National Library of Energy BETA

Sample records for heat rate-see table

  1. Minimum Efficiency Requirements Tables for Heating and Cooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (FEMP) created tables that mirror American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013 tables, which include minimum efficiency...

  2. Tables for solution of the heat-conduction equation with a time-dependent heating rate

    E-Print Network [OSTI]

    Bergles A. E.

    1962-01-01

    Tables are presented for the solution of the transient onedimensional heat flow in a solid body of constant material properties with the heating rate at one boundary dependent on time. These tables allow convenient and ...

  3. ASHRAE Minimum Efficiency Requirements Tables for Heating and Cooling Product Categories

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) created tables that mirror American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013 tables, which include minimum efficiency requirements for FEMP-designated and ENERGY STAR-qualified heating and cooling product categories. Download the tables below to incorporate FEMP and ENERGY STAR purchasing requirements into federal product acquisition documents.

  4. Physics 1114: Unit 7 Homework Use the table in your text for specific heat capacity values.

    E-Print Network [OSTI]

    Mansell, Edward "Ted"

    Physics 1114: Unit 7 Homework Use the table in your text for specific heat capacity values. Problem at 20 C? [Specific heat capacity of air = 703 J/(kg C ) at constant volume.] 7. What is the specific C? Specific Heat of Silver = 236 J/(kg C ) Melting point = 961 C Heat of Fusion = 8.7990 × 104 J

  5. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  6. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 636 580 46 1 Q 114.0...

  7. "Table HC11.5 Space Heating Usage Indicators by Northeast Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,3.2,2.2,1 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,"N","N","N" "Central Warm-Air Furnace",2.3,"Q","Q","Q" "SteamHot Water...

  8. "Table HC13.5 Space Heating Usage Indicators by South Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,8.5,3.9,2.2,2.4 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,0.4,0.3,"Q","N" "Central Warm-Air Furnace",2.3,0.7,0.3,0.2,"Q" "SteamHot...

  9. "Table HC10.5 Space Heating Usage Indicators by U.S. Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,3.2,6.9,8.5,6.1 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,"N","Q",0.4,"Q" "Central Warm-Air Furnace",2.3,"Q",0.9,0.7,0.6 "SteamHot...

  10. "Table HC14.5 Space Heating Usage Indicators by West Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,6.1,2,4.1 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,"Q","N","Q" "Central Warm-Air Furnace",2.3,0.6,"Q",0.5 "SteamHot Water...

  11. "Table HC12.5 Space Heating Usage Indicators by Midwest Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,6.9,4.7,2.2 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,"Q","Q","Q" "Central Warm-Air Furnace",2.3,0.9,0.5,0.3 "SteamHot Water...

  12. Table 5a. Total District Heat Consumption per Effective Occupied Square

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060 0 1 02. U.S.8.

  13. Table 5b. Relative Standard Errors for Total District Heat Consumption per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060 0 1 02. U.S.8.Effective

  14. TABLE OF CONTENTS ABSTRACT . . .. . . .. . . . . . . . . . . . . . . . . . . . . . v

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ........................................................ 2 City Selection ................................................ 2 Weather Data and Building Loads. MONTHLY HEAT GAIN/LOSS FACTORS ........................... 5 TABLE 2. BASE TEMPERATURES

  15. "Table B26. Water-Heating Energy Sources, Floorspace, 1999"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6. Total1.6.6. Water-Heating

  16. Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales Volumes & Stocks9a.5 Space Heating

  17. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 6: Process Heat and Hydrogen Co-Generation PIRTs

    SciTech Connect (OSTI)

    Forsberg, Charles W; Gorensek, M. B.; Herring, S.; Pickard, P.

    2008-03-01

    A Phenomena Identification and Ranking Table (PIRT) exercise was conducted to identify potential safety-0-related physical phenomena for the Next Generation Nuclear Plant (NGNP) when coupled to a hydrogen production or similar chemical plant. The NGNP is a very high-temperature reactor (VHTR) with the design goal to produce high-temperature heat and electricity for nearby chemical plants. Because high-temperature heat can only be transported limited distances, the two plants will be close to each other. One of the primary applications for the VHTR would be to supply heat and electricity for the production of hydrogen. There was no assessment of chemical plant safety challenges. The primary application of this PIRT is to support the safety analysis of the NGNP coupled one or more small hydrogen production pilot plants. However, the chemical plant processes to be coupled to the NGNP have not yet been chosen; thus, a broad PIRT assessment was conducted to scope alternative potential applications and test facilities associated with the NGNP. The hazards associated with various chemicals and methods to minimize risks from those hazards are well understood within the chemical industry. Much but not all of the information required to assure safe conditions (separation distance, relative elevation, berms) is known for a reactor coupled to a chemical plant. There is also some experience with nuclear plants in several countries that have produced steam for industrial applications. The specific characteristics of the chemical plant, site layout, and the maximum stored inventories of chemicals can provide the starting point for the safety assessments. While the panel identified events and phenomena of safety significance, there is one added caveat. Multiple high-temperature reactors provide safety-related experience and understanding of reactor safety. In contrast, there have been only limited safety studies of coupled chemical and nuclear plants. The work herein provides a starting point for those studies; but, the general level of understanding of safety in coupling nuclear and chemical plants is less than in other areas of high-temperature reactor safety.

  18. Table Search (or Ranking Tables)

    E-Print Network [OSTI]

    Halevy, Alon

    ;Table Search #3 #12;Outline · Goals of table search · Table search #1: Deep Web · Table search #3 search Table search #1: Deep Web · Table search #3: (setup): Fusion Tables · Table search #2: WebTables ­Version 1: modify document search ­Version 2: recover table semantics #12;Searching the Deep Web store

  19. Table of Contents Page i 2013 Residential Compliance Manual January 2014

    E-Print Network [OSTI]

    Table of Contents Page i 2013 Residential Compliance Manual January 2014 Table of Contents 5. Water Heating Requirements ................................................................................................................................1 5.1.1 Water Heating Energy

  20. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  1. General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunities NuclearlongGeneral Tables The General Tables for

  2. Passive solar heating analysis

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, R.W.; Mc Farland, R.D.; Wray, W.O.

    1984-01-01

    This book discusses about the design of solar heating systems. The terms and symbols are clearly defined. Step-by-step procedures are indicated. Worked examples are given with tables, graphs, appendixes.

  3. 2003 CBECS RSE Tables

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of the Excel tables (access from main detailed tables page) or in PDF format here: Building Characteristics for All Buildings (Tables A1-A8) RSE Tables: PDF, 16 pages, 312KB...

  4. Incorporate Minimum Efficiency Requirements for Heating and Cooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about FEMP-designated and ENERGY STAR-qualified heating, ventilating, and air conditioning (HVAC) and water heating products into tables that mirror American Society of...

  5. Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating SPECIFICATION, CHECKLIST AND GUIDE Renewable Energy Ready Home Table of Contents About the Renewable Energy Ready Home Specifications Assumptions of the RERH Solar...

  6. Table of Contents Page i 2013 Residential Compliance Manual January 2014

    E-Print Network [OSTI]

    Table of Contents Page i 2013 Residential Compliance Manual January 2014 Table of Contents 8, but incorporating all features of Prescriptive Package A. The energy budget includes water heating, space heating and water heating energy use in accordance with a detailed set of rules. The computer programs models

  7. Global Analysis of Heat Shock Response in Desulfovibrio vulgaris Hildenborough.

    E-Print Network [OSTI]

    Chhabra, S.R.

    2010-01-01

    A novel class of heat and secretion stress-responsive genesas a thermometer of heat stress and modulates the activityenhanced at 60 min of heat stress. From Table 3, it appears

  8. Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water 

    E-Print Network [OSTI]

    Cawley, R.

    1992-01-01

    % and that this amounts to the full daily need of 14.4 KW-HR. Table 5 (right column) shows the hour by hour demand' for a standard non-integrated heat pump used in conjunction with a water heater having efficiency of 87%, The draw schedule in Table 5 is the same...

  9. TableHC5.8.xls

    Gasoline and Diesel Fuel Update (EIA)

    0.5 Q 0.3 0.7 0.7 0.5 0.4 Q Table HC5.8 Water Heating Characteristics by Year of Construction, 2005 Million U.S. Housing Units 2000 to 2005 Year of Construction Housing Units...

  10. Hot cell examination table

    DOE Patents [OSTI]

    Gaal, Peter S. (Monroeville, PA); Ebejer, Lino P. (Weston, MA); Kareis, James H. (Slickville, PA); Schlegel, Gary L. (McKeesport, PA)

    1991-01-01

    A table for use in a hot cell or similar controlled environment for use in examining specimens. The table has a movable table top that can be moved relative to a table frame. A shaft is fixedly mounted to the frame for axial rotation. A shaft traveler having a plurality of tilted rollers biased against the shaft is connected to the table top such that rotation of the shaft causes the shaft traveler to roll along the shaft. An electromagnetic drive is connected to the shaft and the frame for controllably rotating the shaft.

  11. SEP Program Transition Tables

    Broader source: Energy.gov [DOE]

    The Program Transition Tables provide information concerning the level of effort required to move from a traditional, industrial incentive program to Strategic Energy Management, ISO 50001, or SEP.

  12. Description of Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    for the 1999 Commercial Buildings Energy Consumption Survey (CBECS) consists of building characteristics tables B1 through B39, which contain the number of buildings and...

  13. SCHOOLOFSCIENCE Table of Contents

    E-Print Network [OSTI]

    Varela, Carlos

    SCHOOLOFSCIENCE Table of Contents Degrees Offered and Associated Departments 330 Overview Environmental Science 403 Interdisciplinary Science 407 Multidisciplinary Science 409 The Darrin Fresh Water

  14. Environmental Justice Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... H-1 Table H-1. Poverty Thresholds in 1999 by Size of Family and Number of Related Children Under 18 Years...

  15. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Oil Tables (10 pages, 58 kb) CONTENTS PAGES Table 26. Total Fuel Oil Consumption and Expenditures, 1995 Table 27. Fuel Oil Consumption and Expenditure Intensities, 1995 Table...

  16. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  17. TABLE OF NUCLIDES

    E-Print Network [OSTI]

    Shirley, V.S.

    2008-01-01

    1980) RECEIVED TABLE OF NUCLIDES V. S. Shirley and C. M.Office of Standard Reference Data. -ii- TABLE OF NUCLIDESNuclide Z EI 0 n I H A B B Abundance or t 1 / 2 10.6 m 12.33

  18. 2003 CBECS Detailed Tables: Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Tables 2003 CBECS Detailed Tables most recent available Released: September 2008 Building Characteristics | Consumption & Expenditures | End-Use Consumption In the 2003 CBECS,...

  19. Tables of thermodynamic properties of sodium

    SciTech Connect (OSTI)

    Fink, J.K.

    1982-06-01

    The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units.

  20. SCHOOLOFSCIENCE Table of Contents

    E-Print Network [OSTI]

    Varela, Carlos

    SCHOOLOFSCIENCE Table of Contents Degrees Offered and Associated Departments 324 Overview The Darrin Fresh Water Institute 401 New York Center for Studies on the Origins of Life 402 New York State

  1. 1997 Housing Characteristics Tables Housing Unit Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n p o J d

  2. 1997 Housing Characteristics Tables Housing Unit Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n p o J dPercent

  3. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Tables (35 pages, 218 kb) CONTENTS PAGES Table 9. Total Electricity Consumption and Expenditures, 1995 Table 10. Electricity Consumption and Expenditure Intensities,...

  4. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    kb) CONTENTS PAGES Table 1. Total Energy Consumption by Major Fuel, 1995 Table 9. Total Electricity Consumption and Expenditures, 1995 Table 20. Total Natural Gas Consumption and...

  5. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    pages, 95 kb) CONTENTS PAGES Table 3. Consumption for Sum of Major Fuels, 1995 Table 10. Electricity Consumption and Expenditure Intensities, 1995 Table 21. Natural Gas...

  6. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    kb) CONTENTS PAGES Table 2. Total Energy Expenditures by Major Fuel, 1995 Table 9. Total Electricity Consumption and Expenditures, 1995 Table 20. Total Natural Gas Consumption and...

