Sample records for heat radiant panels

  1. Radiant Heating | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for| Department ofRightsSmart SensorsHeating Radiant

  2. Radiant Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide: PowerFrequency |Department ofRadiantRadiant

  3. Radiant zone heated particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-12-27T23:59:59.000Z

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  4. Radiant Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified11 Connecticut Ave NW,Radiant Heating Basics

  5. Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Temperature Radiant Heating Systems Milorad Boji1*, Dragan Cvetkovi1 , Jasmina Skerli1 , Danijela Nikoli1., University of Réunion Island, France * Corresponding email: bojic@kg.ac.rs Keywords: Low temperature heating, wall heating, floor heating, ceiling heating, EnergyPlus SUMMARY Low temperature heating panel systems

  6. Effect of a Radiant Panel Cooling System on Indoor Air Quality of a Conditioned Space

    E-Print Network [OSTI]

    Mohamed, E.; Abdalla, K. N.

    2010-01-01T23:59:59.000Z

    This paper discusses the effect of a radiant cooling panel system on an indoor air quality (IAQ) of a conditioned space. In this study, ceiling radiant cooling panel, mechanical ventilation with fan coil unit (FCU) and 100% fresh air are used...

  7. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    Bauman F. 2013. Impact of Solar Heat Gain on Radiant FloorBauman F. 2013. Impact of Solar Heat Gain on Radiant FloorBauman F. 2013. Impact of Solar Heat Gain on Radiant Floor

  8. Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System 

    E-Print Network [OSTI]

    Wu, Z.; Li, D.

    2006-01-01T23:59:59.000Z

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more...

  9. Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System

    E-Print Network [OSTI]

    Wu, Z.; Li, D.

    2006-01-01T23:59:59.000Z

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more...

  10. An analytical model for the design of in-slab electric heating panels

    SciTech Connect (OSTI)

    Ritter, T.L.; Kilkis, B.I. [Heatway, Springfield, MO (United States)

    1998-10-01T23:59:59.000Z

    In this paper, a steady-state heat transfer model is described for design and sizing of electric radiant panel heating systems embedded in a slab. This model is applicable both for ceiling and floor panels. An approximate panel surface heat output algorithm is also given as a function of size and orientation of the heated space and outdoor exposure.

  11. Radiant Barrier Performance during the Heating Season 

    E-Print Network [OSTI]

    Medina, M. A.; O'Neal, D. L.; Turner, W. D.

    1992-01-01T23:59:59.000Z

    ," ORNLICON-200, Oak Ridge National Laboratory, Oak Ridge, TN. 8. Levins W.P. and Kamitz M.A., and Knight D. K., 1986, "Cooling Energy Measurements of Unoccupied Single-Family Houses with Attics Containing Radiant Barriers." Proceedings, Third Annual... with R-ll and R-30 Ceiling Insulation. "ORNLICON-226, Oak Ridge National Laboratory, Oak Ridge, TN. 10. Levins W.P. and Kamitz M.A., 1987, "Energy Measurements of Single-Family Houses with Attics Containing Radiant Barriers." Presented at the ASHRAE...

  12. Radiant Barrier Performance during the Heating Season

    E-Print Network [OSTI]

    Medina, M. A.; O'Neal, D. L.; Turner, W. D.

    to Asses Effects of Dust Accumulation, Attic Ventilation, and Other Key Variables." TVA Report No. TVA/OP/EDT--88/25, Tennessee Valley Authority, Office of Power, Division of Energy Demonstrations and Technology. 5. Joy F.A., 1958, "Improving Attic...," ORNLICON-200, Oak Ridge National Laboratory, Oak Ridge, TN. 8. Levins W.P. and Kamitz M.A., and Knight D. K., 1986, "Cooling Energy Measurements of Unoccupied Single-Family Houses with Attics Containing Radiant Barriers." Proceedings, Third Annual...

  13. Numerical Simulation of Thermal Performance of Floor Radiant Heating System with Enclosed Phase Change Material 

    E-Print Network [OSTI]

    Qiu, L.; Wu, X.

    2006-01-01T23:59:59.000Z

    In the present paper, a kind of enclosed phase change material (PCM) used in solar and low-temperature hot water radiant floor heating is investigated. On the basis of obtaining the best performance of PCM properties, a new radiant heating structure...

  14. Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System 

    E-Print Network [OSTI]

    Liu, G.; Guo, Z.; Hu, S.

    2006-01-01T23:59:59.000Z

    solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

  15. Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System

    E-Print Network [OSTI]

    Liu, G.; Guo, Z.; Hu, S.

    2006-01-01T23:59:59.000Z

    solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

  16. Investigation of a radiantly heated and cooled office with an integrated desiccant ventilation unit

    E-Print Network [OSTI]

    Gong, Xiangyang

    2009-05-15T23:59:59.000Z

    comprehensive study of several technical issues relative to radiant heating and cooling systems that have received little attention in previous research. The following aspects are covered in this dissertation: First, a heat transfer model of mullion radiators...

  17. Dynamic Thermal Modeling of a Radiant Panels System and its Environment for Commissioning: Application to Case Study 

    E-Print Network [OSTI]

    Diaz, N. F.; Bertagnolio, S.; Andre, P.

    2009-01-01T23:59:59.000Z

    and radiation heat exchanges are not aggregated in the present model and air convective and mean radiant temperatures are computed. Radiant ceiling system model As shown in Figure 2, a detailed R-C model is used to simulate the thermal behavior... below the tube. Figure 2. R-C model scheme The radiant ceiling can be considers therefore as a fin where only the dry regime is considered. The thermal balance of this sub-system considers the convective heat transfer on the water side (in...

  18. Energy, cost, and CO2 emission comparison between radiant wall panel1 systems and radiator systems2

    E-Print Network [OSTI]

    Boyer, Edmond

    Energy, cost, and CO2 emission comparison between radiant wall panel1 systems and radiator systems2 of Engineering Science, University of Kragujevac, 34000 Kragujevac, Serbia5 2 Department PIMENT Lab., University15 by software EnergyPlus. The investigation shows that the PH-WI gives the best results. The RH-16

  19. Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System

    E-Print Network [OSTI]

    Zheng, X.; Dong, Z.

    2006-01-01T23:59:59.000Z

    A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

  20. Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System 

    E-Print Network [OSTI]

    Zheng, X.; Dong, Z.

    2006-01-01T23:59:59.000Z

    A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

  1. Testing hyperalgesia and hypoalgesia in human pain reactivity using shock and radiant heat

    E-Print Network [OSTI]

    Rhudy, Jamie Lynn

    1998-01-01T23:59:59.000Z

    the elects of an unpredictable shock and the threat of an unpredictable shock on pain thresholds using a radiant heat test (putative spinal mediation). Experiment 2 examined the effects of the same unpredictable shock and its threat on pain thresholds...

  2. Relative radiant heat absorption characteristics of two types of mirror shields and a polished aluminum shield 

    E-Print Network [OSTI]

    Herron, Steven Douglas

    1973-01-01T23:59:59.000Z

    RELATIVE RADIANT HEAT ABSORPTION CHARACTERISTICS OF TWO TYPES OF MIRROR SHIELDS AND A POLISHED ALUMINUM SHIELD A Thesis by STEVEN DOUGLAS HERRON Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1973 Major Subject: Industrial Hygiene RELATIVE RADIANT HEAT ABSORPTION CHARACTERISTICS OF TWO TYPES OF MIRROR SHIELDS AND A POLISHED ALUMINUM SHIELD A Thesis by STEVEN DOUGLAS HERRON Approved...

  3. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01T23:59:59.000Z

    www.Zurn.com PAGE 35 Radiant Cooling Research Scoping Study1988. “Radiant Heating and Cooling, Displacement VentilationHeat Recovery and Storm Water Cooling: An Environmentally

  4. INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING

    E-Print Network [OSTI]

    Vilmer, Christian

    2013-01-01T23:59:59.000Z

    solar con- trols test facility at Lawrence Berkeley Laboratory The interaction of baseboard, radiant panel, and furnace heating

  5. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    Gain on Radiant Floor Cooling System Design. Proceedings ofWater-based radiant cooling systems are gaining popularityGain on Radiant Floor Cooling System Design. Proceedings of

  6. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    radiant heating and cooling systems, in: Proceedings ofof radiant heating and cooling systems versus air systems,Gain on Radiant Floor Cooling System Design, in: Proceedings

  7. A quasi-steady state model to predict attic heat transfer and energy savings in residences using radiant barriers

    E-Print Network [OSTI]

    Winiarski, David Walter

    1992-01-01T23:59:59.000Z

    day of year, fraction of cloud cover Nusselt number heat flow heat flux radiant barrier time temperature truss radiant barrier width radiative matrix thermal diffusivity, solar absorptivity thermal expansivity surface azimuth angle gamma..., latitude radiative constant kinematic viscosity Superscripts time step Subscripts c cond conv d dp eff f h, hor iJ, k cloud conductive convective diffuse dew point effective forced horizontal numerical subscript spatial node...

  8. Impact of the Position of a Radiator to Energy Consumption and Thermal Comfort in a Mixed Radiant and Convective Heating System

    E-Print Network [OSTI]

    Gong, X.; Claridge, D. E.

    2005-01-01T23:59:59.000Z

    ESL-IC-10/05-35 1 Impact of the Position of the Radiator on Energy Consumption and Thermal Comfort in a Mixed Radiant and Convective Heating System Xiangyang Gong David E... the energy consumption and thermal comfort distribution in a typical office with a mixed radiant and convective heating system for two different locations of radiant heat sources. Accurately estimating the energy consumption in a mixed heating space...

  9. Impact of the Position of a Radiator to Energy Consumption and Thermal Comfort in a Mixed Radiant and Convective Heating System 

    E-Print Network [OSTI]

    Gong, X.; Claridge, D. E.

    2005-01-01T23:59:59.000Z

    ESL-IC-10/05-35 1 Impact of the Position of the Radiator on Energy Consumption and Thermal Comfort in a Mixed Radiant and Convective Heating System Xiangyang Gong David E... the energy consumption and thermal comfort distribution in a typical office with a mixed radiant and convective heating system for two different locations of radiant heat sources. Accurately estimating the energy consumption in a mixed heating space...

  10. Critical review of water based radiant cooling system design methods

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Bauman, Fred; Schiavon, Stefano

    2014-01-01T23:59:59.000Z

    Embedded Radiant Heating and Cooling Systems, InternationalWATER BASED RADIANT COOLING SYSTEM DESIGN METHODS Jingjuan (Keywords: Radiant Cooling System, Design Approach,

  11. Plane and parabolic solar panels

    E-Print Network [OSTI]

    J. H. O. Sales; A. T. Suzuki

    2009-05-14T23:59:59.000Z

    We present a plane and parabolic collector that absorbs radiant energy and transforms it in heat. Therefore we have a panel to heat water. We study how to increment this capture of solar beams onto the panel in order to increase its efficiency in heating water.

  12. Plane and parabolic solar panels

    E-Print Network [OSTI]

    Sales, J H O

    2009-01-01T23:59:59.000Z

    We present a plane and parabolic collector that absorbs radiant energy and transforms it in heat. Therefore we have a panel to heat water. We study how to increment this capture of solar beams onto the panel in order to increase its efficiency in heating water.

  13. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    radiant heat transfer for cooling load calculation.heat gain is well recognized by cooling load calculationload calculation approach for radiant systems, Corgnati [17] also tackled the direct radiant heat

  14. Study of the Applications of the Radiant Cooling Panel in Museum Showcases 

    E-Print Network [OSTI]

    Yu, L.; Hou, H.; Wan, X.; Chen, H.

    2006-01-01T23:59:59.000Z

    Public Records Office[J]. Museum Management and Curatorship, 1999, 18 (2):193-204. [2] Tim Padfield. a cooled display case. http:// www.padfield.org/tim/cfys/coolcase/coolcase.pdf. [3] Tim Padfield. A cooled display case for George Washington.... Numerical heat transfer and fluid flow[M]. Washington DC, 1980. [12] Leonard BP. A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Computer methods in applied mechanics and engineering. 1979;19:59-98. [13...

  15. Cooling load calculations for radiant systems: are they the same traditional methods?

    E-Print Network [OSTI]

    Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    B. 2008. “Radiant floor cooling systems. ” ASHRAE Journal 4.embedded radiant heating and cooling. Geneva: InternationalM. Deru. 2010. “Radiant slab cooling for retail. ” ASHRAE

  16. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01T23:59:59.000Z

    the energy performance of  photovoltaic roofs, ASHRAE Trans A thermal model for photovoltaic systems, Solar Energy, Effects of Solar Photovoltaic Panels on Roof Heat Transfer 

  17. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    radiant heating and cooling systems, in: Proceedings ofInc, Altanta,GA, 2009. Cooling load differences betweensurface level 24-hour total cooling energy between radiant

  18. Development of a Transient Heat and Mass Transfer Model of Residential Attics to Predict Energy Savings Produced by the Use of Radiant Barriers

    E-Print Network [OSTI]

    Medina, M. A.

    A transient heat and mass transfer model was developed to predict ceiling heat gain/loss through the attic space in residences and to accurately estimate savings in cooling and heating loads produced by the use of radiant barriers. The model...

  19. Dual circuit embossed sheet heat transfer panel

    DOE Patents [OSTI]

    Morgan, G.D.

    1984-02-21T23:59:59.000Z

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.

  20. Modeling of Residential Attics with Radiant Barriers 

    E-Print Network [OSTI]

    Wilkes, K. E.

    1988-01-01T23:59:59.000Z

    This paper gives a summary of the efforts at ORNL in modeling residential attics with radiant barriers. Analytical models based on a system of macroscopic heat balances have been developed. Separate models have been developed for horizontal radiant...

  1. Experimental comparison of zone cooling load between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Bauman, Fred; Schiavon, Stefano

    2014-01-01T23:59:59.000Z

    Olesen, Radiant floor cooling systems, ASHRAE Journal, 50 (radiant heating and cooling systems -- Part 2: Determinationradiant heating and cooling systems -- Part 4: Dimensioning

  2. Comparison of Zone Cooling Load for Radiant and All-Air Conditioning Systems

    E-Print Network [OSTI]

    Feng, Jingjuan; Schiavon, Stefano; Bauman, Fred

    2012-01-01T23:59:59.000Z

    Radiant Heating and Cooling Systems. Olesen, B. (2012). "surface heating and cooling systems: . Brussels, Europeanperformance in radiant cooling systems (Babiak, Olesen et

  3. Radiant-interchange configuration factors

    E-Print Network [OSTI]

    Reddin, Thomas Edward

    1965-01-01T23:59:59.000Z

    an important role in any situation involving radiant interchange. The engineer desiring to compute the radiant heat transfer in a system is usually discouraged from performing more than a superficial estimation because of the excessive amount of time... Monitor System using the Fortran IV Compiler and the Macro Assembly Program. Listings of the programs appear in the appendices. CHAPTER II THE GEOMETRY OF THE BLACK BODY CONFIGURATION FACTOR 2. 1 Derivation of the Configuration Factor To evaluate...

  4. Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building 

    E-Print Network [OSTI]

    Feng, G.; Cao, G.; Gang, L.

    2006-01-01T23:59:59.000Z

    in the fields of heating in large space and building energy conservation? In an attempt to conserve energy and reduce energy loss, it has become necessary to seek effective means of reducing heat loss in energy consumption. The development of improved means...

  5. Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building

    E-Print Network [OSTI]

    Feng, G.; Cao, G.; Gang, L.

    2006-01-01T23:59:59.000Z

    in the fields of heating in large space and building energy conservation? In an attempt to conserve energy and reduce energy loss, it has become necessary to seek effective means of reducing heat loss in energy consumption. The development of improved means...

  6. Structural problems in connection with panel heating 

    E-Print Network [OSTI]

    Langdale, Frederick Darrow

    1940-01-01T23:59:59.000Z

    , Rename neig an Lngeaiona ~atm of heating. The fern?so ?aa yla?eg Ln ' ~ tho bassa?at of tho bnilglag ?ng th ~ flees, ' whish s?rrioi off the'~a ' '-. ?of eonbnstion, were baLlt in tha floors ?niL w?Q? Ln ?noh a a?nne? thaW the heat of eonbn?45m, waa... 'the Srftfeh Rmbasey ia gaehfrgtoa is the first buildfag fa whish ysasl hsstfag or wsrafag hss boss ussc, 1 vh ~ gt. Ceoxgo Kotsl; oa? of the newest sn4 lirgoat hotels fa week To& City, uses yeasl hostiag te para tho floor aurrouagfag th ~ erfwafag...

  7. Relative radiant heat absorption characteristics of two types of mirror shields and a polished aluminum shield

    E-Print Network [OSTI]

    Herron, Steven Douglas

    1973-01-01T23:59:59.000Z

    compared. The relative absorptivities of two types of rear?silvered safety plate mirrors and a polished aluminum sheet will be compared in this research. LITERATURE REVIEW Modes of Heat Transmission It is well understood that heat may flow only... of vasomotor tone, peripheral venous blood pooling, hypotension, and cerebral anoxia. This instability results in nausea, giddi- 19 ness, universal discomfort, acute physical fatigue, and sometimes fainting. Salt deficiency from any of several possible...

  8. Combustion Air Preheat and Radiant Heat Transfer in Fired Heaters - A Graphical Method for Design and Operating Analysis

    E-Print Network [OSTI]

    Grantom, R. L.

    1981-01-01T23:59:59.000Z

    The installation of combustion air preheat is a widely used technique for improving the fuel efficiency of existing fired heaters and fired tubular reactors. By increasing adiabatic flame temperature, combustion air preheat increases radiant section...

  9. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect (OSTI)

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01T23:59:59.000Z

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  10. Electric and Gas Fired Radiant Tubes 'ERT'

    E-Print Network [OSTI]

    Nilsen, E. K.

    1981-01-01T23:59:59.000Z

    The paper covers a unique development by the Surface Division of Midland Ross of a radiant tube heating element which will heat an industrial furnace with either gas or electric without any down time or physical conversion required...

  11. Electric and Gas Fired Radiant Tubes 'ERT' 

    E-Print Network [OSTI]

    Nilsen, E. K.

    1981-01-01T23:59:59.000Z

    The paper covers a unique development by the Surface Division of Midland Ross of a radiant tube heating element which will heat an industrial furnace with either gas or electric without any down time or physical conversion required...

  12. Design and Control of Hydronic Radiant Cooling Systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove

    2014-01-01T23:59:59.000Z

    embedded heating and cooling systems. Brussels, Belgium,of radiant heating/cooling systems for non-residentalSimulations of floor cooling system capacity." Applied

  13. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01T23:59:59.000Z

    comes from both the solar panel and the sky weighted by the underside of the tilted solar panels and the surface of of a roof  underneath a solar panel compared to that of an 

  14. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01T23:59:59.000Z

    the underside of the tilted solar panels and the surface of the roof under the solar panel (Fig.  2).  An air temperature of the  solar panel is similar to the roof 

  15. Porous radiant burners having increased radiant output

    DOE Patents [OSTI]

    Tong, Timothy W. (Tempe, AZ); Sathe, Sanjeev B. (Tempe, AZ); Peck, Robert E. (Tempe, AZ)

    1990-01-01T23:59:59.000Z

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  16. Dual-circuit embossed-sheet heat-transfer panel

    DOE Patents [OSTI]

    Morgan, G.D.

    1982-08-23T23:59:59.000Z

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed for form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

  17. M. Porkolab, FESAC Greenwald Sub-panel Meeting, PPPLAug7, 2007 RF Heating and Current Drive Systems

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    M. Porkolab, FESAC Greenwald Sub-panel Meeting, PPPLAug7, 2007 RF Heating and Current Drive Systems;M. Porkolab, FESAC Greenwald Sub-panel Meeting, PPPLAug7, 2007 Lower Hybrid Heating and Current Greenwald Sub-panel Meeting, PPPLAug7, 2007 Aspects of ICRF Heating and Current Drive · ICRF power

  18. DOAS, Radiant Cooling Revisited

    SciTech Connect (OSTI)

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2012-12-01T23:59:59.000Z

    The article discusses dedicated outdoor air systems (DOAS) and radiant cooling technologies. Both of these topics were covered in previous ASHRAE Journal columns. This article reviews the technologies and their increasing acceptance. The two steps that ASHRAE is taking to disseminate DOAS information to the design community, available energy savings and the market potential of radiant cooling systems are addressed as well.

  19. Reverberatory screen for a radiant burner

    DOE Patents [OSTI]

    Gray, Paul E. (North East, MD)

    1999-01-01T23:59:59.000Z

    The present invention relates to porous mat gas fired radiant burner panels utilizing improved reverberatory screens. The purpose of these screens is to boost the overall radiant output of the burner relative to a burner using no screen and the same fuel-air flow rates. In one embodiment, the reverberatory screen is fabricated from ceramic composite material, which can withstand higher operating temperatures than its metallic equivalent. In another embodiment the reverberatory screen is corrugated. The corrugations add stiffness which helps to resist creep and thermally induced distortions due to temperature or thermal expansion coefficient differences. As an added benefit, it has been unexpectedly discovered that the corrugations further increase the radiant efficiency of the burner. In a preferred embodiment, the reverberatory screen is both corrugated and made from ceramic composite material.

  20. Cooling load calculations for radiant systems: are they the same traditional methods?

    E-Print Network [OSTI]

    Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    heat transfer is handled in traditional cooling load calculationheat gain is well recognized by cooling load calculationload calculations for radiant systems should use the ASHRAE heat

  1. advanced low-temperature heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only...

  2. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  3. Summary Report: Control Strategies for Mixed-Mode Buildings

    E-Print Network [OSTI]

    Brager, Gail; Borgeson, Sam; Lee, Yoonsu

    2007-01-01T23:59:59.000Z

    radiant heating and cooling using geothermal loop flowinggeothermal loop. Panel Slab Panel-based radiant heating and/or cooling

  4. Solar heating panel: Parks and Recreation Building, Saugatuck Township Park and Recreation Commission. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-12-04T23:59:59.000Z

    This report is an account of the design and installation of a solar heating system on an existing building in Saugatuck, MI, using existing technology. The purpose of this program is to demonstrate the possibilities of alternative energy, educate local craftsmen, and make the building more useful to the community. The structure of the building is described. The process of insulating the structure is described. The design of the solar panel, headers, and strong box full of rocks for heat storage is given complete with blueprints. The installation of the system is also described, including photographs of the solar panel being installed. Included is a performance report on this system by Purbolt's Inc., which describes measurements taken on the system and outlines the system's design and operation. Included also are 12 slides of the structure and the solar heating system. (LEW)

  5. Thermal model of attic systems with radiant barriers

    SciTech Connect (OSTI)

    Wilkes, K.E.

    1991-07-01T23:59:59.000Z

    This report summarizes the first phase of a project to model the thermal performance of radiant barriers. The objective of this phase of the project was to develop a refined model for the thermal performance of residential house attics, with and without radiant barriers, and to verify the model by comparing its predictions against selected existing experimental thermal performance data. Models for the thermal performance of attics with and without radiant barriers have been developed and implemented on an IBM PC/AT computer. The validity of the models has been tested by comparing their predictions with ceiling heat fluxes measured in a number of laboratory and field experiments on attics with and without radiant barriers. Cumulative heat flows predicted by the models were usually within about 5 to 10 percent of measured values. In future phases of the project, the models for attic/radiant barrier performance will be coupled with a whole-house model and further comparisons with experimental data will be made. Following this, the models will be utilized to provide an initial assessment of the energy savings potential of radiant barriers in various configurations and under various climatic conditions. 38 refs., 14 figs., 22 tabs.

  6. Cooling load calculations for radiant systems: are they the same traditional methods?

    E-Print Network [OSTI]

    Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    FEATURE A Radiant Air Radiant Air COOLING RATE (BTU/H· FT2 ) COOLING RATE (BTU/H· FT 2 ) B HOUR HOUR FIGURE 2total internal heat gain (4.8 Btu/h·ft 2 [15 W/m 2 ]) during

  7. Radiant energy collector. [Patent application

    DOE Patents [OSTI]

    McIntire, W.R.

    1980-02-14T23:59:59.000Z

    A cylindrical radiant energy collector is provided which includes a reflector spaced apart from an energy absorber. The reflector is of a particular shape which ideally eliminates gap losses.

  8. High heat flux testing of a two-tube copper panel specimen for LLNL at ASURF

    SciTech Connect (OSTI)

    Easoz, J.R.; Sink, D.A.

