Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Heat Rate Program Guidelines  

Science Conference Proceedings (OSTI)

Power plant facilities with performance or heat rate improvement programs perform better than those that do not have those programs. A heat rate improvement program typically provides sufficient information for decision making with respect to timely maintenance actions and/or operational adjustments. Monitoring the performance of any power plant component includes the trending of parameters that also describe the performance of other plant components, providing insight and information on improving ...

2012-12-31T23:59:59.000Z

2

Heating hydrocarbon containing formations in a line drive staged process  

DOE Patents (OSTI)

Method for treating a hydrocarbon containing formation are described herein. Methods may include providing heat to a first section of the formation with one or more first heaters in the first section. First hydrocarbons may be heated in the first section such that at least some of the first hydrocarbons are mobilized. At least some of the mobilized first hydrocarbons may be produced through a production well located in a second section of the formation. The second section may be located substantially adjacent to the first section. A portion of the second section may be provided some heat from the mobilized first hydrocarbons, but is not conductively heated by heat from the first heaters. Heat may be provided to the second section with one or more second heaters in the second section to further heat the second section.

Miller, David Scott (Katy, TX)

2009-07-21T23:59:59.000Z

3

2011 Heat Rate Improvement Conference  

Science Conference Proceedings (OSTI)

With the rising cost of fuel and the strong possibility of CO2 emissions regulations and limitations in the near future, utilities and power generation companies are focusing on power plant heat rate and performance. The Electric Power Research Institute (EPRI) 17th Heat Rate Improvement Conference is the latest in a series of meetings designed to assist attendees in addressing problems with power plant performance and in identifying cost-effective solutions for achieving and sustaining heat rate improve...

2011-03-28T23:59:59.000Z

4

Irregular spacing of heat sources for treating hydrocarbon containing formations  

SciTech Connect

A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

2012-06-12T23:59:59.000Z

5

ARM - Measurement - Radiative heating rate  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsRadiative heating rate govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments MOLTS : Model Output Location Time Series Datastreams MOLTS : Model Output Location Time Series Datastreams MOLTSEDASSNDCLASS1 : Model Output Loc. Time Ser. (MOLTS): EDAS

6

Heat Rate Improvement Reference Manual  

Science Conference Proceedings (OSTI)

Performance optimization of fossil power plants is a high priority within the electric utilities in the new competitive environment. This manual can help utility engineers establish a heat rate improvement program.

1998-07-27T23:59:59.000Z

7

EPRI's Twelfth Heat Rate Improvement Conference Proceedings  

Science Conference Proceedings (OSTI)

The Twelfth Heat Rate Improvement Conference, sponsored by EPRI's Heat Rate and Cost Optimization Value Package, is the latest in a series of meetings designed to assist utilities in addressing problems with power plant performance and in identifying cost-effective solutions for achieving and maintaining heat rate improvement. The last conference was held in Baltimore in September 1998.

2001-01-22T23:59:59.000Z

8

Continental margin subsidence and heat flow: important parameters in formation of petroleum hydrocarbons  

Science Conference Proceedings (OSTI)

Passive continental margins have been shown to subside with a 50-My exponentially decaying rate which cannot be explained by isostatic compensation for sediment loading. This suggests that the subsidence is dominated by geodynamic processes similar to those in the deep ocean. Two simple geologic models for continental breakup are developed: (1) attenuation of continental lithosphere; and (2) intrusion of mantle diapirs. These models for rifting give a direct relation between subsidence of passive margins and their surface heat flow through time. On this basis we develop a method of reconstructing the thermal history of sedimentary strata from regional subsidence and sedimentation history. Because generation of petroleum hydrocarbons depends on the intergrated time/temperature history of buried organic material, this reconstruction technique can be used to determine the depth to the oil range of the hydrocarbon generation window in advance of drilling. By way of example, we reconstruct time/temperature/depth plots and estimate hydrocarbon maturity for one site in the Falkland Plateau and three sites in the North Atlantic near Cape Hatteras. In addition to providing a method for evaluating hydrocarbon potential in frontier regions where there is little or no well control, this approach suggests that there may be significant potential for oil and gas generation on the outer part of the continental rise and in deep-sea sedimentary basins. 13 figures, 1 table.

Royden, L. (Massachusetts Inst. of Tech., Cambridge); Sclater, J.G.; Von Herzen, R.P.

1980-02-01T23:59:59.000Z

9

2007 EPRI Heat Rate Improvement Conference Proceedings  

Science Conference Proceedings (OSTI)

Due to the rising cost of fuel and the growing possibility of carbon taxes in the not-too-distant future, utilities are once again focusing on the heat rate and performance of coal-fired power plants. The fifteenth Heat Rate Improvement Conference is the latest in this series of meetings designed to assist utilities in addressing problems with power plant performance and in identifying cost-effective solutions for achieving and maintaining heat rate improvement.

2007-03-30T23:59:59.000Z

10

Proceedings 2013 Heat Rate Improvement Conference  

Science Conference Proceedings (OSTI)

With the rising cost of fuel and the strong possibility of CO2 emissions regulations and limitations in the near future, utilities and power generation companies are focusing on power plant heat rate and performance. The 18th Heat Rate Improvement Conference is the latest in a series of meetings designed to assist attendees in addressing problems with power plant performance and identifying cost-effective solutions for achieving and sustaining heat rate ...

2013-04-05T23:59:59.000Z

11

Heating Rate Profiles in Galaxy Clusters  

E-Print Network (OSTI)

In recent years evidence has accumulated suggesting that the gas in galaxy clusters is heated by non-gravitational processes. Here we calculate the heating rates required to maintain a physically motived mass flow rate, in a sample of seven galaxy clusters. We employ the spectroscopic mass deposition rates as an observational input along with temperature and density data for each cluster. On energetic grounds we find that thermal conduction could provide the necessary heating for A2199, Perseus, A1795 and A478. However, the suppression factor, of the clasical Spitzer value, is a different function of radius for each cluster. Based on the observations of plasma bubbles we also calculate the duty cycles for each AGN, in the absence of thermal conduction, which can provide the required energy input. With the exception of Hydra-A it appears that each of the other AGNs in our sample require duty cycles of roughly $10^{6}-10^{7}$ yrs to provide their steady-state heating requirements. If these duty cycles are unrealistic, this may imply that many galaxy clusters must be heated by very powerful Hydra-A type events interspersed between more frequent smaller-scale outbursts. The suppression factors for the thermal conductivity required for combined heating by AGN and thermal conduction are generally acceptable. However, these suppression factors still require `fine-tuning` of the thermal conductivity as a function of radius. As a consequence of this work we present the AGN duty cycle as a cooling flow diagnostic.

Edward C. D. Pope; Georgi Pavlovski; Christian R. Kaiser; Hans Fangohr

2006-01-05T23:59:59.000Z

12

Property:HeatRate | Open Energy Information  

Open Energy Info (EERE)

HeatRate HeatRate Jump to: navigation, search This is a property of type Number. Pages using the property "HeatRate" Showing 25 pages using this property. (previous 25) (next 25) A AES Mendota Biomass Facility + 17,873.6 + APS Biomass I Biomass Facility + 8,911 + Acme Landfill Biomass Facility + 12,916.67 + Adrian Energy Associates LLC Biomass Facility + 13,170.6 + Agrilectric Power Partners Ltd Biomass Facility + 17,327.1 + Al Turi Biomass Facility + 15,600.2 + Alabama Pine Pulp Biomass Facility + 15,826.23 + Albany Landfill Gas Utilization Project Biomass Facility + 11,913.9 + Altamont Gas Recovery Biomass Facility + 10,500 + American Canyon Power Plant Biomass Facility + 10,886.8 + American Ref-Fuel of Delaware Valley Biomass Facility + 18,674.9 +

13

Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid  

DOE Patents (OSTI)

A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

Roes, Augustinus Wilhelmus Maria (Houston, TX); Mo, Weijian (Sugar Land, TX); Muylle, Michel Serge Marie (Houston, TX); Mandema, Remco Hugo (Houston, TX); Nair, Vijay (Katy, TX)

2009-09-01T23:59:59.000Z

14

Radiative Heating Rates for Saharan Dust  

Science Conference Proceedings (OSTI)

A combined longwave and shortwave radiative transfer model was used to determine effects of Saharan dust on the radiative fluxes and heating/cooling rates in the atmosphere. Cases are treated for cloud-free and overcast conditions over the ocean ...

Toby N. Carlson; Stanley G. Benjamin

1980-01-01T23:59:59.000Z

15

Self-consistent microwave plasma heating rates  

SciTech Connect

Under conditions within a hot overdense plasma corona where the field frequency is much less than the electron plasma frequency and the field period is much less than the hydrodynamic expansion time it is shown that electron field reversal heating can exceed the combined classical heating rates due to inverse bremsstrahlung (skin effect) and field pressure (PdV) by a factor approximately v/ sub e//2v/sub i/ (half the ratio of electron and ion thermal velocities). In particular this rate can exceed the inertial expansion cooling rate at a collisionless corona density of approximately 1 percent solid core density and could be realized experimentally at core temperatures approximately 3--5 keV and microwave field intensities approximately 1 MG. (auth)

Ensley, D.L.; White, R.H.

1975-10-01T23:59:59.000Z

16

Varying heating in dawsonite zones in hydrocarbon containing formations  

DOE Patents (OSTI)

A method for treating an oil shale formation comprising dawsonite includes assessing a dawsonite composition of one or more zones in the formation. Heat from one or more heaters is provided to the formation such that different amounts of heat are provided to zones with different dawsonite compositions. The provided heat is allowed to transfer from the heaters to the formation. Fluids are produced from the formation.

Vinegar, Harold J. (Bellaire, TX); Xie, Xueying (Houston, TX); Miller, David Scott (Katy, TX)

2009-07-07T23:59:59.000Z

17

On-Line Measurement of Heat of Combustion of Gaseous Hydrocarbon Fuel Mixtures  

Science Conference Proceedings (OSTI)

A method for the on-line measurement of the heat of combustion of gaseous hydrocarbon fuel mixtures has been developed and tested. The method involves combustion of a test gas with a measured quantity of air to achieve a preset concentration of oxygen ...

Sprinkle Danny R.; Chaturvedi Sushil K.; Kheireddine Ali

1996-03-01T23:59:59.000Z

18

Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.  

DOE Green Energy (OSTI)

The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

Nakos, James Thomas

2010-12-01T23:59:59.000Z

19

Hydrocarbon rate coefficients for proton and electron impact ionization, dissociation, and recombination in a hydrogen plasma.  

DOE Green Energy (OSTI)

We estimate cross sections and rate coefficients for proton and electron impact ionization, dissociation, and recombination of neutral and ionized hydrocarbon molecules and fragments of the form C{sub x}H{sub y}{sup k}, x = 1-3, y = 1-6, k = 0,1 in a thermalized hydrogen-electron plasma.

Alman, D.A.; Brooks, J.N.; Ruzic, D.N.; Wang, Z.

1999-07-21T23:59:59.000Z

20

High Heating Rate Thermal Desorption for Molecular Surface ...  

High Heating Rate Thermal Desorption for Molecular Surface Sampling Note: The technology described above is an early stage opportunity. Licensing ...

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Table A6. Approximate Heat Rates for Electricity, and Heat Content ...  

U.S. Energy Information Administration (EIA)

State energy information, detailed and overviews. Maps. ... Table A6. Approximate Heat Rates for Electricity, and Heat Content of Electricity, 1949-2011

22

Rainfall and Radiative Heating Rates from TOGA COARE Atmospheric Budgets  

Science Conference Proceedings (OSTI)

Atmospheric heat and moisture budgets are used to determine rainfall and radiative heating rates over the western Pacific warm pool during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). Results are ...

Richard H. Johnson; Paul E. Ciesielski

2000-05-01T23:59:59.000Z

23

Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.  

SciTech Connect

The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

Nakos, James Thomas

2005-12-01T23:59:59.000Z

24

Evaluation of Peak Heat Release Rates in Electrical Cabinet Fires  

Science Conference Proceedings (OSTI)

The purpose of this report is to reanalyze the peak heat release rates (HRRs) from fires occurring in electrical cabinets of nuclear power plants.

2012-02-23T23:59:59.000Z

25

Microbase Cloud Products and Associated Heating Rates in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Microbase Cloud Products and Associated Heating Rates in the Tropical Western Pacific J. H. Mather and S. A. McFarlane Pacific Northwest National Laboratory Richland, Washington...

26

Fracturing controlled primary migration of hydrocarbon fluids during heating of organic-rich shales  

E-Print Network (OSTI)

Time-resolved three-dimensional in situ high resolution synchrotron x-ray tomographic imaging was used to investigate the effects of slowly heating organic-rich Green River Shale from 60\\deg; to 400\\deg;C, in air without confinement, to better understand primary migration of hydrocarbon fluids in very low permeability source rock. Cracks nucleate in the interior of the sample at a temperature around 350\\deg;C. As the temperature increases, they grow and coalesce along lamination planes to form bigger cracks. This process is accompanied by a release of light hydrocarbons generated by decomposition of the initially immature organic matter, as determined by thermogravimetry and gas chromatography. These results provide the first 4D monitoring of an invasion percolation-like fracturing process in organic-rich shales. This process increases the permeability of the sample and provides pathways for fluid expulsion - an effect that might also be relevant for primary migration under natural conditions. We propose a 2D...

Kobchenko, Maya; Renard, Francois; Dysthe, Dag Kristian; Malthe-Sorenssen, Anders; Mazzini, Adriano; Scheibert, Julien; Jamtveit, Bjorn; Meakin, Paul

2011-01-01T23:59:59.000Z

27

ARM - Evaluation Product - Broadband Heating Rate Profile Project (BBHRP)  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsBroadband Heating Rate Profile Project ProductsBroadband Heating Rate Profile Project (BBHRP) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Broadband Heating Rate Profile Project (BBHRP) 2000.03.01 - 2006.02.28 Site(s) SGP General Description The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties

28

Solar Heating Rates: The Importance of Spherical Geometry  

Science Conference Proceedings (OSTI)

A crucial component of any GCM is a scheme for calculating atmospheric heating rates. Since a detailed treatment of all processes involved is time consuming, many approximations are usually made. An approximation used in virtually all GCM ...

D. J. Lary; M. Balluch

1993-12-01T23:59:59.000Z

29

Radiative Heating and Cooling Rates in the Middle Atmosphere  

Science Conference Proceedings (OSTI)

One of the limitations to the accurate calculation of radiative heating and cooling rates in the stratosphere and mesosphere has been the lack of accurate data on the atmospheric temperature and composition. Data from the LIMS experiment on ...

John C. Gille; Lawrence V. Lyjak

1986-10-01T23:59:59.000Z

30

Evaluation of Methodologies to Provide Comparative Heat Rates  

Science Conference Proceedings (OSTI)

Power generating companiesand even more so, their coal-fired facilitieshave struggled with the comparison of heat rate values from different periods of time. Comparing a unit's July heat rate to that recorded in January has been difficult because of several factors. First, the ambient temperatures are significantly different and manifest in operational and performance changes whose adjustments, although understood, contain uncertainty. The additional effects of variations in capacity and load following f...

2012-03-13T23:59:59.000Z

31

Evaluation of Fuel Quality Impacts on Heat Rate  

Science Conference Proceedings (OSTI)

The drive to leverage fuel switching to meet more stringent SO2 and NOX emissions requirements has led to both a reduction in power station efficiency and a poorer net plant heat rate (NPHR) in many cases. The root causes include higher fuel moisture content, lower fuel energy content, poorer combustion efficiency, increased station service, and decreased unit capability. This report demonstrates the sensitivity of the key metrics of power station efficiency and heat rate to coal quality parameters, vari...

2010-12-09T23:59:59.000Z

32

Turbine Cycle Heat Rate Monitoring: Technology and Application  

Science Conference Proceedings (OSTI)

Research has been completed on available technology for monitoring turbine cycle heat rate and factors affecting the successful deployment of this technology in fossil generating plants. Information has been gathered from interviews with experienced industry plant staff and vendors. Trends were noted and are described in this report. The report is recommended as guidance for power generation fleets and individual plants seeking to establish a successful program for heat rate reduction.

2006-12-20T23:59:59.000Z

33

Coal plasticity at high heating rates and temperatures  

SciTech Connect

The broad objective of this project is to obtain improved, quantitative understanding of the transient plasticity of bituminous coals under high heating rates and other reaction and pretreatment conditions of scientific and practical interest. To these ends the research plan is to measure the softening and resolidification behavior of two US bituminous coals with a rapid-heating, fast response, high-temperature coal plastometer, previously developed in this laboratory. Specific measurements planned for the project include determinations of apparent viscosity, softening temperature, plastic period, and resolidificationtime for molten coal: (1) as a function of independent variations in coal type, heating rate, final temperature, gaseous atmosphere (inert, 0{sub 2} or H{sub 2}), and shear rate; and (2) in exploratory runs where coal is pretreated (preoxidation, pyridine extraction, metaplast cracking agents), before heating. The intra-coal inventory and molecular weight distribution of pyridine extractables will also be measured using a rapid quenching, electrical screen heater coal pyrolysis reactor. The yield of extractables is representative of the intra-coal inventory of plasticing agent (metaplast) remaining after quenching. Coal plasticity kinetics will then be mathematically modeled from metaplast generation and depletion rates, via a correlation between the viscosity of a suspension and the concentration of deformable medium (here metaplast) in that suspension. Work during this reporting period has been concerned with re-commissioning the rapid heating rate plastometer apparatus.

Darivakis, G.S.; Peters, W.A.; Howard, J.B.

1990-01-01T23:59:59.000Z

34

Status of the Broadband Heating Rate Profile (BBHRP) VAP  

NLE Websites -- All DOE Office Websites (Extended Search)

Status of the Broadband Heating Rate Profile (BBHRP) VAP Status of the Broadband Heating Rate Profile (BBHRP) VAP Mlawer, Eli Atmospheric & Environmental Research, Inc. Clough, Shepard Atmospheric and Environmental Research Delamere, Jennifer Atmospheric and Environmental Research, Inc. Miller, Mark Brookhaven National Laboratory Johnson, Karen Brookhaven National Laboratory Troyan, David Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Shippert, Timothy Pacific Northwest National Laboratory Long, Chuck Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Sivaraman, Chitra Pacific Northwest National Laboratory Turner, David University of Wisconsin-Madison Heck, Patrick University of Wisconsin Rutan, David Analytical Services & Materials, Inc.

35

Retrofits for Improved Heat Rate and Availability: Circulating Water Heat Recovery Retrofits  

Science Conference Proceedings (OSTI)

Circulating water heat recovery is a means of directly increasing the thermal efficiency of a power plant. If only fuel savings are considered, the economic benefit is often only marginal. However, when increased megawatt output and heat-rate improvements are included in the economic analysis, such retrofits can be attractive, with break-even fuel costs sometimes approaching $1/million Btu.

1990-11-20T23:59:59.000Z

36

Demonstration of EPRI Heat Rate Guidelines at Southern California Edison Ormond Beach Unit 2  

Science Conference Proceedings (OSTI)

Using EPRI's heat rate improvement guidelines, Southern California Edison Company (SCE) developed a heat rate improvement program and realized significant fuel cost reduction. Other utilities can follow SCE's example to develop their own effective heat rate improvement programs.

1992-10-01T23:59:59.000Z

37

Table A6. Approximate Heat Rates for Electricity, and Heat Content ...  

U.S. Energy Information Administration (EIA)

Total Fossil Fuels 6,7: ... 7 The fossil-fuels heat rate is used as the thermal conversion factor for ... approximate the quantity of fossil fuels replaced by these ...

38

Sensitivity of Radiative Fluxes and Heating Rates to Cloud Microphysics  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensitivity of Radiative Fluxes and Heating Sensitivity of Radiative Fluxes and Heating Rates to Cloud Microphysics S. F. Iacobellis and R. C. J. Somerville Scripps Institution of Oceanography University of California, San Diego La Jolla, California G. M. McFarquhar University of Illinois at Urbana-Champaign Urbana, Illinois D. L. Mitchell Desert Research Institute Reno, Nevada Introduction A single-column model (SCM) is used to examine the sensitivity of basic quantities such as atmospheric radiative heating rates and surface and top of atmosphere (TOA) radiative fluxes to various parameter- izations of clouds and cloud microphysics. The SCM was run at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP), Tropical Western Pacific (TWP), and North Slope of Alaska (NSA) sites using forcing data derived from forecast products. The forecast

39

Rate of Change of Heat Storage of the World Ocean  

Science Conference Proceedings (OSTI)

Results or a Fourier analysis of climatological fields of the monthly rate of change of heat storage for the world ocean are presented. The amplitude and Phase of the first harmonic are shown, as well as the percent variance of the annual cycle ...

Sydney Levitus

1987-04-01T23:59:59.000Z

40

Survey of Impacts of Environmental Controls on Plant Heat Rate  

Science Conference Proceedings (OSTI)

Environmental controls for sulfur and nitrogen oxides, particulates, mercury, and other pollutants reduce the efficiency of power plants. This report documents the impacts of state-of-the-art environmental controls on power plant heat rate and identifies ways these impacts may be reduced through operating and design changes.

2009-12-07T23:59:59.000Z

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Design and demonstration of heat pipe cooling for NASP and evaluation of heating methods at high heating rates  

SciTech Connect

An evaluation of two heating methods for demonstration of NASP leading edge heat pipe technology was conducted. The heating methods were and rf induction heated plasma jet and direct rf induction. Tests were conducted to determine coupling from the argon plasma jet on a surface physically similar to a heat pipe. A molybdenum tipped calorimeter was fabricated and installed in an rf induction heated plasma jet for the test. The calorimetric measurements indicated a maximum power coupling of approximately 500 W/cm{sup 2} with the rf plasma jet. The effect of change in gas composition on the heating rate was investigated using helium. An alternative to the plasma heating of a heat pipe tip, an rf concentrator was evaluated for coupling to the hemispherical tip of a heat pipe. A refractory metal heat pipe was designed, fabricated, and tested for the evaluation. The heat pipe was designed for operation at 1400 to 1900 K with power input to 1000 W/cm{sup 2} over a hemispherical nose tip. Power input of 800 W/cm{sup 2} was demonstrated using the rf concentrator. 2 refs., 13 figs.

Merrigan, M.A.; Sena, J.T.

1989-01-01T23:59:59.000Z

42

Heat flow and geothermal gradients of Irian Jaya-Papua New Guinea: Implications for regional hydrocarbon exploration  

Science Conference Proceedings (OSTI)

Compilation of published and unpublished bottom hole temperatures (corrected for circulation times) obtained from open files and reports of the Indonesian Petroleum Association, Papua Geologic Survey, and the Southeast Asia Petroleum Society, together with published oceanographic heat flow analyses from the surrounding seas, allow an analysis of the regional heat flow and geothermal gradients of New Guinea. In two dimensions the thermal trends may be described as a pervasive west-northwest striking Cordilleran core of cool (2 HFU->4{degree}C/100 m) on the northwest, northeast, east, and southwest. As a first approximation, the heat flow may be viewed as directly proportional to the crustal thickness (as demonstrated from north-south transects across the Central Cordillera), inversely proportional to the age of the ocean crust (offshore), and perturbed by crustal heterogeneities proximal to plate boundaries (e.g., the Northern New Guinea Fault System). As a result, the heat flow distribution affords a record of post-Cretaceous tectonic activities of New Guinea. Using the spatial distribution of geothermal gradients and specific source rock ages, kinetic calculations of hydrocarbon maturities confirmed by recent drilling results suggest thermal variations through space and time that cannot be modeled simply as a function of present day static temperatures. Therefore, in terms of utilizing the present thermal information, hydrocarbon basin exploration strategies must also take into account the tectonically perturbed heat flow history of the region.

Bettis, P.K. (Expatriate-Congo, Houston, TX (USA)); Pigott, J.D. (Univ. of Oklahoma, Norman (USA))

1990-06-01T23:59:59.000Z

43

Property:Heat Recovery Rating | Open Energy Information  

Open Energy Info (EERE)

Rating Rating Jump to: navigation, search This is a property of type Number. Pages using the property "Heat Recovery Rating" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + 300,000 + Distributed Generation Study/615 kW Waukesha Packaged System + 2,500,000 + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + 46,105 + Distributed Generation Study/Arrow Linen + 3,000,000 + Distributed Generation Study/Dakota Station (Minnegasco) + 290,000 + Distributed Generation Study/Elgin Community College + 11,200,000 + Distributed Generation Study/Emerling Farm + 2,000,000 + Distributed Generation Study/Floyd Bennett + 230,000 + Distributed Generation Study/Harbec Plastics + 3,750,000 + Distributed Generation Study/Hudson Valley Community College + 32,500,000 +

44

Solution mining and heating by oxidation for treating hydrocarbon containing formations  

DOE Patents (OSTI)

A method for treating an oil shale formation comprising nahcolite includes providing a first fluid to a portion of the formation. A second fluid is produced from the portion. The second fluid includes at least some nahcolite dissolved in the first fluid. A controlled amount of oxidant is provided to the portion of the formation. Hydrocarbon fluids are produced from the formation.

Vinegar, Harold J. (Bellaire, TX); Stegemeier, George Leo (Houston, TX)

2009-06-23T23:59:59.000Z

45

forth through the heat exchangers, thereby phasing the rates at which heat is absorbed and rejected from  

E-Print Network (OSTI)

#12;forth through the heat exchangers, thereby phasing the rates at which heat is absorbed balance as shown in Fig. 3 still indi- cated a greater heat loss to the engine coolant than predicted. This was caused by excessive heat leak- age from the hot to the cold working spaces, primarily by the flow leakage

Oak Ridge National Laboratory

46

The Influence of Different Inflow Water Rate and Temperature on Heat Exchange Performance of Underground Heat Pump  

Science Conference Proceedings (OSTI)

in the paper, the influence of different inflow water rate and temperature on heat exchange performance of underground heat pump were discussed by experiment, two vital parameters was defined to measure the properties of ground heat exchanger: Energy ... Keywords: heat pump, underground tube, influential factors, parameters

Zheng Min; Li Bai-yi

2011-11-01T23:59:59.000Z

47

PERFORMANCE OF A SINGLE-ROW HEAT EXCHANGER AT LOW IN-TUBE FLOW RATES  

E-Print Network (OSTI)

PERFORMANCE OF A SINGLE-ROW HEAT EXCHANGER AT LOW IN-TUBE FLOW RATES A Thesis Submitted April 1995 #12;PERFORMANCE OF A SINGLE-ROW HEAT EXCHANGER AT LOW IN-TUBE FLOW RATES by Xiangwei Zhao Abstract The steady and time-dependentbehavior of a single-row heat exchanger with water and air in the in

Sen, Mihir

48

Fracturing controlled primary migration of hydrocarbon fluids during1 heating of organic-rich shales2  

E-Print Network (OSTI)

-rich shales2 3 Maya Kobchenko1 , Hamed Panahi1,2 , François Renard1,3 , Dag K. Dysthe1 , Anders Malthe-4 of slowly heating organic-rich Green River Shale15 from 60° to 400°C, in air without confinement, to better-like fracturing process in organic-rich shales. This process22 increases the permeability of the sample

49

Evaluation of Methodologies for Real-Time Incremental Heat Rate Determination  

Science Conference Proceedings (OSTI)

Reduced staffing, tighter budgets, ISOs, and increased competition have created the need for maintaining up-to-date incremental heat rate information. Combining recent advances in analytics with modern performance monitoring packages and data historians may provide the capability for closer-to-real-time incremental heat rate determination. Many power generating companies either rely on historic data or slow and labor intensive testing to establish incremental heat rate curves. Those curves are ...

2013-11-26T23:59:59.000Z

50

Dynamic Underground Stripping: In situ steam sweeping and electrical heating to remediate a deep hydrocarbon spill  

Science Conference Proceedings (OSTI)

Dynamic Underground Stripping is a combination of in situ steam injection, electrical resistance heating, and fluid extraction for rapid removal and recovery of subsurface contaminants such as solvents or fuels. Underground imaging and other measurement techniques monitor the system in situ for process control. Field tests at a deep gasoline spill at Lawrence Livermore National Laboratory recovered over 7000 gallons of gasoline during several months of field operations. Preliminary analysis of system cost and performance indicate that Dynamic Underground Stripping compares favorably with conventional pump-and-treat and vacuum extraction schemes for removing non-aqueous phase liquids such as gasoline from deep subsurface plumes.

Yow, J.L. Jr.; Aines, R.D.; Newmark, R.L.; Udell, K.S.; Ziagos, J.P.

1994-07-01T23:59:59.000Z

51

Interwell Connectivity and Diagnosis Using Correlation of Production and Injection Rate Data in Hydrocarbon Production  

Science Conference Proceedings (OSTI)

This report details progress and results on inferring interwell communication from well rate fluctuations. Starting with the procedure of Albertoni and Lake (2003) as a foundation, the goal of the project was to develop further procedures to infer reservoir properties through weights derived from correlations between injection and production rates. A modified method, described in Yousef and others (2006a,b), and herein referred to as the 'capacitance model', is the primary product of this research project. The capacitance model (CM) produces two quantities, {lambda} and {tau}, for each injector-producer well pair. For the CM, we have focused on the following items: (1) Methods to estimate {lambda} and {tau} from simulated and field well rates. The original method uses both non-linear and linear regression and lacks the ability to include constraints on {lambda} and {tau}. The revised method uses only non-linear regression, permitting constraints to be included as well as accelerating the solution so that problems with large numbers of wells are more tractable. (2) Approaches to integrate {lambda} and {tau} to improve connectivity evaluations. Interpretations have been developed using Lorenz-style and log-log plots to assess heterogeneity. Testing shows the interpretations can identify whether interwell connectivity is controlled by flow through fractures, high-permeability layers, or due to partial completion of wells. Applications to the South Wasson and North Buck Draw Fields show promising results. (3) Optimization of waterflood injection rates using the CM and a power law relationship for watercut to maximize economic return. Tests using simulated data and a range of oil prices show the approach is working. (4) Investigation of methods to increase the robustness of {lambda} and {tau} estimates. Human interventions, such as workovers, also cause rate fluctuations and can be misinterpreted by the model if bottom hole pressure data are not available. A revised method, called the 'segmented capacitance model', identifies times when production changes might not be caused strictly by water injection changes. Application to data from Monument Butte Field shows encouraging results. Our results show the CM and its modified forms can be an important tool for waterflood management. We have moved beyond the proof of principle stage to show it can actually be applied to assess connectivity in field situations. Several shortcomings, however, remain to be addressed before the CM can be routinely applied by field operators. The CM and its modifications analyze well rates in the time domain. We also explored the assessment of interwell connectivity in the spectral domain. We applied conventional methods, based on analyzing passive linear electrical networks, to the analysis of injection and production data. In particular, we assessed the effects of near-wellbore gas on the apparent connectivity. With only oil and water in the system, the results were as expected, giving good connectivity estimates. In the presence of gas, however, the methods could not produce useful estimates of connectivity.

Jerry L. Jensen; Larry W. Lake; Ali Al-Yousef; Dan Weber; Ximing Liang; T.F. Edgar; Nazli Demiroren; Danial Kaviani

2007-03-31T23:59:59.000Z

52

Interwell Connectivity and Diagnosis Using Correlation of Production and Injection Rate Data in Hydrocarbon Production  

Science Conference Proceedings (OSTI)

This report details progress on inferring interwell communication from well rate fluctuations. Starting with the procedure of Albertoni and Lake (2003) as a foundation, the goal of the project is to develop further procedures to infer reservoir properties through weights derived from correlations between injection and production rates. A modified method, described in Jensen et al. (2005) and Yousef et al. (2005), and herein referred to as the ''capacitance model'', produces two quantities, {lambda} and {tau}, for each injector-producer well pair. We have focused on the following items: (1) Approaches to integrate {lambda} and {tau} to improve connectivity evaluations. Interpretations have been developed using Lorenz-style and log-log plots to assess heterogeneity. Testing shows the interpretations can identify whether interwell connectivity is controlled by flow through fractures, high-permeability layers, or due to partial completion of wells. Applications to the South Wasson and North Buck Draw Fields show promising results. (2) Optimization of waterflood injection rates using the capacitance model and a power law relationship for watercut to maximize economic return. Initial tests using simulated data and a range of oil prices show the approach is working. (3) Spectral analysis of injection and production data to estimate interwell connectivity and to assess the effects of near-wellbore gas on the results. Development of methods and analysis are ongoing. (4) Investigation of methods to increase the robustness of the capacitance method. These methods include revising the solution method to simultaneously estimate {lambda} and {tau} for each well pair. This approach allows for further constraints to be imposed during the computation, such as limiting {tau} to a range of values defined by the sampling interval and duration of the field data. This work is proceeding. Further work on this project includes the following: (1) Refinement and testing of the waterflood optimization process, including optimization on more complex situations e.g., time effects on revenue and water injection and disposal costs. (2) Completion of the spectral-based analysis and determination of the effects of near-wellbore gas on the results. (3) Revision of the capacitance model procedures to provide more robust results which are insensitive to the initial estimates of {tau} needed in the nonlinear regression.

Jerry L. Jensen; Larry W. Lake; Ali Al-Yousef; Pablo Gentil; Nazli Demiroren

2005-05-31T23:59:59.000Z

53

EFFECT OF HEATING RATE ON THE THERMODYNAMIC PROPERTIES OF PULVERIZED COAL  

SciTech Connect

This final technical report describes work performed under DOE Grant No. DE-FG22-96PC96224 during the period September 24, 1996 to September 23, 1999 which covers the entire performance period of the project. During this period, modification, alignment, and calibration of the measurement system, measurement of devolatilization time-scales for single coal particles subjected to a range of heating rates and temperature data at these time-scales, and analysis of the temperature data to understand the effect of heating rates on coal thermal properties were carried out. A new thermodynamic model was developed to predict the heat transfer behavior for single coal particles using one approach based on the analogy for thermal property of polymers. Results of this model suggest that bituminous coal particles behave like polymers during rapid heating on the order of 10{sup 4}-10{sup 5} K/s. At these heating rates during the early stages of heating, the vibrational part of the heat capacity of the coal molecules appears to be still frozen but during the transition from heat-up to devolatilization, the heat capacity appears to attain a sudden jump in its value as in the case of polymers. There are a few data available in the coal literature for low heating rate experiments (10{sup 2}-10{sup 3} K/s) conducted by UTRC, our industrial partner, in this project. These data were obtained for a longer heating duration on the order of several seconds as opposed to the 10 milliseconds heating time of the single particle experiments discussed above. The polymer analogy model was modified to include longer heating time on the order of several seconds to test these data. However, the model failed to predict these low heating rate data. It should be noted that UTRC's work showed reasonably good agreement with Merrick model heat capacity predictions at these low heating rates, but at higher heating rates UTRC observed that coal thermal response was heat flux dependent. It is concluded that at combustion level heating rates (10{sup 4}-10{sup 5} K/s) coal structural changes are delayed and attendant increases in heat capacity and thermal conductivity are pushed to higher temperatures or require significant hold times to become manifest.