  7. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    pages, 95 kb) CONTENTS PAGES Table 4. Expenditures for Sum of Major Fuels, 1995 Table10. Electricity Consumption and Expenditure Intensities, 1995 Table 21. Natural Gas...

  8. ISSUE TABLE OF CONTENTS

    E-Print Network [OSTI]

    SPECTRA HOME CURRENT ISSUE TABLE OF CONTENTS TECHNOLOGY BUSINESS PRESSTIME BULLETIN ARTICLE Thomas Young's classic setup for the demonstration of interference features light from one source incident on two vertical slits because the phenomenon occurs only if the light from the slits has a well

  9. Table of Contents Introduction

    E-Print Network [OSTI]

    Nagy, Eric Sándor

    include nitrogen oxides (NOx = NO + NO2 ), nitric acid (HNO3 ), nitrous oxide (N2 O, a greenhouse gas.TheHaber-BoschprocessalsosuppliesNH3 for industrial processes. Anthropogenic sources of nitrogen are twice as large as natural terDRAFT - 1 #12;2 - DRAFT Table of Contents Introduction What is Reactive Nitrogen and Why

  10. Energy.gov Data Tables

    Broader source: Energy.gov [DOE]

    Follow these guidelines for creating Section 508-compliant data tables in the Energy.gov Drupal environment.

  11. 2005 ASHRAE. 109 Groundwater heat pump systems using standing column

    E-Print Network [OSTI]

    borehole that is filled with groundwater up to the level of the water table. Water is circulated from in growing numbers since the advent of geothermal heat pump systems and are recently receiving much more benefits, low maintenance, etc., as other forms of geothermal heat pump systems. The heat exchange rate

  12. THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUSSOLUTIONS DATABASE

    SciTech Connect (OSTI)

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.

    1988-05-01

    Tables of consistent thermodynamic property values for nuclear waste isolation are given. The tables include critically assessed values for Gibbs energy of formation. enthalpy of formation, entropy and heat capacity for minerals; solids; aqueous ions; ion pairs and complex ions of selected actinide and fission decay products at 25{sup o}C and zero ionic strength. These intrinsic data are used to calculate equilibrium constants and standard potentials which are compared with typical experimental measurements and other work. Recommendations for additional research are given.

  13. A=19 Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion1AJ01)72AJ02) (See Energy1959AJ76) (See95TI07)Tables for

  14. A=20 Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion1AJ01)72AJ02) (See72AJ02)1959AJ76)83AJ01)Tables for A =

  15. 9He General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351APPLICATION OFsaferHe General Table The

  16. 9Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351APPLICATION OFsaferHe General Table

  17. A = 10 General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351APPLICATIONPostdoctoral10 General Tables

  18. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel Production 1:PhysicsSyndicated Contentwo2 TABLE OF

  19. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel Production 1:PhysicsSyndicated Contentwo2 TABLE OF

  20. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel Production 1:PhysicsSyndicated Contentwo2 TABLE OF

  1. FY 2005 Statistical Table

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report to Congress More Documents & PublicationsTable of

  2. Annual Coal Distribution Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc. Real73 Table

  3. compare_tables.xlsx

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 Cooling Degree-Days by038.2Natural

  4. Microsoft Word - table_11

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See(STEO) Highlights1199,0,26,27 Table 11

  5. Microsoft Word - table_13

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See(STEO) Highlights1199,0,26,27 Table 11

  6. Health Care Buildings: Subcategories Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Subcategories Table Selected Data by Type of Health Care Building Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet) Percent of Floorspace Square...

  7. Health Care Buildings: Equipment Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Equipment Table Buildings, Size and Age Data by Equipment Types for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet)...

  8. 1999 Commercial Building Characteristics--Detailed Tables--Principal...

    U.S. Energy Information Administration (EIA) Indexed Site

    Principal Building Activities > Detailed Tables-Principal Building Activities Complete Set of 1999 CBECS Detailed Tables Detailed Tables-Principal Building Activities Table B1....

  9. 1999 Commercial Building Characteristics--Detailed Tables--Year...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Constructed > Detailed Tables-Year Constructed Complete Set of 1999 CBECS Detailed Tables Detailed Tables-Year Constructed Table B8. Year Constructed, Number of Buildings...

  10. Table of Contents Executive Summary

    E-Print Network [OSTI]

    McDonald, Kirk

    Table of Contents Page Executive Summary I. Introduction 1 Neutrino Oscillation Results from Solar and Atmospheric Neutrino Data 1 Tables 7 References 5 Figures 9 II. Overview of the Long Baseline Experiment 17 Magnetic Moment, Charge Radius, and Extra Z-bosons 261 VII. Cost and Schedule 265 Project schedule 267 Work

  11. Supplemental Material Table of Contents

    E-Print Network [OSTI]

    Kuchta, Shawn R.

    1 Supplemental Material Table of Contents Text on the multiple individuals per population phylogeny: pg 4 Supplemental Figure 1: Phylogram of U. stansburiana populations from the complete data set that included multiple individuals per population. pg 5 Supplemental Table 1: Population locations and years

  12. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  13. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  14. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  15. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  16. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Building Level Intensities (percentile) (6 pages, 39 kb) CONTENTS PAGES Table 10. Electricity Consumption and Expenditure Intensities, 1995 Table 21. Natural Gas Consumption and...

  17. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Gross Energy Intensity by Census Region for Sum of Major Fuels, 1995 Table 11. Electricity Consumption and Conditional Energy Intensity by Census Region, 1995 Table 22....

  18. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Gross Energy Intensity by Year Constructed for Sum of Major Fuels, 1995 Table 14. Electricity Consumption and Conditional Energy Intensity by Year Constructed, 1995 Table...

  19. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Gross Energy Intensity by Building Size for Sum of Major Fuels, 1995 Table13. Electricity Consumption and Conditional Energy Intensity by Building Size, 1995 Table 24....

  20. Appendix B: Technical Projection Tables, Bioenergy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Tables B-2 Last updated: November 2014 Table B-2: Terrestrial Feedstock Supply and Logistics Costs to Supply Feedstock to a Pyrolysis Conversion Process Processing Area Cost...

  1. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Category (6 pages, 36 kb) CONTENTS PAGES Table 17. Peak Electricity Demand Category, Number of Buildings, 1995 Table 18. Peak Electricity Demand Category, Floorspace, 1995 These...

  2. Commercial Small Fruit Table of Contents

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    ........................................................................................................................................ 2-1 Strawberries.................................................................................................................................................... 2-2 Table 2.1a - Strawberry Diseases, At Planting......................................................................................... 2-2 Table 2.1b - Strawberry Diseases, Post

  3. Commerial Buildings Characteristics, 1995 (Table of Contents...

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Buildings and Relative Standard Errors, 1995 Table I.2. Participation in Energy Conservation Programs, Floorspace and Relative Standard Errors, 1995 Table J.1....

  4. Trends in Commercial Buildings--Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Home > Trends in Commercial Buildings > Energy Consumption - Part 1> Site Energy Consumption Tables Table 1. Total site energy consumption, relative standard errors, and 95%...

  5. Annual Energy Outlook (AEO) 2006 - Supplemental Tables - All Tables

    SciTech Connect (OSTI)

    None

    2009-01-18

    Tables describing regional energy consumption and prices by sector; residential, commercial, and industrial demand sector data; transportation demand sector; electricity and renewable fuel; and petroleum, natural gas, and coal data.

  6. 1931DECEMBER 2004AMERICAN METEOROLOGICAL SOCIETY | PROGRESS IN HEAT WATCH

    E-Print Network [OSTI]

    Sheridan, Scott

    the United States some 10,000 deaths may have been associated with the oppressive heat (National Climatic climatology-based heat watch­warning systems have been implemented across the United States to improve. Systems are in place (Table 1) in a number of cities within the United States, including

  7. Table of Contents Eligibility Forms

    E-Print Network [OSTI]

    Transfer Protocol is a secure file transfer system H HVAC ­ Heating, Ventilation, Air Conditioning I IDS

  8. Minimum Efficiency Requirements Tables for Heating and Cooling Product

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F Wetlands Assessment JulyDepartmentColorado

  9. Table of tables: A database design tool for SYBASE

    SciTech Connect (OSTI)

    Brown, B.C.; Coulter, K.; Glass, H.D.; Glosson, R.; Hanft, R.W.; Harding, D.J.; Trombly-Freytag, K.; Walbridge, D.G.C.; Wallis, D.B. ); Allen, M.E. )

    1991-01-04

    The Table of Tables' application system captures in a set of SYBASE tables the basic design specification for a database schema. Specification of tables, columns (including the related defaults and rules for the stored values) and keys is provided. The feature which makes this application specifically useful for SYBASE is the ability to automatically generate SYBASE triggers. A description field is provided for each database object. Based on the data stored, SQL scripts for creating complete schema including the tables, their defaults and rules, their indexes, and their SYBASE triggers, are written by TOT. Insert, update and delete triggers are generated from TOT to guarantee integrity of data relations when tables are connected by single column foreign keys. The application is written in SYBASE's APT-SQL and includes a forms based data entry system. Using the features of TOT we can create a complete database schema for which the data integrity specified by our design is guaranteed by the SYBASE triggers generated by TOT. 3 refs.

  10. Two-dimensional heat transfer from earth-sheltered buildings

    SciTech Connect (OSTI)

    Krarti, M. (Steven Winter Associates, Inc., Norwalk, CT (US)); Claridge, D.E. (Texas A and M Univ., College Station, TX (USA). Dept. of Mechanical Engineering)

    1990-02-01

    This paper describes use of the interzone temperature profile estimation (or ITPE) technique, an analytical calculation procedure to predict heat transfer within earth in contact with a structure. The solutions governing steady-state and steady-periodic heat conduction are derived for rectangular earth-sheltered buildings. The procedure accepts continuously variable values of geometric dimensions, insulation levels, and constant soil thermal characteristics and considers the presence of a finite water table level. Soil temperature profiles are shown for both steady-state and steady periodic conditions. The effects of insulation and water table depth on the heat losses from an earth-sheltered building envelope are discussed.

  11. Health Care Buildings: Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Tables Sum of Major Fuel Consumption by Size and Type of Health Care Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per...

  12. Table of Contents Deschutes Subbasin Plan

    E-Print Network [OSTI]

    Table of Contents Deschutes Subbasin Plan Table of Contents Executive Summary 1. Purpose and Scope.1. Physical, Natural and Human Landscape ................................................2.1 2.2. Water, Table of Contents Page 1 #12;Table of Contents 7. Limiting Factors and Conditions .........

  13. Regulations and Basic Information Table of Contents

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Regulations and Basic Information Table of Contents Safe and Effective Use.) for Various Quantities of Water

  14. TABLE OF CONTENTS Content Page

    E-Print Network [OSTI]

    Li, Jiuyong "John"

    #12;TABLE OF CONTENTS Content Page Version 5.1 iii September 2012 Contents 1 INTRODUCTION 1-1 1;TABLE OF CONTENTS Content Page Version 5.1 iv September 2012 3 PLANNING AND DESIGN GUIDELINES 3-1 3 Noise 3-25 3.3.15 Optimise Light 3-25 3.3.16 Save Water 3-25 3.3.17 Minimise Waste 3-25 3.4 Green Star

  15. Microwave heating apparatus and method

    DOE Patents [OSTI]

    Johnson, Andrew J. (Boulder, CO); Petersen, Robert D. (Thornton, CO); Swanson, Stephen D. (Brighton, CO)

    1990-01-01

    An apparatus is provided for heating and melting materials using microwave energy, and for permitting them to solidify. The apparatus includes a microwave energy source, a resonant cavity having an opening in its floor, a microwave energy choke encompassing the opening in the floor of the cavity, a metal container to hold the materials to be heated and melted, a turntable, and a lift-table. During operation, the combined action of the turntable and the lift-table position the metal container so that the top of the container is level with the floor of the cavity, is in substantial registration with the floor opening, and is encompassed by the microwave energy choke; thus, during operation, the interior of the container defines part of the resonant cavity. Additionally, a screw feeder, extending into the cavity and sheltered from microwave energy by a conveyor choke, may convey the materials to be heated to the container. Also, preferably, the floor of the resonant cavity may include perforatins, so that the offgases and dust generated in the apparatus may be removed from the resonant cavity by pulling outside air between the container choke and the exterior wall of the container into the resonant cavity and out from the cavity through the perforations.