    1984-12-01T23:59:59.000Z

    This letter documents the results of the test program conducted for Lawrence Livermore National Laboratory (LLNL) by Westinghouse Advanced Energy Systems Division (AESD) in fulfillment of the Third Amendment to Subcontract 9125401. The original test matrix of 20,000 heating cycles on two test articles called for in the contract was not technically feasible due to the inability of the test articles supplied by LLNL to perform successfully at the required test conditions. Burnout occurred in one of the tubes of a two-tube target during the first series of tests. As a result, the work scope was changed by LLNL such that the tests on the milled copper plate panel specimen were replaced by a second set of heating tests on the second tube of the two-tube copper panel specimen to confirm the conditions for burnout failure. The testing requirements were completed following failure of the second tube at nominally identical conditions under which the first tube failed, and verification of these conditions. This letter completes all contractual obligations by serving as the final report on the test program.

  9. Mean Radiant Cooling in a Hot-Humid Climate

    E-Print Network [OSTI]

    Garrison, M.

    1996-01-01T23:59:59.000Z

    Shaded interior mass walls in a hot-humid climate can be thermally grounded to an earth heat sink under an insulated structure. The mean radiant temperature (MRT) of the shaded and thermally grounded interior mass walls will be cooler in summer than...

  10. Indoor Humidity Analysis of an Integrated Radiant Cooling and Desiccant Ventilation System

    E-Print Network [OSTI]

    Gong, X.; Claridge, D. E.

    2006-01-01T23:59:59.000Z

    latent heat, they normally are used in conjunction with an independent ventilation system, which is capable of decoupling the space sensible and latent loads. Condensation concerns limit the application of radiant cooling. This paper studies...

  11. Optimal heat-reversible snap joints for frame-panel assembly in aluminum space frame automotive bodies

    E-Print Network [OSTI]

    Saitou, Kazuhiro "Kazu"

    Optimal heat-reversible snap joints for frame-panel assembly in aluminum space frame automotive, snap-fit joints, aluminum space frame 1 INTRODUCTION Aluminum space frame (AFS) automotive bodies to dramatically improve the recyclability of aluminum space frame (ASF) bodies by enabling clean separation

  12. BN-97-4-4 (RP-875) The Radiant Time Series Cooling

    E-Print Network [OSTI]

    of the proceduresare described in chapters 2 and 10 of the current ASHRAECool#zg and Heating LoadCalculation ManualBN-97-4-4 (RP-875) The Radiant Time Series Cooling Load Calculation Procedure Jeffrey D. Spitler calculations, derived from the heat balancemethod.It effectively replacesall other simpli- fied (non-heat

  13. Online map of buildings using radiant technologies

    E-Print Network [OSTI]

    Karmann, Caroline; Schiavon, Stefano; Bauman, Fred

    2014-01-01T23:59:59.000Z

    of radiant slab cooling using building simulation and fieldmeasurements. Energy and Buildings, 41, 3, 320-330.2013) Net-Zero Energy Buildings - Worldwide. Available at:

  14. Radiant Cooling | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergy Small Team OversightDepartmentof Energy DesignRachelFlowRadiant

  15. Radiant Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevada <RECServices,RYPOSRadiance:Radiant

  16. Simulation of radiant cooling performance with evaporative cooling sources

    E-Print Network [OSTI]

    Moore, Timothy

    2008-01-01T23:59:59.000Z

    2000. “Closed Circuit Cooling Tower Selection Program”S R. Lay, 2003 “Radiant Cooling Systems – A Solution forH. 1994. “Hydronic Radiant Cooling Systems. ” Center for

  17. Radiant Heating Basics | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo.Frequency | DepartmentOE-3:

  18. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01T23:59:59.000Z

    CBE’s simplified heat transfer model could be used to assesssimplified plenum heat transfer model, for this particular

  19. Thermal Performance Evaluation of Attic Radiant Barrier Systems Using the Large Scale Climate Simulator (LSCS)

    SciTech Connect (OSTI)

    Shrestha, Som S [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Application of radiant barriers and low-emittance surface coatings in residential building attics can significantly reduce conditioning loads from heat flow through attic floors. The roofing industry has been developing and using various radiant barrier systems and low-emittance surface coatings to increase energy efficiency in buildings; however, minimal data are available that quantifies the effectiveness of these technologies. This study evaluates performance of various attic radiant barrier systems under simulated summer daytime conditions and nighttime or low solar gain daytime winter conditions using the large scale climate simulator (LSCS). The four attic configurations that were evaluated are 1) no radiant barrier (control), 2) perforated low-e foil laminated oriented strand board (OSB) deck, 3) low-e foil stapled on rafters, and 4) liquid applied low-emittance coating on roof deck and rafters. All test attics used nominal RUS 13 h-ft2- F/Btu (RSI 2.29 m2-K/W) fiberglass batt insulation on attic floor. Results indicate that the three systems with radiant barriers had heat flows through the attic floor during summer daytime condition that were 33%, 50%, and 19% lower than the control, respectively.

  20. Cooling load calculations for radiant systems: are they the same traditional methods?

    E-Print Network [OSTI]

    Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    B. 2008. “Radiant floor cooling systems. ” ASHRAE Journal 4.gain on radiant floor cooling system design. ” Proceedings,of designing radiant slab cooling systems, including load

  1. Radiant energy collection and conversion apparatus and method

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1982-01-01T23:59:59.000Z

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  2. Effects of Radiant Barrier Systems on Ventilated Attics in a Hot and Humid Climate

    E-Print Network [OSTI]

    Medina, M. A.; O'Neal, D. L.; Turner, W. D.

    was not sensitive to increased airflows. The ceiling heat flux reductions produced by the radiant barrier systems were between 25 and 34 percent, with 28 percent being the reduction observed most often in the presence of attic ventilation. All results presented...

  3. Economic Evaluation of Insulation/Radiant Barrier Systems for the State of Texas

    E-Print Network [OSTI]

    Medina, M. A.; Turner, W. D.; O'Neal, D. L.

    1994-01-01T23:59:59.000Z

    on reductions of ceiling heat loads during the summer time, a combination of R-11 with RB was more effective than upgrading the insulation level to R-19. Similarly, adding a radiant barrier to an existing insulation level of R-19 proved more effective than...

  4. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01T23:59:59.000Z

    61–65° F (16–18°C) cooling supply air temperatures requiredprovide appropriate cooling with supply water no cooler thancirculation of the cooling/heating supply water through the

  5. Performance Testing of Radiant Barriers

    E-Print Network [OSTI]

    Hall, J. A.

    1986-01-01T23:59:59.000Z

    IOUIIATION HEAT FLUX 1 SAVINO SI(il(1QICUICE IIB ON ROOF DECK -1 -92 RB ON RIlTWS -1.88 NOW-RB -1 .B5 RB ON mp -1.71 NON-RB RB OW mP RB ON ROOQ DEK RB OW wms TARE 12 nm RwLn AWAGE HEAT QWXW mn NIOHT ROURS ROOT TMPeRATUReS - SDLAR 225, Atl8I TEUP r 87...

  6. Integrated use of solar panels and a waste heat scavenger. Progress report

    SciTech Connect (OSTI)

    Jarrell, J.H.; Miller, B.R.; Smathers, W.M. Jr.

    1980-01-01T23:59:59.000Z

    The objectives of this project were to: (1) install energy measurement devices on commercially available solar collectors and a heat scavenger attached to the dairy refrigeration system; and (2) make the results of the demonstration available to other dairy farmers. The objectives have been accomplished. Measurement devices have been installed and are currently establishing a data base on system performance. A demonstration for dairy farmers was sponsored by the Agricultural Economics Department and the Agricultural Engineering Extension Department of the University of Georgia. The demonstration and associated program was held in November of 1980 at Monroe, Georgia which is near the demonstration dairy. A tour of the dairy followed presentation of energy related topics. About 60 farmers attended this program. A copy of the program and a summary of experience with the system are attached.

  7. Heat Recovery from Coal Gasifiers

    E-Print Network [OSTI]

    Wen, H.; Lou, S. C.

    1981-01-01T23:59:59.000Z

    This paper deals with heat recovery from pressurized entrained and fixed bed coal gasifiers for steam generation. High temperature waste heat, from slagging entrained flow coal gasifier, can be recovered effectively in a series of radiant...

  8. Radiant energy receiver having improved coolant flow control means

    DOE Patents [OSTI]

    Hinterberger, H.

    1980-10-29T23:59:59.000Z

    An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

  9. Simulation of radiant cooling performance with evaporative cooling sources

    E-Print Network [OSTI]

    Moore, Timothy

    2008-01-01T23:59:59.000Z

    and the Future Integration of Alternative Cooling Systems infuture developments include refinement of four essential components of the radiant cooling and

  10. Vented Cavity Radiant Barrier Assembly And Method

    DOE Patents [OSTI]

    Dinwoodie, Thomas L. (Piedmont, CA); Jackaway, Adam D. (Berkeley, CA)

    2000-05-16T23:59:59.000Z

    A vented cavity radiant barrier assembly (2) includes a barrier (12), typically a PV module, having inner and outer surfaces (18, 22). A support assembly (14) is secured to the barrier and extends inwardly from the inner surface of the barrier to a building surface (14) creating a vented cavity (24) between the building surface and the barrier inner surface. A low emissivity element (20) is mounted at or between the building surface and the barrier inner surface. At least part of the cavity exit (30) is higher than the cavity entrance (28) to promote cooling air flow through the cavity.

  11. Radiant Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito,Jump to:Radiant Electric Coop, Inc Jump to:

  12. Cooling Energy Measurements of Houses with Attics Containing Radiant Barriers

    E-Print Network [OSTI]

    Levins, W. P.; Karnitz, M. A.; Knight, D. K.

    1986-01-01T23:59:59.000Z

    Tests were conducted by Oak Ridge National Laboratory (ORNL) to determine the magnitude of the energy savings brought about by installing radiant barriers in the attics of single-family houses. The radiant barrier used for this test was a product...

  13. The Influence of Dust on the Absorptivity of Radiant Barriers

    E-Print Network [OSTI]

    Noboa, Homero L.

    The purpose of this project was to model and quantify the increase of the absorptivity of radiant barriers caused by the accumulation of dust on the surface of radiant barriers. This research was the continuation of a previous work by the author...

  14. IMPROVEMENTS TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION

    E-Print Network [OSTI]

    IMPROVEMENTS TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION PROCEDURE By BEREKET, Australia 1998 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION PROCEDURE Dissertation Approved: Dr. Jeffrey D

  15. Geothermal heating from Pinkerton Hot Springs at Colorado Timberline Academy, Durango, Colorado. Final technical report

    SciTech Connect (OSTI)

    Allen, C.C.; Allen, R.W.; Beldock, J.

    1981-11-08T23:59:59.000Z

    The efforts to establish a greater pool of knowledge in the field of low temperature heat transfer for the application of geothermal spring waters to space heating are described. A comprehensive set of heat loss experiments involving passive radiant heating panels is conducted and the results presented in an easily interpretable form. Among the conclusions are the facts that heating a 65 to 70 F/sup 0/ space with 90 to 100 F/sup 0/ liquids is a practical aim. The results are compared with the much lower rates published in the American Society of Heating Refrigeration and Air Conditioning Engineers SYSTEMS, 1976. A heat exchange chamber consisting of a 1000 gallon three compartment, insulated and buried tank is constructed and a control and pumping building erected over the tank. The tank is intended to handle the flow of geothermal waters from Pinkerton Hot Springs at 50 GPM prior to the wasting of the spring water at a disposal location. Approximately 375,000 Btu per hour should be available for heating assuming a 15 F/sup 0/ drop in water temperature. A combination of the panel heat loss experiments, construction of the heat exchange devices and ongoing collection of heat loss numbers adds to the knowledge available to engineers in sizing low temperature heat systems, useful in both solar and geothermal applications where source temperature may be often below 110 F/sup 0/.

  16. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14T23:59:59.000Z

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  17. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    Radiant success: Design for energy-efficient comfort inHill, [10] Z. Tian, Design of energy efficient building withenergy efficient approach for conditioning buildings [1-3]. The design

  18. Analysis of Attic Radiant Barrier Systems Using Mathematical Models

    E-Print Network [OSTI]

    Fairey, P.; Swami, M.

    1988-01-01T23:59:59.000Z

    During the past six years, the Florida Solar Energy Center (FSEC) has conducted extensive experimental research on radiant barrier systems (RBS). This paper presents recent research on the development of mathematical attic models. Two levels...

  19. Analysis of Attic Radiant Barrier Systems Using Mathematical Models 

    E-Print Network [OSTI]

    Fairey, P.; Swami, M.

    1988-01-01T23:59:59.000Z

    During the past six years, the Florida Solar Energy Center (FSEC) has conducted extensive experimental research on radiant barrier systems (RBS). This paper presents recent research on the development of mathematical attic models. Two levels...

  20. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    under the offset unit's solar panel, the hf formula (16) wasdrop below the angle unit's solar panel at night time. D u rfor both the units, the solar panel covered roof was a heat

  1. Venice Sustainability Advisory Panel

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    Venice Sustainability Advisory PanelFINAL REPORT Venice Sustainability Advisory Panel FinalInvestigator The Venice Sustainability Advisory Panel (

  2. Overview of the Radiant Time Series Method

    E-Print Network [OSTI]

    as basis for CLTDs and CLFs 1980 ­ ASHRAE publishes Cooling and Heating Load Calculation Manual by Rudoy) 1992 ­ ASHRAE publishes 2nd Edition of Cooling and Heating Load Calculation Manual by Mc publishes Cooling and Heating Load Calculation Principles with HBM and RTSM 2001 ­ HBM and RTSM

  3. Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology

    SciTech Connect (OSTI)

    Kosny, Jan [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Childs, Phillip W [ORNL] [ORNL; Biswas, Kaushik [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heat sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.

  4. Oven wall panel construction

    DOE Patents [OSTI]

    Ellison, Kenneth (20 Avondale Cres., Markham, CA); Whike, Alan S. (R.R. #1, Caledon East, both of Ontario, CA)

    1980-04-22T23:59:59.000Z

    An oven roof or wall is formed from modular panels, each of which comprises an inner fabric and an outer fabric. Each such fabric is formed with an angle iron framework and somewhat resilient tie-bars or welded at their ends to flanges of the angle irons to maintain the inner and outer frameworks in spaced disposition while minimizing heat transfer by conduction and permitting some degree of relative movement on expansion and contraction of the module components. Suitable thermal insulation is provided within the module. Panels or skins are secured to the fabric frameworks and each such skin is secured to a framework and projects laterally so as slidingly to overlie the adjacent frame member of an adjacent panel in turn to permit relative movement during expansion and contraction.

  5. Interconnection Panel

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the interconnection panel, including an overview of the generation interconnection process (GIP), and interconnection agreements and their terms.

  6. Modeling of Residential Attics with Radiant Barriers

    E-Print Network [OSTI]

    Wilkes, K. E.

    1988-01-01T23:59:59.000Z

    , Inclined, and Horizontal Flat Plates." ASME Journal of Heat Transfer, Vol. 108, pp. 835-840 (1986). 20. C. C. Chen and R. Eichorn, "Natural Convection From a Vertical Surface to a Thermally Stratified Fluid", J. Heat Transfer, pp. 446-451, August... conditions, while experiments conducted in the field are all transient. Field experiments may be further classified into those conducted with small test cells and those conducted with full-size houses. Comparisons of model predictions with data from each...

  7. A Comparative Heat Transfer Examination of Structural Insulated Panels (SIPs) With and Without Phase Change Materials (PCMs) Using a Dynamic Wall Simulator

    E-Print Network [OSTI]

    Medina, M.; Zhu, D.

    The main focus of this paper was to present data to advance the design of a previously developed thermally-enhanced structural insulated panel (SIP) that had been outfitted with phase change materials (PCMs) (Medina et al., 2008). To advance...

  8. Hydronic radiant cooling: Overview and preliminary performance assessment

    SciTech Connect (OSTI)

    Feustel, H.E.

    1993-05-01T23:59:59.000Z

    A significant amount of electrical energy used to cool non-residential buildings is drawn by the fans used to transport the cool air through the thermal distribution system. Hydronic systems reduce the amount of air transported through the building by separating ventilation and thermal conditioning. Due to the physical properties of water, hydronic distribution systems can transport a given amount of thermal energy using less than 5% of the otherwise necessary fan energy. This savings alone significantly reduces the energy consumption and especially the peak power requirement This survey clearly shows advantages for radiant cooling in combination with hydronic thermal distribution systems in comparison with the All-Air Systems commonly used in California. The report describes a literature survey on the system's development, thermal comfort issues, and cooling performance. The cooling power potential and the cooling power requirement are investigated for several California climates. Peak-power requirement is compared for hydronic radiant cooling and conventional All-Air-Systems.

  9. Study of the Applications of the Radiant Cooling Panel in Museum Showcases

    E-Print Network [OSTI]

    Yu, L.; Hou, H.; Wan, X.; Chen, H.

    2006-01-01T23:59:59.000Z

    nephograms of two showcase?s cross sections (a) new showcase?s x-z cross section (y=0.5m); (b) convectional showcase?s y-z cross section (x=0.3m) REFERENCES [1] Svare Soren. Climate-Conditioned Display Case for Lorich's Map of the Elbe in the Hamburg...

  10. Influence of Infrared Radiation on Attic Heat Transfer 

    E-Print Network [OSTI]

    Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

    1985-01-01T23:59:59.000Z

    roof temperatures. It was found that a radiant barrier such as aluminum foil can reduce the heat flux significantly. Experimental results were compared to a Three-Region approximate solution developed at Oak Ridge National Laboratories (ORNL). The model...

  11. The effects of radient heat on pain reactivity 

    E-Print Network [OSTI]

    Kallina, Charles Frank

    1994-01-01T23:59:59.000Z

    Prior research has shown that an aversive event can produce either a decrease (hypoalgesia) or an increase in pain reactivity (hyperalgesia). The present study explores the impact of a suprathreshold exposure to radiant heat on pain reactivity. Rats...

  12. TSUAHXETSUAHXE UndergroUnd tank

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    USer waterheatexchange waterheatexchange general exhaUSt lab exhaUSt warmairexhaUSt radiant panel heat radiant panel heat by night air, then stored underground. cold water travels through floors and ceiling panels to absorb heat rain and snowmelt in toilets saves water and reduces stormwater runoff photovoltaic panels turn solar

  13. Heating system

    SciTech Connect (OSTI)

    Nishman, P.J.

    1983-03-08T23:59:59.000Z

    A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

  14. Global Macrogol 6000 Market Size and Growth up to 2015 : Radiant...

    Open Energy Info (EERE)

    to 2015 : Radiant Insights, Inc Home > Groups > Future of Condition Monitoring for Wind Turbines Marketresearchri's picture Submitted by Marketresearchri(45) Member 2 July, 2015 -...

  15. Influence of dust on the emissivity of radiant barriers

    E-Print Network [OSTI]

    Noboa, Homero Luis

    1991-01-01T23:59:59.000Z

    beloved children Anita Maria and Felipe Homero, and my family in Ecuador. The support and love of my mother and father, and my family-in-law were vital to overcome the difficulties. I would like to mention my sister in law Luly for her special attention... To My Beloved Father To Anita Maria and Fehpe Homero TABLE OF CONTENTS ABSTRACT Page ACKNOWLEDGMENTS DEDICATION V 1 1 LIST OF FIGURES Xl NOMENCLATURE . X111 1. INTRODUCTION 2. LITERATURE REVIEW 3. TOPICS ON RADIANT BARRIERS PERFORMANCE 3. 1...

  16. SSRL- Proposal Review Panel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lab search Go an error occurred while processing this directive Proposal Review Panel Sub Panels Structural Molecular Biology & Biophysics...

  17. Acoustic Heating Peter Ulmschneider

    E-Print Network [OSTI]

    Ulmschneider, Peter

    mechanisms. 1. The acoustic heating theory Only a few years after Edlen's (1941) discovery that the solar acoustic wave radiation- · b. field acoustic wave Figure 1. Panel a: Acoustic heating in late-type stars: effective temperature TeJ f, gravity g and mixing length parameter fr. Panel b: Acoustic heating in early

  18. Hydronic radiant cooling: Overview and preliminary performance assessment

    SciTech Connect (OSTI)

    Feustel, H.E.

    1993-05-01T23:59:59.000Z

    A significant amount of electrical energy used to cool non-residential buildings is drawn by the fans used to transport the cool air through the thermal distribution system. Hydronic systems reduce the amount of air transported through the building by separating ventilation and thermal conditioning. Due to the physical properties of water, hydronic distribution systems can transport a given amount of thermal energy using less than 5% of the otherwise necessary fan energy. This savings alone significantly reduces the energy consumption and especially the peak power requirement This survey clearly shows advantages for radiant cooling in combination with hydronic thermal distribution systems in comparison with the All-Air Systems commonly used in California. The report describes a literature survey on the system`s development, thermal comfort issues, and cooling performance. The cooling power potential and the cooling power requirement are investigated for several California climates. Peak-power requirement is compared for hydronic radiant cooling and conventional All-Air-Systems.

  19. Simulation of radiant cooling performance with evaporative cooling sources

    E-Print Network [OSTI]

    Moore, Timothy

    2008-01-01T23:59:59.000Z

    finite element heat transfer model from Lawrence Berkeleyusing THERM 2-D heat transfer model Hydronic tubing insideusing THERM 2-D heat transfer model Hydronic tubing inside

  20. Design and Control of Hydronic Radiant Cooling Systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove

    2014-01-01T23:59:59.000Z

    Refrigerating and Air- Conditioning Engineers, Atlanta(European Heating and Air-Conditioning Associations. Bauman,HEATING REFRIGERATING AND AIR CONDITIONING ENGINEERS 106(1):

  1. EXPERIMENTAL VALIDATION OF THE RADIANT TIME SERIES METHOD FOR COOLING LOAD

    E-Print Network [OSTI]

    EXPERIMENTAL VALIDATION OF THE RADIANT TIME SERIES METHOD FOR COOLING LOAD CALCULATIONS By IP SENG College of the Oklahoma State University in partial fulfillment of the requirements for the Degree LOAD CALCULATIONS Thesis Approved: _______________________________________ Thesis Advisor

  2. Analysis of a hybrid UFAD and radiant hydronic slab HVAC system

    E-Print Network [OSTI]

    Raftery, Paul; Lee, Kwang Ho; Webster, Thomas; Bauman, Fred

    2011-01-01T23:59:59.000Z

    Air- Conditioning Engineers HVAC & R Research, vol. 50, Sep.and radiant hydronic slab HVAC system.   Paul RAFTERY a,* ,of a novel integrated HVAC system. This system combines an

  3. Panel Organization 1. Panel on Structural Geology & Geoengineering

    E-Print Network [OSTI]

    Appendix A Panel Organization 1. Panel on Structural Geology & Geoengineering Chair: Dr. Clarence R Technical Exchange (open) Panel on Structural Geology & Geoengineering Denver, Colorado Topic: DOE & Performance Analysis and the Panel on Structural Geology & Geoengineering Denver, Colorado Topic: Repository

  4. Radiant cooling in US office buildings: Towards eliminating the perception of climate-imposed barriers

    SciTech Connect (OSTI)

    Stetiu, C.

    1998-01-01T23:59:59.000Z

    Much attention is being given to improving the efficiency of air-conditioning systems through the promotion of more efficient cooling technologies. One such alternative, radiant cooling, is the subject of this thesis. Performance information from Western European buildings equipped with radiant cooling systems indicates that these systems not only reduce the building energy consumption but also provide additional economic and comfort-related benefits. Their potential in other markets such as the US has been largely overlooked due to lack of practical demonstration, and to the absence of simulation tools capable of predicting system performance in different climates. This thesis describes the development of RADCOOL, a simulation tool that models thermal and moisture-related effects in spaces equipped with radiant cooling systems. The thesis then conducts the first in-depth investigation of the climate-related aspects of the performance of radiant cooling systems in office buildings. The results of the investigation show that a building equipped with a radiant cooling system can be operated in any US climate with small risk of condensation. For the office space examined in the thesis, employing a radiant cooling system instead of a traditional all-air system can save on average 30% of the energy consumption and 27% of the peak power demand due to space conditioning. The savings potential is climate-dependent, and is larger in retrofitted buildings than in new construction. This thesis demonstrates the high performance potential of radiant cooling systems across a broad range of US climates. It further discusses the economics governing the US air-conditioning market and identifies the type of policy interventions and other measures that could encourage the adoption of radiant cooling in this market.

  5. Interactive optical panel

    DOE Patents [OSTI]

    Veligdan, J.T.

