  

SciTech Connect (OSTI)

The use of waste heat as an energy source for thermoelectric generation largely removes the constraint for the wide scale application of this technology imposed by its relatively low conversion efficiency (typically about 5%). Paradoxically, in some parasitic applications, a low conversion efficiency can be viewed as a distinct advantage. However, commercially available thermoelectric modules are designed primarily for refrigerating applications and are less reliable when operated at elevated temperatures. Consequently, a major factor which determines the economic competitiveness of thermoelectric recovery of waste heat is the cost per watt divided by the mean-time between module failures. In this paper is reported the development of a waste, warm water powered thermoelectric generator, one target in a NEDO sponsored project to economically recover waste heat. As an application of this technology case studies are considered in which thermoelectric generators are operated in both active and parasitic modes to generate electrical power for a central heating system. It is concluded that, in applications when the supply of heat essentially is free as with waste heat, thermoelectrics can compete economically with conventional methods of electrical power generation. Also, in this situation, and when the generating system is operated in a parasitic mode, conversion efficiency is not an important consideration.

Rowe, M.D.; Min, G.; Williams, S.G.K.; Aoune, A. [Cardiff School of Engineering (United Kingdom). Div. of Electronic Engineering; Matsuura, Kenji [Osaka Univ., Suita, Osaka (Japan). Dept. of Electrical Engineering; Kuznetsov, V.L. [Ioffe Physical-Technical Inst., St. Petersburg (Russian Federation); Fu, L.W. [Tsinghua Univ., Beijing (China). Microelectronics Inst.

1997-12-31T23:59:59.000Z

67

Combined Flue Gas Heat Recovery and Pollution Control Systems  

E-Print Network [OSTI]

in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

Zbikowski, T.

1979-01-01T23:59:59.000Z

68

Wastewater heat recovery method and apparatus  

DOE Patents [OSTI]

This invention is comprised of a heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, J.W.

1991-01-01T23:59:59.000Z

69

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

70

Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003deeralgrain.pdf...

71

Overview of Fords Thermoelectric Programs: Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging,...

72

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites...

73

Present and Future Uses of Industrial Absorption Heat Pumps  

E-Print Network [OSTI]

This paper examines the present and projects the future uses of industrial absorption heat pumping. AHP technology is seen as an increasingly important component of plant and process heat integration for energy conservation. Existing installations...

Erickson, D. C.; Davidson, W. F.

74

HHFW absorption in Neutral-Beam heated NSTX plasmas  

E-Print Network [OSTI]

HHFW absorption in Neutral-Beam heated NSTX plasmas B. LeBlanc, M. Podestà, W. Heidbrink XP -1012 ions Need to characterize RF absorption as a function of RF phasing, L vs. H-mode plasmas, outer gap, optimized for FIDA measurements · Similar to 2008 FIDA experiment on RF absorption by fast ions · NB sources

Princeton Plasma Physics Laboratory

75

SPECTRA OF CRITICAL EXPONENTS IN NONLINEAR HEAT EQUATIONS WITH ABSORPTION  

E-Print Network [OSTI]

SPECTRA OF CRITICAL EXPONENTS IN NONLINEAR HEAT EQUATIONS WITH ABSORPTION V.A. GALAKTIONOV AND P of the classical porous medium equation with absorption u t = #1;u m u p in R N #2; R+ change their large-time behaviour at the critical absorption exponent p 0 = m+2=N . We show that, actually, there exists an in#12

Bath, University of

76

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

Energy; Grid systems; Optimization; Heat flow; Financialof grid power and by utilizing combined heat and power (CHP)

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

77

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation  

E-Print Network [OSTI]

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

Xu, Xianfan

78

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

power generation with combined heat and power applications,”of carbon tax on combined heat and power adoption by a131(1), 2-25. US Combined Heat and Power Association (

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

79

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

of fossil fuel sources of waste heat and other lossesthat this is only the waste heat from fossil generation,an estimate of the total waste heat from fossil generation

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

80

Waste Heat Recovery System: Lightweight Thermal Energy Recovery (LIGHTER) System  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: GM is using shape memory alloys that require as little as a 10°C temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built were too complex, required fluid baths, and had insufficient cycle life for practical use. GM is working to create a prototype that is practical for commercial applications and capable of operating with either air- or fluid-based heat sources. GM’s shape memory alloy based heat engine is also designed for use in a variety of non-vehicle applications. For example, it can be used to harvest non-vehicle heat sources, such as domestic and industrial waste heat and natural geothermal heat, and in HVAC systems and generators.

None

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Increase of unit efficiency by improved waste heat recovery  

SciTech Connect (OSTI)

For coal-fired power plants with flue gas desulfurization by wet scrubbing and desulfurized exhaust gas discharge via cooling tower, a further improvement of new power plant efficiency is possible by exhaust gas heat recovery. The waste heat of exhaust gas is extracted in a flue gas cooler before the wet scrubber and recovered for combustion air and/or feedwater heating by either direct or indirect coupling of heat transfer. Different process configurations for heat recovery system are described and evaluated with regard to net unit improvement. For unite firing bituminous coal an increase of net unit efficiency of 0.25 to 0.7 percentage points and for lignite 0.7 to 1.6 percentage points can be realized depending on the process configurations of the heat recovery systems.

Bauer, G.; Lankes, F.

1998-07-01T23:59:59.000Z

82

Waste heat driven absorption refrigeration process and system  

DOE Patents [OSTI]

Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

Wilkinson, William H. (Columbus, OH)

1982-01-01T23:59:59.000Z

83

Recovery Act-Funded Geothermal Heat Pump projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) was allocated funding from the American Recovery and Reinvestment Act to conduct research into ground source heat pump technologies and applications. Projects...

84

Introduction of Heat Recovery Chiller Control and Water System Design  

E-Print Network [OSTI]

The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

Jia, J.

2006-01-01T23:59:59.000Z

85

Heat Recovery From Arc Furnaces Using Water Cooled Panels  

E-Print Network [OSTI]

HEAT RECOVERY FROM ARC FURNACES USING WATER COOLED PANELS D. F. Darby Deere & Company Moline, Illinois ABSTRACT In 1980-81, the John Deere Foundry at East Moline underwent an expansion program that in creased its capacity by over 60...%. This expansion was centered around the melt department where the four existing 13MVA electric arc furnaces were augmented with two additional 13MVA arc furnaces. A waste heat recovery system was installed on all six of the arc furnaces which, with modifica...

Darby, D. F.

86

Identification of existing waste heat recovery and process improvement technologies  

SciTech Connect (OSTI)

General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

1984-03-01T23:59:59.000Z

87

Open-loop heat-recovery dryer  

DOE Patents [OSTI]

A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.

TeGrotenhuis, Ward Evan

2013-11-05T23:59:59.000Z

88

Absorption line shape recovery beyond the detection bandwidth limit: application to the Boltzmann constant determination  

E-Print Network [OSTI]

1 Absorption line shape recovery beyond the detection bandwidth limit: application to the Boltzmann of the influence of detection bandwidth properties on observed line shapes in laser absorption spectroscopy the Boltzmann constant (kB) [10, 11]. Based upon laser absorption spectroscopy in the linear regime

89

An analysis of a reversed absorption heat pump for low temperature waste heat utilization  

E-Print Network [OSTI]

AN ANALYSIS OF A REVERSED ABSORPTION HEAT PUMP FOR LOW TEMPERATURE WASTE HEAT UTILIZATION A Thesis by GLENN WILLIAM WADE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE May 1979 Major Subject: Mechanical Engineering AN ANALYSIS OF A REVERSED ABSORPTION HEAT PUMP FOR LOW TEMPERATURE WASTE HEAT UTILIZATION A Thesis by GLENN WILLIAM WADE Approved as to style and content by: Chai n of Committee...

Wade, Glenn William

1979-01-01T23:59:59.000Z

90

Coupled dual loop absorption heat pump  

DOE Patents [OSTI]

A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

Sarkisian, Paul H. (Watertown, MA); Reimann, Robert C. (Lafayette, NY); Biermann, Wendell J. (Fayetteville, NY)

1985-01-01T23:59:59.000Z

91

Waste Heat Recovery from Refrigeration in a Meat Processing Facility  

E-Print Network [OSTI]

A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat...

Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

1980-01-01T23:59:59.000Z

92

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

93

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

Space-Heating Supply Hour Load (kW) Storage CHP NG Fig. 14Space-Heating Supply Load (kW) Storage Hour CHP NG Fig. 15Supply Load (kW) Storage CHP NG Hour Fig. 16 July Weekday

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

94

E-Print Network 3.0 - absorption heat pumps Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pumps Search Powered by Explorit Topic List Advanced Search Sample search results for: absorption heat pumps...

95

500°F Absorption Heat Pump Under Development  

E-Print Network [OSTI]

fluid. It is rated as chemically stable up to 595 0 C (Olin, 1982). There are many instances of industriAl use of this salt, for heat treatment as well as for heat transfer. An example of current interest is the Molten Salt Electric Experiment... and IN800 in Molten Nitrate Salts". Sandia Report, SAND08l-8210. Sandia National Laboratories, Al buquerque, New Mexico. Davidson, W. F., and Erickson, D. C. 198'6. "New High Temperature Absorbent for Abs 0 r pt ion He a t PUmps " . To be pu h 1...

Davidson, W. F.; Erickson, D. C.

96

Heat Integration and Heat Recovery at a Large Chemical Manufacturing Plant  

E-Print Network [OSTI]

in the hydrogenation process. The hydrogenation process uses a catalyst to react the purified phenol with hydrogen, forming a mixture of cyclohexanone and cyclohexanol. The reaction is exothermic and is cooled with water to control the rate of reaction... Process Heat Recovery The process heat recovery opportunity was identified in the hydrogenation process. The hydrogenation process contains an exothermic reaction which is cooled with water to control the rate of reaction. The heated water...

Togna, K .A.

2012-01-01T23:59:59.000Z

97

Low Level Heat Recovery Through Heat Pumps and Vapor Recompression  

E-Print Network [OSTI]

The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

Gilbert, J.

1980-01-01T23:59:59.000Z

98

Absorption Heat Pumps | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAbout ScienceAbout Oak RidgeAbouttheAbsorption

99

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling  

E-Print Network [OSTI]

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling telluride TEMs. Key words: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from

Xu, Xianfan

100

Mobile power plants : waste body heat recovery  

E-Print Network [OSTI]

Novel methods to convert waste metabolic heat into useful and useable amounts of electricity were studied. Thermoelectric, magneto hydrodynamic, and piezo-electric energy conversions at the desired scope were evaluated to ...

Gibbons, Jonathan S. (Jonathan Scott), 1979-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A Novel Absorption Cycle for Combined Water Heating, Dehumidification, and Evaporative Cooling  

SciTech Connect (OSTI)

In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser. The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the cycle is recovery of the solution heat energy exiting the desorber by process water (a process-solution heat exchanger ) rather than the absorber exiting solution (the conventional solution heat exchanger ). This approach has enabled heating the process water from an inlet temperature of 15 C to 57 C (conforming to the DOE water heater test standard) and interfacing the process water with absorbent on the opposite side of a single metal sheet encompassing the absorber, process-solution heat exchanger, and desorber. The system under development has a 3.2 kW water heating capacity and a target thermal coefficient of performance (COP) of 1.6.

CHUGH, Devesh [University of Florida, Gainesville; Gluesenkamp, Kyle R [ORNL; Abdelaziz, Omar [ORNL; Moghaddam, Saeed [University of Florida, Gainesville

2014-01-01T23:59:59.000Z

102

Use of photovoltaics for waste heat recovery  

DOE Patents [OSTI]

A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

Polcyn, Adam D

2013-04-16T23:59:59.000Z

103

Industrial Plate Exchangers Heat Recovery and Fouling  

E-Print Network [OSTI]

(still)for separation of light oil from the wash oil,which is then returned to absorber tower.The debenzolised wash 0 0 oil is cooled indirectly to 20 C/30 C before returning to the absorber tower. This is toprevent condensation of water from the gas... Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 -- c.O.G. LIGHT OIL SCRUBBER COKE OVEN GAS(C.O.G,J BENZINE COOLING WATER BENZOLISED ~WASH OILSTRIPPER CONVENTIONAL LIGHT OIL RECOVERY PLANT DEBENZOLISED WASH OIL / COOLING WATER...

Cross, P. H.

1981-01-01T23:59:59.000Z

104

Absorption Heat Pump Basics | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OF THE| DepartmentUsAbout theHeat Pump

105

Design Considerations for Industrial Heat Recovery Systems  

E-Print Network [OSTI]

in U. S. industry. Consider the following ways that industry uses energy resources today: Process Steam 40% Feedstock for Chemicals 9% Direct Process Heat 28% Electrolytic Processes 3% Electric Drive 19% Other 1% It should be clear from these data... is in dispersed flow streams at temperatures less than 200?F. These streams are referred to in the thermo dynamic sense as "low quality" energy streams because their potential to do useful work or to provide useful process heat is relatively small. The "high...

Bywaters, R. P.

1979-01-01T23:59:59.000Z

106

Development of an Ionic-Liquid Absorption Heat Pump  

SciTech Connect (OSTI)

Solar Fueled Products (SFP) is developing an innovative ionic-liquid absorption heat pump (ILAHP). The development of an ILAHP is extremely significant, as it could result in annual savings of more than 190 billion kW h of electrical energy and $19 billion. This absorption cooler uses about 75 percent less electricity than conventional cooling and heating units. The ILAHP also has significant environmental sustainability benefits, due to reduced CO2 emissions. Phase I established the feasibility and showed the economic viability of an ILAHP with these key accomplishments: • Used the breakthrough capabilities provided by ionic liquids which overcome the key difficulties of the common absorption coolers. • Showed that the theoretical thermodynamic performance of an ILAHP is similar to existing absorption-cooling systems. • Established that the half-effect absorption cycle reduces the peak generator temperature, improving collector efficiency and reducing collector area. • Component testing demonstrated that the most critical components, absorber and generator, operate well with conventional heat exchangers. • Showed the economic viability of an ILAHP. The significant energy savings, sustainability benefits, and economic viability are compelling reasons to continue the ILAHP development.

Holcomb, Don

2011-03-29T23:59:59.000Z

107

Heat recovery and seed recovery development project: preliminary design report (PDR)  

SciTech Connect (OSTI)

The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

1981-06-01T23:59:59.000Z

108

Method for controlling exhaust gas heat recovery systems in vehicles  

DOE Patents [OSTI]

A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

Spohn, Brian L.; Claypole, George M.; Starr, Richard D

2013-06-11T23:59:59.000Z

109

Alternative Heat Recovery Options for Single-Stage Spray Dryers  

E-Print Network [OSTI]

describes an analysis performed at a milk products plant, where a spray dryer is used to produce powdered milk. Discussed approaches include air-to-air and air-liquid-air recuperates. Key issues include heat recovery potential, capital costs, overall payback...

Wagner, J. R.

1984-01-01T23:59:59.000Z

110

Heat transfer and fluid flow characteristics in various micro devices for the development of micro absorption heat pump systems.  

E-Print Network [OSTI]

??This thesis presents a series of studies on heat transfer and fluid flow characteristics in various micro devices for the development of micro absorption heat… (more)

Hu, Jinshan

2007-01-01T23:59:59.000Z

111

Crude Distillation Unit Heat Recovery Study  

E-Print Network [OSTI]

to 426?F. There is no preheat of tower bottoms. All heat beyond the prefractionator comes from fired furnaces. But there is steam generation at 25 pounds pressure from hot oil and an approved project to generate ISO-pound steam from flue gas. Pipe Still... Sinks Sources Difference Disposition Sinks 110 (110) (213) Furnace Duty 400/690 430/720 255 152 (103) l50-Pound Steam Production 365/400 395/430 25 44 19 50-Pound Steam Production 300/365 330/395 47 80 33 29 25-Pound Steam...

John, P.

1979-01-01T23:59:59.000Z

112

Resource recovery waste heat boiler upgrade  

SciTech Connect (OSTI)

The waste heat boilers installed in a 360 TPD waste to energy plant were identified as the bottle neck for an effort to increase plant capacity. These boilers were successfully modified to accommodate the increase of plant capacity to 408 TPD, improve steam cycle performance and reduce boiler tube failures. The project demonstrated how engineering and operation can work together to identify problems and develop solutions that satisfy engineering, operation, and financial objectives. Plant checking and testing, design review and specification development, installation and operation results are presented.

Kuten, P.; McClanahan, D.E. [Fluor Daniel, Inc., Houston, TX (United States); Gehring, P.R.; Toto, M.L. [SRRI, Springfield, MA (United States); Davis, J.J. [Deltak, Minon, MN (United States)

1996-09-01T23:59:59.000Z

113

Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers  

SciTech Connect (OSTI)

The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel tubes. Also, these fluctuating air flow patterns can result in deposition of black liquor on the wall tubes, and during periods when deposition is high, there is a noticeable increase in the concentrations of sulfur-bearing gases like hydrogen sulfide and methyl mercaptan. Laboratory studies have shown that chromized and aluminized surface treatments on carbon steel improve the resistance to sulfidation attack. Studies of superheater corrosion and cracking have included laboratory analyses of cracked tubes, laboratory corrosion studies designed to simulate the superheater environment and field tests to study the movement of superheater tubes and to expose a corrosion probe to assess the corrosion behavior of alternate superheater alloys, particularly alloys that would be used for superheaters operating at higher temperatures and higher pressures than most current boilers. In the laboratory corrosion studies, samples of six alternate materials were immersed in an aggressive, low melting point salt mixture and exposed for times up to 336 h, at temperatures of 510, 530 or 560°C in an inert or reactive cover gas. Using weight change and results of metallographic examination, the samples were graded on their resistance to the various environments. For the superheater corrosion probe studies, samples of the same six materials were exposed on an air-cooled corrosion probe exposed in the superheater section of a recovery boiler for 1000 h. Post exposure examination showed cracking and/or subsurface attack in the samples exposed at the higher temperatures with the attack being more severe for samples 13 exposed above the first melting temperature of the deposits that collected on the superheater tubes. From these superheater studies, a ranking was developed for the six materials tested. The task addressing cracking and corrosion of primary air port tubes that was part of this project produced results that have been extensively implemented in recovery boilers in North America, the Nordic countries and many other parts of the world. By utilizing these results, boilers ar

Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

2007-12-31T23:59:59.000Z

114

Waste Heat Recovery Using a Circulating Heat Medium Loop  

E-Print Network [OSTI]

thing of the past. This paper presents results of a refinery-wide survey to identify potential high temperature heat sources that are not being recovered and low temperature systems that consume fuel. The best candidates in each category were connected...

Manning, E., Jr.

1981-01-01T23:59:59.000Z

115

Water recovery using waste heat from coal fired power plants.  

SciTech Connect (OSTI)

The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

2011-01-01T23:59:59.000Z

116

E-Print Network 3.0 - absorption cycle heat Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

>> 1 Aft'-',, ,?i.Q<, A lFBLE COPY .... -. v' 0 Summary: pumps include engine-driven heat pumps, absorption cycle, and ejector heat pumps. CURRENT RESEARCH... ;absorption...

117

Effect of sodium chloride concentration on the heat resistance and recovery of  

E-Print Network [OSTI]

Effect of sodium chloride concentration on the heat resistance and recovery of Salmonella inhibitory effect in the recovery media. Keywords : Salmonella typhimurium, Sodium chloride, Heat treatment, but they also generate damaged cells. The ability of heated cells to survive depends on the recovery conditions

Paris-Sud XI, Université de

118

Department of ENENG/ME Spring 2012 Waste Heat Recovery for Small Engine Applications  

E-Print Network [OSTI]

PENNSTATE Department of ENENG/ME Spring 2012 Waste Heat Recovery for Small Engine Applications Overview The purpose of this capstone project is to research, test, and apply waste heat recovery, engine temperatures, and various applications. These explored heat recovery technologies were

Demirel, Melik C.

119

A Mathematical Model for Infiltration Heat Recovery C. R. Buchanan and M. H. Sherman1  

E-Print Network [OSTI]

A Mathematical Model for Infiltration Heat Recovery C. R. Buchanan and M. H. Sherman1 Energy are used to study the fundamental physics of the infiltration heat recovery process and a simple macro-scale mathematical model for the prediction of a heat recovery factor is developed. CFD results were found to compare

120

HEAT RECOVERY IN BUILDING ENVELOPES Max H. Sherman and Iain S. Walker  

E-Print Network [OSTI]

1 LBNL 47329 HEAT RECOVERY IN BUILDING ENVELOPES Max H. Sherman and Iain S. Walker Energy formula may produce an unreasonably high contribution because of heat recovery within the building physical model has been developed and used to predict the infiltration heat recovery based on the Peclet

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Waste heat recovery steam curves with unfired HRSGs  

SciTech Connect (OSTI)

A compilation of waste heat recovery steam curves for a sampling of gas turbines ranging in output from around 1 MW to more than 200 MW is presented. The gas turbine output data shown with each set of curves differs from the values given in the Performance Specifications section of the Handbook. That's because the values have been calculated to reflect the effects of a 4 inch inlet and 10 inch outlet pressure drop on power output (lower), heat rate (higher), mass flow (higher), and exhaust temperature (higher).