  16. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  17. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  18. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  19. Microsoft Word - table_15.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table0 Table

  20. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01

    heat available at night) Gas Turbine Work Table 3.2. StreamTurbine (small turbine) Gas Turbine Parasitic Power BFW PumpHours) Generator Terminals Gas Turbine Parasitic Power BFW

  1. ABSORPTION HEAT PUMP IN THE DISTRICT HEATING

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation of the DH plant Imanta · Selection of the heat pump/chiller · Operation of the heat pump/chiller · Summary

  2. Table Of Contents Section: Page

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Sep 13 i Section 2 SANITATION Table Of Contents Section: Page 02.A General Water......................................................... 2-1 02.D Non-Potable Water and openings. 02.C DRINKING WATER #12;EM 385-1-1 XX Sep 13 2-2 02.C.01 An adequate supply of potable water

  3. THINKING THESIS Table of Contents

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    THINKING THESIS GUIDEBOOK #12;#12;Table of Contents Part One: Getting Started 1. What the Honors aides 5. Final Turn in of the Thesis Appendix I. Sample Title Page II. Honors Mentor Declaration Form on to better things. Theodore Roosevelt #12;#12;Honors College Thesis Requirements There are several forms

  4. OUTLOOK BYLAWS Table of Contents

    E-Print Network [OSTI]

    OUTLOOK BYLAWS Table of Contents Article I - Legal Authority to Operate Article II - Scope-in-Chief and Responsible Director Article VIII - Funding of Outlook Article IX - Unused Funds Article X - Composition The publication of Outlook is authorized under a license granted to AUB by decision No. 113 issued by the Lebanese

  5. Table of Contents INTRODUCTION 2

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    #12;1 Table of Contents INTRODUCTION 2 SECTION ONE: PRINCIPLES OF GOOD PRACTICE 4 SECTION TWO, it offers a practical guide to staff and volunteers who work with children by outlining a number of fundamental principles of good practice, highlighting the key elements of each one and discussing the issues

  6. Student Handbook TABLE OF CONTENTS

    E-Print Network [OSTI]

    Horowitz, Leah S.

    1 Student Handbook 2014-2015 TABLE OF CONTENTS Comprehensive Nondiscrimination Statement 3 Sex Student Handbook Comprehensive Nondiscrimination Policy The provisions of this handbook of the services, programs or activities described in this handbook. The most up-to-date handbook can be found

  7. HOUSING POLICY Table of Contents

    E-Print Network [OSTI]

    HOUSING POLICY Table of Contents Housing Policy Housing Rules and Regulations Appendix I contact: policies@aub.edu.lb. Last updated on: August 14, 2014 #12;HOUSING POLICY Section 1 - Policy Section 2 - Housing Purchase Plan (HPP) Section 3 - Procedure for the Implementation of the Housing

  8. TABLE OF CONTENTS: Building Executive Definition.......................................................................3

    E-Print Network [OSTI]

    Capogna, Luca

    #12;TABLE OF CONTENTS: Building Executive Definition.......................................................................3 Building Executives Areas of Responsibilities ...................................................................................5 Building Safety and Security Issues

  9. Table Contents Page i 2013 Nonresidential Compliance Manual January 2014

    E-Print Network [OSTI]

    Table Contents Page i 2013 Nonresidential Compliance Manual January 2014 Table of Contents........................................................................5 Table F-1 Small Water Heater Test Methods ..................................................................................6 Table F-2 Large Water Heater Test Methods

  10. 1999 Commercial Building Characteristics--Detailed Tables--Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Region > Detailed Tables-Census Region Complete Set of 1999 CBECS Detailed Tables Detailed Tables-Census Region Table B3. Census Region, Number of Buildings and Floorspace...

  11. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  12. Heat Transfer Boundary Conditions in the RELAP5-3D Code

    SciTech Connect (OSTI)

    Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

    2008-05-01

    The heat transfer boundary conditions used in the RELAP5-3D computer program have evolved over the years. Currently, RELAP5-3D has the following options for the heat transfer boundary conditions: (a) heat transfer correlation package option, (b) non-convective option (from radiation/conduction enclosure model or symmetry/insulated conditions), and (c) other options (setting the surface temperature to a volume fraction averaged fluid temperature of the boundary volume, obtaining the surface temperature from a control variable, obtaining the surface temperature from a time-dependent general table, obtaining the heat flux from a time-dependent general table, or obtaining heat transfer coefficients from either a time- or temperature-dependent general table). These options will be discussed, including the more recent ones.

  13. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ living --- HEATERâ??ACTIVE --- ACTIVATINGâ??HEATER --- HEATERâ??RUNNING ; #12; APPENDIX A. HEATING SYSTEM SPECIFICATION

  14. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    The Small Particle Heat Exchange Receiver (SPHER) for Solarof the small particle heat exchange receiver (or SPHER), asabsorption process, the heat exchange to the gas, the choice

  15. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  16. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  17. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  18. 1997 Housing Characteristics Tables Home Office Equipment Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n p o J d VPercent

  19. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  20. Heat transfer and heat exchangers reference handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-15

    The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

  1. Integrated heat pump and heat storage system

    SciTech Connect (OSTI)

    Katz, A.

    1983-09-13

    An integrated heat pump and heat storage system is disclosed comprising a heat pump, a first conduit for supplying return air from an enclosure to the heat pump, a second conduit for supplying heated air from the heat pump to the enclosure, heat storage apparatus. A first damper is operative in a first orientation to permit return air from the enclosure to enter the first conduit and to prevent return air from passing through the heat storage apparatus and operative in a second orientation to cause return air to pass through the heat storage apparatus for being heated thereby before entering the first conduit. A second damper is operative in a first orientation to cause heated air from the second conduit to pass through the heat storage apparatus for giving up a portion of its heat for storage and operative in a second orientation to prevent heated air from the second conduit from passing through the heat storage apparatus and to permit the heated air from the second conduit to reach the enclosure. The heat storage apparatus may comprise phase change materials.

  2. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED STATES

  3. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED STATES4

  4. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED STATES48

  5. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED STATES4838

  6. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED

  7. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED5.4 from

  8. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED5.4 from6

  9. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED5.4

  10. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OFEnergy-8,nTWISTUNITED5.47AJ02):

  11. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT

  12. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT0AJ01): Some electromagnetic

  13. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT0AJ01): Some electromagnetic1AJ01):

  14. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT0AJ01): Some

  15. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT0AJ01): Some2012KE01): Some

  16. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT0AJ01): Some2012KE01): Some5TI07):

  17. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT0AJ01): Some2012KE01):

  18. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT0AJ01): Some2012KE01):2002TI10):

  19. Transient critical heat flux and blowdown heat-transfer studies

    SciTech Connect (OSTI)

    Leung, J.C.

    1980-05-01

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  20. Environmental regulatory update table, July 1991

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-08-01

    This Environmental Regulatory Update Table (July 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  1. Environmental Regulatory Update Table, December 1989

    SciTech Connect (OSTI)

    Houlbert, L.M.; Langston, M.E. ); Nikbakht, A.; Salk, M.S. )

    1990-01-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  2. Environmental Regulatory Update Table, December 1991

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1992-01-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  3. Environmental Regulatory Update Table, September 1991

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-10-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  4. Environmental Regulatory Update Table, November 1991

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-12-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  5. Environmental Regulatory Update Table, October 1991

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-11-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  6. Environmental Regulatory Update Table, August 1991

    SciTech Connect (OSTI)

    Houlberg, L.M., Hawkins, G.T.; Salk, M.S.

    1991-09-01

    This Environmental Regulatory Update Table (August 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  7. Environmental Regulatory Update Table, October 1990

    SciTech Connect (OSTI)

    Houlberg, L.M.; Noghrei-Nikbakht, P.A.; Salk, M.S.

    1990-11-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  8. Table-top job analysis

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The purpose of this Handbook is to establish general training program guidelines for training personnel in developing training for operation, maintenance, and technical support personnel at Department of Energy (DOE) nuclear facilities. TTJA is not the only method of job analysis; however, when conducted properly TTJA can be cost effective, efficient, and self-validating, and represents an effective method of defining job requirements. The table-top job analysis is suggested in the DOE Training Accreditation Program manuals as an acceptable alternative to traditional methods of analyzing job requirements. DOE 5480-20A strongly endorses and recommends it as the preferred method for analyzing jobs for positions addressed by the Order.

  9. CBECS Buildings Characteristics --Revised Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S.End-Use Equipment Tables

  10. Microsoft Word - table_07.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table 7.

  11. Microsoft Word - table_08.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table 7.5

  12. Microsoft Word - table_09.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table 7.50

  13. Microsoft Word - table_13.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table 7.503

  14. Microsoft Word - table_14.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table

  15. Microsoft Word - table_17.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table0

  16. Microsoft Word - table_18.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table05

  17. Microsoft Word - table_19.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table057

  18. Microsoft Word - table_20.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table0578

  19. Microsoft Word - table_21.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table05789

  20. Microsoft Word - table_22.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table057890

  1. Microsoft Word - table_23.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table0578906

  2. Microsoft Word - table_24.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy8 Table0578906

  3. Microsoft Word - table_26.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy87 Table 27.

  4. Microsoft Word - table_27.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy87 Table 27.98

  5. All Consumption Tables.vp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShale natural gasU.S.Day)4)

  6. All Consumption Tables.vp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShale natural gasU.S.Day)4)7)

  7. All Consumption Tables.vp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShale natural

  8. All Consumption Tables.vp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShale natural2) June 2014

  9. All Price Tables.vp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShale natural2) June 20144)

  10. All Price Tables.vp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShale natural2) June 20144)7)

  11. All Price Tables.vp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotesShale natural2) June

  12. TABLE53.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 53. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between July 2004 Crude Oil ... 0 383 0...

  13. TABLE15.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 15. PAD District III-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

  14. TABLE11.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    (Thousand Barrels) Table 11. PAD District II-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum January-July 2004 Products, Crude Oil...

  15. TABLE19.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table 19. PAD District IV-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

  16. TABLE54.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Administration (EIA) Forms EIA-812, "Monthly Product Pipeline Report," and EIA-813, Monthly Crude Oil Report." Table 54. Movements of Crude Oil and Petroleum Products by Pipeline...

  17. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    (3 pages, 20 kb) CONTENTS PAGES Table 19. Distribution of Peak Watts per Square Foot and Load Factors, 1995 These data are from the 1995 Commercial Buildings Energy...

  18. TableHC2.7.xls

    Gasoline and Diesel Fuel Update (EIA)

    Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal Assistance 1 2005 Household Income Housing Units (millions)...

  19. STRATEGIC RESEARCH PLAN TABLE OF CONTENTS

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    SFU STRATEGIC RESEARCH PLAN 2010-2015 #12;TABLE OF CONTENTS Introduction........................................................................................ 2 Major Objectives of the Strategic Research Plan (SRP.................................................................................................27 Impact of the Strategic Research Plan

  20. GIS DEVELOPMENT GUIDE Table of Contents

    E-Print Network [OSTI]

    Ghelli, Giorgio

    GIS DEVELOPMENT GUIDE Volume II Table of Contents SURVEY OF AVAILABLE DATA Introduction ...................................................................................13 EVALUATING GIS HARDWARE AND SOFTWARE Introduction ...................................................................................14 Sources of Information About GIS......................................................14 GIS

  1. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    15. Season of Peak Electricity Demand, Number of Buildings and Floorspace, 1995 Table 16. Electricity Consumption and Conditional Energy Intensity by Season of Peak Demand, 1995...