    1995-10-03T23:59:59.000Z

    An interactive optical panel assembly includes an optical panel having a plurality of ribbon optical waveguides stacked together with opposite ends thereof defining panel first and second faces. A light source provides an image beam to the panel first face for being channeled through the waveguides and emitted from the panel second face in the form of a viewable light image. A remote device produces a response beam over a discrete selection area of the panel second face for being channeled through at least one of the waveguides toward the panel first face. A light sensor is disposed across a plurality of the waveguides for detecting the response beam therein for providing interactive capability. 10 figs.

  6. Interactive optical panel

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    1995-10-03T23:59:59.000Z

    An interactive optical panel assembly 34 includes an optical panel 10 having a plurality of ribbon optical waveguides 12 stacked together with opposite ends thereof defining panel first and second faces 16, 18. A light source 20 provides an image beam 22 to the panel first face 16 for being channeled through the waveguides 12 and emitted from the panel second face 18 in the form of a viewable light image 24a. A remote device 38 produces a response beam 40 over a discrete selection area 36 of the panel second face 18 for being channeled through at least one of the waveguides 12 toward the panel first face 16. A light sensor 42,50 is disposed across a plurality of the waveguides 12 for detecting the response beam 40 therein for providing interactive capability.

  7. Thermal resistance of composite panels containing superinsulation and urethane foam

    SciTech Connect (OSTI)

    Wilkes, K.E.; Graves, R.S.; Childs, K.W.

    1996-09-01T23:59:59.000Z

    Laboratory data are presented on the thermal resistance of composite panels that incorporate superinsulation embedded in urethane foam. Composite panels were fabricated using four types of advanced insulations (three types of evacuated panel superinsulation and one type of gas-filled panel), and three foam blowing agents (CFC-11, HCFC-141b, and HCFC-142b/22 blend). Panels were also fabricated with only the urethane foam to serve as a baseline. Thermal measurements were performed using an ASTM C 518 Heat Flow Meter Apparatus. The thermal resistances of the panels were measured over a two-year period to detect whether any significant changes occurred. A computer model was used to analyze the data, adjusting for differences in size of the advanced insulations, and extrapolating to different sizes of composite panels.

  8. Thermal resistance of superinsulation/foam composite panels

    SciTech Connect (OSTI)

    Wilkes, K.E.; Graves, R.S.; Childs, K.W.

    1996-05-01T23:59:59.000Z

    Laboratory data are presented on the thermal resistance of composite panels that incorporate superinsulation embedded in urethane foam. Composite panels were fabricated using four types of advanced insulations (three types of evacuated panel superinsulation and one type of gas-filled panel), and three foam blowing agents (CFC-11, HCFC-141b, and HCFC-142b/22 blend). Panels were also fabricated with only the urethane foam to serve as a baseline. Thermal measurements were performed using an ASTM C 518 Heat Flow Meter Apparatus. The thermal resistances of the panels were measured over a two-year period to detect whether any significant changes occurred. A computer model was used to analyze the data, normalizing for differences in size of the advanced insulations, and extrapolating to different sizes of composite panels.

  9. for doubling solar panel

    E-Print Network [OSTI]

    An outline for doubling solar panel efficiency C o l o ra do S c ho o l of M i ne s Ma g a z i ne Take a look at a solar panel on a sunny Colorado day and, if you're like most people, you won't see physics professor and solar energy researcher, who admits to checking out his panels and their energy

  10. Lighting Technology Panel

    Broader source: Energy.gov [DOE]

    Presentation covers the Lighting Technology Panel for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009. 

  11. Solar reflection panels

    DOE Patents [OSTI]

    Diver, Jr., Richard B. (Albuquerque, NM); Grossman, James W. (Albuquerque, NM); Reshetnik, Michael (Boulder, CO)

    2006-07-18T23:59:59.000Z

    A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front surface of the composite panel. The composite panel comprises a front sheet affixed to a surface of a core material, preferably a core material comprising a honeycomb structure, and a back sheet affixed to an opposite surface of the core material. The invention may further comprise a sealing strip, preferably comprising EPDM, positioned between the glass mirror and the front surface of the composite panel. The invention also is of methods of making such solar collectors.

  12. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    the influences of envelope thermal insulation, thermal mass,following parameters: envelope thermal insulation, thermalthermal mass and higher heat loss through the building envelope

  13. OPTIMIZATION OF TRANSIENT HEATER SETTINGS TO PROVIDE SPATIALLY UNIFORM HEATING IN

    E-Print Network [OSTI]

    Morton, David

    in foundries, baking ovens that cook food, infrared heating systems that cure painted surfaces, and rapidOPTIMIZATION OF TRANSIENT HEATER SETTINGS TO PROVIDE SPATIALLY UNIFORM HEATING IN MANUFACTURING PROCESSES INVOLVING RADIANT HEATING K. J. Daun, J. R. Howell, and D. P. Morton Department of Mechanical

  14. Flexible optical panel

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    2001-01-01T23:59:59.000Z

    A flexible optical panel includes laminated optical waveguides, each including a ribbon core laminated between cladding, with the core being resilient in the plane of the core for elastically accommodating differential movement thereof to permit winding of the panel in a coil.

  15. Effects of Radiant Barrier Systems on Ventilated Attics in a Hot and Humid Climate 

    E-Print Network [OSTI]

    Medina, M. A.; O'Neal, D. L.; Turner, W. D.

    1992-01-01T23:59:59.000Z

    Energy Measurements of Unoccupied Single-Family Houses with Attics Containing Radiant Barriers," ORNLICON-200, Oak Ridge National Laboratory, Oak Ridge, TN. 9. Levins W.P. and Karnitz M.A., and Knight D.K., 1986, "Cooling Energy Measurements...-II and R-30 Ceiling Insulation. "ORNLICON-226, Oak Ridge National Laboratory, Oak Ridge, TN. II. Levins W.P. and Karnitz M.A., 1987, "Energy Measurements of Single-Family Houses with Attics Containing Radiant Barriers." Presented at the ASHRAE Summer...

  16. Dynamic Thermal Modeling of a Radiant Panels System and its Environment for Commissioning: Application to Case Study

    E-Print Network [OSTI]

    Diaz, N. F.; Bertagnolio, S.; Andre, P.

    . REFERENCES Alamdari F. and Hammond P. 1983. Improved data correlations for bouyancy-driven convection in rooms.Building Services Engineering research and Techonology. Vol 4. N? 3. Pp.106-112. ASHRAE 2009. ASHRAE Handbook: Fundamentals Atlanta: American...

  17. Radiant Barrier Insulation Performance in Full Scale Attics with Soffit and Ridge Venting

    E-Print Network [OSTI]

    Ober, D. G.; Volckhausen, T. W.

    1988-01-01T23:59:59.000Z

    There is a limited data base on the full scale performance of radiant barrier insulation in attics. The performance of RBS have been shown to be dependent on attic ventilation characteristics. Tests have been conducted on a duplex located in Florida...

  18. CFCC radiant burner assessment. Final report, April 1, 1992--July 31, 1994

    SciTech Connect (OSTI)

    Schweizer, S.; Sullivan, J.

    1994-11-01T23:59:59.000Z

    The objective of this work was to identify methods of improving the performance of gas-fired radiant burners through the use of Continuous Fiber Ceramic Composites (CFCCs). Methods have been identified to improve the price and performance characteristics of the porous surface burner. Results are described.

  19. An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models

    E-Print Network [OSTI]

    Boyer, Edmond

    An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models Cyril CIRAD/INRIA We describe a complete lighting simulation system tailored for the difficult case growth simulation. Other applications of our system range from landscape simulation to agronomical

  20. Design of Radiant Enclosures using Inverse and Non-linear Programming Techniques

    E-Print Network [OSTI]

    Morton, David

    vector x 2nd -order radiosity sensitivity vector #12;4 Greek Symbols k Step size ij Blockage factor Vector of design parameters (heater settings) #12;5 1. INTRODUCTION The design of radiant enclosures is to irradiate a design surface with heater surfaces located elsewhere in the enclosure. For example, the design

  1. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature

  2. My Favorite OLED Panel

    Energy Savers [EERE]

    My Favorite OLED Panel Basar Erdener Sun and Snow Photo Courtesy 2009-2015 Kvikken 2 Sizable 3 Sizable Photo Courtesy Printmeneer on Etsy 4 5 Shapeable Photo Courtesy Dia...

  3. GROUNDLOOPEVAPORATIVEFLUIDCOOLERCHILLERTOGROUNDLOOP CHILLERTOGROUNDLOOP&

    E-Print Network [OSTI]

    California at Davis, University of

    MAKE GALLAGHER HALL LEED PLATINUM RADIANT HEATING AND COOLING 1. Radiant Floor and Ceiling Panels 2. Operable Windows SOLAR MANAGEMENT 9. Solar Photovoltaic Panels 10. Photovoltaic Power Inverters 11. RainH1 C2 C3 C1 C4 HEATING HEATPUMPTO GROUNDLOOP GROUNDLOOPEVAPORATIVEFLUIDCOOLERCHILLERTOGROUNDLOOP

  4. Structural problems in connection with panel heating

    E-Print Network [OSTI]

    Langdale, Frederick Darrow

    1940-01-01T23:59:59.000Z

    at thi tine this cork wae nndertahia, : for nLnhing this nnrh yoisihli', The rritar enrreaaea hie eiwyreeiaiion to kh, T. ' R. Ssdgstt of tho Engineering Rnhorinsat station, an4 to Rr ~ Ao Ts- noenara of tho QrparLaent of Reohanieal Xnginooring... roinforoing for 'tho ?1?b ang , u a h~ eo anit. 6ili 4he reinfor'oeg eanmet? slab Ls a eogp41'?\\Lesly ?' , ' nsw a?vol?ye?at, ths os?anti?le' of y?nel ho?ting wer? aoeg a geog asar ', roars ago. ' Rr. t. R, Oisaoohe re?em%a that ?boat 1000 roars ?ge tha...

  5. Solar air heating system for combined DHW and space heating

    E-Print Network [OSTI]

    Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren Østergaard Jensen

  6. Numerical Simulation of Thermal Performance of Floor Radiant Heating System with Enclosed Phase Change Material

    E-Print Network [OSTI]

    Qiu, L.; Wu, X.

    2006-01-01T23:59:59.000Z

    water temperatures. With the method of enthalpy , the PCM thermal storage time is studied under different supply water temperatures, supply water flows, distances between water wipe in the floor construction, floor covers and insulation conditions....

  7. Investigation of a radiantly heated and cooled office with an integrated desiccant ventilation unit 

    E-Print Network [OSTI]

    Gong, Xiangyang

    2009-05-15T23:59:59.000Z

    desiccant ventilation unit consumes 5.6% more primary energy than a single duct VAV system; it would consumes 11.4% less primary energy when the system is integrated with a presumed passive desiccant ventilation unit....

  8. Brief Communication Effect of asymmetric radiant heating on monodisperse acetone/ethanol

    E-Print Network [OSTI]

    Miller, Richard S.

    of droplets may exist in counter-flow, liquid-fuelled diffu- sion flames, conventional spray flames (acetone) (Ammigan and Clack, 2009) and bi-component (acetone and hydrocarbons octane and hexane) (Ammigan that comprise conventional transportation fuels, biofuels and biofuel additives comprised of alcohols would

  9. Input to Priorities Panel August 7, 2012

    E-Print Network [OSTI]

    Input to Priorities Panel August 7, 2012 Jeff Freidberg MIT 1 #12;The Emperor of Fusion has · Comparison (1 GW overnight cost) · Coal $ 3B · Gas $ 1B · Nuclear $ 4B · Wind $ 2B · Solar-T $ 3B · ITER $25B option · Tough MHD, heating, current drive, transport · I doubt it will achieve its mission · Still

  10. Panel 3 - characterization

    SciTech Connect (OSTI)

    Erck, R.A.; Erdemir, A.; Janghsing Hsieh; Lee, R.H.; Xian Zheng Pan; Deming Shu [Argonne National Lab., IL (United States); Feldman, A. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Glass, J.T. [North Carolina State Univ., Raleigh (United States); Kleimer, R. [Coors Ceramics Co., Golden, CO (United States); Lawton, E.A. [JPL/Caltech, Pasadena, CA (United States); McHargue, C.J. [Univ. of Tennessee, Knoxville (United States)

    1993-01-01T23:59:59.000Z

    The task of this panel was to identify and prioritize needs in the area of characterization of diamond and diamond-like-carbon (DLC) films for use in the transportation industry. Until recent advances in production of inexpensive films of diamonds and DLC, it was not feasible that these materials could be mass produced. The Characterization Panel is restricting itself to identifying needs in areas that would be most useful to manufacturers and users in producing and utilizing diamond and DLC coatings in industry. These characterization needs include in-situ monitoring during growth, relation of structure to performance, and standards and definitions.

  11. Numerical evaluation of the thermal performances of roof-mounted radiant barriers

    E-Print Network [OSTI]

    Miranville, Frédéric; Lucas, Franck; Johan, Seriacaroupin

    2014-01-01T23:59:59.000Z

    This paper deals with the thermal performances of roof-mounted radiant barriers. Using dynamic simulations of a mathematical model of a whole test cell including a radiant barrier installed between the roof top and the ceiling, the thermal performance of the roof is calculated. The mean method is more particularly used to assess the thermal resistance of the building component and lead to a value which is compared to the one obtained for a mass insulation product such as polyurethane foam. On a further stage, the thermal mathematical model is replaced by a thermo-aeraulic model which is used to evaluate the thermal resistance of the roof as a function of the airflow rate. The results shows a better performance of the roof in this new configuration, which is widely used in practice. Finally, the mathematical relation between the thermal resistance and the airflow rate is proposed.

  12. Industry Partners Panel

    Broader source: Energy.gov [DOE]

    Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials – Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

  13. Overview of seismic panel activities

    SciTech Connect (OSTI)

    Bandyopadhyay, K.K.

    1991-01-01T23:59:59.000Z

    In January 1991, the DOE-EM appointed a Seismic Panel to develop seismic criteria that can be used for evaluation of underground storage tanks containing high level radioactive wastes. The Panel expects to issue the first draft of the criteria report in January 1992. This paper provides an overview of the Panel's activities and briefly discusses the criteria. 3 refs.

  14. Advanced Petrochemical Process Heating with the Pyrocore Burner

    E-Print Network [OSTI]

    Krill, W. V.; Minden, A. C.; Donaldson, L. W. Jr.

    natural gas or refinery process gas and designed to take full advantage of the Pyrocore burner's radiant heat transfer characteristics. This will result in a process heater with design and performance attributes that will be attractive to users...ADVANCED PETROCHEMICAL PROCESS HEATING WITH THE PYROCORE BURNER WAYNE V. KRILL ANDREW C. MINDEN LESLIE W. DONALDSON, JR. Vice President Project Engineer Manager, Process Systems Research Alzeta Corporation Alzeta Corporation Gas Research...

  15. Harvesting Electricity From Wasted Heat

    SciTech Connect (OSTI)

    Schwede, Jared

    2014-06-30T23:59:59.000Z

    Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

  16. Harvesting Electricity From Wasted Heat

    ScienceCinema (OSTI)

    Schwede, Jared

    2014-07-16T23:59:59.000Z

    Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

  17. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15T23:59:59.000Z

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  18. Photovoltaic panel clamp

    DOE Patents [OSTI]

    Mittan, Margaret Birmingham (Oakland, CA); Miros, Robert H. J. (Fairfax, CA); Brown, Malcolm P. (San Francisco, CA); Stancel, Robert (Loss Altos Hills, CA)

    2012-06-05T23:59:59.000Z

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  19. Photovoltaic panel clamp

    DOE Patents [OSTI]

    Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

    2013-03-19T23:59:59.000Z

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  20. Proposal Study Panels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 HgPromising Magnesium BatteryProposalProposal Study Panels

  1. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

    1991-07-16T23:59:59.000Z

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  2. auxiliary heating system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute...

  3. ALDS 1980 panel review

    SciTech Connect (OSTI)

    Hall, D. L. [ed.] [ed.

    1981-11-01T23:59:59.000Z

    The overall goal of PNL (Pacific Northwest Laboratory) Applied Mathematical Sciences Research is development of a DOE (Department of Energy) capability for Analysis of Large Data Sets (ALDS) and transfer of this capability to other DOE laboratories and contractors. This capability is needed to satisfy DOE's increasing requirements for handling and analyzing large volumes of diverse energy and environmental data. The integrated statistics and computer science research includes the development of improved methodologies in data definition, data management, data analysis, and visual display. The purpose of this document is three-fold. First, the document is the permanent record of the ALDS 1979 panel review. Second, the document provides the PNL staff with a benchmark of where we were at the end of the second year of ALDS. Third, the document is available to laboratories, universities, and DOE headquarters as detailed description of the ALDS project, as well as an example of the new direction of AMS-funded research.

  4. Panelized wall system with foam core insulation

    DOE Patents [OSTI]

    Kosny, Jan (Oak Ridge, TN); Gaskin, Sally (Houston, TX)

    2009-10-20T23:59:59.000Z

    A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

  5. One Panel One Roof, DOE Powering Solar Workforce | Department...

    Broader source: Energy.gov (indexed) [DOE]

    One Panel One Roof, DOE Powering Solar Workforce One Panel One Roof, DOE Powering Solar Workforce...

  6. Blue Ribbon Panel Recommendations Report

    Broader source: Energy.gov [DOE]

    The Department of Energy's Geothermal Technologies Office (formerly Geothermal Technologies Program) assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a...

  7. Exascale Workshop Panel Report Meeting

    SciTech Connect (OSTI)

    Khaleel, Mohammad A.

    2010-07-01T23:59:59.000Z

    The Exascale Review Panel consists of 12 scientists and engineers with experience in various aspects of high-performance computing and its application, development, and management. The Panel hear presentations by several representatives of the workshops and town meetings convened over the past few years to examine the need for exascale computation capability and the justification for a U.S. Department of Energy (DOE) program to develop such capability. This report summarizes information provided by the presenters and substantial written reports to the Panel in advance of the meeting in Washington D.C. on January 19-20, 2010. The report also summarizes the Panel's conclusions with regard to the justification of a DOE-led exascale initiative.

  8. air heat exchanger: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre...

  9. air heat exchangers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre...

  10. Solar Decathlon Technology Spotlight: Structural Insulated Panels

    Broader source: Energy.gov [DOE]

    Structural insulated panels (SIPs) are prefabricated structural elements used to build walls, ceilings, floors, and roofs.

  11. Analysis of 3-panel and 4-panel microscale ionization sources

    SciTech Connect (OSTI)

    Natarajan, Srividya; Parker, Charles B.; Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Piascik, Jeffrey R.; Gilchrist, Kristin H. [Center for Materials and Electronic Technologies, RTI International, Research Triangle Park, North Carolina 27709 (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Center for Materials and Electronic Technologies, RTI International, Research Triangle Park, North Carolina 27709 (United States)

    2010-06-15T23:59:59.000Z

    Two designs of a microscale electron ionization (EI) source are analyzed herein: a 3-panel design and a 4-panel design. Devices were fabricated using microelectromechanical systems technology. Field emission from carbon nanotube provided the electrons for the EI source. Ion currents were measured for helium, nitrogen, and xenon at pressures ranging from 10{sup -4} to 0.1 Torr. A comparison of the performance of both designs is presented. The 4-panel microion source showed a 10x improvement in performance compared to the 3-panel device. An analysis of the various factors affecting the performance of the microion sources is also presented. SIMION, an electron and ion optics software, was coupled with experimental measurements to analyze the ion current results. The electron current contributing to ionization and the ion collection efficiency are believed to be the primary factors responsible for the higher efficiency of the 4-panel microion source. Other improvements in device design that could lead to higher ion source efficiency in the future are also discussed. These microscale ion sources are expected to find application as stand alone ion sources as well as in miniature mass spectrometers.

  12. AASC Panel---FASR Summary Report 02/13/99 Summary of FASR Page 1

    E-Print Network [OSTI]

    White, Stephen

    and release of magnetic energy . The solar atmosphere . Coronal heating . Structure of the quiet solar ejections, both off the limb and on the solar disk; . elucidation of possible causes of coronal heatingAASC Panel---FASR Summary Report 02/13/99 Summary of FASR Page 1 Summary of the Frequency

  13. Analysis of a hybrid UFAD and radiant hydronic slab HVAC system

    E-Print Network [OSTI]

    Raftery, Paul; Lee, Kwang Ho; Webster, Thomas; Bauman, Fred

    2011-01-01T23:59:59.000Z

    cooling systems,” American Society of Heating, Refrigerating and Air- Conditioning Engineers HVAC & R Research,

  14. Plasma Panel Based Radiation Detectors

    SciTech Connect (OSTI)

    Friedman, Dr. Peter S. [Integrated Sensors, LLC; Varner Jr, Robert L [ORNL; Ball, Robert [University of Michigan; Beene, James R [ORNL; Ben Moshe, M. [Tel Aviv University; Benhammou, Yan [Tel Aviv University; Chapman, J. Wehrley [University of Michigan; Etzion, E [Tel Aviv University; Ferretti, Claudio [University of Michigan; Bentefour, E [Ion Beam Applications; Levin, Daniel S. [University of Michigan; Moshe, M. [Tel Aviv University; Silver, Yiftah [Tel Aviv University; Weaverdyck, Curtis [University of Michigan; Zhou, Bing [University of Michigan

    2013-01-01T23:59:59.000Z

    The plasma panel sensor (PPS) is a gaseous micropattern radiation detector under current development. It has many operational and fabrication principles common to plasma display panels (PDPs). It comprises a dense matrix of small, gas plasma discharge cells within a hermetically sealed panel. As in PDPs, it uses non-reactive, intrinsically radiation-hard materials such as glass substrates, refractory metal electrodes, and mostly inert gas mixtures. We are developing these devices primarily as thin, low-mass detectors with gas gaps from a few hundred microns to a few millimeters. The PPS is a high gain, inherently digital device with the potential for fast response times, fine position resolution (< 50 m RMS) and low cost. In this paper we report here on prototype PPS experimental results in detecting betas, protons and cosmic muons, and we extrapolate on the PPS potential for applications including detection of alphas, heavy-ions at low to medium energy, thermal neutrons and X-rays.

  15. Intergovernmental Panel on Climate Change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpinInteragency PanelIntergovernmental Panel on

  16. Proceedings: Heat exchanger workshop

    SciTech Connect (OSTI)

    Not Available

    1987-07-01T23:59:59.000Z

    Heat transfer processes are of controlling importance in the operation of a thermal power plant. Heat exchangers are major cost items and are an important source of problems causing poor power plant availability and performance. A workshop to examine the improvements that can be made to heat exchangers was sponsored by the Electric Power Research Institute (EPRI) on June 10-11, 1986, in Palo Alto, California. This workshop was attended by 25 engineers and scientists representing EPRI-member utilities and EPRI consultants. A forum was provided for discussions related to the design, operation and maintenance of utility heat transfer equipment. The specific objectives were to identify research directions that could significantly improve heat exchanger performance, reliability and life cycle economics. Since there is a great diversity of utility heat transfer equipment in use, this workshop addressed two equipment categories: Boiler Feedwater Heaters (FWH) and Heat Recovery Steam Generators (HRSG). The workshop was divided into the following panel sessions: functional design, mechanical design, operation, suggested research topics, and prioritization. Each panel session began with short presentations by experts on the subject and followed by discussions by the attendees. This report documents the proceedings of the workshop and contains recommendations of potentially valuable areas of research and development. 4 figs.

  17. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

    1985-01-01T23:59:59.000Z

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  18. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30T23:59:59.000Z

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  19. An Evaluation of the Placement of the Placement of Radiant Barriers on their Effectiveness in Reducing Heat Transfer in Attics

    E-Print Network [OSTI]

    Katipamula, S.; O'Neal, D.

    1986-01-01T23:59:59.000Z

    the attic floor was measured at two different roof deck temperatures (120°F and 140°F). The temperature distribution within the base fibrous insulation was also measured. Three different solid kraft laminates with aluminum foil backing were tested...

  20. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    Broader source: Energy.gov [DOE]

    This report describes the recommendations of the Geothermal Blue Ribbon Panel, a panel of geothermal experts assembled in March 2011 for a discussion on the future of geothermal energy in the U.S.

  1. RESIDENTIAL ON SITE SOLAR HEATING SYSTEMS: A PROJECT EVALUATION USING THE CAPITAL ASSET PRICING MODEL

    E-Print Network [OSTI]

    Schutz, Stephen Richard

    2011-01-01T23:59:59.000Z

    solar energy with rooftop panels, store excess energy in water storage tanks and can, in certain circumstances, provide 100% of the space heating

  2. Inside the White House: Solar Panels

    Broader source: Energy.gov [DOE]

    Go inside the White House and learn about the installation of solar panels on the roof of the residence.