Not Available

1993-01-01T23:59:59.000Z

122

Engine Waste Heat Recovery Concept Demonstration | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004DepartmentWaste Heat Recovery Concept

123

High Temperature Heat Recovery Systems Using Ceramic Recuperators  

E-Print Network [OSTI]

HIGH TEMPERATURE HEAT RECOVERY SYSTEMS USING CERAMIC RECUPERATORS S. B. Young, J. W. Bjerklie, W. A. York Hague International South Portland, Maine ABSTRACT i Ceramic shell and tube recuperators capable of providing up to 1800 0 F (980... !HAGUE INTERNATIONAL ? 3 ADAMS STREET , SOUTH PORTLAND, MAINE 04106 2011111-1510 2011199-1341 FIGURE 1 ..__ .._.~_._---_._~ -- _._.- ._-----_._--_._-----_.__.._--- _._--~~~-~~~-~--_._._---~---~-~ .".;,,":;' ESL-IE-80-04-50 Proceedings from...

Young, S. B.; Bjerklie, J. W.; York, W. A.

1980-01-01T23:59:59.000Z

124

Advanced Burners and Combustion Controls for Industrial Heat Recovery Systems  

E-Print Network [OSTI]

ADVANCED BURNERS AND COMBUSTION CONTROLS FOR INDUSTRIAL HEAT RECOVERY SYSTEMS J.L.FERRI GTE PRODUCTS CORPORATION TOWANDA, PA ABSTRACT When recuperators are installed on indus trial furnaces, burners and ratio control systems must... recuperators by demonstrating their technical and economi cal feasibility in well monitored field installations (1). During the contract, it became evident to GTE that a systems approach (recuperator, burner, and con troIs) is necessary to be accepted...

Ferri, J. L.

125

IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems  

SciTech Connect (OSTI)

With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case has its own refrigeration unit; low-charge direct expansion--similar to conventional multiplex refrigeration systems but with improved controls to limit charge. Means to integrate store HVAC systems for space heating/cooling with the refrigeration system have been investigated as well. One approach is to use heat pumps to recover refrigeration waste heat and raise it to a sufficient level to provide for store heating needs. Another involves use of combined heating and power (CHP) or combined cooling, heating, and power (CCHP) systems to integrate the refrigeration, HVAC, and power services in stores. Other methods including direct recovery of refrigeration reject heat for space and water heating have also been examined.

Baxter, VAN

2003-05-19T23:59:59.000Z

126

A batch reactor heat recovery challenge problem Johannes Jschke, Sigurd Skogestad  

E-Print Network [OSTI]

A batch reactor heat recovery challenge problem Johannes Jäschke, Sigurd Skogestad Department a challenge problem for maximizing the heat recovery in a heat exchanger network connected to a set of batch periods of the batch reactors, the reactor effluents are fed into the secondary sides of the heat

Skogestad, Sigurd

127

Develop & Demonstrate an Advanced Low Temp Heat Recovery Absorption...  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator, EXERGY Partners Corp. Email: rsweetser@exergypartners.com, Phone: 703.707.0293 U.S. DOE Industrial Distributed Energy Portfolio Review Meeting...

128

Low-temperature waste-heat recovery in the food and paper industries  

SciTech Connect (OSTI)

The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

1980-11-01T23:59:59.000Z

129

A ground-coupled storage heat pump system with waste heat recovery  

SciTech Connect (OSTI)

This paper reports on an experimental single-family residence that was constructed to demonstrate integration of waste heat recovery and seasonal energy storage using both a ventilating and a ground-coupled heat pump. Called the Idaho energy Conservation Technology House, it combines superinsulated home construction with a ventilating hot water heater and a ground coupled water-to-water heat pump system. The ground heat exchangers are designed to economically promote seasonal and waste heat storage. Construction of the house was completed in the spring of 1989. Located in Moscow, Idaho, the house is occupied by a family of three. The 3,500 ft{sup 2} (325 m{sup 2}) two-story house combines several unique sub-systems that all interact to minimize energy consumption for space heating and cooling, and domestic hot water.

Drown, D.C.; Braven, K.R.D. (Univ. of Idaho, ID (US)); Kast, T.P. (Thermal Dynamic Towers, Boulder, CO (US))

1992-02-01T23:59:59.000Z

130

Drain-Water Heat Recovery | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005Department ofDOEDisability EmploymentDrain-Water Heat Recovery

131

Exhaust Heat Recovery for Rural Alaskan Diesel Generators | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaust energy recovery2010Energy

132

High power laser heating of low absorption materials  

SciTech Connect (OSTI)

A model is presented and confirmed experimentally that explains the anomalous behavior observed in continuous wave (CW) excitation of thermally isolated optics. Distributed Bragg Reflector (DBR) high reflective optical thin film coatings of HfO{sub 2} and SiO{sub 2} were prepared with a very low absorption, about 7?ppm, measured by photothermal common-path interferometry. When illuminated with a 17?kW CW laser for 30 s, the coatings survived peak irradiances of 13?MW/cm{sup 2}, on 500??m diameter spot cross sections. The temperature profile of the optical surfaces was measured using a calibrated thermal imaging camera for illuminated spot sizes ranging from 500??m to 5?mm; about the same peak temperatures were recorded regardless of spot size. This phenomenon is explained by solving the heat equation for an optic of finite dimensions and taking into account the non-idealities of the experiment. An analytical result is also derived showing the relationship between millisecond pulse to CW laser operation where (1) the heating is proportional to the laser irradiance (W/m{sup 2}) for millisecond pulses, (2) the heating is proportional to the beam radius (W/m) for CW, and (3) the heating is proportional to W/m??tan{sup ?1}(?(t)/m) in the transition region between the two.

Olson, K.; Talghader, J., E-mail: joey@umn.edu [Electrical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Ogloza, A. [Naval Postgraduate School, 1 University Cir, Monterey, California 93943 (United States); Thomas, J. [Electro Optics Center, Pennsylvania State University, 222 Northpointe Blvd., Freeport, Pennsylvania 16229 (United States)

2014-09-28T23:59:59.000Z

133

ABSORPTION-DELAY MODELS OF HEAT TRANSPORT R.E. SHOWALTER AND D.B. VISARRAGA  

E-Print Network [OSTI]

ABSORPTION-DELAY MODELS OF HEAT TRANSPORT R.E. SHOWALTER AND D.B. VISARRAGA Abstract. A temperature jump in the water traveling through a pipe is delayed by the absorption of heat into the pipe wall transfer, absorption, memory, kinetic models, approximation. 1 #12;2 R.E. SHOWALTER AND D.B. VISARRAGA 1

134

Effect of Heat Exchanger Material and Fouling on Thermoelectric Exhaust Heat Recovery  

SciTech Connect (OSTI)

This study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. For this purpose an experimental investigation of thermoelectrics in contact with clean and fouled heat exchangers of different materials is performed. The thermoelectric devices are tested on a bench-scale thermoelectric heat recovery apparatus that simulates automotive exhaust. The thermoelectric apparatus consists of a series of thermoelectric generators contacting a hot-side and a cold-side heat exchanger. The thermoelectric devices are tested with two different hot-side heat exchanger materials, stainless steel and aluminum, and at a range of simulated exhaust gas flowrates (40 to 150 slpm), exhaust gas temperatures (240 C and 280 C), and coolant-side temperatures (40 C and 80 C). It is observed that for higher exhaust gas flowrates, thermoelectric power output increases while overall system efficiency decreases. Degradation of the effectiveness of the EGR-type heat exchangers over a period of driving is also simulated by exposing the heat exchangers to diesel engine exhaust under thermophoretic conditions to form a deposit layer. For the fouled EGR-type heat exchangers, power output and system efficiency is observed to be significantly lower for all conditions tested. The study found, however, that heat exchanger material is the dominant factor in the ability of the system to convert heat to electricity with thermoelectric generators. This finding is thought to be unique to the heat exchangers used for this study, and not a universal trend for all system configurations.

Love, Norman [University of Texas, El Paso; Szybist, James P [ORNL; Sluder, Scott [ORNL

2011-01-01T23:59:59.000Z

135

LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery  

DOE Patents [OSTI]

This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

Ko, Suk M. (Huntsville, AL)

1980-01-01T23:59:59.000Z

136

E-Print Network 3.0 - advanced absorption heat Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(uIX -8OO --o u 1MASTER Summary: to be the absorption heat pump. Single-stage systems based on technology used in current gas-fired absorption chillers... that a carefully...

137

Analysis of IECC2003 Chiller Heat Recovery for Service Water Heating Requirement for New York State  

SciTech Connect (OSTI)

The state of New York asked the U.S. Department of Energy to evaluate the cost-effectiveness of the requirement for Heat Recovery for Service Water Heating that exists in the 2003 International Energy Conservation Code to determine whether this requirement should be adopted into the New York State Energy Code. A typical hotel application that would trigger this requirement was examined using whole building simulation software to generate baseline annual chiller and service hot water loads, and a spreadsheet was used to examine the energy savings potential for heat recovery using hourly load files from the simulation. An example application meeting the code requirement was developed, and the energy savings, energy cost savings, and first costs for the heat recovery installation were developed. The calculated payback for this application was 6.3 years using 2002 New York state average energy costs. This payback met the minimum requirements for cost effectiveness established for the state of New York for updating the commercial energy conservation code.

Winiarski, David W.

2004-08-15T23:59:59.000Z

138

Cylinder wall waste heat recovery from liquid-cooled internal combustion engines utilizing thermoelectric generators.  

E-Print Network [OSTI]

?? This report is a dissertation proposal that focuses on the energy balance within an internal combustion engine with a unique coolant-based waste heat recovery… (more)

Armstead, John Randall

2012-01-01T23:59:59.000Z

139

Analysis of heat recovery in supermarket refrigeration system using carbon dioxide as refrigerant.  

E-Print Network [OSTI]

?? The aim of this study is to investigate the heat recovery potential in supermarket refrigeration systems using CO2 as refrigerants. The theoretical control strategy… (more)

Abdi, Amir

2014-01-01T23:59:59.000Z

140

E-Print Network 3.0 - absorption heat Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for prototype hardware. Proof of concept. 9 12;At the present time, absorption heat... and air conditioning equipment. Therefore, the lower performance potential for the...

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Process Waste Heat Recovery in the Food Industry - A System Analysis  

E-Print Network [OSTI]

An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

Lundberg, W. L.; Mutone, G. A.

1983-01-01T23:59:59.000Z

142

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network [OSTI]

) Chemicals (223) 0.81xlO 15 81xl0 6 3) Pulp & Paper (8) 1.30xlO 15 2.2xI0 6 4) ~leta1s (32) O.07xlO 15 6.4x10 6 O.28xl0 15 308 291xl0 6 2.46xlO 15 Sec =Specific energy consumption * Calculated as %reduction in SEC - value 10TOR "OUSI.. SEi...Heat Recovery Considerations for Process Heaters and Boilers Ash Kumar, Pennzoil Company, Shreveport, Louisiana The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers...

Kumar, A.

143

Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller  

SciTech Connect (OSTI)

Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

Urata, Tatsuo [Tokyo Gas Company, LTD, Tokyo (Japan)

1996-12-31T23:59:59.000Z

144

Effect of the water activities of the heating and the recovery media on1 the apparent heat resistance of Bacillus cereus spores.2  

E-Print Network [OSTI]

Effect of the water activities of the heating and the recovery media on1 the apparent heat the water activity of the recovery medium was kept near 1. Reciprocally, the water activity of the14 heating with the same depressors. Lastly, in a third set of experiments, the heating medium and the recovery16 medium

Paris-Sud XI, Université de

145

Waste heat recovery: Textile industry. (Latest citations from World Textile Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning descriptions and evaluations of waste heat recovery operations used in the textile industry. Heat recovery and utilization from wastewater streams, flue gas, finishing processes, dyeing operations, and air jet systems are presented. The use of waste heat for space heating and process preheating is considered. (Contains a minimum of 162 citations and includes a subject term index and title list.)

Not Available

1993-08-01T23:59:59.000Z

146

QUANTIFYING THE COMBINED EFFECTS OF THE HEATING TIME,1 THE TEMPERATURE AND THE RECOVERY MEDIUM PH ON THE2  

E-Print Network [OSTI]

QUANTIFYING THE COMBINED EFFECTS OF THE HEATING TIME,1 THE TEMPERATURE AND THE RECOVERY MEDIUM PH of the conditions of the heat treatment: temperature, duration15 and pH of the recovery medium. For a given heating Keywords: Bacillus cereus, heat treatment, lag time, recovery.29 30 1. Introduction31 32 Bacillus cereus

Paris-Sud XI, Université de

147

Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems  

DOE Patents [OSTI]

Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

Meisner, Gregory P

2013-10-08T23:59:59.000Z

148

Towards model-based control of a steam Rankine process for engine waste heat recovery  

E-Print Network [OSTI]

Towards model-based control of a steam Rankine process for engine waste heat recovery Johan Peralez steam process for exhaust gas heat recovery from a spark-ignition engine, focusing in particular results on a steam process for SI engines, [3] on generic control issues and [4] which provides a comp

Paris-Sud XI, Université de

149

The Beckett System Recovery and Utilization of Low Grade Waste Heat From Flue Gas  

E-Print Network [OSTI]

THE BECKETT SYSTEM RECOVERY AND UTILIZATION OF LOW GRADE WASTE HEAT FROM FLUE GAS Wilfred R. Henderson Blenkhorn & Sawle Ltd. St. Catharines, Ontario Joseph F. DeBiase John Deere WeIland I%rks WeIland, Ontario ABSTRACT The Beckett Heat Recovery...

Henderson, W. R.; DeBiase, J. F.

1983-01-01T23:59:59.000Z

150

Model based methodology development for energy recovery in flash heat exchange systems  

E-Print Network [OSTI]

Model based methodology development for energy recovery in flash heat exchange systems Problem with a condensing heat exchanger can be used when heat exchange is required between two streams and where at leastH, consistency etc.). To increase the efficiency of heat exchange, a cascade of these units in series can be used

McCarthy, John E.

151

Energy Savings By Recovery of Condensate From Steam Heating System  

E-Print Network [OSTI]

The recovery and utilization of condensate has a remarkable energy saving effect if the following are properly done: 1) Determination of a correct and reasonable recovery plan; 2) Selection of bleed valve with good performance; 3) Solving...

Cheng, W. S.; Zhi, C. S.

152

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine cycle  

E-Print Network [OSTI]

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine steam process for exhaust gas heat recovery from a spark-ignition (SI) engine, from a prototyping of a practical supervi- sion and control system for a pilot Rankine steam process for exhaust gas heat recovery

Paris-Sud XI, Université de

153

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into Waste Heat Recovery Methods for the UBC Microbrewery  

E-Print Network [OSTI]

into Waste Heat Recovery Methods for the UBC Microbrewery Nazanin Bahrami, Michael Huang, Aldrich Huang Heat Recovery Methods for the UBC Microbrewery Written By: Nazanin Bahrami (45179090) Michael Huang. Flue gas recovery and separation can recover 26% of the total heat energy, and can reduce the GHG

154

On an inverse problem: the recovery of non-smooth solutions to backward heat equation  

E-Print Network [OSTI]

On an inverse problem: the recovery of non-smooth solutions to backward heat equation Fabien Ternat solu- tions of backward heat equation. In this paper, we test the viability of using these techniques to recover non-smooth solutions of backward heat equation. In particular, we numerically integrate

Daripa, Prabir

155

On an inverse problem: Recovery of non-smooth solutions to backward heat equation  

E-Print Network [OSTI]

On an inverse problem: Recovery of non-smooth solutions to backward heat equation Fabien Ternat 2011 Accepted 2 November 2011 Available online 11 November 2011 Keywords: Heat equation Inverse problem and Crank­Nicolson schemes and applied successfully to solve for smooth solutions of backward heat equation

Daripa, Prabir

156

Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control  

Broader source: Energy.gov [DOE]

Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging, durability, and systems integration

157

Constrained Optimization Technology Based on Synthesis Concepts for Solving Complex Heat Recovery Problems  

E-Print Network [OSTI]

Simulation of complex heat recovery systems such as crude preheat trains using computer tools is now widely practiced. ChemDesign, Inc. has developed a computer tool which can perform this calculation but is also capable of synthesizing an optimum...

Fuller, T. R.

1979-01-01T23:59:59.000Z

158

Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by GenTherm at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermoelectric waste heat recovery...

159

Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization  

E-Print Network [OSTI]

This paper describes the energy options available to Missouri industrial firms in the areas of cogeneration, waste heat recovery, and coal and alternative fuel utilization. The project, being performed by Synergic Resources Corporation...

Hencey, S.; Hinkle, B.; Limaye, D. R.

1980-01-01T23:59:59.000Z

160

How to Put the Dollar Value on Waste Heat Recovery in the Process Industry  

E-Print Network [OSTI]

. Steam savings or steam generation 2. Fuel savings (in case of combustion air preheat or fuel preheat) 3. Power generation (Rankine cycle) Traditionally waste heat recovery was judged on its Btu recovery. If from a 100 MM Btu/hr fue 1 fired heater... 8 MM Btu/hr were stack losses and 2 MM Btu/hr were lost to the atmosphere via exposed areas, then the t~OfF-fl!.2efficiency of the heater was claimed to be 100 or 90%. By this way of reasoning, a further improvement in heat recovery from...

Campagne, W. V. L.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Drain-Water Heat Recovery | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

works well with all types of water heaters, especially with demand and solar water heaters. Drain-water heat exchangers can recover heat from the hot water used in showers,...

162

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

141 Open ORC Systemfor Open Organic Rankine Cycle (ORC)138 Evaporatorof an Organic Rankine Cycle (ORC) System for Waste Heat

Luong, David

2013-01-01T23:59:59.000Z

163

Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace  

SciTech Connect (OSTI)

This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

2014-01-01T23:59:59.000Z

164

Testing of Crystallization Temperature of a New Working Fluid for Absorption Heat Pump Systems  

SciTech Connect (OSTI)

Lithium bromide/water (LiBr/water) absorption systems are potential candidates for absorption heat pump water heating applications since they have been widely commercialized for cooling applications. One drawback to LiBr/water absorption water heater systems is that they are unable to operate at typical water heating temperatures due to solution crystallization hazards. Binary or ternary mixtures, serving as working fluids, were reported (Ally, 1988; Herold et al., 1991; Iyoki and Uemura, 1981; Yasuhide Nemoto et al., 2010; Zogg et al., 2005) to help improve the absorption performance or avoid crystallization of absorption heat pump systems. A recent development (De Lucas et al., 2007) investigated the use of a ternary mixture of aqueous mixture of lithium bromide and sodium formate (CHO2Na). The new working fluid composition maintains a ratio of LiBr/CHO2Na of 2 by weight. This new working fluid is a potential competitor to aqueous LiBr solution in absorption system due to higher water vapor absorption rates and lower generation temperature needed (De Lucas et al., 2004). There exists data on equilibrium performance and other physical properties of this new working fluid. However, there is no available data on crystallization behavior. Crystallization temperature is crucial for the design of absorption heat pump water heater in order to avoid crystallization hazards during operation. We have therefore conducted a systematic study to explore the crystallization temperature of LiBr/CHO2Na water solution and compared it against aqueous LiBr solutions. These results were then used to evaluate the feasibility of using the new working fluid in water heating applications showing limited potential.

Wang, Kai [ORNL] [ORNL; Kisari, Padmaja [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL

2010-01-01T23:59:59.000Z

165

DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS  

E-Print Network [OSTI]

AIR CONDITIONERS AND HEAT PUMPS K. Dao, M. Wahlig, E. Wali,are liquid paths. DM: multistage pump driver, driven by highvapor. DW: main circulation pump driven by strong absorbent.

Dao, K.

2013-01-01T23:59:59.000Z

166

2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program  

Broader source: Energy.gov (indexed) [DOE]

in Th Developing a System Architecture to Manage Wide Variations in Th ermal Power ermal Power Catalytic Converter Primary Heat Exchanger Rear Exhaust with Muffler Pump DCDC...

167

Novel thermoelectric generator for stationary power waste heat recovery .  

E-Print Network [OSTI]

??Internal combustion engines produce much excess heat that is vented to the atmosphere through the exhaust fluid. Use of solid-state thermoelectric (TE) energy conversion technology… (more)

Engelke, Kylan Wynn.

2010-01-01T23:59:59.000Z

168

Commercial Absorption Heat Pump Water Heater | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe Natural Resources Defenseon SmartAbsorption

169

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

170

Exergy Optimized Wastewater Heat Recovery: Minimizing Losses and Maximizing Performance  

E-Print Network [OSTI]

the heat using a batch process with an insulated tank containing a heat exchanger. The analysis is based on statistical annual hot water usage profiles. The system shows that the exergy available in warm wastewater can be optimized with specific tank size...