  2. 2011 Annual Report Table of Contents

    E-Print Network [OSTI]

    ) ...................12 Smart Grid Cyber Security.....................................................13 ICT Supply ChainComputer Security Division 2011 Annual Report #12;Table of Contents Welcome ................................................................. 1 Division Organization .................................................2 The Computer Security

  3. Catalog of Studies Table of Contents

    E-Print Network [OSTI]

    Capogna, Luca

    2014-15 GRADUATE Catalog of Studies TM #12;Table of Contents Welcome to the University of Arkansas ............................. 26 Arkansas Water Resources Center ................................................ 26 Bessie Boehm

  4. Catalog of Studies Table of Contents

    E-Print Network [OSTI]

    Capogna, Luca

    2015-16 GRADUATE Catalog of Studies TM #12;Table of Contents Welcome to the University of Arkansas ............................. 26 Arkansas Water Resources Center ................................................ 26 Bessie Boehm

  5. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    reported for fewer than 20 buildings. Notes: * To obtain the RSE percentage for any table cell, multiply the corresponding RSE column and RSE row factors. * See Glossary for...

  6. I-5 DEIS Table of Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E Visual Assessment Appendix F Electrical Effects Appendix G Research on Extremely Low Frequency Electric and Magnetic Fields and Health Appendix H Environmental Justice Tables...

  7. Health Care Buildings : Basic Characteristics Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Basic Characteristics Tables Buildings and Size Data by Basic Characteristics for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million...

  8. PROPERTY TABLES AND CHARTS (SI UNITS) Table A1 Molar mass, gas constant, and

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Table A­20 Ideal-gas properties of carbon dioxide, CO2 Table A­21 Ideal-gas properties of carbon.1355 n-Butane C4H10 58.124 0.1430 425.2 3.80 0.2547 Carbon dioxide CO2 44.01 0.1889 304.2 7.39 0Appendix 1 PROPERTY TABLES AND CHARTS (SI UNITS) Table A­1 Molar mass, gas constant, and critical

  9. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  10. IRA Pivot Table Review Using Analyze to Modify Reports

    E-Print Network [OSTI]

    1 IRA Pivot Table Review and Using Analyze to Modify Reports For help, email Financial.Reports in a downloadable table) and summarizes them at a higher level using a defined structure. For help, email Financial.Reports@dartmouth.edu Grand Total Section is a pivot table of the detail in the downloadable table or report table. #12;3 What

  11. Supplemental Tables to the Annual Energy Outlook

    Reports and Publications (EIA)

    2015-01-01

    The Annual Energy Outlook (AEO) Supplemental tables were generated for the reference case of the AEO using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets. Most of the tables were not published in the AEO, but contain regional and other more detailed projections underlying the AEO projections.

  12. 1999 Commercial Building Characteristics--Detailed Tables--Size...

    U.S. Energy Information Administration (EIA) Indexed Site

    Complete Set of 1999 CBECS Detailed Tables Detailed Tables- of Buildings Table B6. Building Size, Number of Buildings b6.pdf (PDF file), b6.xls (Excel spreadsheet file), b6.txt...

  13. 1999 Commercial Buildings Characteristics--Detailed Tables--Conservati...

    U.S. Energy Information Administration (EIA) Indexed Site

    as rowstubs in most detailed tables. Total buildings, total floorspace, and average building size for these categories are shown in Table B1. The PDF and spreadsheet data tables...

  14. Appendix B 1BStandards Tables 116-A and 116-B Page 1 2008 Residential Compliance Manual August 2009

    E-Print Network [OSTI]

    Residential Compliance Manual August 2009 TABLE 116-B DEFAULT SOLAR HEAT GAIN COEFFICIENT (SHGC) FRAME TYPE, or on an existing duct or water heater, shall comply with the applicable requirements of subsections 1, 2, and 3, Part 2. 2. Water heaters. If external insulation is installed on an existing unfired water storage tank

  15. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  16. Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy

    E-Print Network [OSTI]

    efficient use of renewable energy in district heating · individual heat pumps solar heating and wood pellets· individual heat pumps, solar heating and wood pellets 6Risø International Energy Conference 2009Heat Plan

  17. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers [EERE]

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  18. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump ...

  19. 1999 CBECS Summary Table for All Building Activities

    U.S. Energy Information Administration (EIA) Indexed Site

    Tables 1999 Commercial Buildings Consumption Survey SUMMARY TABLES FOR ALL PRINCIPAL BUILDING ACTIVITIES Number of Buildings (thousand) Floorspace (million square feet) Square...

  20. First-principles opacity table of warm dense deuterium forinertial...

    Office of Scientific and Technical Information (OSTI)

    First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications Citation Details In-Document Search Title: First-principles opacity table of...

  1. HORTICULTURAL & FOREST CROPS 2013 Table of Contents 1

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    HORTICULTURAL & FOREST CROPS 2013 Table of Contents 1 1 Regulations and Basic Information Safe Quantities of Water ............................................................................ 1-29 Table 1

  2. HORTICULTURAL & FOREST CROPS 2014 Table of Contents 1

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    HORTICULTURAL & FOREST CROPS 2014 Table of Contents 1 1 Regulations and Basic Information Safe Quantities of Water ............................................................................ 1-29 Table 1

  3. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    of table. 134 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per...

  4. Introduction to Heat Exchangers

    E-Print Network [OSTI]

    Heller, Barbara

    . Since, the effectiveness can be written in terms of heat capacitance rate [W/K], C, and change in temperature [K], . The heat capacitance rate is defined in terms of mass flow rate [kg/s], , and specific heat: ! ! ! " # = ! ! "# ! ! ! - ! ! ! ! ! ! = ! !! ! ! ! ! = ! ! ! ! ! - ! ! ! ! ! "# ! ! ! - ! ! ! ! ! ! = ! ! ! ! ! - ! ! ! ! ! "# ! ! ! - ! ! ! ! ! Heat%Capacitance%Rate % ! = ! !! ! ! Heat%Capacitance%Rate%[W % ! = ! ! ! ! ! ! ! = ! ! !! ! ! ! max

  5. Heat Pump for High School Heat Recovery 

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  6. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  7. City of Klamath Falls District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating...

  8. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low...

  9. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  10. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  11. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  12. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  13. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  14. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    heat exchangers. These types of heat exchangers have limitedheat exchanger to solar collection systems that utilize linear trough- typenon-solar heat exchangers. These may be of the type used to

  15. Concentrating solar heat collector

    SciTech Connect (OSTI)

    Fattor, A.P.

    1980-09-23

    A heat storage unit is integrated with a collection unit providing a heat supply in off-sun times, and includes movable insulation means arranged to provide insulation during off-sun times for the heat storage unit.

  16. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  17. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  18. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  19. Microsoft Word - Permit Table of Contents 2-2014 (2).docx

    Office of Environmental Management (EM)

    Table of Contents February 2014 WIPP Permit - Table of Contents PART 1 - GENERAL PERMIT CONDITIONS ... 1...

  20. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  1. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  2. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  3. Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Find out if one is right for your home.

  4. Section 4. Inventory Table of Contents

    E-Print Network [OSTI]

    Section 4. Inventory Table of Contents 4.1 Existing Legal Protections Protections Level Name Clean Water Act Endangered Species Act Migratory Bird Treaty Act National Environmental State Instream Water Rights ­ Oregon Water Resources Department Morrow County Zoning Ordinance ­ Morrow

  5. Volume III, Chapter 4 TABLE OF CONTENTS

    E-Print Network [OSTI]

    Volume III, Chapter 4 Eulachon #12;TABLE OF CONTENTS 4.0 EULACHON (Thaleichthys pacificus..................................................................................................................... 4-4 4.1.5 Movements in Fresh Water ........................................................... 4-8 4.4.1 Water Development

  6. TableHC5.13.xls

    Gasoline and Diesel Fuel Update (EIA)

    to 1989 1990 to 1999 2000 to 2005 Table HC5.13 Lighting Usage Indicators by Year of Construction, 2005 Year of Construction Housing Units (millions) Before 1940 1940 to 1949 1950...

  7. TABLE OF CONTENTS Hand and Power Tools

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 30 Nov 14 13-i Section 13 TABLE OF CONTENTS Hand and Power Tools Section: Page 13.A-4 13.D Pneumatic Power Tools ................................................................................. 13-5 13.E Explosive-Actuated Tools

  8. TableHC2.12.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Q 0.3 Table HC7.12 Home Electronics Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal Assistance 1 2005 Household Income Housing Units (millions)...

  9. Laboratory Safety Manual Table of Contents

    E-Print Network [OSTI]

    Natelson, Douglas

    Laboratory Safety Manual Table of Contents I. Emergency Procedures a. Laboratory Contact Information b. Location of Laboratory Emergency Equipment c. Laboratory Hazard and Evacuation Maps d. University Emergency Procedures II. University Policies and Procedures a. Rice University Laboratory Safety

  10. Qualified Energy Conservation Bond State-by-State Summary Tables

    Broader source: Energy.gov [DOE]

    Provides a list of qualified energy conservation bond state summary tables. Author: Energy Programs Consortium

  11. Technical Note/ Improved Water Table Dynamics in MODFLOW

    E-Print Network [OSTI]

    Barrash, Warren

    Technical Note/ Improved Water Table Dynamics in MODFLOW by Tom Clemo1 Abstract The standard as the location of a cell node. Simulations of a dynamic water table can be improved if the node of a cell containing the water table is located at the water table rather than at the center of the cell. The LPF

  12. table1.1_02

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic Feet)64,783Glossary HomeNewFewerHeat1

  13. table1.2_02

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic Feet)64,783Glossary HomeNewFewerHeat12

  14. Direct fired heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  15. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, Roger R. (Idaho Falls, ID)

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  16. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  17. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  18. Mass and Heat Recovery 

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  19. Appendix A. Hydraulic Properties Statistics Tables Table A1. Hydraulic properties statistics for the alluvium (Stephens et al.).

    E-Print Network [OSTI]

    A-1 Appendix A. Hydraulic Properties Statistics Tables Table A1. Hydraulic properties statistics Deviation .1708 4.274 28.95 Harmonic Mean Number of Observations 9 8 8 2 2 2 2 2 Table A2. Hydraulic.3×10-5 Number of Observations 10 10 10 34 34 4 4 4 #12;A-2 Table A3. Hydraulic properties statistics

  20. Heat Treating Apparatus

    DOE Patents [OSTI]

    De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

    2002-09-10

    Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

  1. Integrated heat pump system

    SciTech Connect (OSTI)

    Reedy, W.R.

    1988-03-01

    An integrated heat pump and hot water system is described that includes: a heat pump having an indoor heat exchanger and an outdoor heat exchanger that are selectively connected to the suction line and the discharge line respectively of a compressor by a flow reversing means, and to each other by a liquid line having an expansion device mounted therein, whereby heating and cooling is provided to an indoor comfort zone by cycling the flow reversing means, a refrigerant to water heat exchanger having a hot water flow circuit in heat transfer relation with a first refrigerant condensing circuit and a second refrigerant evaporating circuit, a connection mounted in the liquid between the indoor heat exchanger and the expansion device, control means for regulating the flow of refrigerant through the refrigerant to water heat exchanger to selectively transfer heat into and out of the hot water flow circuit.

  2. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  3. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  4. 9. Table Definition in SQL 9-1 Part 9: Table Definition

    E-Print Network [OSTI]

    Brass, Stefan

    9. Table Definition in SQL 9-1 Part 9: Table Definition References: · Elmasri/Navathe:Fundamentals of Database Systems, 3rd Edition, 1999. Chap. 8, "SQL -- The Relational Database Standard" · Kemper/Darwen: A Guide to the SQL Standard, Fourth Edition, Addison-Wesley, 1997. · van der Lans: SQL, Der ISO

  5. Heat transfer system

    DOE Patents [OSTI]

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  6. Heat transfer system

    DOE Patents [OSTI]

    McGuire, Joseph C. (Richland, WA)

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  7. Wound tube heat exchanger

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  8. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  9. TABLE OF CONTENTS SECTION A: PREINTERVIEW OBSERVATION

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome Pageper ThousandTABLE OF CONTENTS

  10. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  11. Fusion heating technology

    SciTech Connect (OSTI)

    Cole, A.J.

