Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Radiant Heating  

Energy.gov (U.S. Department of Energy (DOE))

Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat...

2

Radiant Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

3

Radiant Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

4

Study of thermosiphon and radiant panel passive heating systems for metal buildings  

DOE Green Energy (OSTI)

A study of passive-heating systems appropriate for use on metal buildings is being conducted at Los Alamos National Laboratory for the Naval Civil Engineering Laboratory, Port Hueneme, California. The systems selected for study were chosen on the basis of their appropriateness for retrofit applications, although they are also suitable for new construction: simple radiant panels that communicate directly with the building interior and a backflow thermosiphon that provides heat indirectly.

Biehl, F.A.; Schnurr, N.M.; Wray, W.O.

1983-01-01T23:59:59.000Z

5

Radiant Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Basics Radiant Heating Basics Radiant Heating Basics August 19, 2013 - 10:33am Addthis Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is also called infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Despite the name, radiant floor heating systems also depend heavily on convection, the natural circulation of heat within a room, caused by heat rising from the floor. Radiant floor

6

Radiant Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Basics Radiant Heating Basics Radiant Heating Basics August 19, 2013 - 10:33am Addthis Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is also called infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Despite the name, radiant floor heating systems also depend heavily on convection, the natural circulation of heat within a room, caused by heat rising from the floor. Radiant floor

7

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

very low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating...

8

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating in homes...

9

Radiant Heating | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

heating because it eliminates duct losses. People with allergies often prefer radiant heat because it doesn't distribute allergens like forced air systems can. Hydronic...

10

Technical evaluation of a solar heating system having conventional hydronic solar collectors and a radiant panel slab. Final report  

DOE Green Energy (OSTI)

A simple innovative solar heating design (Solar Option One) using conventional hydronic solar collectors and a radiant panel slab was constructed. An objective of hybrid solar design is to combine the relative advantages of active and passive design approaches while minimizing their respective disadvantages. A test house using the Solar Option One heating system was experimentally monitored to determine its energy based performance during the 1982-83 heating season. The test residence is located in Lyndonville, Vermont, an area which has a characteristically cold and cloudy climate. The two story residence has a floor area of about 1400 square feet and is constructed on a 720 square foot 5.5 inch thick floor slab. A 24 inch packed gravel bed is located beneath the slab and the slab-gravel bed is insulated by two inches of polystyrene insulation. The test building is of frame construction and uses insulation levels which have become commonplace throughout the country. The structure would not fall into the superinsulated category but was tightly constructed so as to have a low infiltration level. The building is sun-tempered in that windows were concentrated somewhat on the South side and all but avoided on the North. A solar greenhouse on the South side of the building was closed off from the structure permanently throughout the testing so as to better observe the solar heating invention without confounding variables. The monitoring equipment generated an internal gain of about 17,000 BTUs per day, roughly the equivalent of occupancy by two persons. A full description of the experimental testing program is given. System efficiency and performance are reported.

Starr, R.J.

1984-04-01T23:59:59.000Z

11

Energy, cost, and CO 2 emission comparison between radiant wall panel systems and radiator systems  

E-Print Network (OSTI)

The main goal of this paper is to evaluate the possibility of application or replacement of radiators with low-temperature radiant panels. This paper shows the comparison results of operations of 4 space heating systems: the low-temperature radiant panel system without any additional thermal insulation of external walls (PH-WOI), the low-temperature radiant panel system with additional thermal insulation of external walls (PH-WI), the radiator system without any additional thermal insulation of external walls (the classical heating system) (RH-WOI), and the radiator system with additional thermal insulation of external walls (RH-WI). The operation of each system is simulated by software EnergyPlus. The investigation shows that the PH-WI gives the best results. The RH-WOI has the largest energy consumption, and the largest pollutant emission. However, the PH-WI requires the highest investment.

Milorad Boji?; Dragan Cvetkovi?; Marko Mileti?; Jovan Maleševi?; Harry Boyer

2012-12-18T23:59:59.000Z

12

Radiant Barrier Performance during the Heating Season  

E-Print Network (OSTI)

Results of winter experiments conducted in Central Texas are presented. The experiments were side-by-side tests using two identical 144 ft2 houses which responded similarly to weather variations prior to any retrofits. Two radiant barrier orientations were tested, horizontal barrier and barrier against the rafters, in vented and non-vented attics. The results compiled in this paper are for attics with R-19 fiberglass insulation. The data showed that radiant barriers were still effective during the winter season. During a typical day radiant barriers prevented approximately 9-17 percent of the indoor heat from escaping into the attic. No significant difference in moisture accumulation was detected in the attic with the radiant barrier.

Medina, M. A.; O'Neal, D. L.; Turner, W. D.

1992-05-01T23:59:59.000Z

13

Radiant zone heated particulate filter  

DOE Patents (OSTI)

A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

Gonze, Eugene V [Pinckney, MI

2011-12-27T23:59:59.000Z

14

Impact of Solar Heat Gain on Radiant Floor Cooling System Design  

E-Print Network (OSTI)

Bauman F. 2013. Impact of Solar Heat Gain on Radiant FloorBauman F. 2013. Impact of Solar Heat Gain on Radiant FloorBauman F. 2013. Impact of Solar Heat Gain on Radiant Floor

Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

2013-01-01T23:59:59.000Z

15

Effect of a Radiant Panel Cooling System on Indoor Air Quality of a Conditioned Space  

E-Print Network (OSTI)

This paper discusses the effect of a radiant cooling panel system on an indoor air quality (IAQ) of a conditioned space. In this study, ceiling radiant cooling panel, mechanical ventilation with fan coil unit (FCU) and 100% fresh air are used. Temperature sensors are located at different locations inside the conditioned space in order to sense dry bulb temperatures, relative humidity to compare it with standard ASHRAE comfort values. The present investigation indicates that the radiant cooling system not only improves the indoor air quality but also reduces the building energy consumption in the conditioned space.

Mohamed, E.; Abdalla, K. N.

2010-01-01T23:59:59.000Z

16

Experiment System Analysis of an Indirect Expansion Solar Assisted Water Source Heat Pump Radiant Floor Heating System  

Science Conference Proceedings (OSTI)

A solar assisted water source heat pump for Radiant Floor Heating (SWHP-RFH) experimental system with heat pipe vacuum tube solar collector as heating source and radiant floor as terminal device is proposed in the paper. The Mathematics Model of dynamic ... Keywords: solar energy, water source heat pump, radiant floor heating systems, system dynamic COP

Qu Shilin; Ma Fei; Liu Li; Yue Jie

2009-10-01T23:59:59.000Z

17

Radiant heat transfer from storage casks to the environment  

SciTech Connect

A spent fuel storage cask must efficiently transfer the heat released by the fuel assemblies through the cask walls to the environment. This heat must be transferred through passive means, limiting the energy transfer mechanisms from the cask to natural convection and radiation heat transfer.. Natural convection is essentially independent of the characteristics of the array of casks, provided there is space between casks to permit a convection loop. Radiation heat transfer, however, depends on the geometric arrangement of the array of casks because the peripheral casks will shadow the interior casks and restrict radiant heat transfer from all casks to the environment. The shadowing of one cask by its neighbors is determined by a view factor that represents the fraction of radiant energy that leaves the surface of a cask and reaches the environment. This paper addresses the evaluation of the view factor between a centrally located spent fuel storage cask and the environment. By combining analytic expressions for the view factor of (1) infinitely long cylinders and (2) finite cylinders with a length-to-diameter ratio of 2 to represent spent fuel storage casks, the view factor can be evaluated for any practical array of spent fuel storage casks.

Carlson, R W; Hovingh, J; Thomas, G R

1999-05-10T23:59:59.000Z

18

HVAC Equipment Design Options for Near-Zero-Energy Homes - Scoping Assessment of Radiant Panel Distribution System Options  

Science Conference Proceedings (OSTI)

Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Conventional unitary equipment and system designs have matured to a point where cost-effective, dramatic efficiency improvements that meet near-zero-energy housing (NZEH) goals require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05, ORNL conducted a scoping-level assessment of HVAC system options for NZEH homes (Baxter 2005). That report examined some twenty HVAC and water heating (HVAC/WH) systems in two 1800 ft2 houses--one constructed to Building America Research Benchmark standards and one a prototype NZEH. Both centrally ducted and two-zone systems were examined in that study. The highest scoring options using the ranking criteria described in that report were air-source and ground-source integrated heat pumps (IHP), and these were selected by DOE for further development. Among the feedback received to the FY05 report was a comment that systems using radiant panel (floor or ceiling) distribution options were not included among the system examined. This present report describes an assessment of a few such radiant panel systems under the same analysis and ranking criteria used in Baxter (2005). The rankings of the radiant system options reported herein are based on scoring by the team of building equipment researchers at ORNL. It is DOE's prerogative to revisit the criteria and obtain scoring from additional perspectives as part of its decision making process. If the criteria change, the ORNL team will be happy to re-score.

Baxter, Van David [ORNL

2007-06-01T23:59:59.000Z

19

Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System  

E-Print Network (OSTI)

The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more comfortable. First, the authors devised an experimental scheme and set up the laboratory. Second, we collected a great deal of data on the system in different situations. Finally, we conclude that such heating system is feasible and one of the best heating methods.

Wu, Z.; Li, D.

2006-01-01T23:59:59.000Z

20

Heating energy measurements of unoccupied single-family houses with attics containing radiant barriers  

Science Conference Proceedings (OSTI)

Tests were conducted by Oak Ridge National Laboratory (ORNL) to determine the magnitude of the heating energy savings achieved by installing attic radiant barriers. The radiant barriers used for the test consist of a material with two reflective aluminum surfaces on a kraft paper base. The experiment was conducted in three unoccupied research houses operated by ORNL. Two variations in the installation of radiant barriers were studied. One house was used as the control house (no barrier was installed), while the other two were used to test the two methods for installing the radiant barriers. In one house, the radiant barrier was laid on top of the attic fiberglass batt insulation, and in the other house, the barrier was attached to the underside of the roof trusses. The attics of all three houses were insulated with a kraft-paper-faced R-19 fiberglass batt insulation. The winter test with the radiant barrier showed that the horizontal barrier was able to save space-heating electical energy in both the resistance and heat pump modes amounting to 10.1% and 8.5%, respectively. The roof truss radiant barrier increased consumption by 2.6% in the resistance mode and 4.0% in the heat pump mode. The horizontal orientation of the radiant barrier is the more energy-effective method of installation.