Meggers, F.

171

Feasibility of Thermoelectrics for Waste Heat Recovery in Conventional Vehicles  

SciTech Connect (OSTI)

Thermoelectric (TE) generators convert heat directly into electricity when a temperature gradient is applied across junctions of two dissimilar metals. The devices could increase the fuel economy of conventional vehicles by recapturing part of the waste heat from engine exhaust and generating electricity to power accessory loads. A simple vehicle and engine waste heat model showed that a Class 8 truck presents the least challenging requirements for TE system efficiency, mass, and cost; these trucks have a fairly high amount of exhaust waste heat, have low mass sensitivity, and travel many miles per year. These factors help maximize fuel savings and economic benefits. A driving/duty cycle analysis shows strong sensitivity of waste heat, and thus TE system electrical output, to vehicle speed and driving cycle. With a typical alternator, a TE system could allow electrification of 8%-15% of a Class 8 truck's accessories for 2%-3% fuel savings. More research should reduce system cost and improve economics.

Smith, K.; Thornton, M.

2009-04-01T23:59:59.000Z

172

E-Print Network 3.0 - ammonia-water absorption cycle Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Absorption Chiller Integrated System at University... with Microturbine Tom Yu, Heat Recovery Unifin International Broad ... Source: Pint, Bruce A. - Materials Science &...

173

An Economic Analysis of Industrial Absorption Heat Pumps  

E-Print Network [OSTI]

. ,; ~ .. .. '. 479 ESL-IE-85-05-89 Proceedings from the Seventh National Industrial Energy Technology Conference, Houston, TX, May 12-15, 1985 11.1 OHNL-DWG ll~it UI 65 ORNL-DWG 85-6164 (b) (a) HIGH TEMPERATURE HEAT 0:: ? WASTE W ::> 0:: HEAT TYPE II... for the economic analysis. Briefl, this method consists of deterJIining the futur cash flows over the life of the project and disc unting them to the present time. The discount rat that makes the present worth ~f cash flows equal to zero ORNL-DWG 85-8171 88...

Kaplan, S. I.; Huntley, W. R.; Perez-Blanco, H.

174

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries  

SciTech Connect (OSTI)

The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

Adam Polcyn; Moe Khaleel

2009-01-06T23:59:59.000Z

175

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network [OSTI]

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters...

Kumar, A.

1984-01-01T23:59:59.000Z

176

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network [OSTI]

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters...

Kumar, A.

1983-01-01T23:59:59.000Z

177

Thermally Activated Desiccant Technology for Heat Recovery and Comfort  

SciTech Connect (OSTI)

Desiccant cooling is an important part of the diverse portfolio of Thermally Activated Technologies (TAT) designed for conversion of heat for the purpose of indoor air quality control. Thermally activated desiccant cooling incorporates a desiccant material that undergoes a cyclic process involving direct dehumidification of moist air and thermal regeneration. Desiccants fall into two categories: liquid and solid desiccants. Regardless of the type, solid or liquid, the governing principles of desiccant dehumidification systems are the same. In the dehumidification process, the vapor pressure of the moist air is higher than that of the desiccant, leading to transfer of moisture from the air to the desiccant material. By heating the desiccant, the vapor pressure differential is reversed in the regeneration process that drives the moisture from the desiccant. Figure 1 illustrates a rotary solid-desiccant dehumidifier. A burner or a thermally compatible source of waste heat can provide the required heat for regeneration.

Jalalzadeh, A. A.

2005-11-01T23:59:59.000Z

178

Rigorous modeling of the acid gas heat of absorption in alkanolamine solutions  

SciTech Connect (OSTI)

In this work, we are interested in the estimation of CO{sub 2} and H{sub 2}S heats of absorption in aqueous solutions of alkanolamine: monoethanolamine (MEA), diethanolamine (DEA), and methyldiethanolamine (MDEA). Two methods can be used to calculate the heat release during the absorption phenomenon. The easier which consists of applying the integration of the Gibbs-Helmholtz expression remains inaccurate. The second one, more rigorous, evaluates the heat transfer through an internal energy balance for an open system. The balance expression contains partial molar enthalpies of species in the liquid phase which are calculated from the electrolyte nonrandom-two-liquid (NRTL) excess Gibbs energy model. The calculations carried out in this method can be considered as predictive regarding the NRTL model because its interaction parameters were previously and solely fitted on vapor-liquid equilibrium (VLE) data and not on experimental heat of absorption data. The comparison between both methods and experimental data for the three alkanolamines shows the contribution of this rigorous calculation to better estimate both properties (i.e., solubility and heat) and its usefulness to improve processes. Heats of absorption calculated with the second method can be used in addition to VLE data to fit NRTL parameters. This procedure leads to less-correlated parameters and allows extrapolating the model with more confidence. 63 refs., 10 figs., 6 tabs.

Emilie Blanchon le Bouhelec; Pascal Mougin; Alain Barreau; Roland Solimando [Institut Francais du Petrole, Rueil-Malmaison (France). Departement Thermodynamique et Modelisation Moleculaire

2007-08-15T23:59:59.000Z

179

Energy recovery from waste incineration: Assessing the importance of district heating networks  

SciTech Connect (OSTI)

Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO{sub 2} accounts showed significantly different results: waste incineration in one network caused a CO{sub 2} saving of 48 kg CO{sub 2}/GJ energy input while in the other network a load of 43 kg CO{sub 2}/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

Fruergaard, T.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, T., E-mail: tha@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

2010-07-15T23:59:59.000Z

180

A Waste Heat Recovery System for Light Duty Diesel Engines  

SciTech Connect (OSTI)

In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, February 1-July 31, 1982  

SciTech Connect (OSTI)

The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

Cole, W. E.; DeSaro, R.; Griffith, J.; Joshi, C.

1982-08-01T23:59:59.000Z

182

Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes  

SciTech Connect (OSTI)

Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2(53:35:12). And for an H2O2 distillation process, the two promising fluids are Trifluoroethanol (TFE) + Triethylene Glycol Dimethyl ether (DMETEG) and Ammonia+ Water. Thermo-physical properties calculated by Aspen+ are reasonably accurate. Documentation of the installation of pilot-plants or full commercial units were not found in the literature for validating thermo-physical properties in an operating unit. Therefore, it is essential to install a pilot-scale unit to verify thermo-physical properties of working fluid pairs and validate the overall efficiency of the thermal heat pump at temperatures typical of distillation processes. For an HO2 process, the ammonia-water heat pump system is more compact and preferable than the TFE-DMETEG heat pump. The ammonia-water heat pump is therefore recommended for the H2O2 process. Based on the complex nature of the heat recovery system, we anticipated that capital costs could make investments financially unattractive where steam costs are low, especially where co-generation is involved. We believe that the enhanced heat transfer equipment has the potential to significantly improve the performance of TEE crystallizers, independent of the absorption heat-pump recovery system. Where steam costs are high, more detailed design/cost engineering will be required to verify the economic viability of the technology. Due to the long payback period estimated for the TEE open system, further studies on the TEE system are not warranted unless there are significant future improvements to heat pump technology. For the H2O2 distillation cycle heat pump waste heat recovery system, there were no significant process constraints and the estimated 5 years payback period is encouraging. We therefore recommend further developments of application of the thermal heat pump in the H2O2 distillation process with the focus on the technical and economic viability of heat exchangers equipped with the state-of-the-art enhancements. This will require additional funding for a prototype unit to validate enhanced thermal performances of heat transfer equipment, evaluat

Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

2012-12-03T23:59:59.000Z

183

Energy Recovery By Direct Contact Gas-Liquid Heat Exchange  

E-Print Network [OSTI]

-09-48 Proceedings from the Tenth Annual Industrial Energy Technology Conference, Houston, TX, September 13-15, 1988 passes to the atmosphere. The heated liquid moves through a closed circuit to tubular exchangers where its heat is transferred to a working fluid... are available, For sieve trays, mass transfer efficiency sources have been tabulated by Chan and Fair (1984), 267 ESL-IE-88-09-48 Proceedings from the Tenth Annual Industrial Energy Technology Conference, Houston, TX, September 13-15, 1988 When only mass...

Fair, J. R.; Bravo, J. L.

184

Enhancing Heat Recovery for Thermoelectric Devices | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12,Materials | Department ofDepartment ofHeat

185

Evaluation of a fluidized-bed waste-heat recovery system. A technical case study  

SciTech Connect (OSTI)

The US DOE Office of Industrial Technologies (OIT) sponsors research and development (R&D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Large amounts of heat escape regularly through the waste-gas streams of industrial processes, particularly those processes that use furnaces, kilns, and calciners. Recovering this waste heat will conserve energy; however, the extremely high temperatures and corrosive nature of many flue and exhaust gases make conventional heat recovery difficult. One solution is a waste-heat recovery system that can withstand the high temperatures and rids itself of corrosion-causing particulates. OIT and Aerojet Energy Conversion Company recently completed a joint project to develop just such a system and to evaluate its long-term operation. This technology, called fluidized-bed waste-heat recovery (FBWHR), offers several advantages over conventional heat recovery, including high gas-side heat-transfer coefficients and a self-cleaning capability. The FBWHR system can recover heat from high-temperature, dirty waste-gas streams, such as those found in the metals, glass, cement, chemical, and petroleum-refining industries. In this multiyear R&D project, Aerojet designed and fabricated an FBWHR system that recovers heat from the corrosive flue gases of aluminum melt furnaces to produce process steam for the plant. The system was installed on a 34-million-Btu/h furnace used to melt aluminum scrap at ALCOA`s Massena, New York plant. During a successful one-year field test, the system produced 26 million lb of 175-psig saturated steam, recovering as much as 28% of the fuel energy input to the furnace.

Not Available

1992-04-01T23:59:59.000Z

186

Evaluation of a fluidized-bed waste-heat recovery system  

SciTech Connect (OSTI)

The US DOE Office of Industrial Technologies (OIT) sponsors research and development (R D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Large amounts of heat escape regularly through the waste-gas streams of industrial processes, particularly those processes that use furnaces, kilns, and calciners. Recovering this waste heat will conserve energy; however, the extremely high temperatures and corrosive nature of many flue and exhaust gases make conventional heat recovery difficult. One solution is a waste-heat recovery system that can withstand the high temperatures and rids itself of corrosion-causing particulates. OIT and Aerojet Energy Conversion Company recently completed a joint project to develop just such a system and to evaluate its long-term operation. This technology, called fluidized-bed waste-heat recovery (FBWHR), offers several advantages over conventional heat recovery, including high gas-side heat-transfer coefficients and a self-cleaning capability. The FBWHR system can recover heat from high-temperature, dirty waste-gas streams, such as those found in the metals, glass, cement, chemical, and petroleum-refining industries. In this multiyear R D project, Aerojet designed and fabricated an FBWHR system that recovers heat from the corrosive flue gases of aluminum melt furnaces to produce process steam for the plant. The system was installed on a 34-million-Btu/h furnace used to melt aluminum scrap at ALCOA's Massena, New York plant. During a successful one-year field test, the system produced 26 million lb of 175-psig saturated steam, recovering as much as 28% of the fuel energy input to the furnace.

Not Available

1992-04-01T23:59:59.000Z

187

Simultaneous heat and mass transfer in absorption of gases in laminar liquid films  

SciTech Connect (OSTI)

A theoretical analysis of the combined heat and mass transfer process taking place in the absorption of a gas or vapor into a laminar liquid film is described. This type of process, which occurs in many gas-liquid systems, often releases only a small amount of heat, making the process almost isothermal. In some cases, however, the heat of absorption is significant and temperature variations cannot be ignored. One example, from which the present study originated, is in absorption heat pumps where mass transfer is produced specifically to generate a temperature change. The model analyzed describes a liquid film that flows over an inclined plane and has its free surface in contact with stagnant vapor. The absorption process at the surface creates nonuniform temperature and concentration profiles in the film, which develop until equilibrium between the liquid and vapor is achieved. The energy and diffusion equations are solved simultaneously to give the temperature and concentration variations at the interface and the wall. Two cases of interest are considered: constant-temperature and adiabatic walls. The Nusselt and Sherwood numbers are expressed in terms of the operating parameters, from which heat and mass transfer coefficients can be determined. The Nusselt and Sherwood numbers are found to depend on the Peclet and Lewis numbers as well as on the equilibrium characteristics of the working materials.

Grossman, G

1982-09-01T23:59:59.000Z

188

Waste heat recovery in automobile engines : potential solutions and benefits  

E-Print Network [OSTI]

Less than 30% of the energy in a gallon of gasoline reaches the wheels of a typical car; most of the remaining energy is lost as heat. Since most of the energy consumed by an internal combustion engine is wasted, capturing ...

Ruiz, Joaquin G., 1981-

2005-01-01T23:59:59.000Z

189

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

heat capacity, constant volume Cv, in kJ kgK kJ kgK 13. liquidheat capacity, constant volume Cv, in kJ kgK 12. liquidheat capacity in region 3 Cp3, in kJ kgK 17. saturated liquid

Luong, David

2013-01-01T23:59:59.000Z

190

Relative radiant heat absorption characteristics of two types of mirror shields and a polished aluminum shield  

E-Print Network [OSTI]

compared. The relative absorptivities of two types of rear?silvered safety plate mirrors and a polished aluminum sheet will be compared in this research. LITERATURE REVIEW Modes of Heat Transmission It is well understood that heat may flow only... of vasomotor tone, peripheral venous blood pooling, hypotension, and cerebral anoxia. This instability results in nausea, giddi- 19 ness, universal discomfort, acute physical fatigue, and sometimes fainting. Salt deficiency from any of several possible...

Herron, Steven Douglas

1973-01-01T23:59:59.000Z

191

EXERGY ANALYSIS AND ENTROPY GENERATION MINIMIZATION OF THERMOELECTRIC WASTE HEAT RECOVERY FOR ELECTRONICS  

E-Print Network [OSTI]

Energy recovery from waste heat is attracting more and more attention. All electronic systems consume electricity but only a fraction of it is used for information processing and for human interfaces, such as displays. Lots of energy is dissipated as heat. There are some discussions on waste heat recovery from the electronic systems such as laptop computers. However the efficiency of energy conversion for such utilization is not very attractive due to the maximum allowable temperature of the heat source devices. This leads to very low limits of Carnot efficiency. In contrast to thermodynamic heat engines, Brayton cycle, free piston Stirling engines, etc., authors previously reported that thermoelectric (TE) can be a cost-effective device if the TE and the heat sink are co-optimized, and if some parasitic effects could be reduced. Since the heat already exists and it is free, the additional cost and energy payback time are the key measures to evaluate the value of the energy recovery system. In this report, we will start with the optimum model of the TE power generation system. Then, theoretical maximum output, cost impact and energy payback are evaluated in the examples of electronics system. Entropy Generation Minimization (EGM) is a method already familiar in thermal management of electronics. The optimum thermoelectric waste heat recovery design is compared with the EGM approach. Exergy analysis evaluates the useful energy flow in the optimum TE system. This comprehensive analysis is used to predict the potential future impact of the TE material development, as the dimensionless figure-ofmerit (ZT) is improved.

Kazuaki Yazawa; Ali Shakouri

192

Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing  

E-Print Network [OSTI]

discharges can be made more economically attrac tank holding several thousand gallons of water tive by incorporating thermal energy storage in a maintained at 128-130?F. This scald tank is con heat recovery system. Thermal energy storage can stantly... the ultimate energy end use. of wasting this hot water to the plant drain, a heat A project conducted by the Georgia Tech exchanger was installed at the Gold Kist plant to Engineering Experiment Station to demonstrate preheat scald tank makeup water...

Combes, R. S.; Boykin, W. B.

1980-01-01T23:59:59.000Z

193

Waste Heat Recovery in the Metal Working Industry  

E-Print Network [OSTI]

recuperators supplying four 3" burners. The smaller (1,500 lb. capacity) forge furnace was not equipped with eductors. No furnace pres sure control was used. This furnace had one 10,000 scfh recuperator supplying two 2~" hot air burners. The heat treat... furnaces were both constant com bustion air, throttled fuel control. The motor ized valve in the fuel line was positioned by a position proportioning temperature controller according to a manually set set point and thermo couple input. Both furnaces...

McMann, F. C.; Thurman, J.

1983-01-01T23:59:59.000Z

194

Demonstration of Heat Recovery in the Meat Industry  

E-Print Network [OSTI]

products, nut products, edible oils, chemicals, pharmaceuticals, animal and veterinary products, pet foods, detergents, feathers and down. Energy management has played an poultry leather, important rein the company's efforts to remain competikive... Annual Industrial Energy Technology Conference Volume II, Houston, TX, April 15-18, 1984 FIG. 1. THURLEY DIRECT CONTACT RECUPERATOR COOLED FLUE GASES AND WATER VAPOUR TO ATMOSPHERE 30 _ 40 D C HEAT RECUPERATOR I TO BOILER STACK FAN ___ DOMESTIC...

Molczan, T. J.; Scriven, A. P.; Magro, J.

1984-01-01T23:59:59.000Z

195

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMPRelated PathStrategy

196

Develop Thermoelectric Technology for Automotive Waste Heat Recovery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesiree PipkinsSuperIntegrated

197

Develop Thermoelectric Technology for Automotive Waste Heat Recovery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesiree

198

High Efficiency Microturbine with Integral Heat Recovery - Presentation by  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency|

199

Counter flow cooling drier with integrated heat recovery  

DOE Patents [OSTI]

A drier apparatus for removing water or other liquids from various materials includes a mixer, drying chamber, separator and regenerator and a method for use of the apparatus. The material to be dried is mixed with a heated media to form a mixture which then passes through the chamber. While passing through the chamber, a comparatively cool fluid is passed counter current through the mixture so that the mixture becomes cooler and drier and the fluid becomes hotter and more saturated with moisture. The mixture is then separated into drier material and media. The media is transferred to the regenerator and heated therein by the hot fluid from the chamber and supplemental heat is supplied to bring the media to a preselected temperature for mixing with the incoming material to be dried. In a closed loop embodiment of the apparatus, the fluid is also recycled from the regenerator to the chamber and a chiller is utilized to reduce the temperature of the fluid to a preselected temperature and dew point temperature.

Shivvers, Steve D. (Prole, IA)

2009-08-18T23:59:59.000Z

200

Use of Thermal Energy Storage to Enhance the Recovery and Utilization of Industrial Waste Heat  

E-Print Network [OSTI]

The recovery and reuse of industrial waste heat may be limited if an energy source cannot be fully utilized in an otherwise available out of phase or unequal capacity end-use process. This paper summarizes the results of a technical and economic...

McChesney, H. R.; Bass, R. W.; Landerman, A. M.; Obee, T. N.; Sgamboti, C. T.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Office Building Uses Ice Storage, Heat Recovery, and Cold-Air Distribution  

E-Print Network [OSTI]

Ice storage offers many opportunities to use other tcchnologies, such as heat recovery and cold-air distribution. In fact, by using them, the designer can improve the efficiency and lower the construction cost of an ice system. This paper presents a...

Tackett, R. K.

1989-01-01T23:59:59.000Z

202

Thermal Energy Storage/Waste Heat Recovery Applications in the Cement Industry  

E-Print Network [OSTI]

, and the Portland Cement Association have studied the potential benefits of using waste heat recovery methods and thermal energy storage systems in the cement manufacturing process. This work was performed under DOE Contract No. EC-77-C-01-50S4. The study has been...

Beshore, D. G.; Jaeger, F. A.; Gartner, E. M.

1979-01-01T23:59:59.000Z

203

Waste heat recovery system for recapturing energy after engine aftertreatment systems  

SciTech Connect (OSTI)

The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

Ernst, Timothy C.; Nelson, Christopher R.

2014-06-17T23:59:59.000Z

204

Waste Heat Recovery in Cement Plants By Fluidized Beds  

E-Print Network [OSTI]

combustor is classified as a nonhaz ardous waste similar to fly ash. As such, the sol ids may be disposed in a landfill after obtaining the appropriate permits. The waste solids are coal ash, calcium sulfate, cal cium oxide, and inerts, all ingredients...; a mix 0 clay, limestone, and fly ash is melted into clinker The recoverable waste heat streams from this proc shown in Figure 1. Both a traditional design integrated design are shown. II: W Z 2100? F o ...J

Fraley, L. D.; Ksiao, H. K.; Thunem, C. B.

1984-01-01T23:59:59.000Z

205

The GTE Ceramic Recuperator for High Temperature Waste Heat Recovery  

E-Print Network [OSTI]

Steel Bllffalo Metal Casting Standard St.eel N.ati_onal Forge Ladish Co. Pr.Jt.t & \\.fllitney Ama", Specl."11t.v Metals Bethlehem Steel Cape Ann Forge Staolev Spring (TRw) Box Forge Reheat, Steel Box Forge Reheat, Steel 1 Box Forge Reheat...,807 1.9 1.8 31 St.andard Steel Burnham, PA Box forge. Reheat, Steel 32 National Forge Erie, PA Ladle Preheater. Steel :,.} Lad isb Co. Cyntbiaca, ....'Y Box Heat Treat, Steell 188.426 77,527 3. Pra t t & \\.on i tney East Hart.ford, CT Box...