    1982-06-01

    John Lawson established the criterion that in order to produce more energy from fusion than is necessary to heat the plasma and replenish the radiation losses, a minimum value for both the product of plasma density and confinement time t, and the temperature must be achieved. There are two types of plasma heating: neutral beam and electromagnetic wave heating. A neutral beam system is shown. Main development work on negative ion beamlines has focused on the difficult problem of the production of high current sources. The development of a 30 keV-1 ampere multisecond source module is close to being accomplished. In electromagnetic heating, the launcher, which provides the means of coupling the power to the plasma, is most important. The status of heating development is reviewed. Electron cyclotron resonance heating (ECRH), lower hybrid heating (HHH), and ion cyclotron resonance heating (ICRH) are reviewed.

  12. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  13. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    influence on the heat transfer as the radiation. Since thethe heat transfer analysis, the difference of net radiationheat transfer involved i n this project were conduction, convection and radiation.

  14. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  15. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  16. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  17. MA HEAT Loan Overview

    Broader source: Energy.gov [DOE]

    Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

  18. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

    1985-01-01

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  19. Geothermal Heat Pump Basics

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes—from scorching heat in the summer to sub-zero cold in the winter—the ground a few feet below the earth's surface remains at a relatively constant temperature.

  20. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  1. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  2. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  3. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  4. Heat recovery in building envelopes

    E-Print Network [OSTI]

    Walker, Iain S.; Sherman, Max H.

    2003-01-01

    2003). Infiltration heat recovery – ASHRAE Research ProjectModel for Infiltration Heat Recovery, Proc. 21 st AnnualN ATIONAL L ABORATORY Heat Recovery in Building Envelopes

  5. Heat Recovery in Building Envelopes

    E-Print Network [OSTI]

    Sherman, Max H.; Walker, Iain S.

    2001-01-01

    Model For Infiltration Heat Recovery. Proceedings 21st AivcLBNL 47329 HEAT RECOVERY IN BUILDING ENVELOPES Max H.contribution because of heat recovery within the building

  6. Heat recovery in building envelopes

    E-Print Network [OSTI]

    Walker, Iain S.; Sherman, Max H.

    2003-01-01

    2003). Infiltration heat recovery – ASHRAE Research ProjectModel for Infiltration Heat Recovery, Proc. 21 st AnnualWalker, I.S. (2001). "Heat Recovery in Building Envelopes".

  7. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  8. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks...

  9. MemTable : contextual memory in group workspaces

    E-Print Network [OSTI]

    Hunter, Seth E

    2009-01-01

    This thesis presents the design and implementation of MemTable, an interactive touch table that supports co-located group meetings by capturing both digital and physical interactions in its memory. The goal of the project ...

  10. CBECS - Buildings and Energy in the 1980's, Table Titles

    U.S. Energy Information Administration (EIA) Indexed Site

    for primary or site energy ("p" or "s"). For example, Table R8.90p, shows primary energy data for residential buildings for the 1990 survey year. The tables are arranged into...

  11. Description of 2003 CBECS Detailed Tables and Categories of Data

    U.S. Energy Information Administration (EIA) Indexed Site

    tables for the 2003 Commercial Buildings Energy Consumption Survey (CBECS) consist of building characteristics tables (A1-A8 and B1-B46), which contain the number of buildings and...

  12. Fusion Tables : new ways to collaborate on structured data

    E-Print Network [OSTI]

    Kidon, Jonathan Goldberg

    2010-01-01

    Fusion Tables allows data collaborators to create, merge, navigate and set access control permissions on structured data. This thesis focuses on the collaboration tools that were added to Googles Fusion Tables. The ...

  13. HOME GROUNDS & ANIMALS 2014 Table of Contents 3

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    HOME GROUNDS & ANIMALS 2014 Table of Contents 3 1 Regulations and Basic Information How to Use of Water ..................................................................... 1-26 Table 1.6 - Equivalent Quantities of Liquid Materials (Emulsifiable Concentrates, etc.) for Various Quantities of Water

  14. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  15. Volume III, Chapter 7 TABLE OF CONTENTS

    E-Print Network [OSTI]

    Volume III, Chapter 7 Walleye #12;TABLE OF CONTENTS 7.0 Walleye (Stizostedium vitreum................................................................................................... 7-7 7.4.3 Water Development only in fresh water, as illustrated by the map in Figure 7-1 (Scott and Crossman 1998).Walleye also

  16. TABLE OF CONTENTS Introduction INTRO -1

    E-Print Network [OSTI]

    Minnesota, University of

    Sheet IV - 31 #12;TABLE OF CONTENTS Laboratory V: Magnetic Fields and Forces V - 1 Problem #1: Permanent of Permanent Magnets V - 8 Problem #4: Measuring the Magnetic Field of One Coil V - 11 Problem #5: Determining Difference VI - 9 Problem #5: The Generator VI - 12 Problem #6: Time-Varying Magnetic Fields VI - 15 Check

  17. TableHC5.1.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1.2 Q N Q Q 0.5 0.4 Q Q Table HC5.1 Housing Unit Characteristics by Year of Construction, 2005 Million U.S. Housing Units Housing Unit Characteristics 2000 to 2005 Year of...

  18. Table of Contents Dean Search 1

    E-Print Network [OSTI]

    Chapman, Michael S.

    to the January Robert G. Gootee/ODS Health Endowed Lectureship in Leadership and Professionalism. The speaker-year dental student Shannon Woods after the Robert G. Gootee/ODS Health Endowed Lectureship in LeadershipTable of Contents Gootee 1 Dean Search 1 Historical Feature 2 Patient Visits Rise 4 Dentistry One

  19. TABLE OF CONTENTS Welding and Cutting

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 30 Nov 14 10-i Section 10 TABLE OF CONTENTS Welding and Cutting Section: Page 10.A ............................................................................................... 10-5 10.E Oxyfuel Gas Welding and Cutting .................................................................. 10-7 10.F Arc Welding and Cutting

  20. CONTROL OF HAZARDOUS ENERGY Table Of Contents

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Sep 13 i Section 12 CONTROL OF HAZARDOUS ENERGY Table Of Contents Section: Page 12.A General.................. .............................................. ... .12-1 12.B Hazardous Energy.......................................................12-6 #12;EM 385-1-1 XX Sep 13 12-1 SECTION 12 CONTROL OF HAZARDOUS ENERGY 12.A GENERAL 12.A.01 When

  1. Table of Contents Division Organization 2

    E-Print Network [OSTI]

    Security and Forensics 33 NIST Cloud Computing Project 34 Policy Machine 35 Security for Grid#12;2002 Table of Contents Welcome 1 Division Organization 2 The Computer Security Division Implements the 3 Federal Information Security Management Act of Security Management and Assurance Group 4

  2. Hands, Tables, and Groups Make Rehabilitation Awesome!

    E-Print Network [OSTI]

    Alberta, University of

    Hands, Tables, and Groups Make Rehabilitation Awesome! Michelle ANNETT1 , Fraser ANDERSON, Walter F rehabilitation programs by providing patients with engaging alternatives to otherwise monotonous and repetitive patient rehabilitation programs. So far, the focus has mainly been on single-user interaction, largely

  3. Music and Copyright Introduction and Summary Tables

    E-Print Network [OSTI]

    Fleming, Andrew J.

    Music and Copyright Introduction and Summary Tables Musical notation is considered a `literary work' under copyright a song may have multiple copyrights eg: music, lyrics, arrangement and Part VB statutory licences The University pays for a Tertiary Music Licence and a Screenrights Licence

  4. Table of Contents Running Indri.............................................................................................................................2

    E-Print Network [OSTI]

    Inkpen, Diana

    Ephyra uses. 1. Open a Command Line a. Click the start menu b. Type: cmd in the search box c. Hit Enter 2 Add Index from the File menu 3. Select where you created the Indri index. 4. Type search terms into the Enter your query field: Either hit enter or click Search #12;6 5. The results are displayed in the table

  5. TABLE OF CONTENTS Tree Maintenance and Removal

    E-Print Network [OSTI]

    US Army Corps of Engineers

    protection should be worn for all tree maintenance and removal operations. b. Training shall be providedEM 385-1-1 30 Nov 14 31-i Section 31 TABLE OF CONTENTS Tree Maintenance and Removal Section: Page ....................................................................... 31-10 31.E Other Operations and Equipment

  6. Table of Contents 3 Officers and Administration

    E-Print Network [OSTI]

    He, Chuan

    #12;Table of Contents 3 Officers and Administration 7 The Field and the School 15 Educational Agencies 176 SSA Calendar 178 Index #12;School of Social Service Administration 3 Officers and Administration Officers of the University Andrew M. Alper, Chairman of the Board of Trustees Robert J. Zimmer

  7. The Interactive Dining Table Florian Echtler

    E-Print Network [OSTI]

    Deussen, Oliver

    's everyday lives. Possible reasons include high cost as well as a lack of suitable applications, integrated with the dining table in a real-world living room. To motivate our approach, we explore three, they are still a long way from becoming a part of people's everyday lives. This lack of adoption has several

  8. EMERGENCY RESPONSE PROCEDURES Table of Contents

    E-Print Network [OSTI]

    EMERGENCY RESPONSE PROCEDURES Table of Contents Section 1 - Introduction Section 2 - The Emergency Response Team (ERT) Section 3 - Purpose of the Emergency Response Plan (ERP) Section 4 - The Incident Setup Section 7 - Emergency Response Critique Section 8 - Coordination with Other Agencies (Large

  9. HOUSING DEPARTMENT MANUAL Table of Contents

    E-Print Network [OSTI]

    HOUSING DEPARTMENT MANUAL Table of Contents Section 1 ­ Introduction Section 2 ­ Mission Statement Section 3 ­ Vision Section 4 ­ The Housing Department Location Section 5 ­ The Housing Department Team@aub.edu.lb. Last updated on: May 8, 2014 #12;Housing Department Manual Page 2 Section 1 - Introduction The Housing

  10. Table of Contents White Coat 1

    E-Print Network [OSTI]

    Chapman, Michael S.

    Table of Contents White Coat 1 Staff Profiles 2/3/4 Recent Photos 5 New SOD'ers 6 State of School 7 on page six) Dental Bites October 2014 Class of 2017 Receives White Coats The Class of 2017 was recognized of patients. Seventy-five second-year dental students received their personalized white lab coats in a formal

  11. First solar models with OPAS opacity tables

    E-Print Network [OSTI]

    Pennec, Maëlle Le; Salmon, Sébastien; Blancard, Christophe; Cossé, Philippe; Faussurier, Gérald; Mondet, Guillaume

    2015-01-01

    Stellar seismology appears more and more as a powerful tool for a better determination of the fundamental properties of solar-type stars. However the particular case of Sun is still challenging. The helioseismic sound speed determination continues to disagree with the Standard Solar Model (SSM) prediction for about a decade, questioning the reliability of this model. One of the sources of uncertainty could be in the treatment of the transport of radiation from the solar core to the surface. In this letter, we use the new OPAS opacity tables, recently available for solar modelling, to address this issue. We discuss first the peculiarities of these tables, then we quantify their impact on the solar sound speed and density profiles using the reduced OPAS tables taken on the grids of the OPAL ones. We use the two evolution codes MESA and CLES that led to similar conclusions in the solar radiative zone. In comparison to commonly used OPAL opacity tables, the new solar models computed, for the most recent photosphe...

  12. TABLE OF CONTENTS Work Platforms and Scaffolding

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ............................................................ 22-40 Tables: 22-1 ­ Form Scaffolds (Minimum Design Criteria for Wooden Bracket and Light-Duty Figure 22.A General. This Section establishes safety requirements for the construction, operation, and repaired in accordance with: a. For non-mechanized equipment - ANSI A10.8, Scaffolding Safety Requirements

  13. Environmental Regulatory Update Table, January/February 1992

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1992-03-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action. This table is for January/February 1992.