Levins, W.P.; Karnitz, M.A.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Numerical heat transfer attic model using a radiant barrier system  

Science Conference Proceedings (OSTI)

A two-dimensional, steady-state finite-element model was developed to simulate the thermal effects of the application of an attic radiant barrier system (ARBS) inside a ventilated residential attic. The attic is ventilated using the exhaust air from an evaporative cooler. The study uses a {kappa}-{epsilon} turbulent model to describe the velocity and temperature distributions in the attic. The ambient temperature and solar isolation densities on the outside inclined attic surfaces are used as driving functions for the model. The model also included the appropriate heat exchange modes of convection and radiation on these outside surfaces. Several recirculation zones were visually observed in the attic flow pattern. Also, the use of the ARBS seems to lower the heat transfer through the ceiling by 25--30%, but this effect decreases significantly as the outside ventilation rates are increased through the attic space. The 2D model revealed some interesting temperature distributions along the attic surfaces that could not have been predicted by the one-dimensional models. The lower emissivity ARBS seems to raise the temperature of the inclined attic surfaces as well as the temperature of the exhausted ventilation air.

Moujaes, S.F.; Alsaiegh, N.T.

2000-04-01T23:59:59.000Z

22

Experimental Study on Operating Characteristic of the System of Ground Source Heat Pump Combined with Floor Radiant Heating of Capillary Tube  

Science Conference Proceedings (OSTI)

At first, the article presented particularly the working theory of the system of ground source heat pump combined with floor radiant heating of capillary tube, the characteristic of soil layers and the arrangement form of capillary tube mat and the floor ... Keywords: Ground source heat pump, Capillary tube, Radiant heating, Characteristic, Experiment

Yunzhun Fu; Cai Yingling; Jing Li; Yeyu Wang

2009-10-01T23:59:59.000Z

23

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network (OSTI)

Today energy sources are decreasing and saving energy conservation becomes more important. Therefore, it becomes an important investigative direction how to use reproducible energy sources in the HVAC field. The feasibility and necessity of using solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter.

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

24

Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System  

E-Print Network (OSTI)

A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different outdoor temperatures are obtained, and the heating load of the manufactured space is analyzed. The relationship between the envelope internal surface temperature and the workspace temperature is also analyzed in this paper. CFD simulation software is used to simulate the temperature field and the envelope's internal surface temperature of the manufacture space with hot-air heating system. Comparison and analysis of heating loads are done between the manufactured spaces with convection heating and radiant heating systems.

Zheng, X.; Dong, Z.

2006-01-01T23:59:59.000Z

25

Numerical Simulation of Thermal Performance of Floor Radiant Heating System with Enclosed Phase Change Material  

E-Print Network (OSTI)

In the present paper, a kind of enclosed phase change material (PCM) used in solar and low-temperature hot water radiant floor heating is investigated. On the basis of obtaining the best performance of PCM properties, a new radiant heating structure of the energy storage floor is designed,which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The PCM thermal storage time is studied in relation to the floor surface temperature under different low-temperature hot water temperatures. With the method of enthalpy , the PCM thermal storage time is studied under different supply water temperatures, supply water flows, distances between water wipe in the floor construction, floor covers and insulation conditions.

Qiu, L.; Wu, X.

2006-01-01T23:59:59.000Z

26

Incorporating Radiant Heat Exchange into Finite Element Models of ...  

Science Conference Proceedings (OSTI)

In order to simplify this non-linear mode of heat transfer, the effects of ... Technical Risk Mitigation Through Rheometallurgical Generation of Process and ...

27

Inverse optimal design of the radiant heating in materials processing and manufacturing  

Science Conference Proceedings (OSTI)

Combined convective, conductive, and radiative heat transfer is analyzed during heating of a continuously moving load in the industrial radiant oven. A transient, quasi-three-dimensional model of heat transfer between a continuous load of parts moving inside an oven on a conveyor belt at a constant speed and an array of radiant heaters/burners placed inside the furnace enclosure is developed. The model accounts for radiative exchange between the heaters and the load, the conduction in the load, and convective heat transfer between the moving load and oven environment. The thermal model developed has been used to construct a general framework for an inverse optimal design of an industrial oven as an example. In particular, the procedure based on the Levenberg-Marquardt nonlinear least squares optimization algorithm has been developed to obtain the optimal temperatures of the heaters/burners that need to be specified to achieve a prescribed temperature distribution of the surface of a load. The results of calculations for several sample cases are reported to illustrate the capabilities of the procedure developed for the optimal inverse design of an industrial radiant oven.

Fedorov, A.G.; Lee, K.H.; Viskanta, R. [Purdue Univ., West Lafayette, IN (United States)] [Purdue Univ., West Lafayette, IN (United States)

1998-12-01T23:59:59.000Z

28

Effect of Radiant Barrier Technology on Summer Attic Heat Load in South Texas  

E-Print Network (OSTI)

The objective of the study was to experimentally evaluate the performance of radiant barriers in single-family occupied housing units in South Texas. Ceiling heat fluxes, attic air temperatures, indoor air temperatures, ambient air temperatures. roof temperatures, and solar radiation were measured. Results of the radiant barrier experiment using two side-by-side 600 ft2 units are presented. Attic fiberglass insulation of nominal R-11 was installed in the two apartments when the units were last remodeled in 1974. The test houses responded similarly to weather variations, that is, attic temperature and heat flux profiles were similar in magnitude prior to the retrofit. Residents of the housing units were asked to set the thermostats at 76°F. Data were analyzed for periods of time which had the greatest attic temperatures (11 a.m. - 11 p.m.) and for which the indoor temperature differences were less than 1 percent. The results showed that radiant barriers reduced ceiling heat loads (on daily basis) by an average of 60 percent.

Ashley, R.; Garcia, O.; Medina, M. A.; Turner, W. D.

1994-01-01T23:59:59.000Z

29

Finite-volume model for chemical vapor infiltration incorporating radiant heat transfer. Interim report  

SciTech Connect

Most finite-volume thermal models account for the diffusion and convection of heat and may include volume heating. However, for certain simulation geometries, a large percentage of heat flux is due to thermal radiation. In this paper a finite-volume computational procedure for the simulation of heat transfer by conduction, convection and radiation in three dimensional complex enclosures is developed. The radiant heat transfer is included as a source term in each volume element which is derived by Monte Carlo ray tracing from all possible radiating and absorbing faces. The importance of radiative heat transfer is illustrated in the modeling of chemical vapor infiltration (CVI) of tubes. The temperature profile through the tube preform matches experimental measurements only when radiation is included. An alternative, empirical approach using an {open_quotes}effective{close_quotes} thermal conductivity for the gas space can match the initial temperature profile but does not match temperature changes that occur during preform densification.

Smith, A.W.; Starr, T.L. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

1995-05-01T23:59:59.000Z

30

Radiant Barriers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Barriers Radiant Barriers Radiant Barriers May 30, 2012 - 2:07pm Addthis What does this mean for me? Properly installed radiant barriers can reduce your cooling costs. Radiant barriers are easiest to install in new construction, but can be installed in your existing house, especially if it has an open attic. How does it work? Radiant barriers work by reflecting radiant heat away from living spaces. Radiant barriers are installed in homes -- usually in attics -- primarily to reduce summer heat gain and reduce cooling costs. The barriers consist of a highly reflective material that reflects radiant heat rather than absorbing it. They don't, however, reduce heat conduction like thermal insulation materials. How They Work Heat travels from a warm area to a cool area by a combination of

31

An Evaluation of the Placement of the Placement of Radiant Barriers on their Effectiveness in Reducing Heat Transfer in Attics  

E-Print Network (OSTI)

Experimental tests were conducted to measure the influence of radiant barriers and the effect of the radiant barrier location on attic heat transfer. All the tests were conducted in an attic simulator at a steady state. The heat flux through the attic floor was measured at two different roof deck temperatures (120°F and 140°F). The temperature distribution within the base fibrous insulation was also measured. Three different solid kraft laminates with aluminum foil backing were tested. There was a 34 percent reduction (sample A) in heat flux through the ceiling for the case where the radiant barrier was placed 6 inches below the roof deck in addition to the base fibrous insulation (R-11), with the roof deck at 140 F. The reduction for the same sample with the radiant barrier placed on the studs of the attic floor was 46 percent. For all the three samples, the heat flux through the attic floor was reduced when the radiant barrier was placed on the attic floor studs.

Katipamula, S.; O'Neal, D.

1986-01-01T23:59:59.000Z

32

Plane and parabolic solar panels  

E-Print Network (OSTI)

We present a plane and parabolic collector that absorbs radiant energy and transforms it in heat. Therefore we have a panel to heat water. We study how to increment this capture of solar beams onto the panel in order to increase its efficiency in heating water.

Sales, J H O

2009-01-01T23:59:59.000Z

33

Plane and parabolic solar panels  

E-Print Network (OSTI)

We present a plane and parabolic collector that absorbs radiant energy and transforms it in heat. Therefore we have a panel to heat water. We study how to increment this capture of solar beams onto the panel in order to increase its efficiency in heating water.

J. H. O. Sales; A. T. Suzuki

2009-05-14T23:59:59.000Z

34

Radiant Barriers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Barriers Barriers Radiant Barriers May 30, 2012 - 2:07pm Addthis What does this mean for me? Properly installed radiant barriers can reduce your cooling costs. Radiant barriers are easiest to install in new construction, but can be installed in your existing house, especially if it has an open attic. How does it work? Radiant barriers work by reflecting radiant heat away from living spaces. Radiant barriers are installed in homes -- usually in attics -- primarily to reduce summer heat gain and reduce cooling costs. The barriers consist of a highly reflective material that reflects radiant heat rather than absorbing it. They don't, however, reduce heat conduction like thermal insulation materials. How They Work Heat travels from a warm area to a cool area by a combination of

35

Where radiant barriers really shine  

Science Conference Proceedings (OSTI)

Manufactures of radiant barrier materials claim their products significantly cut cooling costs by reducing summertime radiant heat gain through attics and ceilings. A new study confirms that radiant barriers can indeed conserve cooling energy. However, the study`s authors found that radiant barriers are much more effective at reducing energy losses from attic air conditioner duct runs than at directly lowering heat transfer through the attic floor into conditioned living space. Furthermore the study demonstrated that radiant barrier savings can be significant even in a new well-weatherized house and that these saving may justify specifying smaller capacity cooling systems. This article discusses the findings of the study.

Engel, R.

1996-07-01T23:59:59.000Z

36

A transient heat and mass transfer model of residential attics used to simulate radiant barrier retrofits. Part 2: Validation and simulations  

Science Conference Proceedings (OSTI)

A computer program was developed and used to implement the model described on Part 1 of this paper. The program used an iterative process to predict temperatures and heat fluxes using linear algebra principles. The results from the program were compared to experimental data collected during a three-year period. The model simulated different conditions such as variations in attic ventilation, variations in attic ceiling insulation, and different radiant barrier orientations for summer and winter seasons. It was observed that the model predicted with an error of less than 10% for most cases. This paper presents model results for nonradiant barrier cases as well as cases for radiant barriers installed horizontally on top of the attic floor (HRB) and for radiant barriers stapled to the attic rafters (TRB). Savings produced by radiant barriers and sensitivity analyses are also presented. The model results supported the experimental trend that emissivity was the single most significant parameter that affected the performance of radiant barriers.