  3. Total System Performance Assessment Peer Review Panel

    Broader source: Energy.gov [DOE]

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  4. Solar heating system

    DOE Patents [OSTI]

    Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

    1982-01-01T23:59:59.000Z

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  5. Improved solar heating systems

    DOE Patents [OSTI]

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16T23:59:59.000Z

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  6. The Challenge Domestic solar panels produce electricity

    E-Print Network [OSTI]

    Crowther, Paul

    Sheffield Science Gateway. The Challenge Domestic solar panels produce electricity for homes materials to a wide range of optoelectronic devices, including solar panels. This project was one of 10 of renewable energy generated by solar panels. As a country with ambitious targets for renewable energy at both

  7. Heating 7. 2 user's manual

    SciTech Connect (OSTI)

    Childs, K.W.

    1993-02-01T23:59:59.000Z

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  8. Comparison of Zone Cooling Load for Radiant and All-Air Conditioning Systems

    E-Print Network [OSTI]

    Feng, Jingjuan; Schiavon, Stefano; Bauman, Fred

    2012-01-01T23:59:59.000Z

    heat gain is well recognized by cooling load calculationheat gain and building thermal mass, which is particularly important in cooling load calculation,

  9. Panel 4 - applications to transportation

    SciTech Connect (OSTI)

    Nichols, F. [Argonne National Lab., IL (United States); Au, J. [Sundstrand Aerospace, Rockford, IL (United States); Bhattacharya, R. [Universal Energy Systems, Inc., Dayton, OH (United States); Bhushan, B. [Ohio State Univ., Columbus (United States); Blunier, D. [Caterpillar, Inc., Peoria, IL (United States); Boardman, B. [Deere & Co., Moline, IL (United States); Brombolich, L. [Compu-Tec Engineering, Chesterfield, MO (United States); Davidson, J. [Vanderbilt Univ., Nashville, TN (United States); Graham, M. [Northwestern Univ., Evanston, IL (United States); Hakim, N. [Detroit Diesel Corp., MI (United States); Harris, K. [Dubbeldee Harris Diamond Corp., Mt. Arlington, NJ (United States); Hay, R. [Norton Diamond Film, Northboro, MA (United States); Herk, L. [Southwest Research Inst., Southfield, MI (United States); Hojnacki, H.; Rourk, D. [Intelligent Structures Incorporated, Canton, MI (United States); Kamo, R. [Adiabatics, Inc., Columbus, IN (United States); Nieman, B. [Allied-Signal Inc., Des Plaines, IL (United States); O`Neill, D. [3M, St. Paul, MN (United States); Peterson, M.B. [Wear Sciences, Arnold, MD (United States); Pfaffenberger, G. [Allison Gas Turbine, Indianapolis, IN (United States); Pryor, R.W. [Wayne State Univ., Detroit, MI (United States); Russell, J. [Superconductivity Publications, Inc., Somerset, NJ (United States); Syniuta, W. [Advanced Mechanical Technology, Inc., Newton, MA (United States); Tamor, M. [Ford Motor Co., Dearborn, MI (United States); Vojnovich, T. [Dept. of Energy, Washington, DC (United States); Yarbrough, W. [Pennsylvania State Univ., University Park (United States); Yust, C.S. [Oak Ridge National Lab., TN (United States)

    1993-01-01T23:59:59.000Z

    The aim of this group was to compile a listing of current and anticipated future problem areas in the transportation industry where the properties of diamond and DLC films make them especially attractive and where the panel could strongly endorse the establishment of DOE/Transportation Industry cooperative research efforts. This section identifies the problem areas for possible applications of diamond/DLC technology and presents indications of current approaches to these problems.

  10. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    temperature between the solar panel and the roof would havedirectly underneath the solar panel, and the temperatures ofsensor between the solar panel and the roof for the flush

  11. Interagency Panel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartmentEnergyDemonstration DomesticEnergyInteragency Panel

  12. Radiant Barrier Insulation Performance in Full Scale Attics with Soffit and Ridge Venting 

    E-Print Network [OSTI]

    Ober, D. G.; Volckhausen, T. W.

    1988-01-01T23:59:59.000Z

    with soffit and ridge venting to measure attic performance. The unique features of these experiments are accurate and extensive instrumentation with heat flow meters, field verification of HFM calibration, extensive characterization of the installed ceiling...

  13. Heat Recovery From Arc Furnaces Using Water Cooled Panels

    E-Print Network [OSTI]

    Darby, D. F.

    for three 7-ton rod holding furnaces, and a 3500 ACFM air compressor. 104 1--~---------+--;I:---1'--.TOROD 'URNACES AND AIR L:......:~--f-----T"--'1'4'---I--COMPRISSOR flGURI NO ? The cold well pump P2 is started and stopped manually. The hot well... or rust inhibitors were to be added. There were several instances of foaming until anti-foaming agents were introduced to the system. Glycol should be purchased with anti-foaming agents and rust inhibitors already mixed in. 3. The system strainers...

  14. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01T23:59:59.000Z

    performance of  photovoltaic roofs, ASHRAE Trans 107 (absorption of solar radiation.   roof cooling load [Wm ] a) exposed roof PV covered roof b) GHI [W m ] Time [PST

  15. HEATING7.3. 1,2, or 3-d Heat Conduction Program

    SciTech Connect (OSTI)

    Childs, K.W. [Oak Ridge National Lab, TN (United States)

    1998-05-01T23:59:59.000Z

    HEATING7.2I and 7.3 is the most recent developmant in a series of heat-transfer codes and obsoletes all previous versions. HEATING can solve steady-state and/or transient heat conduction problems in one, two, or three-dimensional Cartesian, cylindrical coordinates or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time and temperature dependent. The thermal conductivity can be anisotropic. Materials may undergo a change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time and position dependent. The boundary conditions, which may be surface to environment or surface to surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time-and/or temperature dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a run time memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input.

  16. Nuisance parameters, composite likelihoods and a panel of GARCH models

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Nuisance parameters, composite likelihoods and a panel of GARCH models Cavit Pakel Department ) GARCH panels. The defining feature of a GARCH panel with time-series length T is that, while nuisance on the application of the composite likelihood (CL) method to GARCH panels. A GARCH panel is a collection

  17. air heating system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 12;Solar air heating...

  18. atmospheric solar heating: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 12;Solar air heating...

  19. air treatment heating: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 12;Solar air heating...

  20. axially heated air: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 12;Solar air heating...

  1. air heating systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 12;Solar air heating...

  2. air source heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 12;Solar air heating...

  3. active solar heating: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 12;Solar air heating...

  4. air conditioning heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 12;Solar air heating...

  5. additional heating systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 12;Solar air heating...

  6. HEATING 7. 1 user's manual

    SciTech Connect (OSTI)

    Childs, K.W.

    1991-07-01T23:59:59.000Z

    HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  7. Kingspan Insulated Panels: Order (2013-CE-5353)

    Broader source: Energy.gov [DOE]

    DOE ordered Kingspan Insulated Panels, Inc. to pay a $8,000 civil penalty after finding Kingspan Insulated Panels had failed to certify that any basic models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  8. Panel at ICSOC 2013, Berlin Felix Naumann

    E-Print Network [OSTI]

    Weske, Mathias

    Data Panel | ICSOC 2013 5 http://mike2.openmethodology.org/wiki/Big_Data_Definition #12;Open vs. Closed Sources Felix Naumann | Big Data Panel | ICSOC 2013 6 Open data linkeddata.org Government data data person Per site Sensor data Military data Open Closed #12;,,Big data" in business Amazon

  9. Panel Session Notes Session II: Energy

    E-Print Network [OSTI]

    Jawitz, James W.

    to make cars more efficient, to make solar panels store more energy to be dispersed throughout the nightPanel Session Notes Session II: Energy Moderator: Dr. Jennifer Curtis Panelists: Dr. Gary Peter price for operating cost and the cost of manufacturing go down, there are many more sectors in the US

  10. Gas pump with movable gas pumping panels

    DOE Patents [OSTI]

    Osher, John E. (Alamo, CA)

    1984-01-01T23:59:59.000Z

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  11. PANELS AND OTHER SURVEY EXTENSIONS TO THE

    E-Print Network [OSTI]

    Toronto, University of

    PANELS AND OTHER SURVEY EXTENSIONS TO THE TRANSPORTATION TOMORROW SURVEY Data Management Group of Contents i List of Figures ii List of Tables ii 1. INTRODUCTION 1 2. THE TRANSPORTATION TOMORROW SURVEY (TTS) PROGRAM 3 3. PLANNING ISSUES WITHIN THE GTA 7 4. PANEL SURVEYS 10 5. OTHER SURVEY ISSUES

  12. Experimental Research of an Active Solar Heating System

    E-Print Network [OSTI]

    Gao, X.; Li, D.

    2006-01-01T23:59:59.000Z

    Re newable Energy Resources and a Greener Future Vol.VIII-1-5 REFERENCES: [1]. Rao KUANG, Yongyun Zhou, Shaoyu Shao. The relation between PV modules? gesture in BIPV and absorbed solar irradiation [J]. Acta Energiae Solaris Sinica, 2004, 25... ventilation and air conditioning, 2000, 30(4): 30-32. [4]. Hong Ye, Jun WANG, Shuangyong ZHUANG. Experimental Study on the Radiant Floor Heating System Utilizing Form-stable PCM As the Thermal Mass [J]. Acta Energiae Solaris Sinica, 2004, 25(5): 651...

  13. AQUEOUS HOMOGENEOUS REACTORTECHNICAL PANEL REPORT

    SciTech Connect (OSTI)

    Diamond, D.J.; Bajorek, S.; Bakel, A.; Flanagan, G.; Mubayi, V.; Skarda, R.; Staudenmeier, J.; Taiwo, T.; Tonoike, K.; Tripp, C.; Wei, T.; Yarsky, P.

    2010-12-03T23:59:59.000Z

    Considerable interest has been expressed for developing a stable U.S. production capacity for medical isotopes and particularly for molybdenum- 99 (99Mo). This is motivated by recent re-ductions in production and supply worldwide. Consistent with U.S. nonproliferation objectives, any new production capability should not use highly enriched uranium fuel or targets. Conse-quently, Aqueous Homogeneous Reactors (AHRs) are under consideration for potential 99Mo production using low-enriched uranium. Although the Nuclear Regulatory Commission (NRC) has guidance to facilitate the licensing process for non-power reactors, that guidance is focused on reactors with fixed, solid fuel and hence, not applicable to an AHR. A panel was convened to study the technical issues associated with normal operation and potential transients and accidents of an AHR that might be designed for isotope production. The panel has produced the requisite AHR licensing guidance for three chapters that exist now for non-power reactor licensing: Reac-tor Description, Reactor Coolant Systems, and Accident Analysis. The guidance is in two parts for each chapter: 1) standard format and content a licensee would use and 2) the standard review plan the NRC staff would use. This guidance takes into account the unique features of an AHR such as the fuel being in solution; the fission product barriers being the vessel and attached systems; the production and release of radiolytic and fission product gases and their impact on operations and their control by a gas management system; and the movement of fuel into and out of the reactor vessel.

  14. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

    1991-06-11T23:59:59.000Z

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  15. Prediction of liquid metal alloy radiant properties from measurements of the Hall coefficient and the direct current resistivity

    SciTech Connect (OSTI)

    Havstad, M.A. [Lawrence Livermore National Lab., CA (United States); Qiu, T. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-04-01T23:59:59.000Z

    The thermal radiative properties of high temperature solid and liquid metal alloys are particularly useful to research and development efforts in laser cladding and machining, electron beam welding and laser isotope separation. However the cost, complexity, and difficulty of measuring these properties have forced the use of crude estimates from the Hagen-Rubens relation, the Drude relations, or extrapolation from low temperature or otherwise flawed data (e.g., oxidized). The authors have found in this work that published values for the Hall coefficient and the electrical resistivity of liquid metal alloys can provide useful estimates of the reflectance and emittance of some groups of binary liquid metal and high temperature solid alloys. The estimation method computes the Drude free electron parameters, and thence the optical constants and the radiant properties from the dependence of the Hall coefficient and direct current resistivity on alloy composition (the Hall coefficient gives the free electron density and the resistivity gives the average time between collisions). They find that predictions of the radiant properties of molten cerium-copper alloy, which use the measured variations in the Hall coefficient and resistivity (both highly nonlinear) as a function of alloy fraction (rather than linear combinations of the values of the pure elements) yield a good comparison to published measurements of the variation of the normal spectral emittance (a different but also nonlinear function) of cerium-copper alloy at the single wavelength available for comparison, 0.645 {mu}m. The success of the approach in the visible range is particularly notable because one expects a Drude based approach to improve with increasing wavelength from the visible into the infrared. Details of the estimation method, the comparison between the calculation and the measured emittance, and a discussion of what groups of elements may also provide agreement is given.

  16. Influence of Attic Radiant Barrier Systems on Air Conditioning Demand in an Utility Pilot Project

    E-Print Network [OSTI]

    Parker, D. S.; Sherwin, J. R.

    2002-01-01T23:59:59.000Z

    during the summer of 2000. Data analysis on the pre and post cooling and heating consumption was used to determine impacts on energy use and peak demand for the utility. The average cooling energy savings from the RBS retrofit was 3.6 kWh/day, or about 9...

  17. Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting

    DOE Patents [OSTI]

    Sanders, William J. (Kansas City, KS); Snyder, Marvin K. (Overland Park, KS); Harter, James W. (Independence, MO)

    1983-01-01T23:59:59.000Z

    The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

  18. DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress Presentation by...

  19. ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR...

    Office of Environmental Management (EM)

    ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR COLLECTORS ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR COLLECTORS This presentation was delivered...

  20. New Ideas for Seeding Your Solar Marketplace Workshop Panel Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Panel Presentations New Ideas for Seeding Your Solar Marketplace Workshop Panel Presentations Download the speaker presentations from the 2014 SunShot Grand Challenge Summit and...

  1. Buildings of the Future Research Project Launch and Virtual Panel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings of the Future Research Project Launch and Virtual Panel Discussion on Building Technology Trends Buildings of the Future Research Project Launch and Virtual Panel...

  2. DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010...

    Energy Savers [EERE]

    Activities Panel Discussion: 2010 SAE World Congress DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress Presentation by Sunita Satyapal at the 2010...

  3. Development of a plasma panel radiation detector

    E-Print Network [OSTI]

    R. Ball; J. R. Beene; M. Ben-Moshe; Y. Benhammou; R. Bensimon; J. W. Chapman; E. Etzion; C. Ferretti; P. S. Friedman; D. S. Levin; Y. Silver; R. L. Varner; C. Weaverdyck; R. Wetzel; B. Zhou; T. Anderson; K. McKinny; E. H. Bentefour

    2014-06-14T23:59:59.000Z

    This article reports on the development and experimental results of commercial plasma display panels adapted for their potential use as micropattern gas radiation detectors. The plasma panel sensors (PPS) design an materials include glass substrates, metal electrodes and inert gas mixtures which provide a physically robust, hermetically-sealed device. Plasma display panels used as detectors were tested with cosmic ray muons, beta rays and gamma rays, protons and thermal neutrons. The results demonstrated rise times and time resolution of a few nanoseconds, as well as sub-millimeter spatial resolution compatible with the pixel pitch.

  4. Flat or curved thin optical display panel

    DOE Patents [OSTI]

    Veligdan, J.T.

    1995-01-10T23:59:59.000Z

    An optical panel includes a plurality of waveguides stacked together, with each waveguide having a first end and an opposite second end. The first ends collectively define a first face, and the second ends collectively define a second face of the panel. The second face is disposed at an acute face angle relative to the waveguides to provide a panel which is relatively thin compared to the height of the second face. In an exemplary embodiment for use in a projection TV, the first face is substantially smaller in height than the second face and receives a TV image, with the second face defining a screen for viewing the image enlarged. 7 figures.

  5. Development of a plasma panel radiation detector

    SciTech Connect (OSTI)

    Ball, Robert [University of Michigan; Beene, James R [ORNL; Ben Moshe, M. [Tel Aviv University; Benhammou, Yan [Tel Aviv University; Bensimon, B [Tel Aviv University; Chapman, J. Wehrley [University of Michigan; Etzion, E [Tel Aviv University; Ferretti, Claudio [University of Michigan; Friedman, Dr. Peter S. [Integrated Sensors, LLC; Levin, Daniel S. [University of Michigan; Silver, Yiftah [Tel Aviv University; Weaverdyck, Curtis [University of Michigan; Wetzel, R. [University of Michigan; Zhou, Bing [University of Michigan; Anderson, T [GE Measurement and Control Solutions; McKinny, K [GE Measurement and Control Solutions; Bentefour, E [Ion Beam Applications

    2014-11-01T23:59:59.000Z

    This article reports on the development and experimental results of commercial plasma display panels adapted for their potential use as micropattern gas radiation detectors. The plasma panel sensor (PPS) design and materials include glass substrates, metal electrodes and inert gas mixtures which provide a physically robust, hermetically sealed device. Plasma display panels used as detectors were tested with cosmic ray muons, beta rays and gamma rays, protons, and thermal neutrons. The results demonstrated rise times and time resolution of a few nanoseconds, as well as sub-millimeter spatial resolution compatible with the pixel pitch.

  6. Design and testing of a combustion-heated nineteen-converter SAVTEC array

    SciTech Connect (OSTI)

    Nyren, T.; Fitzpatrick, G.O.; Korringa, M.; McVey, J.; Sahines, T.

    1984-08-01T23:59:59.000Z

    The SAVTEC (Self-Adjusting Versatile Thermionic Energy Converter) is a new design approach for achieving very close (<12..mu..) interelectrode spacing in a thermionic converter. Techniques were developed for fabricating an array of nineteen SAVTEC converters. The array was incorporated in an SiC protective ''hot shell'' which also served as a radiant heat source for the emitter of each converter. The completed assembly was tested with a specially constructed combustion heat source. Electric output was generated by sixteen of the nineteen converters, despite poor thermal contact in a cooling block, which resulted in high collector temperatures. Details of the array design and test results are described.

  7. Indoor Humidity Analysis of an Integrated Radiant Cooling and Desiccant Ventilation System 

    E-Print Network [OSTI]

    Gong, X.; Claridge, D. E.

    2006-01-01T23:59:59.000Z

    of enthalpy F2 = Ideal isopotential line relative humidity pC = Specific heat capacity (Btu/lb*F) m = Mass flow rate lb/min genm& = Moisture generation lb lb/hr T = Temperature, oF or K rV = Space volume ft 3 sV& = Supplied... propagation characteristics. 8624 49 344.4 28651 w TF + ?= (5) 07969 49 1276360 wT ? (6) 1 1 1 11 1 o o F FF F ? ?=? (7) 1 1 2 22 2 o o F FF F ? ?=? (8) F1 and F2 correspond to isopotential lines of enthalpy and relative humidity. 1F and 2...

  8. REPOSITORY RECONFIGURATION OF PANELS 9 AND 10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ventilation system of the WIPP repository for various configurations to support the mining and operation of the proposed Panels 9A and 10A. The MVS ventilation modeling verifies...

  9. Robust estimation procedure in panel data model

    SciTech Connect (OSTI)

    Shariff, Nurul Sima Mohamad [Faculty of Science of Technology, Universiti Sains Islam Malaysia (USIM), 71800, Nilai, Negeri Sembilan (Malaysia); Hamzah, Nor Aishah [Institute of Mathematical Sciences, Universiti Malaya, 50630, Kuala Lumpur (Malaysia)

    2014-06-19T23:59:59.000Z

    The panel data modeling has received a great attention in econometric research recently. This is due to the availability of data sources and the interest to study cross sections of individuals observed over time. However, the problems may arise in modeling the panel in the presence of cross sectional dependence and outliers. Even though there are few methods that take into consideration the presence of cross sectional dependence in the panel, the methods may provide inconsistent parameter estimates and inferences when outliers occur in the panel. As such, an alternative method that is robust to outliers and cross sectional dependence is introduced in this paper. The properties and construction of the confidence interval for the parameter estimates are also considered in this paper. The robustness of the procedure is investigated and comparisons are made to the existing method via simulation studies. Our results have shown that robust approach is able to produce an accurate and reliable parameter estimates under the condition considered.

  10. MODIFICATIONS TO THE WIPP PANEL CLOSURE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    panel closure design. FLAC3D implements the Callahan and DeVries (1991) crushed salt creep constitutive model. This model is based on Sjaardema and Krieg (1987) and was...

  11. Design, construction, and testing of the direct absorption receiver panel research experiment

    SciTech Connect (OSTI)

    Chavez, J.M.; Rush, E.E.; Matthews, C.W.; Stomp, J.M.; Imboden, J.; Dunkin, S.

    1990-01-01T23:59:59.000Z

    A panel research experiment (PRE) was designed, built, and tested as a scaled-down model of a direct absorption receiver (DAR). The PRE is a 3-MW{sub t}DAR experiment that will allow flow testing with molten nitrate salt and provide a test bed for DAR testing with actual solar heating. In a solar central receiver system DAR, the heat absorbing fluid (a blackened molten nitrate salt) flows in a thin film down a vertical panel (rather than through tubes as in conventional receiver designs) and absorbs the concentrated solar flux directly. The ability of the flowing salt film to absorb flux directly. The ability of the flowing salt film to absorb the incident solar flux depends on the panel design, hydraulic and thermal fluid flow characteristics, and fluid blackener properties. Testing of the PRE is being conducted to demonstrate the engineering feasibility of the DAR concept. The DAR concept is being investigated because it offers numerous potential performance and economic advantages for production of electricity when compared to other solar receiver designs. The PRE utilized a 1-m wide by 6-m long absorber panel. The salt flow tests are being used to investigate component performance, panel deformations, and fluid stability. Salt flow testing has demonstrated that all the DAR components work as designed and that there are fluid stability issues that need to be addressed. Future solar testing will include steady-state and transient experiments, thermal loss measurements, responses to severe flux and temperature gradients and determination of peak flux capability, and optimized operation. In this paper, we describe the design, construction, and some preliminary flow test results of the Panel Research Experiment. 11 refs., 8 figs., 2 tabs.

  12. Neutron shielding panels for reactor pressure vessels

    DOE Patents [OSTI]

    Singleton, Norman R. (Murrysville, PA)

    2011-11-22T23:59:59.000Z

    In a nuclear reactor neutron panels varying in thickness in the circumferential direction are disposed at spaced circumferential locations around the reactor core so that the greatest radial thickness is at the point of highest fluence with lesser thicknesses at adjacent locations where the fluence level is lower. The neutron panels are disposed between the core barrel and the interior of the reactor vessel to maintain radiation exposure to the vessel within acceptable limits.

  13. Abstract --This panel session paper outlines one of the re-search thrust areas in the Power System Engineering Research

    E-Print Network [OSTI]

    Oren, Shmuel S.

    1 Abstract -- This panel session paper outlines one of the re- search thrust areas in the Power- tential of harnessing the inherent flexibility of certain load types such as heating and cooling and PHEV for massive penetration of renewable resources such as wind and solar power into the mix of elec- tricity

  14. Radiant transmittance of cerium doped quartz from 300 to 1270 K

    SciTech Connect (OSTI)

    Havstad, M.A.; Dingus, C.

    1997-07-01T23:59:59.000Z

    A particularly massive application of cerium doped quartz flashlamps is scheduled as part of the fusion energy research program at the National Ignition Facility (NIF) to be built at the Lawrence Livermore National Laboratory (LLNL). As many as 10,000 flashlamps will fire in support of each laser driven fusion experiment. Over the 350 {micro}sec firing period, the lamps provide visible and IR output (the pump band is 0.4 to 1.0 {micro}m) to a solid state laser slab. Emission from the lamp toward its envelope corresponds roughly to a 10,000 K Planck distribution and causes envelope heating to approximately 1,070 K. Temperature dependent radiation transmission by the doped glass envelope is important to lamp performance and laser operation for several reasons. Here, the transmittance of curved slabs of cerium doped quartz is reported as a function of wavelength and temperature. The spectral range of measurement is 0.25 to 0.725 {micro}m and temperature varies from 300 K to 1,270 K. The short wavelength cutoff for transmission shifts to longer wavelengths monotonically with temperature at a rate of {approximately} 3 nm/100K. The transmittance data for wavelengths less than 0.36 {micro}m are fit to a classical pole fit model using 8 modes (oscillators) and the temperature dependence of the modes is given. For wavelengths beyond 0.36 {micro}m the data are fit to an Urbach rule. The bandgap parameter in the Urbach rule decreases linearly with temperature to 1,270 K and varies from 3.394 eV at 300 K to 3.183 eV at 1,270 K, while the steepness parameter also decreases approximately linearly from 8.51 eV{sup {minus}1} to 5.80 eV{sup {minus}1}. The fits are used to compute the spectral and temperature dependent absorption coefficient.