  14. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  15. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  16. PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP by the heat pump effect. The Stirling engine/Rankine cycle refrigeration loop heat pump being developed would

  17. NASA DESK GUIDE TABLE OF DISCIPLINARY OFFENSES AND PENALTIES

    E-Print Network [OSTI]

    Christian, Eric

    NASA DESK GUIDE FOR TABLE OF DISCIPLINARY OFFENSES AND PENALTIES Version 3 Office of Human Capital Management NASA Headquarters SREF-3000-0020 August 2008 #12;NASA Desk Guide for Table of Disciplinary #41 and offense #46. #12;NASA Desk Guide for Table of Disciplinary Offenses and Penalties ­ Version 3

  18. An Extension of Al-Khalili's Qibla Table

    E-Print Network [OSTI]

    Roegel, Denis

    . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Coordinates of Mecca, now and then . . . . . . . . . . . . 8 3 The recomputed tablesAn Extension of Al-Khal¯il¯i's Qibla Table to the Entire World Denis Roegel 4 August 2008 #12;#12;An Extension of Al-Khal¯il¯i's Qibla Table to the Entire World Denis Roegel1 4 August 2008 Abstract

  19. Radiant Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Radiant heating has a number of advantages. It is...

  20. Faculty of Technology Heat Engineering Laboratory course 424512 E Ron Zevenhoven c.s.

    E-Print Network [OSTI]

    Zevenhoven, Ron

    mentioned therein, in case you haven't yet done so. 2. In cylindrical coordinates the steady momentum, and coordinates x (axial) and r (radial). Assuming fully developed (i.e. no entrance effects) flow in a circular in the figure below, and the numerical values in the table: continues.... #12;Faculty of Technology Heat

  1. TableHC2.5.xls

    Gasoline and Diesel Fuel Update (EIA)

    Usage Indicators by Household Income, 2005 Space Heating Usage Indicators Below Poverty Line Eligible for Federal Assistance 1 Million U.S. Housing Units 2005 Household...

  2. Commercial Buildings Characteristics 1995 - Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    35 36 Refrigeration 37 37 Water-Heating 38 38 Lighting 39 40 Conservation (16 pages) Energy Conservation Features 41 41 Building Shell Conservation 42 43 Reduction in...

  3. TABLE52.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of Selected Petroleum Products by PAD a Distillate stocks located in the "Northeast Heating Oil Reserve" are not included. For details see Appendix E. W Withheld to avoid...

  4. Optimization of Heat Exchangers

    SciTech Connect (OSTI)

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  5. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  6. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  7. Policies supporting Heat Pump Technologies

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

  8. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  9. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  10. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  11. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    by half, the solar collection efficiency will still be insolar thermal electric power program rests on the efficiency,efficiency heat storage systems. This type of hybrid, solar-

  12. Mechanical Compression Heat Pumps 

    E-Print Network [OSTI]

    Apaloo, T. L.; Kawamura, K.; Matsuda, J.

    1986-01-01

    of the compressors which constitute the heart and soul of the system. It will also provide a quick survey of the available types of compressors for heat pumping and some of the industrial processes where simultaneous heating and cooling proceed along parallel..., the real challenge comes process environment, or even for comfort HEAT PUMP APPLICATIONS INPU~ AND OUTPUT UTIUnES (HEAT SOUlCE) (ME0U.4) (API't1CATION) CoofIng, Dehumldilication. L.- -J ~Ing. Hot ...,tolel SIJr-lpIy Chilled ....,oter. Hoi waler...

  13. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  14. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    Effect of building integrated photovoltaics on microclimateof a building's integrated-photovoltaics on heating a n dgaps for building- integrated photovoltaics, Solar Energy

  15. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2011-06-28

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  16. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  17. Passive solar space heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1980-01-01

    An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

  18. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  19. AVLIS documentation overview and tables of contents

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    Three documents constitute the executive summary series in Data Package III: this document (Documentation Overview and Tables of Contents (E001)) plus the AVLIS Production Plant Executive Summary (E010) and the AVLIS Production Plant Overall Design Report (E020). They provide progressively greater detail on the key information and conclusions contained within the data package. The Executive Summary and Overall Design Report present summaries of each Data Package III document. They are intended to provide a global overview of AVLIS Production Plant deployment including program planning, project management, schedules, engineering design, production, operations, capital cost, and operating cost. The purpose of Overview and Tables of Contents is threefold: to briefly review AVLIS goals for Data Package III documentation, to present an overview of the contents of the data package, and to provide a useful guide to information contained in the numerous documents comprising the package.

  20. Table of Contents Our Season Page 3

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    1 #12;2 Table of Contents 2011-2012 Our Season Page 3 People Page 8 Outreach Page 11 Curricular-Curtain 546 $3,631.16 Hell In High Water-Rand 1252 $7,102.47 Solstice-Curtain 506 $2,583.42 Urinetown - Rand-stage season this spring. Hell in High Water by Marcus Gardley The Rand Theater Nov. 10, 11, 12, 16, 17, 18, 19

  1. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 1: Main Report

    SciTech Connect (OSTI)

    Ball, Sydney J

    2008-03-01

    A phenomena identification and ranking table (PIRT) process was conducted for the Next Generation Nuclear Plant (NGNP) design. This design (in the conceptual stage) is a modular high-temperature gas-cooled reactor (HTGR) that generates both electricity and process heat for hydrogen production. Expert panels identified safety-relevant phenomena, ranked their importance, and assessed the knowledge levels in the areas of accidents and thermal fluids, fission-product transport and dose, high-temperature materials, graphite, and process heat for hydrogen production. This main report summarizes and documents the process and scope of the reviews, noting the major activities and conclusions. The identified phenomena, analyses, rationales, and associated ratings of the phenomena, plus a summary of each panel's findings, are presented. Individual panel reports for these areas are provided as attached volumes to this main report and provide considerably more detail about each panel's deliberations as well as a more complete listing of the phenomena that were evaluated.

  2. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  3. First university owned district heating system using biomass heat

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

  4. 4.A. HEAT FLOW 119 4.A. Heat flow

    E-Print Network [OSTI]

    Hunter, John K.

    denote the temperature, g : R the rate per unit volume at which heat sources create energy inside the body, and q : Rn the heat flux. That is, the rate per unit area at which heat energy diffuses across of energy implies that for any smooth open set the heat flux out of is equal to the rate at which heat

  5. Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Kandlikar, Satish

    Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

  6. Heat Integrate Heat Engines in Process Plants 

    E-Print Network [OSTI]

    Hindmarsh, E.; Boland, D.; Townsend, D. W.

    1986-01-01

    -06-75 Proceedings from the Eighth Annual Industrial Energy Technology Conference, Houston, TX, June 17-19, 1986 I I APPROPRIATE/INAPPROPRIATE INTEGRATION OF HEiT PUMPS, engine transfers h'eat across the' process; pinch.'" . . :i".p., J The insights...

  7. Microchannel heat sink assembly

    DOE Patents [OSTI]

    Bonde, W.L.; Contolini, R.J.

    1992-03-24

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

  8. Microchannel heat sink assembly

    DOE Patents [OSTI]

    Bonde, Wayne L. (Livermore, CA); Contolini, Robert J. (Pleasanton, CA)

    1992-01-01

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.

  9. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  10. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  11. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  12. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1981-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  13. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru; Reese, Jason M.

    2014-05-15

    We present a “Knudsen heat capacity” as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  14. Improved solar heating systems

    DOE Patents [OSTI]

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  15. Solar heating system

    DOE Patents [OSTI]

    Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  16. TABLE OF CONTENTS Introduction..................................................................................................INTRO -1

    E-Print Network [OSTI]

    Minnesota, University of

    : .............................................................................................................................................Lab 5 - 1 Lab 6 ­ Heat, Solar Input and the Earth's Available Energy: .............................................................................................................................................Lab 6 - 1 Lab 7 ­ Mechanical and Thermal Energy: .............................................................................................................................................Lab 2 - 1 Lab 3 ­ Conservation of Energy

  17. TABLES1.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    are totals as of end of period. Distillate stocks located in the "Northeast Heating Oil Reserve" are not included. For details see Appendix E. c Includes crude oil, natural gas...

  18. TABLES5.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    a Stocks are totals as of end of period. Distillate stocks located in the "Northeast Heating Oil Reserve" are not included. For details see Appendix E. b A negative number...

  19. Heat Exchangers for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar...

  20. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commonly used as the heat transfer fluid in refrigerators, air conditioners, and heat pumps. They generally have a low boiling point and a high heat capacity. This enables a...

  1. Heat Exchangers for Solar Water Heating Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because...

  2. Micro heat barrier

    DOE Patents [OSTI]

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  3. Integrating preconcentrator heat controller

    DOE Patents [OSTI]

    Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

    2007-10-16

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  4. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified...

  5. Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal...

    Open Energy Info (EERE)

    Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  6. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  7. TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS

    E-Print Network [OSTI]

    Selkowitz, S.

    2011-01-01

    advantage of light transmission through heat mirrors may notimportant but heat gain may not be, the transmission windowheat mirror coating alone (without substrate losses) is a solar transmission

  8. Low-Cost Gas Heat Pump for Building Space Heating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Cost Gas Heat Pump for Building Space Heating 2015 Building Technologies Office Peer Review Michael Garrabrant mgarrabrant@stonemtntechnologies.com Stone Mountain Technologies,...

  9. Low-Cost Gas Heat Pump for Building Space Heating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Cost Gas Heat Pump for Building Space Heating 2014 Building Technologies Office Peer Review Michael Garrabrant mgarrabrant@stonemtntechnologies.com Stone Mountain Technologies,...

  10. Molecular heat pump

    E-Print Network [OSTI]

    Dvira Segal; Abraham Nitzan

    2005-10-11

    We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

  11. Heat treatment furnace

    DOE Patents [OSTI]

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  12. Stirling engine heating system

    SciTech Connect (OSTI)

    Johansson, L.N.; Houtman, W.H.; Percival, W.H.

    1988-06-28

    A hot gas engine is described wherein a working gas flows back and forth in a closed path between a relatively cooler compression cylinder side of the engine and a relatively hotter expansion cylinder side of the engine and the path contains means including a heat source and a heat sink acting upon the gas in cooperation with the compression and expansion cylinders to cause the gas to execute a thermodynamic cycle wherein useful mechanical output power is developed by the engine, the improvement in the heat source which comprises a plurality of individual tubes each forming a portion of the closed path for the working gas.

  13. Specifying Waste Heat Boilers 

    E-Print Network [OSTI]

    Ganapathy, V.

    1992-01-01

    HEAT BOILERS V.Ganapathy.ABCO Industries Abilene,Texas ABSTRACT Waste heat boilers or Heat Recovery Steam 'Generators(HRSGs) as they are often called are used to recover energy from waste gas streams in chemical plants, refineries... stream_source_info ESL-IE-92-04-42.pdf.txt stream_content_type text/plain stream_size 11937 Content-Encoding ISO-8859-1 stream_name ESL-IE-92-04-42.pdf.txt Content-Type text/plain; charset=ISO-8859-1 SPECIFYING WASTE...

  14. Environmental regulatory update table, March--April 1994

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Bock, R.E. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.; Salk, M.S. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

    1994-03-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  15. Composite slip table of dissimilar materials for damping longitudinal modes

    DOE Patents [OSTI]

    Gregory, Danny L. (Albuquerque, NM); Priddy, Tommy G. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM); Woodall, Tommy D. (Albuquerque, NM)

    1991-01-01

    A vibration slip table for use in a vibration testing apparatus. The table s comprised of at least three composite layers of material; a first metal layer, a second damping layer, and a third layer having a high acoustic velocity relative to the first layer. The different acoustic velocities between the first and third layers cause relative shear displacements between the layers with the second layer damping the displacements between the first and third layers to reduce the table longitudinal vibration modes.

  16. Environmental regulatory update table November--December 1994

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Bock, R.E.; Mayer, S.J.; Salk, M.S.

    1995-01-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  17. Environmental Regulatory Update Table, November--December 1993

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.; Danford, G.S.; Lewis, E.B.

    1994-01-01

    The Environmental Regulatory Update Table provides information on regulatory of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  18. Environmental Regulatory Update Table, January--February 1994

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.; Danford, G.S.; Lewis, E.B.

    1994-03-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations ad contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  19. Environmental Regulatory Update Table, September/October 1993

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.; Danford, G.S.; Lewis, E.B.

    1993-11-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operation and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  20. Environmental Regulatory Update Table, March/April 1992

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1992-05-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  1. Environmental Regulatory Update Table, November--December 1992

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Lewis, E.B.; Salk, M.S.

    1993-01-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly wit information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  2. Environmental regulatory update table, September--October 1992

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Lewis, E.B.; Salk, M.S.