Dorazio, R. E.; Gonzalez, J. M.; Ferri, J. L.; Rebello, W. J.; Ally, M. R.

1984-01-01T23:59:59.000Z

206

Heat Recovery and Indirect Evaporative Cooling for Energy Conservation  

E-Print Network [OSTI]

SUP STD VELOC [TV fFPM) 495. EXH STD VELOCITY WPM) 495. SUP RECOVERV FACTOR I DRY) .09 IoHNTER OESION CONDITIONS SUP TEMP ENTCFI 14.0 SUP TEMP LEAVCF) ::sO. 3 IEXH TE!"!P ENT CF) 7~.0 EXH TENP LEAV (F) 313.3 FROST THR~SHOLO T~MP SUP REC FACTOR... as an essentially isothermal device (i.e. the same temperature throughout), re gardless of surrounding air temperature. 76 ESL-IE-84-04-14 Proceedings from the Sixth Annual Industrial Energy Technology Conference Volume I, Houston, TX, April 15-18, 1984 HEAT PIP...

Buckley, C. C.

1984-01-01T23:59:59.000Z

207

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network [OSTI]

and boilere. A number of methods can be I~loyed to recover heat. The moat COI8)D are by use of recuperative air preheat.'la, regenerative air preheate'la and economizers. Relative advantages and applicability of the three IDIthoda are discuased... be designed for any steam pres~ur~, including sup~rc.riti('al, "1. A wic1er range ur- dcs-ign::. LS . J. Hore eificient that a iire-tub~ unit. 4. They do not l~nd th~m5elves to cOul in~) o:;!lo:;!-? vated...

Kumar, A.

208

Future EfficientDynamics with Heat Recovery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart 3EfficientDynamics with

209

List of Heat recovery Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList of Geothermal Incentives Jumprecovery

210

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term StorageDepartmentSystem for Light-Duty

211

Development of Marine Thermoelectric Heat Recovery Systems | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMD 602 -Energy Discusses benefits

212

Development of Marine Thermoelectric Heat Recovery Systems | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMD 602 -Energy Discusses

213

Development of Thermoelectric Technology for Automotive Waste Heat Recovery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMDHeavy Duty Trucks |2| Department of

214

Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMPRelated PathStrategy |inGrowth

215

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMPRelated PathStrategy |inGrowthTechnology

216

Develop Thermoelectric Technology for Automotive Waste Heat Recovery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesireeDepartment of Energy 1 DOE

217

Develop Thermoelectric Technology for Automotive Waste Heat Recovery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesireeDepartment of Energy 1

218

Develop Thermoelectric Technology for Automotive Waste Heat Recovery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesireeDepartment of Energy

219

An Information Dependant Computer Program for Engine Exhaust Heat Recovery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin,An Evaluationfor Heating | Department

220

State-of-the-Art Review on Crystallization Control Technologies for water/LiBr Absorption Heat Pumps  

SciTech Connect (OSTI)

The key technical barrier to using water/lithium bromide (LiBr) as the working fluid in aircooled absorption chillers and absorption heat-pump systems is the risk of crystallization when the absorber temperature rises at fixed evaporating pressure. This article reviews various crystallization control technologies available to resolve this problem: chemical inhibitors, heat and mass transfer enhancement methods, thermodynamic cycle modifications, and absorption system-control strategies. Other approaches, such as boosting absorber pressure and J-tube technology, are reviewed as well. This review can help guide future efforts to develop water/LiBr air-cooled absorption chillers and absorption heatpump systems.

Wang, Kai [ORNL; Abdelaziz, Omar [ORNL; Kisari, Padmaja [ORNL; Vineyard, Edward Allan [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Second Law Comparisons of Volumetric and Flame Combustion in an Ideal Engine with Exhaust Heat Recovery  

SciTech Connect (OSTI)

We summarize the results of a theoretical second law (exergy) analysis of an idealized internal combustion engine operating in flame versus volumetric (e.g., HCCI-like) combustion modes. We also consider the impact of exhaust heat recovery. Our primary objective is to better understand the fundamental differences (if any) in thermodynamic irreversibility among these different combustion modes and the resulting impact on engine work output. By combustion irreversibility, we mean that portion of the fuel energy that becomes unavailable for producing useful work due to entropy generation in the combustion process, exclusive of all other heat and friction losses. A key question is whether or not volumetric combustion offers any significant irreversibility advantage over conventional flame combustion. Another key issue is how exhaust heat recovery would be expected to change the net work output of an ideal piston engine. Based on these results, we recommend specific research directions for improving the fuel efficiency of advanced engines.

Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Graves, Ronald L [ORNL

2006-01-01T23:59:59.000Z

222

Bayesian recovery of the initial condition for the heat equation  

E-Print Network [OSTI]

We study a Bayesian approach to recovering the initial condition for the heat equation from noisy observations of the solution at a later time. We consider a class of prior distributions indexed by a parameter quantifying "smoothness" and show that the corresponding posterior distributions contract around the true parameter at a rate that depends on the smoothness of the true initial condition and the smoothness and scale of the prior. Correct combinations of these characteristics lead to the optimal minimax rate. One type of priors leads to a rate-adaptive Bayesian procedure. The frequentist coverage of credible sets is shown to depend on the combination of the prior and true parameter as well, with smoother priors leading to zero coverage and rougher priors to (extremely) conservative results. In the latter case credible sets are much larger than frequentist confidence sets, in that the ratio of diameters diverges to infinity. The results are numerically illustrated by a simulated data example.

Knapik, B T; van Zanten, J H

2011-01-01T23:59:59.000Z

223

Advanced Energy and Water Recovery Technology from Low Grade Waste Heat  

SciTech Connect (OSTI)

The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.

Dexin Wang

2011-12-19T23:59:59.000Z

224

Three important parts of an integrated plant are reactors, separators and a heat exchanger network (HEN) for heat recovery. Within the process engineering community, much  

E-Print Network [OSTI]

exchanger network (HEN) for heat recovery. Within the process engineering community, much attention has beeni ABSTRACT Three important parts of an integrated plant are reactors, separators and a heat and in particular to optimal operation of HENs. The purpose of heat integration is to save energy, but the HEN also

Skogestad, Sigurd

225

An Analysis of the Use of Fluidized-Bed Heat Exchangers for Heat Recovery  

E-Print Network [OSTI]

are presented for a FBWHB system that would produce hot water by recovering part of the heat energy contained in a hot gas....

Vogel, G. J.; Grogan, P. J.

1980-01-01T23:59:59.000Z

226

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into Waste Heat Recovery for Usage by a Rooftop Greenhouse  

E-Print Network [OSTI]

into Waste Heat Recovery for Usage by a Rooftop Greenhouse Rohit Singla, Jeremy Lord, Jorden Hetherington Investigation into Waste Heat Recovery for Usage by a Rooftop Greenhouse April 4, 2013 Dr. Naoko Ellis APSC 262 of this waste heat recovery method. Constraints that are taken into this investigation include various factors

227

Waste Heat Recovery From Stacks Using Direct-Contact Condensing Heat Exchange  

E-Print Network [OSTI]

-06-69 Proceedings from the Eighth Annual Industrial Energy Technology Conference, Houston, TX, June 17-19, 1986 Solid fuels generally show lower recovery potential and, in the case of coals, contain sulfur as well. Wood fuels have high fuel-borne moisture content...

Thorn, W. F.

228

Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures  

SciTech Connect (OSTI)

Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the dump valve on these two appliances would have eliminated uncertainty in knowing when waste water was flowing and the recovery system operated. The study also suggested that capture of dryer exhaust heat to heat incoming air to the dryer should be examined as an alternative to using drying exhaust energy for water heating. The study found that over a 6-week test period, the system in each house was able to recover on average approximately 3000 W-h of waste heat daily from these appliance and showers with slightly less on simulated weekdays and slightly more on simulated weekends which were heavy wash/dry days. Most of these energy savings were due to the shower/GFX operation, and the least savings were for the dishwasher/GFX operation. Overall, the value of the 3000 W-h of displaced energy would have been $0.27/day based on an electricity price of $.09/kWh. Although small for today s convention house, these savings are significant for a home designed to approach maximum affordable efficiency where daily operating costs for the whole house are less than a dollar per day. In 2010 the actual measured cost of energy in one of the simulated occupancy houses which waste heat recovery testing was undertaken was $0.77/day.

Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

2012-09-01T23:59:59.000Z

229

Waste heat recovery systems in the sugar industry: An Indian perspective  

SciTech Connect (OSTI)

This article identifies the key role of the sugar industry in the rural development of developing countries. The Indian sugar industry, already second largest among the country`s processing industries, shows even greater potential, according to the Plan Documents (shown in a table). The potential of waste heat in sugar processing plants, which produce white crystal sugar using the double sulphitation clarification process, is estimated at 5757.9 KJ/kg of sugar. Efficient waste heat recovery (WHR) systems could help arrest the trend of increasing production costs. This would help the sugar industry not only in India, but in many other countries as well. The innovative methods suggested and discussed briefly in this article include dehydration of prepared cane, bagasse drying, and juice heating using waste heat. These methods can reduce the cost of energy in sugar production by at least 10% and improve efficiency and productivity.

Madnaik, S.D.; Jadhav, M.G. [Walchand Inst. of Tech., Maharashtra (India)

1996-04-01T23:59:59.000Z

230

Energy Absorption and Storage in a Hamiltonian System in Partial Contact with a Heat Bath  

E-Print Network [OSTI]

To understand the mechanism allowing for long-term storage of excess energy in proteins, we study a Hamiltonian system consisting of several coupled pendula in partial contact with a heat bath. It is found that energy absorption and storage are possible when the motion of each pendulum switches between oscillatory (vibrational) and rotational modes. The relevance of our mechanism to protein motors is discussed.

Naoko Nakagawa; Kunihiko Kaneko

1999-03-02T23:59:59.000Z

231

Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications  

E-Print Network [OSTI]

effect from CO2 emission resulting from the combustion of fossil fuels in utility power plants and the use of chlorofluorocarbon refrigerants, which is currently thought to affect depletion of the ozone layer. The ban on fluorocarbon fluids has been...LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS V. Murugavel and R. Saravanan Refrigeration and Air conditioning Laboratory Department of Mechanical Engineering, Anna University...

Saravanan, R.; Murugavel, V.

2010-01-01T23:59:59.000Z

232

Analysis of fluidized beds for the simultaneous aerosol separation and heat recovery  

SciTech Connect (OSTI)

A mathematical model is developed to describe the performance of fluidized beds for the simultaneous heat recovery and aerosol separation. This new concept is analyzed in light of the various transport processes taking place within the bed. A two-phase model is developed for the system in which heat and aerosol particles are transferred from the bubble phase to the emulsion phase. In addition to aerosol separation via diffusion, interception, impaction and electrostatic precipitation, thermophoretic collection is also analyzed. The results indicate that high thermal and separation efficiencies can be obtained.

El-Halwagi, M.M. [Auburn Univ., AL (United States)

1993-01-01T23:59:59.000Z

233

Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop  

SciTech Connect (OSTI)

This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

Donna Post Guillen

2012-11-01T23:59:59.000Z

234

Indirect Heat Transfer Technology For Waste Heat Recovery Can Save You Money  

E-Print Network [OSTI]

-drllt fIn lb. FI~-to_heot-roccvery .ylt8m Stoek gl' ..---::-----'1 _._.__.@_.; -+ Farcod?drall fan le. Air-prohe8ting syotem UBing I ....Hransfer ayltem Three typical arrangements for recovering waste heat from furnace flue gas Fig. 1 *Trademark... heat transfer fluid and thence to selected heat "user" sites (Figure 1C). This basic method often offers an attractive investment return, particu larly in applications where stack gas exit tempera tures exceed 316?C (600?F) and the furnace duty...

Beyrau, J. A.; Bogel, N. G.; Seifert, W. F.; Wuelpern, L. E.

1984-01-01T23:59:59.000Z

235

New and Existing Buildings Heating and Cooling Opportunities: Dedicated Heat Recovery Chiller  

Broader source: Energy.gov [DOE]

Presentation covers the new and existing buildings heating and cooling opportunities and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

236

Waste Heat Doesn't Have to be a Waste of Money- The American & Efird Heat Recovery Project: A First for the Textile Industry  

E-Print Network [OSTI]

"WASTE HEAT DOESN'T HAVE TO BE A WASTE OF MONEY" THE AMERICAN & EFIRD HEAT RECOVERY PROJECT: A FIRST FOR THE TEXTILE INDUSTRY STEVE W. SMITH, P.E., Program Manager Electrotechnology Sales Duke Power Company Charlotte, NC In 1989 American... and finishing Finishing Plant was targeted as an ideal operations recover energy from their site for a process heat pump installation. wastewater discharges usjng shell and tube Over a three year period, 1987-1990, Duke heat exchangers and preheat incoming...

Smith, S. W.

237

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network [OSTI]

A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP™) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver...

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

238

Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery  

SciTech Connect (OSTI)

HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

None

2011-12-19T23:59:59.000Z

239

Thermoeconomic optimization of sensible heat thermal storage for cogenerated waste-to-energy recovery  

SciTech Connect (OSTI)

This paper investigates the feasibility of employing thermal storage for cogenerated waste-to-energy recovery such as using mass-burning water-wall incinerators and topping steam turbines. Sensible thermal storage is considered in rectangular cross-sectioned channels through which is passed unused process steam at 1,307 kPa/250 C (175 psig/482 F) during the storage period and feedwater at 1,307 kPa/102 C (175 psig/216 F) during the recovery period. In determining the optimum storage configuration, it is found that the economic feasibility is a function of mass and specific heat of the material and surface area of the channel as well as cost of material and fabrication. Economic considerations included typical cash flows of capital charges, energy revenues, operation and maintenance, and income taxes. Cast concrete is determined to be a potentially attractive storage medium.

Abdul-Razzak, H.A. [Texas A and M Univ., Kingsville, TX (United States). Dept. of Mechanical and Industrial Engineering; Porter, R.W. [Illinois Inst. of Tech., chicago, IL (United States). Dept. of Mechanical and Aerospace Engineering

1995-10-01T23:59:59.000Z

240

Fluidized-bed waste-heat recovery system development: Final report  

SciTech Connect (OSTI)

A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize the energy, which is applicable to all processes, is to preheat the combustion air for the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) system is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, recirculating alumina particles are heated by the flue gas in a raining bed. The hot particles are then removed from the bed and placed in a fluidized bed where they are fluidized by the combustion air. Through this process, the combustion air is preheated. The cooled particles are then returned to the raining bed. Initial development of this concept is for the aluminum smelting industry. In this final report, the design, development, fabrication, and installation of a full-scale FBWHR system is detailed.

Patch, K.D.; Cole, W.E.

1988-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Light weight and economical exhaust heat exchanger for waste heat recovery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-CycleDutyR&DPart of ausing

242

Optimization of waste heat recovery boiler of a combined cycle power plant  

SciTech Connect (OSTI)

This paper describes the details of a procedure developed for optimization of a waste heat recovery boiler (WHRB) of a combined cycle power plant (CCPP) using the program for performance prediction of a typical CCPP, details of which have been presented elsewhere (Seyedan et al., 1994). In order to illustrate the procedure, the optimum design of a WHRB for a typical CCPP (employing dual-pressure bottoming cycle) built by a prominent Indian company, has been carried out. The present design of a WHRB is taken as the base design and the newer designs generated by this procedure are compared with it to assess the extent of cost reduction possible.

Seyedan, B.; Dhar, P.L.; Gaur, R.R. [Indian Inst. of Tech., New Delhi (India). Dept. of Mechanical Engineering; Bindra, G.S. [Bharat Heavy Electrical Ltd., New Delhi (India)

1996-07-01T23:59:59.000Z

243

Validation of a PC based program for single stage absorption heat pump. Final report  

SciTech Connect (OSTI)

An interactive computer code was developed to evaluate single stage absorption heat pump performance for temperature amplifier and heat amplifier modes using water as the refrigerant. This program performs the cycle calculations for single stage cycles based on the polynomial expressions developed to correlate experimental vapor-liquid-equilibrium (VLE) and specific enthalpy-concentration data for LiBr/water and (Li, K, Na)NO{sub 3}/water systems as well as the properties of pure water. The operating parameters obtained by this program were tested against mass and energy balances in documented cases and the results show that the maximum deviation between coefficient of performance (COP) values obtained by this software and the ones previously calculated is less than 3%. In addition, this program was used to study the effect of solution temperature leaving the absorber on the other operating parameters. This type of analysis could be used to improve and optimize cycle design. 4 refs.

Zaltash, A.; Ally, M.R.

1991-09-01T23:59:59.000Z

244

Validation of a PC based program for single stage absorption heat pump  

SciTech Connect (OSTI)

An interactive computer code was developed to evaluate single stage absorption heat pump performance for temperature amplifier and heat amplifier modes using water as the refrigerant. This program performs the cycle calculations for single stage cycles based on the polynomial expressions developed to correlate experimental vapor-liquid-equilibrium (VLE) and specific enthalpy-concentration data for LiBr/water and (Li, K, Na)NO{sub 3}/water systems as well as the properties of pure water. The operating parameters obtained by this program were tested against mass and energy balances in documented cases and the results show that the maximum deviation between coefficient of performance (COP) values obtained by this software and the ones previously calculated is less than 3%. In addition, this program was used to study the effect of solution temperature leaving the absorber on the other operating parameters. This type of analysis could be used to improve and optimize cycle design. 4 refs.

Zaltash, A.; Ally, M.R.

1991-09-01T23:59:59.000Z

245

Low Temperature Waste Energy Recovery at Chemical Plants and Refineries  

E-Print Network [OSTI]

candidates of waste heat recovery technologies that might have an application in these industries. Four technologies that met the criteria of the Advisory Committee included: organic rankine cycle (ORC), absorption refrigeration and chilling, Kalina cycle...

Ferland, K.; papar, R.; Quinn, J.; Kumar, S.

2013-01-01T23:59:59.000Z

246

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

Edward Levy; Harun Bilirgen; John DuPoint

2011-03-31T23:59:59.000Z

247

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

Levy, Edward; Bilirgen, Harun; DuPont, John

2011-03-31T23:59:59.000Z

248

Potential benefits of a resource-recovery facility coupled with district heating in Detroit, Michigan  

SciTech Connect (OSTI)

The City of Detroit, Michigan, announced plans for a 2.7-Gg/d (3000-ton/d) Resource Recovery Facility to be located in the central part of the city. The facility will process and burn waste collected by the municipal forces. Steam generated in the facility's boilers will be used to produce electricity; the surplus electricity will be sold to the Detroit Edison Company. When needed by the Central Heating System (CHS), large portions of the steam can be extracted from the turbine and sold to the Detroit Edison Company. The facility will meet its primary purpose of greatly relieving Detroit's solid waste disposal problem. A second very important benefit is that it will be a source of reasonably priced steam for the CHS, which serves the downtown area. Detroit is now in a local depression, and the downtown areas have suffered urban decay. The city is focusing on the redevelopment of these areas, and a viable, cost-effective district heating system would be a major asset. Currently, the CHS is losing money, although it charges relatively high rates for steam, because it uses primarily natural gas to generate steam. The economic feasibility of converting the CHS's relatively oil boiler units to burn coal, a much cheaper fuel, is doubtful. The Resource Recovery Facility can provide CHS with a major part of its steam needs at competitive prices in the near future. This would do much to relieve the CHS's financial problems and help it to become a viable system. This, in turn, would assist the city in the redevelopment of the downtown areas. An overall strategy for district heating in Detroit is being developed. It is suggested that a comprehensive study of a regional district heating system in the city be made.

McLain, H.A.; Brinker, M.J.; Gatton, D.W.

1982-09-01T23:59:59.000Z

249

A Method for Simulating Heat Recovery Systems Using AirModel in Implementations of the ASHRAE Simplified Energy Analysis Procedure  

E-Print Network [OSTI]

exchanger to verify the return air ratio. In this comparison, the recovered energy from the return air was equalized with the heat transfer of the heat exchanger model. An example of this methodology was used to simulate the HVAC system with a heat... to be measured for further investigation to verify the AirModel simulation. This method can be applied in Energy Plus and other simulation tools/software to simulate the building exhaust energy recovery. Acknowledgements The work of this paper...

Liu, C.; Zeig, M.; Claridge, D. E.; Wei, G.; Bruner, H.; Turner, W. D.