Medina, M.A. [Texas A and M Univ., Kingsville, TX (United States). Dept. of Mechanical and Industrial Engineering

1998-02-01T23:59:59.000Z

37

Dual circuit embossed sheet heat transfer panel  

DOE Patents (OSTI)

A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.

Morgan, G.D.

1984-02-21T23:59:59.000Z

38

Dual circuit embossed sheet heat transfer panel  

DOE Patents (OSTI)

A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

Morgan, Grover D. (St. Louis County, MO)

1984-01-01T23:59:59.000Z

39

A transient heat and mass transfer model of residential attics used to simulate radiant barrier retrofits. Part 1: Development  

SciTech Connect

This paper describes a transient heat and mass transfer model of residential attics. The model is used to predict hourly ceiling heat gain/loss in residences with the purpose of estimating reductions in cooling and heating loads produced by radiant barriers. The model accounts for transient conduction, convection, and radiation and incorporates moisture and air transport across the attic. Environmental variables, such as solar loads on outer attic surfaces and sky temperatures, are also estimated. The model is driven by hourly weather data which include: outdoor dry bulb air temperature, horizontal solar and sky radiation, wind speed and direction, relative humidity (or dew point), and cloud cover data. The output of the model includes ceiling heat fluxes, inner and outer heat fluxes from all surfaces, inner and outer surface temperatures, and attic dry bulb air temperatures. The calculated fluxes have been compared to experimental data of side-by-side testing of attics retrofit with radiant barriers. The model predicts ceiling heat flows with an error of less than 10% for most cases.

Medina, M.A. [Texas A and M Univ., Kingsville, TX (United States). Dept. of Mechanical and Industrial Engineering; O`Neal, D.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering; Turner, W.D. [Texas Engineering Experiment Station, College Station, TX (United States). Energy Systems Lab.

1998-02-01T23:59:59.000Z

40

Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems  

E-Print Network (OSTI)

panel system are given by its energy (the consumption of gas for heating, electricity for pumps for residential buildings are increasingly used. According to some studies, this figure exceeds 50% (Kilkis et al of new calculation methods. However, in terms of heat transfer modelling, there are several analytical

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Heating energy measurements of single-family houses with attics containing radiant barriers in combustion with R-11 and R-30 ceiling insulation  

Science Conference Proceedings (OSTI)

Tests were conducted by Oak Ridge National Laboratory to determine the heating energy performance of two levels of fiberglass-batt attic insulation (R-11 and R-30) in combination with truss and horizontally installed radiant barriers. The tests, a continuation of work started in the summer of 1985, were conducted in three unoccupied ranch-style houses in Karns, Tennessee, during the winter of 1986-87. The measured results of the heating tests showed that a horizontal radiant barrier used with R-11 attic insulation reduced the house heating load by 9.3% compared with R-11 with no radiant barrier, while a truss barrier showed essentially no change in the heating load. Horizontal and truss barriers each reduced the heating load by 3.5% when added to R-30 attic insulation. Moisture condensed on the bottom of the horizontal barrier during cold early morning weather but usually dissipated in the warmer afternoon hours at Karns and left no accumulation in the insulation. Depending on the level of attic insulation, an annual heating and cooling HVAC savings ranging from $5 to $65 is estimated to be attainable when a radiant barrier is installed in the attic at Karns. 8 refs., 64 figs., 18 tabs.

Levins, W.P.; Karnitz, M.A.

1988-08-01T23:59:59.000Z

42

Indoor Humidity Analysis of an Integrated Radiant Cooling and Desiccant Ventilation System  

E-Print Network (OSTI)

Radiant cooling is credited with improving energy efficiency and enhancing the comfort level as an alternative method of space cooling in mild and dry climates, according to recent research. Since radiant cooling panels lack the capability to remove latent heat, they normally are used in conjunction with an independent ventilation system, which is capable of decoupling the space sensible and latent loads. Condensation concerns limit the application of radiant cooling. This paper studies the dehumidification processes of solid desiccant systems and investigates the factors that affect the humidity levels of a radiantly cooled space. Hourly indoor humidity is simulated at eight different operating conditions in a radiantly cooled test-bed office. The simulation results show that infiltration and ventilation flow rates are the main factors affecting indoor humidity level and energy consumption in a radiantly cooled space with relatively constant occupancy. It is found that condensation is hard to control in a leaky office operated with the required ventilation rate. Slightly pressurizing the space is recommended for radiant cooling. The energy consumption simulation shows that a passive desiccant wheel can recover about 50% of the ventilation load.

Gong, X.; Claridge, D. E.

2006-01-01T23:59:59.000Z

43

Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes  

SciTech Connect

Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

Backman, C.; German, A.; Dakin, B.; Springer, D.

2013-12-01T23:59:59.000Z

44

Development of a Transient Heat and Mass Transfer Model of Residential Attics to Predict Energy Savings Produced by the Use of Radiant Barriers  

E-Print Network (OSTI)

A transient heat and mass transfer model was developed to predict ceiling heat gain/loss through the attic space in residences and to accurately estimate savings in cooling and heating loads produced by the use of radiant barriers. The model accounted for transient conduction, convection and radiation and incorporated moisture and air transport across the attic. Environmental variables such as solar loads on outer attic surfaces and sky temperatures were also estimated. The model was driven by hourly weather data which included: time, outdoor air temperature, horizontal sun and sky radiation, wind speed and direction, relative humidity (dew point), and cloud cover data. The outputs of the model were ceiling heat fluxes, inner and outer heat fluxes from all surfaces, inner and outer surface temperatures and attic air temperatures. Transient conduction was modeled using response factors. Response factors were calculated for each attic component based on construction type. Convective heat transfer was modeled using “flat plate” correlations found in the literature and radiative heat transfer was modeled using radiation enclosure theory. Moisture was incorporated via a condensation/evaporation model. A new procedure was developed to account for attic air stratification. Both forced and natural attic ventilation patterns were added to the model for three types of louver combination arrangements. An iterative technique was used to solve a set of simultaneous heat balance equations. The model predictions were compared to experimental data gathered throughout a three year experimental effort of side-by-side testing of attics retrofit with radiant barriers. The model was compared to the experimental data for a variety of situations which included: different attic insulation levels, various attic airflow rates, cooling and heating seasons, and different radiant barrier orientations. The model predicted ceiling heat flows within 10% for most cases. The model was used to run simulations and parametric studies under a diversity of climates, insulation levels and attic airflow patterns. Model predictions and results were presented on the basis of savings produced by the use of radiant barriers. Hourly, daily, and seasonal predictions by the model were in excellent agreement with observed experimental data and with literature.

Medina, M. A.

1992-12-01T23:59:59.000Z

45

Isothermal process solar collector panel  

SciTech Connect

An isothermal process solar collector panel is disclosed. The panel includes a collector plate for absorbing radiant heat; and a plurality of isothermal process heat pipes in an array over a surface of the collector plate. Each heat pipe is closed at both ends and contains thermodynamic working fluid for transferring heat energy from the collector plate to a second fluid fowing through a manifold pipe for conducting the heat energy from the collector panel. The manifold pipe is coupled to the collector plate and has an evaporator section wherein heat energy is transferred from the collector plate to the thermodynamic working fluid; and the other end of each heat pipe is positioned within the manifold pipe ad has a condenser section wherein heat energy is transferred from the thermodynamic working fluid to the second fluid flowing through the manifold pipe.

Watt, R.E.

1978-11-28T23:59:59.000Z

46

Radiant barrier applications: Symposium and workshop proceedings  

Science Conference Proceedings (OSTI)

Electric utilities and their customers are continually looking for ways to improve the thermal integrity of buildings. Radiant barrier systems can reduce summer air conditioning loads by reducing radiant heat transfer in attics. EPRI conducted two programs to help utilities with radiant barriers. A Symposium and Workshop were conducted in April 1988. The Symposium reviewed the state of the art in radiant barriers. The Workshop brought industry experts together to identify research needs for radiant barriers. The Workshop found that research is needed in six major areas. Listed in order of importance these are: (1) Field and laboratory testing, (2) Materials research, (3) Modeling, (4) Materials standards, (5) Economic issues, and (6) Installation methods. The leading research topics within these six major areas in order of importance include:(1) Modeling to fill voids in existing field data and aid in the development of performance standards, (2) Calculation of energy savings for various configurations, (3) Analysis of existing data to better understand radiant barrier performance, (4) Assessment of the effect of dust accumulation on performance, (5) Development of standard testing procedures, (6) Development of systems standards, (7) Measurement of changes in the emissivity of radiant barrier materials with time, (8) Determination of the possibility of moisture accumulation under horizontal radiant barriers during heating season operation, (9) Ventilation effects, (10) Configuration testing, (11) Costs of new and retrofit applications, and (12) Characterization of side effects. 34 refs., 5 figs.

Isaksen, L.

1989-02-01T23:59:59.000Z

47

Experimental testing and analytical analysis of a plastic panel heat exchanger for greenhouse heating  

SciTech Connect

The performance of a plastic panel-type heat exchanger, suitable for greenhouse heating using low-grade (25 to 60/sup 0/C water) power plant reject heat, was investigated theoretically and experimentally. The theoretical analysis showed that a plastic panel heat exchanger would have an overall heat transfer coefficient, U/sub 0/, of about 18 w/m/sup 2/-/sup 0/C compared to about 12 w/m/sup 2/-/sup 0/C for a fin-tube heat exchanger, under typical greenhouse conditions. Furthermore the plastic heat exchanger would require less fan power due to reduced air pressure losses. The experimental data revealed a similar functional relationship for U/sub 0/ and air flow when compared with the theoretical calculations, however the experimental values of U/sub 0/ were consistently larger by 20 to 30%. It was concluded that a properly designed plastic heat exchanger can compete with metal fin tube type exchangers on a performance basis, but the plastic heat exchangers are 3 to 4 times larger by volume. However, because of the lower cost of plastic, a substantial cost reduction is expected. It appears that further study, examining heat exchanger lifetime, performance and costs, is warranted.

Olszewski, M.; Thomas, J.F.

1980-02-01T23:59:59.000Z

48

Dual-circuit embossed-sheet heat-transfer panel  

DOE Patents (OSTI)

A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed for form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

Morgan, G.D.