Ramanathan Sampath

2000-01-01T23:59:59.000Z

54

Relationship between the shear viscosity and heating rate in metallic glasses below the glass transition  

Science Conference Proceedings (OSTI)

It has been shown that first-order irreversible structural relaxation with distributed activation energies must lead to a linear decrease of the logarithm of Newtonian shear viscosity with the logarithm of heating rate upon linear heating of glass. Such a behavior is indeed observed in the experiments on metallic glasses. Structural relaxation-induced viscous flow leads to infra-low-frequency Maxwell viscoelastic internal friction, which is predicted to increase with the heating rate.

Khonik, Vitaly A.; Kobelev, N. P. [Department of General Physics, State Pedagogical University, Lenin Street 86, 394043 Voronezh (Russian Federation); Institute for Solid State Physics, Chernogolovka, 142432 Moscow District (Russian Federation)

2008-04-01T23:59:59.000Z

55

ARM - PI Product - Cloud Properties and Radiative Heating Rates for TWP  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsCloud Properties and Radiative Heating Rates for ProductsCloud Properties and Radiative Heating Rates for TWP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud Properties and Radiative Heating Rates for TWP 2002.01.01 - 2012.02.08 Site(s) TWP General Description A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote

56

HYDROCARBON LIQUID FLOW CALIBRATION SERVICE ...  

Science Conference Proceedings (OSTI)

... and is the cross correlation coefficient ... a NIST Hydrocarbon Liquid Flow Calibration Facility ... FED2004-56790, 2004 Heat Transfer/Fluids Engineering ...

2012-05-21T23:59:59.000Z

57

Dependency of Heat Transfer Rate on the Brinkman Number in Microchannels  

E-Print Network (OSTI)

Heat generation from electronics increases with the advent of high-density integrated circuit technology. To come up with the heat generation, microscale cooling has been thought as a promising technology. Prediction of heat transfer rate is crucial in design of microscale cooling device but is not clearly understood yet. This work proposes a new correlation between heat transfer rate and Brinkman number which is nondimensional number of viscosity, flow velocity and temperature. It is expected that the equation proposed by this work can be useful to design microchannel cooling device.

H. S. Park

2008-01-07T23:59:59.000Z

58

EFFECT OF HEATING RATE ON THE THERMODYNAMIC PROPERTIES OF PULVERIZED COAL  

Science Conference Proceedings (OSTI)

This semi-annual technical progress report describes work performed under DOE Grant No. DE-FG22-96PC96224 during the period March 24, 1999 to September 23, 1999 which covers the last (sixth) six months of the project. During this reporting period, extraction of devolatilization time-scales and temperature data at these time-scales analyzing the high-speed films taken during the experiments was complete. Also a new thermodynamic model was developed to predict the heat transfer behavior for coal particles subjected to a range of heating rates using one approach based on the analogy of polymers. Sensitivity analyses of this model suggest that bituminous coal particles behave like polymers during rapid heating on the order of 10{sup 4}-10{sup 7} K/s. At these heating rates during the early stages within the first few milliseconds of heating time, the vibrational part of the heat capacity of the coal molecules appears to be still frozen but during the transition from heat-up to devolatization, the heat capacity appears to attain a sudden jump in its value as in the case of polymers. There are few data available in the coal literature for 10{sup 2}-10{sup 3} K/s obtained by UTRC in their previous studies. These data were obtained for a longer heating duration on the order of several seconds as opposed to the 10 milliseconds heating time in the single particle experiments discussed above. The polymer analogy model is being modified to include longer heating time on the order of several seconds to test these data. It is expected that the model might still do a good job in the case of these larger heating time but very low heating rate experiments. Completion of the numerical analysis of the experimental data and preparation of the final report are in progress.

Ramanathan Sampath

1999-11-02T23:59:59.000Z

59

On the Effects of Cumulus Dimensions on Longwave Irradiance and Heating Rate Calculations  

Science Conference Proceedings (OSTI)

A model of a cumulus cloud field, parameterized as right circular cylinders, has been used to estimate the uncertainties in longwave radiation calculations of irradiances and heating rates caused by neglecting the dimensions of the clouds. The ...

Robert G. Ellingson

1982-04-01T23:59:59.000Z

60

The Impact of Polar Stratospheric Clouds on the Heating Rates of the Winter Polar Stratosphere  

Science Conference Proceedings (OSTI)

We have computed the perturbation to the infrared radiative heating rates of the lower stratosphere due to the occurrence of polar stratospheric clouds (PSCs) during the winter season in the Antarctic and Arctic regions. The calculations were ...

James B. Pollack; Christopher P. McKay

1985-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Calculating Monthly Radiative Fluxes and Heating Rates fromMonthly Cloud Observations  

Science Conference Proceedings (OSTI)

The radiative transfer model from NCAR’s general circulation model CCM3 is modified to calculate monthly radiative fluxes and heating rates from monthly observations of cloud properties from the International Satellite Cloud Climatology Project ...

John W. Bergman; Harry H. Hendon

1998-12-01T23:59:59.000Z

62

An Efficient Method for Online Calculations of Photolysis and Heating Rates  

Science Conference Proceedings (OSTI)

The authors present a computationally highly efficient method for the online calculation of photolysis and heating rates, which is especially suited for coupled transport–chemistry models. For this purpose, the spectral range 178.6 nm ? ? ? 752.5 ...

J. Landgraf; P. J. Crutzen

1998-03-01T23:59:59.000Z

63

A 4D Synchrotron X-Ray-Tomography Study of the Formation of Hydrocarbon- Migration Pathways in Heated Organic-Rich Shale  

Science Conference Proceedings (OSTI)

Recovery of oil from oil shales and the natural primary migration of hydrocarbons are closely related processes that have received renewed interest in recent years because of the ever tightening supply of conventional hydrocarbons and the growing production of hydrocarbons from low-permeability tight rocks. Quantitative models for conversion of kerogen into oil and gas and the timing of hydrocarbon generation have been well documented. However, lack of consensus about the kinetics of hydrocarbon formation in source rocks, expulsion timing, and how the resulting hydrocarbons escape from or are retained in the source rocks motivates further investigation. In particular, many mechanisms have been proposed for the transport of hydrocarbons from the rocks in which they are generated into adjacent rocks with higher permeabilities and smaller capillary entry pressures, and a better understanding of this complex process (primary migration) is needed. To characterize these processes, it is imperative to use the latest technological advances. In this study, it is shown how insights into hydrocarbon migration in source rocks can be obtained by using sequential high-resolution synchrotron X-ray tomography. Three-dimensional images of several immature "shale" samples were constructed at resolutions close to 5 um. This is sufficient to resolve the source-rock structure down to the grain level, but very-fine-grained silt particles, clay particles, and colloids cannot be resolved. Samples used in this investigation came from the R-8 unit in the upper part of the Green River shale, which is organic rich, varved, lacustrine marl formed in Eocene Lake Uinta, USA. One Green River shale sample was heated in situ up to 400 degrees C as X-ray-tomography images were recorded. The other samples were scanned before and after heating at 400 degrees C. During the heating phase, the organic matter was decomposed, and gas was released. Gas expulsion from the low-permeability shales was coupled with formation of microcracks. The main technical difficulty was numerical extraction of microcracks that have apertures in the 5- to 30-um range (with 5 um being the resolution limit) from a large 3D volume of X-ray attenuation data. The main goal of the work presented here is to develop a methodology to process these 3D data and image the cracks. This methodology is based on several levels of spatial filtering and automatic recognition of connected domains. Supportive petrographic and thermogravimetric data were an important complement to this study. An investigation of the strain field using 2D image correlation analyses was also performed. As one application of the 4D (space + time) microtomography and the developed workflow, we show that fluid generation was accompanied by crack formation. Under different conditions, in the subsurface, this might provide paths for primary migration.

Hamed Panahi; Paul Meakin; Francois Renard; Maya Kobchenko; Julien Scheibert; Adriano Mazzini; Bjorn Jamtveit; Anders Malthe-Sorenssen; Dag Kristian Dysthe

2013-04-01T23:59:59.000Z

64

Methods to Mitigate the Effect of Increased Cycling and Load Following on Heat Rate  

Science Conference Proceedings (OSTI)

Most of the U.S. coal-fired plants currently in service were designed for baseload operation. Today, however, actual generation conditions dictate that many of these units operate in a continuous transient mode, following generation demand. As such, they often experience large load changes throughout the day that result in a poorer plant heat rate. Reducing the throttle pressure, also known as sliding pressure, reduces throttling losses and is a potential method to reduce the heat rate penalties ...

2012-12-14T23:59:59.000Z

65

Model of home heating and calculation of rates of return to household energy conservation investment  

Science Conference Proceedings (OSTI)

This study attempts to find out if households' investments on energy conservation yield expected returns. It first builds a home-heating regression model, then uses the results of the model to calculate the rates of return for households' investments on the energy conservation. The home heating model includes housing characteristics, economic and demographic variables, appliance related variables, and regional dummy variables. Housing characteristic variables are modeled according to the specific physical relationship between the house and its heating requirement. Data from the Residential Energy Consumption Survey (RECS) of 1980-1981 is used for the empirical testing of the model. The model is estimated for single-detached family houses separately for three major home-heating fuel types: electricity, natural gas and fuel oil. Four scenarios are used to calculate rates of return for each household. The results show in the Northern areas the rates of return in most of the cases are a lot higher than market interest rates. In the Western and Southern areas, with few exceptions, the rates of return are lower than market interest rates. The variation of heating degree days and energy prices can affect the rates of return up to 20 percentage points.

Hsueh, L.M.

1984-01-01T23:59:59.000Z

66

Subsurface heaters with low sulfidation rates  

SciTech Connect

A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

John, Randy Carl; Vinegar, Harold J

2013-12-10T23:59:59.000Z

67

Existing and Past Methods of Test and Rating Standards Related to Integrated Heat Pump Technologies  

Science Conference Proceedings (OSTI)

This report evaluates existing and past US methods of test and rating standards related to electrically operated air, water, and ground source air conditioners and heat pumps, 65,000 Btu/hr and under in capacity, that potentiality incorporate a potable water heating function. Two AHRI (formerly ARI) standards and three DOE waivers were identified as directly related. Six other AHRI standards related to the test and rating of base units were identified as of interest, as they would form the basis of any new comprehensive test procedure. Numerous other AHRI and ASHRAE component test standards were also identified as perhaps being of help in developing a comprehensive test procedure.

Reedy, Wayne R. [Sentech, Inc.

2010-07-01T23:59:59.000Z

68

Tropical Precipitation Rates during SOP-1, FGGE, Estimated from Heat and Moisture Budgets  

Science Conference Proceedings (OSTI)

This study presents global estimates of precipitation rates from 30°N to 30°S, derived from the “apparent” heat source (Q1) and “apparent” moisture sink (Q2) budgets using the NASA Goddard Laboratory for Atmospheres Level III-b analyses collected ...

Catherine B. Pedigo; Dayton G. Vincent

1990-03-01T23:59:59.000Z

69

Scale Dependence of Solar Heating Rates in Convective Cloud Systems with Implications to General Circulation Models  

Science Conference Proceedings (OSTI)

The authors examine 3D solar radiative heating rates within tropical convective–cirrus systems to identify the scales that contribute significantly to the spatial average over a climate model’s grid cell (i.e., its grid mean), and determine their ...

A. M. Vogelmann; V. Ramanathan; I. A. Podgorny

2001-04-01T23:59:59.000Z

70

Parametric Analysis of a 6500-Btu/kWh Heat Rate Dispersed Generator  

Science Conference Proceedings (OSTI)

Cost and performance assessments of two alternative system designs for a 2-MW molten carbonate fuel cell power plant yielded encouraging results: a 6500-Btu/kWh heat rate and a total plant investment of $1200-$1300/kW. Differences between the two designs establish a permissible range of operating conditions for the fuel cell that will help guide its development.

1985-08-14T23:59:59.000Z

71

EFFECT OF HEATING RATE ON THE THERMODYNAMIC PROPERTIES OF PULVERIZED COAL  

SciTech Connect

This semi-annual technical progress report describes work performed under DOE Grant No. DE-FG22-96PC96224 during the period September 24, 1998 to March 23, 1999 which covers the fifth six months of the project. Devolatilization is an important initial step in virtually all commercial fossil fuel applications such as combustion, gasification, and liquefaction. Characterization of the temperature history of pulverized coal particles under high heating rates, representative of coal combustors, is critical to the understanding of devolatilization. During this reporting period, characterization experiments were continued from the previous reporting period and completed to a total of 28 single coal particles. These particles were caught in the electrodynamic balance and their volume, external surface area, mass, and density were measured. The same single particles were then heated bidirectionally with a pulsed (10 ms pulse width) Nd:YAG laser beams of equal intensity with heating rates (10{sup 4} - 10{sup 7} K/s) representative of coal combustors. The temporal power variation in the laser pulse was monitored for use in the heat transfer analysis by an ultra-fast fiber optic uv light transmitter included in the beam path and coupled to a silicon photodiode. Transient surface temperatures of the particles were measured using a single-color pyrometer. Dynamics of volatile evolution and particle swelling were recorded using well established time-resolved high-speed cinematography. Presently, extraction of devolatilization time-scales and temperature data at these time-scales running the high-speed films taken during the experiments employing a 16mm movie projector are in progress. Heat transfer analyses for the devolatilization time-scales, and temperature measurements (and hence an understanding of the effect of heating rates on coal thermal properties) are also in progress. Shipment of the donated heated grid system components from our industrial partner, United Technologies Research Center (UTRC), CT to CAU was complete during the previous reporting period. Testing of the heated grid system components at CAU and sensitivity analyses of the heated grid heat transfer calculations are also in progress.

Ramanathan Sampath

1999-04-29T23:59:59.000Z

72

EFFECT OF HEATING RATE ON THE THERMODYNAMIC PROPERTIES OF PULVERIZED COAL  

SciTech Connect

This semi-annual technical progress report describes work performed under DOE Grant No. DE-FG22-96PC96224 during the period March 24, 1998 to September 23, 1998 which covers the fourth six months of the project. Existing laser heating set-up at the Single Particle Laboratory, Federal Energy Technology Center, Morgantown, WV would work only in the range of 10 to 10 4 5 K/s. During this reporting period, appropriate changes were made to the laser heating system to heat particles in the range of 10 to 10 K/s. Also, calibration for all the components of the 4 7 electrodynamic balance measurement system including single-color pyrometer and heating laser was successfully completed. Following the calibration, a large number of single coal particles were caught in the electrodynamic balance and their volume, external surface area, mass, and density were measured. The same single particles were then heated bidirectionally with a pulsed (10 ms pulse width) Nd:YAG laser beams of equal intensity. The temporal power variation in the laser pulse was monitored for use in the heat transfer analysis by an ultra-fast fiber optic uv light transmitter included in the beam path and coupled to a silicon photodiode. Measurements of changes in particle size that accompanied rapid heating was made by means of the high-speed diode array imaging system discussed in our previous reports. Dynamics of volatile evolution and particle swelling were recorded using well established time-resolved high-speed cinematography. Measurements of the radiant emissive power from the heated and cooled (when the laser is turned off) particles was made using the single-color pyrometer. The above experiments are being repeated for a significant number of coal particles for a number of heating rates in between 10 - 10 K/s at FETC, Morgantown. 4 7 Shipment of the donated heated grid system components from our industrial partner, United Technologies Research Center (UTRC), CT to CAU was complete during this reporting period. Testing of the heated grid system components at CAU is also in progress.

RAMANATHAN SAMPATH

1998-10-27T23:59:59.000Z

73

A 4D synchrotron X-ray tomography study of the formation of hydrocarbon migration pathways in heated organic-rich shale  

E-Print Network (OSTI)

Recovery of oil from oil shales and the natural primary migration of hydrocarbons are closely related processes that have received renewed interests in recent years because of the ever tightening supply of conventional hydrocarbons and the growing production of hydrocarbons from low permeability tight rocks. Quantitative models for conversion of kerogen into oil and gas and the timing of hydrocarbon generation have been well documented. However, lack of consensus about the kinetics of hydrocarbon formation in source rocks, expulsion timing and how the resulting hydrocarbons escape from or are retained in the source rocks motivates further investigation. In particular, many mechanisms for the transport of hydrocarbons from the source rocks in which they are generated into adjacent rocks with higher permeabilities and smaller capillary entry pressures have been proposed, and a better understanding of this complex process (primary migration) is needed. To characterize these processes it is imperative to use the ...

Panahi, Hamed; Renard, Francois; Mazzini, Adriano; Scheibert, Julien; Dysthe, Dag Kristian; Jamtveit, Bjorn; Malthe-Sørenssen, Anders; Meakin, Paul

2014-01-01T23:59:59.000Z

74

Thermal and hydraulic performance tests of a sieve-tray direct-contact heat exchanger vaporizing pure and mixed-hydrocarbon Rankine-cycle working fluids  

DOE Green Energy (OSTI)

Experiments investigating a sieve-tray direct-contact heat exchanger were conducted at the Raft River Geothermal Test Site in southeastern Idaho using the 60-kW Mobile Heat Cycle Research Facility operating in the thermal loop mode (without a turbine). Isobutane, propane, and several hydrocarbon mixtures were heated and boiled in the direct-contact column, which is approx. 12 in. in diameter and 19-1/2 ft. high, using the energy from a 280/sup 0/F geothermal resource. Using pure fluids, isobutane or propane, the column operated much as intended, with 17 trays used for preheating and one or two accomplishing the boiling. For the pure fluids, individual tray efficiencies were found to be 70% or higher for preheating, and close to 100% for boiling; column pinch points were projected to be well under 1/sup 0/F with some runs reaching values as low as approx. 0.02/sup 0/F. Maximum geofluid throughputs for the isobutane tests corresponded roughly to the terminal rise velocity of a 1/32 in. working fluid droplet in geofluid. Boiling was found to occur in as many as 12 trays for the mixtures having the highest concentrations of the minor component, with overall efficiencies in the boiling section estimated on the order of 25 or 30%. Preheating tray efficiencies appeared to be fairly independent of working fluid, with pinch points ranging from as low as approx. 0.03/sup 0/F for a 0.95 isobutane/0.05 hexane mixture to approx. 2.3/sup 0/F for a 0.85 isobutane/0.05 hexane mixture. Column operation was noticeably less stable for the mixtures than for the pure fluids, with maximum throughputs dropping to as low as 40 to 50% of those for the pure fluids.

Mines, G.L.; Demuth, O.J.; Wiggins, D.J.

1983-08-01T23:59:59.000Z

75

AN EFFICIENT APPROXIMATION OF THE CORONAL HEATING RATE FOR USE IN GLOBAL SUN–HELIOSPHERE SIMULATIONS  

E-Print Network (OSTI)

The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of debate. A key obstacle in the way of producing realistic simulations of the Sun–heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent one-dimensional models have been found to reproduce many observed features of the solar wind by assuming the energy comes from Alfvén waves that are partially reflected, then dissipated by magnetohydrodynamic turbulence. However, the nonlocal physics of wave reflection has made it difficult to apply these processes to more sophisticated (three-dimensional) models. This paper presents a set of robust approximations to the solutions of the linear Alfvén wave reflection equations. A key ingredient of the turbulent heating rate is the ratio of inward-to-outward wave power, and the approximations developed here allow this to be written explicitly in terms of local plasma properties at any given location. The coronal heating also depends on the frequency spectrum of Alfvén waves in the open-field corona, which has not yet been measured directly. A modelbased assumption is used here for the spectrum, but the results of future measurements can be incorporated easily. The resulting expression for the coronal heating rate is self-contained, computationally efficient, and applicable directly to global models of the corona and heliosphere. This paper tests and validates the approximations by comparing the results to exact solutions of the wave transport equations in several cases relevant to the fast and slow solar wind. Key words: interplanetary medium – magnetohydrodynamics (MHD) – solar wind – Sun: corona – turbulence – waves Online-only material: tar file of source code 1.

Steven R. Cranmer

2010-01-01T23:59:59.000Z

76

Hydrocarbon adsorption apparatus and process  

SciTech Connect

A method of recovering hydrocarbons from natural gas by the use of solid adsorbents consists of 3 steps. The main flow stream of natural gas is passed through a first and only bed of solid adsorbent so that at least a portion of the hydrocarbons present is adsorbed in the bed. A heated regeneration gas is next passed through a second bed of solid adsorbent so that at least a portion of the hydrocarbons is desorbed from the bed. The main flow of natural gas is passed through the second and only bed when in a heated condition after regeneration and the flow of heated regeneration gas is passed through the first bed. The hydrocarbons desorbed from the first and second beds from the regeneration gas are recovered while the previous 3 steps are repeated. (6 claims)

Humphries, C.L.

1966-12-06T23:59:59.000Z

77

Hydrocarbon adsorption system  

SciTech Connect

In a solid adsorbent hydrocarbon recovery system for processing natural gas, towers adapted for performing adsorbing, cooling, and regenerating functions are used. It is recommended that a regeneration gas be used of substantially uniform richness in hydrocarbons in the closed-cycle regeneration system. The natural gas stream is flowed through an adsorbent bed to remove liquid hydrocarbons. A portion of the stripped gas stream is flowed through a second adsorbent bed for cooling purposes. A heated, rich, regeneration gas is circulated through a closed-cycle regeneration system that includes a third adsorbent bed. This rich regeneration gas is combined with the stripped gas stream. These steps are repeated in a cyclic operation. (10 claims)

Humphries, C.L.

1966-11-29T23:59:59.000Z

78

Electric field noise above surfaces: a model for heating rate scaling law in ion traps  

E-Print Network (OSTI)

We present a model for the scaling laws of the electric field noise spectral density as a function of the distance, $d$, above a conducting surface. Our analytical approach models the patch potentials by introducing a correlation length, $\\zeta$, of the electric potential on the surface. The predicted scaling laws are in excellent agreement with two different classes of experiments (cold trapped ions and cantilevers), that span at least four orders of magnitude of $d$. According to this model, heating rate in miniature ion traps could be greatly reduced by proper material engineering.

Dubessy, Romain; Guidoni, Luca

2008-01-01T23:59:59.000Z

79

Electric field noise above surfaces: a model for heating rate scaling law in ion traps  

E-Print Network (OSTI)

We present a model for the scaling laws of the electric field noise spectral density as a function of the distance, $d$, above a conducting surface. Our analytical approach models the patch potentials by introducing a correlation length, $\\zeta$, of the electric potential on the surface. The predicted scaling laws are in excellent agreement with two different classes of experiments (cold trapped ions and cantilevers), that span at least four orders of magnitude of $d$. According to this model, heating rate in miniature ion traps could be greatly reduced by proper material engineering.

Romain Dubessy; Thomas Coudreau; Luca Guidoni

2008-12-17T23:59:59.000Z

80

Sensitivity of shortwave radiative flux density, forcing, and heating rates to the aerosol vertical profile  

SciTech Connect

The effect of the aerosol vertical distribution on the solar radiation profiles, for idealized and measured profiles of optical properties (extinction and single-scattering albedo (SSA)) during the May 2003 Atmospheric Radiation Measurement (ARM) Aerosol Intensive Observation Period (AIOP), has been investigated using the Rapid Radiative Transfer Model Shortwave (RRTM_SW) code. Calculated profiles of down-welling and up-welling solar fluxes during the AIOP have been compared with the data measured by up- and down-looking solar broadband radiometers aboard a profiling research aircraft. The measured profiles of aerosol extinction, SSA, and water vapor obtained from the same aircraft that carried the radiometers served as the inputs for the model calculations. It is noteworthy that for this study, the uplooking radiometers were mounted on a stabilized platform that kept the radiometers parallel with respect to the earth’s horizontal plane. The results indicate that the shape of the aerosol extinction profiles has very little impact on direct radiative forcings at the top of atmosphere and surface in a cloud-free sky. However, as long as the aerosol is not purely scattering, the shape of the extinction profiles is important for forcing profiles. Identical extinction profiles with different absorption profiles drastically influence the forcing and heating rate profiles. Using aircraft data from 19 AIOP profiles over the Southern Great Plains (SGP), we are able to achieve broadband down-welling solar flux closure within 0.8% (bias difference) or 1.8% (rms difference), well within the expected measurement uncertainty of 1 to 3%. The poorer agreement in up-welling flux (bias -3.7%, rms 10%) is attributed to the use of inaccurate surface albedo data. The sensitivity tests reveal the important role accurate, vertically resolved aerosol extinction data plays in tightening flux closure. This study also suggests that in the presence of a strongly absorbing substance, aircraft flux measurements from a stabilized platform have the potential to determine heating rate profiles. These measurement-based heating rate profiles provide useful data for heating rate closure studies and indirect estimates of single scattering albedo assumed in radiative transfer calculations.

Guan, Hong; Schmid, Beat; Bucholtz, Anthony; Bergstrom, Robert

2010-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Comments on the use of boiler efficiencies to determine unit heat rate  

SciTech Connect

The expression for boiler efficiency defined in ASME PTC4.1 was developed for evaluating boiler performance, carrying out acceptance tests on boilers and computing the effects of changes in parameters such as fuel characteristics on boiler performance. While satisfactory for applications such as these, this particular definition of boiler efficiency can result in substantial errors when used for computing unit performance. Sample calculations are presented for a 600 MW coal fired unit which show errors in net unit heat rate of 1 to 3 percent due to inconsistent definitions for boiler efficiency.

Levy, E.K.; Sarunac, N. (Lehigh Univ., Bethlehem, PA (USA). Energy Research Center); Leyse, R. (Electric Power Research Inst., Palo Alto, CA (USA))

1990-01-01T23:59:59.000Z

82

Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies  

SciTech Connect

This document has been prepared to assist research reactor operators possessing spent fuel containing enriched uranium of United States origin to prepare part of the documentation necessary to ship this fuel to the United States. Data are included on the nuclear mass inventory, photon dose rate, and thermal decay heat of spent research reactor fuel assemblies. Isotopic masses of U, Np, Pu and Am that are present in spent research reactor fuel are estimated for MTR, TRIGA and DIDO-type fuel assembly types. The isotopic masses of each fuel assembly type are given as functions of U-235 burnup in the spent fuel, and of initial U-235 enrichment and U-235 mass in the fuel assembly. Photon dose rates of spent MTR, TRIGA and DIDO-type fuel assemblies are estimated for fuel assemblies with up to 80% U-235 burnup and specific power densities between 0.089 and 2.857 MW/kg[sup 235]U, and for fission product decay times of up to 20 years. Thermal decay heat loads are estimated for spent fuel based upon the fuel assembly irradiation history (average assembly power vs. elapsed time) and the spent fuel cooling time.

Pond, R.B.; Matos, J.E.

1996-12-31T23:59:59.000Z

83

On-Line Heat Rate Monitor Assessment, Part 2: Results of the Demonstration and Application of Exergetic Systems' Calculational Engine  

Science Conference Proceedings (OSTI)

This report summarizes EPRI demonstrations of Exergetic Systems' Calculational Engine, an on-line heat rate monitor, at two pulverized-coal-fired plants. It also summarizes results from independent installations and tests of the Calculational Engine.

2004-12-27T23:59:59.000Z

84

Latent Heating and Cooling Rates in Developing and Nondeveloping Tropical Disturbances during TCS-08: TRMM PR versus ELDORA Retrievals  

Science Conference Proceedings (OSTI)

Unique sets of Electra Doppler Radar (ELDORA) observations in both developing and nondeveloping tropical disturbances in the western North Pacific are used to retrieve latent heating and cooling rates. During the reintensification of Sinlaku, ...

Myung-Sook Park; Russell L. Elsberry

2013-01-01T23:59:59.000Z

85

Latent Heating and Cooling Rates in Developing and Nondeveloping Tropical Disturbances during TCS-08: Radar-Equivalent Retrievals from Mesoscale Numerical Models and ELDORA  

Science Conference Proceedings (OSTI)

Latent heating and cooling rates have a critical role in predicting tropical cyclone formation and intensification. In a prior study, Park and Elsberry estimated the latent heating and cooling rates from aircraft Doppler radar [Electra Doppler ...

Myung-Sook Park; Andrew B. Penny; Russell L. Elsberry; Brian J. Billings; James D. Doyle

2013-01-01T23:59:59.000Z

86

Influence of Mean Zonal Motion and Meridional Temperature Gradients on the Solar Semidiurnal Atmospheric Tide: A Revised Spectral Study with Improved Heating Rates  

Science Conference Proceedings (OSTI)

Calculations of the semidiurnal atmospheric tide at solstice using improved heating rates are presented. The heating rates for solar absorption by water vapor are based on a global water vapor distribution (Jenne, 1969, 1975; Jenne et al., 1974), ...

R. L. Walterscheid; J. G. DeVore; S. V. Venkateswaran

1980-02-01T23:59:59.000Z

87

Recent Developments on the Broadband Heating Rate Profile Value-Added Product  

NLE Websites -- All DOE Office Websites (Extended Search)

Recent Developments on the Recent Developments on the Broadband Heating Rate Profile Value-Added Product E. J. Mlawer, J. S. Delamere, and S. A. Clough Atmospheric and Environmental Research, Inc. Cambridge, Massachusetts M. A. Miller and K. L. Johnson Brookhaven National Laboratory Upton, New York T. R. Shippert and C. N. Long Pacific Northwest National Laboratory Richland, Washington R. G. Ellingson Florida State University Tallahassee, Florida M. H. Zhang State University of New York - Stony Brook Albany, New York R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton, Virginia R. T. Cederwall and S. C. Xie Los Alamos National Laboratory Los Alamos, New Mexico J. A. Ogren National Oceanic and Atmospheric Administration

88

Expert Meeting Report: Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploring the Disconnect Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems M. Hoeschele and E. Weitzel Alliance for Residential Building Innovation (ARBI) May 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

89

Crack growth rates of irradiated austenitic stainless steel weld heat affected zone in BWR environments.  

Science Conference Proceedings (OSTI)

Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of reactor pressure vessels because of their superior fracture toughness. However, exposure to high levels of neutron irradiation for extended periods can exacerbate the corrosion fatigue and stress corrosion cracking (SCC) behavior of these steels by affecting the material microchemistry, material microstructure, and water chemistry. Experimental data are presented on crack growth rates of the heat affected zone (HAZ) in Types 304L and 304 SS weld specimens before and after they were irradiated to a fluence of 5.0 x 10{sup 20} n/cm{sup 2} (E > 1 MeV) ({approx} 0.75 dpa) at {approx}288 C. Crack growth tests were conducted under cycling loading and long hold time trapezoidal loading in simulated boiling water reactor environments on Type 304L SS HAZ of the H5 weld from the Grand Gulf reactor core shroud and on Type 304 SS HAZ of a laboratory-prepared weld. The effects of material composition, irradiation, and water chemistry on growth rates are discussed.

Chopra, O. K.; Alexandreanu, B.; Gruber, E. E.; Daum, R. S.; Shack, W. J.; Energy Technology

2006-01-31T23:59:59.000Z

90

: Plasma-Hydrocarbon conversion  

crude oil and hydrocarbon gases like natural gas, into lighter hydrocarbon materials (e.g. synthetic light oil).

91

Apparatus for hydrocarbon extraction  

DOE Patents (OSTI)

Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

Bohnert, George W.; Verhulst, Galen G.

2013-03-19T23:59:59.000Z

92

Coal plasticity at high heating rates and temperatures. First technical progress report for the fourth quarter 1989  

SciTech Connect

The broad objective of this project is to obtain improved, quantitative understanding of the transient plasticity of bituminous coals under high heating rates and other reaction and pretreatment conditions of scientific and practical interest. To these ends the research plan is to measure the softening and resolidification behavior of two US bituminous coals with a rapid-heating, fast response, high-temperature coal plastometer, previously developed in this laboratory. Specific measurements planned for the project include determinations of apparent viscosity, softening temperature, plastic period, and resolidificationtime for molten coal: (1) as a function of independent variations in coal type, heating rate, final temperature, gaseous atmosphere (inert, 0{sub 2} or H{sub 2}), and shear rate; and (2) in exploratory runs where coal is pretreated (preoxidation, pyridine extraction, metaplast cracking agents), before heating. The intra-coal inventory and molecular weight distribution of pyridine extractables will also be measured using a rapid quenching, electrical screen heater coal pyrolysis reactor. The yield of extractables is representative of the intra-coal inventory of plasticing agent (metaplast) remaining after quenching. Coal plasticity kinetics will then be mathematically modeled from metaplast generation and depletion rates, via a correlation between the viscosity of a suspension and the concentration of deformable medium (here metaplast) in that suspension. Work during this reporting period has been concerned with re-commissioning the rapid heating rate plastometer apparatus.

Darivakis, G.S.; Peters, W.A.; Howard, J.B.

1990-01-01T23:59:59.000Z

93

Heat transfer rates for filmwise, dropwise, and superhydrophobic condensation on silicon substrates  

E-Print Network (OSTI)

Condensation, a two-phase heat transfer processes, is commonly utilized in industrial systems. Condensation heat transfer can be optimized by using surfaces in which dropwise condensation (DWC) occurs, and even further ...

Hery, Travis M

2011-01-01T23:59:59.000Z

94

Systems and methods for producing hydrocarbons from tar sands formations  

DOE Patents (OSTI)

A system for treating a tar sands formation is disclosed. A plurality of heaters are located in the formation. The heaters include at least partially horizontal heating sections at least partially in a hydrocarbon layer of the formation. The heating sections are at least partially arranged in a pattern in the hydrocarbon layer. The heaters are configured to provide heat to the hydrocarbon layer. The provided heat creates a plurality of drainage paths for mobilized fluids. At least two of the drainage paths converge. A production well is located to collect and produce mobilized fluids from at least one of the converged drainage paths in the hydrocarbon layer.