  15. Optical panel system including stackable waveguides

    DOE Patents [OSTI]

    DeSanto, Leonard (Dunkirk, MD); Veligdan, James T. (Manorville, NY)

    2007-11-20T23:59:59.000Z

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  16. Optical panel system including stackable waveguides

    DOE Patents [OSTI]

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06T23:59:59.000Z

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  17. Eternal Sunshine of the Solar Panel

    E-Print Network [OSTI]

    Ginithan, Mackenzie; Lefevre, Daniel; Srinivasan, Sowmya; Urena, Barbara; Barley, Kamal; Vega, Jose; Yong, Kamuela E; Flores, Jose

    2014-01-01T23:59:59.000Z

    The social dynamics of residential solar panel use within a theoretical population are studied using a compartmental model. In this study we consider three solar power options commonly available to consumers: the community block, leasing, and buying. In particular we are interested in studying how social influence affects the dynamics within these compartments. As a result of this research a threshold value is determined, beyond which solar panels persist in the population. In addition, as is standard in this type of study, we perform equilibrium analysis, as well as uncertainty and sensitivity analyses on the threshold value. We also perform uncertainty analysis on the population levels of each compartment. The analysis shows that social influence plays an important role in the adoption of residential solar panels.

  18. Hydrogen Safety Panel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReview |Panel Hydrogen Safety Panel 2009

  19. Energy efficiency improvements for refrigerator/freezers using prototype doors containing gas-filled panel insulating systems

    SciTech Connect (OSTI)

    Griffith, B.; Arasteh, D.; Tuerler, D.

    1995-01-01T23:59:59.000Z

    Energy efficiency improvements in domestic refrigerator/freezers, are directly influenced by the overall thermal performance of the cabinet and doors. An advanced system for reducing heat gain is Gas-Filled Panel thermal insulation technology. Gas-Filled Panels contain a low-conductivity, inert gas at atmospheric pressure and employ a reflective baffle to suppress radiation and convection within the gas. This paper presents energy use test results for a 1993 model 500 liter top mount refrigerator/freezer operated with its original doors and with a series of alternative prototype doors. Gas-Filled Panel technology was used in two types of prototype refrigerator/freezer doors. In one design, panels were used in composite with foam in standard metal door pans; this design yielded no measurable energy savings. In the other design, special polymer door pans were fitted with panels that fill nearly all of the available insulation volume; this design yielded a 6.5% increase in energy efficiency for the entire refrigerator/freezer. The EPA Refrigerator Analysis computer program has been used to predict the change in daily energy consumption with the alternative doors. The computer model also projects a 25% energy efficiency improvement for a refrigerator/freezer that would use Gas-Filled Panel insulation throughout the cabinet as well as the doors.

  20. Training for Emergencies Panel: Chris Reed

    E-Print Network [OSTI]

    Training for Emergencies Panel: Chris Reed Ben Berman Immanuel Barshi It's very important to have pilots sharing ideas with other instructor pilots. IB: In aviation there is a lot of mentor training. Instructor pilots are not trained trainers; they are aviators who are providing training. When things

  1. ROBOTIC DEVICE FOR CLEANING PHOTOVOLTAIC PANEL ARRAYS

    E-Print Network [OSTI]

    Mavroidis, Constantinos

    for the environmental impact of fossil fuels, implementation of eco-friendly energy sources like solar power are rising** Green Project ­ Sustainable Technology and Energy Solutions Ippokratous 38-42 & Irakleitou, 152 38. The main method for harnessing solar power is with arrays made up of photovoltaic (PV) panels. Accumulation

  2. Panel Data Econometric Models: Theory and Application

    E-Print Network [OSTI]

    Gao, Yichen

    2013-05-20T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. NONPARAMETRIC ESTIMATION OF FIXED EFFECTS PANEL DATA MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Introduction....5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3. IS HONG KONG DOLLAR OVERVALUED? EVIDENCE FROM HONG KONG?S TRADE PRICES POST FINANCIAL CRISIS . . . . . . . . . . 14 3.1 Introduction...

  3. an-04-07 absorption-sorption heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 12;Solar air heating...

  4. Solar panel manufacturing is greener in Europe than China, study...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The chart shows the number of years that a solar panel must operate in order to generate enough electricity to "pay back" the energy used to make the panel. Because there are fewer...

  5. Mechanical behavior of dip-brazed aluminum sandwich panels

    E-Print Network [OSTI]

    Hohmann, Brian P. (Brian Patrick)

    2007-01-01T23:59:59.000Z

    An experimental study was carried out to determine the mechanical behavior of sandwich panels containing cellular cores of varying shape. Compression and four point bend tests were performed on sandwich panels with square ...

  6. EXPERIMENTAL TESTING OF TWO SOLAR PANEL SIMULATIONS Krisztina Leban

    E-Print Network [OSTI]

    Ritchie, Ewen

    EXPERIMENTAL TESTING OF TWO SOLAR PANEL SIMULATIONS Krisztina Leban Institute of Energy Technology solar panel for varying temperature and irradiance. Final validation was done by comparing experimental are a renewable, non-polluting source of energy that are increasingly used for hybrid (solar panels and grid

  7. Peer Effects in the Diffusion of Solar Photovoltaic Panels

    E-Print Network [OSTI]

    Lee, Daeyeol

    Peer Effects in the Diffusion of Solar Photovoltaic Panels Bryan Bollinger NYU Stern School base of consumers in the reference group. We study the diffusion of solar photovoltaic panels of an environmentally beneficial technology, solar photovoltaic (PV) panels. Policymakers are particularly interested

  8. NO. REV. MO EASEP SOLAR PANEL OCCULTAT ION

    E-Print Network [OSTI]

    Rathbun, Julie A.

    ., : :. I · ' NO. REV. MO· EATM-59 EASEP SOLAR PANEL OCCULTAT ION PAGE l OF 9 DATE 24 Feb 1969 ()i~ ~ .I /1'1 . ! I Prepared by:~ ~Wallack . 11 ''--'/ ~~~ #12;: : .. EASEP SOLAR PANEL OCCULTATION. EATM-59 PAGE 2 OF 9 DATE 24 Feb I969 #12;NO. RIV. NO. : : .~ EASEP Solar Panel Occultation EATM-59 PAGI

  9. Chemical technology news from across RSC Publishing. Printing solar panels

    E-Print Network [OSTI]

    Rogers, John A.

    Publishing Chemical technology news from across RSC Publishing. Printing solar panels 22 January size) silicon microcells that connect together to form flexible solar panels. By stamping hundreds solar panels 2/8/2010http://www.rsc.org/Publishing/ChemTech/Volume/2010/02/printing_solar.asp #12;Page 2

  10. Bexar County Parking Garage Photovoltaic Panels

    SciTech Connect (OSTI)

    Golda Weir

    2012-01-23T23:59:59.000Z

    The main objective of the Bexar County Parking Garage Photovoltaic (PV) Panel project is to install a PV System that will promote the use of renewable energy. This project will also help sustain Bexar County ongoing greenhouse gas emissions reduction and energy efficiency goals. The scope of this project includes the installation of a 100-kW system on the top level of a new 236,285 square feet parking garage. The PV system consists of 420 solar panels that covers 7,200 square feet and is tied into the electric-grid. It provides electricity to the office area located within the garage. The estimated annual electricity production of the PV system is 147,000 kWh per year.

  11. Endogenous contagion – a panel data analysis

    E-Print Network [OSTI]

    Baur, Dirk; Fry, Renee

    2006-01-01T23:59:59.000Z

    of the figure presents the coefficient estimates, and the second panel presents the t-value associated with each estimate along with the corresponding 99 percent critical values. Inspection of this figure shows evidence of joint contagion across all eleven... countries for equity returns in four clear episodes as measured by their significance at the 99 percent level. When contagion is evident, the parameter estimates of the fixed time effects are generally large in absolute terms, and tend to cluster...

  12. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  13. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  14. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  15. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  16. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  17. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOE Patents [OSTI]

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07T23:59:59.000Z

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  18. 2 15.10.2013 Van D. BaxterVolker Weinmann Hybrid heat pump system as chance for the

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;2 15.10.2013 Van D. BaxterVolker Weinmann Hybrid heat pump system as chance for the renovation pumps Condensing gas and oil boilers DHW tanks Solar panels Under floor heating Installation equipment The solution: hybrid heat pumps Selection and installation Installer benefits Consumer benefits Summary Agenda

  19. Heating 7.2 user`s manual

    SciTech Connect (OSTI)

    Childs, K.W.

    1993-02-01T23:59:59.000Z

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  20. Method for molding threads in graphite panels

    DOE Patents [OSTI]

    Short, W.W.; Spencer, C.

    1994-11-29T23:59:59.000Z

    A graphite panel with a hole having a damaged thread is repaired by drilling the hole to remove all of the thread and making a new hole of larger diameter. A bolt with a lubricated thread is placed in the new hole and the hole is packed with graphite cement to fill the hole and the thread on the bolt. The graphite cement is cured, and the bolt is unscrewed therefrom to leave a thread in the cement which is at least as strong as that of the original thread. 8 figures.

  1. Method for molding threads in graphite panels

    DOE Patents [OSTI]

    Short, William W. (Livermore, CA); Spencer, Cecil (Silverton, OR)

    1994-01-01T23:59:59.000Z

    A graphite panel (10) with a hole (11) having a damaged thread (12) is repaired by drilling the hole (11) to remove all of the thread and make a new hole (13) of larger diameter. A bolt (14) with a lubricated thread (17) is placed in the new hole (13) and the hole (13) is packed with graphite cement (16) to fill the hole and the thread on the bolt. The graphite cement (16) is cured, and the bolt is unscrewed therefrom to leave a thread (20) in the cement (16) which is at least as strong as that of the original thread (12).

  2. Solar Panels Plus LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to: navigation,Panels Plus LLC Jump to:

  3. Panel Discussion | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) JumpPalcan s JVCo | OpenPanel

  4. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    d b y t h e a n g l e d solar panel F i g u r e 62: C a l cK l e i s s l , C h a i r Solar panels were mounted w i t hthe optimal angles for solar panels [9], i n this study both

  5. adult treatment panel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collapse, this point became significant on the health care reform agenda. A drastic reduction5th ECPR General Conference, Potsdam, 10-12 September 2009 Panel: Rescaling Health...

  6. Utilization of localized panel resonant behavior in wind turbine blades.

    SciTech Connect (OSTI)

    Griffith, Daniel Todd

    2010-11-01T23:59:59.000Z

    The shear webs and laminates of core panels of wind turbine blades must be designed to avoid panel buckling while minimizing blade weight. Typically, buckling resistance is evaluated by consideration of the load-deflection behavior of a blade using finite element analysis (FEA) or full-scale static loading of a blade to failure under a simulated extreme loading condition. This paper examines an alternative means for evaluating blade buckling resistance using non-destructive modal tests or FEA. In addition, panel resonances can be utilized for structural health monitoring by observing changes in the modal parameters of these panel resonances, which are only active in a portion of the blade that is susceptible to failure. Additionally, panel resonances are considered for updating of panel laminate model parameters by correlation with test data. During blade modal tests conducted at Sandia Labs, a series of panel modes with increasing complexity was observed. This paper reports on the findings of these tests, describes potential ways to utilize panel resonances for blade evaluation, health monitoring, and design, and reports recent numerical results to evaluate panel resonances for use in blade structural health assessment.

  7. ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR...

    Broader source: Energy.gov (indexed) [DOE]

    film based panel -formed at high accuracy (<1.5 mrad RMS slope error) Adaptive optics (minimizes canting errors) Space frame based support structure Operation and...

  8. City and County of Denver- Solar Panel Permitting (Colorado)

    Broader source: Energy.gov [DOE]

    Construction, Electrical, Plumbing and Zoning Permits* are required for Photovoltaic (PV) systems installed in the city of Denver. Denver provides same day permit review for most solar panel...

  9. Session 6 - Environmentally Concerned Public Sector Panel Discussion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "The Light-Duty Diesel In America?" Session 6 - Environmentally Concerned Public Sector Panel Discussion "The Light-Duty Diesel In America?" 2003 DEER Conference...

  10. "PBS NEWSHOUR" covers new technique that may make solar panel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists have developed a more efficient method of creating the material that makes solar panels work, according to a report published this week, which researchers say could...

  11. FPGA Implementation of Multilayer Perceptron for Modeling of Photovoltaic panel

    SciTech Connect (OSTI)

    Mekki, H.; Belhout, K. [Department of Electronics, RASIC laboratory BLIDA UniversityBLIDA (Algeria); Mellit, A.; Salhi, H. [Department of Electronics, Control laboratory BLIDA UniversityBLIDA (Algeria)

    2008-06-12T23:59:59.000Z

    The Number of electronic applications using artificial neural network-based solutions has increased considerably in the last few years. However, their applications in photovoltaic systems are very limited. This paper introduces the preliminary result of the modeling and simulation of photovoltaic panel based on neural network and VHDL-language. In fact, an experimental database of meteorological data (irradiation, temperature) and output electrical generation signals of the PV-panel (current and voltage) has been used in this study. The inputs of the ANN-PV-panel are the daily total irradiation and mean average temperature while the outputs are the current and voltage generated from the panel. Firstly, a dataset of 4x364 have been used for training the network. Subsequently, the neural network (MLP) corresponding to PV-panel is simulated using VHDL language based on the saved weights and bias of the network. Simulation results of the trained MLP-PV panel based on Matlab and VHDL are presented. The proposed PV-panel model based ANN and VHDL permit to evaluate the performance PV-panel using only the environmental factors and involves less computational efforts, and it can be used for predicting the output electrical energy from the PV-panel.

  12. Study of Alternative Approaches for Transite Panel Removal

    Broader source: Energy.gov [DOE]

    Bechtel Jacobs Company LLC (BJC) assembled an experienced team from both sites to evaluate both the manual and mechanical methods of transite panel removal.

  13. An overview of the gate and panel industry

    E-Print Network [OSTI]

    Fisher, C. West

    2000-01-01T23:59:59.000Z

    OF CONTENTS I. Introduction II. Market Review lll Critical Factors IV. Gate and Panel Fvaluation A Table 1. Light Duty Gate B. Table 2. Medium Duty Gate C. Table 3. Heavy Duty Gate D. Table 4 Light Duty Panel B Table 5. Medium Duty Panel R Table 6... of their cost and convience. MARKET REVIEW There are a multitude of companies that manufacture portable handling facilities from the basic panel components to complete corral layouts. Just like with cattle breeds, there are a wide variety of manufactured...

  14. Evaluation of the thermal resistance of a roof-mounted multi-reflective radiant barrier for tropical and humid conditions: Experimental study from field measurements

    E-Print Network [OSTI]

    Miranville, Frédéric; Guichard, Stéphane; Boyer, Harry; Praene, Jean Philippe; Bigot, Dimitri

    2012-01-01T23:59:59.000Z

    This paper deals with the experimental evaluation of a roof-mounted multi-reflective radiant barrier (MRRB), installed according to the state of the art, on a dedicated test cell. An existing experimental device was completed with a specific system for the regulation of the airflow rate in the upper air layer included in a typical roof from Reunion Island. Several experimental sequences were conducted to determine the thermal resistance of the roof according to several parameters and following a specific method. The mean method, well known in international standards (ISO 9869 - 1994) for the determination of the thermal resistance using dynamic data, was used. The method was implemented in a building simulation code in order to allow the determination of the thermal indicator automatically. Experimental results are proposed according to different seasonal periods and for different values of the airflow rate in the upper air layer

  15. Evaluation of the thermal resistance of a roof-mounted multi-reflective radiant barrier for tropical and humid conditions: Experimental study from field measurements

    E-Print Network [OSTI]

    Frédéric Miranville; Ali Hamada Fakra; Stéphane Guichard; Harry Boyer; Jean Philippe Praene; Dimitri Bigot

    2012-12-19T23:59:59.000Z

    This paper deals with the experimental evaluation of a roof-mounted multi-reflective radiant barrier (MRRB), installed according to the state of the art, on a dedicated test cell. An existing experimental device was completed with a specific system for the regulation of the airflow rate in the upper air layer included in a typical roof from Reunion Island. Several experimental sequences were conducted to determine the thermal resistance of the roof according to several parameters and following a specific method. The mean method, well known in international standards (ISO 9869 - 1994) for the determination of the thermal resistance using dynamic data, was used. The method was implemented in a building simulation code in order to allow the determination of the thermal indicator automatically. Experimental results are proposed according to different seasonal periods and for different values of the airflow rate in the upper air layer.

  16. Compact x-ray source and panel

    DOE Patents [OSTI]

    Sampayon, Stephen E. (Manteca, CA)

    2008-02-12T23:59:59.000Z

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  17. Solar panels as cosmic-ray detectors

    E-Print Network [OSTI]

    Stella, Carlo; Assis, Pedro; Brogueira, Pedro; Santo, Catarina Espirito; Goncalves, Patricia; Pimenta, Mario; De Angelis, Alessandro

    2014-01-01T23:59:59.000Z

    Due to fundamental limitations of accelerators, only cosmic rays can give access to centre-of- mass energies more than one order of magnitude above those reached at the LHC. In fact, extreme energy cosmic rays (1018 eV - 1020 eV) are the only possibility to explore the 100 TeV energy scale in the years to come. This leap by one order of magnitude gives a unique way to open new horizons: new families of particles, new physics scales, in-depth investigations of the Lorentz symmetries. However, the flux of cosmic rays decreases rapidly, being less than one particle per square kilometer per year above 1019 eV: one needs to sample large surfaces. A way to develop large-effective area, low cost, detectors, is to build a solar panel-based device which can be used in parallel for power generation and Cherenkov light detection. Using solar panels for Cherenkov light detection would combine power generation and a non-standard detection device.

  18. Event-based Green Scheduling of Radiant Systems in Buildings Truong X. Nghiem, George J. Pappas and Rahul Mangharam

    E-Print Network [OSTI]

    Pappas, George J.

    -based state feedback scheduling strategy that, unlike periodic scheduling, directly takes into account systems over forced-air HVAC systems for residential and commercial buildings have been well-studied [2]. Essentially, there are three major benefits: human comfort, reduced heat loss, and peak energy demand

  19. Identification of Convection Heat Transfer Coefficient of Secondary Cooling Zone of CCM based on Least Squares Method and Stochastic Approximation Method

    E-Print Network [OSTI]

    Ivanova, Anna

    2010-01-01T23:59:59.000Z

    The detailed mathematical model of heat and mass transfer of steel ingot of curvilinear continuous casting machine is proposed. The process of heat and mass transfer is described by nonlinear partial differential equations of parabolic type. Position of phase boundary is determined by Stefan conditions. The temperature of cooling water in mould channel is described by a special balance equation. Boundary conditions of secondary cooling zone include radiant and convective components of heat exchange and account for the complex mechanism of heat-conducting due to airmist cooling using compressed air and water. Convective heat-transfer coefficient of secondary cooling zone is unknown and considered as distributed parameter. To solve this problem the algorithm of initial adjustment of parameter and the algorithm of operative adjustment are developed.

  20. MEASUREMENT OF MIRROR PANELS USING COLOURED PATTERN DEFLECTOMETRY

    E-Print Network [OSTI]

    and parabolic dish solar concentrators. Factory production of mirror panels also requires accurate measurementsMEASUREMENT OF MIRROR PANELS USING COLOURED PATTERN DEFLECTOMETRY Paul M. Scott1 , and Greg Burgess2 1 Research Assistant, Solar Thermal Group, Australian National University (ANU), Building 32 North

  1. Solar panels are cost intensive, have limitations with respect to

    E-Print Network [OSTI]

    Langendoen, Koen

    Solar panels are cost intensive, have limitations with respect to where they can be integrated to a building as solar panels on a roof or facades are. Ref. TU Delft OCT-13-022 TU Delft / Valorisation Centre of the window, integrated in the window frames, strip-shaped CIGS PV solar cells convert the light

  2. 2007 Water Resources Advisory Panel By Jessica Harder

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    the potential benefits with the negative ramifications of tree harvesting, and ultimately will result in a basin. Maximizing the effectiveness of precipitation can substantially increase the availability of water and water2007 Water Resources Advisory Panel Update By Jessica Harder The Water Resources Advisory Panel

  3. Security Issues in Data Warehousing and Data Mining: Panel Discussion

    E-Print Network [OSTI]

    Lin, Tsau Young

    and mining. Position by Linda Schlipper For most enterprises there is no shortage of data. Operational dataSecurity Issues in Data Warehousing and Data Mining: Panel Discussion Bhavani Thuraisingham Corporation Abstract This paper describes the panel discussion on data warehousing, data mining and security

  4. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01T23:59:59.000Z

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  5. Ultrathin optical panel and a method of making an ultrathin optical panel

    DOE Patents [OSTI]

    Biscardi, Cyrus (Bellport, NY); Brewster, Calvin (North Patchogue, NY); DeSanto, Leonard (Patchogue, NY); Veligdan, James T. (Manorville, NY)

    2003-02-11T23:59:59.000Z

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  6. Ultrathin Optical Panel And A Method Of Making An Ultrathin Optical Panel.

    DOE Patents [OSTI]

    Biscardi, Cyrus (Bellport, NY); Brewster, Calvin (North Patchoque, NY); DeSanto, Leonard (Patchoque, NY); Veligdan, James T. (Manorville, NY)

    2005-02-15T23:59:59.000Z

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  7. Ultrathin optical panel and a method of making an ultrathin optical panel

    DOE Patents [OSTI]

    Biscardi, Cyrus (Bellport, NY); Brewster, Calvin (North Patchogue, NY); DeSanto, Leonard (Patchogue, NY); Veligdan, James T. (Manorville, NY)

    2002-01-01T23:59:59.000Z

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated With a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  8. Ultrathin optical panel and a method of making an ultrathin optical panel

    DOE Patents [OSTI]

    Biscardi, Cyrus (Bellport, NY); Brewster, Calvin (North Patchogue, NY); DeSanto, Leonard (Patchogue, NY); Veligdan, James T. (Manorville, NY)

    2001-10-09T23:59:59.000Z

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  9. Ultrathin Optical Panel And A Method Of Making An Ultrathin Optical Panel.

    DOE Patents [OSTI]

    Biscardi, Cyrus (Bellport, NY); Brewster, Calvin (North Patchogue, NY); DeSanto, Leonard (Patchogue, NY); Veligdan, James T. (Manorville, NY)

    2005-05-17T23:59:59.000Z

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  10. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  11. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  12. ECOVILLAGE FACTS The complex includes 50 apartments (18 original and 32 new)

    E-Print Network [OSTI]

    Baltisberger, Jay H.

    radiant floor heating o Structurally insulated panels (SIPs) · In additional to individual garden plots of the Ecovillage apartments include: o solar tubes and compact fluorescent lighting o low-flow toilets, community gatherings o Kitchen o Playroom o Dryers for Ecovillage residents o Solar water heater o Solar

  13. Travel Trends Using the Puget Sound Panel Survey: A Generalized Estimating Equations Approach

    E-Print Network [OSTI]

    Yee, Julie; Niemeier, Debbie

    1998-01-01T23:59:59.000Z

    panel survey for the Puget Sound Region. Trans­ portationTravel trends using the Puget Sound Panel Table 18. Wave 1longitudinal data from the Puget Sound Transportation Panel.

  14. Atomic Safety and Licensing Board Panel annual report, Fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    In Fiscal Year 1992, the Atomic Safety and Licensing Board Panel (``the Panel``) handled 38 proceedings. The cases addressed issues in the construction, operation, and maintenance of commercial nuclear power reactors and other activities requiring a license from the Nuclear Regulatory Commission. This reports sets out the Panel`s caseload during the year and summarizes, highlights, and analyzes how the wide-ranging issues raised in those proceedings were addressed by the Panel`s judges and licensing boards.

  15. POLICY FLASH 2014-25 Revision to the Procurement Strategy Panel...

    Energy Savers [EERE]

    5 Revision to the Procurement Strategy Panel (PSP) Briefing Process POLICY FLASH 2014-25 Revision to the Procurement Strategy Panel (PSP) Briefing Process For DOE questions...