1982-08-23T23:59:59.000Z

49

Cooling energy measurements of houses with attics containing radiant barriers  

Science Conference Proceedings (OSTI)

Tests were conducted by Oak Ridge National Laboratory (ORNL) to determine the magnitude of the energy savings brought about by installing radiant barriers in the attics of single-family houses. The radiant barrier used for this test was a product with two reflective aluminum surfaces on a kraft paper base. The radiant barrier has the potential to reduce the radiant heat transfer component impinging on the fiberglass attic insulation. Working as a system in conjunction with an air space, the radiant barrier could theoretically block up to 95% of far-infrared radiation heat transfer. The results showed a savings in the cooling loads of 21% when the radiant barrier was laid on top of the attic fiberglass insulation and 13% with the radiant barrier attached to the underside of the roof trusses. The savings in electrical consumption was 17% and 9%, respectively.

Levins, W.P.; Karnitz, M.A.; Knight, D.K.

1986-01-01T23:59:59.000Z

50

High intensity discharge lamp self-adjusting ballast system sensitive to the radiant energy or heat of the lamp  

SciTech Connect

This patent describes a self-adjusting ballast system for mercury vapor, high intensity discharge lamps having outputs of 100 watts or greater, comprising: a direct current source; a lamp circuit containing a high intensity discharge lamp; sensing means for sensing the radiant energy output of the lamp; a pulse width modulator which, in response to the output of the sensing means, varies the width of the pulses that power the lamp during warm-up of the lamp; a high frequency oscillator; a DC to AC converter that converts current from the direct source to pulses of alternating current for powering the lamp, the converter comprising: at least one switch for gating current to the lamp; a switch control means, responsive to the high frequency oscillator, for controlling the switch and controlling the frequency of the alternating current pulses that power the lamp; current sensing means for sensing the current being supplied to the lamp; and current control means for limiting the current through the lamp to a predetermined safe level when the current sensed by the current sensing means exceeds a reference value.

Kuhnel, D.S.; Ottenstein, S.A.

1987-07-21T23:59:59.000Z

51

Reverberatory screen for a radiant burner  

DOE Patents (OSTI)

The present invention relates to porous mat gas fired radiant burner panels utilizing improved reverberatory screens. The purpose of these screens is to boost the overall radiant output of the burner relative to a burner using no screen and the same fuel-air flow rates. In one embodiment, the reverberatory screen is fabricated from ceramic composite material, which can withstand higher operating temperatures than its metallic equivalent. In another embodiment the reverberatory screen is corrugated. The corrugations add stiffness which helps to resist creep and thermally induced distortions due to temperature or thermal expansion coefficient differences. As an added benefit, it has been unexpectedly discovered that the corrugations further increase the radiant efficiency of the burner. In a preferred embodiment, the reverberatory screen is both corrugated and made from ceramic composite material.

Gray, Paul E. (North East, MD)

1999-01-01T23:59:59.000Z

52

Radiant vessel auxiliary cooling system  

DOE Patents (OSTI)

In a modular liquid-metal pool breeder reactor, a radiant vessel auxiliary cooling system is disclosed for removing the residual heat resulting from the shutdown of a reactor by a completely passive heat transfer system. A shell surrounds the reactor and containment vessel, separated from the containment vessel by an air passage. Natural circulation of air is provided by air vents at the lower and upper ends of the shell. Longitudinal, radial and inwardly extending fins extend from the shell into the air passage. The fins are heated by radiation from the containment vessel and convect the heat to the circulating air. Residual heat from the primary reactor vessel is transmitted from the reactor vessel through an inert gas plenum to a guard or containment vessel designed to contain any leaking coolant. The containment vessel is conventional and is surrounded by the shell.

Germer, John H. (San Jose, CA)

1987-01-01T23:59:59.000Z

53

Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)  

SciTech Connect

Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

Not Available

2013-11-01T23:59:59.000Z

54

Cooling Energy Measurements of Houses with Attics Containing Radiant Barriers  

E-Print Network (OSTI)

Tests were conducted by Oak Ridge National Laboratory (ORNL) to determine the magnitude of the energy savings brought about by installing radiant barriers in the attics of single-family houses. The radiant barrier used for this test was a product with two reflective aluminum surfaces on a kraft paper base. The radiant barrier has the potential to reduce the radiant heat transfer component impinging on the fiberglass attic insulation. Working as a system in conjunction with an air space, the radiant barrier could theoretically block up to 95% of far-infrared radiation heat transfer. The experiment was conducted in three unoccupied research houses that are operated by ORNL. One house was used as the control house (no barrier was installed), while the other two were used to test the two different methods for installing the radiant barriers. In one house, the barrier was laid on top of the attic fiberglass batt insulation, and in the other house, the barrier was attached to the underside of the roof trusses. The attics of all three houses were insulated with kraft paper faced nominal R-19 fiberglass batt insulation. The results showed a savings in the cooling loads of 21% when the radiant barrier was laid on top of the attic fiberglass insulation and 13% with the radiant barrier attached to the underside of the roof trusses. The savings in electrical consumption was 17% and 9%, respectively. The electrical consumption data and the cooling load data indicated that the most effective way of installing the foil was to lay it on top of the fiberglass batt insulation. The radiant barriers reduced the measured peak ceiling heat fluxes by 39% for the case where the barrier was laid on top of the attic fiberglass insulation. The radiant barrier reduced the integrated heat flows from the attic to house by approximately 30-35% over a 7-day time period.

Levins, W. P.; Karnitz, M. A.; Knight, D. K.

1986-01-01T23:59:59.000Z

55

Performance Testing of Radiant Barriers  

E-Print Network (OSTI)

TVA has conducted a study to determine the effects of radiant barriers (RBI (i.e., material with a low emissivity surface facing an air space), when used with fiberglass, on attic heat transfer during summer and winter. This study employed five small test cells exposed to ambient conditions and having attics with gable and soffit vents. Three different RB configurations were tested and compared to the non-RR configuration. Heat flux transducers determined the heat transfer between the attic and conditioned space. The results showed that all RB con figurations significantly reduced heat gain through the ceiling during the summer. Reductions in heat gain during daylight and peak electric load hours were especially attractive. Roof temperatures for the RB configurations were only slightly higher than for the non-RB case. Heat transfer reductions for the RB configurations in the winter were smaller than those for the summer but were still significant in many, but not all, situations. Savings during night and peak electric load hours were especially attractive.

Hall, J. A.

1986-01-01T23:59:59.000Z

56

Comparison of Zone Cooling Load for Radiant and All-Air Conditioning Systems  

E-Print Network (OSTI)

Load for Radiant and Air Conditioning Systems. ProceedingsRefrigerating and Air Conditioning Engineers Inc. Babiak,of European Heating ahd Air-Conditioning Associations. CEN (

Feng, Jingjuan; Schiavon, Stefano; Bauman, Fred

2012-01-01T23:59:59.000Z

57

Solar heating panel: Parks and Recreation Building, Saugatuck Township Park and Recreation Commission. Final report  

DOE Green Energy (OSTI)

This report is an account of the design and installation of a solar heating system on an existing building in Saugatuck, MI, using existing technology. The purpose of this program is to demonstrate the possibilities of alternative energy, educate local craftsmen, and make the building more useful to the community. The structure of the building is described. The process of insulating the structure is described. The design of the solar panel, headers, and strong box full of rocks for heat storage is given complete with blueprints. The installation of the system is also described, including photographs of the solar panel being installed. Included is a performance report on this system by Purbolt's Inc., which describes measurements taken on the system and outlines the system's design and operation. Included also are 12 slides of the structure and the solar heating system. (LEW)

Not Available

1980-12-04T23:59:59.000Z

58

Modeling of Residential Attics with Radiant Barriers  

E-Print Network (OSTI)

This paper gives a summary of the efforts at ORNL in modeling residential attics with radiant barriers. Analytical models based on a system of macroscopic heat balances have been developed. Separate models have been developed for horizontal radiant barriers laid on top of the insulation, and for radiant barriers attached to the bottom of the top chords of the attic trusses. The models include features such as a radiation interchange analysis within the attic space, convective coupling with the ventilation air, and sorption/desorption of moisture at surfaces facing the attic enclosure. The paper gives details of the models and the engineering assumptions that were made in their development. The paper also reports on the status of efforts that are underway to verify the models by comparing their predictions with the results of laboratory and field tests on residential attics and test cells, both with and without radiant barriers. Comparisons are given for a number of selected sets of experimental data. Suggestions are given for needed model refinements and additional experimental data. Plans for utilization of the models for extrapolation to seasonal and annual performance in a variety of climatic conditions are also described.

Wilkes, K. E.

1988-01-01T23:59:59.000Z

59

Influence of Dust on the Emissivity of Radiant Barriers  

E-Print Network (OSTI)

A model of the radiant heat transfer in attics containing dusty radiant barriers was developed. The geometrical model was a triangular enclosure in which the temperatures of the enclosing surfaces were known. The dust particles were simulated as areas of diameter equal to the mean diameter of the real dust to be analyzed and an emissivity substantially larger than the emissivity of the radiant barrier. Several shape factors were calculated using shape factor algebra, including a procedure to find the shape factor between a small rectangle and a triangular surface perpendicular to the rectangular plane. The thermal model was developed using the "Net Radiation Method" in which the net heat exchange between the surfaces surrounding the enclosure was found by solving a system of equations that has as many equations as the number of surfaces involved in the calculations. This led to the necessity of solving a very large system of equations in order to account for the dust particles in a representative amount. The solution of the system of equations provided the heat flux for each element of the enclosure. Finally, replacing the radiant barrier and the dust particles for an equivalent surface corresponding to the dusty radiant barrier provided the means to calculate the emissivity of this dusty radiant barrier. The theoretical model was tested to assess its validity. The experimentation was carried out using a reflection emissometer to measure the increase of the emissivity of aluminum radiant barrier when known quantities of dust were artificially applied to it. The experimental results showed good agreement with the theoretical model. A linear relationship between the emissivity and the area of dust coverage was found. The simple relation developed can be used in future research which still has to deal with the determination of the area of dust coverage by using the geometrical model of dust superposition or other statistical model to simulate the random location of random size dust particles over the radiant barrier.

Noboa, Homero L.