2005-01-01T23:59:59.000Z

250

Improved heat recovery and high-temperature clean-up for coal-gas fired combustion turbines  

SciTech Connect (OSTI)

This study investigates the performance of an Improved Heat Recovery Method (IHRM) applied to a coal-gas fired power-generating system using a high-temperature clean-up. This heat recovery process has been described by Higdon and Lynn (1990). The IHRM is an integrated heat-recovery network that significantly increases the thermal efficiency of a gas turbine in the generation of electric power. Its main feature is to recover both low- and high-temperature heat reclaimed from various gas streams by means of evaporating heated water into combustion air in an air saturation unit. This unit is a packed column where compressed air flows countercurrently to the heated water prior to being sent to the combustor, where it is mixed with coal-gas and burned. The high water content of the air stream thus obtained reduces the amount of excess air required to control the firing temperature of the combustor, which in turn lowers the total work of compression and results in a high thermal efficiency. Three designs of the IHRM were developed to accommodate three different gasifying process. The performances of those designs were evaluated and compared using computer simulations. The efficiencies obtained with the IHRM are substantially higher those yielded by other heat-recovery technologies using the same gasifying processes. The study also revealed that the IHRM compares advantageously to most advanced power-generation technologies currently available or tested commercially. 13 refs., 34 figs., 10 tabs.

Barthelemy, N.M.; Lynn, S.

1991-07-01T23:59:59.000Z

251

Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1982-31 January 1983  

SciTech Connect (OSTI)

The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

Cole, W.E.; DeSaro, R.; Joshi, C.

1983-02-01T23:59:59.000Z

252

Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1981-31 January 1982  

SciTech Connect (OSTI)

The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

Cole, W. E.; DeSaro, R.; Joshi, C.

1982-02-01T23:59:59.000Z

253

Evaluation of a once-through heat recovery steam generator concept: Final report  

SciTech Connect (OSTI)

This report presents the results of a reliability, availability, and maintainability (RAM) evaluation of a once-through concept for a combined-cycle heat recovery steam generator (HRSG). The project included a review of differences in reliability and maintainability characteristics of the once-through concept and a typical drum-type HRSG design. A special effort was placed on an investigation of the expected performance of the thin-wall alloy 800 boiler tubing used in the once-through HRSG. An analysis was performed by using the UNIRAM computer modeling methodology to compare the predicted availability of the once-through HRSG design with that of a drum-type system. The results of this project provide a basis for understanding the RAM characteristics of the once-through HRSG concept and identify areas where additional research may be beneficial in evaluating this new design for application within the utility industry. 28 refs., 5 figs., 7 tabs.

Babione, R.A.

1988-04-01T23:59:59.000Z

254

Modeling of reciprocating internal combustion engines for power generation and heat recovery  

SciTech Connect (OSTI)

This paper presents a power generation and heat recovery model for reciprocating internal combustion engines (ICEs). The purpose of the proposed model is to provide realistic estimates of performance/efficiency maps for both electrical power output and useful thermal output for various capacities of engines for use in a preliminary CHP design/simulation process. The proposed model will serve as an alternative to constant engine efficiencies or empirical efficiency curves commonly used in the current literature for simulations of CHP systems. The engine performance/efficiency calculation algorithm has been coded to a publicly distributed FORTRAN Dynamic Link Library (DLL), and a user friendly tool has been developed using Visual Basic programming. Simulation results using the proposed model are validated against manufacturer’s technical data.

Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

2013-02-01T23:59:59.000Z

255

An experimental study of waste heat recovery from a residential refrigerator  

SciTech Connect (OSTI)

This paper describes the design, construction, and testing of an integrated heat recovery system which has been designed both to enhance the performance of a residential refrigerator and simultaneously to provide preheated water for an electric hot water heater. A commercial, indirect-heated hot water tank was retrofitted with suitable tubing to permit it to serve as a water cooled condenser for a residential refrigerator. This condenser operates in parallel with the air-cooled condenser tubing of the refrigerator so that either one or the other is active when the refrigerator is running. The refrigerator was housed in a controlled-environment chamber, and it was instrumented so that its performance could be monitored carefully in conjunction with the water pre-heating system. The system has been tested under a variety of hot water usage protocols, and the resulting data set has provided significantly insight into issues associated with commercial implementation of the concept. For the case of no water usage, the system was able to provide a 35 C temperature rise in the storage tank after about 100 hours of continuous operation, with no detectable deterioration of the refrigerator performance. Preliminary tests with simulations of high water usage, low water usage, and family water usage indicate a possible 18--20% energy savings for hot water over a long period of operation. Although the economic viability for such a system in a residential environment would appear to be sub-marginal, the potential for such a system associated with commercial-scale refrigeration clearly warrants further study, particularly for climates for which air conditioning heat rejection is highly seasonal.

Clark, R.A.; Smith, R.N.; Jensen, M.K. [Rensselaer Polytechnic Inst., Troy, NY (United States)

1996-12-31T23:59:59.000Z

256

Two component absorption/phase separation chemical heat pump to provide temperature amplification to waste heat streams  

DOE Patents [OSTI]

A chemical heat pump that utilizes liquid/liquid phase separation rather than evaporation to separate two components in a heat of mixing chemical heat pump process. 3 figs.

Scott, T.C.; Kaplan, S.I.

1987-09-04T23:59:59.000Z

257

WASTE HEAT RECOVERY USING THERMOELECTRIC DEVICES IN THE LIGHT METALS INDUSTRY  

SciTech Connect (OSTI)

Recently discovered thermoelectric materials and associated manufacturing techniques (nanostructures, thin-film super lattice, quantum wells...) have been characterized with thermal to electric energy conversion efficiencies of 12-25+%. These advances allow the manufacture of small-area, high-energy flux (350 W/cm2 input) thermoelectric generating (TEG) devices that operate at high temperatures (~750°C). TEG technology offers the potential for large-scale conversion of waste heat from the exhaust gases of electrolytic cells (e.g., Hall-Hèroult cells) and from aluminum, magnesium, metal and glass melting furnaces. This paper provides an analysis of the potential energy recovery and of the engineering issues that are expected when integrating TEG systems into existing manufacturing processes. The TEG module must be engineered for low-cost, easy insertion and simple operation in order to be incorporated into existing manufacturing operations. Heat transfer on both the hot and cold-side of these devices will require new materials, surface treatments and design concepts for their efficient operation.

Choate, William T.; Hendricks, Terry J.; Majumdar, Rajita

2007-05-01T23:59:59.000Z

258

Proceedings: International Conference on Boiler Tube Failures and Heat Recovery Steam Generator (HRSG) Tube Failures and Inspections  

SciTech Connect (OSTI)

Tube failures remain the leading cause of availability loss in conventional fossil plants and combined cycle/heat recovery steam generator (HRSG) plants. These conference proceedings address state-of-the-art practices and techniques worldwide for understanding and reducing tube failures.

None

2002-10-01T23:59:59.000Z

259

E-Print Network 3.0 - absorption-sorption heat pumps Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

260

E-Print Network 3.0 - absorption-type heat pumps Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Final Scientific/Technical Report [Recovery Act: Districtwide Geothermal Heating Conversion  

SciTech Connect (OSTI)

The Recovery Act: Districtwide Geothermal Heating Conversion project performed by the Blaine County School District was part of a larger effort by the District to reduce operating costs, address deferred maintenance items, and to improve the learning environment of the students. This project evaluated three options for the ground source which were Open-Loop Extraction/Re-injection wells, Closed-Loop Vertical Boreholes, and Closed-Loop Horizontal Slinky approaches. In the end the Closed-Loop Horizontal Slinky approach had the lowest total cost of ownership but the majority of the sites associated with this project did not have enough available ground area to install the system so the second lowest option was used (Open-Loop). In addition to the ground source, this project looked at ways to retrofit existing HVAC systems with new high efficiency systems. The end result was the installation of distributed waterto- air heat pumps with water-to-water heat pumps installed to act as boilers/chillers for areas with a high ventilation demand such as they gymnasiums. A number of options were evaluated and the lowest total cost of ownership approach was implemented in the majority of the facilities. The facilities where the lowest total cost of ownership approaches was not selected were done to maintain consistency of the systems from facility to facility. This project had a number of other benefits to the Blaine County public. The project utilizes guaranteed energy savings to justify the levy funds expended. The project also developed an educational dashboard that can be used in the classrooms and to educate the community on the project and its performance. In addition, the majority of the installation work was performed by contractors local to Blaine County which acted as an economic stimulus to the area during a period of recession.

Chatterton, Mike

2014-02-12T23:59:59.000Z

262

Use Feedwater Economizers for Waste Heat Recovery: Office of Industrial Technologies (OIT) Steam Energy Tips No.3  

SciTech Connect (OSTI)

A feedwater economizer reduces steam boiler fuel requirements by transferring heat from the flue gas to incoming feedwater. Boiler flue gases are often rejected to the stack at temperatures more than 100 F to 150 F higher than the temperature of the generated steam. Generally, boiler efficiency can be increased by 1% for every 40 F reduction in flue gas temperature. By recovering waste heat, an economizer can often reduce fuel requirements by 5% to 10% and pay for itself in less than 2 years. The table provides examples of the potential for heat recovery.

Not Available

2002-03-01T23:59:59.000Z

263

Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report  

SciTech Connect (OSTI)

The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

NONE

1995-01-01T23:59:59.000Z

264

E-Print Network 3.0 - an-04-07 absorption-sorption heat Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is used to increase the efficiency of heating and cooling of buildings... that convert solar thermal energy to electrical power. The heat capacity of a solid material is ......

265

Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

SciTech Connect (OSTI)

We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

Gregory Meisner

2011-08-31T23:59:59.000Z

266

Seven-effect absorption refrigeration  

DOE Patents [OSTI]

A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

DeVault, R.C.; Biermann, W.J.

1989-05-09T23:59:59.000Z

267

Seven-effect absorption refrigeration  

DOE Patents [OSTI]

A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

DeVault, Robert C. (Knoxville, TN); Biermann, Wendell J. (Fayetteville, NY)

1989-01-01T23:59:59.000Z

268

Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems  

SciTech Connect (OSTI)

Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery, turbocharging or turbo-compounding, and exhaust aftertreatment.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Briggs, Thomas E [ORNL

2010-01-01T23:59:59.000Z

269

Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation  

Broader source: Energy.gov [DOE]

Large-dimension, high-ZT BiTe and Pb-based nanocomposites produced with a low-cost scalable process were used for development and testing of TE module prototypes, and demonstration of a waste heat recovery system

270

Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report  

SciTech Connect (OSTI)

A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

Nick Rosenberry, Harris Companies

2012-05-04T23:59:59.000Z

271

Fluidized-bed waste-heat recovery system development. Semiannual report, February 1, 1983-July 31, 1983  

SciTech Connect (OSTI)

A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize this energy, which is applicable to all processes, is to preheat the combustion air from the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry. In this report, the accomplishments of the proceeding six-month period are described.

Cole, W. E.; De Saro, R.; Joshi, C.

1983-08-01T23:59:59.000Z

272

Heat recovery and thermal storage : a study of the Massachusetts State Transportation Building  

E-Print Network [OSTI]

A study of the energy system at the Massachusetts State Transportation Building was conducted. This innovative energy system utilizes internal-source heat pumps and a water thermal storage system to provide building heating ...

Bjorklund, Abbe Ellen

1986-01-01T23:59:59.000Z

273

The Department of Energy Program for Development of Industrial Heat Recovery Equipment  

E-Print Network [OSTI]

equipment development is carried out primarily in the areas of recuperators and heat pumps, with some work in organic Rankine cycle power units and novel waste heat boilers. The Department is sponsoring basic work in heat exchanger design which includes... better under standing of heat transfer mechanism, fouling mechanisms and flow induced vibrations, development of corrosion resistant materials, and de-scaling techniques. A successful demonstration of a metallic cross and counter-flow recuperator...

Eustis, J. N.

1979-01-01T23:59:59.000Z

274

L- and M-shell absorption measurements of radiatively heated Fe plasma  

SciTech Connect (OSTI)

Measurements of iron-plasma absorption spectrum over 150-1200 eV photon energy range were reported at temperature T = (72 {+-} 4) eV. The electron temperature was diagnosed with the absorption spectrum of aluminum mixed with iron. The density was not diagnosed directly but obtained from a radiative hydrodynamic simulation with the Multi-1D code. The broad photon energy range enables simultaneous observation of the L-shell and M-shell transitions that dominate the radiation transport at this temperature. The spectrally resolved transmission data were compared to the detailed-configuration-accounting model calculations and reasonable agreement was found.

Zhang Jiyan; Li Hang; Zhao Yang; Xiong Gang; Yuan Zheng; Zhang Haiying; Yang Guohong; Yang Jiamin; Liu Shenye; Jiang Shaoen; Ding Yongkun; Zhang Baohan; Zheng Zhijian [Research Center of Laser Fusion, P. O. Box 919-986, Mianyang 621900 (China); Xu Yan; Meng Xujun; Yan Jun [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

2012-11-15T23:59:59.000Z

275

High vacuum indirectly-heated rotary kiln for the removal and recovery of mercury from air pollution control scrubber waste  

SciTech Connect (OSTI)

SepraDyne corporation (Denton, TX, US) has conducted pilot-scale treatability studies of dewatered acid plant blowdown sludge generated by a copper smelter using its recently patented high temperature and high vacuum indirectly-heated rotary retort technology. This unique rotary kiln is capable of operating at internal temperatures up to 850 C with an internal pressure of 50 torr and eliminates the use of sweep gas to transport volatile substances out of the retort. By removing non-condensables such as oxygen and nitrogen at relatively low temperatures and coupling the process with a temperature ramp-up program and low temperature condensation, virtually all of the retort off-gases produced during processing can be condensed for recovery. The combination of rotation, heat and vacuum produce the ideal environment for the rapid volatilization of virtually all organic compounds, water and low-to-moderate boiling point metals such as arsenic, cadmium and mercury.

Hawk, G.G.; Aulbaugh, R.A. [Scientific Consulting Labs., Inc., Farmers Branch, TX (United States)] [Scientific Consulting Labs., Inc., Farmers Branch, TX (United States)

1998-12-31T23:59:59.000Z

276

Energy recovery during expansion of compressed gas using power plant low-quality heat sources  

DOE Patents [OSTI]

A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

2006-03-07T23:59:59.000Z

277

E-Print Network 3.0 - advanced heat recovery Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coast Region Research Section Collection: Renewable Energy 12 Combined Heat and Power (CHP), also known as cogeneration, is the concurrent production of electricity or Summary: ,...

278

Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications  

Broader source: Energy.gov [DOE]

Progress in reliable high temperature segmented thermoelectric devices and potential for producing electricity from waste heat from energy intensive industrial processes and transportation vehicles exhaust are discussed

279

Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus  

SciTech Connect (OSTI)

The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method where relevant air-side parameters were controlled while collecting output performance data at discreet points of steady-state operation. The primary metrics include system power consumption and zonal heating and cooling capacity. Using this test method, the measured total cooling capacity was somewhat lower than reported by the manufacturer. The measured power was found to be equal to or greater than the manufacturers indicated power. Heating capacity measurements produced similar results. The air-side performance metric was total cooling and heating energy since the computer model uses those same metrics as input to the model. Although the sensible and latent components of total cooling were measured, they are not described in this report. The test methodology set the thermostat set point temperature very low for cooling and very high for heating to measure full-load performance and was originally thought to provide the maximum available capacity. Manufacturers stated that this test method would not accurately measure performance of VRF systems which is now believed to be a true statement. Near the end of the project, an alternate test method was developed to better represent VRF system performance as if field installed. This method of test is preliminarily called the Load Based Method of Test where the load is fixed and the indoor conditions and unit operation are allowed to fluctuate. This test method was only briefly attempted in a laboratory setting but does show promise for future lab testing. Since variable-speed air-conditioners and heat pumps include an on-board control algorithm to modulate capacity, these systems are difficult to test. Manufacturers do have the ability to override internal components to accommodate certification procedures, however, it is unknown if the resulting operation is replicated in the field, or if so, how often. Other studies have shown that variable-speed air-conditioners and heat pumps do out perform their single-speed counterparts though these field studies leave as many questions as they do provide answers. The measure

Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

2013-09-30T23:59:59.000Z

280

An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles  

Broader source: Energy.gov [DOE]

Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Method and apparatus for enhanced heat recovery from steam generators and water heaters  

DOE Patents [OSTI]

A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

2006-06-27T23:59:59.000Z

282

Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems  

SciTech Connect (OSTI)

This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ���¢��������Finite Volume Based Computer Program for Ground Source Heat Pump Systems.���¢������� The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP system

James A Menart, Professor

2013-02-22T23:59:59.000Z

283

Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design  

SciTech Connect (OSTI)

The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

Jurns, John M. [European Spallation Source ESS AB, P.O. Box 176, 221 00 Lund (Sweden); Bäck, Harald [Sweco Industry AB, P.O. Box 286, 201 22 Malmö (Sweden); Gierow, Martin [Lunds Energikoncernen AB, P.O. Box 25, 221 00 Lund (Sweden)

2014-01-29T23:59:59.000Z

284

Skutterudite Thermoelectric Generator For Automotive Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

285

Battleground Energy Recovery Project  

SciTech Connect (OSTI)

In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ï?· Create a Showcase Waste Heat Recovery Demonstration Project.

Daniel Bullock

2011-12-31T23:59:59.000Z

286

Feasibility of Thermoelectrics for Waste Heat Recovery in Hybrid Vehicles: Preprint  

SciTech Connect (OSTI)

Using advanced materials, thermoelectric conversion of efficiencies on the order of 20% may be possible in the near future. Thermoelectric generators offer potential to increase vehicle fuel economy by recapturing a portion of the waste heat from the engine exhaust and generating electricity to power vehicle accessory or traction loads.

Smith, K.; Thornton, M.

2007-12-01T23:59:59.000Z

287

Keywordscondensation tube, surface modification, waste heat and condensation water recovery system  

E-Print Network [OSTI]

merge to form water thin film on tube condenser surface. The condensing mechanism will change from high efficiency dropwise condensation to low efficiency filmwise condensation. In this proposal, surface system is one of the most important facilities in power plants. High efficiency waste heat

Leu, Tzong-Shyng "Jeremy"

288

Heat loads from ICRF and LH wave absorption in the SOL: characterization on JET and implications for the ITER-Like Wall  

SciTech Connect (OSTI)

Heat loads from ICRF and LH wave absorption in the SOL are characterized on JET from the de-convolution of surface temperatures measured by infrared thermography. The spatial localization, quantitative estimates, parametric dependence and physical origin of the observed heat fluxes are documented. Implications of these observations are discussed for the operation of JET with an ITER-Like Wall, featuring Beryllium tiles with reduced power handling capability.

Colas, L.; Arnoux, G.; Goniche, M. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Jacquet, Ph.; Mayoral, M.-L.; Brix, M.; Fursdon, M.; Graham, M.; Mailloux, J.; Monakhov, I.; Noble, C.; Sirinelli, A.; Riccardo, V.; Vizvary, Z. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Lerche, E.; Ongena, J. [Association EURATOM-Belgian State, ERM-KMS, Brussels (Belgium); Petrzilka, V. [Association EURATOM-IPP. CR, Za Slovankou 3, 182 21 Praha 8 (Czech Republic)

2011-12-23T23:59:59.000Z

289

Light weight and economical exhaust heat exchanger for waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

exhaust heat exchanger for waste heat recovery using mixed radiant and convective heat transfer Light weight and economical exhaust heat exchanger for waste heat recovery...

290

Development of a Waste Heat Recovery System for Light Duty Diesel Engines |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMDHeavy DutyLow

291

Measurements of heat and mass transfer coefficients during absorption of water vapor by lithium bromide and (Li,K,Na)NO sub 3 mixtures  

SciTech Connect (OSTI)

A knowledge of heat and mass transfer coefficients in heat pump fluids, plays an important role in the design of absorption machines. Heat and mass transfer coefficients as well as subcooling are measured for absorption of water vapor in (Li, K, Na)No{sub 3} and Lithium Bromide (LiBr) mixtures.The rate of absorption of water vapor is obtained from the difference in concentration of mixtures between inlet and outlet streams across the absorber. In situ concentrations of aqueous salt mixtures over temperature ranges between 80 to 135 {degrees}C were calculated from density measurements. This technique of measurement is a reliable and convenient but not a very accurate ({plus minus}0.8 wt% salt) method of measuring the in situ salt concentration. Results show that the subcooling at the absorber exit is not only a property of the fluid, but depends strongly on the process conditions. The subcooling in LiBr mixtures without additive is shown to vary between 2.2 and 24.3 {degrees}C and the film heat transfer coefficient between 1365.2 and 801.1 W/m{sup 2}.K respectively, depending upon process conditions. These empirical results will prove to be of value to heat pump manufacturers because they have a strong bearing on costs and performance. Heat and mass transfer coefficients in aqueous salt solutions ate presented as a function of dimensionless numbers. 12 refs., 3 figs., 4 tabs.

Zaltash, A.; Ally, M.R.; Linkous, R.L.; Klatt, L.N.