Li, Ruijian (Katy, TX); Karanikas, John Michael (Houston, TX)

2009-07-21T23:59:59.000Z

95

Expert Meeting Report: Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems  

SciTech Connect

Water heating represents a major residential energy end use, especially in highly efficient homes where space conditioning loads and energy use has been significantly reduced. Future efforts to reduce water heating energy use requires the development of an improved understanding of equipment performance, as well as recognizing system interactions related to the distribution system and the fixture use characteristics. By bringing together a group of water heating experts, we hope to advance the shared knowledge on key water heating performance issues and identify additional data needs that will further this critical research area.

Hoeschele, M.; Weitzel, E.

2013-05-01T23:59:59.000Z

96

MEASURED AND CALCULATED HEATING AND DOSE RATES FOR THE HFIR HB4 BEAM TUBE AND COLD SOURCE  

SciTech Connect

The High Flux Isotope Reactor at the Oak Ridge National Laboratory was upgraded to install a cold source in horizontal beam tube number 4. Calculations were performed and measurements were made to determine heating within the cold source and dose rates within and outside a shield tunnel surrounding the beam tube. This report briefly describes the calculations and presents comparisons of the measured and calculated results. Some calculated dose rates are in fair to good agreement with the measured results while others, particularly those at the shield interfaces, differ greatly from the measured results. Calculated neutron exposure to the Teflon seals in the hydrogen transfer line is about one fourth of the measured value, underpredicting the lifetime by a factor of four. The calculated cold source heating is in good agreement with the measured heating.

Slater, Charles O [ORNL; Primm, Trent [ORNL; Pinkston, Daniel [ORNL; Cook, David Howard [ORNL; Selby, Douglas L [ORNL; Ferguson, Phillip D [ORNL; Bucholz, James A [ORNL; Popov, Emilian L [ORNL

2009-03-01T23:59:59.000Z

97

Activation, Heating and Exposure Rates for Mo?99 Experiments with 25?Disk Targets  

Science Conference Proceedings (OSTI)

An MCNPX model of the 25-disk target assembly inside the vacuum cube inside the shielded box was prepared. This was used to calculate heating and photon and neutron fluxes throughout the model. Production rates for photonuclear reaction products were calculated using the photon fluxes and ENDF/B-VII cross sections. Measured isomer to ground state yield ratios were used where available. Where not available the new correlation between spin deficit and isomer to ground state yield ratios presented at AccApp'11 was used. The photonuclear production rates and neutron fluxes were input to CINDER2008 for transmutation calculations. A cross section update file was used to supply (n,n') reactions missing from CINDER2008 libraries. Decay photon spectra produced by CINDER2008 were then used to calculate exposure rates using the MCNPX model. Two electron beam irradiations were evaluated. The first was for a thermal test at 15 MeV with 1300 {micro}A incident on one target end and the second was for a production test at 35 MeV with 350 {micro}A incident on both target ends (700 {micro}A total current on target). For the thermal test 1, 2, 3, 4, 5 and 6 h irradiation times were simulated, each followed by decay time steps out to 42 days. For the production test 6, 12, 18, 24, 30 and 36 h irradiation times were simulated followed by the same decay periods. For all simulations beam FWHMs in x and y were both assumed to be 6 mm. Simulations were run for Mo-100 enriched and natural Mo targets for both tests. It is planned that thermal test will be run for 4 h with natural target disks and production test will be run for 24 h with enriched target disks. Results for these two simulations only are presented in this report. Other results can be made available upon request. Post irradiation exposure rates were calculated at 30 cm distances from left, right, front and back of the following configurations: (1) Shielded box with everything in it (beam pipes, cooling pipes, vacuum cube, target housing weldment and target assembly), (2) Shielded box with everything in it except the target assembly, (3) Shielded box with nothing in it, (4) Target assembly taken outside of shielded box, (5) Target disks in cradle (target assembly with thermocouple weldment and flange removed), (6) Empty cradle, and (7) Target disks alone. Decay photon spectra from the CINDER2008 calculations were used as sources for the exposure rate calculations in the same model used for the flux calculations with beam on. As components were removed to simulate the seven cases considered the material compositions were changed to air and their respective sources were turned off. The MCNPX model geometry is plotted in Figure 1. The left and right detector locations for cases 1, 2 and 3 were 30 cm from the shielded box walls and 30 cm from the beam pipe openings in the left and right sides of the model (they are not in the beam line). A zoomed in plot of the target assembly alone is in Figure 2. Exposure rates for the seven cases are plotted as a function of time after irradiation in Figures 3, 4 and 5. To aid in comparison between the cases, all of these figures have been plotted using the same scale. Figures 3 and 4 are respectively the thermal and production test results for cases 1 through 6. Figure 5 includes case 7 results for both. Differences between cases 1 and 2 for both tests are not statistically significant showing that activation of components other than the target assembly, many of which are also shielding the target assembly, dominates exposure rates outside the shielded box. Case 3 shows the contribution from activation of the shield box itself. In front where shielded box wall is thickest box activation accounts for essentially all of the exposure rate outside. Differences between cases 4 and 5 are also minimal, showing that the contribution to target assembly exposure rates from the thermocouple flange and weldment are small compared to the target disks and cradle. From the numerical results the contribution is about 1%. Results for case 6, the cradle itself, are ini

Kelsey, Charles T. IV [Los Alamos National Laboratory

2012-05-09T23:59:59.000Z

98

Process for recovery of liquid hydrocarbons  

SciTech Connect

Methane is recovered as a gas for discharge to a pipeline from a gas stream containing methane and heavier hydrocarbons, principally ethane and propane. Separation is accomplished by condensing the heavier hydrocarbons and distilling the methane therefrom. A liquid product (LPG) comprising the heavier hydrocarbons is subsequently recovered and transferred to storage. Prior to being discharged to a pipeline, the recovered methane gas is compressed and in undergoing compression the gas is heated. The heat content of the gas is employed to reboil the refrigerant in an absorption refrigeration unit. The refrigeration unit is used to cool the LPG prior to its storage.

Millar, J.F.; Cockshott, J.E.

1978-04-11T23:59:59.000Z

99

Heating Rate within the Upper Ocean in Relation to its Bio–optical State  

Science Conference Proceedings (OSTI)

Solar radiation absorption and local heating within the upper layers of the open ocean are strongly influenced by the abundance of phytoplankton as depicted by the chlorophyll concentration. According to whether this concentration is high or low, ...

André Morel; David Antoine

1994-07-01T23:59:59.000Z

100

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

Marketing > RATES Marketing > RATES RATES Current Rates Past Rates 2006 2007 2008 2009 2010 2011 2012 Rates Schedules Power CV-F13 CPP-2 Transmissions CV-T3 CV-NWT5 PACI-T3 COTP-T3 CV-TPT7 CV-UUP1 Ancillary CV-RFS4 CV-SPR4 CV-SUR4 CV-EID4 CV-GID1 Future and Other Rates SNR Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K)

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning & Projects Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates Power Revenue Requirement Worksheet (FY 2014) (Oct 2013 - Sep 2014) (PDF - 30K) PRR Notification Letter (Sep 27, 2013) (PDF - 959K) FY 2012 FP% True-Up Calculations(PDF - 387K) Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) PRR Forecast FY14-FY17 (May 23, 2013) (PDF - 100K) Forecasted Transmission Rates (May 2013) (PDF - 164K) Past Rates 2013 2012 2011 2010 2009 Historical CVP Transmission Rates (April 2013) (PDF - 287K) Rate Schedules Power - CV-F13 - CPP-2 Transmission - CV-T3 - CV-NWT5 - PACI-T3 - COTP-T3 - CV-TPT7 - CV-UUP1 Ancillary - CV-RFS4 - CV-SPR4 - CV-SUR4 - CV-EID4 - CV-GID1 Federal Register Notices - CVP, COTP and PACI

102

Removing the Hydrocarbon from Hydrocarbon Flow ...  

Science Conference Proceedings (OSTI)

... gas and petroleum products. Therefore is important to have primary calibration standards with low uncertainty. NIST has several hydrocarbon liquid ...

2014-01-03T23:59:59.000Z

103

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

RATES RATES Rates Document Library SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K) Appendix D - Western Transmission System Facilities Map (PDF - 274K) Appendix E - Estimated FY12 FP and BR Customer (PDF - 1144K) Appendix F - Forecasted Replacements and Additions FY11 - FY16 (PDF - 491K) Appendix G - Definitions (PDF - 1758K) Appendix H - Acronyms (PDF - 720K)

104

Analysis of the behavior of ternary hydrocarbon mixture as substitutes of the CFC-12  

Science Conference Proceedings (OSTI)

Hydrocarbons are stratospheric ozone friendly and have good heat transfer properties. The use of hydrocarbons (HCs) or their blend as refrigerant is extending in these days. This paper deals with the search of the best ternary hydrocarbons mixture of ... Keywords: CFC-12, LB-12, cub, hydrocarbon, ozone, refrigerant, ternary mixture

Rafael Quintero Ricardo

2007-05-01T23:59:59.000Z

105

MODEL FOR ALFVEN WAVE TURBULENCE IN SOLAR CORONAL LOOPS: HEATING RATE PROFILES AND TEMPERATURE FLUCTUATIONS  

Science Conference Proceedings (OSTI)

It has been suggested that the solar corona may be heated by dissipation of Alfven waves that propagate up from the solar photosphere. According to this theory, counterpropagating Alfven waves are subject to nonlinear interactions that lead to turbulent decay of the waves and heating of the chromospheric and coronal plasma. To test this theory, better models for the dynamics of Alfven waves in coronal loops are required. In this paper, we consider wave heating in an active region observed with the Solar Dynamics Observatory in 2010 May. First a three-dimensional (3D) magnetic model of the region is constructed, and ten magnetic field lines that match observed coronal loops are selected. For each loop we construct a 3D magnetohydrodynamic model of the Alfven waves near the selected field line. The waves are assumed to be generated by footpoint motions inside the kilogauss magnetic flux elements at the two ends of the loop. Based on such models, we predict the spatial and temporal profiles of the heating along the selected loops. We also estimate the temperature fluctuations resulting from such heating. We find that the Alfven wave turbulence model can reproduce the observed characteristics of the hotter loops in the active region core, but the loops at the periphery of the region have large expansion factors and are predicted to be thermally unstable.

Asgari-Targhi, M.; Van Ballegooijen, A. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS-15, Cambridge, MA 02138 (United States)

2012-02-10T23:59:59.000Z

106

Method for recovery of hydrocarbon material from hydrocarbon material-bearing formations  

SciTech Connect

A method is disclosed for heating a hydrocarbon material contained in a recovery zone in an underground hydrocarbon material-bearing formation to reduce the viscosity thereof for facilitating recovery of the hydrocarbon material. A gaseous penetration medium comprising a gaseous working fluid and a carrier gas, is fed into the formation at a penetration pressure sufficient for penetration of the recovery zone, the working fluid being a water soluble gas which generates heat of solution upon absorption in an aqueous medium, and in which the partial pressure of the working fluid in relation to the penetration pressure and the temperature prevailing in the recovery zone is controlled to inhibit working fluid condensation but to provide for absorption of working fluid by water present in the formation to release heat for heating the hydrocarbon material in the recovery zone.

Kalina, A.I.

1982-05-25T23:59:59.000Z

107

Plasma-assisted conversion of solid hydrocarbon to diamond  

DOE Patents (OSTI)

A process of preparing diamond, e.g., diamond fiber, by subjecting a hydrocarbon material, e.g., a hydrocarbon fiber, to a plasma treatment in a gaseous feedstream for a sufficient period of time to form diamond, e.g., a diamond fiber is disclosed. The method generally further involves pretreating the hydrocarbon material prior to treatment with the plasma by heating within an oxygen-containing atmosphere at temperatures sufficient to increase crosslinking within said hydrocarbon material, but at temperatures insufficient to melt or decompose said hydrocarbon material, followed by heating at temperatures sufficient to promote outgassing of said crosslinked hydrocarbon material, but at temperatures insufficient to convert said hydrocarbon material to carbon.

Valone, Steven M. (Santa Fe, NM); Pattillo, Stevan G. (Los Alamos, NM); Trkula, Mitchell (Los Alamos, NM); Coates, Don M. (Santa Fe, NM); Shah, S. Ismat (Wilmington, DE)

1996-01-01T23:59:59.000Z

108

Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil  

DOE Patents (OSTI)

In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

Knauss, Kevin G. (Livermore, CA); Copenhaver, Sally C. (Livermore, CA); Aines, Roger D. (Livermore, CA)

2000-01-01T23:59:59.000Z

109

Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies  

SciTech Connect

As part of the Department of Energy`s spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report.

Pond, R.B.; Matos, J.E.

1996-05-01T23:59:59.000Z

110

Effect of Heating Rate on the Thermodynamic Properties of Pulverized Coal  

SciTech Connect

This semi-annual technical progress report describes work performed under DOE Grant No.DE-FG22-96PC96224 during the period September 24, 1997 to April 23, 1998 which covers the third six months of the project. During this reporting period, several components of the electrodynamic balance measurement system, Single Particle Laboratory, Federal Energy Technology center, Morgantown, WV, were successfully calibrated. A large number of single polystyrenespheres covering a size range of 80 - 200 microns in diameter were caught in the electrodynamic balance. The size counts of their projected images obtained using the top video-based imaging system, bottom video-based imaging system, and diode-array imaging system were calibrated against the actual size of the particles to within ± 3 microns. Signals obtained by the particle position control system were also calibrated against the actual movement of a polystyrene particle in the balance to within ± 1 microns. Presently, calibration of the Single Color Pyrometer to measure coal particle temperature histories is in progress. Donation agreement for the Heated-Grid measurement system from our industrial partner, United Technologies Research Center (UTRC), CT, was obtained and the arrangement for the completion of the shipment of the grid system components from UTRC to CAU is in progress. Several theoretical analyses were conducted to improve the model performance of the present work and the results were compared with data available from our previous studies. These activities resulted in several publications including three conference papers, and one student poster paper during this reporting period.

Ramanathan Sampath

1998-05-01T23:59:59.000Z

111

Data Assimilation of Satellite-Derived Heating Rates as Proxy Surface Wetness Data into a Regional Atmospheric Mesoscale Model. Part I: Methodology  

Science Conference Proceedings (OSTI)

A satellite data assimilation method is developed which incorporates satellite-observed infrared heating rates into a mesoscale atmospheric model to retrieve model soil moisture. The method builds upon previous work with the model’s surface ...

Andrew S. Jones; Ingrid C. Guch; Thomas H. Vonder Haar

1998-03-01T23:59:59.000Z

112

Data Assimilation of Satellite-Derived Heating Rates as Proxy Surface Wetness Data into a Regional Atmospheric Mesoscale Model. Part II: A Case Study  

Science Conference Proceedings (OSTI)

A satellite data assimilation method is applied which incorporates satellite-observed heating infrared rates into a mesoscale atmospheric model to retrieve model soil moisture. In a 3D case study, the method is successful at retrieving realistic ...

Andrew S. Jones; Ingrid C. Guch; Thomas H. Vonder Haar

1998-03-01T23:59:59.000Z

113

Use of a Heated Transfer Line-Membrane Interface Probe to Characterize Polycyclic Aromatic Hydrocarbons at a Manufactured Gas Plant Site  

Science Conference Proceedings (OSTI)

This report describes bench-scale and field pilot tests of a system integrating a heated transfer line (HTL) and a membrane interface probe (MIP) with commercially available analytical instruments and software. Driven into the subsurface by a cone penetrometer, the HTL-MIP thermally extracts organic compounds from saturated and unsaturated soils at former manufactured gas plant (MGP) sites. The integrated system detects compounds using a screening photo-ionization detector (PID) and analyzes them in situ...

2008-04-30T23:59:59.000Z

114

Partial fuel stratification to control HCCI heat release rates : fuel composition and other factors affecting pre-ignition reactions of two-stage ignition fuels.  

DOE Green Energy (OSTI)

Homogeneous charge compression ignition (HCCI) combustion with fully premixed charge is severely limited at high-load operation due to the rapid pressure-rise rates (PRR) which can lead to engine knock and potential engine damage. Recent studies have shown that two-stage ignition fuels possess a significant potential to reduce the combustion heat release rate, thus enabling higher load without knock.

Dec, John E.; Sjoberg, Carl-Magnus G.; Cannella, William (Chevron USA Inc.); Yang, Yi; Dronniou, Nicolas

2010-11-01T23:59:59.000Z

115

Equatorial Waves in the Upper Troposphere and Lower Stratosphere Forced by Latent Heating Estimated from TRMM Rain Rates  

Science Conference Proceedings (OSTI)

Equatorial atmospheric waves in the upper troposphere and lower stratosphere (UTLS), excited by latent heating, are investigated by using a global spectral model. The latent heating profiles are derived from the 3-hourly Tropical Rainfall ...

Jung-Hee Ryu; M. Joan Alexander; David A. Ortland

2011-10-01T23:59:59.000Z

116

THERMAL DESIGN METHODOLOGY FOR LOW FLOW RATE SINGLE-PHASE AND TWO-PHASE MICRO-CHANNEL HEAT SINKS  

E-Print Network (OSTI)

in Engine Cooling Systems,'' Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics 1997, June 1997, ``A Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow,'' Ind. Eng. Chem the engines in automotive applications. Heat is transferred essentially under subcooled flow boiling

Qu, Weilin

117

Plasma Processing Of Hydrocarbon  

SciTech Connect

The Idaho National Laboratory (INL) developed several patented plasma technologies for hydrocarbon processing. The INL patents include nonthermal and thermal plasma technologies for direct natural gas to liquid conversion, upgrading low value heavy oil to synthetic light crude, and to convert refinery bottom heavy streams directly to transportation fuel products. Proof of concepts has been demonstrated with bench scale plasma processes and systems to convert heavy and light hydrocarbons to higher market value products. This paper provides an overview of three selected INL patented plasma technologies for hydrocarbon conversion or upgrade.

Grandy, Jon D; Peter C. Kong; Brent A. Detering; Larry D. Zuck

2007-05-01T23:59:59.000Z

118

Heat and Buoyancy Budgets and Mixing Rates in the Upper Thermocline of the Indian and Global Oceans  

Science Conference Proceedings (OSTI)

Diapycnal and diathermal diffusivity values in the upper thermocline are estimated from buoyancy and heat budgets for water volumes bounded by isopycnals and isotherms, the air–sea interface, and coastline where applicable. Comprehensive analysis ...

Huai-Min Zhang; Lynne D. Talley

1998-10-01T23:59:59.000Z

119

Getter pump for hydrogen and hydrocarbon gases  

DOE Patents (OSTI)

A gettering device for hydrogen isotopes and gaseous hydrocarbons based on the interaction of a plasma and graphite used as cathodic material. The plasma is maintained at a current density within the range of about 1 to about 1000 mA/cm.sup.2. The graphite may be heated to a temperature greater than 1000.degree. C. The new device offers high capacity, low noise, and gas species selectivity.

Hsu, Wen L. (Danville, CA)

1989-01-01T23:59:59.000Z

120

Hydrocarbon-enhanced particulate filter regeneration via microwave ignition  

DOE Patents (OSTI)

A regeneration method for a particulate filter includes estimating a quantity of particulate matter trapped within the particulate filter, comparing the quantity of particulate matter to a predetermined quantity, heating at least a portion of the particulate filter to a combustion temperature of the particulate matter, and introducing hydrocarbon fuel to the particulate filter. The hydrocarbon fuel facilitates combustion of the particulate matter to regenerate the particulate filter.

Gonze, Eugene V. (Pinckney, MI); Brown, David B. (Brighton, MI)

2010-02-02T23:59:59.000Z

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Thermal conversion of oil shale into recoverable hydrocarbons  

SciTech Connect

The production of hydrocarbons is accomplished by pyrolysis of oil shale with controlled removal of the resulting layer of spent oil-shale residue. A procedure is described for the in situ thermal conversion of oil shale wherein fluidized abrasive particles are employed to foster improved hydrocarbon production, in amount and kind, by a controlled partial removal of the layer of spent oil shale which results from application of flowing fluids to heat exposed surfaces of the oil shale to release hydrocarbons. (5 claims)

Slusser, M.L.; Bramhall, W.E.

1969-09-23T23:59:59.000Z

122

Volatile compound evolution from the programmed temperature pyrolysis of Big Clifty and McKittrick tar sands at a 10 degrees C/min heating rate  

DOE Green Energy (OSTI)

Big Clifty (Kentucky) and McKittrick (California) tar sands were pyrolyzed at a 10{degrees}C/min heating rate from room temperature to 900{degrees}C. The volatile compounds were detected on-line and in real time by tandem mass spectrometry using MS and MS/MS detection. This paper reports the programmed temperature pyrolysis behaviors of Big Clifty and McKittrick tar sands and compares their results. 48 refs., 10 figs., 3 tabs.

Reynolds, J.G.

1989-11-01T23:59:59.000Z

123

Hydrocarbon synthesis catalyst and method of preparation  

DOE Patents (OSTI)

A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint.

Sapienza, Richard S. (Shoreham, NY); Sansone, Michael J. (Summit, NJ); Slegeir, William A. R. (Hampton Bays, NY)

1983-08-02T23:59:59.000Z

124

Hydrocarbon/Total Combustibles Sensor  

the invention is an electrochemical hydrocarbon sensor that is more reliable and reproducible than any other hydrocarbon sensor on the market today. The patented method for producing the sensor ensures reproducibility and reduces the need for ...

125

Dispersant solutions for dispersing hydrocarbons  

DOE Patents (OSTI)

A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

Tyndall, Richard L. (Clinton, TN)

1997-01-01T23:59:59.000Z

126

Catalysts for hydrocarbon conversion  

Science Conference Proceedings (OSTI)

Catalyst, particularly useful in catalytic reforming and for producing highly pure aromatic hydrocarbons, comprising an alumina carrier and containing, expressed in proportion of the weight of the alumina carrier: 005 to 1% of platinum 01 to 4% of gallium, indium or thallium 01 to 2% of tungsten, and 1 to 10% of halogen.

Le P. J.; Malmaison, R.; Marcilly, C.; Martino, G.; Miquel, J.

1980-08-12T23:59:59.000Z

127

7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant  

E-Print Network (OSTI)

7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

Bahrami, Majid

128

Quarterly technical progress report No. 2, December 20-March 19, 1982. Second quarterly report on the effect of rapid heating rate on coal nitrogen and sulfur release  

Science Conference Proceedings (OSTI)

A laser pyrolysis technique is applied to the investigation of the effects of heating rate on release of coal-bound sulfur and nitrogen. An experimental system characterization and calibration has been completed. A detailed documentation was prepared describing the 3-color pyrometer and the data analysis technique. The coal particle feed system has been calibrated to provide accurate mass flow rate at pre-selected particle velocities. The first batch of samples submitted for chemical analysis will be used for the determination of kinetics parameters at a high heating rate (approximately equal to 10/sup 6/ K/s). The coal used presently is a Montana Rosebud. Two other coals are available; one is ILL No. 6 (through EERC) which will need to be pulverized and the second is a Pitt. hv-A (through KVB). It was confirmed that sieve and drag size distribution of coal differ significantly, and that particle shape effects may be significant in the modelling of particle dynamics.

Gat, N.

1982-04-26T23:59:59.000Z

129

A Test of a Lapse Rate/Wind Speed Model for Estimating Heat Island Magnitude in an Urban Airshed  

Science Conference Proceedings (OSTI)

In the winter of 1975/76 a helicopter was used to obtain temperature profiles across the city of Calgary. This operation was supported by airborne measurements of wind speed and lapse rate at the edge of the city, upwind. Regression analysis ...

Lawrence C. Nkemdirim

1980-06-01T23:59:59.000Z

130

Effect of temperature on wave velocities in sands and sandstones with heavy hydrocarbons  

SciTech Connect

A laboratory investigation was made of the effects of temperature on wave velocities in sandstones and unconsolidated sand saturated with heavy hydrocarbons. The large decreases of the compressional and shear velocities in such sandstones and sand with increasing temperature suggest that seismic methods may be very useful in detecting heat fronts in heavy hydrocarbon reservoirs undergoing steamflooding or in-situ combustion.

Wang, Z.; Nur, A.

1988-02-01T23:59:59.000Z

131

Hydrocarbon reclaimer system  

SciTech Connect

This patent describes a filtering process for filtering sludge from a finished product oil storage tank and thereby separating solids from oil and hydrocarbon. The process requires no added water, solvents or diluents. It comprises: pumping a volume sludge from a finished product oil storage tank to a mixing tank; mixing the sludge; sampling the sludge to determine solid content; adding filter aid comprising diatomaceous earth to the mixing tank; mixing the filter aid with the sludge in the mixing tank; enclosing and sealing a plurality of filter plates inside a horizontal plate filter; pressurizing the horizontal plate filter by operation of pump means; pumping the sludge from the mixing tank through the horizontal plate filter to filter out solids; recirculating the sludge from the horizontal plate filter back through the mixing tank; and pumping a purified hydrocarbon and water filtrate from the horizontal plate filter.

Uremovich, M.J.

1990-09-04T23:59:59.000Z

132

FROZEN HYDROCARBONS IN COMETS  

SciTech Connect

Recent investigations of the luminescence of frozen hydrocarbon particles of icy cometary halos have been carried out. The process of luminescence of organic icy particles in a short-wavelength solar radiation field is considered. A comparative analysis of observed and laboratory data leads to 72 luminescent emission lines in the spectrum of the comet 153P/Ikeya-Zhang. The concept of cometary relict matter is presented, and the creation of a database of unidentified cometary emission lines is proposed.

Simonia, Irakli, E-mail: irakli.simonia@jcu.edu.au [School of Graduate Studies, Ilia State University, 3/5 Cholokashvili Street, Tbilisi, 0162 (Georgia); Center for Astronomy, James Cook University, Townsville QLD 4811 (Australia)

2011-02-15T23:59:59.000Z

133

THERMOCHEMISTRY OF HYDROCARBON RADICALS  

DOE Green Energy (OSTI)

Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

Kent M. Ervin, Principal Investigator

2004-08-17T23:59:59.000Z

134

Assessment of Uncertainty in Cloud Radiative Effects and Heating Rates through Retrieval Algorithm Differences: Analysis using 3-years of ARM data at Darwin, Australia  

SciTech Connect

Ground-based radar and lidar observations obtained at the Department of Energy’s Atmospheric Radiation Measurement Program’s Tropical Western Pacific site located in Darwin, Australia are used to retrieve ice cloud properties in anvil and cirrus clouds. Cloud microphysical properties derived from four different retrieval algorithms (two radar-lidar and two radar only algorithms) are compared by examining mean profiles and probability density functions of effective radius (Re), ice water content (IWC), extinction, ice number concentration, ice crystal fall speed, and vertical air velocity. Retrieval algorithm uncertainty is quantified using radiative flux closure exercises. The effect of uncertainty in retrieved quantities on the cloud radiative effect and radiative heating rates are presented. Our analysis shows that IWC compares well among algorithms, but Re shows significant discrepancies, which is attributed primarily to assumptions of particle shape. Uncertainty in Re and IWC translates into sometimes-large differences in cloud radiative effect (CRE) though the majority of cases have a CRE difference of roughly 10 W m-2 on average. These differences, which we believe are primarily driven by the uncertainty in Re, can cause up to 2 K/day difference in the radiative heating rates between algorithms.

Comstock, Jennifer M.; Protat, Alain; McFarlane, Sally A.; Delanoe, Julien; Deng, Min

2013-05-22T23:59:59.000Z

135

A Review of World Hydrocarbon Resource Assessments  

Science Conference Proceedings (OSTI)

This study reviews assessments of world oil, natural gas, and oil shale resources made between the end of World War II and the end of 1980. Details are provided on the methods used in developing these assessments, geographic coverage, time horizons, and major assumptions (e.g., about discovery rates and recovery factor). Conclusions on the current state of knowledge concerning each of these hydrocarbon resources are presented.

1982-11-01T23:59:59.000Z

136

Oil shale retorting: a correlation of selected infrared absorbance bands with process heating rates and oil yeild  

DOE Green Energy (OSTI)

The measured absorbance for specific infrared bands of Colorado shale oil is correlated with process oil yield and retorting rate. The results show excellent correlations using bands associated with olefinic groups (910, 990 and 1640 cm/sup -1/); analyses were carried out using both quantitative and qualitative infrared methods. No pretreatment of the crude shale oil is required. The results are encouraging enough that, with further development, the method may have potential use as an on-line monitoring technique for various retorting processes.

Evans, R.A.; Campbell, J.H.

1979-01-01T23:59:59.000Z

137

Heat transfer dynamics  

Science Conference Proceedings (OSTI)

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

138

A simple one-step chemistry model for partially premixed hydrocarbon combustion  

Science Conference Proceedings (OSTI)

This work explores the applicability of one-step irreversible Arrhenius kinetics with unity reaction order to the numerical description of partially premixed hydrocarbon combustion. Computations of planar premixed flames are used in the selection of the three model parameters: the heat of reaction q, the activation temperature T{sub a}, and the preexponential factor B. It is seen that changes in q with equivalence ratio f need to be introduced in fuel-rich combustion to describe the effect of partial fuel oxidation on the amount of heat released, leading to a universal linear variation q(f) for f>1 for all hydrocarbons. The model also employs a variable activation temperature T{sub a}(f) to mimic changes in the underlying chemistry in rich and very lean flames. The resulting chemistry description is able to reproduce propagation velocities of diluted and undiluted flames accurately over the whole flammability limit. Furthermore, computations of methane-air counterflow diffusion flames are used to test the proposed chemistry under nonpremixed conditions. The model not only predicts the critical strain rate at extinction accurately but also gives near-extinction flames with oxygen leakage, thereby overcoming known predictive limitations of one-step Arrhenius kinetics. (author)

Fernandez-Tarrazo, Eduardo [Instituto Nacional de Tecnica Aeroespacial, Madrid (Spain); Sanchez, Antonio L. [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Leganes 28911 (Spain); Linan, Amable [ETSI Aeronauticos, Pl. Cardenal Cisneros 3, Madrid 28040 (Spain); Williams, Forman A. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411 (United States)

2006-10-15T23:59:59.000Z

139

Geothermal direct contact heat exchange. Final report  

DOE Green Energy (OSTI)

A glass direct contact heat exchange column was operated in the laboratory. The column was operated at atmospheric pressure using hot water and normal hexane. Column internals testing included an empty column, sieve trays, disk-and-doughnut trays, and two types of packing. Operation was very smooth in all cases and the minimum temperature approaches varied from less than 1/sup 0/C for packing to 13/sup 0/C for the empty column. High heat transfer rates were obtained in all cases, however, columns should be sized on the basis of liquid and vapor traffic. The solubilities of hydrocarbons were determined for normal hexane, pentane and butane in water and sodium chloride and calcium chloride brines at various temperatures. The values seem to be internally consistent and salt content was found to depress hydrocarbon solubility. Laboratory stripping tests showed that gas stripping can be used to remove hydrocarbon from reject hot water from the direct contact heat exchange column. Although the gas volumes required are small, stripping gas requirements cannot be accurately predicted without testing. A computer program was used to study the effect of operating variables on the thermodynamic cycle efficiencies. Optimum efficiencies for the moderate brine conditions studied were obtained with isopentane as working fluid and relatively low operating pressure. A preliminary design for a 50 MWe plant was prepared and plant capital cost and operating cost were estimated. These costs were combined with previously developed brine production and power transmission costs to provide an estimate of the cost of delivered power for a geothermal field at Heber, California. A pilot plant program is described that would be suitable for continuing the investigation of the direct contact process in the field. The program includes a suggested schedule and the estimated cost.

Sims, A.V.

1977-06-10T23:59:59.000Z

140

Chemical kinetic modelling of hydrocarbon ignition  

DOE Green Energy (OSTI)

Chemical kinetic modeling of hydrocarbon ignition is discussed with reference to a range of experimental configurations, including shock tubes, detonations, pulse combustors, static reactors, stirred reactors and internal combustion engines. Important conditions of temperature, pressure or other factors are examined to determine the main chemical reaction sequences responsible for chain branching and ignition, and kinetic factors which can alter the rate of ignition are identified. Hydrocarbon ignition usually involves complex interactions between physical and chemical factors, and it therefore is a suitable and often productive subject for computer simulations. In most of the studies to be discussed below, the focus of the attention is placed on the chemical features of the system. The other physical parts of each application are generally included in the form of initial or boundary conditions to the chemical kinetic parts of the problem, as appropriate for each type of application being addressed.

Westbrook, C.K.; Pitz, W.J.; Curran, H.J.; Gaffuri, P.; Marinov, N.M.

1995-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Method for recovering light hydrocarbons from coal agglomerates  

DOE Patents (OSTI)

A method and apparatus for removing light hydrocarbons, such as heptane, from coal agglomerates includes an enclosed chamber having a substantially horizontal perforate surface therein. The coal agglomerates are introduced into a water bath within the chamber. The agglomerates are advanced over the surface while steam is substantially continuously introduced through the surface into the water bath. Steam heats the water and causes volatilization of the light hydrocarbons, which may be collected from the overhead of the chamber. The resulting agglomerates may be collected at the opposite end from the surface and subjected to final draining processes prior to transportation or use.

Huettenhain, Horst (Benicia, CA); Benz, August D. (Hillsborough, CA); Getsoian, John (Ann Arbor, MI)

1991-01-01T23:59:59.000Z

142

Heating Rates in Tropical Anvils  

Science Conference Proceedings (OSTI)

The interaction of infrared and solar radiation with tropical cirrus anvils is addressed. Optical properties of the anvils are inferred from satellite observations and from high-altitude aircraft measurements. An infrared multiple-scattering ...

Thomas P. Ackerman; Kuo-Nan Liou; Francisco P. J. Valero; Leonhard Pfister

1988-05-01T23:59:59.000Z

143

Methane-derived hydrocarbons produced under upper-mantle conditions  

SciTech Connect

There is widespread evidence that petroleum originates from biological processes. Whether hydrocarbons can also be produced from abiogenic precursor molecules under the high-pressure, high-temperature conditions characteristic of the upper mantle remains an open question. It has been proposed that hydrocarbons generated in the upper mantle could be transported through deep faults to shallower regions in the Earth's crust, and contribute to petroleum reserves. Here we use in situ Raman spectroscopy in laser-heated diamond anvil cells to monitor the chemical reactivity of methane and ethane under upper-mantle conditions. We show that when methane is exposed to pressures higher than 2 GPa, and to temperatures in the range of 1,000-1,500 K, it partially reacts to form saturated hydrocarbons containing 2-4 carbons (ethane, propane and butane) and molecular hydrogen and graphite. Conversely, exposure of ethane to similar conditions results in the production of methane, suggesting that the synthesis of saturated hydrocarbons is reversible. Our results support the suggestion that hydrocarbons heavier than methane can be produced by abiogenic processes in the upper mantle.