1991-12-01T23:59:59.000Z

60

Hydronic Radiant Cooling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Hydronic Radiant Cooling Systems Cooling nonresidential buildings in the U.S. contributes significantly to electrical power consumption and peak power demand. Part of the electrical energy used to cool buildings is drawn by fans transporting cool air through the ducts. The typical thermal cooling peak load component for California office buildings can be divided as follows: 31% for lighting, 13% for people, 14% for air transport, and 6% for equipment (in the graph below, these account for 62.5% of the electrical peak load, labeled "chiller"). Approximately 37% of the electrical peak power is required for air transport, and the remainder is necessary to operate the compressor. DOE-2 simulations for different California climates using the California

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Effect of attic ventilation on the performance of radiant barriers  

Science Conference Proceedings (OSTI)

The objective of the experiments was to quantify how attic ventilation would affect the performance of a radiant barrier. Ceiling heat flux and space cooling load were both measured. Results of side-by-side radiant barrier experiments using two identical 13.38 m[sup 2] (nominal) test houses are presented in this paper. The test houses responded similarly to weather variations. Indoor temperatures of the test houses were controlled to within 0.2 [degrees] C. Ceiling heat fluxes and space cooling load were within a 2.5 percent difference between both test houses. The results showed that a critical attic ventilation flow rate of 1.3 (1/sec)/m[sup 2] of the attic floor existed after which the percentage reduction in ceiling heat fluxes produced by the radiant barriers did not change with increasing attic airflow rates. The ceiling heat flux reductions produced by the radiant barriers were between 25 and 35 percent, with 28 percent being the percent reduction observed most often in the presence of attic ventilation. The space-cooling load reductions observed were between two to four percent. All results compiled in this paper were for attics with unfaced fiberglass insulation with a resistance level of 3.35 m[sup 2]K/W (nominal) and for a perforated radiant barrier with low emissivities (less than 0.05) on both sides.

Medina, M.A.; O'Neal, D.L. (Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering); Turner, W.D. (Texas A and M Univ., College Station, TX (United States). Coll. of Engineering)

1992-11-01T23:59:59.000Z

62

ORNL Radiant Barrier - ETSD Division  

NLE Websites -- All DOE Office Websites (Extended Search)

in Zone 2), radiant barriers could reduce your utility bills by as much as 150 per year using average residential electricity prices. If you're able to participate in one of...

63

Radiant energy collector. [Patent application  

DOE Patents (OSTI)

A cylindrical radiant energy collector is provided which includes a reflector spaced apart from an energy absorber. The reflector is of a particular shape which ideally eliminates gap losses.

McIntire, W.R.

1980-02-14T23:59:59.000Z

64

Cooling-energy measurements of unoccupied single-family houses with attics containing radiant barriers  

Science Conference Proceedings (OSTI)

Tests were conducted by Oak Ridge National Laboratory (ORNL) to determine the magnitude of the energy savings brought about by installing radiant barriers in the attics of single-family houses. The radiant barrier used for this test is a product with two reflective aluminum surfaces on a kraft paper base. The purpose of the radiant barrier is to reduce the radiant heat transfer component impinging on the fiberglass attic insulation. The radiant barrier works as a system in conjunction with an air space and can theoretically block up to 95% of far-infrared radiation heat transfer. The experiment was conducted in three unoccupied research houses that are operated by ORNL. Two variations on the installation of radiant barriers were studied. One house was used as the control house (no barrier was installed), while the other two were used to test the two different methods for installing the radiant barriers. In one house the barrier was laid on top of the attic fiberglass batt insulation, and in the other house, the barrier was attached to the underside of the roof trusses. The attics of all three houses were insulated with kraft-paper-faced R-19 fiberglass batt insulation. The results showed a savings in the cooling loads of 21% when the radiant barrier was laid on top of the attic fiberglass insulation and 13% with the radiant barrier attached to the underside of the roof trusses. The savings in electrical consumption were 17% and 9%, respectively. The electrical consumption data and the cooling load data indicate that the most effective way of installing the foil is to lay it on top of the fiberglass insulation. The radiant barriers reduced the measured peak ceiling heat fluxes by 39% for the case where the barrier was laid on top of the fiberglass insulation. The radiant barrier reduced the integrated heat flows from the attic to the house by approximately 30 to 35% over a 7-day time period.

Levins, W.P.; Karnitz, M.A.

1986-07-01T23:59:59.000Z

65

Radiant Solar | Open Energy Information  

Open Energy Info (EERE)

Radiant Solar Radiant Solar Jump to: navigation, search Name Radiant Solar Place Secunderabad, Andhra Pradesh, India Zip 500009 Sector Solar Product Solar products company focused on lanterns, lighting systems and water heaters. Coordinates 17.46071°, 78.49298° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":17.46071,"lon":78.49298,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

66

Fact Sheet Radiant barriers and interior radiation control  

E-Print Network (OSTI)

the insulation, the radiant barrier will lose most of its effectiveness in reducing heating and cooling loads in central Florida. Subsequent monitoring and data analysis showed cooling energy savings of 9%, peak load with air-conditioning ductwork in the attic in the deep south (such as in Miami in Zone 1 or Austin in Zone

Oak Ridge National Laboratory

67

Analysis of annual energy savings due to radiant barriers  

Science Conference Proceedings (OSTI)

Radiant barriers are receiving increasing attention as an energy conservation measure for residential buildings, especially for warmer climates. They are being actively promoted for use in residential attics, sometimes with exaggerated claims about savings in utility bills that will results from their installation. In order to provide consumers with factual information that would assist them in deciding upon an investment in a radiant barrier, the Department of Energy, along with an industry advisory panel, has developed a Radiant Barrier Fact Sheet. A major part of this fact sheet is estimates of energy savings that might be expected from radiant barriers in various climates. This paper presents the details of the methodology underlying the energy savings estimates, and gives a summary of values listed in the Fact Sheet. The energy savings estimates were obtained from calculations using a detailed attic thermal model coupled with DOE-2.1C. A life cycle cost analysis was performed to estimate the present value savings on utility fuel costs. The results show that the fuel cost savings vary significantly with the level of conventional insulation already in the attic and from one climate to another.

Wilkes, K.E.

1990-01-01T23:59:59.000Z

68

Simulated Attic Radiant Barrier Performance  

Science Conference Proceedings (OSTI)

A recent EPRI evaluation determined that attic radiant barriers installed under roof decks are increasingly effective in reducing cooling energy use as insolation increases and ceiling insulation thickness decreases. A savings worksheet included in this report allows rapid estimation of these energy cost impacts.

1991-03-29T23:59:59.000Z

69

Analysis of a hybrid UFAD and radiant hydronic slab HVAC system  

E-Print Network (OSTI)

radiant ceiling slab. A cooling tower supplies water to pre-served by a free-cooling tower to pre-cool the buildingcoils. A two-speed cooling tower combined with a plate heat

Raftery, Paul; Lee, Kwang Ho; Webster, Thomas; Bauman, Fred

2011-01-01T23:59:59.000Z

70

Analysis of annual thermal and moisture performance of radiant barrier systems  

Science Conference Proceedings (OSTI)

This report summarizes a project to model the annual thermal and moisture performance of radiant barrier systems installed in residential attics. A previously developed model for the thermal performance of attics with radiant barriers was modified to allow estimates of moisture condensation on the underside of radiant barriers that are laid directly on top of existing attic insulation. The model was partially validated by comparing its predictions of ceiling heat flows and moisture condensation with data and visual observations made during a field experiment with full-size houses near Knoxville, Tennessee. Since the model predictions were found to be in reasonable agreement with the experimental data, the models were used to estimate annual energy savings and moisture accumulation rates for a wide variety of climatic conditions. The models results have been used to identify locations where radiant barriers are cost effective and also where radiant barriers have potential for causing moisture problems. 58 refs., 20 figs., 32 tabs.

Wilkes, K.E.

1991-04-01T23:59:59.000Z

71

Thermal performance of clean horizontal radiant barriers under winter conditions: Laboratory measurements and mathematical modeling  

Science Conference Proceedings (OSTI)

Several field experiments have been performed on attic radiant barriers under winter conditions; however, most of them have been confined to the fairly mild climates of Florida, Oklahoma, and Tennessee. Only one field experiment in a very cold climate (Canada) has been performed. In addition, no previous laboratory experiments under winter conditions have been performed on an attic both with and without a radiant barrier. This paper presents the results of laboratory measurements of the thermal performance of clean horizontal radiant barriers in a simulated residential attic module under nighttime or low solar gain daytime winter conditions. Comparing tests under the same conditions with and without a radiant barrier shows that the addition of a clean horizontal radiant barrier to insulation at the R-22 to R-25 level decreases the ceiling heat flow by 6 to 8%. The experimental results were found to be in very good agreement with predictions made with a mathematical model for the thermal performance of attics.

Wilkes, K.E.; Childs, P.W.

1992-01-01T23:59:59.000Z

72

Analysis of annual thermal and moisture performance of radiant barrier systems  

Science Conference Proceedings (OSTI)

This report summarizes a project to model the annual thermal and moisture performance of radiant barrier systems installed in residential attics. A previously developed model for the thermal performance of attics with radiant barriers was modified to allow estimates of moisture condensation on the underside of radiant barriers that are laid directly on top of existing attic insulation. The model was partially validated by comparing its predictions of ceiling heat flows and moisture condensation with data and visual observations made during a field experiment with full-size houses near Knoxville, Tennessee. Since the model predictions were found to be in reasonable agreement with the experimental data, the models were used to estimate annual energy savings and moisture accumulation rates for a wide variety of climatic conditions. The model results have been used to identify locations where radiant barriers are cost effective and also where radiant barriers have potential for causing moisture problems. 58 refs., 20 figs., 32 tabs.

Wilkes, K.E. (Oak Ridge National Lab., TN (United States))

1991-08-01T23:59:59.000Z

73

Thermal performance of clean horizontal radiant barriers under winter conditions: Laboratory measurements and mathematical modeling  

Science Conference Proceedings (OSTI)

Several field experiments have been performed on attic radiant barriers under winter conditions; however, most of them have been confined to the fairly mild climates of Florida, Oklahoma, and Tennessee. Only one field experiment in a very cold climate (Canada) has been performed. In addition, no previous laboratory experiments under winter conditions have been performed on an attic both with and without a radiant barrier. This paper presents the results of laboratory measurements of the thermal performance of clean horizontal radiant barriers in a simulated residential attic module under nighttime or low solar gain daytime winter conditions. Comparing tests under the same conditions with and without a radiant barrier shows that the addition of a clean horizontal radiant barrier to insulation at the R-22 to R-25 level decreases the ceiling heat flow by 6 to 8%. The experimental results were found to be in very good agreement with predictions made with a mathematical model for the thermal performance of attics.

Wilkes, K.E.; Childs, P.W.

1992-08-01T23:59:59.000Z

74

Energy measurements of attic radiant barriers installed in single-family houses  

Science Conference Proceedings (OSTI)

Testing was conducted by the Oak Ridge National Laboratory to determine the energy savings attributable to radiant barriers installed in attics of unoccupied single-family houses. Three levels of fiberglass attic insulation (R-11 ,R-19, and R-30) were tested with two types of barrier installation (horizontal and truss). The results showed that horizontally installed radiant barriers were more effective than truss barriers in reducing heating and cooling loads. Measured cooling load reductions ranged form 0 to 22% (compared to same attic insulation insulation R-value with no radiant barrier) and heating load changes from /plus/4% to /minus/10% were measured (compared to same attic insulation R-value with no radiant barrier). Radiant barriers appeared to decrease the heating and cooling loads more when lesser amounts of insulation (R-11 and R-19) were present in an attic. Minimal changes were measured when R-30 was present in an attic. Long-term effects of dust on the performance of radiant barriers as well as the effects of moisture condensing on the surface of a radiant barrier during cold winter temperatures remain unanswered.