1991-01-01T23:59:59.000Z

292

Thermal engine driven heat pump for recovery of volatile organic compounds  

DOE Patents [OSTI]

The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

Drake, Richard L. (Schenectady, NY)

1991-01-01T23:59:59.000Z

293

Dual Loop Parallel/Series Waste Heat Recovery System | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA andDriving Innovation at theDryDual Loop

294

High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii HIGHBraytonMaterialsEnergySystems on

295

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) | Department2009 | UC

296

Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects  

E-Print Network [OSTI]

§1.4 – Heat Pipes for Waste Heat Recovery…..…………………………………analysis involving waste heat recovery of solar energyOverview of Industrial Waste Heat Recovery Technologies for

Armijo, Kenneth Miguel

2011-01-01T23:59:59.000Z

297

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

SciTech Connect (OSTI)

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

Not Available

2004-11-01T23:59:59.000Z

298

Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust  

DOE Patents [OSTI]

Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

Meisner, Gregory P; Yang, Jihui

2014-02-11T23:59:59.000Z

299

A microsecond time resolved x-ray absorption near edge structure synchrotron study of phase transitions in Fe undergoing ramp heating at high pressure  

SciTech Connect (OSTI)

We report a microsecond time-resolved x-ray absorption near edge structure study using synchrotron radiation to dynamically detect structural phase transitions in Fe undergoing rapid heating along a quasi-isochoric path. Within a few ms, we observed two structural phase transitions, which transform the ambient bcc phase of Fe into the fcc phase, and then into the liquid phase. This example illustrates the opportunities offered by energy dispersive x-ray absorption spectroscopy in the study of matter under extreme dynamic conditions. Advanced simulations are compared to these data.

Marini, C.; Mathon, O.; Pascarelli, S. [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP220, 38043 Grenoble Cedex (France); Occelli, F.; Torchio, R.; Recoules, V.; Loubeyre, P. [CEA, Bruyeres le Chatel, 91297 Arpajon Cedex (France)

2014-03-07T23:59:59.000Z

300

Investigating potential efficiency improvement for light-duty transportation applications through simulation of an organic Rankine cycle for waste-heat recovery  

SciTech Connect (OSTI)

Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to heat loss and combustion irreversibility. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, the potential benefits of such a strategy for light-duty applications are unknown due to transient operation, low-load operation at typical driving conditions, and the added mass of the system. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. Results from steady-state and drive-cycle simulations are presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and competition between waste-heat recovery systems, turbochargers, aftertreatment devices, and other systems for the limited thermal resources.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Laboratory Heat Recovery System  

E-Print Network [OSTI]

In 1976 Continental Oil Company (now Conoco, Inc.) made a far reaching decision. Looking at the future needs of the country in the energy field, it decided to increase and improve its research and development facilities in order to be able to meet...

Burrows, D. B.; Mendez, F. J.

1981-01-01T23:59:59.000Z

302

Industrial Waste Heat Recovery  

E-Print Network [OSTI]

One hundred fifty reports were reviewed along with interviews of some twelve recuperator manufacturers and research organizations. Of the reports reviewed, the consensus was that the majority of recuperators used in the U.S. are constructed of 300...

Ward, M. E.; Solomon, N. G.; Tabb, E. S.

1980-01-01T23:59:59.000Z

303

Waste Heat Recovery  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotionWhen LifeDRAFT -

304

Lighting a building with a single bulb : toward a system for illumination in the 21st c.; or, A centralized illumination system for the efficient decoupling and recovery of lighting related heat  

E-Print Network [OSTI]

Piping light represents the first tenable method for recovery and reutilization of lighting related heat. It can do this by preserving the energy generated at the lamp as radiative, departing from precedent and avoiding ...

Levens, Kurt Antony, 1961-

1997-01-01T23:59:59.000Z

305

Recovery Act - Geothermal Technologies Program:Ground Source...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps A detailled description of the...

306

Economic Options for Upgrading Waste Heat  

E-Print Network [OSTI]

There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

Erickson, D. C.

1983-01-01T23:59:59.000Z

307

Corrosive resistant heat exchanger  

DOE Patents [OSTI]

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

308

Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from a Heavy-Duty  

E-Print Network [OSTI]

Rankine systems for automotive applications apply the same principle used worldwide in industry is then cooled by a condenser which transfers heat to an external cold sink. Most Rankine systems are designed to produce elec- tricity via a generator connected to the auxiliary network and/or an energy storage system

Paris-Sud XI, Université de

309

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #8 (Fact Sheet).  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indianaof Energy2-02 InspectionS10IS00719IG-17

310

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

E-Print Network [OSTI]

Approach for Generating Renewable Energy with SimultaneousCombining Recovery of Renewable Energy with Geologic Storage

Pruess, K.

2010-01-01T23:59:59.000Z

311

Cleanup Verification Package for the 100-K-55:1 and 100-K-56:1 Pipelines and the 116-KW-4 and 116-KE-5 Heat Recovery Stations  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 100-K-55:1 and 100-K-56:1 reactor cooling effluent underground pipelines and for the 116-KW-4 and 116-KE-5 heat recovery stations. The 100-K-55 and 100-K-56 sites consisted of those process effluent pipelines that serviced the 105-KW and 105-KE Reactors.

J. M. Capron

2005-09-28T23:59:59.000Z

312

Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat  

SciTech Connect (OSTI)

This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the direct evaporator. A testbed was constructed and the prototype demonstrated at the GE GRC Niskayuna facility.

Donna Post Guillen; Jalal Zia

2013-09-01T23:59:59.000Z

313

Secretary Chu Announces Nearly $50 Million of Recovery Act Funding...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nearly 50 Million of Recovery Act Funding to Accelerate Deployment of Geothermal Heat Pumps Secretary Chu Announces Nearly 50 Million of Recovery Act Funding to...

314

Secretary Chu Announces Nearly $50 Million of Recovery Act Funding...  

Office of Environmental Management (EM)

50 Million of Recovery Act Funding to Accelerate Deployment of Geothermal Heat Pumps Secretary Chu Announces Nearly 50 Million of Recovery Act Funding to Accelerate Deployment of...

315

Waste Heat Management Options for Improving Industrial Process...  

Broader source: Energy.gov (indexed) [DOE]

of waste heat streams, and options for recovery including Combined Heat and Power. Waste Heat Management Options for Improving Industrial Process Heating Systems...

316

The Future of Absorption Technology in America: A Critical Look...  

Broader source: Energy.gov (indexed) [DOE]

The Future of Absorption Technology in America: A Critical Look at the Impact of Building, Cooling, Heating, and Power (BCHP) and Innovation, June 2000 The Future of Absorption...

317

ABSORPTION HEAT PUMP IN THE DISTRICT HEATING  

E-Print Network [OSTI]

Zasulauks ­ wood-chips fired boiler house, (20 MWth) in 2013/05 · DHP Ziepniekkalns ­ wood-chips fired cogeneration unit, (4 MWel, 22 MWth) in 2013/2. · DHP Vecmlgrvis ­ wood-chips fired boilers, (2x7 MWth) in 2010, Nuremberg, 15-16.10.2013 · Cooling load is close to the set up chiller capacity · HP/chiller is designed

Oak Ridge National Laboratory

318

Thermal Recovery Methods  

SciTech Connect (OSTI)

Thermal Recovery Methods describes the basic concepts of thermal recovery and explains the injection patterns used to exploit reservoir conditions. Basic reservoir engineering is reviewed with an emphasis on changes in flow characteristics caused by temperature. The authors discuss an energy balance for steam and combustion drive, and they explain in situ reactions. Heat loss, combustion drive, and steam displacement also are examined in detail, as well as cyclic steam injection, downhole ignition, well heating, and low-temperature oxidation. Contents: Thermal processes; Formation and reservoir evaluations; Well patterns and spacing; Flow and process equations; Laboratory simulation of thermal recovery; Heat loss and transmission; Displacement and production; Equipment; Basic data for field selection; Laboratory evaluation of combustion characteristics; Thermal properties of reservoirs and fluids.

White, P.D.; Moss, J.T.

1983-01-01T23:59:59.000Z

319

aluminum-finned copper-tube heat: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

individual heat pumps, solar heating and wood pellets 6Ris International Energy Conference 2009Heat Plan 12 Heat Pump for High School Heat Recovery Texas A&M...

320

Absorption Heat Pump Water Heater  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department ofEnergy PHEVAbengoaAbsocold:

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

E-Print Network [OSTI]

D.W. A Hot Dry Rock Geothermal Energy Concept UtilizingThe Future of Geothermal Energy, Massachusetts Institute ofcombine recovery of geothermal energy with simultaneous

Pruess, K.

2010-01-01T23:59:59.000Z

322

Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump  

DOE Patents [OSTI]

Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.

Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI); Marsala, Joseph (Glen Ellyn, IL)

1994-11-29T23:59:59.000Z

323

Heat Recovery from Coal Gasifiers  

E-Print Network [OSTI]

requirement of the gasification plant. The mechanical design for pressure vessel shell and boiler tubes is discussed. The design considers metallurgical requirements associated with hydrogen rich, high temperature, and high pressure atmosphere....

Wen, H.; Lou, S. C.

1981-01-01T23:59:59.000Z

324

Heat Recovery From Solid Waste  

E-Print Network [OSTI]

areas of evaluation, including the cost of fuel, cost of solid waste disposal, plant energy requirements, available technology, etc....

Underwood, O. W.

1981-01-01T23:59:59.000Z

325

Heat recovery | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer CountyCorridorPart A PermitValles Caldera, New Mexico

326

On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique  

SciTech Connect (OSTI)

The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

Chattopadhyay, P.; Karim, B.; Guha Roy, S. [Department of Electronic Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700009 (India)

2013-12-28T23:59:59.000Z

327

E-Print Network 3.0 - absorption system topical Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

;Sustainable Energy Science and Engineering Center MOTIVATION ABSORPTION HEAT PUMP COMBINED CARNOT CYCLES... HEAT-DRIVEN HEAT PUMPS EXERGY DESTRUCTION IN...

328

High-Temperature Components for Rankine-Cycle-Based Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on...

329

Thermal recovery of oil and bitumen  

SciTech Connect (OSTI)

This book is organized into the following chapters: Introduction to Thermal Recovery; Conduction of Heat Within Solids; Convective Heating within Reservoirs; Steamfloodings; The Displacement of Heavy Oil; Cyclic Steam Simulation; Steam-Assisted Gravity Drainage; Steam Recovery Equipment and Facilities; and In Situ Combustion.

Butler, R.M. (Dept. of Chemical and Petroleum Engineering, Univ. of Calgary, Calgary, Alberta (CA))

1991-01-01T23:59:59.000Z

330

Woven heat exchanger  

DOE Patents [OSTI]

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

331

Low-Cost Microchannel Heat Exchanger  

Broader source: Energy.gov (indexed) [DOE]

Produce prototype heat exchangers for electronics cooling and high pressure waste heat recovery power system applications Test integrity and confirm high performance of...

332

Direct fired heat exchanger  

SciTech Connect (OSTI)

A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1986-01-01T23:59:59.000Z

333

Enhanced oil recovery system  

DOE Patents [OSTI]

All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

Goldsberry, Fred L. (Spring, TX)

1989-01-01T23:59:59.000Z

334

A corrosive resistant heat exchanger  

DOE Patents [OSTI]

A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

Richlen, S.L.

1987-08-10T23:59:59.000Z

335

Power Recovery  

E-Print Network [OSTI]

.POWER RECOVERY Fletcher Mlirray Monsanto Chemical Company AB5'-:::0 p.p., will ??vi.w 'h. '.ohnnln,y nf 'h.::v,n. T:X:~~T ~ methods for estimating the power recovery potential from fluid streams. The ideal gas law formula for expanding gases.... Gas Law Estimation Power recovery estimates from a vapor stream can be made using the formula: which is derived from the Ideal Gas Law. At first glance the. formula seems imposing and perhaps difficult to occasionally use. If however; the formula...

Murray, F.

336

E-Print Network 3.0 - absorption root Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

made of? Green roof benefits: Insulates building,lowering heating costs Absorption of rainwater... Absorption of air pollution Extends life of roof Provides habitat for birds...

337

E-Print Network 3.0 - active potassium absorption Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

decomposed in a heated carbon-tube furnace, and arsenic determined by measurement of its atomic-absorption... in its determination by atomic- absorption spectroscopy. Various...

338

Recovery Act  

Broader source: Energy.gov [DOE]

Recovery Act and Energy Department programs were designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

339

A Management Tool for Analyzing CHP Natural Gas Liquids Recovery System  

E-Print Network [OSTI]

The objective of this research is to develop a management tool for analyzing combined heat and power (CHP) natural gas liquids (NGL) recovery systems. The methodology is developed around the central ideas of product recovery, possible recovery...

Olsen, C.; Kozman, T. A.; Lee, J.

2008-01-01T23:59:59.000Z

340

Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat  

SciTech Connect (OSTI)

The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

Donna Post Guillen

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy recovery system  

DOE Patents [OSTI]

The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

Moore, Albert S. (Morgantown, WV); Verhoff, Francis H. (Morgantown, WV)

1980-01-01T23:59:59.000Z

342

Triple-effect absorption refrigeration system with double-condenser coupling  

DOE Patents [OSTI]

A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

DeVault, Robert C. (Knoxville, TN); Biermann, Wendell J. (Fayetteville, NY)

1993-01-01T23:59:59.000Z

343

Triple-effect absorption refrigeration system with double-condenser coupling  

DOE Patents [OSTI]

A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

DeVault, R.C.; Biermann, W.J.

1993-04-27T23:59:59.000Z

344

Optimization of Heat Exchanger Cleaning  

E-Print Network [OSTI]

decrease models of the heat recovery decay. A mathematical comparison of mechanical and chemical cleaning of heat exchangers has identified the most significant parameters which affect the choice between the two methods. INTRODUCTION In most... can be somewhat mitigated by periodic chemical or mechanical cleaning of the exchanger surface, and by the addition of antifoul ants. The typical decay in heat recovery capabil ity due to fou 1i ng and restoration afte r heat exchanger cleaning...

Siegell, J. H.

345

White Paper for U.S. Army Rapid Equipping Force: Waste Heat Recovery with Thermoelectric and Lithium-Ion Hybrid Power System  

SciTech Connect (OSTI)

By harvesting waste heat from engine exhaust and storing it in light-weight high-capacity modules, it is believed that the need for energy transport by convoys can be lowered significantly. By storing this power during operation, substantial electrical power can be provided during long periods of silent operation, while the engines are not operating. It is proposed to investigate the potential of installing efficient thermoelectric generators on the exhaust systems of trucks and other vehicles to generate electrical power from the waste heat contained in the exhaust and to store that power in advanced power packs comprised of polymer-gel lithium ion batteries. Efficient inexpensive methods for production of the thermoelectric generator are also proposed. The technology that exists at LLNL, as well as that which exists at industrial partners, all have high technology readiness level (TRL). Work is needed for integration and deployment.

Farmer, J C

2007-11-26T23:59:59.000Z

346

Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump  

DOE Patents [OSTI]

Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.

Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

1996-12-03T23:59:59.000Z

347

Recovery Act-Funded HVAC projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into heating, ventilation, and air conditioning (HVAC) technologies and...

348

Recovery Act: State Assistance for Recovery Act Related Electricity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Center Recovery Act Recovery Act: State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related Electricity...

349

Cost-Effective Fabrication Routes for the Production of Quantum Well Structures and Recovery of Waste Heat from Heavy Duty Trucks  

SciTech Connect (OSTI)

The primary objectives of Phase I were: (a) carry out cost, performance and system level models, (b) quantify the cost benefits of cathodic arc and heterogeneous nanocomposites over sputtered material, (c) evaluate the expected power output of the proposed thermoelectric materials and predict the efficiency and power output of an integrated TE module, (d) define market acceptance criteria by engaging Caterpillar's truck OEMs, potential customers and dealers and identify high-level criteria for a waste heat thermoelectric generator (TEG), (e) identify potential TEG concepts, and (f) establish cost/kWatt targets as well as a breakdown of subsystem component cost targets for the commercially viable TEG.

Willigan, Rhonda

2009-09-30T23:59:59.000Z

350

E-Print Network 3.0 - ammonia-water absorption refrigeration...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND NEXT GENERATION Summary: as the operating fluid, absorption and adsorption heat pumping cycles using ammoniawater, lithium bromide... ......

351

An active feedback recovery technique from disruption events induced by m=2 n=1 tearing modes in ohmically heated tokamak plasmas  

E-Print Network [OSTI]

We present experimental results of magnetic feedback control on the m=2, n=1 tearing mode in RFX-mod operated as a circular ohmically heated tokamak. The feedback suppression of the non-resonant m=2, n=1 Resistive Wall Mode (RWM) in q(a)2 equilibrium, is instead a more difficult issue. In fact, the disruption induced by a growing amplitude m=2, n=1 tearing mode can be prevented by feedback only when the resonant surface q=2 is close to the plasma edge, namely 2

Zanca, P; Finotti, C; Fassina, A; Manduchi, G; Cavazzana, R; Franz, P; Piron, C; Piron, L

2015-01-01T23:59:59.000Z

352

Combined Heat and Power Plant Steam Turbine  

E-Print Network [OSTI]

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

353

Direct fired absorption machine flue gas recuperator  

DOE Patents [OSTI]

A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1985-01-01T23:59:59.000Z

354

Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump  

DOE Patents [OSTI]

Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration. 5 figs.

Phillips, B.A.; Zawacki, T.S.

1998-07-21T23:59:59.000Z

355

Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump  

DOE Patents [OSTI]

Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration.

Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

1998-07-21T23:59:59.000Z

356

Triple effect absorption chiller utilizing two refrigeration circuits  

DOE Patents [OSTI]

A triple effect absorption method and apparatus having a high coefficient of performance. Two single effect absorption circuits are combined with heat exchange occurring between a condenser and absorber of a high temperature circuit, and a generator of a low temperature circuit. The evaporators of both the high and low temperature circuits provide cooling to an external heat load.

DeVault, Robert C. (Knoxville, TN)

1988-01-01T23:59:59.000Z

357

Heat Pump Strategies and Payoffs  

E-Print Network [OSTI]

After evaluating numerous waste heat sources and heat pump designs for energy recovery, we have become aware that a great deal of confusion exists about the economics of heat pumps. The purpose of this article is to present some simple formulas...

Gilbert, J. S.

1982-01-01T23:59:59.000Z

358

Recovery FAQ - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Act of 2009 > Hanford ARRA FAQ Recovery Act of 2009 Hanford ARRA FAQ Hanford ARRA Weekly Reports Hanford ARRA News Hanford ARRA Photogallery Hanford ARRA Videos Hanford...

359

Moments of Absorption.  

E-Print Network [OSTI]

??Moments of Absorption explores the conceptual and visual themes that are presented in my MFA thesis exhibition. The research looks into the absorption of the… (more)

Kaufman, Sarah K.

2008-01-01T23:59:59.000Z

360

Exhaust Gas Energy Recovery Technology Applications  

SciTech Connect (OSTI)

Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

Wagner, Robert M [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Broader source: Energy.gov (indexed) [DOE]

and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Air Products and Chemicals, Inc. - Allentown, PA A microbial reverse electrodialysis...

362

Waste Heat Recovery – Submerged Arc Furnaces (SAF)  

E-Print Network [OSTI]

Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000°F using high voltage electricity along with metallurgical carbon to reduce metal oxides to pure elemental form. The process as currently...

O'Brien, T.

2008-01-01T23:59:59.000Z

363

Advanced Fluidized Bed Waste Heat Recovery Systems  

E-Print Network [OSTI]

and produce steam. In a one-year evaluation test on an aluminum remelt furnace, the FBWHRS generated about 26 million lb of saturated steam at 150 psig. Before entering the FBWHRS, the flue gases were diluted to IIOO?F to protect the fluidized bed... an improved foulant cleaning system for the fluidized bed di~tributor plate and operating the total system on an aluminum remelt furnace which has a corrosive and fouling flue gas stream (3). Although this project focused on an aluminum remelt furnace...

Peterson, G. R.

364

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

in floor tiles for thermal energy storage,” working paper,D. R. (2000). Thermal energy storage for space cooling,A simple model of thermal energy storage is developed as a

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

365

Future EfficientDynamics with Heat Recovery  

Broader source: Energy.gov (indexed) [DOE]

fuel injection * DI2 lean stratified * Piezo injectors * High precision injection * Turbo * Twin turbo * Variable twin turbo * Downsizing * Gearbox efficiency * Gearbox...

366

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

Mercantile Education Office Fig. 3 January Electricity LoadEducation Small Large Office Small Large Table 5. PG&E Electricity and

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

367

Heat Recovery in the Forge Industry  

E-Print Network [OSTI]

of energy conservation will be covered with the emphasis on recuperators. The subject matter is intended to motivate individual listeners to install cost effective recuperative equipment and to apply other schemes to reduce fuel consumption....

Shingledecker, R. B.

1982-01-01T23:59:59.000Z

368

Brayton Solvent Recovery Heat Pump Technology Update  

E-Print Network [OSTI]

The Brayton cycle technology was developed to reduce the temperature of gas streams containing solvents in order to condense and recover them. While the use of turbo compressor/expander machinery in conjunction with an energy recuperator...