    1992-11-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  3. Environmental Regulatory Update Table, July--August 1992

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Lewis, E.B.; Salk, M.S.

    1992-09-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  4. Environmental Regulatory Update Table, January--February 1993

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.; Danford, G.S.; Lewis, E.B.

    1993-03-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  5. Heating & Cooling | Department of Energy

    Energy Savers [EERE]

    Energy Saver Heating & Cooling Heating & Cooling Heating and cooling account for about 48% of the energy use in a typical U.S. home, making it the largest energy expense for...

  6. Energy 101: Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe ...

  7. Complex Compound Chemical Heat Pumps 

    E-Print Network [OSTI]

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    1987-01-01

    Complex-compound solid-vapor fluid pairs can be used in heat of reaction heat pumps for temperature amplifier (TA) as well as heat amplifier (HA) cycle configurations. This report describes the conceptual hardware design for complex compound...

  8. Water Heating | Department of Energy

    Energy Savers [EERE]

    Water Heating Water Heating September 2, 2015 - 11:07am Addthis Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo...

  9. TABLE53.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3 November 2013AdditionsExports of Crude Oil5. Imports2.8.9.2.Table

  10. FY 2005 Summary Table by Appropriation

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report to Congress More Documents & PublicationsTable

  11. Microsoft Word - table_A1.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy87 Table

  12. Microsoft Word - table_A2.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy87 Table 195

  13. Microsoft Word - table_B2.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) U.S. Energy87 Table 19500

  14. CBECS 1992 - Consumption & Expenditures, Detailed Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724per ThousandLease0 0and164 167Detailed Tables

  15. Peetz Table Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina:ParamountEnergy GroupPeetz TableFarm Jump

  16. Help:Tables | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTLTechnology Srl JumpSubObjects Jump to:Tables Jump

  17. Microsoft Word - table_C01.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See(STEO) Highlights1199,0,26,27 Table

  18. The development of design factors for heat-strengthened and tempered glass based on the glass failure prediction model 

    E-Print Network [OSTI]

    Oakes, Timothy Andrew

    1991-01-01

    - strengthened and tempered glass are then used for determining the design load after the annealed glass design load is calculated. The widely accepted design factors for heat-strengthened and tempered glass are 2. 0 and 4. 0 respectively. The traditional...-STRENGTHENED AND TEMPERED GLASS DESIGN FACTOR TABLES LOWEST FACTOR WITHIN ASPECT RATIO CHARTS . . . . . . . ~ . ~ . ~ 193 VITA 212 LIST OF FIGURES Page Figure 1 Typical stress profile of tempered and heat-strengthened glass Figure 2 Expected wind velocities on a 50...

  19. Table 21. Domestic Crude Oil First Purchase Prices

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  20. Table 21. Domestic Crude Oil First Purchase Prices

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  1. Crude Oil Prices Table 21. Domestic Crude Oil First Purchase...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  2. Table of contents 1 What is software architecture? ......................................................................... 1

    E-Print Network [OSTI]

    Dustdar, Schahram

    Table of contents 1 What is software architecture? ......................................................................... 1 1.1 Software architecture as abstraction ............................................................ 2 1.2 Software architecture as blueprint

  3. SuStainability table of contentS

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    SuStainability table of contentS executive Summary-Related Sustainability Options ........................................... 41 Information Technology Infrastucture #12;sustainability 2 Private Giving

  4. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

  5. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1998 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  6. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  7. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    250 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  8. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1999 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

  9. Trends in Commercial Buildings--Energy Sources Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    ** estimates adjusted to match the 1995 CBECS definition of target population Energy Information Administration Commercial Buildings Energy Consumption Survey Table 2....

  10. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  11. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  12. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    than 10 households were sampled. Notes: * To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. * Because of rounding, data may...

  13. Environmental Health and Safety -Safety Manual Table of Contents

    E-Print Network [OSTI]

    Li, X. Rong

    1 Environmental Health and Safety - Safety Manual Table of Contents I. Assignment of Responsibility Management Program..................................81 XIX. Water Vessel Safety Program

  14. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) -...

  15. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1998 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) -...

  16. Table I: Technical Targets for Catalyst Coated Membranes (CCMs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive Table I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive Technical targets for fuel cell...

  17. Energy.gov Data Tables in Content Management System

    Broader source: Energy.gov [DOE]

    For Office of Energy Efficiency and Renewable Energy (EERE) websites, follow these guidelines for creating Section 508-compliant data tables in the Energy.gov content management system.

  18. PARAMETROS ENTRADA EN CGS (Table 1 sandstone 1 in GPY ...

    E-Print Network [OSTI]

    PARAMETROS ENTRADA EN CGS (Table 1 sandstone 1 in GPY paper 2009 pp N5) CAPA 1 ------------------------------------ 100.d0 dsize (domain size (cm)) ...

  19. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  20. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1998 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  1. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature

  2. Heating Plant Emergency Instructions

    E-Print Network [OSTI]

    de Leon, Alex R.

    Heating Plant Emergency Instructions In the event of an EMERGENCY dial 403-220-5333 for Campus room, closet or hallway (ground floor, if possible) Stay away from outside walls, windows and doors

  3. Greywater heat exchanger

    SciTech Connect (OSTI)

    Holmberg, D.

    1983-11-21

    A kilowatt meter and water meter were installed to monitor pregreywater usage. The design considerations, the heat exchanger construction and installation, and the monitoring of usage levels are described.

  4. Heat Pump Strategies and Payoffs 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1982-01-01

    (Evaporator) Heat Source Heat Pump Turbine Compressor Compressed Vapor Pump IZl:G1 Type IV - Rankine Cycle (Waste Heat Driven) Heat Sink (Condenser) Fig. 3 Basic Heat Pump Categories 324 ESL-IE-82-04-66 Proceedings from the Fourth Industrial... payback. 500 450 400 Leas Than G:" ~ 2! 350 2-Vear Payback .a e 300 !. E ~ 250 Simple Waste Heat Boller 200 100 1.-........_-'-_.1.---1"---.1._..&0.._1.---'-_'-__ o 10 20 30 40 50 60 70 80 Heat Removed (%) 82291 Fig. 4 Heat...

  5. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Services Homes Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water...

  6. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

  7. "Table HC11.4 Space Heating Characteristics by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional3 Housing24 Space

  8. "Table HC11.8 Water Heating Characteristics by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional3 Housing24 Space5678

  9. "Table HC12.4 Space Heating Characteristics by Midwest Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional3 Housing242 Living4

  10. "Table HC12.8 Water Heating Characteristics by Midwest Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional3 Housing2428 Water

  11. "Table HC13.4 Space Heating Characteristics by South Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional3 Housing24281

  12. "Table HC13.8 Water Heating Characteristics by South Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional3 Housing2428158 Water

  13. "Table HC14.4 Space Heating Characteristics by West Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional3 Housing242815802324

  14. "Table HC14.8 Water Heating Characteristics by West Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional37 Air-Conditioning8

  15. "Table HC7.5 Space Heating Usage Indicators by Household Income, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional37 Housing843480

  16. "Table HC9.5 Space Heating Usage Indicators by Climate Zone, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1 HomeRegional37 Housing84348005025

  17. "Table HC7.5 Space Heating Usage Indicators by Household Income...

    U.S. Energy Information Administration (EIA) Indexed Site

    Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than...

  18. Table HC3.4 Space Heating Characteristics by Owner-Occupied...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas... 58.2 41.8 35.3 2.8 1.2 1.0 1.6 Central Warm-Air Furnace... 44.7 34.8 29.7 2.3 0.7 0.6 1.4 For One...

  19. Table HC4.4 Space Heating Characteristics by Renter-Occupied...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas... 58.2 16.4 4.5 2.1 3.2 6.2 0.3 Central Warm-Air Furnace... 44.7 10.0 3.3 1.4 1.6 3.3 0.3 For One...

  20. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 January

  1. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 January0. Total Inputs

  2. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 January0. Total

  3. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 January0. Total2"

  4. Table A12. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 January0.

  5. Table A12. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 January0.Type"

  6. Table A13. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 January0.Type"3.

  7. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743

  8. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 " Part 2"

  9. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 " Part

  10. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 " Part2"

  11. Table A38. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 "

  12. Table A38. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 "2" "

  13. Table A39. Selected Combustible Inputs of Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 "2" "9.

  14. Table A41. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 "2"

  15. Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 "2"A50. Total

  16. Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743 "2"A50.2.

  17. Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743

  18. Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number of Establishments

  19. Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number of

  20. "Table B21. Space-Heating Energy Sources, Floorspace, 1999"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6. Total1.6. Employment

  1. "Table B22. Primary Space-Heating Energy Sources, Number of Buildings, 1999"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6. Total1.6. Employment2.

  2. "Table B23. Primary Space-Heating Energy Sources, Floorspace, 1999"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6. Total1.6. Employment2.3.

  3. Table A13. Total Consumption of Offsite-Produced Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 Consumption Ratios PAD

  4. Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 Consumption Ratios PAD4.

  5. Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 ConsumptionNonfuel"0.Total

  6. Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22

  7. Table A34. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22Primary Consumption of Energy

  8. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22Primary Consumption of Energy9.1

  9. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22Primary Consumption of

  10. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22Primary Consumption of by Census

  11. Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22Primary Consumption of byTotal

  12. Table B28. Percent of Floorspace Heated, Number of Buildings and Floorspace, 199

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22Primary Consumption6.9.8. Percent

  13. Table B37. Water Heating Equipment, Number of Buildings and Floorspace, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22Primary Consumption6.9.8..6.7.

  14. Table 26. Natural gas home customer-weighted heating degree days

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996Deutsche Bank AGTotal96 Created on: 12/22/2015

  15. Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales Volumes & Stocks9a. Housing0

  16. Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales Volumes & Stocks9a. Housing0.4

  17. Table HC6.4 Space Heating Characteristics by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales Volumes & Stocks9a.

  18. Table HC9.4 Space Heating Characteristics by Climate Zone, 2005

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales Volumes & Stocks9a.58a. Home114

  19. Heat exchange apparatus

    DOE Patents [OSTI]

    Degtiarenko, Pavel V.

    2003-08-12

    A heat exchange apparatus comprising a coolant conduit or heat sink having attached to its surface a first radial array of spaced-apart parallel plate fins or needles and a second radial array of spaced-apart parallel plate fins or needles thermally coupled to a body to be cooled and meshed with, but not contacting the first radial array of spaced-apart parallel plate fins or needles.

  20. Freezable heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA); Sanzi, James L. (Lancaster, PA)

    1981-02-03

    A heat pipe whose fluid can be repeatedly frozen and thawed without damage to the casing. An additional part is added to a conventional heat pipe. This addition is a simple porous structure, such as a cylinder, self-supporting and free standing, which is dimensioned with its diameter not spanning the inside transverse dimension of the casing, and with its length surpassing the depth of maximum liquid.

  1. Analytical expressions for transient specific yield and shallow water table drainage

    E-Print Network [OSTI]

    Nachabe, Mahmood H.

    between water table fluctuations and released volumes holds for a deep water table aquiferAnalytical expressions for transient specific yield and shallow water table drainage Mahmood H and depth to water table. The expressions allow the user to convert observations of water table fluctuations

  2. Integrated heat pump water heater

    SciTech Connect (OSTI)

    Robinson, G.P.; Blackshaw, A.L.

    1986-07-08

    An integrated heat pump water heater system is described for providing either heating or cooling of an interior space, and heating water in conjunction with either the heating or cooling cycle or independently, by means of a refrigerant flowing through the system. The system consists of: a compressor; a first heat exchanger means for providing heat to the interior space in the heating cycle and for removing heat during the cooling cycle by heat transfer with a refrigerant therein; a second heat exchanger means for transferring heat to or from a refrigerant therein by heat exchanger with an exterior medium; a third heat exchanger means for transferring heat from a refrigerant therein to water circulated therethrough; a first expansion device; a second expansion device; a third expansion device; refrigerant flow connection means connected between the compressor, the heat exchanger means, and the expansion devices which may be controllably connected in alternate configurations whereby. In a first configuration the refrigerant flow is sequentially from the compressor, through the third heat exchanger means, through the second heat exchanger means, through the first expansion device, through the first heat exchanger means, and back to the compressor. In a second configuration the refrigerant flow is sequentially from the compressor, through the third heat exchanger means, through the first heat exchanger means, through the second expansion device, through the second heat exchanger means, and back to the compressor. In a third configuration the refrigerant flow is sequentially from the compressor, through the third heat exchanger means, through the third expansion device, through the second heat exchanger means, and back to the compressor.