  16. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

  17. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    ab’), photovoltaic (‘pv’), and solar thermal (‘st’)} t u Daym,t,h Net heat from solar thermal during hour h, type of daysame alignment of the solar thermal panel it can be used for

  18. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    SciTech Connect (OSTI)

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01T23:59:59.000Z

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  19. HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM

    SciTech Connect (OSTI)

    Michael E. Collings; Bruce A. Dockter; Douglas R. Hajicek; Ann K. Henderson; John P. Hurley; Patty L. Kleven; Greg F. Weber

    1999-12-01T23:59:59.000Z

    The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 F (1427 C) and 250 psi (17 bar) to turn an aeroderivative turbine. The overall system design can be very similar to that of a typical pulverized coal-fired boiler system, except that ceramics and alloys are used to carry the very high-temperature air rather than steam. This design makes the combined-cycle system especially suitable as a boiler-repowering technology. With the use of a gas-fired duct heater, efficiencies of 55% can be achieved, leading to reductions in CO{sub 2} emissions of 40% as compared to today's coal-fired systems. On the basis of work completed to date, the high-temperature advanced furnace (HITAF) concept appears to offer a higher-efficiency technology option for coal-fired power generation systems than conventional pulverized coal firing. Concept analyses have demonstrated the ability to achieve program objectives for emissions (10% of New Source Performance Standards, i.e., 0.003 lb/MMBtu of particulate), efficiency (47%-55%), and cost of electricity (10%-25% below today's cost). Higher-efficiency technology options for new plants as well as repowering are important to the power generation industry in order to conserve valuable fossil fuel resources, reduce the quantity of pollutants (air and water) and solid wastes generated per MW, and reduce the cost of power production in a deregulated industry. Possibly more important than their potential application in a new high-temperature power system, the RAH panel and convective air heater tube bank are potential retrofit technology options for existing coal-fired boilers to improve plant efficiencies. Therefore, further development of these process air-based high-temperature heat exchangers and their potential for commercial application is directly applicable to the development of enabling technologies in support of the Vision 21 program objectives. The objective of the work documented in this report was to improve the performance of the UTRC high-temperature heat exchanger, demonstrate the fuel flexibility of the slagging combustor, and test methods for reducing corrosion of brick and castable refractory in such combustion environments. Specif

  20. Panel 1 - comparative evaluation of deposition technologies

    SciTech Connect (OSTI)

    Fenske, G.R.; Stodolsky, F. [Argonne National Lab., IL (United States); Benson, D.K.; Pitts, R.J. [National Renewable Energy Lab., Golden, CO (United States); Bhat, D.G. [GTE Valenite Corp., Troy, MI (United States); Yulin Chen [Allison Gas Turbine Division, GM, Indianapolis, IN (United States); Gat, R.; Sunkara, M.K. [Case Western Reserve Univ., Cleveland, OH (United States); Kelly, M. [Stanford Univ., CA (United States); Lawler, J.E. [Univ. of Wisconsin, Madison (United States); Nagle, D.C. [Martin Marietta Labs., Baltimore, MD (United States); Outka, D. [Sandia National Laboratories, Livermore, CA (United States); Revankar, G.S. [Deere & Co., Moline, IL (United States); Subramaniam, V.V. [Ohio State Univ., Columbus (United States); Wilbur, P.J. [Colorado State Univ., Fort Collins (United States); Mingshow Wong [Northwestern Univ., Evanston, IL (United States); Woolam, W.E. [Southwest Research Inst., Arlington, VA (United States)

    1993-01-01T23:59:59.000Z

    This working group attempted to evaluate/compare the different types of deposition techniques currently under investigation for depositing diamond and diamond-like carbon films. A table lists the broad types of techniques that were considered for depositing diamond and diamond-like carbon films. After some discussion, it was agreed that any evaluation of the various techniques would be dependent on the end application. Thus the next action was to list the different areas where diamond and DLC films could find applications in transportation. These application areas are listed in a table. The table intentionally does not go into great detail on applications because that subject is dealt with specifically by Panel No. 4 - Applications To Transportation. The next action concentrated on identifying critical issues or limitations that need to be considered in evaluating the different processes. An attempt was then made to rank different broad categories of deposition techniques currently available or under development based on the four application areas and the limitations. These rankings/evaluations are given for diamond and DLC techniques. Finally, the working group tried to identify critical development and research issues that need to be incorporated into developing a long-term program that focuses on diamond/DLC coatings for transportation needs. 5 tabs.

  1. Concentrating Solar Power �¢���� Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    SciTech Connect (OSTI)

    McDowell, Michael W [Pratt & Whitney Rocketdyne; Miner, Kris [Pratt & Whitney Rocketdyne

    2013-03-30T23:59:59.000Z

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to test scale prototype receiver, off sun but at temperature, at a molten salt loop at ground level adjacent to the tower also had to be abandoned. Thus, no test facility existed for a molten salt receiver test. As a result, PWR completed the prototype receiver design and then fabricated key components for testing instead of fabricating the complete prototype receiver. A number of innovative design ideas have been developed. Key features of the receiver panel have been identified. This evaluation includes input from Solar 2, personal experience of people working on these programs and meetings with Sandia. Key components of the receiver design and key processes used to fabricate a receiver have been selected for further evaluation. The Test Plan, Concentrated Solar Power Receiver In Cooperation with the Department of Energy and Sandia National Laboratory was written to define the scope of the testing to be completed as well as to provide details related to the hardware, instrumentation, and data acquisition. The document contains a list of test objectives, a test matrix, and an associated test box showing the operating points to be tested. Test Objectives: 1. Demonstrate low-cost manufacturability 2. Demonstrate robustness of two different tube base materials 3. Collect temperature data during on sun operation 4. Demonstrate long term repeated daily operation of heat shields 5. Complete pinhole tube weld repairs 6. Anchor thermal models This report discusses the tests performed, the results, and implications for design improvements and LCOE reduction.

  2. SOLAR PANELS ON HUDSON COUNTY FACILITIES

    SciTech Connect (OSTI)

    BARRY, KEVIN

    2014-06-06T23:59:59.000Z

    This project involved the installation of an 83 kW grid-connected photovoltaic system tied into the energy management system of Hudson County's new 60,000 square foot Emergency Operations and Command Center and staff offices. Other renewable energy features of the building include a 15 kW wind turbine, geothermal heating and cooling, natural daylighting, natural ventilation, gray water plumbing system and a green roof. The County intends to seek Silver LEED certification for the facility.

  3. Panel data analysis of U.S. coal productivity

    E-Print Network [OSTI]

    Stoker, Thomas M.

    2000-01-01T23:59:59.000Z

    We analyze labor productivity in coal mining in the United States using indices of productivity change associated with the concepts of panel data modeling. This approach is valuable when there is extensive heterogeneity ...

  4. Obama Administration Announces Plans to Install New Solar Panels...

    Broader source: Energy.gov (indexed) [DOE]

    WASHINGTON - U.S. Energy Secretary Steven Chu and Council of Environmental Quality (CEQ) Chair Nancy Sutley today announced plans to install solar panels and a solar hot water...

  5. Dynamic instabilities imparted by CubeSat deployable solar panels

    E-Print Network [OSTI]

    Peters, Eric David

    2014-01-01T23:59:59.000Z

    In this work, multibody dynamics simulation was used to investigate the effects of solar panel deployment on CubeSat attitude dynamics. Nominal and partial/asymmetric deployments were simulated for four different solar ...

  6. Information tracking and sharing in organic photovoltaic panel manufacturing

    E-Print Network [OSTI]

    Gong, Ming, M. Eng. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    The MIT MEng team of four worked with Konarka Technologies, a world leading organic solar panel manufacturer, on production tracking and analysis as well as various operational improvement projects. MIT's collaborative ...

  7. Blast Load Response of Steel Sandwich Panels with Liquid Encasement

    SciTech Connect (OSTI)

    Dale Karr; Marc Perlin; Benjamin Langhorst; Henry Chu

    2009-10-01T23:59:59.000Z

    We describe an experimental investigation of the response of hybrid blast panels for protection from explosive and impact forces. The fundamental notion is to dissipate, absorb, and redirect energy through plastic collapse, viscous dissipation, and inter-particle forces of liquid placed in sub-structural compartments. The panels are designed to absorb energy from an impact or air blast by elastic-plastic collapse of the panel substructure that includes fluid-filled cavities. The fluid contributes to blast effects mitigation by providing increased initial mass and resistance, by dissipation of energy through viscosity and fluid flow, and by redirecting the momentum that is imparted to the system from the impact and blast impulse pressures. Failure and deformation mechanisms of the panels are described.

  8. Kingspan Insulated Panels: Proposed Penalty (2013-CE-5353)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Kingspan Insulated Panels, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  9. City and County of Denver- Solar Panel Permitting

    Broader source: Energy.gov [DOE]

    Denver provides same-day permit review for most solar panel projects. Electrical, Plumbing, and Zoning Permits* are required for photovoltaic (PV) systems installed in the city of Denver, althoug...

  10. Panel Discussion: Career Paths in Energy & Sustainability: Perspective...

    Broader source: Energy.gov (indexed) [DOE]

    a.m.-7 p.m. The events include: 11:30 a.m.-2 p.m. Panel Discussion "Career Paths in Energy & Sustainability: Perspectives from Successful Women Professionals," including Dr....

  11. Panel data models with nonadditive unobserved heterogeneity : estimation and inference

    E-Print Network [OSTI]

    Lee, Joonhwan

    2014-01-01T23:59:59.000Z

    This paper considers fixed effects estimation and inference in linear and nonlinear panel data models with random coefficients and endogenous regressors. The quantities of interest - means, variances, and other moments of ...

  12. Seismic retrofit of precast panel buildings in Eastern Europe

    E-Print Network [OSTI]

    Tzonev, Tzonu

    2013-01-01T23:59:59.000Z

    Many countries in Eastern Europe, particularly ones from the former Soviet Bloc, are facing a potential crisis regarding their deteriorating precast panel apartment buildings. These complexes were built using industrial ...

  13. advisory panel open: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effective Fabrication of a Solar PV Panel for LED Lighting CiteSeer Summary: Abstract Solar cells are very fragile so they need a encapsulant and encasing for protection and...

  14. advisory panel notice: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effective Fabrication of a Solar PV Panel for LED Lighting CiteSeer Summary: Abstract Solar cells are very fragile so they need a encapsulant and encasing for protection and...

  15. ashp expert panel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effective Fabrication of a Solar PV Panel for LED Lighting CiteSeer Summary: Abstract Solar cells are very fragile so they need a encapsulant and encasing for protection and...

  16. access panel surveys: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effective Fabrication of a Solar PV Panel for LED Lighting CiteSeer Summary: Abstract Solar cells are very fragile so they need a encapsulant and encasing for protection and...

  17. Limited Dependent Variable Correlated Random Coefficient Panel Data Models

    E-Print Network [OSTI]

    Liang, Zhongwen

    2012-10-19T23:59:59.000Z

    OF CONTENTS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : vii LIST OF TABLES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ix 1. INTRODUCTION : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 1.1 Linear Models... : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 1.2 Binary Response Models : : : : : : : : : : : : : : : : : : : : : : : : : 3 1.3 Truncated Models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6 2. LINEAR CRC PANEL DATA MODELS : : : : : : : : : : : : : : : : : : 8 2.1...

  18. Side-by-side evaluation of a stressed-skin insulated-core panel house and a conventional stud-frame house. Final report

    SciTech Connect (OSTI)

    Rudd, A.; Chandra, S.

    1994-01-14T23:59:59.000Z

    Side-by-side energy testing and monitoring was conducted on two houses in Louisville, KY between January--March 1993. Both houses were identical except that one house was constructed with conventional US 2 by 4 studs and a truss roof while the other house was constructed with stress-skin insulated core panels for the walls and second floor ceiling. Air-tightness testing included fan pressurization by blower door, hour long tracer tests using sulphur hexafluoride, and two-week long time-averaged tests using perfluorocarbon tracers. An average of all the air-tightness test results showed the SSIC panel house to have 22 percent less air infiltration than the frame house. Air-tightness testing resulted in a recommendation that both houses have a fresh air ventilation system installed to provide 0.35 air changes per hour continuously. Thermal insulation quality testing was by infrared imaging. Pressure differential testing resulted in recommendations to use sealed combustion appliances, and to allow for more return air flow from closed rooms. This can be accomplished by separate return ducts or transfer ducts which simply connect closed rooms to the main body with a short duct. The SSIC house UA was lower in both cases. By measurement, co-heating tests showed the SSIC panel house total UA to be 12 percent lower than the frame house. Short-term energy monitoring was also conducted for the two houses. A 17 day period of electric heating and a 14 day period of gas furnace heating was evaluated. Monitoring results showed energy savings for the panel house to be 12 percent during electric heating and 15 percent during gas heating. A comparison of the two monitoring periods showed that the lumped efficiency of the gas furnace and air distribution system for both houses was close to 80 percent. Simple regression models using Typical Meteorological Year weather data gave a preliminary prediction of seasonal energy savings between 14 and 20 percent.

  19. Earth's Heat Source - The Sun

    E-Print Network [OSTI]

    Oliver K. Manuel

    2009-05-05T23:59:59.000Z

    The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

  20. Earth's Heat Source - The Sun

    E-Print Network [OSTI]

    Manuel, Oliver K

    2009-01-01T23:59:59.000Z

    The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

  1. Phase-change materials to improve solar panel's performance Pascal Biwole1,2,*

    E-Print Network [OSTI]

    -change materials to improve solar panel's performance Pascal Biwole1,2,* , Pierre Eclache3 , Frederic Kuznik3 1-mail:phbiwole@unice.fr Abstract: High operating temperatures induce a loss of efficiency in solar photovoltaic and thermal panels set-up. Results show that adding a PCM on the back of a solar panel can maintain the panel

  2. Optimization on Solar Panels: Finding the Optimal Output Brian Y. Lu

    E-Print Network [OSTI]

    Lavaei, Javad

    Optimization on Solar Panels: Finding the Optimal Output Brian Y. Lu January 1, 2013 1 Introduction of solar panel: Routing the configuration between solar cells with a switch matrix. However, their result models and control policies for the optimal output of solar panels. The smallest unit on a solar panel

  3. Project focus: Complete design of an interactive solar panel system to be situated on

    E-Print Network [OSTI]

    Project focus: · Complete design of an interactive solar panel system to be situated on top the effective area · Two types of solar cells: · 3 panel configurations: · Real-time power output data Si panels with 30.0o tilt c) 10 CdTe panels; 38.5o tilt · Solar insolation recorder, thermometer

  4. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  5. Appendix C: Installation of Simpson Strong-Tie Storm Panel Screws The Storm Panel Screws are currently available in Hawai`i and meet the International

    E-Print Network [OSTI]

    Wang, Yuqing

    are prepared before installation by following the four P's: 1) Precut the panels to the proper dimensions) Pull off the panel. 6) Adjust screw penetrations so that the spacer between the top set of screw

  6. Geothermal heating

    SciTech Connect (OSTI)

    Aureille, M.

    1982-01-01T23:59:59.000Z

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  7. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  8. Water and Space Heating Heat Pumps

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  9. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  10. Bonded Bracket Assmebly for Frameless Solar Panels

    SciTech Connect (OSTI)

    Murray, Todd

    2013-01-30T23:59:59.000Z

    In February 2011 the US Department of Energy announced their new Sunshot Initiative. The Sunshot goal is to reduce the total cost of solar energy systems by about 75 percent before the end of the decade. The DOE estimated that a total installed cost of $1 per watt for photovoltaic systems would be equivalent to 6���¢/kilowatt hour (kWh) for energy available from the grid. The DOE also estimated that to meet the $1 per watt goal, PV module costs would need to be reduced to $.50 per watt, balance of systems costs would need to be reduced to $.40 per watt, and power electronic costs would need to reach $.10 per watt. To address the BOS balance of systems cost component of the $1 per watt goal, the DOE announced a funding opportunity called (BOS-X) Extreme Balance of System Hardware Cost Reductions. The DOE identified eight areas within the total BOS costs: 1) installation labor, 2) installation materials, 3) installation overhead and profit, 4) tracker, 5) permitting and commissioning, 6) site preparation, 7) land acquisition, 8) sales tax. The BOS-X funding announcement requested applications in four specific topics: Topic 1: Transformational Building Integrated Photovoltaic (BIPV) Modules Topic 2: Roof and Ground Mount Innovations Topic 3: Transformational Photovoltaic System Designs Topic 4: Development of New Wind Load Codes for PV Systems The application submitted by ARaymond Tinnerman reflected the requirements listed in Topic #2, Roof and Ground Mount Innovations. The goal of topic #2 was to develop technologies that would result in the extreme reduction of material and labor costs associated with applications that require physical connections and attachments to roof and ground mount structures. The topics researched in this project included component cost reduction, labor reduction, weight reduction, wiring innovations, and alternative material utilization. The project objectives included: 1) The development of an innovative quick snap bracket assembly that would be bonded to frameless PV modules for commercial rooftop installations. 2) The development of a composite pultruded rail to replace traditional racking materials. 3) In partnership with a roofing company, pilot the certification of a commercial roof to be solar panel compliant, eliminating the need for structural analysis and government oversight resulting in significantly decreased permitting costs. 4) Reduce the sum of all cost impacts in topic #2 from a baseline total of $2.05/watt to $.34/watt.

  11. Functional requirements for component films in a solar thin-film photovoltaic/thermal panel

    SciTech Connect (OSTI)

    Johnston, David [Power and Energy Research Group, School of Engineering, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST (United Kingdom)

    2010-03-15T23:59:59.000Z

    The functional requirements of the component films of a solar thin-film photovoltaic/thermal panel were considered. Particular emphasis was placed on the new functions, that each layer is required to perform, in addition to their pre-existing functions. The cut-off wavelength of the window layer, required for solar selectivity, can be achieved with charge carrier concentrations typical of photovoltaic devices, and thus does not compromise electrical efficiency. The upper (semiconductor) absorber layer has a sufficiently high thermal conductivity that there is negligible temperature difference across the film, and thus negligible loss in thermal performance. The lower (cermet) absorber layer can be fabricated with a high ceramic content, to maintain high solar selectivity, without significant increase in electrical resistance. A thin layer of molybdenum-based cermet at the top of this layer can provide an Ohmic contact to the upper absorber layer. A layer of aluminium nitride between the metal substrate and the back metal contact can provide electrical isolation to avoid short-circuiting of series-connected cells, while maintaining a thermal path to the metal substrate and heat extraction systems. Potential problems of differential contraction of heated films and substrates were identified, with a recommendation that fabrication processes, which avoid heating, are preferable. (author)

  12. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26T23:59:59.000Z

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  13. Lunar Rover Solar Panel MountTeam Members: Tian Le, Tudor Boiangiu, Jeremy Chan, James Haensel To develop a mechanized mount for a solar panel to

    E-Print Network [OSTI]

    Lunar Rover Solar Panel MountTeam Members: Tian Le, Tudor Boiangiu, Jeremy Chan, James Haensel To develop a mechanized mount for a solar panel to be mounted on a lunar rover. Must be: · capable of orienting panel towards sun · reside on mast extending vertically from rover · capable of unfurling solar

  14. Dead heat

    SciTech Connect (OSTI)

    Oppenheimer, M.; Boyle, R.H.

    1990-01-01T23:59:59.000Z

    This paper reports on the prospect of global warming. This paper proposes a workable solution, and a road map for getting there. The author explains how we became addicted to fossil fuels and evokes a bleak picture should this dependence continue. But the book also explores how industry can become a vehicle for solving, instead of precipitating, the global environmental crisis. The decoupling of energy from pollution can be accomplished without sacrificing prosperity by powering the economy with solar energy. Dead Heat takes us step by step to a greenhouse-friendly world fueled only by the sun.

  15. Plasma Panel Sensors for Particle and Beam Detection

    E-Print Network [OSTI]

    Peter S. Friedman; Robert Ball; James R. Beene; Yan Benhammou; E. H. Bentefour; J. W. Chapman; Erez Etzion; Claudio Ferretti; Nir Guttman; Daniel S. Levin; Meny Ben-Moshe; Yiftah Silver; Robert L. Varner; Curtis Weaverdyck; Bing Zhou

    2012-11-23T23:59:59.000Z

    The plasma panel sensor (PPS) is an inherently digital, high gain, novel variant of micropattern gas detectors inspired by many operational and fabrication principles common to plasma display panels (PDPs). The PPS is comprised of a dense array of small, plasma discharge, gas cells within a hermetically-sealed glass panel, and is assembled from non-reactive, intrinsically radiation-hard materials such as glass substrates, metal electrodes and mostly inert gas mixtures. We are developing the technology to fabricate these devices with very low mass and small thickness, using gas gaps of at least a few hundred micrometers. Our tests with these devices demonstrate a spatial resolution of about 1 mm. We intend to make PPS devices with much smaller cells and the potential for much finer position resolutions. Our PPS tests also show response times of several nanoseconds. We report here our results in detecting betas, cosmic-ray muons, and our first proton beam tests.

  16. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  17. Segmented heat exchanger

    DOE Patents [OSTI]

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14T23:59:59.000Z

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  18. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01T23:59:59.000Z

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

  19. Input to the FESAC Priorities Panel: RF Heating Technology Submitted by

    E-Print Network [OSTI]

    for transmission to the plasma through low-loss transmission lines. The power is typically launched into the plasma by Communications and Power Industries (CPI) of Palo Alto and transmission lines built by GA. The US ITER Project led by the Oak Ridge National Laboratory is building 24 transmission lines for ITER, each rated for 2

  20. A multifunctional heat pipe sandwich panel structure Douglas T. Queheillalt a,*, Gerardo Carbajal b

    E-Print Network [OSTI]

    Wadley, Haydn

    truncated-square honeycomb core covered with a stochastic open-cell nickel foam wick. An electroless nickel

  1. Geothermal heat pumps for heating and cooling

    SciTech Connect (OSTI)

    Garg, S.C.

    1994-03-01T23:59:59.000Z

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building`s energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  2. Behavior of Concrete Panels Reinforced with Synthetic Fibers, Mild Steel, and GFRP Composites Subjected to Blasts

    SciTech Connect (OSTI)

    C. P. Pantelides; T. T. Garfield; W. D. Richins; T. K. Larson; J. E. Blakeley

    2012-03-01T23:59:59.000Z

    The paper presents experimental data generated for calibrating finite element models to predict the performance of reinforced concrete panels with a wide range of construction details under blast loading. The specimens were 1.2 m square panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consisted of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bars; FRC panels without additional reinforcement; FRC panels with steel bars; NWC panels with glass fiber reinforced polymer (GFRP) bars; and NWC panels reinforced with steel bars and external GFRP laminates on both faces. Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. FRC panels with steel bars had the best performance for new construction. NWC panels reinforced with steel bars and external GFRP laminates on both faces had the best performance for strengthening or rehabilitation of existing structures. The performance of NWC panels with GFRP bars was strongly influenced by the bar spacing. The behavior of the panels is classified in terms of damage using immediate occupancy, life safety, and near collapse performance levels. Preliminary dynamic simulations are compared to the experimental results.

  3. Radiation Heat Transfer in Particle-Laden Gaseous Flame: Flame Acceleration and Triggering Detonation

    E-Print Network [OSTI]

    Liberman, M A; Kiverin, A D

    2015-01-01T23:59:59.000Z

    In this study we examine influence of the radiation heat transfer on the combustion regimes in the mixture, formed by suspension of fine inert particles in hydrogen gas. The gaseous phase is assumed to be transparent for the thermal radiation, while the radiant heat absorbed by the particles is then lost by conduction to the surrounding gas. The particles and gas ahead of the flame is assumed to be heated by radiation from the original flame. It is shown that the maximum temperature increase due to the radiation preheating becomes larger for a flame with lower velocity. For a flame with small enough velocity temperature of the radiation preheating may exceed the crossover temperature, so that the radiation heat transfer may become a dominant mechanism of the flame propagation. In the case of non-uniform distribution of particles, the temperature gradient formed due to the radiation preheating can initiate either deflagration or detonation ahead of the original flame via the Zel'dovich's gradient mechanism. Th...

  4. Modular container assembled from fiber reinforced thermoplastic sandwich panels

    DOE Patents [OSTI]

    Donnelly, Mathew William (Edgewood, NM); Kasoff, William Andrew (Albuquerque, NM); Mcculloch, Patrick Carl (Irvine, CA); Williams, Frederick Truman (Albuquerque, NM)

    2007-12-25T23:59:59.000Z

    An improved, load bearing, modular design container structure assembled from thermoformed FRTP sandwich panels in which is utilized the unique core-skin edge configuration of the present invention in consideration of improved load bearing performance, improved useful load volume, reduced manufacturing costs, structural weight savings, impact and damage tolerance and repair and replace issues.