Levins, W.P.; Karnitz, M.A.

1988-07-01T23:59:59.000Z

75

Radiant Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy Jump to: navigation, search Name Radiant Energy Place Pleasanton, California Zip 94566 Sector Geothermal energy, Hydro, Solar Product Radiant is an independent energy producer which develops and owns solar, geothermal, and hydroelectric generating assets. Coordinates 28.967394°, -98.478862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.967394,"lon":-98.478862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

Radiant Apparatus | Open Energy Information  

Open Energy Info (EERE)

Apparatus Apparatus Jump to: navigation, search Name Radiant Apparatus Place Fairfax, Virginia Zip 22038-3333 Sector Solar Product Radiant Apparatus develops multi-functional, portable solar energy-harnessing systems, as well as potable water systems and emergency shelters. Coordinates 38.841574°, -77.308132° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.841574,"lon":-77.308132,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

Effects of Radiant Barrier Systems on Ventilated Attics in a Hot and Humid Climate  

E-Print Network (OSTI)

Results of side-by-side radiant barrier experiments using two identical 144 ft2 (nominal) test houses are presented. The test houses responded very similarly to weather variations prior to the retrofit. The temperatures of the test houses were controlled to within 0.3°F. Ceiling heat fluxes were within 2 percent for each house. The results showed that a critical attic ventilation flow rate (0.25 CFM/ft2 ) existed after which the percentage reduction produced by the radiant barrier systems was not sensitive to increased airflows. The ceiling heat flux reductions produced by the radiant barrier systems were between 25 and 34 percent, with 28 percent being the reduction observed most often in the presence of attic ventilation. All results presented in this paper were for attics with R-19 unfaced fiberglass insulation and for a perforated radiant barrier with low emissivities on both sides.

Medina, M. A.; O'Neal, D. L.; Turner, W. D.

1992-05-01T23:59:59.000Z

78

Combined Heat and Power ecopower micro CHP  

Science Conference Proceedings (OSTI)

... (Grandkids) ? Full in-floor radiant heating system in the house ? Geothermal system as backup. ? In 20 months of ecopower ...

2012-10-07T23:59:59.000Z

79

Cross flow heat exchange of textile cellular metal core sandwich panels , T.J. Lu b,*, H.P. Hodson a  

E-Print Network (OSTI)

Cross flow heat exchange of textile cellular metal core sandwich panels J. Tian a , T.J. Lu b,*, H. Finally, the thermal performance of brazed woven tex- tiles is compared with other heat exchanger media be used as heat exchangers, node rotation precludes their use as structural members. In addition

Wadley, Haydn

80

Ocean Radiant Heating. Part I: Optical Influences  

Science Conference Proceedings (OSTI)

Radiative transfer calculations are used to quantify the effects of physical and biological processes on variations in the transmission of solar radiation through the upper ocean. Results indicate that net irradiance at 10 cm and 5 m can vary by ...

J. Carter Ohlmann; David A. Siegel; Curtis D. Mobley

2000-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cloud Color and Ocean Radiant Heating  

Science Conference Proceedings (OSTI)

It is well recognized that clouds regulate the flux of solar radiation reaching the sea surface. Clouds also affect the spectral distribution of incident irradiance. Observations of spectral and total incident solar irradiance made from the ...

David A. Siegel; Toby K. Westberry; J. Carter Ohlmann

1999-04-01T23:59:59.000Z

82

Ocean Radiant Heating in Climate Models  

Science Conference Proceedings (OSTI)

A computationally simple, double exponential, chlorophyll-dependent solar transmission parameterization for ocean general circulation models used in climate studies is presented. The transmission parameterization comes from empirical fits to a ...

J. Carter Ohlmann

2003-05-01T23:59:59.000Z

83

A multifunctional heat pipe sandwich panel structure Douglas T. Queheillalt a,*, Gerardo Carbajal b  

E-Print Network (OSTI)

...................................................77 3.4.1.7. Heat Transfer Due to the Heat Exchange Fluid ...............................79 3., Reykjavik, Iceland, was used to simulate the impact of ground-water flow on the average heat exchange fluid response of a fluid flowing through a ground heat exchanger in a single borehole. A schematic

Wadley, Haydn

84

Estimation of Surface Energy Balance from Radiant Surface Temperature and NOAA AVHRR Sensor Reflectances over Agricultural and Native Vegetation  

Science Conference Proceedings (OSTI)

A model is developed to evaluate surface heat flux densities using the radiant surface temperature and red and near-infrared reflectances from the NOAA Advanced Very High Resolution Radiometer sensor. Net radiation is calculated from an empirical ...

Huang Xinmei; T. J. Lyons; R. C. G. Smith; J. M. Hacker; P. Schwerdtfeger

1993-08-01T23:59:59.000Z

85

Radiant Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

be kept dehumidified. In humid climates, simply opening a door could allow enough humidity into the home to allow condensation to occur. The panels cover most of the ceiling,...

86

ICFA Panels  

NLE Websites -- All DOE Office Websites (Extended Search)

Panels ICFA Instrumentation Innovation and Development Panel ICFA Beam Dynamics Panel ICFA Panel on Advanced and Novel Accelerators ICFA Standing Committee on Interregional...

87

Modeling, Designing, Fabricating, and Testing of Channel Panel Flat Plate Heat Pipes.  

E-Print Network (OSTI)

??Flat plate heat pipes are very efficient passive two-phase heat transport devices. Their high e'ciency and low mass are desirable in the aerospace and electronics… (more)

Harris, James R

2008-01-01T23:59:59.000Z

88

Influence of Attic Radiant Barrier Systems on Air Conditioning Demand in an Utility Pilot Project  

E-Print Network (OSTI)

A utility monitoring project has evaluated radiant barrier systems (RBS) as a new potential demand site management (DSM) program. The study examined how the retrofit of attic radiant barriers can be expected to alter utility residential space conditioning loads. An RBS consists of a layer of aluminum foil fastened to roof decking or roof trusses to block radiant heat transfer between the hot roof surface and the attic below. The radiant barrier can significantly lower summer heat transfer to the attic insulation and to the cooling duct system. Both of these mechanisms have strong potential impacts on cooling energy use as illustrated in Figures 1 and 2. The pilot project involved installation of RBS in nine homes that had been extensively monitored over the preceding year. The houses varied in conditioned floor area from 939 to 2,440 square feet; attic insulation varied from R-9 to R-30. The homes had shingle roofs with varying degrees of attic ventilation. The radiant barriers were installed during the summer of 2000. Data analysis on the pre and post cooling and heating consumption was used to determine impacts on energy use and peak demand for the utility. The average cooling energy savings from the RBS retrofit was 3.6 kWh/day, or about 9%. The average reduction in summer afternoon peak demand was 420 watts (or about 16%).

Parker, D. S.; Sherwin, J. R.

2002-01-01T23:59:59.000Z

89

Economic Evaluation of Insulation/Radiant Barrier Systems for the State of Texas  

E-Print Network (OSTI)

This paper presents simulated performance of insulation/radiant barrier systems under different Texas climates. A transient heat and mass transfer model which predicts thermal performance of residential attics (Medina, 1992) was coupled with an "economic" subroutine. Simple payback periods were estimated which were based on current insulation and radiant barrier (RB) prices (materials and installation), and current and forecast electric rates. It was found that when the analyses were based solely on reductions of ceiling heat loads during the summer time, a combination of R-11 with RB was more effective than upgrading the insulation level to R-19. Similarly, adding a radiant barrier to an existing insulation level of R-19 proved more effective than upgrading to R-30. When heat gains to the cold air traveling inside A/C ducts (\\which are usually installed in attic spaces) were considered, all insulation/radiant barrier combinations showed faster payback periods than insulation upgrades, During the winter time, insulation upgrades proved to be more effective than insulation/radiant barrier combinations. The simple payback analyses presented herein include both summer and winter simulations.

Medina, M. A.; Turner, W. D.; O'Neal, D. L.

1994-01-01T23:59:59.000Z

90

Simulation of Photovoltaic Panel Production as Complement to Ground Source Heat Pump System.  

E-Print Network (OSTI)

?? This master thesis presents a new technological combination of two environmentally friendly sources of energy in order to provide DHW, and space heating. Solar… (more)

Badri, Seyed Ali Mohammad

2013-01-01T23:59:59.000Z

91

Ventilation and Solar Heat Storage System Offers Big Energy Savings  

Ventilation and Solar Heat Storage System Offers Big Energy Savings ... Heat is either reflected away from the building with radiant barriers, or heat is absorbed

92

Thermal Performance Evaluation of Attic Radiant Barrier Systems Using the Large Scale Climate Simulator (LSCS)  

SciTech Connect

Application of radiant barriers and low-emittance surface coatings in residential building attics can significantly reduce conditioning loads from heat flow through attic floors. The roofing industry has been developing and using various radiant barrier systems and low-emittance surface coatings to increase energy efficiency in buildings; however, minimal data are available that quantifies the effectiveness of these technologies. This study evaluates performance of various attic radiant barrier systems under simulated summer daytime conditions and nighttime or low solar gain daytime winter conditions using the large scale climate simulator (LSCS). The four attic configurations that were evaluated are 1) no radiant barrier (control), 2) perforated low-e foil laminated oriented strand board (OSB) deck, 3) low-e foil stapled on rafters, and 4) liquid applied low-emittance coating on roof deck and rafters. All test attics used nominal RUS 13 h-ft2- F/Btu (RSI 2.29 m2-K/W) fiberglass batt insulation on attic floor. Results indicate that the three systems with radiant barriers had heat flows through the attic floor during summer daytime condition that were 33%, 50%, and 19% lower than the control, respectively.

Shrestha, Som S [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL

2013-01-01T23:59:59.000Z

93

Thermal radiant exitance model performance: Soils and forests  

DOE Green Energy (OSTI)

Models of surface temperatures of two land surface types based on their energy budgets were developed to simulate the effects of environmental factors on thermal radiant exitance. The performance of these models is examined in detail. One model solves the non-linear differential equation for heat diffusion in solids using a set of submodels for surface energy budget components. The model performance is examined under three desert conditions thought to be a strong test of the submodels. The accuracy of the temperature predictions and submodels is described. The accuracy of the model is generally good but some discrepancies between some of the submodels and measurements are noted. The sensitivity of the submodels is examined and is seen to be strongly controlled by interaction and feedback among energy components that are a function of surface temperature. The second model simulates vegetation canopies with detailed effects of surface geometry on radiant transfer in the canopy. Foliage solar absorption coefficients are calculated using a radiosity approach for a three layer canopy and long wave fluxes are modeled using a view factor matrix. Sensible and latent heat transfer through the canopy are also simulated using, nearby meteorological data but heat storage in the canopy is not included. Simulations for a coniferous forest canopy are presented and the sensitivity of the model to environmental inputs is discussed.