Enneking, J. C.

369

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

Ernest Orlando Lawrence Berkeley National Laboratory is anErnest Orlando Lawrence Berkeley National Laboratory,Ernest Orlando Lawrence Berkeley National Laboratory,

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

370

Cummins Waste Heat Recovery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartners with Siemens onSiteDepartment ofMay 16, 2013

371

Waste Heat Recovery Opportunities for Thermoelectric Generators |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department of EnergyDepartmentDepartment ofof EnergyMotion

372

Energy recovery system using an organic rankine cycle  

DOE Patents [OSTI]

A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

Ernst, Timothy C

2013-10-01T23:59:59.000Z

373

Oral Drug Absorption  

E-Print Network [OSTI]

properties ? membrane permeability ? metabolic stability ? enzyme inhibition or induction ? protein binding ? transporter affinity ?. Chemical Optimization DDS technology 4 Strategy of Drug Delivery Absorption Distribution Metabolism Excretion Improve of drug... absorption absorption enhancement controlled releasecontrolled release new administration route Drug targeting to the tissue to the cell to the organelle Dr. Shinji Yamashita (Setsunan University) Issue: Oral Drug Absorption Dr. Valentino J. Stella...

Yamashita, Shinji

2006-10-26T23:59:59.000Z

374

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

375

Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange  

DOE Patents [OSTI]

In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

McBride, Troy O; Bell, Alexander; Bollinger, Benjamin R; Shang, Andrew; Chmiel, David; Richter, Horst; Magari, Patrick; Cameron, Benjamin

2013-07-02T23:59:59.000Z

376

Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange  

DOE Patents [OSTI]

In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

McBride, Troy O.; Bell, Alexander; Bollinger, Benjamin R.

2012-08-07T23:59:59.000Z

377

Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating  

SciTech Connect (OSTI)

BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

None

2010-09-01T23:59:59.000Z

378

New waste-heat refrigeration unit cuts flaring, reduces pollution  

SciTech Connect (OSTI)

Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

Brant, B.; Brueske, S. [Planetec Utility Services Co., Inc., Evergreen, CO (United States); Erickson, D.; Papar, R. [Energy Concepts Co., Annapolis, MD (United States)

1998-05-18T23:59:59.000Z

379

Un nouveau type de pompe chaleur : la PAC compression-absorption fonctionnement altern  

E-Print Network [OSTI]

de l'électricité. Abstract 2014 The new heat pump, here proposed, is intermediate between a compression heat pump and an absorp- tion heat pump. Like the absorption heat pump, it uses a binary mixture made of a volatile solvent and a non-volatile solute. Like the compression heat pump, it uses

Paris-Sud XI, Université de

380

Effects of a carbon tax on microgrid combined heat and power adoption  

SciTech Connect (OSTI)

This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A microgrid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The microgrid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (< 500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without combined heat and power (CHP) equipment, such as water and space heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the microgrid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean central station generation in California.

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Evaporative Hydrochloric Acid Recovery: Something Old, Something New...  

E-Print Network [OSTI]

. If zinc is present from the pickling of galvanizing racks or stripping of parts, the zinc concentration will range from as low as zinc chloride solution remains. In the evaporative process of the Hydrochloric Acid Recovery System, the waste acid is pumped through a pre-filter into the evaporator section oftI1e recovery system. This solution is heated by means...

Cullivan, B.

382

Simulating a 4-effect absorption chiller  

SciTech Connect (OSTI)

Absorption chillers are heat-operated refrigeration machines that operate on one of the earliest known principles of refrigeration. Current absorption chillers typically use either steam or a gas-fired burner as the energy source. All current gas-fired absorption cooling systems are based on the well known single-effect or double-effect cycles. To further improve utilization of the high temperature heat available from natural gas, a variety of triple-effect cycles have been proposed and are being developed that are capable of substantial performance improvement over equivalent double-effect cycles. This article describes a study that investigated the possibility of even further improving utilization of the high temperature heat available from natural gas combustion. During the study, performance simulation was conducted for a 4-effect lithium bromide/water cycle. From an environmental perspective, absorption chillers provide several benefits. They use absorption pairs (such as lithium bromide/water) as the working fluids, rather than chlorofluorocarbons or hydrochlorofluorocarbons, which contribute to ozone depletion and global warming.

Grossman, G. [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Mechanical Engineering; Zaltash, A.; Adcock, P.W.; DeVault, R.C. [Oak Ridge National Lab., TN (United States). Energy Div.

1995-06-01T23:59:59.000Z

383

Fluid Catalytic Cracking Power Recovery Computer Simulation  

E-Print Network [OSTI]

re covery available in new plants results in the air string being almost self sustaining, 8S far as direct input power. With some processes, it is possible to produce excess power on the order of 1,000 to 9,000 HP. Waste heat recovery in the form...

Samurin, N. A.

1979-01-01T23:59:59.000Z

384

Recovery Act Milestones  

ScienceCinema (OSTI)

Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

Rogers, Matt

2013-05-29T23:59:59.000Z

385

Waste Steam Recovery  

E-Print Network [OSTI]

applicable to other sources of steam. The interaction of the recovery system with the plant's steam/power system has been included. Typical operating economics have been prepared. It was found that the profitability of most recovery schemes is generally...

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

386

La pompe chaleur compression-absorption. Influence des diffrences de prix de l'lectricit nuit/jour sur le cot d'exploitation  

E-Print Network [OSTI]

« heures creuses » pendant une journée de 24 heures. Abstract. - The Compression-Absorption Heat Pump Alternatively Working (CAHPAW) is a new type of heat pump, described previously (Ref. [1]) and is midway between the Compression heat pump and the Absorption heat pump. Compared to a standard compression heat pump, the CAHPAW

Paris-Sud XI, Université de

387

HII Absorption Bill Erickson  

E-Print Network [OSTI]

HII Absorption Bill Erickson November 10, 2006 It would make all of the drift curve simulations.8 dB above the data. One reason for this might be HII absorption which is not modeled in simulations. There are a number of ways that one might try to estimate the absorption. One might use optical maps of HII

Ellingson, Steven W.

388

Heat pipe array heat exchanger  

DOE Patents [OSTI]

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

389

Absorption Cycle Fundamentals and Applications Guidelines for Distillation Energy Savings  

E-Print Network [OSTI]

The absorption cycle offers one of the most economic and widely applicable technologies for waste heat upgrading. It can use off-the-shelf hardware that is available now, at any required capacity rating. Fractional distillations, as a class...

Erickson, D. C.; Davidson, W. F.

1984-01-01T23:59:59.000Z

390

E-Print Network 3.0 - absorption air conditioner Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rating Summary: size systems such as absorption or vapor compression air-conditioners or heat pumps, the following... degradation. There are two possible designs for adjusting the...

391

E-Print Network 3.0 - absorption system operating Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 2224, 2005; Denver, CO, USA Summary: ) of over 12M. KEYWORDS Integrated energy system; combined heat and power; absorption chiller; turbine... ,500-ton double-effect...

392

E-Print Network 3.0 - absorption von tev-photonen Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: absorption von tev-photonen Page: << < 1 2 3 4 5 > >> 1 MASSFLOW EFFECTS ONWAVE HEATING...

393

Transient Absorption Spectroscopy with Isolated Attosecond Pulses  

E-Print Network [OSTI]

viii Attosecond transient absorption instrument. . . . . .5.2.2 AbsorptionTransient absorption spectroscopy . . . . . . . . . . . .

Bell, Marie Justine

2013-01-01T23:59:59.000Z

394

Analysis & Tools to Spur Increased Deployment of " Waste Heat...  

Open Energy Info (EERE)

Project Type Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type Topic 2 Topic Area 2: Data Gathering and Analysis Project...

395

Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water  

E-Print Network [OSTI]

source and cooling water overall (in comparison with normal system 15% of energy saving) -Adopt large-scale ice heat storage system and realize equalization of electricity load -Adopt turbo chiller and heat recovery facilities as high efficiency heat... screw heat pump - 838MJ/? 1 IHP/Water source screw heat pump (Ice storage and heat recovery) Cool water? 3,080MJ/h Ice Storage? 1,936MJ/h Cool water heat recovery? 3,606MJ/h Ice storage heat recovery? 2,448MJ/h 8Unit ?16? TR1 Water cooling turbo...

Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

2014-01-01T23:59:59.000Z

396

Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality  

E-Print Network [OSTI]

with heat recovery, solar thermal collection, and thermallynatural gas combustion solar thermal CHP heat storageelectric load thermal storage solar thermal storage charging

Marnay, Chris; Firestone, Ryan

2007-01-01T23:59:59.000Z

397

Waste Heat Recapture from Supermarket Refrigeration Systems  

SciTech Connect (OSTI)

The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

Fricke, Brian A [ORNL

2011-11-01T23:59:59.000Z

398

Waste-heat utilization. (Latest citations from the U. S. Patent data base). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations of selected patents concerning processes employed for the recovery of useful heat from the environment, or from equipment which generates waste heat. Heat pump systems, furnaces, industrial boilers, and systems employed in the recovery of heat from internal combustion engines are discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1992-10-01T23:59:59.000Z

399

Heat and mass transfer considerations in advanced heat pump systems  

SciTech Connect (OSTI)

Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

Panchal, C.B.; Bell, K.J.

1992-08-01T23:59:59.000Z

400

Heat and mass transfer considerations in advanced heat pump systems  

SciTech Connect (OSTI)

Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

Panchal, C.B.; Bell, K.J.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced regenerative absorption refrigeration cycles  

DOE Patents [OSTI]

Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

Dao, Kim (14 Nace Ave., Piedmont, CA 94611)

1990-01-01T23:59:59.000Z

402

Department of Mechanical Engineering "Heat Under the Microscope  

E-Print Network [OSTI]

applications ranging from thermoelectric waste heat recovery to radio astronomy. BIOGRAPHY Austin MinnichDepartment of Mechanical Engineering presents "Heat Under the Microscope: Uncovering an essential role in nearly every technological application, ranging from space power generation to consumer

Militzer, Burkhard

403

IOWA RECOVERY ACT SNAPSHOT | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA RECOVERY ACT SNAPSHOT IOWA RECOVERY ACT

404

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network [OSTI]

natural gas generator with waste heat recovery at a facilityCCHP locations that are using waste heat for cooling alsouse some of the waste heat directly for water or space

Norwood, Zack

2010-01-01T23:59:59.000Z

405

Recovery Act Project Stories  

Broader source: Energy.gov [DOE]

Funded by the American Recovery and Reinvestment Act, these Federal Energy Management Program (FEMP) projects exemplify the range of technical assistance provided to federal agencies.

406

NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger  

SciTech Connect (OSTI)

One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

2008-09-01T23:59:59.000Z

407

Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles  

DOE Patents [OSTI]

A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

Cassano, Anthony A. (Allentown, PA)

1985-01-01T23:59:59.000Z

408

Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles  

DOE Patents [OSTI]

A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

Cassano, A.A.

1985-07-02T23:59:59.000Z

409

Method and apparatus for aerosol particle absorption spectroscopy  

DOE Patents [OSTI]

A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

Campillo, Anthony J. (Nesconset, NY); Lin, Horn-Bond (Manorville, NY)

1983-11-15T23:59:59.000Z

410

Brayton Cycle Heat Pump for VOC Control  

E-Print Network [OSTI]

The first full size continuous operation Brayton Cycle Heat Pump (1)(2)(3) application for VOC recovery occurred in 1988. The mixed solvent recovery system was designed and supplied by NUCON for the 3M facility in Weatherford, OK (4). This first...

Kovach, J. L.

411

Small Business Administration Recovery Act Implementation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small...

412

Recovery Boiler Corrosion Chemistry  

E-Print Network [OSTI]

11/13/2014 1 Recovery Boiler Corrosion Chemistry Sandy Sharp and Honghi Tran Symposium on Corrosion of a recovery boiler each cause their own forms of corrosion and cracking Understanding the origin of the corrosive conditions enables us to operate a boiler so as to minimize corrosion and cracking select

Das, Suman

413

Jobs Creation Economic Recovery  

E-Print Network [OSTI]

Commission (Energy Commission) collects the American Recovery and Reinvestment Act of 2009 (ARRA) jobs creation and retention data (jobs data) from its subrecipients through the Energy Commission's ARRAJobs Creation and Economic Recovery Prompt, Fair, and Reasonable Use of ARRA Funds Subrecipient

414

acquired thermotolerance heat: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

face recognition. Kuang-chih Lee; Jeffrey Ho; David Kriegman 2005-01-01 47 ABSORPTION HEAT PUMP IN THE DISTRICT HEATING Energy Storage, Conversion and Utilization Websites Summary:...

415

Recovery Act Funds at Work  

Broader source: Energy.gov [DOE]

Funds from the American Recovery and Reinvestment Act of 2009 (Recovery Act) are being put to work to improve safety, reliability, and service in systems across the country. Here are case studies from a variety of Recovery Act programs.

416

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

417

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

418

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

419

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

420

X-ray absorption spectroscopy  

E-Print Network [OSTI]

009-9473-8 REVIEW X-ray absorption spectroscopy Junko Yano Æand application of X-ray absorption spectroscopy, bothX-ray absorption near-edge structure (XANES) and extended X-

Yano, Junko; Yachandra, Vittal K.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

X-ray Absorption Spectroscopy  

E-Print Network [OSTI]

type: Review X-ray Absorption Spectroscopy Junko Yano andPhotosystem II; XAS, X-ray absorption spectroscopy; EXAFS,X-ray absorption fine structure; EPR, electron paramagnetic

Yano, Junko

2010-01-01T23:59:59.000Z

422

Fluidized bed steam reactor including two horizontal cyclone separators and an integral recycle heat exchanger  

SciTech Connect (OSTI)

A reactor is described comprising: a vessel; a first furnace section disposed in said vessel; a second furnace section disposed in said vessel; means in each of said furnace sections for receiving a combustible fuel for generating heat and combustion gases; a first heat recovery area located adjacent said furnace sections; a second heat recovery area located adjacent said furnace sections; means for passing said combustion gases from said first furnace section to said first heat recovery area; and means for passing said combustion gases from said second furnace section to said second heat recovery area.

Gorzegno, W.P.

1993-06-15T23:59:59.000Z

423

Solvent recycle/recovery  

SciTech Connect (OSTI)

This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

1990-09-01T23:59:59.000Z

424

Solar selective absorption coatings  

DOE Patents [OSTI]

A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

2003-10-14T23:59:59.000Z

425

Solar selective absorption coatings  

DOE Patents [OSTI]

A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

2004-08-31T23:59:59.000Z

426

Proceedings: Heat exchanger workshop  

SciTech Connect (OSTI)

Heat transfer processes are of controlling importance in the operation of a thermal power plant. Heat exchangers are major cost items and are an important source of problems causing poor power plant availability and performance. A workshop to examine the improvements that can be made to heat exchangers was sponsored by the Electric Power Research Institute (EPRI) on June 10-11, 1986, in Palo Alto, California. This workshop was attended by 25 engineers and scientists representing EPRI-member utilities and EPRI consultants. A forum was provided for discussions related to the design, operation and maintenance of utility heat transfer equipment. The specific objectives were to identify research directions that could significantly improve heat exchanger performance, reliability and life cycle economics. Since there is a great diversity of utility heat transfer equipment in use, this workshop addressed two equipment categories: Boiler Feedwater Heaters (FWH) and Heat Recovery Steam Generators (HRSG). The workshop was divided into the following panel sessions: functional design, mechanical design, operation, suggested research topics, and prioritization. Each panel session began with short presentations by experts on the subject and followed by discussions by the attendees. This report documents the proceedings of the workshop and contains recommendations of potentially valuable areas of research and development. 4 figs.

Not Available

1987-07-01T23:59:59.000Z

427

Method and apparatus for fuel gas moisturization and heating  

DOE Patents [OSTI]

Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

428

Imbibition assisted oil recovery  

E-Print Network [OSTI]

analyzed in detail to investigate oil recovery during spontaneous imbibition with different types of boundary conditions. The results of these studies have been upscaled to the field dimensions. The validity of the new definition of characteristic length...

Pashayev, Orkhan H.

2004-11-15T23:59:59.000Z

429

Electromagnetic Wellbore Heating Ibrahim Agyemang1  

E-Print Network [OSTI]

Chapter 5 Electromagnetic Wellbore Heating Ibrahim Agyemang1 , Matthew Bolton2 , Lloyd Bridge2 with the recovery of petroleum fluids from an oil reservoir using electrical energy. By its very nature this problem must deal with both the equations that describe the fluid flow as well as the heat flow equations

Bohun, C. Sean

430

Demand Side Management (DSM) Through Absorption Refrigeration Systems  

E-Print Network [OSTI]

DEMAND SIDE MANAGEMENT (DSM) TIIROUGH ABSORPTION REFRIGERATION SYSTEMS Peter Y. Chao, PhD, Deepak Shukla, PhD, Sr. Process Engineers, TENSA Services, Inc. Ammi Amarnath, Sr. Project Manager, Electrical Power Research Institute Ed. Mergens.... They are Peak Clipping, Valley filling, Load Shifting, Strategic Conservation, Strategic Load Growth, and Flexible Load Shaping. Absorption Refrigeration from waste heat offers a viable option for DSM. This will either reduce the peak load (peak clipping...

Chao, P. Y.; Shukla, D.; Amarnath, A.; Mergens, E.

431

Optimal selection of on-site generation with combined heat andpower applications  

SciTech Connect (OSTI)

While demand for electricity continues to grow, expansion of the traditional electricity supply system, or macrogrid, is constrained and is unlikely to keep pace with the growing thirst western economies have for electricity. Furthermore, no compelling case has been made that perpetual improvement in the overall power quality and reliability (PQR)delivered is technically possible or economically desirable. An alternative path to providing high PQR for sensitive loads would generate close to them in microgrids, such as the Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid. Distributed generation would alleviate the pressure for endless improvement in macrogrid PQR and might allow the establishment of a sounder economically based level of universal grid service. Energy conversion from available fuels to electricity close to loads can also provide combined heat and power (CHP) opportunities that can significantly improve the economics of small-scale on-site power generation, especially in hot climates when the waste heat serves absorption cycle cooling equipment that displaces expensive on-peak electricity. An optimization model, the Distributed Energy Resources Customer Adoption Model (DER-CAM), developed at Berkeley Lab identifies the energy bill minimizing combination of on-site generation and heat recovery equipment for sites, given their electricity and heat requirements, the tariffs they face, and a menu of available equipment. DER-CAM is used to conduct a systemic energy analysis of a southern California naval base building and demonstrates atypical current economic on-site power opportunity. Results achieve cost reductions of about 15 percent with DER, depending on the tariff.Furthermore, almost all of the energy is provided on-site, indicating that modest cost savings can be achieved when the microgrid is free to select distributed generation and heat recovery equipment in order to minimize its over all costs.

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; HamachiLaCommare, Kristina

2004-11-30T23:59:59.000Z

432

AN AMMONIA-WATER ABSORPTION-HIAT-PUMP CYCLE Donald Kuhlenschmidt, Member ASHRAE  

E-Print Network [OSTI]

,000 Btuh) input unit reported. KLY WORDS Absorption Heat-pump Air conditioning heating Ammonia Donald conditioning chillers. The authors are involved in a project to use this cycle in an air source heat pump the cycle, comment on the design differences compared to the air conditioning application and report

Oak Ridge National Laboratory

433

E-Print Network 3.0 - advanced heat exchangers Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and integration Molecular-scale design Advanced materials Digital control technology Hydrogen may be leading... and mechanically integrate the reformer to maximize heat recovery,...

434

Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM  

Broader source: Energy.gov [DOE]

Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of skutterudite materials systems

435

Enhanced coalbed methane recovery  

SciTech Connect (OSTI)

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

436

Intrinsic AGN Absorption Lines  

E-Print Network [OSTI]

Strong absorption lines are common in rest-frame UV spectra of AGNs due to a variety of resonant transitions, for example the HI Lyman series lines (most notably Ly-alpha 1216) and high-ionization doublets like CIV 1549,1551. The lines are called ``intrinsic'' if the absorbing gas is physically related to the AGN, e.g. if the absorber resides broadly within the radius of the AGN's surrounding ``host'' galaxy. Intrinsic absorption lines are thus valuable probes of the kinematics, physical conditions and elemental abundances in the gas near AGNs. Studies of intrinsic absorbers have historically emphasized the broad absorption lines (BALs) in quasars. Today we recognize a wider variety of intrinsic lines in a wider range of objects. For example, we now know that Seyfert 1 galaxies (the less luminous cousins of quasars) have intrinsic absorption. We also realize that intrinsic lines can form in a range of AGN environments --- from the dynamic inner regions like the BALs, to the more quiescent outer host galaxies >10 kpc away. This article provides a brief introduction to current observational and theoretical work on intrinsic AGN absorbers.