Kolesnikov, Anton; Kutcherov, Vladimir G.; Goncharov, Alexander F.; (CIW); (RITS)

2009-08-13T23:59:59.000Z

144

Hydrocarbons in the deep earth  

NLE Websites -- All DOE Office Websites (Extended Search)

composed of the elements hydrogen and carbon) are the main building block of crude oil and natural gas. Hydrocarbons contribute to the global carbon cycle (one of the most...

145

Collisional processes of hydrocarbons in hydrogen plasmas  

DOE Green Energy (OSTI)

We have investigated the reactions of methane and its derivatives with hydrogen plasmas for use in modelling carbon and hydrocarbon transport in hydrogen plasmas. We provide quantitative information over the temperature range from 0.1 eV to 2 keV for the most significant reactions of methane and methane fragments with electrons and protons. We review the properties of each reaction, present graphs of the cross section and reaction rate coefficient, and give analytical fits for sigma and (sigmav). 34 refs.

Ehrhardt, A.B.; Langer, W.D.

1987-09-01T23:59:59.000Z

146

Process for removal of polynuclear aromatics from a hydrocarbon in an endothermic reformer reaction system  

Science Conference Proceedings (OSTI)

A process is described for reforming a hydrocarbon in a multi-stage endothermic reforming series of catalytic reforming reactors where the hydrocarbon is passed through the series of catalytic reforming reactors to form a reformate. The hydrocarbon is heated prior to entry to the next catalytic reforming reactor in the series, which process comprises contact of the hydrocarbon intermediate from the series of catalytic reforming reactors containing reforming catalyst with a polynuclear aromatic adsorbent to adsorb at least a portion of the polynuclear aromatic content from the hydrocarbon prior to entry to each of the next catalytic reforming reactor in the series and recovering a reformate from the last catalytic reforming reactor in the series, the recovered reformate having a reduced content of polynuclear aromatics.

Ngan, D.Y.

1989-02-14T23:59:59.000Z

147

Microwave heating for adsorbents regeneration and oil sands coke activation.  

E-Print Network (OSTI)

??Microwave heating has unique advantages compared to convection-radiation heating methods including fast heating rate and selective heating of objects. This thesis studied two applications of… (more)

Chen, Heng

2010-01-01T23:59:59.000Z

148

Solubilization of petroleum hydrocarbons using biosurfactants  

E-Print Network (OSTI)

Low solubility of petroleum hydrocarbons in water is the major factor limiting the degradation rates of these compounds (Zhang and Miller, 1994). The fraction that is more soluble in the aqueous phase is degraded at higher rates, while less soluble or insoluble compounds have lower degradation rates due to limited bioavailability to the microbial community. A recent study in our lab found no significant degradation of weathered petroleum at a Texas petrochemical plant site. It was concluded that bioavailability of the crude oil to the microorganisms limited the degradation rates (Mills, 1994). Preliminary experiments at our laboratories have also indicated enhanced solubilities of petroleum hydrocarbons due to the effects of biosurfactants (Kanga et al., 1994). This research focused on biosurfactants because they have been shown to be as effective as chemical surfactants and, most importantly, they enhance biodegradation. Glycolipid biosurfactants are produced by Rhodococcus species HI 3-A to enhance substrate solubility and promote bioavailability for degradation. The work proceeded in two stages. The initial stage involved production and characterization of extracellular biosurfactants by HI 3-A when grown on minimal salts media with hexadecane as the carbon source. The second stage evaluated the performance of the biosurfactants in enhancing the aqueous solubility of weathered West Texas Crude. Initial results indicated production of the biosurfactants by Rhodococcus species H13-A during the stationary growth stage. Biosurfactants lowered the surface tension from 72 to-30 dynes/cm and interfacial tension to below 5 dynes/cm. The two-, three-, and four-ring aromatic compounds showed substantial increase in their aqueous phase concentrations in the presence of biosurfactants. The enhancement was more dramatic with the larger aromatics and also the highly substituted-compounds. Preliminary experiments on toxicity and biodegradation indicated higher levels of toxicity in the surfactant/aqueous mixtures due to increased PAH partitioning (Lambert, 1995), and increased degradation rates for the target PAH compounds.

Kanga, Shahrukh

1995-01-01T23:59:59.000Z

149

Catalytic Fast Pyrolysis for the Production of the Hydrocarbon Biofuels  

SciTech Connect

Catalytic fast pyrolysis is a promising technique for conversion of biomass into hydrocarbons for use as transportation fuels. For over 30 years this process has been studied and it has been demonstrated that oils can be produced with high concentrations of hydrocarbons and low levels of oxygen. However, the yields from this type of conversion are typically low and the catalysts, which are often zeolites, are quickly deactivated through coking. In addition, the hydrocarbons produced are primarily aromatic molecules (benzene, toluene, xylene) that not desirable for petroleum refineries and are not well suited for diesel or jet engines. The goals of our research are to develop new multifunction catalysts for the production of gasoline, diesel and jet fuel range molecules and to improve process conditions for higher yields and low coking rates. We are investigating filtration and the use of hydrogen donor molecules to improve catalyst performance.

Nimlos, M. R.; Robichaud, D. J.; Mukaratate, C.; Donohoe, B. S.; Iisa, K.

2013-01-01T23:59:59.000Z

150

Process for light-driven hydrocarbon oxidation at ambient temperatures  

DOE Patents (OSTI)

A photochemical reaction for the oxidation of hydrocarbons uses molecular oxygen as the oxidant. A reductive photoredox cycle that uses a tin(IV)- or antimony(V)-porphyrin photosensitizer generates the reducing equivalents required to activate oxygen. This artificial photosynthesis system drives a catalytic cycle, which mimics the cytochrome P{sub 450} reaction, to oxidize hydrocarbons. An iron(III)- or manganese(III)-porphyrin is used as the hydrocarbon-oxidation catalyst. Methylviologen can be used as a redox relay molecule to provide for electron-transfer from the reduced photosensitizer to the Fe or Mn porphyrin. The system is long-lived and may be used in photo-initiated spectroscopic studies of the reaction to determine reaction rates and intermediates. 1 fig. 2 tab.

Shelnutt, J.A.

1989-09-26T23:59:59.000Z

151

Process for light-driven hydrocarbon oxidation at ambient temperatures  

DOE Patents (OSTI)

A photochemical reaction for the oxidation of hydrocarbons uses molecular oxygen as the oxidant. A reductive photoredox cycle that uses a tin(IV)- or antimony(V)-porphyrin photosensitizer generates the reducing equivalents required to activate oxygen. This artificial photosynthesis system drives a catalytic cycle, which mimics the cytochrome P.sub.450 reaction, to oxidize hydrocarbons. An iron(III)- or manganese(III)-porphyrin is used as the hydrocarbon-oxidation catalyst. Methylviologen can be used as a redox relay molecule to provide for electron-transfer from the reduced photosensitizer to the Fe or Mn porphyrin. The system is long-lived and may be used in photo-initiated spectroscopic studies of the reaction to determine reaction rates and intermediates.

Shelnutt, John A. (Tijeras, NM)

1990-01-01T23:59:59.000Z

152

Hydrocarbon characterization experiments in fully turbulent fires : results and data analysis.  

SciTech Connect

As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuel evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. This report describes a set of fuel regression rates experiments to provide data for the development and validation of models. The experiments were performed with fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool was investigated and the total heat flux to the pool surface was measured. The importance of convection within the liquid fuel was assessed by restricting large scale liquid motion in some tests. These data sets provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.

Suo-Anttila, Jill Marie; Blanchat, Thomas K.

2011-03-01T23:59:59.000Z

153

Solution mining dawsonite from hydrocarbon containing formations with a chelating agent  

DOE Patents (OSTI)

A method for treating an oil shale formation comprising dawsonite includes providing heat from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation. At least some dawsonite in the formation is decomposed with the provided heat. A chelating agent is provided to the formation to dissolve at least some dawsonite decomposition products. The dissolved dawsonite decomposition products are produced from the formation.

Vinegar, Harold J. (Bellaire, TX)

2009-07-07T23:59:59.000Z

154

Cleanup of hydrocarbon conversion system  

Science Conference Proceedings (OSTI)

This patent describes a process for the catalytic reforming of a substantially contaminant-free second hydrocarbon feed using a second reforming catalyst, in a catalytic-reforming system having equipment contaminated through contact with a contaminant-containing prior feed. It comprises: contacting the first hydrocarbon feed in the catalytic-reforming system at first reforming conditions with a first reforming catalyst until contaminant removal from the conversion system is substantially completed and the system is contaminant-free; thereafter replacing the first reforming catalyst in the contaminant-free catalytic-reforming system with a second reforming catalyst; and thereafter contacting the second hydrocarbon feed in the contaminant-free catalytic-reforming system with the second reforming catalyst at second reforming conditions.

Peer, R.L.; Russ, M.B.

1990-07-10T23:59:59.000Z

155

Enrichment of light hydrocarbon mixture  

Science Conference Proceedings (OSTI)

Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

Yang, Dali (Los Alamos, NM); Devlin, David (Santa Fe, NM); Barbero, Robert S. (Santa Cruz, NM); Carrera, Martin E. (Naperville, IL); Colling, Craig W. (Warrenville, IL)

2011-11-29T23:59:59.000Z

156

Enrichment of light hydrocarbon mixture  

DOE Patents (OSTI)

Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

Yang; Dali (Los Alamos, NM); Devlin, David (Santa Fe, NM); Barbero, Robert S. (Santa Cruz, NM); Carrera, Martin E. (Naperville, IL); Colling, Craig W. (Warrenville, IL)

2010-08-10T23:59:59.000Z

157

HYDROCARBON LIQUID FLOW CALIBRATION SERVICE ...  

Science Conference Proceedings (OSTI)

... A chilled water heat exchanger controlled by a feedback temperature sensor is used to remove heat from the fluid added by friction and the pumps. ...

2013-10-30T23:59:59.000Z

158

Biological enhancement of hydrocarbon extraction  

SciTech Connect

A method of microbial enhanced oil recovery for recovering oil from an oil-bearing rock formation is provided. The methodology uses a consortium of bacteria including a mixture of surfactant producing bacteria and non-surfactant enzyme producing bacteria which may release hydrocarbons from bitumen containing sands. The described bioprocess can work with existing petroleum recovery protocols. The consortium microorganisms are also useful for treatment of above oil sands, ground waste tailings, subsurface oil recovery, and similar materials to enhance remediation and/or recovery of additional hydrocarbons from the materials.

Brigmon, Robin L. (North Augusta, SC); Berry, Christopher J. (Aiken, SC)

2009-01-06T23:59:59.000Z

159

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

Wolowodiuk, Walter (New Providence, NJ)

1976-01-06T23:59:59.000Z

160

Energy Efficiency Interest Rate Reduction Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interest Rate Reduction Program Energy Efficiency Interest Rate Reduction Program Eligibility Residential Savings For Heating & Cooling Home Weatherization Construction Commercial...

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Catalytic Conversion of Bioethanol to Hydrocarbons ...  

Conventional biomass to hydrocarbon conversion is generally not commercially feasible, due to costs of the conversion process.

162

Hydrocarbons from plants and trees  

DOE Green Energy (OSTI)

The way energy was used in the US in 1980 was examined. A diagram shows the development of energy from its source to its end use. The following are described: the carbon dioxide problem - the greenhouse effect, sugar cane as an energy source, hydrocarbon-producing plants and trees, and isoprenoids from plants and trees. (MHR)

Calvin, M.

1982-07-01T23:59:59.000Z

163

Method for production of hydrocarbon diluent from heavy crude oil  

Science Conference Proceedings (OSTI)

This patent describes a method of producing a hydrocarbon diluent from a heavy crude oil extracted from an underground petroleum formation via a production well. It comprises: preheating a quantity of heavy crude oil extracted from the production well to yield a heated crude oil; separating in a separator vessel by flashing the heated crude oil to produce a first vapor fraction and a first liquid fraction; thermally cracking in a cracking unit at least a portion of the first liquid fraction to produce a first liquid effluent; quenching the first liquid effluent; introducing at least a portion of the quenched fist liquid effluent into a separator; condensing the first vapor fraction; separating in a separator vessel the condensed vapor fraction to produce a liquid hydrocarbon diluent middle fraction characterized in having a boiling range between about 400{degrees}-700{degrees}F. and a gas; and, directing the liquid hydrocarbon diluent into the formation via an injection well for enhancing production of petroleum from the formation via the production well.

McCants, M.F.

1992-05-05T23:59:59.000Z

164

Hydrocarbon reforming catalyst material and configuration of the same  

DOE Patents (OSTI)

A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall. 5 figs.

Singh, P.; Shockling, L.A.; George, R.A.; Basel, R.A.

1996-06-18T23:59:59.000Z

165

Hydrocarbon reforming catalyst material and configuration of the same  

DOE Patents (OSTI)

A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall.

Singh, Prabhakar (Export, PA); Shockling, Larry A. (Plum Borough, PA); George, Raymond A. (Pittsburgh, PA); Basel, Richard A. (Plub Borough, PA)

1996-01-01T23:59:59.000Z

166

Syngas Upgrading to Hydrocarbon Fuels Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

2013-03-01T23:59:59.000Z

167

Heat pipe array heat exchanger  

DOE Patents (OSTI)

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

168

Power systems utilizing the heat of produced formation fluid  

DOE Patents (OSTI)

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method includes treating a hydrocarbon containing formation. The method may include providing heat to the formation; producing heated fluid from the formation; and generating electricity from at least a portion of the heated fluid using a Kalina cycle.

Lambirth, Gene Richard (Houston, TX)

2011-01-11T23:59:59.000Z

169

Hydrocarbon Technologies | Open Energy Information  

Open Energy Info (EERE)

Hydrocarbon Technologies Hydrocarbon Technologies Place Lawrenceville, New Jersey Zip 8648 Sector Efficiency Product String representation "Technology-base ... onmental risks." is too long. Coordinates 36.761678°, -77.845048° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.761678,"lon":-77.845048,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

Deep desulfurization of hydrocarbon fuels  

SciTech Connect

The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

Song, Chunshan (State College, PA); Ma, Xiaoliang (State College, PA); Sprague, Michael J. (Calgary, CA); Subramani, Velu (State College, PA)

2012-04-17T23:59:59.000Z

171

Plasma-induced conversion of surface-adsorbed hydrocarbons  

DOE Green Energy (OSTI)

Experimental results are reported for an electrical device for direct conversion of methane into higher hydrocarbons. A microchannel plate is excited with electrons from a photoemissive source, and electron impact ionization of methane on the inner surfaces of the microchannels creates an ion feedback process. The resulting low-density plasma creates higher hydrocarbons when charged particles impact the surfaces at grazing incidence. The production Of C{sub 2} to C{sub 8}-containing gases was noted, with a selectivity for C{sub 2} of 39% in one case. The proportions of converted products and the conversion rates depend upon the electrical voltage, the microchannel geometry, and the operating pressure. Conversion rates increase with operating pressure.

Sackinger, W.M.

1992-07-01T23:59:59.000Z

172

Plasma-induced conversion of surface-adsorbed hydrocarbons  

DOE Green Energy (OSTI)

Experimental results are reported for an electrical device for direct conversion of methane into higher hydrocarbons. A microchannel plate is excited with electrons from a photoemissive source, and electron impact ionization of methane on the inner surfaces of the microchannels creates an ion feedback process. The resulting low-density plasma creates higher hydrocarbons when charged particles impact the surfaces at grazing incidence. The production Of C{sub 2} to C{sub 8}-containing gases was noted, with a selectivity for C{sub 2} of 39% in one case. The proportions of converted products and the conversion rates depend upon the electrical voltage, the microchannel geometry, and the operating pressure. Conversion rates increase with operating pressure.

Sackinger, W.M.

1992-01-01T23:59:59.000Z

173

In situ heat treatment from multiple layers of a tar sands formation  

DOE Patents (OSTI)

A method for treating a tar sands formation is disclosed. The method includes providing a drive fluid to a first hydrocarbon containing layer of the formation to mobilize at least some hydrocarbons in the first layer. At least some of the mobilized hydrocarbons are allowed to flow into a second hydrocarbon containing layer of the formation. Heat is provided to the second layer from one or more heaters located in the second layer. At least some hydrocarbons are produced from the second layer of the formation.

Vinegar, Harold J. (Bellaire, TX)

2010-11-30T23:59:59.000Z

174

HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS  

DOE Green Energy (OSTI)

The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

2003-11-01T23:59:59.000Z

175

Catalytic Conversion of Bioethanol to Hydrocarbons  

ORNL 2011-G00219/jcn UT-B ID 201002414 08.2011 Catalytic Conversion of Bioethanol to Hydrocarbons Technology Summary A method for catalytically converting an alcohol ...

176

Membrane separation of hydrocarbons using cycloparaffinic solvents  

DOE Patents (OSTI)

Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

Kulkarni, Sudhir S. (Hoffman Estates, IL); Chang, Y. Alice (Westmont, IL); Gatsis, John G. (Des Plaines, IL); Funk, Edward W. (Highland Park, IL)

1988-01-01T23:59:59.000Z

177

Catalytic Conversion of Bioethanol to Hydrocarbons  

ORNL 2011-G00219/jcn UT-B ID 201002414 08.2011 Catalytic Conversion of Bioethanol to Hydrocarbons Technology Summary A method for catalytically ...

178

Nox reduction system utilizing pulsed hydrocarbon injection  

DOE Patents (OSTI)

Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

2001-01-01T23:59:59.000Z

179

Membrane separation of hydrocarbons using cycloparaffinic solvents  

DOE Patents (OSTI)

Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

Kulkarni, S.S.; Chang, Y.A.; Gatsis, J.G.; Funk, E.W.

1988-06-14T23:59:59.000Z

180

Interface Heat Transfer Effects for Solidification Processes  

Science Conference Proceedings (OSTI)

The solidification rate of a casting is governed by the rate of heat extraction, which in turn is dominated by the rate of heat transfer across the casting-mold ...

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Heat transfer via dropwise condensation on hydrophobic microstructured surfaces  

E-Print Network (OSTI)

Dropwise condensation has the potential to greatly increase heat transfer rates. Heat transfer coefficients by dropwise condensation and film condensation on microstructured silicon chips were compared. Heat transfer ...

Ruleman, Karlen E. (Karlen Elizabeth)

2009-01-01T23:59:59.000Z

182

Heat pipe heat amplifier  

SciTech Connect

In a heat pipe combination consisting of a common condenser section with evaporator sections at either end, two working fluids of different vapor pressures are employed to effectively form two heat pipe sections within the same cavity to support an amplifier mode of operation.

Arcella, F.G.

1978-08-15T23:59:59.000Z

183

Heat Transfer Enhancement in Thermoelectric Power Generation.  

E-Print Network (OSTI)

??Heat transfer plays an important role in thermoelectric (TE) power generation because the higher the heat-transfer rate from the hot to the cold side of… (more)

Hu, Shih-yung

2009-01-01T23:59:59.000Z

184

Process for the production of ethylene and other hydrocarbons from coal  

DOE Patents (OSTI)

A process for the production of economically significant amounts of ethyl and other hydrocarbon compounds, such as benzene, from coal is disclosed wherein coal is reacted with methane at a temperature in the approximate range of 500.degree. C. to 1100.degree. C. at a partial pressure less than about 200 psig for a period of less than 10 seconds. Ethylene and other hydrocarbon compounds may be separated from the product stream so produced, and the methane recycled for further production of ethylene. In another embodiment, other compounds produced, such as by-product tars, may be burned to heat the recycled methane.

Steinberg, Meyer (Huntington Station, NY); Fallon, Peter (East Moriches, NY)

1986-01-01T23:59:59.000Z

185

Conversion of organic solids to hydrocarbons  

DOE Patents (OSTI)

A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon.

Greenbaum, Elias (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

186

Conversion of organic solids to hydrocarbons  

DOE Patents (OSTI)

A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.

Greenbaum, E.

1995-05-23T23:59:59.000Z

187

Solution mining systems and methods for treating hydrocarbon containing formations  

Science Conference Proceedings (OSTI)

A method for treating an oil shale formation comprising nahcolite is disclosed. The method includes providing a first fluid to a portion of the formation through at least two injection wells. A second fluid is produced from the portion through at least one injection well until at least two injection wells are interconnected such that fluid can flow between the two injection wells. The second fluid includes at least some nahcolite dissolved in the first fluid. The first fluid is injected through one of the interconnected injection wells. The second fluid is produced from at least one of the interconnected injection wells. Heat is provided from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation.

Vinegar, Harold J. (Bellaire, TX); de Rouffignac, Eric Pierre (Rijswijk, NL); Schoeling, Lanny Gene (Katy, TX)

2009-07-14T23:59:59.000Z

188

Radiant Heating  

Energy.gov (U.S. Department of Energy (DOE))

Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat...

189

Oxygen sensor for monitoring gas mixtures containing hydrocarbons  

DOE Patents (OSTI)

A gas sensor measures O.sub.2 content of a reformable monitored gas containing hydrocarbons H.sub.2 O and/or CO.sub.2, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system.

Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA)

1996-01-01T23:59:59.000Z

190

Oxygen sensor for monitoring gas mixtures containing hydrocarbons  

DOE Patents (OSTI)

A gas sensor measures O{sub 2} content of a reformable monitored gas containing hydrocarbons, H{sub 2}O and/or CO{sub 2}, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system. 4 figs.

Ruka, R.J.; Basel, R.A.

1996-03-12T23:59:59.000Z

191

Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related Emission Requirements (Ohio) Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related Emission...

192

Underground storage of natural gas, liquid hydrocarbons, and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana)...

193

Biogeochemistry of Isoprenoid Production and Anaerobic Hydrocarbon Biodgeradation.  

E-Print Network (OSTI)

??This dissertation is an exploration of microbial isoprenoid production and destruction by anaerobic hydrocarbon biodegradation. Isoprenoids are methyl-branched hydrocarbons, and include biomarkers from all three… (more)

Dawson, Katherine

2011-01-01T23:59:59.000Z

194

Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons  

SciTech Connect

A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

Muradov, Nazim Z. (Melbourne, FL)

2011-08-23T23:59:59.000Z

195

Mineralization of hydrocarbons in soils under decreasing oxygen availability  

SciTech Connect

Techniques for remediation of soils contaminated with hydrocarbons (HCs) can be improved when the factors that control the decomposition rate are identified. In this study, the effect of O{sub 2} availability on the decomposition rate of hydrocarbons in soils is examined. A kinetic second-order model with the O{sub 2} concentration and biomass concentration as rate-controlling variables is used to quantify HC decomposition, O{sub 2} consumption, and CO{sub 2} production. Concentrations O{sub 2} and CO{sub 2} are calculated analytically as a function of time in a three-phase closed system. These calculations are compared with measurements of repetitive O{sub 2}-depletion experiments in closed jars containing a layer of soil contaminated with HCs. About 80% of the HC decrease could be attributed to mineralization, while the other 20% was assumed to be converted into biomass and metabolites. After calibration, model calculations agree with the experimental results, which makes the concept of O{sub 2} concentration and biomass concentration as rate-controlling variables plausible. The parameter values that are obtained by calibration have a clear biochemical significance. It is concluded that attention has to be paid to the O{sub 2} supply in closed-jar experiments to avoid erroneous interpretation of the results. 34 refs., 5 figs., 4 tabs.

Freijer, J.I. [Univ. of Amsterdam (Netherlands)

1996-03-01T23:59:59.000Z

196

Geothermal direct-contact heat exchange. Final report  

DOE Green Energy (OSTI)

A glass direct contact heat exchange column was operated in the laboratory at atmospheric pressure using hot water and normal hexane. Column internals tested included an empty column, sieve trays, disk-and-doughnut trays, and two types of packing. Operation was very smooth in all cases and the minimum temperature approaches varied from less than 1{sup 0}C for packing to 13{sup 0}C for the empty column. High heat transfer rates were obtained in all cases, however, columns should be sized on the basis of liquid and vapor traffic. The solubilities of hydrocarbons were determined for normal hexane, pentane and butane in water and sodium chloride and calcium chloride brines at various temperatures. The values seem to be internally consistent and salt content was found to depress hydrocabon solubility. Laboratory stripping tests showed that gas stripping can be used to remove hydrocarbon from reject hot water from the direct contact heat exchange column. Although the gas volumes required are small, stripping gas requirements cannot be accurately predicted without testing. A computer program was used to study the effect of operating variables on thermodynamic cycle efficiencies. Optimum efficiencies for the moderate brine conditions studied were obtained with isopentane as working fluid and relatively low operating pressure. A preliminary design for a 50 MWe plant was prepared and plant capital cost and operating cost were estimated. These costs were combined with previously developed brine production and power transmission costs to provide an estimate of the cost of delivered power for a geothermal field at Heber, California. A pilot plant program is described that would be suitable for continuing the investigation of the direct contact process in the field. The program includes a suggested schedule and the estimated cost.

Sims, A.V.

1976-06-10T23:59:59.000Z

197

OPERATION OF SOLID OXIDE FUEL CELL ANODES WITH PRACTICAL HYDROCARBON FUELS  

DOE Green Energy (OSTI)

This work was carried out to achieve a better understanding of how SOFC anodes work with real fuels. The motivation was to improve the fuel flexibility of SOFC anodes, thereby allowing simplification and cost reduction of SOFC power plants. The work was based on prior results indicating that Ni-YSZ anode-supported SOFCs can be operated directly on methane and natural gas, while SOFCs with novel anode compositions can work with higher hydrocarbons. While these results were promising, more work was clearly needed to establish the feasibility of these direct-hydrocarbon SOFCs. Basic information on hydrocarbon-anode reactions should be broadly useful because reformate fuel gas can contain residual hydrocarbons, especially methane. In the Phase I project, we have studied the reaction mechanisms of various hydrocarbons--including methane, natural gas, and higher hydrocarbons--on two kinds of Ni-containing anodes: conventional Ni-YSZ anodes and a novel ceramic-based anode composition that avoid problems with coking. The effect of sulfur impurities was also studied. The program was aimed both at achieving an understanding of the interactions between real fuels and SOFC anodes, and providing enough information to establish the feasibility of operating SOFC stacks directly on hydrocarbon fuels. A combination of techniques was used to provide insight into the hydrocarbon reactions at these anodes during SOFC operation. Differentially-pumped mass spectrometry was be used for product-gas analysis both with and without cell operation. Impedance spectroscopy was used in order to understand electrochemical rate-limiting steps. Open-circuit voltages measurements under a range of conditions was used to help determine anode electrochemical reactions. Life tests over a wide range of conditions were used to establish the conditions for stable operation of anode-supported SOFC stacks directly on methane. Redox cycling was carried out on ceramic-based anodes. Tests on sulfur tolerance of Ni-YSZ anodes were carried out.

Scott A. Barnett; Jiang Liu; Yuanbo Lin

2004-07-30T23:59:59.000Z

198

TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS  

E-Print Network (OSTI)

deposition rates and production costs were reviewed todiscussion of heat mirror production cost Most of our effortcoating plastic film. Production costs for coating glass

Selkowitz, S.

2011-01-01T23:59:59.000Z

199

Selective photooxidation of hydrocarbons in zeolites by oxygen  

DOE Patents (OSTI)

A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Berkeley, CA); Sun, Hai (Berkeley, CA)

1998-01-01T23:59:59.000Z

200

Evaluation of biological treatment for the degradation of petroleum hydrocarbons in a wastewater treatment plant  

E-Print Network (OSTI)

Biodegradation of petroleum hydrocarbon can be an effective treatment method applied to control oil pollution in both fresh water and marine environments. Hydrocarbon degraders, both indigenous and exogenous, are responsible for utilizing petroleum hydrocarbon as their substrate for growth and energy, thereby degrading them. Biodegradation of hydrocarbons is often enhanced by bioaugmentation and biostimulation depending on the contaminated environment and the competence of the hydrocarbon degraders present. An evaluation of the performance of the biological treatment of petroleum hydrocarbon by the hydrocarbon degrading microbes at the Brayton Fire School??s 4 million gallon per day (MGD) wastewater treatment plant was the main research objective. Samples were taken for two seasons, winter (Nov 03 ?? Jan 03) and summer (Jun 04 ?? Aug 04), from each of the four treatment units: the inlet tank, equalization tank, aeration tank and the outfall tank. The population of aliphatic hydrocarbon degraders were enumerated and nutrient availability in the system were used to evaluate the effectiveness of on-going bioaugmentation and biostimulation. Monitoring of general effluent parameters was conducted to evaluate the treatment plant??s removal efficiency and to determine if effluent discharge was in compliance with the TCEQ permit. The aeration tank is an activated sludge system with no recycling. Hydrocarbon degraders are supplied at a constant rate with additional nutrient supplement. There was a significant decrease in the population of microbes that was originally fed to the system and the quantity resident in the aeration tank. Nutrient levels in the aeration tank were insufficient for the concentration of hydrocarbon degraders, even after the application of dog food as a biostimulant. The use of dog food is not recommended as a nutrient supplement. Adding dog food increases the nitrogen and phosphorus concentration in the aeration tank but the amount of carbon being added with the dog food increases the total chemical oxygen demand (COD) and biochemical oxygen demand (BOD). An increase in the concentration of total COD and BOD further increases the nitrogen and phosphorus requirement in the system. The main objective of supplying adequate nutrients to the hydrocarbon degraders would never be achieved as there would be an additional demand of nutrients to degrade the added carbon source. This research study was conducted to identify the drawbacks in the treatment plant which needs further investigation to improve efficiency.

Basu, Pradipta Ranjan

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Design and technology of heat pipes for cooling and heat exchange  

SciTech Connect

This new book presents a comprehensive account of heat pipe design, technology, and operation. It is based on insights and techniques developed by the author during more than twenty years of investigating high-performance heat pipe systems. The book provides information on a unique device with the capability to transport heat isothermally at high rates with no external power input. Emphasis is on high-performance liquid metal heat pipes, although nonliquid metal heat pipes are treated, as well. The first three chapters deal with the nonmathematical background for understanding heat pipe operation and heat transport capability. Remaining chapters detail heat pipe characteristics and design methods. Of special interest are simplified equations for obtaining heat pipe heat transport limits, heat pipe heat exchangers, heat pipe transient behavior, and inverted (nonwetting) heat pipes. Operational boundaries on heat pipe temperature and heat transport rate are described, and step-by-step procedures are given for involved calculations.

Silverstein, C.C.

1992-01-01T23:59:59.000Z

202

Fundamental heat transfer experiments of heat pipes for turbine cooling  

SciTech Connect

Fundamental heat transfer experiments were carried out for three kinds of heat pipes that may be applied to turbine cooling in future aero-engines. In the turbine cooling system with a heat pipe, heat transfer rate and start-up time of the heat pipe are the most important performance criteria to evaluate and compare with conventional cooling methods. Three heat pipes are considered, called heat pipe A, B, and C, respectively. All heat pipes have a stainless steel shell and nickel sintered powder metal wick. Sodium (Na) was the working fluid for heat pipes A and B; heat pipe C used eutectic sodium-potassium (NaK). Heat pipes B and C included noncondensible gas for rapid start-up. There were fins on the cooling section of heat pipes. In the experiments, an infrared image furnace supplied heat to the heat pipe simulating turbine blade surface conditions. In the results, heat pipe B demonstrated the highest heat flux of 17 to 20 W/cm{sup 2}. The start-up time was about 6 minutes for heat pipe B and about 6 minutes for heat pipe A. Thus, adding noncondensible gas effectively reduced start-up time. Although NaK is a liquid phase at room temperature, the start-up time of heat pipe C (about 7 to 8 minutes) was not shorter than the heat pipe B. The effect of a gravitational force on heat pipe performance was also estimated by inclining the heat pipe at an angle of 90 deg. There was no significant gravitational dependence on heat transport for heat pipes including noncondensible gas.

Yamawaki, S. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Yoshida, T.; Taki, M.; Mimura, F. [National Aerospace Lab., Tokyo (Japan)

1998-07-01T23:59:59.000Z

203

HYDROCARBONS FROM PLANTS: ANALYTICAL METHODS AND OBSERVATIONS  

E-Print Network (OSTI)

W. and Calvin, M. J. Amer. Oil Chern. Assoc. Science,· 208,of the production of oil and alcohol from hydrocarbon-Figure 1 Cumulative U.S. crude oil discoveries as a function

Calvin, Melvin

2013-01-01T23:59:59.000Z

204

Thermodynamic Properties of Acetic Acid + Hydrocarbons ...  

Science Conference Proceedings (OSTI)

Thermodynamic Properties of Acetic Acid + Hydrocarbons Mixtures L. Negadi1,C,S, N. Ainous2, A. Negadi1, I. Mokbel2, A. Kaci3 and J. Jose2 ...

2006-07-20T23:59:59.000Z

205

Heating Alloys  

Science Conference Proceedings (OSTI)

...are used in many varied applications--from small household appliances to large industrial process heating systems and furnaces. In appliances or industrial process heating, the heating elements are usually either open

206

Process for Photochemical Chlorination of Hydrocarbons  

DOE Patents (OSTI)

A process for chlorination of a major portion of the hydrogen atoms of paraffinic hydrocarbons of five or more carbon atoms may be replaced by subjecting the hydrocarbon to the action of chlorine under active light. The initial chlorination is begun at 25 to 30 deg C with the chlorine diluted with HCl. The later stages may be carried out with undiluted chlorine and the temperature gradually raised to about 129 deg C.

Beanblossom, W.S.

1950-10-31T23:59:59.000Z

207

Formation of hydrocarbons by bacteria and algae  

SciTech Connect

A literature review has been performed summarizing studies on hydrocarbon synthesis by microorganisms. Certain algal and bacterial species produce hydrocarbons in large quantities, 70 to 80% of dry cell mass, when in a controlled environment. The nutritional requirements of these organisms are simple: CO/sub 2/ and mineral salts. The studies were initiated to determine whether or not microorganisms played a role in petroleum formation. 90 references. (DMC)

Tornabene, T.G.