  5. Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    1 Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels Solar Thermal;NZERTF Gaithersburg, MD 3 Objectives Demonstrate Net-Zero Energy for a home similar in nature: · Demonstrate Net-Zero Energy Usage · Measure All Building Loads (Sensible and Latent) · Operate Dedicated

  6. UNL Faculty Provide Updates to the Water Resources Advisory Panel

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    UNL Faculty Provide Updates to the Water Resources Advisory Panel By Rachael Herpel, Outreach and Education Specialist, UNL Water Center and NU Rural Initiative The University of Nebraska- Lincoln's Water of guidance for UNL's water research, education and outreach programming. When WRAP first met in 2006

  7. PRESENTATION TO NRC BURNING PLASMA PANEL DR. STEPHEN O. DEAN

    E-Print Network [OSTI]

    JANUARY 17, 2003 In response to request by panel co-chair John Ahearne as follows: "We have heard from" #12;2 BOTTOM LINES FUSION IS NOT ON THE RADAR SCREEN OF THE U. S. ELECTRIC UTILITIES ! To get DEVELOPMENT WOULD ALSO ATTRACT INTEREST FROM INDUSTRY GENERAL ATOMICS, FOR HISTORICAL REASONS, IS UNIQUE

  8. Independent Scientific Review Panel for the Northwest Power & Conservation Council

    E-Print Network [OSTI]

    1 Independent Scientific Review Panel for the Northwest Power & Conservation Council 851 SW 6 th, 2011 To: Bruce Measure, Chair, Northwest Power and Conservation Council From: Eric Loudenslager, ISRP lamprey behavior and vulnerability to predation may affect abundance estimates. The proponents' submittal

  9. Predicting the Occurrence of Cosmetic Defects in Automotive Skin Panels

    SciTech Connect (OSTI)

    Hazra, S.; Williams, D.; Roy, R. [University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Aylmore, R.; Allen, M.; Hollingdale, D. [Land Rover, Banbury Rd, Gaydon, Warwick, CV35 0RR (United Kingdom)

    2011-05-04T23:59:59.000Z

    The appearance of defects such as 'hollows' and 'shock lines' can affect the perceived quality and attractiveness of automotive skin panels. These defects are the result of the stamping process and appear as small, localized deviations from the intended styling of the panels. Despite their size, they become visually apparent after the application of paint and the perceived quality of a panel may become unacceptable. Considerable time is then dedicated to minimizing their occurrence through tool modifications. This paper will investigate the use of the wavelet transform as a tool to analyze physically measured panels. The transform has two key aspects. The first is its ability to distinguish small scale local defects from large scale styling curvature. The second is its ability to characterize the shape of a defect in terms of its wavelength and a 'correlation value'. The two features of the transform enable it to be used as a tool for locating and predicting the severity of defects. The paper will describe the transform and illustrate its application on test cases.

  10. Arkansas Students Get Their Hands Dirty in Solar Panel Project

    Broader source: Energy.gov [DOE]

    Wallie Shaw remembers where he got the idea to do a hands-on solar panel project for his Jobs for America’s Graduates (JAG) students, a school-to-work transition program focused on helping at-risk youth graduate from high school.

  11. Independent Scientific Review Panel for the Northwest Power & Conservation Council

    E-Print Network [OSTI]

    1 Independent Scientific Review Panel for the Northwest Power & Conservation Council 851 SW 6th are commended for fostering past studies and providing scientific information to develop management approaches be shown by (1) presenting the calculations for quantitative estimates of external phosphorus loading

  12. Independent Scientific Review Panel for the Northwest Power & Conservation Council

    E-Print Network [OSTI]

    1 Independent Scientific Review Panel for the Northwest Power & Conservation Council 851 SW 6th in the original solicitation. Statements about outstanding habitat units (HUs) and calculations from tables, reporting, and acquisitions are sufficiently improved. Those relating to actual management activities

  13. A shape memory-based multifunctional structural actuator panel

    E-Print Network [OSTI]

    Wadley, Haydn

    A shape memory-based multifunctional structural actuator panel Dana M. Elzey *, Aarash Y.N. Sofla significant load. The shape change is effected by shape memory alloy face sheet elements, which exploit a ``one-way'' shape memory effect only. Unlike other related designs, no external or bias forces

  14. FESAC FUSION SIMULATION PROJECT (FSP) PANEL REPORT William Tang1

    E-Print Network [OSTI]

    power plant (DEMO), further science and technology is needed to achieve the 2500 MW of continuous power1 FESAC FUSION SIMULATION PROJECT (FSP) PANEL REPORT William Tang1 , Riccardo Betti2 , Jeffrey) to FESAC, Dr. Raymond Orbach clearly identifies the overarching objective of the proposed Fusion Simulation

  15. Independent Scientific Review Panel for the Northwest Power Planning Council

    E-Print Network [OSTI]

    Independent Scientific Review Panel for the Northwest Power Planning Council 851 SW 6th Avenue memorandum, the Northwest Power Planning Council (Council) requested that the ISRP conduct additional review in which TPL would purchase the property from the developer, convey the conservation easement to WDFW

  16. An overview of the gate and panel industry 

    E-Print Network [OSTI]

    Fisher, C. West

    2000-01-01T23:59:59.000Z

    acquiring raw materials, its pre-fabrication, welding, touch-up, and delivery of the product. My first major responsibility for Texas Gate and Panel was to expand its sales territory. It soon became obvious that a thorough knowledge of my competitors...

  17. Panel on the Future of BPM Research/Publications

    E-Print Network [OSTI]

    van der Aalst, Wil

    PAGE 0 Panel on the Future of BPM Research/Publications August 29th 2013, 13.00-13.30 Wil van der Aalst (moderator), Florian Daniel, Jianmin Wang, Barbara Weber (BPM PC chairs 2013), Shazia Sadiq, Pnina Soffer, Hagen Völzer (BPM PC chairs 2014) #12;Motivation · For the first time, BPM authors were asked

  18. Report of the Technical' Panel on Magnetic Fusion

    E-Print Network [OSTI]

    ;Grumman CorporationBethpage, New York 11714-3580 Joseph G. Gavin, Jr Senior Management Consultant DecemberDOE/S-O035 Report of the Technical' Panel on Magnetic Fusion of the Energy Research Advisory Board November 1986 A Report of the Energy Research Advisory Board to the United States Department of Energy

  19. THE EGYPT LABOR MARKET PANEL SURVEY: INTRODUCING THE 2012 ROUND

    E-Print Network [OSTI]

    Levinson, David M.

    #12;THE EGYPT LABOR MARKET PANEL SURVEY: INTRODUCING THE 2012 ROUND Ragui Assaad and Caroline Egypt www.erf.org.eg Copyright © The Economic Research Forum, 2013 All rights reserved. No part our data to other statistical sources for Egypt to evaluate the representativeness of the sample

  20. Fire Alarm Control Panel is located in Switchgear

    E-Print Network [OSTI]

    on Basement Level Evacuation Route Exit Restroom Fire Extinguisher Fire Alarm Fire Alarm Control Panel Symbol. · Assist persons with disabilities. · Exit the building using the nearest exit. DO NOT USE ELEVATORS 110 106 108 C B 101A L-D 101 103 101B BR 116 B C A Evacuation Assembly Point: S1 Lower Level Entry

  1. Panel Damping Loss Factor Estimation Using The Random Decrement Technique

    E-Print Network [OSTI]

    Dande, Himanshu Amol

    2010-12-10T23:59:59.000Z

    The use of the Random Decrement Technique (RDT) for estimating panel damping loss factors ranging from 1% to 10% is examined in a systematic way, with a focus on establishing the various parameters one must specify to use the technique to the best...

  2. Predicting Panel Ratings for Semantic Characteristics of Lung Nodules

    E-Print Network [OSTI]

    Schaefer, Marcus

    Predicting Panel Ratings for Semantic Characteristics of Lung Nodules Dmitriy Zinovev De@cdm.depaul.edu ABSTRACT In reading CT scans with potentially malignant lung nodules, radiologists make use of high level a second opinion - predicting these semantic characteristics for lung nodules. In our previous work, we

  3. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01T23:59:59.000Z

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump working fluid is reactive...

  4. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  5. Findings and Recommendations by the California Carbon Capture and Storage Review Panel

    E-Print Network [OSTI]

    Sequestration Partnership #12;Findings and Recommendations by the California Carbon Capture and Storage ReviewFindings and Recommendations by the California Carbon Capture and Storage Review Panel December............................................................................1 Creation of the Carbon Capture and Storage Review Panel

  6. An arbitrarily high-order, unstructured, free-wake panel solver

    E-Print Network [OSTI]

    Moore, John Pease, IV

    2013-01-01T23:59:59.000Z

    A high-order panel code capable of solving the potential flow equation about arbitrary curved geometries is presented. A new method for integrating curved, high-order panels using adaptive Gaussian quadrature is detailed. ...

  7. White House Solar Panels Are a Symbol of Solar's Progress | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Panels Are a Symbol of Solar's Progress White House Solar Panels Are a Symbol of Solar's Progress May 13, 2014 - 12:02pm Addthis An error occurred. Unable to execute...

  8. Report on Hydrogen Storage Panel Findings in DOE-BES Sponsored...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Panel Findings in DOE-BES Sponsored Workshop on Basic Research for Hydrogen Production, Storage and Use Report on Hydrogen Storage Panel Findings in DOE-BES...

  9. Design and analysis of a concrete modular housing system constructed with 3D panels

    E-Print Network [OSTI]

    Sarcia, Sam Rhea, 1982-

    2004-01-01T23:59:59.000Z

    An innovative modular house system design utilizing an alternative concrete residential building system called 3D panels is presented along with an overview of 3D panels as well as relevant methods and markets. The proposed ...

  10. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

  11. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  12. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  13. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  14. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

  15. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  16. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  17. Heat Pump for High School Heat Recovery 

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  18. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    -expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat...

  19. Law School Admissions Panel Law School representatives will discuss the law school admissions

    E-Print Network [OSTI]

    Brinkmann, Peter

    Law School Admissions Panel Law School representatives will discuss the law school admissions process and talk about their respective schools in a panel discussion format. Join us and learn how in Law School Admissions Panel epresentatives will discuss the law school admissions process and talk

  20. 11-level Cascaded H-bridge Grid-tied Inverter Interface with Solar Panels

    E-Print Network [OSTI]

    Tolbert, Leon M.

    11-level Cascaded H-bridge Grid-tied Inverter Interface with Solar Panels Faete Filho, Yue Cao multilevel DC-AC grid-tied inverter. Each inverter bridge is connected to a 200 W solar panel. OPAL-RT lab match. A novel SPWM scheme is proposed in this paper to be used with the solar panels that can account

  1. Design and Evaluation of a Modular Resonant Switched Capacitors Equalizer for PV Panels

    E-Print Network [OSTI]

    Design and Evaluation of a Modular Resonant Switched Capacitors Equalizer for PV Panels Shmuel (Sam of shaded panels in a serially connected PV array. The proposed solution is based on a modular approach module was designed for 185W PV panels and was found to boost the maximum available power by about 50

  2. Dying Green A Film Screening and Panel Discussion about Green Burial

    E-Print Network [OSTI]

    Virginia Tech

    Dying Green A Film Screening and Panel Discussion about Green Burial March 20, 2014 6:00pm ­ 8:00pm to rest. The "Green Burial" movement is catching on in the U.S., and green cemetery options are now and panel discussion of the award-winning documentary, Dying Green (2011). Panel participants include Joshua

  3. A Touch Panel using Silicone Rubber with embedded IR-LEDs Yuichiro Sakamoto,

    E-Print Network [OSTI]

    Tanaka, Jiro

    LED LED FTIR FTIR FTIR FTIR FTIR LED LED A Touch Panel using Silicone Rubber with embedded Shizuki and Jiro Tanaka In this paper, we present a novel touch panel using silicone rubber with embedded are difficult to detect for one made of acryl panel Moreover, it integrates IR-LEDs silicone rubber for multi

  4. JANUARY 2007 THE BP U.S. REFINERIES INDEPENDENT SAFETY REVIEW PANEL

    E-Print Network [OSTI]

    Leveson, Nancy

    OF JANUARY 2007 THE REPORT THE BP U.S. REFINERIES INDEPENDENT SAFETY REVIEW PANEL #12;From left;PANEL STATEMENT The B.P. U.S. Refineries Independent Safety Review Panel i Process safety accidents can be prevented. On March 23, 2005, the BP Texas City refinery experienced a catastrophic process accident

  5. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  6. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  7. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  8. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  9. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    transient the heat transfer model. T h i s required the roofto develop and calibrate heat transfer models to be able toE S station, the heat transfer models described i n sections

  10. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01T23:59:59.000Z

    of the selected ventilation system or strategy should benot including associated ventilation systems or strategiesincluding associated ventilation systems or strategies Lower

  11. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01T23:59:59.000Z

    Systems for Low-Energy Buildings, Proved in Practice”night-sky, etc. ), low-energy building envelopes, and/orto optimize the low-energy design of buildings? Should this

  12. Radiant Barriers | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for| Department ofRightsSmart Sensors

  13. Radiant Cooling | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo.Frequency | DepartmentOE-3: 2011-01

  14. ORNL Radiant Barrier - ETSD Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627Homeland SecurityJonathan Mbah andORNL Partners with GE

  15. Radiant Barriers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide: PowerFrequency |Department of

  16. Radiant Apparatus | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b <RGS Development BV

  17. Radiant Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b <RGS Development BVRadiant Energy

  18. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16T23:59:59.000Z

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  19. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  20. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  1. Climate change and health: Indoor heat exposure in vulnerable populations

    SciTech Connect (OSTI)

    White-Newsome, Jalonne L., E-mail: jalonne@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 109 S. Observatory, SPH II, Rm. M6314, Ann Arbor, MI 48109 (United States); Sanchez, Brisa N., E-mail: brisa@umich.edu [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Jolliet, Olivier, E-mail: ojolliet@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 6622 SPH tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)] [University of Michigan School of Public Health, Environmental Health Sciences Department, 6622 SPH tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Zhang, Zhenzhen, E-mail: zhzh@umich.edu [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)] [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Parker, Edith A., E-mail: Edith-Parker@uiowa.edu [University of Michigan School of Public Health, Health Behavior and Health Education Department, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Timothy Dvonch, J., E-mail: dvonch@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 1415 Washington Heights, 6642 SPH Tower, Ann Arbor, MI 48109 (United States); O'Neill, Marie S., E-mail: marieo@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 6631 SPH Tower, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)

    2012-01-15T23:59:59.000Z

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 Degree-Sign C, 13.8 Degree-Sign C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.

  2. How Do Variations in Heat Islands in Space and Time Influence HoHow Do Variations in Heat Islands in Space and Time Influence Household Water Use?usehold Water Use? Rimjhim Aggarwal1, Subhrajit Guhathakurta1,2, Susanne Grossman-Clarke1, and Vasudha Lathey

    E-Print Network [OSTI]

    Hall, Sharon J.

    to estimate the relation between heat islands and water consumption, after adjusting for the effect consumption has remained stable over these years. To use panel data techniques to control for the unobserved consumption in Phoenix. RESULTS The heat island has expanded spatially over the study period, and also

  3. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, M.T.; Basaran, O.A.; Kollie, T.G.; Weaver, F.J.

    1996-01-02T23:59:59.000Z

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm{sup 3} and an external surface area in the range of about 90 to 600 m{sup 2}/g is described. The silica powders are prepared by reacting a tetraalkyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders. 2 figs.

  4. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

    1996-01-01T23:59:59.000Z

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  5. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2 /g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  6. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  7. Structural behavior of silicone bonded glass block panels

    SciTech Connect (OSTI)

    Chang, K.F. [Structural Engineering Associates, Inc., San Antonio, TX (United States); Sandberg, L.B. [Michigan Technological Univ. Houghton, MI (United States)

    1996-12-31T23:59:59.000Z

    Silicone sealant was submitted for mortar in bonding glass blocks. The sealant`s tensile and shear strengths and stiffnesses were determined. Joints bonding two glass blocks were tested for stiffness and strength in tension, bending, out-of-plane shear, and in-plane shear. Bending tests were done on specimens one block wide and four blocks long to evaluate one-way bending behavior. A six block by six block panel, supported on all four sides, was built and tested under simulated wind load. An analytical model with material nonlinearity in the joints was developed for the one-way bending case. It gave good comparisons with the experimental data to load levels approaching failure. A more complex analytical model was developed for the two-way panel. It was only valid for lower load levels, in the range of potential allowable design loads, but compared well with test results. Silicone bonded glass block panels have potential for meeting the wind load requirements necessary for exterior use.

  8. The inverse problems of wing panel manufacture processes

    SciTech Connect (OSTI)

    Oleinikov, A. I., E-mail: a.i.oleinikov@mail.ru [Komsomolsk-on-Amur State Technical University, Lenina prospect 27, Komsomolsk-on-Amur, 681013, Russian Federation, and Institute of Machinery and Metallurgy Far Eastern Branch of the Russian Academy of Sciences, Metallurgov Street 1, Komsomolsk-on-Am (Russian Federation); Bormotin, K. S., E-mail: cvmi@knastu.ru [Komsomolsk-on-Amur State Technical University, Lenina prospect 27, Komsomolsk-on-Amur, 681013, Russian Federation (Russian Federation)

    2013-12-16T23:59:59.000Z

    It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and springback are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software. Currently, forming of light metals poses tremendous challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We used the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence. The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming.

  9. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    SciTech Connect (OSTI)

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01T23:59:59.000Z

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  10. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  11. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  12. Mass and Heat Recovery 

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  13. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01T23:59:59.000Z

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  14. 2009 Virginia Polytechnic Institute and State University 2908-9021 Virginia Cooperative Extension programs and employment are open to all, regardless of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, o

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    within a cold-climate home, it may also block any winter radiant heat gain in the attic. What is radiant, Administrator, 1890 Extension Program, Virginia State, Petersburg. ENERGY SERIES:What about Radiant Barriers energy radiated from the material's surface), which enable it to reflect the radiant heat energy and give

  15. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14T23:59:59.000Z

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  16. Mass and Heat Recovery

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    - 1 - MASS AND HEAT RECOVERY SYSTEM SALAH MAHMOUD HINDAWI DIRECTOR HINDAWI FOR ENGINEERING SERVICES & CONTRACTING NEW DAMIETTA , EGYPT ABSTRACT : In the last few years heat recovery was under spot . and in air conditioning fields... ) as a heat recovery . and I use the water as a mass recovery . The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines . THE BENEFIT OF THIS SYSTEM ARE : 1) Using the heat energy from...

  17. An Assessment of Inertial Confinement Fusion Target Physics A Panel on Fusion Target Physics ("the Panel") will serve as a technical resource to the

    E-Print Network [OSTI]

    An Assessment of Inertial Confinement Fusion Target Physics A Panel on Fusion Target Physics ("the Panel") will serve as a technical resource to the Committee on Inertial Confinement Energy Systems ("the Physics will prepare a report that will assess the current performance of fusion targets associated

  18. Heat Integrate Heat Engines in Process Plants

    E-Print Network [OSTI]

    Hindmarsh, E.; Boland, D.; Townsend, D. W.

    ~C. T min Table 3. Problem Table Algorithm Applied to Petrochemicals Process Interval GJ ltiour 'Temperatures ! C! 2 ) ? ~ Cold. Hot Aecumulated Heat Heat FJ.owa Interval Streams StrePlS Deficit. Input OUtput -OUtt!utInput. 20 30 -2... of heat which can be passed on in this manner is performed in column 2 and column 3 of Table 3. It is initially assumed that the heat input from external utilities is zero. This is represented in Table 3 by a zero input to the top interval. Having...

  19. Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage 

    E-Print Network [OSTI]

    Han, Z.; Zheng, M.; Liu, W.; Wang, F.

    2006-01-01T23:59:59.000Z

    Assisted Heat Pump Heating System with Latent Heat Storage. In this system, solar energy is the major heat source for a heat pump, and the supplementary heat source is soil. The disagreement in time between the space heat load and heat collected by solar...

  20. notThe old maxim is at the heart of Handan Tezel's research on storing excess heat from

    E-Print Network [OSTI]

    Petriu, Emil M.

    on storing excess heat from solar panels or from power generation-- to generate more power by Celeste Mackenzie s far as HandanTezel is concerned, steam puffing out of power plants as they generate electricity the cost, says Tezel, is either increasing the energy density or reducing the price of the zeolite material

  1. HEATING6 verification

    SciTech Connect (OSTI)

    Bryan, C.B.; Childs, K.W.; Giles, G.E.

    1986-12-01T23:59:59.000Z

    The HEATING series of general purpose, finite-difference, conduction heat transfer codes have been in use for many years. During this time the codes have been used extensively, and a general confidence has been developed in regard to their accuracy. However, there has never been a formal verification in a published, citable document. This report documents just such a verification study for the latest code in the HEATING series, HEATING6. This study confirms that HEATING6 is capable of producing accurate results for a large class of heat transfer problems. 11 refs., 170 figs., 82 tabs.

  2. Heat Pump for High School Heat Recovery

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    ) [3] Yayun FAN. Experimental study on a heat pump technology in solar thermal utilization[J]. Acta Energiae Solaris Sinica, Oct.,2002; Vol.23,No.5 ? 581-585.(In Chinese) [4] Nengxi JIANG. Air-conditioning Heat Pump Technology and Its Applications...

  3. Thermal Performance of Exterior Insulation and Finish Systems Containing Vacuum Insulation Panels

    SciTech Connect (OSTI)

    Childs, Kenneth W [ORNL; Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Carbary, Lawrence D [Dow Corning Corporation, Midland, MI

    2013-01-01T23:59:59.000Z

    A high-performance wall system is under development to improve wall thermal performance to a level of U-factor of 0.19 W/(m2 K) (R-30 [h ft2 F]/Btu) in a standard wall thickness by incorporating vacuum insulation panels (VIPs) into an exterior insulation finish system (EIFS). Such a system would be applicable to new construction and will offer a solution to more challenging retrofit situations as well. Multiple design options were considered to balance the need to protect theVIPs during construction and building operation, while minimizing heat transfer through the wall system. The results reported here encompass an indepth assessment of potential system performances including thermal modeling, detailed laboratory measurements under controlled conditions on the component, and system levels according to ASTM C518 (ASTM 2010). The results demonstrate the importance of maximizing the VIP coverage over the wall face. The results also reveal the impact of both the design and execution of system details, such as the joints between adjacent VIPs. The test results include an explicit modeled evaluation of the system performance in a clear wall.

  4. Storage tank insulation panels that offer fire protection

    SciTech Connect (OSTI)

    Stancroff, M. [Pittsburgh Corning Corp., Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    Many fluids require storage temperatures of over several hundred degrees above ambient. As a result of these elevated storage temperatures many storage tanks require insulation to help in both energy conservation and in maintaining a uniform fluid temperature distribution. Since these fluids are typically flammable these storage tanks also often require some sort of fire protection. One of the most commonly used methods of fire protection is a deluge system. Actively operated deluge systems, although effective when working properly, have several drawbacks. A cellular glass insulation panel system can provide not only excellent insulation value but also passive fire protection without the concern of an active system failure.

  5. Toward integrated PV panels and power electronics using printing technologies

    SciTech Connect (OSTI)

    Ababei, Cristinel; Yuvarajan, Subbaraya [Electrical and Computer Engineering Department, North Dakota State University, Fargo, ND 58108 (United States); Schulz, Douglas L. [Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND 58102 (United States)

    2010-07-15T23:59:59.000Z

    In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

  6. Large Panels with Common Factors and Spatial Correlations

    E-Print Network [OSTI]

    Hashem, Pesaran

    ;1 (#6;t) is bounded for all N , then under the granularity conditions (13)-(14) we have lim N!1 V ar(w0t#0;1zt jIt#0;1 ) = 0: A particular form of a CWD process arises when pairwise correlations take non-zero values only across ?nite subsets of units... sectional samples with strong co-movements. Panels with common factors have been applied to characterize the dynamic of stock and bond returns (Chamberlain and Rothschild 1983; Connor and Korajczyk, 1993; Kapetanios and Pesaran, 2007), and in macroeconomics...

  7. Estimation of untrained sensory panel variation and repeatability

    E-Print Network [OSTI]

    Hovenden, Jeanne Elizabeth

    1977-01-01T23:59:59.000Z

    ES"Ii~1ATION OF UNTRAINED SENSORE PANL'L VARIATION AND REPEATABILITY A Thesis by JEANNE ELI'iABETH HOvE11DEN Submitted to tbe Graduate Colle9e of Texas ASH University in Partial fulfullment of tk. e requirements of t11e deqree of MASTER... OF SCIENCF December 1977 Major Subject: Arimal Science ESTIMATION OF UNTRAINED SENSORY PANEL VARIATION AND REP"ATABILITY A Thesis by JEANNE ELIZABETH HOVENDEN Approved as to style and content by: Chairs n of Committee Head of Department Member Memb...