Fred Hamann

2000-06-12T23:59:59.000Z

437

Waste heat utilization. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the recovery and use of waste heat in power plants, industrial processes, and commercial buildings. Topics include the use of industrial process heat in district heating studies, greenhouse heating with power plant waste heat, and materials considerations for heat exchange equipment. The use of heat pumps in the recovery of low-grade industrial heat is discussed. Citations pertaining specifically to government policies and total energy systems in commercial buildings are excluded. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-04-01T23:59:59.000Z

438

Waste heat utilization. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the recovery and use of waste heat in power plants, industrial processes, and commercial buildings. Topics include the use of industrial process heat in district heating studies, greenhouse heating with power plant waste heat, and materials considerations for heat exchange equipment. The use of heat pumps in the recovery of low-grade industrial heat is discussed. Citations pertaining specifically to government policies and total energy systems in commercial buildings are excluded. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

439

Absorption: an update In the Netherlands, a residential ab-is being incorporated now. As a conse-cepts prove to be economically viable, ab-  

E-Print Network [OSTI]

. As a conse- cepts prove to be economically viable, ab- sorption heat pump isunder development quence Aachen. Computer models for the design research and development work on ab- tele Absorption Heat Pump and Performance of systems and the results indicate that we a High Temperature-Boost Absorption Heat Pump

Oak Ridge National Laboratory

440

Corrosion inhibitor for aqueous ammonia absorption system  

DOE Patents [OSTI]

A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

Phillips, Benjamin A. (Benton Harbor, MI); Whitlow, Eugene P. (St. Joseph, MI)

1998-09-22T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Corrosion inhibitor for aqueous ammonia absorption system  

DOE Patents [OSTI]

A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

Phillips, B.A.; Whitlow, E.P.

1998-09-22T23:59:59.000Z

442

Generator-Absorber heat exchange transfer apparatus and method using an intermediate liquor  

DOE Patents [OSTI]

Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium where the working solution has an intermediate liquor concentration.

Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

1996-11-05T23:59:59.000Z

443

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL] [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

444

Heat Source Identification Based on L1 Constrained Minimization  

E-Print Network [OSTI]

problem, which was shown to be very efficient for sparse recovery. For the heat source identificationHeat Source Identification Based on L1 Constrained Minimization Yingying Li Stanley Osher Richard to the heat equation is considered. The initial data is assumed to be a sum of an unknown but finite number

Soatto, Stefano

445

Revamping Pre-Heat Trains for Energy Saving  

E-Print Network [OSTI]

In this paper we look at the principles underlying the revamping of pre-heat trains to save energy through increased heat recovery. For brevity, we do not consider throughput changes. Only pre-heat train performance is considered. The interaction...

Yeap, B. L.; Wilson, I.; Pretty, B.; Polley, G. T.

446

Techno-Economic Design Tools Used in Selecting Industrial Energy Recovery Systems  

E-Print Network [OSTI]

's design, performance, and initial installed cost. A flexible investment analyses is procedure forms the basis of the economic evaluation; payback period (in years) and percent of return on investment are calculated for competing alternative heat recovery...

Hanus, N.

1982-01-01T23:59:59.000Z

447

Recovery Act Recipient Data | Department of Energy  

Office of Environmental Management (EM)

Recovery Act Recipient Data Recovery Act Recipient Data A listing of all Recovery Act recipients and their allocations. Updated weekly. recoveryactfunding.xls More Documents &...

448

Some Thoughts on Econometric Information Recovery  

E-Print Network [OSTI]

Paper 1135 Some Thoughts on Econometric Information Recoverys). Some Thoughts on Econometric Information Recovery GeorgeTheoretic Approach To Econometric Information Recovery

Judge, George G.

2013-01-01T23:59:59.000Z

449

Spatio-Temporal Signal Recovery from Political Tweets in Indonesia  

E-Print Network [OSTI]

Spatio-Temporal Signal Recovery from Political Tweets in Indonesia Anisha Mazumder, Arun Das activity in the provinces of Indonesia. Based on analysis of radical/counter radical sentiments expressed in tweets by Twitter users, we create a Heat Map of Indonesia which visually demonstrates the degree

Davulcu, Hasan

450

Application of Energy Saving Concepts to LPG Recovery Plants  

E-Print Network [OSTI]

inefficient compared to current standards. This paper deals with energy savings that may be effected for one such plant. Three basic ideas are evaluated:- o Use of Multi-Component Chilling (MCC). o Addition of an Expander. o Heat Recovery from Gas Turbine...

Carpenter, M. J.; Barnwell, J.

1982-01-01T23:59:59.000Z

451

The Quantum Absorption Refrigerator  

E-Print Network [OSTI]

A quantum absorption refrigerator driven by noise is studied with the purpose of determining the limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously to hot, cold and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics. The third law is quantified, the cooling power J_c vanishes as J_c proportional to T_c^{alpha}, when T_c approach 0, where alpha =d+1 for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic field, where d is the dimension of the bath.

Amikam Levy; Ronnie Kosloff

2011-11-09T23:59:59.000Z

452

Exhaust Energy Recovery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaust energy recovery proposed to

453

Exhaust Energy Recovery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaust energy recovery proposed

454

Exhaust Energy Recovery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaust energy recovery

455

Exhaust Energy Recovery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaust energy recovery2010 DOE Vehicle

456

Exhaust Energy Recovery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOEExhaust energy recovery2010 DOE

457

IDAHO RECOVERY ACT SNAPSHOT | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department of EnergyKickoff MeetingIDAHO RECOVERY ACT

458

Actinide recovery process  

DOE Patents [OSTI]

Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrenedivinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like.

Muscatello, Anthony C. (Arvada, CO); Navratil, James D. (Arvada, CO); Saba, Mark T. (Arvada, CO)

1987-07-28T23:59:59.000Z

459

Development of Updated ABsorption SIMulation Software (ABSIM)  

SciTech Connect (OSTI)

ABsorption SIMulation, ABSIM, was developed for the simulation of absorption systems by The Oak Ridge National Laboratory during 1980s and 1990s. ABSIM provides a platform for users to investigate various cycle configurations and working fluids, to calculate their operating parameters, to predict their performance, and to compare them with each other on a uniform basis. ABSIM is indeed a very useful and accurate tool for researchers to investigate various absorption systems. However, it has not been well maintained: it is incompatible with recent operating systems; the interface needs improved user-friendliness, and the system needs better parameter setting and debugging tools to help achieve convergence. Therefore, it is highly needed to update and improve ABSIM. The paper presents recent efforts to improve ABSIM s compatibility with current operating systems, user interface, and analysis capabilities. The paper details the features and functions of the newly updated ABSIM software. The new ABSIM still uses the previously validated calculation engine of the old ABSIM. The new graphic user interfaces (GUI) were developed in Qt, which is an open source license GUI software based on C++. XML was used as the database for data storage in the new ABSIM. The new ABSIM has been designed to be easily learned and used. It has enhanced editing and construction functions, plus enhanced analysis features including parametric tables, plotting, property plots, and master panels for debugging. A single effect water/LiBr absorption system is used as a case study in this paper to illustrate the features, capabilities, and functions of the new ABSIM. This case study was actually an example system available in the old ABSIM. The new version of ABSIM will be continuously developed to include additional subroutines for the components in liquid desiccant systems. The new ABSIM will be available to public for free. The ultimate goal of the new ABSIM is to allow it to become a simulation platform for both absorption heat pump and liquid desiccant systems.

Yang, Zhiyao [Purdue University, West Lafayette, IN; Tang, Xin [Purdue University, West Lafayette, IN; Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Gluesenkamp, Kyle R [ORNL

2014-01-01T23:59:59.000Z

460

VARIOUS APPLICATIONS OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY  

E-Print Network [OSTI]

APPLICATIONS OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPYthe Zeeman effect to atomic absorption spectroscopy has beenthe Zeeman effect on atomic absorption spectrometry has been

Koizumi, Hideaki

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Moisture absorption modeling using design of experiments  

E-Print Network [OSTI]

Moisture Absorption Modeling Using Design of Experimentssurface pro?les of moisture absorption for the two laminatetheir amounts of moisture absorption are different. The

Yong, Virginia; Hahn, H. Thomas

2006-01-01T23:59:59.000Z

462

E-Print Network 3.0 - absorptions exploiting photo-thermal Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

photo-thermal ionization of neutral donors (D0 D+ + e- ) with no signicant electron heat- ing... , Bu alo, NY 14260, USA Abstract Resonant magneto-absorption of far-infrared...

463

Solar Energy to Drive Absorption Cooling Systems Suitable for Small Building Applications  

E-Print Network [OSTI]

results and an overview of the performance of low capacity single stage and half-effect absorption cooling systems, suitable for residential and small building applications. The primary heat source is solar energy supplied from flat plate collectors...

Gomri, R.

2010-01-01T23:59:59.000Z

464

Performance Modeling of a Solar Driven Absorption Cooling System for Carnegie Mellon University's Intelligent Workplace  

E-Print Network [OSTI]

system for space heating and cooling. The proposed energy supply system configuration includes integrated compound parabolic concentrator (ICPC), a hot storage tank, a gas fired auxiliary heater, a steam generator, a steam driven absorption chiller...

Masson, S. V.; Qu, M.; Archer, D. H.

2006-01-01T23:59:59.000Z

465

Methanol injection and recovery in a large turboexpander plant. [Canada  

SciTech Connect (OSTI)

Methanol is used to prevent hydrate formation in Petro-Canada's 2000 MMSCFD Empress expander plant. Injection and recovery facilities have operated essentially trouble-free since start-up late in 1979. A portion of the methanol recovery section has been modified to provide removal of the H/sub 2/S and most of the COS from the propane product stream, concurrent with methanol recovery. The Empress straddle plant strips natural gas liquids from pipeline gas leaving Alberta for eastern Canadian and U.S. markets. The original cold oil absorption plant, started up in 1964 and expanded in 1967, recovered over 90% of the propane and virtually all of the heavier components. In 1976, a market for ethane was secured as feedstock for the world-scale ethylene complex under construction in Alberta, and it was decided to replace the cold oil plant with a turboexpander facility. The plant and its operations are described in some detail. 2 refs.

Nelson, K.; Wolfe, L.

1981-01-01T23:59:59.000Z

466

Elemental sulfur recovery process  

DOE Patents [OSTI]

An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

Flytzani-Stephanopoulos, M.; Zhicheng Hu.

1993-09-07T23:59:59.000Z

467

Thermophoretic interaction of heat releasing particles Yu. Dolinskya)  

E-Print Network [OSTI]

Thermophoretic interaction of heat releasing particles Yu. Dolinskya) and T. Elperinb) Department investigates thermophoretic force acting at heat releasing absorbing particles near the interface between two of the thermophoretic force is proportional to the rate of heat release absorption by the particle, and its direction

Elperin, Tov

468

Recovery Boiler Modeling  

E-Print Network [OSTI]

, east, e, west, w, bot tom, b, and top, t, neighbors. The neighboring cou pling coefficients (an, a., .. , etc) express the magnitudes of the convection and diffusion which occur across the control volume boundaries. The variable b p represents... represents a model of one half of the recovery boiler. The boiler has three air levels. The North, South and East boundaries of the computational domain represent the water walls of the boiler. The West boundary represents a symmetry plane. It should...

Abdullah, Z.; Salcudean, M.; Nowak, P.

469

A Numerical Model for the Dynamic Simulation of a Recirculation Single-Effect Absorption Chiller  

E-Print Network [OSTI]

A Numerical Model for the Dynamic Simulation of a Recirculation Single- Effect Absorption Chiller A dynamic model for the simulation of a new single-effect water/lithium bromide absorption chiller is developed. The chiller is driven by two distinct heat sources, includes a custom integrated falling film

Paris-Sud XI, Université de

470

Effects of a carbon tax on combined heat and power adoption by a microgrid  

SciTech Connect (OSTI)

This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid ((mu)Grid) consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A (mu)Grid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The (mu)Grid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (< 500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without CHP equipment, such as water- and space-heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the (mu)Grid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean generation in California.

Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

2002-10-01T23:59:59.000Z

471

A R&D Program for Advanced Industrial Heat Pumps  

E-Print Network [OSTI]

The overall goal of the DOE Industrial Heat Pump Program is to foster research and development which will allow more efficient and economical recovery of waste energy in industry. Specifically, the program includes the identification of appropriate...

Hayes, A. J.

472

Antiproton Absorption in Nuclei  

E-Print Network [OSTI]

We present the analysis of experimental data on forward antiproton production on nuclei. The calculations are done in the framework of a folding model which takes properly into account both incoherent direct proton-nucleon and cascade pion-nucleon antiproton production processes as well as internal nucleon momentum distribution. The effective antiproton-nucleon cross section in nuclear matter and the imaginary part of the antiproton nuclear optical potential are estimated to be 25-45 mb and -(38-56) MeV at normal nuclear matter density, respectively. The results of the performed analysis evidence for the decreasing of antiproton absorption in the nuclear medium.

Yu. T. Kiselev; E. Ya. Paryev

2006-01-24T23:59:59.000Z

473

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

474

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

475

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

476

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

477

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

478

Crosslinked crystalline polymer and methods for cooling and heating  

DOE Patents [OSTI]

The invention relates to crystalline polyethylene pieces having optimum crosslinking for use in storage and recovery of heat, and it further relates to methods for storage and recovery of heat using crystalline polymer pieces having optimum crosslinking for these uses. Crystalline polymer pieces are described which retain at least 70% of the heat of fusion of the uncrosslinked crystalline polymer and yet are sufficiently crosslinked for the pieces not to stick together upon being cycled above and below the melting point of said polymer, preferably at least 80% of the heat of fusion with no substantial sticking together.

Salyer, Ival O. (Dayton, OH); Botham, Ruth A. (Dayton, OH); Ball, III, George L. (West Carrollton, OH)

1980-01-01T23:59:59.000Z

479

Actinide recovery process  

DOE Patents [OSTI]

Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrene-divinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like. 2 tabs.

Muscatello, A.C.; Navratil, J.D.; Saba, M.T.

1985-06-13T23:59:59.000Z

480

Industrial Heat Pumps Using Solid/Vapor Working Fluids  

E-Print Network [OSTI]

INDUSTRIAL HEAT PUMPS USING SOLID/VAPOR WORKING FLUIDS Uwe Rockenfeller, Desert Research Institute, Boulder City, Nevada ABSTRACT Industrial heat pumps have the potential to reduce the operating costs of chemical and heat treating processes... with vapor re-compression recovery systems. The state-of-the-art heat pump equipment employing liquid/vapor working fluids fulfills the requirements only in some applications. The employment of solid/vapor complex compounds leads to 'nore cost effective...

Rockenfeller, U.

Note: This page contains sample records for the topic "heat recovery absorption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CCHP) Systems  

Broader source: Energy.gov [DOE]

The emergence of technologies that efficiently convert heat into cooling, such as absorption chillers, has opened up many new opportunities and markets for combined heat and power systems. These...

482

Municipal District Heating and Cooling Co-generation System Feasibility Research  

E-Print Network [OSTI]

In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates...

Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

2006-01-01T23:59:59.000Z

483

Capture of Heat Energy from Diesel Engine Exhaust  

SciTech Connect (OSTI)

Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data, the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

Chuen-Sen Lin

2008-12-31T23:59:59.000Z

484

Heating system  

SciTech Connect (OSTI)

A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

Nishman, P.J.

1983-03-08T23:59:59.000Z

485

ARM - Recovery Act  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncementsgovMeasurementsgovPublicationsPublicgovAboutRecovery

486

ARM - Recovery Act Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstruments Related Links RelatedActRecovery

487

Cement Kiln Flue Gas Recovery Scrubber Project  

SciTech Connect (OSTI)

The Cement Kiln Flue Gas Recovery Scrubber Project was a technical success and demonstrated the following: CKD can be used successfully as the sole reagent for removing SO2 from cement kiln flue gas, with removal efficiencies of 90 percent or greater; Removal efficiencies for HCl and VOCs were approximately 98 percent and 70 percent, respectively; Particulate emissions were low, in the range of 0.005 to 0.007 grains/standard cubic foot; The treated CKD sorbent can be recycled to the kiln after its potassium content has been reduced in the scrubber, thereby avoiding the need for landfilling; The process can yield fertilizer-grade K2SO4, a saleable by-product; and Waste heat in the flue gas can provide the energy required for evaporation and crystallization in the by-product recovery operation. The demonstration program established the feasibility of using the Recovery Scrubber{trademark} for desulfurization of flue gas from cement kilns, with generally favorable economics, assuming tipping fees are available for disposal of ash from biomass combustion. The process appears to be suitable for commercial use on any type of cement kiln. EPA has ruled that CKD is a nonhazardous waste, provided the facility meets Performance Standards for the Management of CKD (U.S. Environmental Protection Agency 1999d). Therefore, regulatory drivers for the technology focus more on reduction of air pollutants and pollution prevention, rather than on treating CKD as a hazardous waste. Application of the Recovery Scrubbe{trademark} concept to other waste-disposal operations, where pollution and waste reductions are needed, appears promising.

National Energy Technology Laboratory

2001-11-30T23:59:59.000Z

488

PREDICTIVE MODELS. Enhanced Oil Recovery Model  

SciTech Connect (OSTI)

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2 carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3 in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4 polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5 steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

Ray, R.M. [DOE Bartlesville Energy Technology Technology Center, Bartlesville, OK (United States)

1992-02-26T23:59:59.000Z

489

absorption heat transformers: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

multilayer foils Jonathan C. Trenkle,1 Physics Websites Summary: August 2008 We have used self-propagating exothermic reactions in AlNi multilayers as a means to explore the...

490

absorption heat transformer: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

multilayer foils Jonathan C. Trenkle,1 Physics Websites Summary: August 2008 We have used self-propagating exothermic reactions in AlNi multilayers as a means to explore the...

491

Energy Saving Absorption Heat Pump Water Heater - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecondCareerFebruary 2005Energy Saver 101:

492

Residential Absorption Heat Pump Water Heater | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergyHydrokinetic EnergyIssuesPowerofAdvance

493

Experimental Investigation of the Effect Of Zeolite Coating Thickness on the Performance of a Novel Zeolite-Water Adsorption Heat Pump Module  

E-Print Network [OSTI]

A novel zeolite-water absorption heat pump module comprising an adsorber, an evaporator and a condenser heat exchanger as well as a module non-return valve in a hermetically sealed vessel is introduced. The investigated adsorber heat exchanger...

Dawoud, B.; Hofle, P.; Chmielewski, S.

2010-01-01T23:59:59.000Z

494

Ultrasonic absorption in liquid mixtures  

E-Print Network [OSTI]

, It is obvious that much moxe experimental dates both absorption snd thermalv is needed before this theory can be substantiated Purpose of the Investigation Ths present research was undertaken to investigate thoroughly ths absorption in mixtuxws of ethanol... Agricultural and lheohaaioal College of %nas ia partial fulfi&went of tbs aequtreaante for the daggse of ~t %53 ~or Sub)eot Pllgedss Table of Contents Ii Beokgxeund snd Theory Absorption in Pure Liqu1ds 8, Absorpt1on in Idquid Bixtures XI Purpose...

Davis, James Madison

2012-06-07T23:59:59.000Z

495

Unified Fire Recovery Command Center  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Checking Propane Tanks Checking Home Heating Oil Tanks Miscellaneous Safety Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Removing Debris Heating Fuels or heat penetrated the bark. Where fire has burnt deep into the tree trunk, the tree should be considered

496

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

three Recovery Act-funded Smart Grid Investment Grant (SGIG) projects. February 28, 2014 Smart Meter Investments Yield Positive Results in Maine Central Maine Power's (CMP) SGIG...

497

Economic Recovery Loan Program (Maine)  

Broader source: Energy.gov [DOE]

The Economic Recovery Loan Program provides subordinate financing to help businesses remain viable and improve productivity. Eligibility criteria are based on ability to repay, and the loan is...

498

Heat Exchanger Technologies for Distillation Columns  

E-Print Network [OSTI]

each type of exchanger in turn. Heat exchanger size is minimised if the temperature driving force is maximised. The design should therefore seek to minimise the temperature changes during phase change. So, streams that are being condensed are kept... Reboiler not always possible (e.g. one part of a unit may be running at reduced load). Result: installed steam driven unit required to ensure integrity or heat recovery not used. Low temperature driving force Operation at low temperature driving force...

Polley, G. T.

499

Glass heat pipe evacuated tube solar collector  

DOE Patents [OSTI]

A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

McConnell, Robert D. (Lakewood, CO); Vansant, James H. (Tracy, CA)

1984-01-01T23:59:59.000Z

500

A Comparative Economic Evaluation of Industrial Heat Pumps  

E-Print Network [OSTI]

)st of delivering process heat with state-of t:ll(:-iJrt heat pump systems. Sixteen heat pump systems w~re configured for relative cost comparisons. These systheat pumps of the open, semiopen and closed type. In addition, a waste energy driven absorption heat pump was analyzed. A conceptual 11{~sign of each system was created using off-the-shelf components generally available to engineering firms...

Mills, J. I.; Bliem, C. J.; Chappell, R. N.