1980-12-01T23:59:59.000Z

208

Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated by Joule effect  

E-Print Network (OSTI)

. Internal sources of heat are due to convection from flow of the heat transfer fluid through the pipes. Heat (material, diameter, spacing, and burial depth), (4) system flow rates, (5) heat transfer fluid properties · heat transfer fluid = 42% propylene glycol @ a flow rate of 350 gpm · heat pump model = Water Furnace

209

Clean, economical, underwater (hydrocarbon) storage  

SciTech Connect

A consortium consisting of Howaldtswerke-Deutsche Werft A.G., Phoenix Gummiwerke A.G., Strabag Bau-A.G., and Bugsier Reederei und Bergungs-A.G. offers a plausible solution to the large-scale underwater storage of hydrocarbons. Up to 20 storage compartments of 8000 cu m capacity can be assembled for a capacity of 160,000 cu m. Each compartment is divided in half by a nylon-reinforced polyurethane diaphragm which isolates oil or other products on one side from sea-water ballast on the other side. As oil is pumped into storage on one side of the diaphragm, the diaphragm moves and ballast on the other side is displaced to the sea. Ballast re-enters the compartment during unloading. The system can enable small offshore platforms to produce more economically. Cargo tankers load at 8000 cu m/hr. The tanks will be used in 200 m or greater water depths. The loading station is installed in a buoy 30 m below the water surface.

1978-08-01T23:59:59.000Z

210

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

211

Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

A variety of heating technologies are available today. In addition to heat pumps, which are discussed separately, many homes and buildings use the following approaches:

212

High-energy-density solid and liquid hydrocarbon fuels. Final report, July 1987-December 1988  

Science Conference Proceedings (OSTI)

The development of new high-energy hydrocarbon fuels for use in air-breathing missiles has been the objective of a number of investigations which have received support during the past decade through programs sponsored by the Air Force Systems Command and/or the Naval Air Systems Command. The key characteristics which must be met by potential cruise missile fuels have been described by Burdette and coworkers. A primary requirement in this regard is that candidate fuels must possess high net volumetric heat of combustion (preferably greater than 160,000 BTU/gallon). In order to meet the primary requirement of high net volumetric heat of combustion, hydrocarbon systems have been sought which maximize the ratio of carbon-atom to hydrogen-atom content have been sought that maximize the ratio n/m.(JES)

Marchand, A.P.

1989-02-01T23:59:59.000Z

213

Energy Conservation Opportunities in Hydrocarbon Resin Manufacturing Facilities  

E-Print Network (OSTI)

"The results of a plant-wide assessment of the manufacturing facilities of Neville Chemical Company, a manufacturer of hydrocarbon resins will be presented in this paper. The project was co-funded by US Department of Energy under its Plant-Wide Opportunity Assessment Program. Resin manufacturing is a highly energy intensive process. The process needs extensive heating accomplished through steam boilers and thermal oil heaters, and cooling which is accomplished through refrigeration as well as process cooling water systems. Detailed energy assessment of Neville Chemical plants has shown significant energy conservation opportunities. For the less capital-intensive measures, energy cost savings of 20% to 30% with paybacks of less than two years were identified. The identified measures can be easily replicated in similar facilities. In this paper, details of the processes in hydrocarbon resin production from an energy consumption viewpoint will be discussed, current prevalent practices in the industry will be elaborated, and potential measures for energy use and cost savings will be outlined."

Ganji, A. R.

2003-05-01T23:59:59.000Z

214

Integration of Thermodynamic and Heat Transfer Models for ... - TMS  

Science Conference Proceedings (OSTI)

May 1, 2007 ... Gas turbines in IGCC plants burn syngas that is composed of hydrocarbons, ... in order to increase the turbine mass flow and reduce NOx emissions. ... direct implications for component cooling, the rate of strength degradation ...

215

Definition: Heat | Open Energy Information  

Open Energy Info (EERE)

Heat Heat Jump to: navigation, search Dictionary.png Heat Heat is the form of energy that is transferred between systems or objects with different temperatures (flowing from the high-temperature system to the low-temperature system). Also referred to as heat energy or thermal energy. Heat is typically measured in Btu, calories or joules. Heat flow, or the rate at which heat is transferred between systems, has the same units as power: energy per unit time (J/s).[1][2][3][4] View on Wikipedia Wikipedia Definition In physics and chemistry, heat is energy in transfer between a system and its surroundings other than by work or transfer of matter. The transfer can occur in two simple ways, conduction, and radiation, and in a more complicated way called convective circulation. Heat is not a property

216

Influence of algae on photolysis rates of chemicals in water  

SciTech Connect

Sunlight-induced algal transformations of 22 nonionic organic chemicals were studied in order to provide kinetic results and equations concerning the influence of algae on the behavior of pollutants in freshwater environments. Screening studies indicated that green and blue-green algae, at concentrations of 1-10 mg of chlorophyll a/L, accelerate photoreaction of certain polycylic aromatic hydrocarbons, organophosphorus compounds, and anilines in water. The rate of change in aniline concentration, (P), in the aniline-Chlamydomonas photoreaction can be described by the following expression: rate = A(1 + B/(P))-1. At low substrate concentrations, the reaction rate is first order with respect to both algae and substrate concentration. Methyl parathion and parathion photoreacted 390 times more rapidly when sorbed by algae than in distilled water, and aniline and m-toluidine reacted over 12000 times faster, indicating that light-induced algal transformations of certain pollutants may be significant. Other results indicated that reaction rates are unaffected by heat-killing the algae. 27 references

Zepp, R.G.; Schlotzhauer, P.F.

1983-08-01T23:59:59.000Z

217

Method and apparatus for hydrocarbon recovery from tar sands  

DOE Patents (OSTI)

A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000.degree. F. in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs.

Westhoff, James D. (Laramie, WY); Harak, Arnold E. (Laramie, WY)

1989-01-01T23:59:59.000Z

218

Method and apparatus for hydrocarbon recovery from tar sands  

DOE Patents (OSTI)

A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000/degree/F in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs. 1 fig., 1 tab.

Westhoff, J.D.; Harak, A.E.

1988-05-04T23:59:59.000Z

219

The Broadband Heating Rate Profile (BBHRP) VAP  

NLE Websites -- All DOE Office Websites (Extended Search)

Ellingson Florida State University Tallahassee, Florida M. H. Zhang State University of New York at Albany Albany, New York Stony Brook R. A. Ferrare National Aeronautics and...

220

Heat Rate Improvement Reference Manual: Training Guidelines  

Science Conference Proceedings (OSTI)

Performance optimization of fossil power plants has always been a high priority within the electric power industry. However, it has become of paramount importance in meeting the challenges mandated by operating within a competitive environment. Recently, many power producers have downsized and currently lack experienced staff required to maintain optimal performance. Thus, a resource was needed to capture the lost experience to aid in the retaining of less experienced personnel. The objective of this pro...

1999-12-07T23:59:59.000Z

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Blowdown of hydrocarbons pressure vessel with partial phase separation  

E-Print Network (OSTI)

We propose a model for the simulation of the blowdown of vessels containing two-phase (gas-liquid) hydrocarbon fluids, considering non equilibrium between phases. Two phases may be present either already at the beginning of the blowdown process (for instance in gas-liquid separators) or as the liquid is formed from flashing of the vapor due to the cooling induced by pressure decrease. There is experimental evidence that the assumption of thermodynamic equilibrium is not appropriate, since the two phases show an independent temperature evolution. Thus, due to the greater heat transfer between the liquid phase with the wall, the wall in contact with the liquid experiences a stronger cooling than the wall in contact with the gas, during the blowdown. As a consequence, the vessel should be designed for a lower temperature than if it was supposed to contain vapor only. Our model is based on a compositional approach, and it takes into account internal heat and mass transfer processes, as well as heat transfer with ...

Speranza, Alessandro; 10.1142/9789812701817_0046

2011-01-01T23:59:59.000Z

222

Biodegradation of volatile aromatic hydrocarbons by native soil and groundwater microorganisms: Microcosm studies  

SciTech Connect

The goal of this project was twofold: to develop and test strategies for enhancing the microbial degradation of hydrocarbon contaminants in subsurface soil and groundwater, and to understand why and under what conditions these strategies can be successful. The work deals primarily with what are generally considered the highest priority contaminants, from a toxicological point of view, in a typical hydrocarbon remediation site -- the aromatic fraction, including benzene and related compounds. The work involved the determination of the relative degradation rates of aromatic, as well as several nonaromatic constituents, in conjunction with an analysis of the effect of oxygen concentration and with an extensive microbiological characterization.

Rai, D.N.; Dasch, J.M.; Gibson, T.L.; Ang, C.C.; Abdul, A.S.

1994-05-01T23:59:59.000Z

223

Syngas Upgrading to Hydrocarbon Fuels Technology Pathway  

SciTech Connect

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (‘syngas’) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

2013-03-31T23:59:59.000Z

224

Heat pipe transient response approximation.  

SciTech Connect

A simple and concise routine that approximates the response of an alkali metal heat pipe to changes in evaporator heat transfer rate is described. This analytically based routine is compared with data from a cylindrical heat pipe with a crescent-annular wick that undergoes gradual (quasi-steady) transitions through the viscous and condenser boundary heat transfer limits. The sonic heat transfer limit can also be incorporated into this routine for heat pipes with more closely coupled condensers. The advantages and obvious limitations of this approach are discussed. For reference, a source code listing for the approximation appears at the end of this paper.

Reid, R. S. (Robert Stowers)

2001-01-01T23:59:59.000Z

225

Hydrocarbon synthesis catalyst and method of preparation and use thereof. [DOE patent application  

DOE Patents (OSTI)

A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint.

Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

1981-08-14T23:59:59.000Z

226

George A. Olah, Carbocation and Hydrocarbon Chemistry  

Office of Scientific and Technical Information (OSTI)

George A. Olah, Carbocation and Hydrocarbon Chemistry George A. Olah, Carbocation and Hydrocarbon Chemistry Resources with Additional Information · Patents George A. Olah Courtesy Rand Larson, Morningstar Productions George Olah received the 1994 Nobel Prize in Chemistry "for his contribution to carbocation chemistry" and his 'role in the chemistry of hydrocarbons. In particular, he developed superacids ... that are much stronger than ordinary acids, are non-nucleophilic, and are fluid at low temperatures. In such media ... carbocations are stable and their physical properties ... can be observed, thus allowing details of their structures to be determined. Besides trivalent ions ... Olah demonstrated the existence of higher coordinate carbocations ... . These species do not violate the octet rule, but involve 2-electron 3-center bonding. '1

227

Gulf Hydrocarbon Inc | Open Energy Information  

Open Energy Info (EERE)

Hydrocarbon Inc Hydrocarbon Inc Jump to: navigation, search Name Gulf Hydrocarbon Inc Address 2016 Main St Place Houston, Texas Zip 77002 Sector Biofuels Product Wholesale marketing of biodiesel and ethanol to refiners, blenders and petroleum distributors Website http://www.gulfhydrocarbon.com Coordinates 29.749227°, -95.371693° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.749227,"lon":-95.371693,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

HEAT TRANSFER METHOD  

DOE Patents (OSTI)

A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.

Gambill, W.R.; Greene, N.D.

1960-08-30T23:59:59.000Z

229

Catalysts for synthesizing various short chain hydrocarbons  

DOE Green Energy (OSTI)

Method and apparatus (10), including novel photocatalysts, are disclosed for the synthesis of various short chain hydrocarbons. Light-transparent SiO.sub.2 aerogels doped with photochemically active uranyl ions (18) are fluidized in a fluidized-bed reactor (12) having a transparent window (16), by hydrogen and CO, C.sub.2 H.sub.4 or C.sub.2 H.sub.6 gas mixtures (20), and exposed to radiation (34) from a light source (32) external to the reactor (12), to produce the short chain hydrocarbons (36).

Colmenares, Carlos (Alamo, CA)

1991-01-01T23:59:59.000Z

230

Biogenic Hydrocarbons in the Atmospheric Boundary Layer: A Review  

Science Conference Proceedings (OSTI)

Nonmethane hydrocarbons are ubiquitous trace atmospheric constituents yet they control the oxidation capacity of the atmosphere. Both anthropogenic and biogenic processes contribute to the release of hydrocarbons to the atmosphere. In this ...

J. D. Fuentes; L. Gu; M. Lerdau; R. Atkinson; D. Baldocchi; J. W. Bottenheim; P. Ciccioli; B. Lamb; C. Geron; A. Guenther; T. D. Sharkey; W. Stockwell

2000-07-01T23:59:59.000Z

231

Heat Conduction  

Science Conference Proceedings (OSTI)

Table 2   Differential equations for heat conduction in solids...conduction in solids General form with variable thermal properties General form with constant thermal properties General form, constant properties, without heat

232

Co-cultured Synechococcus and Shewanella Produce Hydrocarbons ...  

... microbes has been developed. These hydrocarbons may be further processed into vehicle fuels using traditional oil refining techniques.

233

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

Daman, Ernest L. (Westfield, NJ); McCallister, Robert A. (Mountain Lakes, NJ)

1979-01-01T23:59:59.000Z

234

Method for removing chlorine compounds from hydrocarbon mixtures  

DOE Patents (OSTI)

A process for removing halide ions from a hydrocarbon feedstream containing halogenated hydrocarbons wherein the contaminated feedstock is contacted with a solution of a suitable oxidizing acid containing a lanthanide oxide, the acid being present in a concentration of at least about 50 weight percent for a time sufficient to remove substantially all of the halide ion from the hydrocarbon feedstock.

Janoski, Edward J. (Havertown, PA); Hollstein, Elmer J. (Wilmington, DE)

1985-12-31T23:59:59.000Z

235

Production of hydrocarbons from hydrates. [DOE patent application  

DOE Patents (OSTI)

An economical and safe method of producing hydrocarbons (or natural gas) from in situ hydrocarbon-containing hydrates is given. Once started, the method will be self-driven and will continue producing hydrocarbons over an extended period of time (i.e., many days).

McGuire, P.L.

1981-09-08T23:59:59.000Z

236

Method for removing chlorine compounds from hydrocarbon mixtures  

DOE Patents (OSTI)

A process for removing halide ions from a hydrocarbon feedstream containing halogenated hydrocarbons wherein the contaminated feedstock is contacted with a solution of a suitable oxidizing acid containing a lanthanide oxide, the acid being present in a concentration of at least about 50 weight percent for a time sufficient to remove substantially all of the halide ion from the hydrocarbon feedstock.

Janoski, E.J.; Hollstein, E.J.

1984-09-29T23:59:59.000Z

237

Nonlinear thermomechanical finite-element modeling, analysis and characterization of multi-turn oscillating heat pipes .  

E-Print Network (OSTI)

??Oscillating heat pipes (OHPs) are promising heat dissipation devices for modern electronic systems due to their high heat transfer rate, simple construction and low manufacturing… (more)

Peng, Hao

2012-01-01T23:59:59.000Z

238

Remedial evaluation of a UST site impacted with chlorinated hydrocarbons  

Science Conference Proceedings (OSTI)

During assessment and remedial planning of an underground storage tank (UST) site, it was discovered that chlorinated hydrocarbons were present. A network of selected wells were sampled for analysis of halogenated volatile organics and volatile organic compounds to determine the extent of constituents not traditionally associated with refined petroleum motor fuel products. The constituents detected included vinyl chloride, tetrachloroethylene (PCE), bromodichloromethane, and 2-chloroethylvinyl ether. These analytical data were evaluated as to what effect the nonpetroleum hydrocarbon constituents may have on the remedial approach utilized the site hydrogeologic properties to its advantage and took into consideration the residential nature of the impacted area. The geometry of the dissolved plume is very flat and broad, emanating from the site and extending downgradient under a residential area situated in a transmissive sand unit. Ground-water pumping was proposed from two areas of the dissolved plume including five wells pumping at a combined rate of 55 gallons per minute (gpm) at a downgradient position, and two wells on-site to remove free product and highly impacted ground water. Also, to assist in remediation of the dissolved plume and to control vapors, a bioventing system was proposed throughout the plume area.

Ilgner, B.; Rainey, E. (Geraghty and Miller, Inc., Oak Ridge, TN (United States)); Ball, M.; Schutt, M.

1993-10-01T23:59:59.000Z

239

Substantially self-powered method and apparatus for recovering hydrocarbons from hydrocarbon-containing solid hydrates  

DOE Patents (OSTI)

A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus, carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

Elliott, Guy R. B. (Los Alamos, NM); Barraclough, Bruce L. (Santa Fe, NM); Vanderborgh, Nicholas E. (Los Alamos, NM)

1983-01-01T23:59:59.000Z

240

Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrates  

DOE Patents (OSTI)

A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus, carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

Elliott, Guy R. B. (Los Alamos, NM); Barraclough, Bruce L. (Santa Fe, NM); Vanderborgh, Nicholas E. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Substantially self-powered method and apparatus for recovering hydrocarbons from hydrocarbon-containing solid hydrates  

DOE Patents (OSTI)

A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus, and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

Elliott, G.R.B.; Barraclough, B.L.; Vanderborgh, N.E.

1981-02-19T23:59:59.000Z

242

Method of dispersing a hydrocarbon using bacteria  

DOE Patents (OSTI)

New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

Tyndall, Richard L. (Clinton, TN)

1996-01-01T23:59:59.000Z

243

Trace elements and Polycyclic Aromatic Hydrocarbons (PAHs)  

E-Print Network (OSTI)

.2.2 Anthropogenic emissions 28 2.3 Polycyclic Aromatic Hydrocarbons 30 2.3.1 Sources of PAHs 30 2.3.2 Gas to particle distribution in atmosphere 32 2.3.3 Gas to particle distribution in atmosphere 32 CHAPTER THREE

Paris-Sud XI, Université de

244

Biodegradation of petroleum hydrocarbons in contaminated aqueous and sediment environments  

E-Print Network (OSTI)

Six bioremediation methods were tested in laboratory microcosms using field soil and water samples from within the fire-wall area of a petroleum storage tank. This soil had been intermittently contaminated with Bunker C fuel oil and other petroleum materials over an extended period of time. This study focuses on the behavior of the laboratory microcosms designed to simulate the in situ conditions and the six bioremedial methods employed in a related field study. The six treatment methods were: 1) aeration with essential nutrients and indigenous organisms, 2) aeration with essential nutrients and an inoculation from a refinery wastewater treatment facility, 3) aeration with oleophilic fertilizer and indigenous organisms, 4) aeration with essential nutrients and biosurfactant organisms, 5) aeration with nutrients and proprietary organisms, and 6) aeration only. Total petroleum hydrocarbons (TPH) analyses and gas chromatographic/mass spectrophotometric (GC-MS) analyses of the petroleum fractions were used to determine if the enhancement methods were more effective than the control in biodegrading the contaminants. Results indicated that there was no significant difference in the petroleum reduction rates among the six treatment methods. The conclusions were that the petroleum was not bioavailable --transfer from soil-to-water was likely the rate controlling factor in this study. Biodegradation rates were significantly slowed by the highly weathered state of the petroleum, and the extreme spatial heterogeneity hindered the sampling and analysis of the petroleum. These conclusions were further supported in a second experiment using only the extracted petroleum contaminant. The extracted petroleum was biodegraded when made available in shake flasks. Three different ,consortia were shown to significantly biodegrade the petroleum contaminant when made bioavailable. These consortia were able to reduce the TPH and many other specific hydrocarbons.

Mills, Marc Allyn

1994-01-01T23:59:59.000Z

245

Rate Schedules  

Energy.gov (U.S. Department of Energy (DOE))

One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

246

Illustrative Calculation of Economics for Heat Pump and "Grid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Rate...

247

Experimental study on turbulent natural convection heat transfer in ...  

Science Conference Proceedings (OSTI)

Feb 16, 2010 ... ments are conducted to investigate flow and heat transfer ... turbulent region, the heat transfer deterioration occurs for a bubble flow rate Q = 33 ...

248

Heat transfer via dropwise condensation on hydrophobic microstructured surfaces.  

E-Print Network (OSTI)

??Dropwise condensation has the potential to greatly increase heat transfer rates. Heat transfer coefficients by dropwise condensation and film condensation on microstructured silicon chips were… (more)

Ruleman, Karlen E. (Karlen Elizabeth)

2009-01-01T23:59:59.000Z

249

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

250

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

251

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

252

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

253

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

254

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

255

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

256

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

257

Heat Transfer Applications for the Stimulated Reservoir Volume  

E-Print Network (OSTI)

Multistage hydraulic fracturing of horizontal wells continues to be a major technological tool in the oil and gas industry. Creation of multiple transverse fractures in shale gas has enabled production from very low permeability. The strategy entails the development of a Stimulated Reservoir Volume (SRV), defined as the volume of reservoir, which is effectively stimulated to increase the well performance. An ideal model for a shale gas SRV is a rectangle of length equal to horizontal well length and width equal to twice the half length of the created hydraulic fractures. This project focused on using the Multistage Transverse Fractured Horizontal Wells (MTFHW) for two novel applications. The first application considers using the SRV of a shale gas well, after the gas production rate drops below the economic limit, for low grade geothermal heat extraction. Cold water is pumped into the fracture network through one horizontal well drilled at the fracture tips. Heat is transferred to the water through the fracture surface. The hot water is then recovered through a second horizontal well drilled at the other end of the fracture network. The basis of this concept is to use the already created stimulated reservoir volume for heat transfer purposes. This technique was applied to the SRV of Haynesville Shale and the results were discussed in light of the economics of the project. For the second application, we considered the use of a similarly created SRV for producing hydrocarbon products from oil shale. Thermal decomposition of kerogen to oil and gas requires heating the oil shale to 700 degrees F. High quality saturated steam generated using a small scale nuclear plant was used for heating the formation to the necessary temperature. Analytical and numerical models are developed for modeling heat transfer in a single fracture unit of MTFHW. These models suggest that successful reuse of Haynesville Shale gas production wells for low grade geothermal heat extraction and the project appears feasible both technically and economically. The economics of the project is greatly aided by eliminating well drilling and completion costs. The models also demonstrate the success of using MTFHW array for heating oil shale using SMR technology.

Thoram, Srikanth

2011-08-01T23:59:59.000Z

258

Process for the production of ethylene and other hydrocarbons from coal  

DOE Patents (OSTI)

A process is claimed for the production of substantial amounts of ethylene and other hydrocarbon compounds, such as benzene from coal. Coal is reacted with methane at a temperature in the approximate range of 500/sup 0/C to 1100/sup 0/C at a partial pressure less than about 200 psig for a period of less than 10 seconds, and preferably at a temperature of approximately 850/sup 0/C, and a partial pressure of 50 psig for a period of approximately 2 seconds. Ethylene and other hydrocarbon compounds may be separated from the product stream so produced, and the methane recycled for further production of ethylene. In another embodiment, other compounds produced, such as by-product tars, may be burned to heat the recycled methane.

Steinberg, M.; Fallon, P.

1982-02-16T23:59:59.000Z

259

Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide  

DOE Patents (OSTI)

A hydrocarbon fuel reforming method is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first mixture of an oxygen-containing gas and a first fuel is directed into a first tube 108 to produce a first reaction reformate. A second mixture of steam and a second fuel is directed into a second tube 116 annularly disposed about the first tube 108 to produce a second reaction reformate. The first and second reaction reformates are then directed into a reforming zone 144 and subject to a catalytic reforming reaction. In another aspect of the method, a first fuel is combusted with an oxygen-containing gas in a first zone 108 to produce a reformate stream, while a second fuel under steam reforming in a second zone 116. Heat energy from the first zone 108 is transferred to the second zone 116.

Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

2001-03-27T23:59:59.000Z

260

Rates - WAPA-137 Rate Order  

NLE Websites -- All DOE Office Websites (Extended Search)

WAPA-137 Rate Order WAPA-137 Rate Order 2009 CRSP Management Center Customer Rates Second Step Presentation from the June 25, 2009, Customer Meeting Handout Materials from the June 25, 2009, Customer Meeting Customer Comment Letters ATEA CREDA Farmington ITCA AMPUA Rate Adjustment Information The second step of WAPA-137 SLCA/IP Firm Power, CRSP Transmission and Ancillary Services rate adjustment. FERC Approval of Rate Order No. WAPA-137 Notice Of Filing for Rate Order No. WAPA-137 Published Final FRN for Rate Order No. WAPA-137 Letter to Customers regarding the published Notice of Extension of Public Process for Rate Order No. WAPA-137 Published Extension of Public Process for Rate Order No. WAPA-137 FRN Follow-up Public Information and Comment Forum Flier WAPA-137 Customer Meetings and Rate Adjustment Schedule

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Water heater heat reclaimer  

SciTech Connect

This invention relates to the conservation of energy in a domestic gas water heater by utilizing the hot exhaust gases in a gas water heater for the preheating of the incoming unheated water into the water heater. The exhaust gases from a domestic gas water heater carry wasted heat and the present invention provides a mean to reclaim part of the wasted heat for the preheating of the incoming unheated water during hot water usage periods. During non hot water usage periods the heat in the exhaust gases is not reclaimed to prevent overheating of the water and also to prevent the formation of water deposit in the preheating assembly or heat reclaimer. During the non hot water usage periods the heat produced in the water heater is normally needed only to maintain the desired water temperature of the stored water in the water tank of the water heater. Due to the rapid heating or recovery rate, the present invention enables the use of a smaller water heater. The use of a smaller water heater reduces the normal heat loss from the stored hot water thereby further reduces energy consumption.

Wie, C.T.

1983-08-09T23:59:59.000Z

262

Liquid metal heat pipe behavior under transient cooling and heating  

SciTech Connect

This paper describes the results of an experimental investigation of the transient behavior of a liquid metal heat pipe. A 0.457 m long, screen-wick, sodium heat pipe with 0.0127 m outer diameter was tested in sodium loop facility. The heat pipe reversed under a pulse heat load applied at the condenser. The time at which the heat pipe reversed was dependent of the heat pipe properties, the sodium loop flow rate and heating conditions at the condenser. The start-up and the operational shut-down by forced cooling of the condenser were also studied. During the start-up process, at least part of the heat pipe was active. The active region extended gradually down to the end of the condenser until all working fluid in the heat pipe was molten. With forced cooling at the condenser, the heat pipe approached its heat transport limit before section of the condenser became frozen. The measured heat transport limit was in agreement with the theoretical value. 5 refs.

Nguyen, H.X.; Hahn, T.O.; Hahn, O.J.; Chow, L.C.; Tagavi, K.A.; Morgan, M.J. (Kentucky, University, Lexington (United States) USAF, Wright Laboratory, Wright-Patterson AFB, OH (United States))

1992-01-01T23:59:59.000Z

263

Method and apparatus for synthesizing hydrocarbons  

DOE Patents (OSTI)

A method and apparatus for synthesizing a mixture of hydrocarbons having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further includes Na present as a substitutional cation in an amount of about 5 to 10 atom %. At a temperature of about 340 to 360/sup 0/C, and at pressures of about 20 to 50 atm, CH/sub 3/OH is produced in an amount of about 90 wt % of the total hydrocarbon mixture, and comprised 1 mole % of the effluent gas.

Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

1983-06-21T23:59:59.000Z

264

Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons  

DOE Patents (OSTI)

Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M[sub 3](VO[sub 4])[sub 2] and MV[sub 2]O[sub 6], M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

Kung, H.H.; Chaar, M.A.

1988-10-11T23:59:59.000Z

265

HYDROCARBON FORMATION ON POLYMER-SUPPORTED COBALT  

SciTech Connect

In this report we detail the synthesis catalytic chemistry of polystyrene supported {eta}{sup 5} ~cyclopentadienyl- dicarbonyl cobalt, CpCo(CO){sub 2}. This material is active in the hydrogenation of CO to saturated linear hydrocarbons and appears to retain its "homogeneous", mononuclear character during the course of its catalysis, During ·the course of our work 18% and 20% crosslinked analogs of polystyrene supported CpCo(CO){sub 2} were shown to exhibit limited catalytic activity and no CO activation.

Benner, Linda S.; Perkins, Patrick; Vollhardt, K.Peter C.

1980-10-01T23:59:59.000Z

266

Literature Review of Background Polycyclic Aromatic Hydrocarbons  

Science Conference Proceedings (OSTI)

Polycyclic aromatic hydrocarbons (PAHs) continuously move through the environment, often via atmospheric transport. The subsequent deposition of particulates containing PAHs along with other sources of PAHs, such as natural vegetative decay, result in "background" PAHs in surficial soils. Even in pristine areas, surface and near surface soils can contain detectable levels of PAHs. This study provides data on the concentrations and distributions of background PAHs observed in environmental media. Such inf...

2000-03-20T23:59:59.000Z

267

Hydrocarbon content of geopressured brines. Final report  

DOE Green Energy (OSTI)

Design Well data (bottomhole pressure minus wellhead pressure, GWR, and hydrocarbon composition) is presented as a function of producing conditions. These are examined in conjunction with the following models to attempt to deduce the reservoir brine saturation level: (1) reservoir contains gas dispersed in the pores and the gas saturation is greater than critical; (2) reservoir brine is gas-saturated; (3) bubble point below hydrostatic pressure; and (4) bubble point between hydrostatic pressure and reservoir pressure. 24 figs., 10 tabs. (ACR)

Osif, T.L.

1985-08-01T23:59:59.000Z

268

Hydrocarbon Fouling of SCR during PCCI combustion  

SciTech Connect

The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which las smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust. The Fe-zeolite NOX conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the raw engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite showed better tolerance to HC fouling at low temperatures compared to the Fe-zeolite but PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOX conversion efficiency. Furthermore, chemical analysis of the hydrocarbons trapped on the SCR cores was conducted to better determine chemistry specific effects.

Prikhodko, Vitaly Y [ORNL; Pihl, Josh A [ORNL; Lewis Sr, Samuel Arthur [ORNL; Parks, II, James E [ORNL

2012-01-01T23:59:59.000Z

269

"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"  

DOE Green Energy (OSTI)

ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

2008-06-12T23:59:59.000Z

270

Energy Rating  

E-Print Network (OSTI)

Consistent, accurate, and uniform ratings based on a single statewide rating scale Reasonable estimates of potential utility bill savings and reliable recommendations on cost-effective measures to improve energy efficiency Training and certification procedures for home raters and quality assurance procedures to promote accurate ratings and to protect consumers Labeling procedures that will meet the needs of home buyers, homeowners, renters, the real estate industry, and mortgage lenders with an interest in home energy ratings

Cabec Conference; Rashid Mir P. E

2009-01-01T23:59:59.000Z

271

Insertion Rates  

Science Conference Proceedings (OSTI)

HOME > Insertion Rates. TECH HEADLINES. Research Explores a New Layer in Additive Manufacturin... Grand Opening Slated for Electron Microscopy Facility.

272

Heat Stroke  

NLE Websites -- All DOE Office Websites (Extended Search)

stress, from exertion or hot environments, places stress, from exertion or hot environments, places workers at risk for illnesses such as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body becomes unable to control its temperature, and can cause death or permanent disability. Symptoms â–  High body temperature â–  Confusion â–  Loss of coordination â–  Hot, dry skin or profuse sweating â–  Throbbing headache â–  Seizures, coma First Aid â–  Request immediate medical assistance. â–  Move the worker to a cool, shaded area. â–  Remove excess clothing and apply cool water to their body. Heat Exhaustion The body's response to an excessive loss of water and salt, usually through sweating. Symptoms â–  Rapid heart beat â–  Heavy sweating â–  Extreme weakness or fatigue â– 

273

Heat reclaimer  

Science Conference Proceedings (OSTI)

A device for reclaiming heat from stove pipes and the like. A semi-circular shaped hollow enclosed housing with a highly thermal-conductive concave surface is mounted contactingly to surround approximately one-half of the circumference of the stove pipe. The concave surface is formed to contact the pipe at a maximum number of points along that surface. The hollow interior of the housing contains thin multi-surfaced projections which are integral with the concave surface and conductively transfer heat from the stove pipe and concave surface to heat the air in the housing. A fan blower is attached via an air conduit to an entrance opening in the housing. When turned on, the blower pushes the heated interior air out a plurality of air exit openings in the ends of the housing and brings in lower temperature outside air for heating.

Parham, F.

1985-04-09T23:59:59.000Z

274

Heat transfer. [heat transfer roller employing a heat pipe  

SciTech Connect

A heat transfer roller embodying a heat pipe is disclosed. The heat pipe is mounted on a shaft, and the shaft is adapted for rotation on its axis.

Sarcia, D.S.

1978-05-23T23:59:59.000Z

275

Rate schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Firm Power Service Provided by Rate/Charges Firm Power Service Provided by Rate/Charges Rate/Charges Effective Through (or until superceded) Firm Sales (SLIP-F9) Composite Rate SLIP 29.62 mills/kWh 9/30/2015 Demand Charge SLIP $5.18/kW-month 9/30/2015 Energy Charge SLIP 12.19 mills/kWh 9/30/2015 Cost Recovery Charge (CRC) SLIP 0 mills/kWh 9/30/2015 Transmission Service Provided by Current Rates effective10/12 - 9/15 (or until superceded) Rate Schedule Effective Through Firm Point-to-Point Transmission (SP-PTP7) CRSP $1.14 per kW-month $13.69/kW-year $0.00156/kW-hour $0.04/kW-day $0.26/kW-week 10/1/2008-9/30/2015 Network Integration Transmission (SP-NW3) CRSP see rate schedule 10/1/2008-9/30/2015 Non-Firm Point-to-Point Transmission (SP-NFT6) CRSP see rate schedule 10/1/2008-9/30/2015 Ancillary Services Provided by Rate Rate Schedule

276

Methods of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

of Reforming Hydrocarbon Fuels Using of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts Contact NETL Technology Transfer Group techtransfer@netl.doe.gov May 2012 Opportunity Research is currently active on the technology "Methods of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview This invention discloses a method to reform hydrocarbon fuels using hexa- aluminate catalysts. In general, the method successfully disrupts the forma- tion of carbon that leads to the deactivation of the catalyst, a key element in the reforming of hydrocarbon fuels. When researchers are designing catalysts to reform hydrocarbon fuels, one

277

Method for producing hydrocarbon and alcohol mixtures. [Patent application  

DOE Patents (OSTI)

It is an object of this invention to provide an efficient process for extracting alcohols and ketones from an aqueous solution containing the same into hydrocarbon fuel mixtures, such as gasoline, diesel fuel and fuel oil. Another object of the invention is to provide a mixture consisting of hydrocarbon, alcohols or ketones, polyoxyalkylene polymer and water which can be directly added to fuels or further purified. The above stated objects are achieved in accordance with a preferred embodiment of the invention by contacting an aqueous fermentation liquor with a hydrocarbon or hydrocarbon mixture containing carbon compounds having 5 to 18 carbon atoms, which may include gasoline, diesel fuel or fuel oil. The hydrocarbon-aqueous alcohol solution is mixed in the presence or one or more of a group of polyoxyalkylene polymers described in detail hereinafter; the fermentation alcohol being extracted into the hydrocarbon fuel-polyoxyalkylene polymer mixture.