  3. Radial flow heat exchanger

    DOE Patents [OSTI]

    Valenzuela, Javier (Hanover, NH)

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  4. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  5. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  6. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  7. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  8. International energy indicators. [Statistical tables and graphs

    SciTech Connect (OSTI)

    Bauer, E.K. (ed.)

    1980-05-01

    International statistical tables and graphs are given for the following: (1) Iran - Crude Oil Capacity, Production and Shut-in, June 1974-April 1980; (2) Saudi Arabia - Crude Oil Capacity, Production, and Shut-in, March 1974-Apr 1980; (3) OPEC (Ex-Iran and Saudi Arabia) - Capacity, Production and Shut-in, June 1974-March 1980; (4) Non-OPEC Free World and US Production of Crude Oil, January 1973-February 1980; (5) Oil Stocks - Free World, US, Japan, and Europe (Landed, 1973-1st Quarter, 1980); (6) Petroleum Consumption by Industrial Countries, January 1973-December 1979; (7) USSR Crude Oil Production and Exports, January 1974-April 1980; and (8) Free World and US Nuclear Generation Capacity, January 1973-March 1980. Similar statistical tables and graphs included for the United States include: (1) Imports of Crude Oil and Products, January 1973-April 1980; (2) Landed Cost of Saudi Oil in Current and 1974 Dollars, April 1974-January 1980; (3) US Trade in Coal, January 1973-March 1980; (4) Summary of US Merchandise Trade, 1976-March 1980; and (5) US Energy/GNP Ratio, 1947 to 1979.

  9. Theory of Off Resonance Heat:ing J .C. SPROTI

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    The heating rate for a cold, tenuous, unifonn plasma in a unifonn magnetic field can be written as (1) where E previously proved successful for calculating resonance heating rates. II. Upper off Resonance Heating, and the resulting heating rate is independent of the collision frequency v . It is often said that there can

  10. Solar air heating system for combined DHW and space heating

    E-Print Network [OSTI]

    Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren Østergaard Jensen

  11. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P. (San Ramon, CA)

    2012-07-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  12. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P.

    2015-12-08

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  13. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  14. Supplemental Tables Supplemental Table 1. Test statistics for all response variables measured in clam and control mesocosms in 2009 and 2010. All results

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    Supplemental Tables Supplemental Table 1. Test statistics for all response variables measured chlorophyll a for Run 2, 2010. Test statistics are given in Supplemental Table 1. #12;SF 3. Mean (±SE) water = Clam treatment, run 1). Test statistics are given in Supplemental Table 1. #12;SF 5. Mean (±SE

  15. Echo360 and Copyright Introduction and Summary Tables

    E-Print Network [OSTI]

    Fleming, Andrew J.

    commercial price'. Artwork from Internet (Includes photographs, maps, tables, images, etc.) Yes Yes* Must and Summary Tables Echo360 records and communicates material from a variety of sources. Some activities time' at an `ordinary commercial price'. Note: Individual licence agreements may limit use. Abide

  16. Table Contents Page i 2013 Nonresidential Compliance Manual June 2014

    E-Print Network [OSTI]

    Table Contents Page i 2013 Nonresidential Compliance Manual June 2014 Table of Contents 13.........................................................7 13.8 NRCA-MCH-09-A: Supply Water Temperature Reset Controls Acceptance ....................7 13: Condenser Water Supply Temperature Reset Controls Acceptance 8 13.17 NRCA-MCH-18-A: Energy Management

  17. Table of Contents Preparing for and Responding to Drought

    E-Print Network [OSTI]

    3 Table of Contents Preparing for and Responding to Drought WHEN EVERY DROP COuNtsProtecting Public, National Oceanic and Atmospheric Agency, and American Water Works Association. 2010. When every drop counts P r o f e s s i o n A l s #12;#12;Table of Contents Acknowledgments

  18. Searching Techniques for Integral Tables T. H. Einwohner

    E-Print Network [OSTI]

    Fateman, Richard J.

    Searching Techniques for Integral Tables T. H. Einwohner Richard J. Fateman \\Lambda Computer of data structures and a computer program for storing a table of symbolic indefinite or definite integrals and retrieving user­requested integrals on demand. Typical times are so short that a preliminary look­up at

  19. A Comparison of Perfect Table Cryptanalytic Tradeoff Algorithms

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    A Comparison of Perfect Table Cryptanalytic Tradeoff Algorithms Ga Won Lee and Jin Hong Department Abstract The performances of three major time memory tradeoff algorithms were com- pared in a recent paper. The algorithms considered there were the classical Hell- man tradeoff and the non-perfect table versions

  20. Table of Contents i Export Administration Regulations October 1, 2001

    E-Print Network [OSTI]

    Bernstein, Daniel

    Table of Contents i Export Administration Regulations October 1, 2001 Table of Contents Index 730.2 Statutory authority 730.3 Dual-use exports 730.4 Other control agencies and departments 730.5 Coverage of more than exports 730.6 Control purposes 730.7 License requirements and exceptions 730.8 How

  1. HORTICULTURAL & FOREST CROPS 2012 Table of Contents 1

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    HORTICULTURAL & FOREST CROPS 2012 Table of Contents 1 1 Regulations and Basic Information SafeQuantitiesofLiquidMaterials(EmulsifiableConcentrates,Etc.)for .......... 1-29 Various Quantities of Water Table 1.8 - Pounds of Active Ingredients per Gallon, Pounds per

  2. HORTICULTURAL & FOREST CROPS 2011 Table of Contents 1

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    HORTICULTURAL & FOREST CROPS 2011 Table of Contents 1 1 Regulations and Basic Information SafeQuantitiesofLiquidMaterials(EmulsifiableConcentrates,Etc.)for .......... 1-30 Various Quantities of Water Table 1.8 - Pounds of Active Ingredients per Gallon, Pounds per

  3. Toolbox Safety Talk Heat Stress

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Heat Stress Environmental Health & Safety Facilities Safety & Health Section for inducing heat stress. When the body is unable to cool itself by sweating, several heat-induced illnesses Stress · Know signs/symptoms of heat-related illnesses; monitor yourself and coworkers. · Block out

  4. Guide to Geothermal Heat Pumps

    SciTech Connect (OSTI)

    None

    2011-02-01

    Geothermal heat pumps, also known as ground source heat pumps, geoexchange, water-source, earth-coupled, and earth energy heat pumps, take advantage of this resource and represent one of the most efficient and durable options on the market to heat and cool your home.

  5. U.S. Spent Nuclear Fuel Data as of December 31,2002 -Table 2

    Gasoline and Diesel Fuel Update (EIA)

    6 Table 1 | Table 3 Table 2. Nuclear Power Plant Data as of December 31, 2002 Reactor Name State Reactor Type Reactor Vendor a Core Size (number of assemblies) Startup Date (year)b...

  6. Heat exchanger-accumulator

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX)

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  7. TableHC2.4.xls

    Gasoline and Diesel Fuel Update (EIA)

    72.1 7.6 N N 1.9 For Two Housing Units... 18.1 N N 1.4 16.7 N Heat Pump... 9.2 7.4 0.3 Q 0.7 0.5 Other...

  8. Implementation of New OPAL Tables in Eggleton's Stellar Evolution Code

    E-Print Network [OSTI]

    Xuefei Chen; Christopher A. Tout

    2006-11-08

    Based on the work of OPAL (Iglesias & Rogers 1996) and Alexander & Ferguson (1994), we construct a series of opacity tables for various metallicities Z=0, 0.00001, 0.00003, 0.0001, 0.0003, 0.001, 0.004, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08 and 0.1. These tables can be easily used in Eggleton's stellar evolution code in place of the old tables without changing the code. The OPAL tables are used for ${\\log}_{10}(T/{\\rm K})> 3.95$ and Alexander's for ${\\log}_{10}(T/{\\rm K})OPAL tables (Iglesias & Rogers 1992) shows that the new opacities have most effect in the late stages of evolution, the extension of the blue loop during helium burning for intermediate-mass and massive stars.

  9. List of Figures .... ....... .. ........ .. .. ...................... v List of Tables ...................................... ................... .............. ii

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    and Recommendations .................................................... 3 2.1 Heat Pump Performance Observed Using .............................................................. 8 3.1 Experimental Setup ............................................ 8 3.2 Heat Pump to Heat Pump Electrical Circuit ... ...................13 3.3 Instrumentation

  10. Optimization of Heat Exchanger Cleaning 

    E-Print Network [OSTI]

    Siegell, J. H.

    1986-01-01

    EXCHANGER CLEANING Jeffrey H. Siegell Exxon Research and Engineering Company Florham Park, New Jersey ABSTRACT The performance of heat integration systems is quantified in terms of the amount of heat that is recovered. This decreases with time due... to increased fouling of the heat exchange surface. Using the "Total Fouling Related Expenses (TFRE)" approach, economic incentives for heat exchanger cleaning are evaluated using linear, exponential, and exponential finite decrease models of the heat...

  11. Heat distribution ceramic processing method

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

    2001-01-01

    A multi-layered heat distributor system is provided for use in a microwave process. The multi-layered heat distributors includes a first inner layer of a high thermal conductivity heat distributor material, a middle insulating layer and an optional third insulating outer layer. The multi-layered heat distributor system is placed around the ceramic composition or article to be processed and located in a microwave heating system. Sufficient microwave energy is applied to provide a high density, unflawed ceramic product.

  12. Electrochemical heat engine

    DOE Patents [OSTI]

    Elliott, Guy R. B. (Los Alamos, NM); Holley, Charles E. (Alcalde, NM); Houseman, Barton L. (Cockeysville, MD); Sibbitt, Jr., Wilmer L. (Albuquerque, NM)

    1978-01-01

    Electrochemical heat engines produce electrochemical work, and mechanical motion is limited to valve and switching actions as the heat-to-work cycles are performed. The electrochemical cells of said heat engines use molten or solid electrolytes at high temperatures. One or more reactions in the cycle will generate a gas at high temperature which can be condensed at a lower temperature with later return of the condensate to electrochemical cells. Sodium, potassium, and cesium are used as the working gases for high temperature cells (above 600 K) with halogen gases or volatile halides being used at lower temperature. Carbonates and halides are used as molten electrolytes and the solid electrolyte in these melts can also be used as a cell separator.

  13. Social Media: Heat #HeatSafety #BeatTheHeat #SummerSafety

    E-Print Network [OSTI]

    ; Facebook: Did you know the air temperature can actually feel hotter than what the thermometer reads to help the NWS build a WeatherReady Nation. Facebook: Heat is typically the leading cause.weather.gov/heat #HeatSafety #12; Facebook: Heat waves can be deadly! They can also happen anywhere in the U

  14. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MacArthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  15. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  16. Air heating system

    DOE Patents [OSTI]

    Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  17. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  18. Laboratory Heat Recovery System 

    E-Print Network [OSTI]

    Burrows, D. B.; Mendez, F. J.

    1981-01-01

    that they will be considerable. The system has been in successful operation since October 1979. 724 ESL-IE-81-04-123 Proceedings from the Third Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 Conoco R&D West The award-winning laboratory heat-recovery... stream_source_info ESL-IE-81-04-123.pdf.txt stream_content_type text/plain stream_size 11112 Content-Encoding ISO-8859-1 stream_name ESL-IE-81-04-123.pdf.txt Content-Type text/plain; charset=ISO-8859-1 LABORATORY HEAT...

  19. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  20. THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUS SOLUTIONS DATABASE

    E-Print Network [OSTI]

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.

    2008-01-01

    National Laboratory Nuclear Waste Nanagement Division Upton,~ermodynamic Tables for Nuclear Waste Isolation Vol. I. Aq~Thermodynamic Tables for Nuclear Waste Isolation. Vol 1.