Balick, L.K. [EG& G Energy Measurements Inc., Las Vegas, NV (United States); Smith, J.A. [NASA/Goddard Space Flight Center, Greenbelt, MD (United States). Lab. for Terrestrial Physics

1995-12-31T23:59:59.000Z

94

Radiant energy collection and conversion apparatus and method  

SciTech Connect

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

Hunt, Arlon J. (Oakland, CA)

1982-01-01T23:59:59.000Z

95

Ductless, Mini-Split Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ductless, Mini-Split Heat Pumps Ductless, Mini-Split Heat Pumps Ductless, Mini-Split Heat Pumps June 24, 2012 - 4:19pm Addthis What does this mean for me? You can take advantage of the fact that -- unlike earlier versions -- newer models of ductless mini-split heat pumps operate effectively in cold temperatures. If you are building an addition or doing a major remodel and your home does not have heating and cooling ducts, a ductless mini-split heat pump may be a cost-effective, energy-efficient choice. Ductless, mini-split-system heat pumps (mini splits) make good retrofit add-ons to houses with "non-ducted" heating systems, such as hydronic (hot water heat), radiant panels, and space heaters (wood, kerosene, propane). They can also be a good choice for room additions where extending or

96

Analysis in Support of the Radiant Barrier Fact Sheet 2010 Update  

Science Conference Proceedings (OSTI)

Quantifying the benefits of radiant barriers is complex because the benefits depend upon the climate, attic geometry, duct arrangements, and other building parameters. Homeowners, however, require simplified guidance regarding building envelope options, even those options that seem to have no simple answers. An extensive parametric evaluation of radiant barrier installation alternatives was made using a newly expanded and benchmarked version of an attic simulation program. To complement this anal- ysis, a detailed numerical analysis of radiation heat transfer within the attic and within the small space bounded by the rafters and the sheathing was completed. The results provide guidance for homeowners and builders.

Stovall, Therese K [ORNL; Shrestha, Som S [ORNL; Arimilli, Rao V [ORNL; Yarbrough, David W [ORNL; Pearson, Thomas [ASHRAE, Student Member

2010-01-01T23:59:59.000Z

97

IMPROVEMENTS TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION  

E-Print Network (OSTI)

IMPROVEMENTS TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION PROCEDURE By BEREKET TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION PROCEDURE Dissertation Approved: Dr. Jeffrey D- Original RTSM.......................................................153 4.4.1 RTSM Peak Design Cooling Load

98

Ductless, Mini-Split Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ductless, Mini-Split Heat Pump Basics Ductless, Mini-Split Heat Pump Basics Ductless, Mini-Split Heat Pump Basics August 19, 2013 - 11:04am Addthis Ductless, mini-split-system heat pumps (mini splits), as their name implies, do not have ducts. Therefore, they make good retrofit add-ons to houses or buildings with "non-ducted" heating systems, such as hydronic (hot water heat), radiant panels, and space heaters (wood, kerosene, propane). They can also be a good choice for room additions, where extending or installing distribution ductwork is not feasible. How Ductless, Mini-Split Heat Pumps Work Like standard air-source heat pumps, mini splits have two main components: an outdoor compressor/condenser, and an indoor air-handling unit. A conduit, which houses the power cable, refrigerant tubing, suction tubing,

99

Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation  

E-Print Network (OSTI)

As a comfortable and energy-efficient air conditioning system, the application of floor radiant heating system is used increasingly greatly in the north of China. As a result, the feasibility of floor radiant cooling has gained more attention. To examine the thermodynamic performance of the floor radiant cooling system, we measured the operational conditions including the minimum floor surface temperature, the cooling capacity, and the indoor temperature field distribution under different outdoor temperatures in Beijing. Because the ground temperature changes with the mean temperature of the supplied and returned water and room temperature, the mean temperature of the supplied and retuned water was obtained. Finally, we analyzed the phenomenon of dewing and developed measures for preventing it. The dry air layer near the floor formed by a displacement ventilation system can effectively prevent dews on the surface of the floor in the wet and hot days in summer. In addition, for the sake of the displacement ventilation system, the heat transfer effect between floor and space is enhanced. Our analysis pointed out that floor radiant cooling system combined with displacement ventilation ensures good comfort and energy efficiency.

Ren, Y.; Li, D.; Zhang, Y.

2006-01-01T23:59:59.000Z

100

Radiant Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Jump to: navigation, search Name Radiant Electric Coop, Inc Place Kansas Utility Id 15621 Utility Location Yes Ownership C NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1140/kWh Commercial: $0.1080/kWh Industrial: $0.0533/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Radiant_Electric_Coop,_Inc&oldid=411420" Categories: EIA Utility Companies and Aliases

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Radiant energy receiver having improved coolant flow control means  

DOE Patents (OSTI)

An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

Hinterberger, H.

1980-10-29T23:59:59.000Z

102

Cooling load differences between radiant and air systems  

E-Print Network (OSTI)

the effect of thermal mass on cooling loads, and thereforelift radiant cooling using building thermal mass, Departmentlevel thermal modelling are recommended for design cooling

Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

2013-01-01T23:59:59.000Z

103

Radiant Energy Power Source for Jet Aircraft  

DOE Green Energy (OSTI)

This report beings with a historical overview on the origin and early beginnings of Radiant Energy Power Source for Jet Aircraft. The report reviews the work done in Phase I (Grant DE-FG01-82CE-15144) and then gives a discussion of Phase II (Grant DE-FG01-86CE-15301). Included is a reasonably detailed discussion of photovoltaic cells and the research and development needed in this area. The report closes with a historical perspective and summary related to situations historically encountered on projects of this nature. 15 refs.

Doellner, O.L.

1992-02-01T23:59:59.000Z

104

Vented Cavity Radiant Barrier Assembly And Method  

DOE Patents (OSTI)

A vented cavity radiant barrier assembly (2) includes a barrier (12), typically a PV module, having inner and outer surfaces (18, 22). A support assembly (14) is secured to the barrier and extends inwardly from the inner surface of the barrier to a building surface (14) creating a vented cavity (24) between the building surface and the barrier inner surface. A low emissivity element (20) is mounted at or between the building surface and the barrier inner surface. At least part of the cavity exit (30) is higher than the cavity entrance (28) to promote cooling air flow through the cavity.

Dinwoodie, Thomas L. (Piedmont, CA); Jackaway, Adam D. (Berkeley, CA)

2000-05-16T23:59:59.000Z

105

Green Scheduling for Radiant Systems in Buildings Truong X. Nghiem, Madhur Behl, George J. Pappas and Rahul Mangharam  

E-Print Network (OSTI)

to energy efficient control for commercial buildings and data centers is model predictive control (MPC) ([8]). Predictive control methods were shown in [11], [12] to improve the comfort of radiant systems. A two as an alternative to the conventional forced-air heating, ventilation and air conditioning (HVAC) systems

Pappas, George J.

106

Gas filled panel insulation  

DOE Patents (OSTI)

A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

Griffith, Brent T. (Berkeley, CA); Arasteh, Dariush K. (Oakland, CA); Selkowitz, Stephen E. (Piedmont, CA)

1993-01-01T23:59:59.000Z

107

Gas filled panel insulation  

DOE Patents (OSTI)

A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

1993-12-14T23:59:59.000Z

108

Vaporization, dispersion, and radiant fluxes from LPG spills. Final technical report  

SciTech Connect

Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools and a Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes. Tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

1982-05-01T23:59:59.000Z

109

Solar panel with storage  

SciTech Connect

A self contained, fully automatic, vertical wall panel, solar energy system characterized by having no moving parts in the panel. The panel is substantially a shallow rectangular box having a closed perimeter, an outer insulating chamber which is substantially a double glazed window, and an inner energy storage chamber which is provided with containers of phase change materials. The energy storage chamber is provided with air entrance and exit passages which communicate with the space to be heated. Thermostatically controlled blowers serve to move air from the space to be heated across the containers of phase change material and back to the space to be heated. Thermostatically controlled blowers also serve to move insulating material into and out of the insulating chamber at appropriate times.

Zilisch, K.P.

1984-05-08T23:59:59.000Z

110

Radiant Technology Corporation RTC | Open Energy Information  

Open Energy Info (EERE)

Technology Corporation RTC Technology Corporation RTC Jump to: navigation, search Name Radiant Technology Corporation (RTC) Place Fullerton, California Zip 92831 Product Provides infrared furnaces, primarily used in the photovoltaic manufacturing industry. Coordinates 46.16041°, -98.420506° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.16041,"lon":-98.420506,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Energy measurements of single-family houses with attics containing radiant barriers  

Science Conference Proceedings (OSTI)

Radiant barriers were tested in attics of three unoccupied research houses which are located near Knoxville, Tennessee. The prime purpose of the testing was to determine the interaction, if any, between two types of radiant barriers, horizontal (barrier laid on top of attic insulation) and truss (barrier attached to underside of roof trusses), and three levels of fiberglass-batt attic insulation, R-11, R-19, and R-30. Testing of radiant barriers with R-19 fiberglass-batt attic insulation was done at the houses in the summer of 1985 and in the winter of 1985-86. The R-11 and R-30 testing was done in the summer of 1986. These results showed that horizontal barriers were more effective than truss barriers in reducing house cooling and heating loads. The summer of 1986 testing showed that increasing the attic insulation from R-11 to R-30 reduced the house cooling load (Btu) by approximately 16%. Adding a horizontal barrier to R-11 also reduced the cooling load compared to R-11 with no barrier by about 16%, while a truss barrier reduced it by 11%. A horizontal barrier with R-30 only reduced the cooling load by 2% compared to R-30 with no barrier, while an increase in the cooling load of 0.7% was measured with a truss barrier and R-30. Radiant barriers were not effective in reducing house cooling loads when R-30 attic insulation was present. The results from the summer of 1985 were integrated into the latest work through the use of a modeling effort using the building load simulation program, DOE-2.1B. This showed that R-19 insulation in conjunction with a horizontal barrier was (for Knoxville) the most effective barrier/insulation combination and could reduce the house cooling load by 25.1% compared to R-11 with no barrier.

Levins, W.P.; Karnitz, M.A.