Compere, A.L.; Googin, J.M.; Griffith, W.L.

1980-12-01T23:59:59.000Z

278

Harvester ants utilize cuticular hydrocarbons in nestmate recognition  

E-Print Network (OSTI)

Abstract—Cuticular hydrocarbons appear to play a role in ant nestmate recognition, but few studies have tested this hypothesis experimentally with purified hydrocarbon extracts. We exposed captive colonies of the harvester ant Pogonomyrmex barbatus to small glass blocks coated with whole cuticular lipid extracts and the purified hydrocarbon portion of extracts from nestmate and nonnestmate workers. As an estimate of agonistic behavior, we measured the proportion of ants in contact with blocks that flared their mandibles. Blocks coated with cuticular extracts from nonnestmates were contacted by more workers in one of two experiments and elicited higher levels of aggression in both experiments than blocks bearing extracts from nestmates. The cuticular hydrocarbon fraction of extracts alone was sufficient to elicit agonistic behavior toward nonnestmates. The results demonstrate that harvester ants can perceive differences in cuticular hydrocarbon composition, and can use those differences in nestmate recognition. Key Words—Cuticular hydrocarbons, Formicidae, Nestmate recognition, Pogonomyrmex barbatus.

Diane Wagner; Madeleine Tissot; William Cuevas; Deborah M. Gordon

2000-01-01T23:59:59.000Z

279

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

280

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Self-contained passive solar heating system  

SciTech Connect

A self-contained passive solar heating system includes first and second heat pipes, each having a refrigerant medium therein, a condenser portion and an evaporator portion, with the condenser portion of the first heat pipe being coupled to the evaporator portion of the second heat pipe for transferring heat thereto when the pressure within the first heat pipe is greater than the pressure within the second heat pipe. The evaporator portion of the first heat pipe is adapted to be exposed to a source of heat and the condenser portion of the second heat pipe contacts a medium to be heated. A temperature control mechanism may be installed as the coupling between the first and second heat pipes for uncoupling the same when the temperature within the first heat pipe falls below a predetermined temperature. Also, a third heat pipe may be provided having a thermostatic portion operatively connected to the condenser portion of the second heat pipe by a piston means so that changes in pressure within the thermostatic portion occasioned by changes in temperature of the medium to be heated will cause movement of the pistons to vary the size of the condensing portion of the second heat pipe to increase or decrease the rate of heat transfer to the medium.

Maldonado, E.A.; Woods, J.E.

1983-05-10T23:59:59.000Z

282

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating Heat...

283

Heat reclaimer  

SciTech Connect

An apparatus for reclaiming heat from the discharge gas from a combustion fuel heating unit, which has: inlet and outlet sections; an expansion section whose circumference gradually increases in the direction of flow, thereby providing an increased area for heat transfer; flow splitter plates which lie within and act in conjunction with the expansion section wall to form flow compartments, which flow splitter plates and expansion section wall have a slope, with respect to the centroidal axis of the flow compartment not exceeding 0.1228, which geometry prevents a separation of the flow from the enclosing walls, thereby increasing heat transfer and maintaining the drafting function; and a reduction section which converges the flow to the outlet section.

Horkey, E.J.

1982-06-29T23:59:59.000Z

284

Cooperative heat transfer and ground coupled storage system  

DOE Patents (OSTI)

A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

Metz, Philip D. (Rocky Point, NY)

1982-01-01T23:59:59.000Z

285

Catalytic conversion of cellulose to liquid hydrocarbon fuels ...  

Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

286

Novel catalyst for selective NOx reduction using hydrocarbons ...  

This invention discloses a catalyst and process for removing nitrogen oxides from exhaust streams under lean burn conditions using hydrocarbons as the reductant.

287

ORGANIC GEOCHEMICAL STUDIES. I. MOLECULAR CRITERIA FOR HYDROCARBON GENESIS  

E-Print Network (OSTI)

isoprenoid hydrocarbons in crude oils and sediments must beisomers (up to C ) in crude oil and those characterised inarc found ubiqubtously in crude oils and shalt extracts as

McCarthy, Eugene D.; Calvin, Kevin

2008-01-01T23:59:59.000Z

288

Methods for natural gas and heavy hydrocarbon co-conversion  

DOE Patents (OSTI)

A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

Kong, Peter C. (Idaho Falls, ID); Nelson, Lee O. (Idaho Falls, ID); Detering, Brent A. (Idaho Falls, ID)

2009-02-24T23:59:59.000Z

289

Recovery of nitrogen and light hydrocarbons from polyalkene ...  

Recovery of nitrogen and light hydrocarbons from polyalkene purge gas United States Patent. Patent Number: 6,576,043: Issued: June 10, 2003: Official Filing:

290

Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases  

DOE Patents (OSTI)

This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

Senum, Gunnar I. (Patchogue, NY); Dietz, Russell N. (Patchogue, NY)

1994-01-01T23:59:59.000Z

291

Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases  

DOE Patents (OSTI)

This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

Senum, G.I.; Dietz, R.N.

1994-04-05T23:59:59.000Z

292

Multi-step catalytic hydroprocessing to produce hydrocarbon fuels ...  

Multi-step catalytic hydroprocessing to produce hydrocarbon fuels from biomass pyrolysis bio-oil (PNNL IPID 16665) Pacific Northwest National Laboratory

293

Polycyclic Aromatic Hydrocarbon Exposure in German Coke Oven Workers.  

E-Print Network (OSTI)

??Polycyclic aromatic hydrocarbons (PAHs) are formed whenever there is incomplete combustion of carbonaceous material. They are ubiquitous in the environment and background levels are found… (more)

Thoroman, Jeffrey S.

2010-01-01T23:59:59.000Z

294

Process Heating  

Science Conference Proceedings (OSTI)

This technical update uses real world examples to discuss applications of electrotechnology in industrial process heating and to highlight some of the emerging technologies in this field. These emerging technologies, when implemented in a plant, will provide significant energy savings as well as increase productivity. The report presents three case studies of successful implementation of two different electric process-heating technologies in three different industries. The case studies show that in some ...

2011-12-07T23:59:59.000Z

295

HEAT EXCHANGER  

DOE Patents (OSTI)

A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

1962-10-23T23:59:59.000Z

296

Corrosive resistant heat exchanger  

DOE Patents (OSTI)

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

297

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Using the Northeast as a regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming that weather is "normal." The previous three winters were warmer than average and generated below normal consumption rates. Last winter, consumers saw large increases over the very low heating oil prices seen during the winter of 1998-1999 but, outside of the cold period in late January/early February they saw relatively low consumption rates due to generally warm weather. Even without particularly sharp cold weather events this winter, we think consumers are likely to see higher average heating oil prices than were seen last winter. If weather is normal, our projections imply New England heating oil

298

Heat Recovery in Building Envelopes  

SciTech Connect

Infiltration has traditionally been assumed to contribute to the energy load of a building by an amount equal to the product of the infiltration flow rate and the enthalpy difference between inside and outside. Application of such a simple formula may produce an unreasonably high contribution because of heat recovery within the building envelope. Previous laboratory and simulation research has indicated that such heat transfer between the infiltrating air and walls may be substantial. In this study, Computational Fluid Dynamics was used to simulate sensible heat transfer in typical envelope constructions. The results show that the traditional method may over-predict the infiltration energy load by up to 95 percent at low leakage rates. A simplified physical model has been developed and used to predict the infiltration heat recovery based on the Peclet number of the flow and the fraction of the building envelope active in infiltration heat recovery.

Sherman, Max H.; Walker, Iain S.

2001-01-01T23:59:59.000Z

299

Experimental measurements and modeling prediction of flammability limits of binary hydrocarbon mixtures  

E-Print Network (OSTI)

Flammability limit is a significant safety issue for industrial processes. A certain amount of flammability limit data for pure hydrocarbons are available in the literature, but for industrial applications, there are conditions including different combinations of fuels at standard and non-standard conditions, in which the flammability limit data are scarce and sometimes unavailable. This research is two-fold: (i) Performing experimental measurements to estimate the lower flammability limits and upper flammability limits of binary hydrocarbon mixtures, conducting experimental data numerical analysis to quantitatively characterize the flammability limits of these mixtures with parameters, such as component compositions, flammability properties of pure hydrocarbons, and thermo-kinetic values; (ii) Estimating flammability limits of binary hydrocarbon mixtures through CFT-V modeling prediction (calculated flame temperature at constant volume), which is based on a comprehensive consideration of energy conservation. For the experimental part, thermal detection was used in this experiment. The experimental results indicate that the experimental results fit Le Chatelier’s Law within experimental uncertainty at the lower flammability limit condition. At the upper flammability limit condition, Le Chatelier’s Law roughly fits the saturated hydrocarbon mixture data, while with mixtures that contain one or more unsaturated components, a modification of Le Chatelier’s is preferred to fit the experimental data. The easy and efficient way to modify Le Chatelier’s Law is to power the molar percentage concentrations of hydrocarbon components. For modeling prediction part, the CFT-V modeling is an extended modification of CAFT modeling at constant volume and is significantly related to the reaction vessel configuration. This modeling prediction is consistent with experimental observation and Le Chatelier’s Law at the concentrations of lower flammability limits. When the quenching effect is negligible, this model can be simplified by ignoring heat loss from the reaction vessel to the external surroundings. Specifically, when the total mole changes in chemical reactions can be neglected and the quenching effect is small, CFTV modeling can be simplified to CAFT modeling.

Zhao, Fuman

2008-05-01T23:59:59.000Z

300

Enhanced solubility of petroleum hydrocarbons using biosurfactants  

E-Print Network (OSTI)

This research investigation included two similarly-designed experiments. In the first, a biological surfactant produced by Rhodococcus strain H13-A and a commonly-used synthetic surfactant, Tween-80 (polyoxyethylene sorbitan monooleate), were compared for their effectiveness in enhancing the transport of polycyclic aromatic hydrocarbons from a complex organic phase into aqueous solution. In the batch-reactor experiment, each reactor contained a surfactant solution and West Texas Crude oil, while the control reactors contained distilled-deionized water and the crude oil. Using a temporal-monitoring scheme, the reactors were sacrificially sampled to determine the water-accommodated fraction (WAF). The phenanthrenes, fluorenes, pyrenes, and chrysenes showed significant increases in their aqueous-plus-micellar-phase concentrations in the presence of surfactants; the increase was greater for the biosurfactant compared to the synthetic surfactant. The enhancement in "solubility" was also more significant for the highly-substituted aromatics, when compared to their parent compounds. In the second study, the effects of four biosurfactants on the solubility of petroleum saturated hydrocarbons were compared. Rhodococcus species H13-A (glycolipid-producing), Pseudomonas aeruginosa ATCC 9027 (rhamnolipid-producing), Candida bombicola ATCC 22214 (sophorolipid-producing), and Bacillus subtilis ATCC 21332 (surfactin-producing) were compared to a control of distilled-deionized water. The experimental design was similar that of the first study. The Pseudomonas aeruginosa treatment significantly enhanced the solubility of the lower-weight, higher-weight and branched saturated hydrocarbons. The Rhodococcus treatment significantly enhanced the solubility of the low-molecular-weight compounds, but only moderately increased the solubilities of the other saturates. Neither the Candida nor the Bacillus solutions produced any negligible increase in solubility under these laboratory conditions.

Page, Cheryl Ann

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Vaporization at supercritical pressures and counterflow condensing of pure and mixed-hydrocarbon working fluids for geothermal power plants  

DOE Green Energy (OSTI)

The Heat Cycle Research Program has as its objective the development of the technology for effecting improved utilization of moderate temperature geothermal resources. Current testing involves supercritical vaporization and counterflow in-tube condensing in an organic Rankine cycle. Results of the experiments are given for both pure and mixed-hydrocarbon working fluids. The heater and condenser behavior predicted by the Heat Transfer Research, Inc. computer codes used for correlation of the data was in excellent agreement with experimental results. A special series of tests, conducted with propane and up to approximately 40% isopentane concentration indicated that a close approach to ''integral'' condensation was occurring in the vertically-oriented condenser.

Bliem, C.J.; Demuth, O.J.; Mines, G.L.; Swank, W.D.

1986-01-01T23:59:59.000Z

302

The heat transfer mechanism in aqueous foam flow in a channel  

Science Conference Proceedings (OSTI)

The Heat transfer mechanism in two-phase aqueous foam flow was investigated for developing energy-efficient heat exchangers. Such heat exchangers can provide low consumption of energy resources due to enhanced heat transfer rates. An enhanced heat transfer ... Keywords: aqueous foam flow, heat exchangers, heat transfer

Irena Gabrielaitien?; Jonas Gylys; Rolandas Jonynas; Tadas Ždankus

2011-12-01T23:59:59.000Z

303

Water Heating | OpenEI  

Open Energy Info (EERE)

Water Heating Water Heating Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB) application/vnd.ms-excel icon 2005_Avg.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 69.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2005 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote

304

Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources  

SciTech Connect

Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi Sea, in spite of the fact that these areas do not have highest potential for future hydrocarbon reserves. Opportunities for improving the mapping and assessment of Arctic hydrocarbon resources include: 1) Refining hydrocarbon potential on a basin-by-basin basis, 2) Developing more realistic and detailed distribution of gas hydrate, and 3) Assessing the likely future scenarios for development of infrastructure and their interaction with hydrocarbon potential. It would also be useful to develop a more sophisticated approach to merging conventional and gas hydrate resource potential that considers the technical uncertainty associated with exploitation of gas hydrate resources. Taken together, additional work in these areas could significantly improve our understanding of the exploitation of Arctic hydrocarbons as ice-free areas increase in the future.

Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

2008-10-01T23:59:59.000Z

305

Chlorinated Aromatic Hydrocarbons Dr. K. Squibb  

E-Print Network (OSTI)

- cement kilns - iron ore sintering, steel production and scrap metal recovery #12;Polychlorinated banned in 1977 For use in: electrical capacitors and transformers (977 kg/transformer) heat exchangers: Very stable, chemically and thermally Resistant to acids and alkalis Excellent conductor of heat Low

Kane, Andrew S.

306

Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.  

SciTech Connect

Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

Blanchat, Thomas K.; Hanks, Charles R.

2013-04-01T23:59:59.000Z

307

Geology and hydrocarbon potentials of Arafura Sea  

Science Conference Proceedings (OSTI)

The Arafura Sea is a continental-shelf sea located between Irian Jaya (western New Guinea) and the northern part of the Australian continent. On the south it adjoins the stable Australian craton, and on the north it is bordered by the Tertiary collision zone between the Australian craton and the northern Irian Jaya island arc. On the west and northwest it is bounded by the active Banda arc collision zone, whereas on the east it is bordered by the northern extension of the Gulf of Carpentaria that also forms the western limit of the zone of late Paleozoic granites. Shelf sediments, ranging in age from late Paleozoic to Cenozoic, predominate in the Arafura Sea continental shelf, and are underlain by granitic basement. Gas shows have been reported from Jurassic to Cretaceous fine-grained marine limestones and sandstones, and gas and condensate also are present in Cretaceous sediments and Middle Jurassic fine-grained sandstones. At the north, the most prospective area seems to be the hinge zone of the Aru high, where a combination of traps and reservoir rocks presumably exists. On the south, the Money Shoal area is considered a significant prospect. In the Arafura basin, stratigraphic traps seem to be the most promising target for hydrocarbon exploration as tectonics seems not to have played an important role in the area. The sedimentary area occupied by the eastern extension of the Tarera-Aiduna wrench fault should also be investigated in detail for its hydrocarbon potential.

Katili, J.A.

1984-09-01T23:59:59.000Z

308

Lubricant formulation for lower unburnt hydrocarbon emissions  

Science Conference Proceedings (OSTI)

Engine-out emissions of unburnt hydrocabons from spark ignition engines are attributable to a number of mechanisms, occurring during the engine cycle, by which fuel escapes combustion. These include absorption of fuel components into the bore lubricating oil film during compression, and subsequent desorption into hot combustion gases throughout expansion. A proportion of the hydrocarbons desorbed will then be emitted, either as unburnt or partially oxidised fuel. This mechanism has been studied by a number of workers, and estimates of its importance vary from 10 to 30% of total hydrocarbons being related to the absorption/desorption process. A novel lubricant additive has been formulated for the purpose of reducing the quantity of fuel which is absorbed into the bore lubricant film, and hence the quantity of fuel subsequently desorbed. This paper describes a programme to evaluate the effect that this lubricant additive can have on engine-out emissions from a single cylinder research engine, together with results from current technology, low-emitting US and European vehicles, tested over FTP and ECE drive cycles. 11 refs., 9 figs., 3 tabs.

Beckwith, P.; Cooper, J.H.

1994-10-01T23:59:59.000Z

309

Heat pipe turbine vane cooling  

SciTech Connect

The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and a uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

Langston, L.; Faghri, A. [Connecticut Univ., Storrs, CT (United States). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

310

Analysis of field-performance data on shell-and-tube heat exchangers in geothermal service  

DOE Green Energy (OSTI)

Analysis of field performance data from a binary cycle test loop using geothermal brine and a hydrocarbon working fluid is reported. Results include test loop operational problems, and shell-and-tube heat exchanger performance factors such as overall heat transfer coefficients, film coefficients, pinch points, and pressure drops. Performance factors are for six primary heaters having brine in the tubes and hydrocarbon in the shells in counterflow, and for a condenser having cooling water in the tubes and hydrocarbon in the shell. Working fluids reported are isobutane, 90/10 isobutane/isopentane, and 80/20 isobutane/isopentane. Performance factors are for heating each working fluid at supercritical conditions in the vicinity of their critical pressure and temperature and condensing the same fluid.

Silvester, L.F.; Doyle, P.T.

1982-03-01T23:59:59.000Z

311

Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen  

DOE Patents (OSTI)

A process for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

1999-01-01T23:59:59.000Z

312

Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen  

DOE Patents (OSTI)

A process for a combined selective thermal oxidation and photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly combined selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

2001-01-01T23:59:59.000Z

313

Selective thermal oxidation of hydrocarbons in zeolites by oxygen  

DOE Patents (OSTI)

A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

2000-01-01T23:59:59.000Z

314

Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

Davis, R.; Biddy, M.; Jones, S.

2013-03-01T23:59:59.000Z

315

Biological Conversion of Sugars to Hydrocarbons Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

Davis, R.; Biddy, M.; Tan, E.; Tao, L.; Jones, S.

2013-03-01T23:59:59.000Z

316

Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen  

DOE Patents (OSTI)

A process is described for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts. 19 figs.

Frei, H.; Blatter, F.; Sun, H.

1999-06-22T23:59:59.000Z

317

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Tariff Rates FY 2014 Rates and Rate Schedules FY 2013 Rates and Rate Schedules FY 2012 Rates and Rate Schedules FY 2011 Rates and Rate Schedules FY 2010 Rates and Rate Schedules FY...

318

Initial results for supercritical cycle experiments using pure and mixed-hydrocarbon working fluids  

DOE Green Energy (OSTI)

The Heat Cycle Research Program, which is being conducted for the Department of Energy, has as its objective the development of the technology for effecting improved utilization of moderate temperature geothermal resources. Testing at the Heat Cycle Research Facility (HCRF) located at the DOE Geothermal Test Facility (GTF), East Mesa, California, is presently being conducted to meet this objective. Current testing involves a supercritical vaporization and countercurrent in-tube condensing system. The paper presents a brief description of the test facility and a discussion of the test program. Preliminary results on the performance of the supercritical heaters, countercurrent in-tube condenser, and turbine are given for both pure and mixed-hydrocarbon working fluids.

Bliem, C.J.; Mines, G.L.

1984-01-01T23:59:59.000Z

319

In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents  

DOE Patents (OSTI)

An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating.

Taylor, Robert T. (Livermore, CA); Jackson, Kenneth J. (San Leandro, CA); Duba, Alfred G. (Livermore, CA); Chen, Ching-I (Danville, CA)

1998-01-01T23:59:59.000Z

320

In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents  

DOE Patents (OSTI)

An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants are described. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating. 21 figs.

Taylor, R.T.; Jackson, K.J.; Duba, A.G.; Chen, C.I.

1998-05-19T23:59:59.000Z

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

HEAT GENERATION  

DOE Patents (OSTI)

Heat is generated by the utilization of high energy neutrons produced as by nuclear reactions between hydrogen isotopes in a blanket zone containing lithium, a neutron moderator, and uranium and/or thorium effective to achieve multtplicatton of the high energy neutron. The rnultiplied and moderated neutrons produced react further with lithium-6 to produce tritium in the blanket. Thermal neutron fissionable materials are also produced and consumed in situ in the blanket zone. The heat produced by the aggregate of the various nuclear reactions is then withdrawn from the blanket zone to be used or otherwise disposed externally. (AEC)

Imhoff, D.H.; Harker, W.H.

1963-12-01T23:59:59.000Z

322

Long Fingers of Heat Beneath Earth's Surface  

NLE Websites -- All DOE Office Websites (Extended Search)

Long Fingers of Heat Long Fingers of Heat Beneath Earth's Surface Long Fingers of Heat Beneath Earth's Surface volcanic-hotspots1.jpg Why it Matters: A key mission for the Office of Basic Energy Science is related to new methods and techniques for geosciences imaging from the atomic scale to the kilometer scale. Geophysical imaging methods are needed to measure and monitor subsurface reservoirs for hydrocarbon production or for carbon dioxide storage resulting from large-scale carbon sequestration schemes. Key Challenges: Development of new approaches for regional and global seismic tomography using high-accuracy numerical schemes that treat wave propagation through complex 3D models of earth structure directly with spectral element methods. Accomplishments: A new, cutting-edge method for global seismic imaging that

323

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

324

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

325

Cogeneration systems and processes for treating hydrocarbon containing formations  

Science Conference Proceedings (OSTI)

A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

Vinegar, Harold J. (Bellaire, TX); Fowler, Thomas David (Houston, TX); Karanikas, John Michael (Houston, TX)

2009-12-29T23:59:59.000Z

326

Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California  

E-Print Network (OSTI)

Formation, the primary source of petroleum hydrocarbons inPetroleum Geologists, Tulsa Clark JF, Washburn L, Hornafius JS, Luyendyk BP (2000) Natural marine hydrocarbon seep source

Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

2010-01-01T23:59:59.000Z

327

The Spatial Scales, Distribution, and Intensity of Natural Marine Hydrocarbon Seeps near Coal Oil Point, California  

E-Print Network (OSTI)

marine hydrocarbon seeps (Coal Oil Point, Santa Barbara,marine hydrocarbon seepage near Coal Oil Point, California,associated with offshore oil production", Geology, 27(11),

Washburn, Libe; Clark, Jordan F.; Kyriakidis, Phaedon

2004-01-01T23:59:59.000Z

328

The Spatial Scales, Distribution, and Intensity of Natural Marine Hydrocarbon Seeps near Coal Oil Point, California  

E-Print Network (OSTI)

marine hydrocarbon seeps (Coal Oil Point, Santa Barbara,marine hydrocarbon seepage near Coal Oil Point, California,source areas such as near Coal Oil Point. Furthermore,

Washburn, Libe; Clark, Jordan F.; Kyriakidis, Phaedon

2004-01-01T23:59:59.000Z

329

Heat reclaimer  

Science Conference Proceedings (OSTI)

A heat reclaimer for the exhaust flue of a heating unit comprises a housing having an air input space, an air output space, and an exhaust space, with a plurality of tubes connected between and communicating the air input space with the air output space and extending through the exhaust space. The exhaust flue of the heating unit is connected into the exhaust space of the housing and an exhaust output is connected to the housing extending from the exhaust space for venting exhaust coming from the heater into the exhaust space to a chimney, for example. A float or level switch is connected to the housing near the bottom of the exhaust space for switching, for example, an alarm if water accumulates in the exhaust space from condensed water vapor in the exhaust. At least one hole is also provided in the housing above the level of the float switch to permit condensed water to leave the exhaust space. The hole is provided in case the float switch clogs with soot. A wiping device may also be provided in the exhaust space for wiping the exterior surfaces of the tubes and removing films of water and soot which might accumulate thereon and reduce their heat transfer capacity.

Bellaff, L.

1981-10-20T23:59:59.000Z

330

High temperature heat pipes for waste heat recovery  

SciTech Connect

Operation of heat pipes in air at temperatures above 1200/sup 0/K has been accomplished using SiC as a shell material and a chemical vapor deposit (CVD) tungsten inner liner for protection of the ceramic from the sodium working fluid. The CVD tungsten has been used as a distribution wick for the gravity assisted heat pipe through the development of a columnar tungsten surface structure, achieved by control of the metal vapor deposition rate. Wick performance has been demonstrated in tests at approximately 2 kW throughput with a 19-mm-i.d. SiC heat pipe. Operation of ceramic heat pipes in repeated start cycle tests has demonstrated their ability to withstand temperature rise rates of greater than 1.2 K/s.

Merrigan, M.A.; Keddy, E.S.

1980-01-01T23:59:59.000Z

331

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

332

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

333

Current developments in oil shale research at the Laramie Energy Research Center. [Review of studies in 4 areas: concurrent gasification and retorting; high pressure retorting; abnormal heating rate of interior of large blocks of oil shale; and in-situ combustion  

DOE Green Energy (OSTI)

Current oil shale research being conducted at the Laramie Energy Research Center is many faceted, and some of the recent developments in these areas are presented. Concurrent gasification and retorting of oil shale where the effects of operating pressure and amounts of oxygen and water injection on quality and quantity of gas and oil produced is being studied. This work has resulted in off gas with heating values varying from 50 to 1,300 Btu/ft/sup 3/ and oil recovery of up to 80 vol percent of Fischer assay. The effects of retorting atmosphere, pressure, and external heating rate are being studied in a high pressure batch retort. Results from this work indicate that a nitrogen atmosphere decreases oil yield slightly while a hydrogen atmosphere increases the oil yield significantly. Large blocks of oil shale are being retorted in a 150-ton aboveground retort to study the abnormal heating rate of the interior of the blocks. This could be caused by an oxidation exotherm similar to that found in limited DTA studies. Some early results from the Rock Springs site 9 in-situ experiment are also presented. This is the fifth in-situ combustion experiment and is being performed in a 40-foot-thick oil shale bed having an average Fischer assay of 23 gallons per ton.

Jacobson, I.A. Jr.; Burwell, E.L.; Harak, A.E.; Long, A.; Wise, R.L.

1976-01-01T23:59:59.000Z

334

Stable isotope investigations of chlorinated aliphatic hydrocarbons.  

Science Conference Proceedings (OSTI)

Stable isotope ratio measurements for carbon (C) and chlorine (Cl) can be used to elucidate the processes affecting transformation and transportation of chlorinated aliphatic hydrocarbons (CAHs) in the environment. Methods recently developed in our laboratory for isotopic analysis of CAHs have been applied to laboratory measurements of the kinetic isotope effects associated with aerobic degradation of dichloromethane (DCM) and with both anaerobic and aerobic cometabolic degradation of trichlomethene (TCE) in batch and column microbial cultures. These experimental determinations of fractionation factors are crucial for understanding the behavior of CAHs in complex natural systems, where the extent of biotransformation can be masked by dispersion and volatilization. We have also performed laboratory investigations of kinetic isotope effects accompanying evaporation of CAHs, as well as field investigations of natural attenuation and in situ remediation of CAHs in a number of contaminated shallow aquifers at sites operated by the federal government and the private sector.

Abrajano, T.; Heraty, L. J.; Holt, B. D.; Huang, L.; Sturchio, N. C.

1999-06-01T23:59:59.000Z

335

Microbial hydrocarbons: back to the future  

Science Conference Proceedings (OSTI)

The defining challenge of energy research in the 21st century is the development and deployment of technologies for large-scale reconfiguration of global energy infrastructure. Modern society is built upon a concentrated yet finite reservoir of diverse hydrocarbons formed through the photosynthetic transformation of several hundred million years of solar energy. In human history, the fossil energy era will be short lived and never repeated. Although the timing of peak oil is extensively debated, it is an eventuality. It is, therefore, imperative that projections for both when it will occur and the degree to which supply will fall short of demand be taken into serious consideration, especially in the sectors of energy technology development, political and economic decision making, and societal energy usage. The requirement for renewable energy systems is no longer a point for discussion, and swift advances on many fronts are vital to counteract current and impending crises in both energy and the environment.

Work, Victoria H.; Beliaev, Alex S.; Konopka, Allan; Posewitz, Matthew C.

2012-03-01T23:59:59.000Z

336

Method and apparatus for synthesizing hydrocarbons  

DOE Patents (OSTI)

A method and apparatus for synthesizing a mixture of aliphatic alcohols having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further optionally includes Na ions present as substitutional cations in an amount of about 5 to 10 atom %. At a temperature of about 570 to 630/sup 0/K, and at pressures of about 20 to 50 atm, methanol and isobutanol are the predominant products and are produced in amounts of about 90 wt % of the total hydrocarbon mixture. 6 figs.

Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

1985-04-16T23:59:59.000Z

337

Heat Sink Performance Analysis through Numerical Technique  

E-Print Network (OSTI)

The increase in dissipated power per unit area of electronic components sets higher demands on the performance of the heat sink. Also if we continue at our current rate of miniaturisation, laptops and other electronic devices can get heated up tremendously. Hence we require a better heat dissipating system to overcome the excess heat generating problem of using nanoelectronics, which is expected to power the next generation of computers. To handle the excessive and often unpredictable heating up of high performance electronic components like microprocessors, we need to predict the temperature profile of the heat sink used. This also helps us to select the best heat sink for the operating power range of any microprocessor. Understanding the temperature profile of a heat sink and a microprocessor helps us to handle its temperature efficiently for a range of loads. In this work, a method to estimate the normal response of a heat sink to various loads of a microprocessor is explained.

Aravindh, B Sri; Nair, T R Gopalakrishnan

2010-01-01T23:59:59.000Z

338

Flash pyrolysis and gasification of coal through laser heating  

DOE Green Energy (OSTI)

Experimental results obtained from the rapid pyrolysis of finely powdered coal are presented. The experiments are designed to provide basic information on gas yield, gas composition, optimum fluxes, and temperature history of coal samples under high intensity laser radiation. The information obtained from these experiments will be used to test concepts for the use of concentrated sunlight to produce fuel gases from coal. Heating the coal at rates of 10/sup 3/ to 10/sup 4/ C/s in an inert atmosphere of argon results in pyrolysis at temperatures between 400 and 800/sup 0/C. The gases evolved are primarily CO, H/sub 2/, and CH/sub 4/ with lesser amounts of CO/sub 2/ and other light hydrocarbons. Mass spectrometry is used to determine the composition of the evolved gases. The optimum flux for laser pyrolysis of coal was found to be 250 W/cm/sup 2/. Results from experiments wherein the char created by pyrolysis is gasified to CO in an atmosphere of CO/sub 2/ are also presented.

Beattie, W.H.; Sullivan, J.A.

1980-01-01T23:59:59.000Z

339

Preignition oxidation characteristics of hydrocarbon fuels  

SciTech Connect

Experimental results obtained from a static reactor are presented for the oxidation of a variety of fuels. Pressure and temperature histories of the reacting fuel/oxidizer mixtures were obtained. Measurements of the stable reaction intermediate and product species were made using gas chromatographic analysis. One aspect of this work involved detailed studies of the oxidation chemistry of relatively low molecular weight aliphatic hydrocarbons: propane, propene, and n-butane. The oxidation chemistry of these fuels was examined at temperatures in the range 550-750 K, equivalence ratios ranging from 0.8 to 4.0 and at subatmospheric pressures. The main characteristics and features of the oxidation mechanisms were determined for each fuel in each temperature regime. The experimental results from propene and propane were used to develop a low and intermediate temperature kinetic mechanism for these fuels based on a low temperature acetaldehyde mechanism of Kaiser et al. and a high temperature propene/propane mechanism of Westbrook and Pitz. General preignition characteristics of higher molecular weight hydrocarbons and binary mixtures of these fuels were also studied. The low temperature/cool flame ignition characteristics of dodecane were investigated at temperatures in the range 523-623 K, equivalence s ranging from 0.8 to 1.0 and at subatmospheric pressures. The preignition characteristics of binary mixtures of dodecane and the aromatic component tetralin were examined. The addition of the tetralin had the overall effect of decreasing the ignition tendency of the mixture, although this effect was nonlinear with respect to the amount of tetralin added.

Wilk, R.D.

1986-01-01T23:59:59.000Z

340

Heat exchanger containing a component capable of discontinuous movement  

DOE Patents (OSTI)

Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices. 11 figures.

Wilson, D.G.

1993-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Heat exchanger containing a component capable of discontinuous movement  

DOE Patents (OSTI)

Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices.

Wilson, David G. (Winchester, MA)

1993-01-01T23:59:59.000Z

342

Heat exchanger containing a component capable of discontinuous movement  

DOE Patents (OSTI)

Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices.

Wilson, David Gordon (Winchester, MA)

2002-01-01T23:59:59.000Z

343

Primer on spontaneous heating and pyrophoricity  

Science Conference Proceedings (OSTI)

This primer was prepared as an information resource for personnel responsible for operation of DOE nuclear facilities. It has sections on combustion principles, spontaneous heating/ignition of hydrocarbons and organics, pyrophoric gases and liquids, pyrophoric nonmetallic solids, pyrophoric metals (including Pu and U), and accident case studies. Although the information in this primer is not all-encompassing, it should provide the reader with a fundamental knowledge level sufficient to recognize most spontaneous combustion hazards and how to prevent ignition and widespread fires. This primer is provided as an information resource only, and is not intended to replace any fire protection or hazardous material training.

Not Available

1994-12-01T23:59:59.000Z

344

ABSORPTION HEAT PUMP IN THE DISTRICT HEATING  

E-Print Network (OSTI)

#12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation #12;JSC RGAS SILTUMS · the biggest District Heating company in Latvia and in the Baltic states

Oak Ridge National Laboratory

345

Heat Exchangers  

Science Conference Proceedings (OSTI)

Table 16   Ceramic heat exchanger systems...Soaking pit 870â??1230 1600â??2250 Fe, Si, alkalis Solar Turbines â?¦ 4â??8 OD Ã? 180 long (440 tubes) Aluminum melt furnaces 1010 1850 Alkali salts Plate fin GTE 0.6, 1.6 25â??46 Multiple 870â??1370 1600â??2250 Clean (good), alkalis (poor) Coors 0.25, 1.0 30 Ã? 30 Ã? 46 Multiple Clean (good), alkalis (poor) Radiant...