  8. Glass Coating Makes Solar Panels More Efficient | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartmentCounselGlass Coating Makes Solar Panels More

  9. Biosurveillance panel to address essential science for public health

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find MoreTechnicalBiomimeticSupportingPanel to

  10. PANEL OP CONSULTrnS MEETING ON RULISON

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 +NewAugust 4,P -.,. ~ *PANEL

  11. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Broader source: Energy.gov [DOE]

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  12. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    SciTech Connect (OSTI)

    Clark, J.S.; Wickenheiser, T.J.; Doherty, M.P.; Marshall, A.; Bhattacharryya, S.K.; Warren, J.

    1992-01-01T23:59:59.000Z

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  13. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  14. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  15. DistrictHeating Nuevasaladecalderasydistribucin

    E-Print Network [OSTI]

    Fraguela, Basilio B.

    DistrictHeating Nuevasaladecalderasydistribución decaloreneláreauniversitariade AZapateira Jesús, difusión. DISTRICT HEATING O CALEFACCIÓN DE BARRIO #12;MATERIALIZACIÓN INTEGRACIÓN VISUAL DE ELEMENTOS rendimiento global de la instalación. - Contabilización de pérdidas en tuberías de distribución. #12;DISTRICT

  16. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01T23:59:59.000Z

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  17. MA HEAT Loan Overview

    Broader source: Energy.gov [DOE]

    Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

  18. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23T23:59:59.000Z

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  19. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

    1985-01-01T23:59:59.000Z

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  20. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29T23:59:59.000Z

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  1. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  2. Fusion Energy Advisory Committee (FEAC): Panel 7 report on Inertial Fusion Energy

    SciTech Connect (OSTI)

    Davidson, R.; Ripin, B.; Abdou, M.; Baldwin, D.E.; Commisso, R.; Dean, S.O.; Herrmannsfeldt, W.; Lee, E.; Lindl, J.; McCrory, R. [Princeton Univ., NJ (United States)] [and others

    1994-09-01T23:59:59.000Z

    The charge to FEAC Panel 7 on inertial fusion energy (IFE) is encompassed in the four articles of correspondence. To briefly summarize, the scope of the panel`s review and analysis adhered to the following guidelines. (1) Consistent with previous recommendations by the Fusion Policy Advisory Committee (FPAC) and the National Academy of Science (NAS) panel on inertial fusion, the principal focus of FEAC Panel 7`s review and planning activities for next-generation experimental facilities in IFE was limited to heavy ions. (2) The panel considered the three budget cases: $5M, $10M, and $15M annual funding at constant level-of-effort (FY92 dollars), with a time horizon of about five years. (3) While limiting the analysis of next-generation experimental facilities to heavy ions, the panel assessed both the induction and rf linac approaches, and factored European plans into its considerations as well. (4) Finally, the panel identified high-priority areas in system studies and supporting IFE technologies, taking into account how IFE can benefit from related activities funded by the Office of Fusion Energy and by Defense Programs. This report presents the technical assessment, findings, and recommendations on inertial fusion energy prepared by FEAC Panel 7.

  3. E-Print Network 3.0 - automobile front panel Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control, DC motor... control, water temperature control, high-speed train tilt control, solar panel pointing, ultra Source: New Hampshire, University of - Department of...

  4. Report of the Blue Ribbon Panel on the Review of the Radiation...

    Broader source: Energy.gov (indexed) [DOE]

    October 11, 1995 This report summarizes the findings of the Blue Ribbon Panel's review of the RERF scientific projects and future research plans The report recommended that the...

  5. Energy Materials and Processes, An EMSL Science Theme Advisory Panel Workshop

    SciTech Connect (OSTI)

    Burk, Linda H.

    2014-12-16T23:59:59.000Z

    The report summarizes discussions at the Energy Materials and Process EMSL Science Theme Advisory Panel Workshop held July 7-8, 2014.

  6. Intelligent Daylight Panel Control System based on Fuzzy Control for Green Buildings

    E-Print Network [OSTI]

    T. C. Kuo; J. S. Lin; Y. Takeuchi; Y. J. Huang

    Abstract—This paper proposes an intelligent daylight panel control system based on fuzzy control theory for green buildings. The goal of this research is to automatically modulate sunlight efficiently and to enhance the quality of interior illuminations, thus reducing the need for artificial lighting and conserving energy. Daylight panels are typically installed on the outside of windows. By applying the proposed fuzzy controller, the reflection angle of daylight panels could be adjusted and optimized so that interior illuminative quality is improved and energy-saving is achieved at the same time. Index Terms—daylight panel, intelligent control, fuzzy control. I.

  7. ac-plasma display panel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: crystal, 12;ferro-electric liquid crystal, plasma panel, and light emitting diode displays. In our, they are presently only available in developer kits. Light...

  8. amorphous selenium flat-panel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and organic Heikenfeld, Jason 12 Asymmetric electrical properties of fork a-Si:H thin-film transistor and its application to flat panel displays Mathematics Websites Summary:...

  9. Estimation of Two Popular Econometric Models: Random Effects Panel Data Model and Simultaneous Equations Model

    E-Print Network [OSTI]

    Liu, Yue

    2013-01-01T23:59:59.000Z

    1994. [9] Greene, W. B. , Econometric Analysis, Pearson /and Semiparametric Panel Econometric Models: Estimation andDEPendent models. This econometric software package was

  10. Report of the Senior Review Panel on the Review of the Radiation...

    Energy Savers [EERE]

    Publications Radiation Effects Research Foundation Links Past and Future Report of the Blue Ribbon Panel on the Review of the Radiation Effects Research Foundation Commemoration...

  11. amorphous silicon flat-panel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Asymmetric Electrical Properties of Half Corbino Hydrogenated Amorphous Silicon Thin-Film Transistor and Its Applications to Flat Panel Displays Materials Science...

  12. Report on Hydrogen Storage Panel Findings in DOE-BES Sponsored...

    Broader source: Energy.gov (indexed) [DOE]

    Basic Energy Sciences Basic Energy Sciences DOEEERE Hydrogen Storage Pre-Solicitation Meeting, June 19, 2003 Report on Hydrogen Storage Panel Findings in Report on Hydrogen...

  13. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10T23:59:59.000Z

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  14. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  15. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  16. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01T23:59:59.000Z

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  17. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes, Tucson, Arizona and Chico, California (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate - Issue 55-JulyBurden RFI |

  18. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  19. Proceedings of the 1992 EPRI heat rate improvement conference

    SciTech Connect (OSTI)

    Henry, R.E. (Sargent and Lundy, Chicago, IL (United States))

    1993-03-01T23:59:59.000Z

    Diverse but compelling forces such as increasing fuel prices, greater power demands, growing competition, and ever more aggressive regulatory incentives are causing utilities to place additional focus on power plant heat rate. The 1992 heat rate improvement conference was a gathering of utility industry experts to share knowledge and concerns on such key issues as on-line measurement of stack gas mass flow rate-increasingly important because of the regulations of the Clean Air Act of 1990. These proceedings present the latest developments by EPRI and the utility industry to improve heat rate. Representatives of utilities, architect/engineering firms, research firms, and manufacturers presented 71 papers, and a panel discussion by the ASME performance test code committee on PTC 46 provided a forum on the overall plant performance test code. These proceedings report on a number of heat rate improvement programs, both in development and in place, including EPRI's Plant Monitoring Workstation (PMW), the State-of-the-Art Power Plant (SOAPP) conceptual design tool, and several developments in boiler performance monitoring, including an on-line system at PEPCO's Morgantown unit 2. Other conference papers describe advances in heat rate improvement through (1) computer software tools modeling boiler cleanliness, heat balance, duct system dynamics, heat rate root cause diagnosis, and conceptual plant design; (2) new instruments and testing systems in the areas of performance testing, heat rate monitoring, circulating water flow measurement, and low-pressure turbine efficiency measurement; and (3) auxiliary equipment improvements such as condensing heat exchangers, macrobiofouling control, condenser in-leakage and air binding control, air heater monitoring, and feedwater heater level control. Individual papers are indexed separately.

  20. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  1. Applied heat transfer

    SciTech Connect (OSTI)

    Ganapathy, V.

    1982-01-01T23:59:59.000Z

    Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

  2. Presentation to FESAC Priorities Sub-Panel July 18, 2012

    E-Print Network [OSTI]

    scientists #12;C-Mod PMI research: Exploit its worldwide unique match to FNSF/DEMO divertor and SOL space for SOL/PMI in worldwide program e.g. heat width dependence, detachment, stability *Whyte, et al

  3. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  4. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01T23:59:59.000Z

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  5. Policies supporting Heat Pump Technologies

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

  6. Deformation and fracture of impulsively loaded sandwich panels H.N.G. Wadley a,n

    E-Print Network [OSTI]

    Wadley, Haydn

    August 2012 Keywords: Blast loading Aluminum sandwich panels Friction stir welding HAZ Discrete particle fabricated by friction stir weld joining extruded sandwich panels with a triangular corrugated core. Micro-hardness and miniature tensile coupon testing revealed that friction stir welding reduced the strength and ductility

  7. Deformation and Fracture of Impulsively Loaded Sandwich Panels H.N.G. Wadleya,*

    E-Print Network [OSTI]

    Hutchinson, John W.

    alloy system fabricated by friction stir weld joining extruded sandwich panels with a triangular corrugated core. Micro-hardness and miniature tensile coupon testing revealed that friction stir welding system. #12;2 Keywords: Blast loading; Aluminum sandwich panels; Friction stir welding; HAZ; Discrete

  8. Propagating Uncertainty in Solar Panel Performance for Life Cycle Modeling in Early Stage Design

    E-Print Network [OSTI]

    Yang, Maria

    Propagating Uncertainty in Solar Panel Performance for Life Cycle Modeling in Early Stage Design. This work is conducted in the context of an amorphous photovoltaic (PV) panel, using data gathered from the National Solar Radiation Database, as well as realistic data collected from an experimental hardware setup

  9. Detailed design report for an operational phase panel-closure system

    SciTech Connect (OSTI)

    NONE

    1996-01-11T23:59:59.000Z

    Under contract to Westinghouse Electric Corporation (Westinghouse), Waste Isolation Division (WID), IT Corporation has prepared a detailed design of a panel-closure system for the Waste Isolation Pilot Plant (WIPP). Preparation of this detailed design of an operational-phase closure system is required to support a Resource Conservation and Recovery Act (RCRA) Part B permit application and a non-migration variance petition. This report describes the detailed design for a panel-closure system specific to the WIPP site. The recommended panel-closure system will adequately isolate the waste-emplacement panels for at least 35 years. This report provides detailed design and material engineering specifications for the construction, emplacement, and interface-grouting associated with a panel-closure system at the WIPP repository, which would ensure that an effective panel-closure system is in place for at least 35 years. The panel-closure system provides assurance that the limit for the migration of volatile organic compounds (VOC) will be met at the point of compliance, the WIPP site boundary. This assurance is obtained through the inherent flexibility of the panel-closure system.

  10. Emergence and evolution of learning gaps across countries: Linked panel evidence from Ethiopia, India, Peru and

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    Emergence and evolution of learning gaps across countries: Linked panel evidence from Ethiopia unique child-level panel data from Ethiopia, India, Peru and Vietnam with identical tests administered, prior to school enrolment, with children in Vietnam at the upper end, children in Ethiopia at the lower

  11. Building on a Decade of Accomplishments Report of the 2010 Blue Ribbon Panel on Genomics

    E-Print Network [OSTI]

    Levin, Judith G.

    Building on a Decade of Accomplishments Report of the 2010 Blue Ribbon Panel on Genomics Division of Microbiology and Infectious Diseases, Genomics Programs National Institute of Allergy and Infectious Diseases Blue Ribbon Panel on Genomics Division of Microbiology and Infectious Diseases, Genomics Programs

  12. CONSTRUCTING AN ELASTIC TOUCH PANEL WITH EMBEDDED IR-LEDS USING SILICONE RUBBER

    E-Print Network [OSTI]

    Tanaka, Jiro

    CONSTRUCTING AN ELASTIC TOUCH PANEL WITH EMBEDDED IR-LEDS USING SILICONE RUBBER Yuichiro Sakamoto a technique for the construction of an elastic touch panel using silicone rubber. The technique is similar is made of transparent silicone rubber rather than acrylic. Moreover, we embedded infrared LEDs within

  13. IEEE UIC/ATC Joint Panel on Smart Planet Challenges: Impediments and Enablers

    E-Print Network [OSTI]

    Kourai, Kenichi

    are essential foundation to building any systems ­ a smart planet is no exception. Software engineeringIEEE UIC/ATC Joint Panel on Smart Planet Challenges: Impediments and Enablers Panel Chair planet and reveal exciting visions of smart everything - smart cities, smart homes, smart workplaces

  14. Investment and the Cost of Capital in the Nineties in France: A Panel Data Investigation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Investment and the Cost of Capital in the Nineties in France: A Panel Data Investigation by Jean Genehmigung des ifo Instituts. #12;Investment and the Cost of Capital in the Nineties in France: A Panel Data of Firms III. Data and Econometric Results IV. Conclusion I. Introduction It is a widespread belief among

  15. Independent Scientific Review Panel for the Northwest Power and Conservation Council

    E-Print Network [OSTI]

    by the Bonneville Power Administration (Bonneville). The Independent Scientific Review Panel (ISRP) and peer reviewIndependent Scientific Review Panel for the Northwest Power and Conservation Council 851 SW 6 th to the Northwest Power Act directed the Northwest Power and Conservation Council (Council) to appoint an 11-member

  16. Evacuated Panels Utilizing Clay-Polymer Aerogel Composites for Improved Housing Insulation

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Evacuated Panels Utilizing Clay-Polymer Aerogel Composites for Improved Housing Insulation March 17 encompasses a newly developed clay-polymer aerogel composite material (developed and patented by Dr. David Aerogel ~22 > 2,500 Silica Aerogel Blanket 10 1,800 (Aspen Aerogel) Silica Aerogel / PP Evacuated Panel 50

  17. IEEE UIC/ATC Joint Panel on Smart Planet Challenges: Impediments and Enablers

    E-Print Network [OSTI]

    Kourai, Kenichi

    cities, smart homes, smart workplaces, smart hotels, smart schools, and much more. Driven a continuation project on smart home based personal health and independence, funded by the National InstitutesIEEE UIC/ATC Joint Panel on Smart Planet Challenges: Impediments and Enablers Panel Chair

  18. Optimization of Heat Exchangers

    SciTech Connect (OSTI)

    Ivan Catton

    2010-10-01T23:59:59.000Z

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  19. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  20. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  1. Enduring Nuclear Fuel Cycle, Proceedings of a panel discussion

    SciTech Connect (OSTI)

    Walter, C. E., LLNL

    1997-11-18T23:59:59.000Z

    The panel reviewed the complete nuclear fuel cycle in the context of alternate energy resources, energy need projections, effects on the environment, susceptibility of nuclear materials to theft, diversion, and weapon proliferation. We also looked at ethical considerations of energy use, as well as waste, and its effects. The scope of the review extended to the end of the next century with due regard for world populations beyond that period. The intent was to take a long- range view and to project, not forecast, the future based on ethical rationales, and to avoid, as often happens, long-range discussions that quickly zoom in on only the next few decades. A specific nuclear fuel cycle technology that could satisfy these considerations was described and can be applied globally.

  2. New multi-sample nonparametric tests for panel count data

    E-Print Network [OSTI]

    Balakrishnan, N; 10.1214/08-AOS599

    2009-01-01T23:59:59.000Z

    This paper considers the problem of multi-sample nonparametric comparison of counting processes with panel count data, which arise naturally when recurrent events are considered. Such data frequently occur in medical follow-up studies and reliability experiments, for example. For the problem considered, we construct two new classes of nonparametric test statistics based on the accumulated weighted differences between the rates of increase of the estimated mean functions of the counting processes over observation times, wherein the nonparametric maximum likelihood approach is used to estimate the mean function instead of the nonparametric maximum pseudo-likelihood. The asymptotic distributions of the proposed statistics are derived and their finite-sample properties are examined through Monte Carlo simulations. The simulation results show that the proposed methods work quite well and are more powerful than the existing test procedures. Two real data sets are analyzed and presented as illustrative examples.

  3. Improving the diversity of manufacturing electroluminescent flat panel displays

    SciTech Connect (OSTI)

    Moss, T.S.; Samuels, J.A.; Smith, D.C. [and others

    1995-09-01T23:59:59.000Z

    Crystalline calcium thiogallate with a cerium dopant has been deposited by metal-organic chemical vapor deposition (MOCVD) at temperatures below 600{degrees}C on a low cost glass substrate. An EL luminance of 1.05 fL was observed 40 volts above threshold at 60 Hz. This is more than an order of magnitude improvement over earlier crystalline-as-deposited thiogallate materials. These results pave the way for the use of MOCVD as a potential method for processing full color thin-film electroluminescent (TFEL) flat panel displays. The formation of the CaGa{sub 2}S{sub 4}:Ce phosphor requires precise control over a number of deposition parameters including flow rates, substrate temperature, and reactor pressure. The influence of these parameters will be discussed in terms of structure, uniformity, and TFEL device performance.

  4. PERFORMANCE OF RC AND FRC WALL PANELS REINFORCED WITH MILD STEEL AND GFRP COMPOSITES IN BLAST EVENTS

    SciTech Connect (OSTI)

    Timothy Garfield; William D. Richins; Thomas K. Larson; Chris P. Pantelides; James E. Blakeley

    2011-06-01T23:59:59.000Z

    The structural integrity of reinforced concrete structures in blast events is important for critical facilities. This paper presents experimental data generated for calibrating detailed finite element models that predict the performance of reinforced concrete wall panels with a wide range of construction details under blast loading. The test specimens were 1.2 m square wall panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consists of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bar reinforcement (Type A); FRC panels without additional reinforcement (Type B); FRC panels with steel bar reinforcement (Type C); NWC panels with glass fiber reinforced polymer (GFRP) bar reinforcement (Type D); and NWC panels reinforced with steel bar reinforcement and external bidirectional GFRP overlays on both faces (Type E). An additional three Type C panels were used as control specimens (CON). Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. The panels were instrumented with strain gauges, and accelerometers; in addition, pressure sensors and high speed videos were employed during the blast events. Panel types C and E had the best performance, whereas panel type B did not perform well. Preliminary dynamic simulations show crack patterns similar to the experimental results.

  5. Diffractive optics for compact flat panel displays. Final report

    SciTech Connect (OSTI)

    Sweeney, D.; DeLong, K.

    1997-04-29T23:59:59.000Z

    Three years ago LLNL developed a practical method to dramatically reduce the chromatic aberration in single element diffractive imaging lenses. High efficiency, achromatic imaging lenses have been fabricated for human vision correction. This LDRD supported research in applying our new methods to develop a unique, diffraction-based optical interface with solid state, microelectronic imaging devices. Advances in microelectronics have led to smaller, more efficient components for optical systems. There have, however, been no equivalent advances in the imaging optics associated with these devices. The goal of this project was to replace the bulky, refractive optics in typical head-mounted displays with micro-thin diffractive optics to directly image flat-panel displays into the eye. To visualize the system think of the lenses of someone`s eyeglasses becoming flat-panel displays. To realize this embodiment, we needed to solve the problems of large chromatic aberrations and low efficiency that are associated with diffraction. We have developed a graceful tradeoff between chromatic aberrations and the diffractive optic thickness. It turns out that by doubling the thickness of a micro-thin diffractive lens we obtain nearly a two-times improvement in chromatic performance. Since the human eye will tolerate one diopter of chromatic aberration, we are able to achieve an achromatic image with a diffractive lens that is only 20 microns thick, versus 3 mm thickness for the comparable refractive lens. Molds for the diffractive lenses are diamond turned with sub-micron accuracy; the final lenses are cast from these molds using various polymers. We thus retain both the micro- thin nature of the diffractive optics and the achromatic image quality of refractive optics. During the first year of funding we successfully extended our earlier technology from 1 cm diameter optics required for vision applications up to the 5 cm diameter optics required for this application. 3 refs., 6 figs.

  6. Electrohydraulic Forming of Near-Net Shape Automotive Panels

    SciTech Connect (OSTI)

    Golovaschenko, Sergey F.

    2013-09-26T23:59:59.000Z

    The objective of this project was to develop the electrohydraulic forming (EHF) process as a near-net shape automotive panel manufacturing technology that simultaneously reduces the energy embedded in vehicles and the energy consumed while producing automotive structures. Pulsed pressure is created via a shockwave generated by the discharge of high voltage capacitors through a pair of electrodes in a liquid-filled chamber. The shockwave in the liquid initiated by the expansion of the plasma channel formed between two electrodes propagates towards the blank and causes the blank to be deformed into a one-sided die cavity. The numerical model of the EHF process was validated experimentally and was successfully applied to the design of the electrode system and to a multi-electrode EHF chamber for full scale validation of the process. The numerical model was able to predict stresses in the dies during pulsed forming and was validated by the experimental study of the die insert failure mode for corner filling operations. The electrohydraulic forming process and its major subsystems, including durable electrodes, an EHF chamber, a water/air management system, a pulse generator and integrated process controls, were validated to be capable to operate in a fully automated, computer controlled mode for forming of a portion of a full-scale sheet metal component in laboratory conditions. Additionally, the novel processes of electrohydraulic trimming and electrohydraulic calibration were demonstrated at a reduced-scale component level. Furthermore, a hybrid process combining conventional stamping with EHF was demonstrated as a laboratory process for a full-scale automotive panel formed out of AHSS material. The economic feasibility of the developed EHF processes was defined by developing a cost model of the EHF process in comparison to the conventional stamping process.

  7. Geothermal direct-heat utilization assistance. Quarterly project progress report, April--June 1993

    SciTech Connect (OSTI)

    Lienau, P.

    1993-06-01T23:59:59.000Z

    Technical assistance was provided to 60 requests from 19 states. R&D progress is reported on: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Two presentations and one tour were conducted, and three technical papers were prepared. The Geothermal Progress Monitor reported: USGS Forum on Mineral Resources, Renewable Energy Tax Credits Not Working as Congress Intended, Geothermal Industry Tells House Panel, Newberry Pilot Project, and Low-Temperature Geothermal Resources in Nevada.

  8. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06T23:59:59.000Z

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  9. Summer HeatSummer Heat Heat stress solutions

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    occur (then drink a lightly salted beverage like a sports drink). The water's temperature should be cool How should gardeners avoid becoming a safety threat to themselves and others when it's hot? Start to the heat. Become a weather watcher. Set up a small weather station (with a high/low thermom eter, rain

  10. Nondestructive evaluation and characterization of damage and repair to continuous-fiber ceramic composite panels.

    SciTech Connect (OSTI)

    Sun, J. G.; Petrak, D. R.; Pillai, T. A. K.; Deemer, C.; Ellingson, W. A.

    1998-04-01T23:59:59.000Z

    Continuous fiber ceramic matrix composites are currently being developed for a variety of high-temperature applications. Because of the high costs of making these components, minor damage incurred during manufacturing or operation must be rewired in order to extend the life of the components. In this study, five ceramic-grade Nicalon{trademark} fiber/SiNC-matrix composite panels were intentionally damaged with a pendulum-type impactor during an impact test. The damaged panels were then repaired at Dow Corning Corporation. Three nondestructive evaluation (NDE) methods were used to study the characteristics of the panels after the damage and again after the panels were repaired. The NDE methods were X-ray radiography, infrared thermal imaging, and air-coupled ultrasound. The results showed that the impact test induced various types of damage in the panels. The NDE data that were obtained by the three NDE methods were correlated with each other.

  11. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18T23:59:59.000Z

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  12. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  13. Hearn, Abu-Hejleh, McMullen, and Zornberg 1 MSE WALLS WITH INDEPENDENT FULL-HEIGHT FACING PANELS

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    without distress. Block facings and stacked panel facings are attractive, but some projects need full-height facing panels to create monolithic fronts not broken by horizontal joints. Lateral stresses acting

  14. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  15. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2007-09-18T23:59:59.000Z

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  16. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2011-06-28T23:59:59.000Z

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  17. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  18. Passive solar space heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1980-01-01T23:59:59.000Z

    An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

  19. Heat rejection system

    DOE Patents [OSTI]

    Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

    1980-01-01T23:59:59.000Z

    A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

  20. CERN News - A major contract has been signed for the supply of solar panels derived from CERN technology

    E-Print Network [OSTI]

    CERN Video Productions; Marion Viguier

    2012-01-01T23:59:59.000Z

    CERN News - A major contract has been signed for the supply of solar panels derived from CERN technology