346

Plantwide Energy Management for Hydrocarbon and Petrochemical Industry  

E-Print Network (OSTI)

Within the hydrocarbon and petrochemical industry the generation and utilization of various forms of energy is a highly complex and dynamic process. The process plant normally generates steam and fuel in the form of process off-gas. The same process plant also requires fuel, steam, and electricity, which is supplied from the utility plant. Also, the utility plant transforms energy from one form to another for economic efficiency. The low grade energy is transformed to medium grade energy as steam. This steam is then transformed to high grade energy in the form of electric or mechanical power. As a result, the transformation and utilization of energy requires a critical balance of plantwide steam and power. The balance of power production with actual plant requirements depends largely upon the production rate and quality of various products. It is the function of an energy managcment system to control and monitor this complex interactive system to insure the reliable availability of adequate energy for the process plant at minimum cost.

Ahmed, A.; Clinkscales, T.

1988-09-01T23:59:59.000Z

347

Using Ionic Liquids in Selective Hydrocarbon Conversion Processes  

DOE Green Energy (OSTI)

This is the Final Report of the five-year project Using Ionic Liquids in Selective Hydrocarbon Conversion Processes (DE-FC36-04GO14276, July 1, 2004- June 30, 2009), in which we present our major accomplishments with detailed descriptions of our experimental and theoretical efforts. Upon the successful conduction of this project, we have followed our proposed breakdown work structure completing most of the technical tasks. Finally, we have developed and demonstrated several optimized homogenously catalytic methane conversion systems involving applications of novel ionic liquids, which present much more superior performance than the Catalytica system (the best-to-date system) in terms of three times higher reaction rates and longer catalysts lifetime and much stronger resistance to water deactivation. We have developed in-depth mechanistic understandings on the complicated chemistry involved in homogenously catalytic methane oxidation as well as developed the unique yet effective experimental protocols (reactors, analytical tools and screening methodologies) for achieving a highly efficient yet economically feasible and environmentally friendly catalytic methane conversion system. The most important findings have been published, patented as well as reported to DOE in this Final Report and our 20 Quarterly Reports.

Tang, Yongchun; Periana, Roy; Chen, Weiqun; van Duin, Adri; Nielsen, Robert; Shuler, Patrick; Ma, Qisheng; Blanco, Mario; Li, Zaiwei; Oxgaard, Jonas; Cheng, Jihong; Cheung, Sam; Pudar, Sanja

2009-09-28T23:59:59.000Z

348

Kinetics simulation for natural gas conversion to unsaturated C? hydrocarbons  

E-Print Network (OSTI)

Natural gas resource is abundant and can be found throughout the world. But most natural gas reserves are at remote sites and considered stranded because of the extremely expensive transportation cost. Therefore advanced gas-to-liquid (GTL) techniques are being studied to convert natural gas to useful hydrocarbon liquids, which can be transported with far less cost. Direct pyrolysis of methane, followed by catalytic reaction, is a promising technology that can be commercialized in industry. In this process, methane is decomposed to ethylene, acetylene and carbon. Ethylene and acetylene are the desired products, while carbon formation should be stopped in the decomposition reaction. Some researchers have studied the dilution effect of various inert gases on carbon suppression. All previous results are based on the isothermal assumption. In this thesis, our simulator can be run under adiabatic conditions. We found there was a crossover temperature for carbon formation in the adiabatic case. Below the crossover temperature, the carbon formation from pure methane feed is higher than the one from a methane/hydrogen feed, while above the crossover temperature, the carbon formation from pure methane feed is lower than the one from a methane/hydrogen feed. In addition to the pure methane and methane/hydrogen feed, we also simulated the rich natural gas feed, rich natural gas with combustion gas, rich natural gas with combustion gas and methane recycle. We found the outlet temperature increases only slightly when we increase the initial feed temperature. Furthermore, the combustion gas or the recycled methane has a dilute effect, which increases the total heat capacity of reactants. The outlet temperature from the cracker will not drop so much when these gases are present, causing the methane conversion to increase correspondingly. Up to now there is no adiabatic simulator for methane pyrolysis. This work has significant meaning in practice, especially for rich natural gases.

Yang, Li

2003-01-01T23:59:59.000Z

349

Electrically heated liquid tank employing heat pipe heat transfer means  

SciTech Connect

The heating apparatus for applying heat to the interior of a chamber includes a modular, removable, electrical, heat-producing unit and a heat pipe mountable in a wall of the chamber with one end of the pipe arranged to receive heat from the electrical heat producing unit exterior of the housing and with another end of the pipe constructed and arranged to apply heat to the medium within the chamber. The heat pipe has high conductivity with a low temperature differential between the ends thereof and the heat producing unit includes an electric coil positioned about and removably secured to the one end of the heat pipe. The electric coil is embedded in a high thermal conducitivity, low electrical conductivity filler material which is surrounded by a low thermal conductivity insulating jacket and which is received around a metal core member which is removably secured to the one end of the heat pipe.

Shutt, J.R.

1978-12-26T23:59:59.000Z

350

Solar heat collector  

SciTech Connect

A solar heat collector comprises an evacuated transparent pipe; a solar heat collection plate disposed in the transparent pipe; a heat pipe, disposed in the transparent pipe so as to contact with the solar heat collection plate, and containing an evaporable working liquid therein; a heat medium pipe containing a heat medium to be heated; a heat releasing member extending along the axis of the heat medium pipe and having thin fin portions extending from the axis to the inner surface of the heat medium pipe; and a cylindrical casing surrounding coaxially the heat medium pipe to provide an annular space which communicates with the heat pipe. The evaporable working liquid evaporates, receiving solar heat collected by the heat collection plate. The resultant vapor heats the heat medium through the heat medium pipe and the heat releasing member.

Yamamoto, T.; Imani, K.; Sumida, I.; Tsukamoto, M.; Watahiki, N.

1984-04-03T23:59:59.000Z

351

Geothermal district heating systems  

DOE Green Energy (OSTI)

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

352

Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related Emission Requirements (Ohio) Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related Emission Requirements (Ohio) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter defining the roles of the Ohio Environmental Protection Agency gives specific detail on the regulation point-source air pollution for a variety of industries and pollutants.

353

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1982-01-01T23:59:59.000Z

354

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1979-01-01T23:59:59.000Z

355

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

very low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating...

356

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating in homes...

357

Geothermal Energy: Residential Space Heating  

DOE Green Energy (OSTI)

The purpose of this study, which was carried out under the auspices of the DGRST, was to determine the best way to use geothermal hot water for residential space heating. It quickly became apparent that the type of heating apparatus used in the housing units was most important and that heat pumps could be a valuable asset, making it possible to extract even more geothermal heat and thus substantially improve the cost benefit of the systems. Many factors play a significant role in this problem. Therefore, after a first stage devoted to analyzing the problem through a manual method which proved quite useful, the systematic consideration of all important aspects led us to use a computer to optimize solutions and process a large number of cases. The software used for this general study can also be used to work out particular cases: it is now available to any interested party through DGRST. This program makes it possible to: (1) take climatic conditions into account in a very detailed manner, including temperatures as well as insolation. 864 cases corresponding to 36 typical days divided into 24 hours each were chosen to represent the heating season. They make it possible to define the heating needs of any type of housing unit. (2) simulate and analyze the behavior in practice of a geothermal heating system when heat is extracted from the well by a simple heat exchanger. This simulation makes it possible to evaluate the respective qualities of various types of heating apparatus which can be used in homes. It also makes it possible to define the best control systems for the central system and substations and to assess quite accurately the presence of terminal controls, such as radiators with thermostatically controlled valves. (3) determine to what extent the addition of a heat pump makes it possible to improve the cost benefit of geothermal heating. When its average characteristics and heating use conditions (price, coefficient of performance, length of utilization, electrical rates, etc.) are taken into account, the heat pump should not be scaled for maximum heating power. Consequently, the program considers several possible sizes, with different installation schemes, and selects for each case the value which corresponds to the lowest cost of heating.

None

1977-03-01T23:59:59.000Z

358

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Water Heater: up to $275 Heat Pump Replacement: $400 Provider Rock Hill Utilities Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed above. If both the water heater and heat pump are purchased then the customer may qualify for the Great Rate program. The Great Rate program will add a 25% discount to a

359

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Customer Letter - Preliminary Review of Drought Adder Component for 2011 Firm Power Rates 2010 Rates and Rate Schedule - Current * 2009 Rates and Rate Schedule 2008 Rates and...

360

Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream  

DOE Patents (OSTI)

This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced. 3 figs.

Kansa, E.J.; Anderson, B.L.; Wijesinghe, A.M.; Viani, B.E.

1999-05-25T23:59:59.000Z

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream  

DOE Patents (OSTI)

This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced.

Kansa, Edward J. (Livermore, CA); Anderson, Brian L. (Lodi, CA); Wijesinghe, Ananda M. (Tracy, CA); Viani, Brian E. (Oakland, CA)

1999-01-01T23:59:59.000Z

362

Efficiency of unitary heat pumps  

SciTech Connect

The efficiencies of approximately 500 unitary heat pumps, from 30 different manufacturers, certified by the Air Conditioning and Refrigeration Institute (ARI) were examined. The certified units account for about 90% of all unitary heat pumps manufactured in the U.S. with a rated cooling capacity below 135,000 Btu/hr, and thus represent a comprehensive data file of the efficiencies of unitary heat pumps offered for sale in the U.S. A computer was used to group the heat pumps according to type and capacity, and to calculate their coefficients of performance (COP) using the data contained in ARI current Directory (April 1 to July 31, 1973) of Certified Unitary Heat Pumps. The results show that the COP of the heat pumps varied from a low of 1.5 to a high of 3.15 or a factor of 2 between the lowest and the highest efficiency, and that the average COP was 2.1 in cooling and 2.4 in heating. The variations of COP with heat pump size, type, manufacturer and outdoor temperature are presented.

Nwude, J.K.; Roman, A.J.

1973-11-01T23:59:59.000Z

363

Heat transfer and heat exchangers reference handbook  

Science Conference Proceedings (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

364

Heating systems for heating subsurface formations  

Science Conference Proceedings (OSTI)

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

365

Direct catalytic conversion of methane and light hydrocarbon gases. Final report, October 1, 1986--July 31, 1989  

DOE Green Energy (OSTI)

This project explored conversion of methane to useful products by two techniques that do not involve oxidative coupling. The first approach was direct catalytic dehydrocoupling of methane to give hydrocarbons and hydrogen. The second approach was oxidation of methane to methanol by using heterogenized versions of catalysts that were developed as homogeneous models of cytochrome-P450, an enzyme that actively hydroxylates hydrocarbons by using molecular oxygen. Two possibilities exist for dehydrocoupling of methane to higher hydrocarbons: The first, oxidative coupling to ethane/ethylene and water, is the subject of intense current interest. Nonoxidative coupling to higher hydrocarbons and hydrogen is endothermic, but in the absence of coke formation the theoretical thermodynamic equilibrium yield of hydrocarbons varies from 25% at 827{degrees}C to 65% at 1100{degrees}C (at atmospheric pressure). In this project we synthesized novel, highly dispersed metal catalysts by attaching metal clusters to inorganic supports. The second approach mimics microbial metabolism of methane to produce methanol. The methane mono-oxygenase enzyme responsible for the oxidation of methane to methanol in biological systems has exceptional selectivity and very good rates. Enzyme mimics are systems that function as the enzymes do but overcome the problems of slow rates and poor stability. Most of that effort has focused on mimics of cytochrome P-450, which is a very active selective oxidation enzyme and has a metalloporphyrin at the active site. The interest in nonporphyrin mimics coincides with the interest in methane mono-oxygenase, whose active site has been identified as a {mu}-oxo dinuclear iron complex.We employed mimics of cytochrome P-450, heterogenized to provide additional stability. The oxidation of methane with molecular oxygen was investigated in a fixed-bed, down-flow reactor with various anchored metal phthalocyanines (PC) and porphyrins (TPP) as the catalysts.

Wilson, R.B. Jr.; Posin, B.M.; Chan, Yee-Wai

1995-06-01T23:59:59.000Z

366

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

367

Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

storage of natural gas, liquid hydrocarbons, and carbon storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the storage of natural gas and prior to the exercise of eminent domain by any person, firm, or corporation having such right under laws of the state of Louisiana, the commissioner, shall have found all of the following:

368

Process for converting light alkanes to higher hydrocarbons  

DOE Patents (OSTI)

A process is disclosed for the production of aromatic-rich, gasoline boiling range hydrocarbons from the lower alkanes, particularly from methane. The process is carried out in two stages. In the first, alkane is reacted with oxygen and hydrogen chloride over an oxyhydrochlorination catalyst such as copper chloride with minor proportions of potassium chloride and rare earth chloride. This produces an intermediate gaseous mixture containing water and chlorinated alkanes. The chlorinated alkanes are contacted with a crystalline aluminosilicate catalyst in the hydrogen or metal promoted form to produce gasoline range hydrocarbons with a high proportion of aromatics and a small percentage of light hydrocarbons (C.sub.2 -C.sub.4). The light hydrocarbons can be recycled for further processing over the oxyhydrochlorination catalyst.

Noceti, Richard P. (Pittsburgh, PA); Taylor, Charles E. (Pittsburgh, PA)

1988-01-01T23:59:59.000Z

369

Process for conversion of lignin to reformulated hydrocarbon gasoline  

DOE Patents (OSTI)

A process for converting lignin into high-quality reformulated hydrocarbon gasoline compositions in high yields is disclosed. The process is a two-stage, catalytic reaction process that produces a reformulated hydrocarbon gasoline product with a controlled amount of aromatics. In the first stage, a lignin material is subjected to a base-catalyzed depolymerization reaction in the presence of a supercritical alcohol as a reaction medium, to thereby produce a depolymerized lignin product. In the second stage, the depolymerized lignin product is subjected to a sequential two-step hydroprocessing reaction to produce a reformulated hydrocarbon gasoline product. In the first hydroprocessing step, the depolymerized lignin is contacted with a hydrodeoxygenation catalyst to produce a hydrodeoxygenated intermediate product. In the second hydroprocessing step, the hydrodeoxygenated intermediate product is contacted with a hydrocracking/ring hydrogenation catalyst to produce the reformulated hydrocarbon gasoline product which includes various desirable naphthenic and paraffinic compounds.

Shabtai, Joseph S. (Salt Lake City, UT); Zmierczak, Wlodzimierz W. (Salt Lake City, UT); Chornet, Esteban (Golden, CO)

1999-09-28T23:59:59.000Z

370

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

371

Mathematical modeling of solid oxide fuel cells using hydrocarbon fuels  

E-Print Network (OSTI)

Solid oxide fuel cells (SOFCs) are high efficiency conversion devices that use hydrogen or light hydrocarbon (HC) fuels in stationary applications to produce quiet and clean power. While successful, HC-fueled SOFCs face ...

Lee, Won Yong, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

372

Trend Analysis for Atmospheric Hydrocarbon Partitioning Using Continuous Thermodynamics  

Science Conference Proceedings (OSTI)

The partitioning of atmospheric hydrocarbons into vapor and condensed phases when the species count is large is considered using the formalism of continuous thermodynamics. The vapor saturation pressures and condensate species distribution are ...

K. Harstad

2005-08-01T23:59:59.000Z

373

Biodegradation and phytoremediation of polycyclic aromatic hydrocarbons using mushroom compost.  

E-Print Network (OSTI)

??Soils contaminated with Polycyclic Aromatic Hydrocarbons (PAHs) are commonly found in petroleum, gas-work and wood-impregnation sites. Interest in the biodegradation and environmental fate of PAHs… (more)

Kodjo-Wayo, Lina Korkor

2006-01-01T23:59:59.000Z

374

Assessment of plant-derived hydrocarbons. Final report  

DOE Green Energy (OSTI)

A number of hydrocarbon producing plants are evaluated as possible sources of rubber, liquid fuels, and industrial lubricants. The plants considered are Euphorbia lathyris or gopher plant, milkweeds, guayule, rabbit brush, jojoba, and meadow foam. (ACR)

McFadden, K.; Nelson, S.H.

1981-09-30T23:59:59.000Z

375

Computer program for determining the thermodynamic properties of light hydrocarbons  

DOE Green Energy (OSTI)

This program was written to be used as a subroutine. The program determines the thermodynamics of light hydrocarbons. The following light hydrocarbons can be analyzed: butane, ethane, ethylene, heptane, hexane, isobutane, isopentane, methane, octane, pentane, propane and propylene. The subroutine can evaluate a thermodynamic state for the light hydrocarbons given any of the following pairs of state quantities: pressure and quality, pressure and enthalpy, pressure and entropy, temperature and pressure, temperature and quality and temperature and specific volume. These six pairs of knowns allow the user to analyze any thermodynamic cycle utilizing a light hydrocarbon as the working fluid. The Starling--Benedict--Webb--Rubin equation of state was used. A brief description, flowchart, listing and required equations for each subroutine are included.

Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.; Cook, D.S.

1976-01-01T23:59:59.000Z

376

Computer program for determining the thermodynamic properties of light hydrocarbons  

DOE Green Energy (OSTI)

This program was written to be used as a subroutine. The program determines the thermodynamics of light hydrocarbons. The following light hydrocarbons can be analyzed: butane, ethane, ethylene, heptane, hexane, isobutane, isopentane, methane, octane, pentane, propane and propylene. The subroutine can evaluate a thermodynamic state for the light hydrocarbons given any of the following pairs of state quantities: pressure and quality, pressure and enthalpy, pressure and entropy, temperature and pressure, temperature and quality and temperature and specific volume. These six pairs of knowns allow the user to analyze any thermodynamic cycle utilizing a light hydrocarbon as the working fluid. The Starling-Benedict-Webb-Rubin equation of state was used. This report contains a brief description, flowchart, listing and required equations for each subroutine.

Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.; Cook, D.S.

1976-07-01T23:59:59.000Z

377

Conversion of Pentose-Derived Furans into Hydrocarbon Fuels  

Science Conference Proceedings (OSTI)

We are interested in the conversion of biomass-derived hemicellulose into hydrocarbon molecules that can be used in the formulation of 'drop-in' fuels such as gasoline (C5-12), diesel (C10-20) and jet fuel (C9-16). Our focus lies on the use of furfuryl alcohol as a starting material since that is already produced commercially from hemicellulose-derived pentoses. The steps required to convert the latter into hydrocarbons are 1) oligomerization of furfuryl alcohol to form dimers (C10) and trimers (C15), and 2) hydrotreatment of the dimers and trimers to produce a mixture of linear hydrocarbons with carbon chain lengths in the range of diesel and jet fuels. However, furfuryl alcohol readily polymerizes to form resins in the presence of an acid catalyst, and the exothermic oligomerization must be carried out under reaction control. This presentation will discuss our progress in the development of this sugar-to-hydrocarbon pathway.

Moens, L.; Johnson, D. K.

2012-01-01T23:59:59.000Z

378

Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks have been identified.

Biddy, M.; Jones, S.

2013-03-01T23:59:59.000Z

379

Cooling and solidification of heavy hydrocarbon liquid streams  

DOE Patents (OSTI)

A process and apparatus for cooling and solidifying a stream of heavy hydrocarbon material normally boiling above about 850.degree. F., such as vacuum bottoms material from a coal liquefaction process. The hydrocarbon stream is dropped into a liquid bath, preferably water, which contains a screw conveyor device and the stream is rapidly cooled, solidified and broken therein to form discrete elongated particles. The solid extrudates or prills are then dried separately to remove substantially all surface moisture, and passed to further usage.

Antieri, Salvatore J. (Trenton, NJ); Comolli, Alfred G. (Yardley, PA)

1983-01-01T23:59:59.000Z

380

Radiofrequency plasma heating: proceedings  

SciTech Connect

The conference proceedings include sessions on Alfven Wave Heating, ICRF Heating and Current Drive, Lower Hybrid Heating and Current Drive, and ECRF Heating. Questions of confinement, diagnostics, instabilities and technology are considered. Individual papers are cataloged separately. (WRF)

Swenson, D.G. (ed.)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Method for producing hydrocarbon fuels from heavy polynuclear hydrocarbons by use of molten metal halide catalyst  

DOE Patents (OSTI)

In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst, thereafter separating at least a substantial portion of the carbonaceous material associated with the reaction mixture from the spent molten metal halide and thereafter regenerating the metal halide catalyst, an improvement comprising contacting the spent molten metal halide catalyst after removal of a major portion of the carbonaceous material therefrom with an additional quantity of hydrogen is disclosed.

Gorin, Everett (San Rafael, CA)

1979-01-01T23:59:59.000Z

382

Catalytic partial oxidation reforming of hydrocarbon fuels.  

DOE Green Energy (OSTI)

The polymer electrolyte fuel cell (PEFC) is the primary candidate as the power source for light-duty transportation systems. On-board conversion of fuels (reforming) to supply the required hydrogen has the potential to provide the driving range that is typical of today's automobiles. Petroleum-derived fuels, gasoline or some distillate similar to it, are attractive because of their existing production, distribution, and retailing infrastructure. The fuel may be either petroleum-derived or other alternative fuels such as methanol, ethanol, natural gas, etc. [1]. The ability to use a variety of fuels is also attractive for stationary distributed power generation [2], such as in buildings, or for portable power in remote locations. Argonne National Laboratory has developed a catalytic reactor based on partial oxidation reforming that is suitable for use in light-duty vehicles powered by fuel cells. The reactor has shown the ability to convert a wide variety of fuels to a hydrogen-rich gas at less than 800 C, temperatures that are several hundreds of degrees lower than alternative noncatalytic processes. The fuel may be methanol, ethanol, natural gas, or petroleum-derived fuels that are blends of various hydrocarbons such as paraffins, olefins, aromatics, etc., as in gasoline. This paper will discuss the results obtained from a bench-scale (3-kWe) reactor., where the reforming of gasoline and natural gas generated a product gas that contained 38% and 42% hydrogen on a dry basis at the reformer exit, respectively.

Ahmed, S.

1998-09-21T23:59:59.000Z

383

Photovoltaic roof heat flux  

E-Print Network (OSTI)

and could the heat transfer processes be modeled to estimateindicating that the heat transfer processes were modeled w i

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

384

Testing and analysis of immersed heat exchangers  

DOE Green Energy (OSTI)

The objectives were to determine the performance of four immersed, ''supply-side'' heat exchangers used in solar domestic-hot-water systems; to examine the effects of flow rate, temperature difference, and coil configuration on performance; and to develop a simple model to predict the performance of immersed heat exchangers. We tested four immersed heat exchangers: a smooth coil, a finned spiral, a single-wall bayonet, and a double-wall bayonet. We developed two analyticl models and a simple finite difference model. We experimentally verified that the performance of these heat exchangers depends on the flow rate through them; we also showed that the temperature difference between the heat exchanger's inlet and the storage tank can strongly affect a heat exchanger's performance. We also compared the effects of the heat exchanger's configuration and correlated Nusselt and Rayleigh numbers for each heat exchanger tested. The smooth coil had a higher effectiveness than the others, while the double-wall bayonet had a very low effectiveness. We still do not know the long-term effectiveness of heat exchangers regarding scale accumulation, nor do we know the effects of very low flow rates on a heat exchanger's performance.

Farrington, R.B.; Bingham, C.E.

1986-08-01T23:59:59.000Z

385

Heat pipe methanator  

DOE Patents (OSTI)

A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

Ranken, William A. (Los Alamos, NM); Kemme, Joseph E. (Los Alamos, NM)

1976-07-27T23:59:59.000Z

386

Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam with propane-distillation  

E-Print Network (OSTI)

Recent experimental and simulation studies -conducted at the Department of Petroleum Engineering at Texas A&M University - confirm oil production is accelerated when propane is used as an additive during steam injection. To better understand this phenomenon, distillation experiments were performed using seven-component synthetic oil consisting of equal weights of the following alkanes: n-C5, n-C6, n-C7, n-C8, n-C9, nC10, and n-C15. For comparison purposes, three distillation processes were investigated: dry-, steam-, and steam-propane-distillation, the latter at a propane:steam mass ratio of 0.05. The injection rate of nitrogen during dry-and steam-distillation was the same as that of propane during steam-propane distillation, 0.025 g/min, with steam injection rate kept at 0.5 g/min. The distillation temperatures ranged from 115°C to 300°C and were increased in steps of 10°C. The cell was kept at each temperature plateau (cut) for 30 minutes. Distillation pressures ranged from 0 psig for dry distillation to 998 psig for steam-and steam-propane distillation. The temperature-pressure combination used represented 15°C superheated steam conditions. Distillate samples were collected at each cut, and the volume and weight of water and hydrocarbon measured. In addition, the composition of the hydrocarbon distillate was measured using a gas chromatograph. Main results of the study may be summarized as follows. First, the hydrocarbon yield at 125°C is highest with steam-propane distillation (74 wt%) compared to steam distillation (58 wt%), and lowest with dry distillation (36 wt%). This explains in part the oil production acceleration observed in steam-propane displacement experiments. Second, the final hydrocarbon yield at 300°C however is the same for the three distillation processes. This observation is in line with the fact that oil recoveries were very similar in steam- and steam-propane displacement experiments. Third, based on the yields of individual hydrocarbon components, steam-propane distillation lowers the apparent boiling points of the hydrocarbons significantly. This phenomenon may be the most fundamental effect of propane on hydrocarbon distillation, which results in a higher yield during steam-propane distillation and oil production acceleration during steam-propane displacement. Fourth, experimental K-values are higher in distillations with steam-propane for the components n-hexane, n-heptane, n-octane, and n-nonane. Fifth, vapor fugacity coefficients for each component are higher in distillations with steam-propane than with steam. Finally, Gibbs excess energy is overall lower in distillations with steam-propane than with steam. The experimental results clearly indicate the importance of distillation on oil recovery during steam-or steam-propane injection. The experimental procedure and method of analysis developed in this study (for synthetic oil) will be beneficial to future researchers in understanding the effect of propane as steam additive on actual crude oils.

Ramirez Garnica, Marco Antonio

2003-05-01T23:59:59.000Z

387

Conversion of light hydrocarbon gases to metal carbides for production of liquid fuels and chemicals. Quarterly technical status report, January 1--March 31, 1993  

SciTech Connect

Work on this project will be performed according to two tasks: Task 1, Industrial Chemistry and Applied Kinetics of Light Hydrocarbon Gas Conversion to Metal Carbides H{sub 2} and CO. We are building a laboratory-scale electric are discharge reactor, in which to assess the technical feasibility of producing Mg{sub 2}C{sub 3}, H{sub 2}, and CO from methane and MgO. We will also do experimental runs with CaO as well as mixtures of CaO and MgO and measure conversions of methane, CaO and/or MgO, and yields of Mg{sub 2}C{sub 3}, and/or CaC{sub 2}, H{sub 2}, and CO to identify the operating conditions of interest for implementing these reactions on a commercial scale. Reaction conditions and parameters will be chosen based on the previous work at MIT with CaO and CH, and on results of thermodynamic and thermochemical kinetics calculations. Task 2: Mechanistic Foundations-For Convertings Light Hydrocarbon Gases to Metal Carbides-H{sub 2} and CO. We will evaluate the technical feasibility of carrying out methane reactions with CaO and MgO by thermal (e.g. 1500--2000{degrees}C) rather than under plasma conditions by performing experiments with the use of electrical screen heaters, heated tubular reactors, or other suitable apparatus. Extents and global rates of methane conversion, and yields as well as global production rates of CaC{sub 2}, Mg{sub 2}C{sub 3}, H{sub 2} and CO will be measured upon subjecting mixtures of methane and CaO and/or MgO to high temperatures and controlled residence times. We will conduct hypothesis-testing of possible mechanistic pathways with selected experiments and perform reaction modeling to better understand the underlying chemical and physical processes that could influence process scale-up possibilities.

Diaz, A.F.; Modestino, A.J.; Howard, J.B.; Peters, W.A.

1993-04-01T23:59:59.000Z

388

Jones-Onslow EMC - Residential Heating and Cooling Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jones-Onslow EMC - Residential Heating and Cooling Rebate Program Jones-Onslow EMC - Residential Heating and Cooling Rebate Program Jones-Onslow EMC - Residential Heating and Cooling Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Central AC (15 SEER or greater): $35 Central AC (16 SEER or greater): $50 Heat Pump (15 SEER or greater): $250 Geothermal Heat Pump (19 EER or greater): $350 Provider Jones-Onslow EMC Jones-Onslow Electric Membership Corporation offers rebates to residential members who install energy efficient heating and cooling equipment. Members can replace an existing central AC or heat pump, which does not have a SEER rating greater than 13, with a central AC, heat pump, or geothermal heat

389

Segmented heat exchanger  

DOE Patents (OSTI)

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

390

Dual source heat pump  

DOE Patents (OSTI)

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

391

Heat reclaimer for a heat pump  

Science Conference Proceedings (OSTI)

This invention relates to a heat reclaiming device for a heat pump. The heat reclaimer is able to absorb heat from the compressor by circulating cooling fluid through a circuit which is mounted in good heat transfer relationship with the condenser, then around the shell of the motor-compressor and lastly around the hollow tube which connects the condenser to the compressor. The reclaiming circuit is connected into a fluid circulating loop which is used to supply heat to the evaporator coil of the heat pump.

Beacham, W.H.

1981-02-03T23:59:59.000Z

392

Heat capacity and compactness of denatured proteins  

E-Print Network (OSTI)

One of the striking results of protein thermodynamics is that the heat capacity change upon denaturation is large and positive. This change is generally ascribed to the exposure of non-polar groups to water on denaturation, in analogy to the large heat capacity change for the transfer of small non-polar molecules from hydrocarbons to water. Calculations of the heat capacity based on the exposed surface area of the completely unfolded denatured state give good agreement with experimental data. This result is difficult to reconcile with evidence that the heat denatured state in the absence of denaturants is reasonably compact. In this work, sample conformations for the denatured state of truncated CI2 are obtained by use of an effective energy function for proteins in solution. The energy function gives denatured conformations that are compact with radii of gyration that are slightly larger than that of the native state. The model is used to estimate the heat capacity, as well as that of the native state, at 300 and 350 K via finite enthalpy differences. The calculations show that the heat capacity of denaturation can have large positive contributions from non-covalent intraprotein interactions because these interactions change more with temperature in non-native conformations than in the native state. Including this contribution, which has been neglected in empirical surface area models, leads to heat capacities of unfolding for compact denatured states that are consistent with the experimental heat capacity data. Estimates of the stability curve of CI2 made with the effective energy function support the present model. # 1999 Elsevier Science B.V. All rights reserved.

Themis Lazaridis; Martin Karplus

1999-01-01T23:59:59.000Z

393

On the Wave Spectrum Generated by Tropical Heating  

Science Conference Proceedings (OSTI)

Convective heating profiles are computed from one month of rainfall rate and cloud-top height measurements using global Tropical Rainfall Measuring Mission and infrared cloud-top products. Estimates of the tropical wave response to this heating ...

David A. Ortland; M. Joan Alexander; Alison W. Grimsdell

2011-09-01T23:59:59.000Z

394

Thermal device and method for production of carbon monoxide and hydrogen by thermal dissociation of hydrocarbon gases  

DOE Patents (OSTI)

Carbon monoxide is produced in a fast quench reactor. The production of carbon monoxide includes injecting carbon dioxide and some air into a reactor chamber having a high temperature at its inlet and a rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Carbon dioxide and other reactants such as methane and other low molecular weight hydrocarbons are injected into the reactor chamber. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

Detering, Brent A. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

2001-01-01T23:59:59.000Z

395

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates Loveland Area Project Firm Power Rates Transmission and Ancillary Services Rates 2012 Rate Adjustment-Transmission and Ancillary Services 2010 Rate Adjustment-Firm Power 2009...

396

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates and Repayment Services Consolidated Rate Schedules FY 2014 Rates BCP Annual Rate Process Central Arizona Project Transmission Rate Process DSW Multiple System Transmission...

397

The Effect of High Cooling Rate and Powder Composition on ...  

Science Conference Proceedings (OSTI)

Coatings were deposited by applying different types of thermal spray systems. Influence of the heating and cooling rates on coating microstructure and ...

398

Stabilization of liquid hydrocarbon fuel combustion by using a programmable microwave discharge in a subsonic airflow  

SciTech Connect

Under conditions of a programmable discharge (a surface microwave discharge combined with a dc discharge), plasma-enhanced combustion of alcohol injected into a subsonic (M = 0.3-0.9) airflow in the drop (spray) phase is stabilized. It is shown that the appearance of the discharge, its current-voltage characteristic, the emission spectrum, the total emission intensity, the heat flux, the electron density, the hydroxyl emission intensity, and the time dependences of the discharge current and especially discharge voltage change substantially during the transition from the airflow discharge to stabilized combustion of the liquid hydrocarbon fuel. After combustion stabilization, more than 80% of liquid alcohol can burn out, depending on the input power, and the flame temperature reaches {approx}2000 K.

Kopyl, P. V.; Surkont, O. S.; Shibkov, V. M.; Shibkova, L. V. [Moscow State University, Faculty of Physics (Russian Federation)

2012-06-15T23:59:59.000Z

399

Novel heat pipe combination  

SciTech Connect

The basic heat pipe principle is employed in a heat pipe combination wherein two heat pipes are combined in opposing relationship to form an integral unit; such that the temperature, heat flow, thermal characteristics, and temperature-related parameters of a monitored environment or object exposed to one end of the heat pipe combination can be measured and controlled by controlling the heat flow of the opposite end of the heat pipe combination.

Arcella, F.G.

1978-01-10T23:59:59.000Z

400

A desiccant dehumidifier for electric vehicle heating  

DOE Green Energy (OSTI)

Vehicle heating requires a substantial amount of energy. Engines in conventional cars produce enough waste heat to provide comfort heating and defogging/defrosting, even under very extreme conditions. Electric vehicles (EVs), however, generate little waste heat. Using battery energy for heating may consume a substantial fraction of the energy storage capacity, reducing the vehicle range, which is one of the most important parameters in determining EV acceptability. Water vapor generated by the vehicle passengers is in large part responsible for the high heating loads existing in vehicles. In cold climates, the generation of water vapor inside the car may result in water condensation on the windows, diminishing visibility. Two strategies are commonly used to avoid condensation on windows: windows are kept warm, and a large amount of ambient air is introduced in the vehicle. Either strategy results in a substantial heating load. These strategies are often used in combination, and a trade-off exists between them. If window temperature is decreased, ventilation rate has to be increased. Reducing the ventilation rate requires an increase of the temperature of the windows to prevent condensation. An alternative solution is a desiccant dehumidifier, which adsorbs water vapor generated by the passengers. Window temperatures and ventilation rates can then be reduced, resulting in a substantially lower heating load. This paper explores the dehumidifier heating concept. The first part shows the energy savings that could be obtained by using this technology. The second part specifies the required characteristics and dimensions of the system. The results indicate that the desiccant system can reduce the steady-state heating load by 60% or more under typical conditions. The reduction in heating load is such that waste heat may be enough to provide the required heating under most ambient conditions. Desiccant system dimensions and weight appear reasonable for packaging in an EV.

Aceves, S.M.; Smith, J.R.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Seasonal Heat Budget across the Extent of the California Current  

Science Conference Proceedings (OSTI)

A seasonal heat budget is based on observations that span the broad California Current (CC) region. Budget terms are estimated from satellite data (oceanic heat advection), repeat ship transects (heat storage rate), and the Comprehensive Ocean–...

Kathleen A. Edwards; Kathryn A. Kelly

2007-03-01T23:59:59.000Z

402

Development of a compensation chamber for use in a multiple condenser loop heat pipe  

E-Print Network (OSTI)

The performance of many electronic devices is presently limited by heat dissipation rates. One potential solution lies in high-performance air-cooled heat exchangers like PHUMP, the multiple condenser loop heat pipe presented ...

Roche, Nicholas Albert

2013-01-01T23:59:59.000Z

403

In situ conversion process utilizing a closed loop heating system  

Science Conference Proceedings (OSTI)

An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

Sandberg, Chester Ledlie (Palo Alto, CA); Fowler, Thomas David (Houston, TX); Vinegar, Harold J. (Bellaire, TX); Schoeber, Willen Jan Antoon Henri (Houston, TX)

2009-08-18T23:59:59.000Z

404

The Radiative Heating in Underexplored Bands Campaigns  

Science Conference Proceedings (OSTI)

Accurately accounting for radiative energy balance between the incoming solar and the outgoing infrared radiative fluxes is very important in modeling the Earth's climate. Water vapor absorption plays a critical role in the radiative heating rate ...

D. D. Turner; E. J. Mlawer

2010-07-01T23:59:59.000Z

405

Review of current research on hydrocarbon production by plants  

DOE Green Energy (OSTI)

This review assesses the status of research and development in the area of plants that produce hydrocarbons as a possible replacement for traditional fossil fuels. The information is meant to be used as a basis for determining the scope of a possible R and D program by DOE/FFB. Except in the case of guayule (Parthenium argentatum Gray), research on hydrocarbon species generally has not advanced beyond preliminary screening, extraction, and growth studies. Virtually no field studies have been initiated; hydrocarbon component extraction, separation, identification, and characterization have been only timidly approached; the biochemistry of hydrocarbon formation remains virtually untouched; and potential market analysis has been based on insufficient data. Research interest is increasing in this area, however. Industrial interest understandably centers about guayule prospects and is supplemented by NSF and DOE research funds. Additional support for other research topics has been supplied by DOE and USDA and by certain university systems. Due to the infant state of technology in this area of energy research, it is not possible to predict or satisfactorily assess at this time the potential contribution that plant hydrocarbons might make toward decreasing the nation's dependence upon petroleum. However, the general impression received from experts interviewed during this review was that the major thrust of research should be directed toward the manufacture of petrochemical substitutes rather than fuel production.

Benedict, H. M.; Inman, B.

1979-01-01T23:59:59.000Z

406

Multiple source heat pump  

DOE Patents (OSTI)

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

407

Toxicity Analysis of Polycyclic Aromatic Hydrocarbon Mixtures  

E-Print Network (OSTI)

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the environment and are generated by many sources. Though the potential of PAH-rich mixtures to cause health effects has been known for almost a century, there are still unanswered questions about the levels of PAHs in the environment, the potential for human exposure to PAHs, the health effects associated with exposure, and how genetic susceptibility influences the extent of health effects in individuals. The first objective of this research was to quantify concentrations of PAHs in samples of settled house dust collected from homes in Azerbaijan, China, and Texas. The trends of PAH surface loadings and percentage of carcinogenic PAHs were China > Azerbaijan > Texas, indicating that the risk of health effects from exposure to PAHs in house dust is highest in the Chinese population and lowest in the Texas population. PAHs in China and Azerbaijan were derived mainly from combustion sources; Texas PAHs were derived from unburned fossil fuels such as petroleum. The second objective of this research was to investigate the effect of pregnane X receptor (PXR) on the genotoxicity of benzo[a]pyrene (BaP). BaP treatment resulted in significantly lower DNA adduct levels in PXR-transfected HepG2 cells than in parental HepG2 cells. Total GST enzymatic activity and mRNA levels of several metabolizing enyzmes were significantly higher in cells overexpressing PXR. These results suggest that PXR protects cells against DNA damage by PAHs such as BaP, possibly through a coordinated regulation of genes involved in xenobiotic metabolism. The third objective of this research was to investigate biomarkers of exposure in house mice (Mus musculus) exposed to PAH mixtures in situ. Mice and soil were collected near homes in Sumgayit and Khizi, Azerbaijan. Mean liver adduct levels were significantly higher in Khizi than in Sumgayit. Mean lung and kidney adduct levels were similar in the two regions. The DNA lesions detected may be a combination of environmentally-induced DNA adducts and naturally-occurring I-compounds. PAHs were present at background levels in soils from both Khizi and Sumgayit. It appears that health risks posed to rodents by soil-borne PAHs are low in these two areas.

Naspinski, Christine S.

2009-05-01T23:59:59.000Z

408

Rates & Repayment  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Rates and Repayment Services Rates Current and Historical Rate Information Collbran Power Rates CRSP Power Rates CRSP Transmission System Rates CRSP Management Center interest rates Falcon-Amistad Power Rates Provo River Power Rates Rio Grande Power Rates Seedskadee Power Rates SLCA/IP Power Rates Rate Schedules & Supplemental Rate Information Current Rates for Firm Power, Firm & Non-firm Transmission Service, & Ancillary Services Current Transmission & Ancillary Services Rates Tariffs Components of the SLCA/IP Existing Firm Power Rate Cost Recovery Charge (CRC) Page MOA Concerning the Upper Colorado River Basin

409

The use Na, Li, K cations for modification of ZSM-5 zewolite to control hydrocarbon cold-start emission  

Science Conference Proceedings (OSTI)

This paper addresses the problem of controlling hydrocarbon emissions from cold-start of engines by investigating the adsorbents which could adsorb the hydrocarbons at cold temperatures and hold them to 250-300 ?. The materials, that has been studied, are based on the modification of ZSM-5 (SiO{sub 2}/Al{sub 2}O{sub 3} = 35) zeolite with Li, K, Na cations. It has been shown that the introduction of Li, Na and K in an amount that is equivalent to the content of Al in zeolite results in occurrence of toluene temperature desorption peaks at high-temperatures. The toluene temperature desorption curves for 5%Li-ZSM-5 and 2.3%Na-ZSM-5 zeolites are identical and have peak toluene desorption rate between 200 to 400 ?. Upon analysis of toluene adsorption isotherms for 2.3%Na-ZSM-5 and 5%Li-ZSM-5, it was concluded that the toluene diffusion inside of the modified zeolites channels is extremely slow and the sorption capacity of 2.3%Na-ZSM-5 is higher than with 5%Li-ZSM-5. The 2.3%Na-ZSM-5 didn't change toluene temperature programmed desorption (TPD) rate of curve after the treatment in environment with 10% ?{sub 2}? at 750-800 ? for about 28 h. The 2.3%Na-ZSM-5 zeolite is very promising as adsorbent to control the cold-start hydrocarbon emissions.

Golubeva V.; Rohatgi U.; Korableva, A.; Anischenko, O.; Kustov, L.; Nissenbaum, V; Viola, M.B.

2012-08-29T23:59:59.000Z

410

Modeling the biodegradability and physicochemical properties of polycyclic aromatic hydrocarbons  

E-Print Network (OSTI)

The biodegradability and physicochemical properties of unsubstituted and methylated polycyclic aromatic hydrocarbons (PAHs) were investigated. The focus was on the development of models expressing the influence of molecular structure and properties on observed behavior. Linear free energy relationships (LFERs) were developed for the estimation of aqueous solubilities, octanol/water partition coefficients, and vapor pressures as functions of chromatographic retention time. LFERs were tested in the estimation of physicochemical properties for twenty methylated naphthalenes containing up to four methyl substituents. It was determined that LFERs can accurately estimate physicochemical properties for methylated naphthalenes. Twenty unsubstituted and methylated PAHs containing up to four aromatic rings were biodegraded individually by Sphingomonas paucimobilis strain EPA505, and Monod-type kinetic coefficients were estimated for each PAH using the integral method. Estimated extant kinetic parameters included the maximal specific biodegradation rate, the affinity coefficient, and the inhibition coefficient. The generic Andrews model adequately simulated kinetic data. The ability of PAHs to serve as sole energy and carbon sources was also evaluated. Quantitative structure-biodegradability relationships (QSBRs) were developed based on the estimates of the kinetic and growth parameters. A genetic algorithm was used for QSBR development. Statistical analysis and validation demonstrated the predictive value of the QSBRs. Spatial and topological molecular descriptors were essential in explaining biodegradability. Mechanistic interpretation of the kinetic data and the QSBRs provided evidence that simple or facilitated diffusion through the cell membranes is the rate-determining step in PAH biodegradation by strain EPA505. A kinetic experiment was conducted to investigate biodegradation of PAH mixtures by strain EPA505. The investigation focused on 2-methylphenanthrene, fluoranthene, and pyrene, and their mixtures. Integrated material balance equations describing different interaction types were fitted to the depletion data and evaluated on a statistical and probabilistic basis. Mixture degradation was most adequately described by a pure competitive interaction model with mutual substrate exclusivity, a fully predictive model utilizing parameters estimated in the sole-PAH experiments only. The models developed in this research provide insight into how molecular structure and properties influence physicochemical properties and biodegradability of PAHs. The models have considerable predictive value and could reduce the need for laboratory testing.

Dimitriou-Christidis, Petros

2005-08-01T23:59:59.000Z

411

Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway  

Science Conference Proceedings (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

Biddy, Mary J.; Jones, Susanne B.

2013-03-31T23:59:59.000Z

412

Method and apparatus for producing oxygenates from hydrocarbons  

DOE Patents (OSTI)

A chemical reactor for oxygenating hydrocarbons includes: a) a dielectric barrier discharge plasma cell, the plasma cell comprising a pair of electrodes having a dielectric material and void therebetween, the plasma cell comprising a hydrocarbon gas inlet feeding to the void; b) a solid oxide electrochemical cell, the electrochemical cell comprising a solid oxide electrolyte positioned between a porous cathode and a porous anode, an oxygen containing gas inlet stream feeding to the porous cathode side of the electrochemical cell; c) a first gas passageway feeding from the void to the anode side of the electrochemical cell; and d) a gas outlet feeding from the anode side of the electrochemical cell to expel reaction products from the chemical reactor. A method of oxygenating hydrocarbons is also disclosed.

Kong, Peter C. (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID)

1995-01-01T23:59:59.000Z

413

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network (OSTI)

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering an estimated energy equivalent of nearly 1.1 million barrels of oil annually. Energy recovered by these units has been used to either preheat process supply air or to heat plant comfort make-up air. Heat pipe heat exchangers have been applied to an ever-expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat pipes. This device has a number of advantageous features. Field operational experience of several units in service has been excellent.

Ruch, M. A.

1981-01-01T23:59:59.000Z

414

Effect of Heat Treatment Variations on the Hardness and Mechanical ...  

Science Conference Proceedings (OSTI)

the greatest impact on hardness with increasing cooling rate increasing fully heat treated hardness. A specimen test program was then initiated to determine the ...

415

NBSBR 84-2867 Test Procedures for Rating  

E-Print Network (OSTI)

NBSBR 84-2867 Test Procedures for Rating Residential Heating and Cooling Absorption Equipment U HEATING AND COOLING ABSORPTION EQUIPMENT Brian Weber Reinhard Radermacher David Didion U.S. DEPARTMENT-fired absorption devices operating in either the heating or cooling modes. These procedures are designed to include

Oak Ridge National Laboratory

416

Fundamental and semi-global kinetic mechanisms of hydrocarbon combustion. Progress report, March 1--September 30, 1977  

DOE Green Energy (OSTI)

Major emphasis in combustion research is being given to the study of oxidation of hydrocarbon fuels to lend insight into the modelling of combustion processes. The introduction of combustion chemistry into the already complex turbulent flow situations which exist in practical devices make modelling exceptionally difficult. Semi-global reaction mechanisms offer the potential of reducing the overall chemical kinetic complexity, thus substantially reducing the computational barriers to appropriate modelling of combustion processes. Reported here are the results of efforts presently underway at Princeton under ERDA support, to provide a general understanding of hydrocarbon oxidation. Specifically the results of studies of the lean oxidation of ethane along with the developed semi-global rates are reported. Initial results for the lean oxidation of propane are discussed and the present status of studies on methanol oxidation is also reported.

Glassman, I.; Dryer, F.L.

1977-09-01T23:59:59.000Z

417

Geothermal heating for Caliente, Nevada  

DOE Green Energy (OSTI)

Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

Wallis, F.; Schaper, J.

1981-02-01T23:59:59.000Z

418

TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS  

E-Print Network (OSTI)

for Passive Passive Solar Heating Applications StephenHEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS StephenMIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS Stephen

Selkowitz, S.

2011-01-01T23:59:59.000Z

419

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

420

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

422

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low Temperature...

423

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

424

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal...

425

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature...

426

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

427

Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes—from scorching heat in...

428

Absorption heat pump system  

DOE Patents (OSTI)

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, Gershon (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

429

Absorption heat pump system  

DOE Patents (OSTI)

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, G.

1982-06-16T23:59:59.000Z

430

SMALL PARTICLE HEAT EXCHANGERS  

E-Print Network (OSTI)

ON ~m Small Particle Heat Exchangers Arion J. Hunt June 1978d. LBL 7841 Small Particle Heat Exchangers by Arlon J. Huntgenerally to non-solar heat exchangers. These may be of the

Hunt, A.J.

2011-01-01T23:59:59.000Z

431

Photovoltaic roof heat flux  

E-Print Network (OSTI)

of ~24°C, indicating that heat conduction was small. T h i sday, indicating large heat conduction a n d storage. Control2.1.3 showed that conduction heat flux through the roof was

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

432

Heat Pump Systems  

Energy.gov (U.S. Department of Energy (DOE))

Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate...

433

Reclamation and reuse of Freon in total petroleum hydrocarbon analyses  

Science Conference Proceedings (OSTI)

At the Savannah River Technology Center (SRTC), we have successfully demonstrated the use of a solvent recycling system to reclaim spent Freon solvent in total petroleum hydrocarbon (TPH) analyses of radioactive samples. A wide variety of sample types including ground water, organics, laboratory waste, process control, sludge, soils, and others are received by our lab for total petroleum hydrocarbon analysis. This paper demonstrates the successful use of a commercially available carbon bed recycle system which we modified to enable the recovery of 95-98 percent of the radioactive contaminated Freon. This system has been used successfully in our lab for the past three years.

Ekechukwu, A.A.; Young, J.E.

1997-12-31T23:59:59.000Z

434

Method and apparatus for synthesizing various short chain hydrocarbons  

DOE Patents (OSTI)

A method and apparatus, including novel photocatalysts, are disclosed for the synthesis of various short chain hydrocarbons. Light-transparent SiO{sub 2} aerogels doped with photochemically active uranyl ions are fluidized in a fluidized-bed reactor having a transparent window, by hydrogen and CO, C{sub 2}H{sub 4} or C{sub 2}H{sub 6} gas mixtures, and exposed to radiation from a light source external to the reactor, to produce the short chain hydrocarbons. 1 fig., 1 tab.

Colmenares, C.

1989-05-05T23:59:59.000Z

435

Method and apparatus for production of subsea hydrocarbon formations  

DOE Patents (OSTI)

A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external flotation tanks located below the water surface. The surface buoy is secured to the sea bed by one or more tendons which are anchored to a foundation with piles imbedded in the sea bed. The system accommodates multiple versions on the surface buoy configuration. 20 figures.

Blandford, J.W.

1995-01-17T23:59:59.000Z

436

Preliminary investigation of the nature of hydrocarbon migration and entrapment  

E-Print Network (OSTI)

Numerical simulations indicate that hydrocarbon migration and entrapment in stacked fault-bounded reservoirs are mainly affected by the following factors: charge time, faults, pressure and geological structures. The charge time for commercial hydrocarbon accumulation is much longer in oil-water systems than in oil-gas-water systems. Faults are classified into charging faults and 'back doors' faults other than charging faults in stacked fault-bounded reservoirs. The lower the displacement pressure of a fault, the higher its updip oil transportation ability. The downdip oil transportation ability of a fault is usually low and cannot cause commercial downdip oil accumulation. Back doors affect both hydrocarbon percent charge and hydrocarbon migration pathways. Updip back doors improve updip oil charge. The lower the displacement pressure of an updip back door, the more efficient the updip oil charge before 3,000 years. Back doors whose displacement pressure is equal to or higher than 28.76 psi are effective in sealing faults in oil-water systems. On the contrary, only sealing faults result in commercial gas accumulations in stacked fault-compartmentalized reservoirs. Otherwise gas is found over oil. Downdip back doors generally have few effects on downdip hydrocarbon charge. Geopressure enhances the updip oil transportation of a fault and improves the positive effects of updip back doors during updip oil charge. Geopressure and updip back doors result in more efficient updip oil charge. A physical barrier is not necessarily a barrier to oil migration with the aid of geopressure and updip back doors. The chance for hydrocarbon charge into reservoirs along growth faults is not equal. Any one of the above controlling factors can change the patterns of hydrocarbon charge and distribution in such complex geological structures. Generally, lower reservoirs and updip reservoirs are favored. Reservoirs along low-permeability charging faults may be bypassed. Gas can only charge the updip reservoirs. Both updip and downdip back doors can facilitate oil penetrating a barrier fault to charge reservoirs offset by the barrier fault. Interreservoir migration among stacked fault-compartmentalized reservoirs is an important mechanism for hydrocarbon accumulation and trap identification. The interreservoir migration is a very slow process, even though the displacement pressures of bounding faults may be very low.

Bai, Jianyong

2005-05-01T23:59:59.000Z

437

Process of producing liquid hydrocarbon fuels from biomass  

DOE Patents (OSTI)

A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

Kuester, James L. (Scottsdale, AZ)

1987-07-07T23:59:59.000Z

438

Process of producing liquid hydrocarbon fuels from biomass  

DOE Patents (OSTI)

A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

Kuester, J.L.

1987-07-07T23:59:59.000Z

439

Method and apparatus for production of subsea hydrocarbon formations  

DOE Patents (OSTI)

A system for controlling, separating, processing and exporting well fluids produced from subsea hydrocarbon formations is disclosed. The subsea well tender system includes a surface buoy supporting one or more decks above the water surface for accommodating equipment to process oil, gas and water recovered from the subsea hydrocarbon formation. The surface buoy includes a surface-piercing central flotation column connected to one or more external floatation tanks located below the water surface. The surface buoy is secured to the seabed by one or more tendons which are anchored to a foundation with piles imbedded in the seabed. The system accommodates multiple versions on the surface buoy configuration.

Blandford, Joseph W. (15 Mott La., Houston, TX 77024)

1995-01-01T23:59:59.000Z

440

Low-Temperature Catalytic Process To Produce Hydrocarbons From Sugars  

DOE Patents (OSTI)

Disclosed is a method of producing hydrogen from oxygenated hydrocarbon reactants, such as methanol, glycerol, sugars (e.g. glucose and xylose), or sugar alcohols (e.g. sorbitol). The method takes place in the condensed liquid phase. The method includes the steps of reacting water and a water-soluble oxygenated hydrocarbon in the presence of a metal-containing catalyst. The catalyst contains a metal selected from the group consisting of Group VIIIB transitional metals, alloys thereof, and mixtures thereof. The disclosed method can be run at lower temperatures than those used in the conventional steam reforming of alkanes.

Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

2005-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Solar heat collector  

Science Conference Proceedings (OSTI)

A solar heat collector is described that pre-heats water for a household hot water heating system, and also heats the air inside a house. The device includes solar heating panels set into an A-shape, and enclosing an area therein containing a water tank and a wristatic fan that utilize the heat of the enclosed air, and transmit the thermal energy therefrom through a water line and an air line into the house.

Sykes, A.B.

1981-07-28T23:59:59.000Z

442

Woven heat exchanger  

DOE Patents (OSTI)

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

443

Physics and the Search for Hydrocarbons  

E-Print Network (OSTI)

Historical Note from 1979 #12;In 1979, US imported 30% of its oil supply. In 2010, US imported 61% of its oil photo · Anisotropic properties: electrical resistivity, fluid flow (permeability), acoustic propagation, creates pressure pulses Pressure waves travel inside drill pipe from downhole to rig Low data-rates: 1 ­24

Dai, Pengcheng

444

Urban Heat Catastrophes  

NLE Websites -- All DOE Office Websites (Extended Search)

The curve shows the heat index, which reflects the combined effect of temperature and humidity. Last year's Chicago heat wave created a great deal of human discomfort and,...

445

Energy Basics: Heating Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of energy sources, including electricity, boilers, solar energy, and wood and pellet-fuel heating. Small Space Heaters Used when the main heating system is inadequate or when...

446

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

447

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

448

Mass and Heat Recovery  

E-Print Network (OSTI)

In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building (air to air heat exchanger). In my papers I use (water to air heat exchanger) as a heat recovery and I use the water as a mass recovery. The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines.

Hindawai, S. M.

2010-01-01T23:59:59.000Z

449

Energy Basics: Water Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Water Heaters Tankless Demand Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil & Indirect Water Heaters Water Heating A variety of...

450

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

451

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

452

Heat Pump for High School Heat Recovery  

E-Print Network (OSTI)

The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system has good economic property, can conserve energy and protects the environment. Therefore, there is a large potential for its development. In addition, three projects using this system are presented and contrasted, which indicate that a joint system that uses both the heat pump and heat exchanger to recycle waste heat is a preferable option.

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

453

Heat Transfer of a Multiple Helical Coil Heat Exchanger Using a Microencapsulated Phase Change Material Slurry  

E-Print Network (OSTI)

The present study has focused on the use of coil heat exchangers (CHEs) with microencapsulated phase change material (MPCM) slurries to understand if CHEs can yield greater rates of heat transfer. An experimental study was conducted using a counterflow CHE consisting of 3 helical coils. Two separate tests were conducted, one where water was used as heat transfer fluid (HTF) on the coil and shell sides, respectively; while the second one made use of MPCM slurry and water on the coil and shell sides, respectively. The NTU-effectiveness relationship of the CHE when MPCM fluid is used approaches that of a heat exchanger with a heat capacity ratio of zero. The heat transfer results have shown that when using a MPCM slurry, an increase in heat transfer rate can be obtained when compared to heat transfer results obtained using straight heat transfer sections. It has been concluded that the increased specific heat of the slurry as well as the fluid dynamics in helical coil pipes are the main contributors to the increased heat transfer.

Gaskill, Travis

2011-12-01T23:59:59.000Z

454

Geothermal heat pump analysis article  

U.S. Energy Information Administration (EIA)

heat pump transfers heat from the ground or ground water to provide space heating. In the summer, the heat transfer process is reversed; the ground or groundwater

455

Effects of particle concentration and surfactant use in convective heat transfer of CuO nanofluids in microchannel flow.  

E-Print Network (OSTI)

??Heat exchange systems used in everything from cars to microelectronics have rapidly advanced in recent years to offer high heat transfer rates in increasingly smaller… (more)

Byrne, Matthew Davidson

2011-01-01T23:59:59.000Z

456

Variability of Gas Composition and Flux Intensity in Natural Marine Hydrocarbon Seeps  

E-Print Network (OSTI)

Energy Development and Technology 008 "Variability of gas composition and flux intensity in natural marine hydrocarbon seeps" Jordan

Clark, J F; Schwager, Katherine; Washburn, Libe

2005-01-01T23:59:59.000Z

457

Hydrocarbon compositions of high elongational viscosity and process for making the same  

SciTech Connect

A hydrocarbon composition is described consisting essentially of a hydrocarbon liquid and an ionic-association or coordination-complex polymer in an amount sufficient to increase and maintain the elongational viscosity of the composition at a level greater than that of the hydrocarbon alone. The polymer is capable of dissociation upon application of the high shear regime to which the hydrocarbon is subjected, and reassociation upon withdrawal of the high shear.

Hamil, H.F.; Weatherford, W.D. Jr.; Fodor, G.E.

1988-03-15T23:59:59.000Z

458

U.S. Product Supplied of Other Hydrocarbons/Oxygenates (Thousand ...  

U.S. Energy Information Administration (EIA)

Product Supplied for Hydrogen/Oxygenates/Renewables/Other Hydrocarbons ; U.S. Product Supplied for Crude Oil and Petroleum Products ...

459

U.S. Exports of Other Hydrocarbons/Oxygenates (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Supply and Disposition; U.S. Exports of Crude Oil and Petroleum Products ...

460

ARM - Measurement - Latent heat flux  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsLatent heat flux govMeasurementsLatent heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Latent heat flux The time rate of flow for the specific enthalpy difference between two phases of a substance at the same temperature, typically water. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System EBBR : Energy Balance Bowen Ratio Station

Note: This page contains sample records for the topic "heat rates hydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ARM - Measurement - Sensible heat flux  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsSensible heat flux govMeasurementsSensible heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Sensible heat flux The time rate of flow for the energy transferred from a warm or hot surface to whatever is touching it, typically air. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System EBBR : Energy Balance Bowen Ratio Station

462

Recovery of normally gaseous hydrocarbons from net excess hydrogen in a catalytic reforming process  

Science Conference Proceedings (OSTI)

A process is disclosed for the catalytic reforming of hydrocarbons in the presence of hydrogen, preferably to produce high quality gasoline boiling range products. An improved recovery of normally gaseous hydrocarbons from the net excess hydrogen is realized by chilling and contacting said hydrogen with a normally liquid hydrocarbon stream in a plural stage absorption zone at an elevated pressure.

Scheifele, C.A.

1982-06-08T23:59:59.000Z

463

Fundamental studies in production of C[sub 2]-C[sub 4] hydrocarbons from coal  

DOE Green Energy (OSTI)

The following conclusions can be drawn from the result obtained in this kinetic study of single stage coal gasification to hydrocarbon (HC) gases high in C[sub 2]-C[sub 4] hydrocarbons. It was observed that the direct conversion of coal to HC gases involves two steps. The first step is thermal cleavage of the coal structure to produce liquids with small amounts of gases and coke. The second step is conversion of liquids to gases. Coal to liquids occurs very rapidly and was completed within 10 minutes. Liquids to gases is the rate-determining step of the overall process. The conversion of liquids to gases was observed to follow first order kinetics. The first order kinetics treatment of the data by isothermal approximation gave an apparent activation energy of approximately 23 kcal/mol. The first order kinetics treatment of the data by a more rigorous non-isothermal method gave an activation energy of 26 kcal/mol. The quantity of HC gases produced directly from coal reached a constant value of about l0% of the dmmf coal at a reaction time of 10 miutes. Most of the HC gases were produced from the liquids. The study of model compounds shows that conversion of liquids to HC gases.proceeds through a carbonium ion mechanism, and this accounts for the production of C[sub 2]-C[sub 4] gases. Liquid to gases occurs by a catalytic hydrocracking reaction.

Wiser, W.H.; Oblad, A.G.

1993-03-01T23:59:59.000Z

464

THERMOCATALYTIC CO2-FREE PRODUCTION OF HYDROGEN FROM HYDROCARBON FUELS  

E-Print Network (OSTI)

, preferential oxidation) and gas separation stages required by conventional technologies (e.g., steam reforming and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive-situ generation of catalytically active carbon species produced by co-decomposition of methane and unsaturated and

465

Conversion of methane and acetylene into gasoline range hydrocarbons  

E-Print Network (OSTI)

Conversion of methane and acetylene to higher molecular weight hydrocarbons over zeolite catalyst (HZSM-5) was studied The reaction between methane and acetylene successfully produced high molecular weight hydrocarbons, such as naphthalene, benzene, indene, azulene, fluorene, and biphenyl substituted compounds. Also, lighter hydrocarbons, such as ethylene and isobutene were produced. The reaction was conducted at different operating temperatures and different molar feed composition. The results showed that the conversion of both reactants increased with increasing the operating temperature; for example a conversion of 95.1% was achieved for acetylene at 350°C and 98.6% at 412°C. In addition, the conversion of both reactants decreased with increasing the molar feed ratio of methane to acetylene. A conversion of 96.4% for acetylene was achieved at a molar feed ratio of 6 to 1 (methane to acetylene) and 80.9% at a molar feed ration of 20 to 1 (methane to acetylene). The reaction of methane and ethane over HZSM-5 catalyst also led to the production of high molecular weight hydrocarbons, mainly aromatics, and some lighter products such as propane, and ethylene. Also methane by itself showed the ability to react over HZSM-5 to produce a small amount of aromatics, and ethylene.

Alkhawaldeh, Ammar

2000-01-01T23:59:59.000Z

466

Heat Treatment, Microstructure, and Creep Strength of ?/? - TMS  

Science Conference Proceedings (OSTI)

gas flow was used as a cooling medium was made in comparison with the high rate solidification .... of density, heat transfer rate, and high temperature stability. The temperature was measured at ... cross section were encir- cled by the ordered ...

467

Biodegradability of select polycyclic aromatic hydrocarbon (pah) mixtures  

E-Print Network (OSTI)

Polycyclic aromatic hydrocarbons (PAHs) are environmentally significant because of their ubiquity and the toxicity of some. Their recalcitrance and persistence makes them problematic environmental contaminants. Microbial degradation is considered to be the primary mechanism of PAH removal from the environment. Biodegradation kinetics of individual PAHs by pure and mixed cultures have been reported by several researchers. However, contaminated sites commonly have complex mixtures of PAHs whose individual biodegradability may be altered in mixtures. Biodegradation kinetics for fluorene, naphthalene, 1,5-dimethylnaphthalene and 1- methylfluorene were evaluated in sole substrate systems, binary and ternary systems using Sphingomonas paucimobilis EPA505. The Monod model was fitted to the data from the sole substrate experiments to yield biokinetic parameters, (qmax and Ks). The first order rate constants (qmax/Ks) for fluorene, naphthalene and 1,5- dimethylnaphthalene were comparable, although statistically different. However, affinity constants for the three compounds were not comparable. Binary and ternary experiments indicated that the presence of another PAH retards the biodegradation of the co-occurring PAH. Antagonistic interactions between substrates were evident in the form of competitive inhibition, demonstrated mathematically by the Monod multisubstrate model. This model appropriately predicted the biodegradation kinetics in mixtures using the sole substrate parameters, validating the hypothesis of common enzyme systems. Competitive inhibition became pronounced under conditions of: Ks1 > Ks1 and S1 >> S. Experiments with equitable concentrations of substrates demonstrated the effect of concentration on competitive inhibition. Ternary experiments with naphthalene, 1,5-dimethylnapthalene and 1-methylfluorene revealed preferential degradation, where depletion of naphthalene and 1,5-dimethylnapthalene proceeded only after the complete removal of 1-methylfluorene. The substrate interactions observed in binary and ternary mixtures require a multisubstrate model to account for simultaneous degradation of substrates. However, developing models that account for sequential degradation may be useful in scenarios where PAHs may not be competitive substrates. These mixture results prove that substrate interactions must be considered in designing effective bioremediation strategies and that sole substrate performance is limited in predicting biodegradation kinetics of complex mixtures.

Desai, Anuradha M.

2005-12-01T23:59:59.000Z

468

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

Kirol, Lance D. (Shelly, ID)

1988-01-01T23:59:59.000Z

469

Direct fired heat exchanger  

DOE Patents (OSTI)

A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1986-01-01T23:59:59.000Z

470

Woven heat exchanger  

DOE Patents (OSTI)

In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, Roger R. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

471

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

472

Reclamation and reuse of freon in total petroleum hydrocarbon analyses  

SciTech Connect

ADS is using a commercially available solvent reclamation system to recycle 95-97 percent of the Freon used in total petroleum hydrocarbon analyses. ADS has further developed the commercially available solvent reclamation system to accommodate radioactive contaminated Freon. This report establishes the following: validity of the method; success of recycling; and effect of radionuclides in recycling radioactive contaminated Freon. The standard analysis method for determining total petroleum hydrocarbons (commonly known as oil and grease determination) involves solvent extraction of the hydrocarbons using Freon followed by quantitation using infrared detection. This has been the method of choice because it is simple, rugged, inexpensive, and applicable to both solid and liquid samples and to radioactive samples. Due to its deleterious effect on the ozone layer, the use of Freon and other chloro-fluorocarbons (CFCs) has been greatly restricted. Freon has become very expensive (800$/liter) and will soon be unavailable entirely. Several methods have been proposed to replace the Freon extraction method. These methods include solid-phase extraction, solvent extraction, and supercritical fluid extraction all of which use gravimetric determination or infrared analysis of the extracted hydrocarbons. These methods are not as precise or as sensitive as the Freon extraction method, and a larger amount of sample is therefore required due to the decreased sensitivity. The solid phase extraction method cannot accommodate solid samples. Supercritical fluid extraction requires expensive instrumentation. ADS opted to keep the existing Freon method and recycle the solvent. An inexpensive solvent reclamation system was procured to reclaim the spent Freon. This reclaimer removes hydrocarbons from the Freon solvent by passage through an activated carbon bed.

Ekechukwu, A.A.; Peterson, S.F.

1996-04-01T23:59:59.000Z

473

Heating of trapped ions from the quantum ground state  

E-Print Network (OSTI)

We have investigated motional heating of laser-cooled 9Be+ ions held inradio-frequency (Paul) traps. We have measured heating rates in a variety oftraps with different geometries, electrode materials, and characteristic sizes.The results show that heating is due to electric-field noise from the trapelectrodes which exerts a stochastic fluctuating force on the ion. The scalingof the