1987-01-01T23:59:59.000Z

112

Analysis of Attic Radiant Barrier Systems Using Mathematical Models  

E-Print Network (OSTI)

During the past six years, the Florida Solar Energy Center (FSEC) has conducted extensive experimental research on radiant barrier systems (RBS). This paper presents recent research on the development of mathematical attic models. Two levels of modeling capability have been developed. A very simplified model based on ASHRAE procedures in used to study the sensitivity of RBS performance parameters, and a very detailed finite element model is used to study highly complex phenomena, including moisture adsorption and desorption in attics. The speed of the simple model allows a large range of attic parameters to be studies quickly, and the finite element model provides a detailed understanding of combined heat and moisture transport in attics. This paper concentrates on a parametric analysis of attic RBS using the simplified model. The development of the model is described, and results of the parametric analyses are presented and discussed. Preliminary results from the finite element model are also compared with measurements from a test attic to illustrate the effects of moisture adsorption and desorption in common attics.

Fairey, P.; Swami, M.

1988-01-01T23:59:59.000Z

113

Moisture Measurements in Residential Attics Containing Radiant Barriers  

Science Conference Proceedings (OSTI)

Horizontal radiant barriers, rigorously tested during a typical Tennessee winter, allowed moisture to dissipate on a diurnal cycle and caused no structural, wet insulation, or stained-ceiling problems.

1989-08-21T23:59:59.000Z

114

Venice Sustainability Advisory Panel  

E-Print Network (OSTI)

Venice Sustainability Advisory PanelFINAL REPORT Venice Sustainability Advisory Panel FinalInvestigator The Venice Sustainability Advisory Panel (

2009-01-01T23:59:59.000Z

115

Geothermal heating from Pinkerton Hot Springs at Colorado Timberline Academy, Durango, Colorado. Final technical report  

DOE Green Energy (OSTI)

The efforts to establish a greater pool of knowledge in the field of low temperature heat transfer for the application of geothermal spring waters to space heating are described. A comprehensive set of heat loss experiments involving passive radiant heating panels is conducted and the results presented in an easily interpretable form. Among the conclusions are the facts that heating a 65 to 70 F/sup 0/ space with 90 to 100 F/sup 0/ liquids is a practical aim. The results are compared with the much lower rates published in the American Society of Heating Refrigeration and Air Conditioning Engineers SYSTEMS, 1976. A heat exchange chamber consisting of a 1000 gallon three compartment, insulated and buried tank is constructed and a control and pumping building erected over the tank. The tank is intended to handle the flow of geothermal waters from Pinkerton Hot Springs at 50 GPM prior to the wasting of the spring water at a disposal location. Approximately 375,000 Btu per hour should be available for heating assuming a 15 F/sup 0/ drop in water temperature. A combination of the panel heat loss experiments, construction of the heat exchange devices and ongoing collection of heat loss numbers adds to the knowledge available to engineers in sizing low temperature heat systems, useful in both solar and geothermal applications where source temperature may be often below 110 F/sup 0/.

Allen, C.C.; Allen, R.W.; Beldock, J.

1981-11-08T23:59:59.000Z

116

A Comparative Heat Transfer Examination of Structural Insulated Panels (SIPs) With and Without Phase Change Materials (PCMs) Using a Dynamic Wall Simulator  

E-Print Network (OSTI)

The main focus of this paper was to present data to advance the design of a previously developed thermally-enhanced structural insulated panel (SIP) that had been outfitted with phase change materials (PCMs) (Medina et al., 2008). To advance the development of the previous design, which had only been evaluated under full weather conditions, a set of well-controlled laboratory experiments was carried out. For this, a dynamic wall simulator was built, where a range of important parameters was evaluated. This was done through a comparative heat transfer examination of SIPs, with and without PCMs; where parameters, such as, foam core material of the SIP and material of the PCM holding containers (i.e., encapsulating pipes) were evaluated. Instantaneous heat transfer rates measurements are presented. The two parameters considered (i.e., foam material and pipe material) were found to have first order effects on the performance of PCM-enhanced SIPs. The PCM outfitted SIPs reduced the peak heat fluxes when compared to their own kind, but without PCM. The results indicate that SIPs with molded expanded polystyrene (EPS) cores would benefit more from the PCM enhancement than SIPs with urethane cores. PVC pipes as holding containers for the PCMs did not prove as efficient as metal pipes.

Medina, M.; Zhu, D.

2008-12-01T23:59:59.000Z

117

Panel Session  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview IGTI ASME Turbo Expo Montreal, Canada, May 14-17, 2007 Panel Presentation Tuesday, May 15, 2007 @ 2:30 - 5:00 PM CO2 Compression Opportunities in Fossil Fueled Power...

118

Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology  

DOE Green Energy (OSTI)

During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heat sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.

Kosny, Jan [ORNL; Miller, William A [ORNL; Childs, Phillip W [ORNL; Biswas, Kaushik [ORNL

2011-01-01T23:59:59.000Z

119

Oven wall panel construction  

DOE Patents (OSTI)

An oven roof or wall is formed from modular panels, each of which comprises an inner fabric and an outer fabric. Each such fabric is formed with an angle iron framework and somewhat resilient tie-bars or welded at their ends to flanges of the angle irons to maintain the inner and outer frameworks in spaced disposition while minimizing heat transfer by conduction and permitting some degree of relative movement on expansion and contraction of the module components. Suitable thermal insulation is provided within the module. Panels or skins are secured to the fabric frameworks and each such skin is secured to a framework and projects laterally so as slidingly to overlie the adjacent frame member of an adjacent panel in turn to permit relative movement during expansion and contraction.

Ellison, Kenneth (20 Avondale Cres., Markham, CA); Whike, Alan S. (R.R. #1, Caledon East, both of Ontario, CA)

1980-04-22T23:59:59.000Z

120

Solar panel  

SciTech Connect

A solar panel is shown for use as a double panel window structure. It has an outer frame formed by an H-shaped extrusion that has one of its outermost legs shortened, and a pair of generally parallel legs or flanges that are inwardly directed of the frame. The outer surface of these flanges are furnished with a dual pressure-sensitive adhesive tape having a width between 1/4 inch and 1 inch. A pane of transparent material is sealed around its periphery into engagement with the adhesive tape for forming a double pane solar panel. Several modifications are also shown for exerting a mechanical locking force on at least one of the panes.

Sitzler, E.R.; Moore, F.W.

1984-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Participate on an Expert Panel  

Science Conference Proceedings (OSTI)

AOCS Lab Services - Participate on an Expert Panel. Participate on an Expert Panel Participate on an Expert Panel Expert Panels

122

The Influence of Dust on the Absorptivity of Radiant Barriers  

E-Print Network (OSTI)

The purpose of this project was to model and quantify the increase of the absorptivity of radiant barriers caused by the accumulation of dust on the surface of radiant barriers. This research was the continuation of a previous work by the author at Texas A&M University in which a radiation energy balance inside the attic enclosure was developed. The particles were considered as flat, circular planes, all having the same radii. That early model showed that there was a linear relationship between the fraction of area of the foil covered by dust and the mean absorptivity of the dusty radiant barrier. In the present work, it was found that the assumption of treating the dust particles as plane circles, underestimated the effective area of the particles by about 20%. Experimental measurements indicated that dust particles achieved the same temperature as the radiant barrier. The new model used the linear relationship just described, and simulated the dust particles as flat circular planes having random radii and laying in random locations within the radiant barrier surface. The new model calculated the fraction of radiant barrier area covered by particles using a digital array in which the clean barrier was represented as zeroes and the dust particles were represented as a set of ones appropriately dimensioned inside the array. The experimentation used natural dust and Arizona Road Test Dust. Using an infrared emissometer, the emissivities (absorptivities) of the clean and dusty barriers were measured and using an electronic scale, the dust loading was measured. An electron microscope was used to experimentally find the fraction of radiant barrier covered by the dust particles to correlate the experimentally found absorptivity with the experimentally found fraction of dust coverage. The limited experimental data available were also used to correlate the absorptivity of the dusty radiant barrier with the time of dust accumulation and the location of the barrier inside the attic. A linear relationship between the absorptivity and the time of dust accumulation was found that can be applied to predict future barrier effectiveness based upon the rate of dust accumulation for a given location.

Noboa, Homero L.

1993-08-01T23:59:59.000Z

123

Dust and Ventilation Effects on Radiant Barriers: Cooling Season Energy Measurements  

Science Conference Proceedings (OSTI)

This study on the effects of attic ventilation area and type and dust buildup on horizontal and truss radiant barriers in insulated homes can help utilities reduce cooling season electric energy requirements. Increasing the ventilation area ratio and changing ventilation types had little effect on radiant barrier performance. Dust did degrade performance, but insulated homes with radiant barriers still had lower energy requirements than those without radiant barriers.

1990-05-15T23:59:59.000Z

124

Preliminary Study of a Vented Attic Radiant Barrier System in Hot, Humid Climates Using Side-by-Side, Full-Scale Test Houses  

E-Print Network (OSTI)

A series of side-by-side tests was performed using two full scale test houses to determine the effectiveness of a Vented Radiant Barrier System (VRBS) in reducing the ceiling heat flux during the summer cooling season in North Florida. Another series of side-by-side tests was conducted to evaluate the effect of a VRBS on ceiling heat losses under typical North Florida winter conditions. The effect of a VRBS on the expected life of roof shingles was also evaluated.

Lear, W. E.; Barrup, T. E.; Davis, K. E.

1987-01-01T23:59:59.000Z

125

Radiant barriers in houses: Energy, comfort, and moisture considerations in a northern climate  

Science Conference Proceedings (OSTI)

The purpose of this study was to determine the conditions under which radiant barrier utilization in attics is appropriate technology in building construction for a northern climate in Utah. A sample of 12 appropriate houses with radiant barriers were selected using predetermined criteria. Another 12 houses without radiant barriers were selected as a control sample and paired with the first 12 houses using predetermined criteria. The research involved three different types of data and analyses. First, a questionnaire survey was completed by the occupants of the 12 sample houses, with radiant barriers. The survey included such factors as: (1) comfort, (2) energy, and (3) potential increased moisture content as perceived by the occupants. Second, a t-test was used to calculate the statistical comparison of utility usage between the 12 sample houses with radiant barriers and the 12 control houses without radiant barriers. Third, the moisture content of the wood framing above and below the radiant barriers was measured over a three month period during the winter months. Data analysis indicated: (1) occupants did perceive that more comfort resulted from the installation of radiant barriers, (2) occupants did not observe additional moisture artifacts after the installation of radiant barriers, (3) occupants did perceive cost savings from utility benefits resulting from the use of radiant barriers, especially in cooling the houses in summer, (4) there was no significant difference between utility usage of houses with radiant barriers and houses without radiant barriers, (5) the moisture content in the ceiling joists of all 24 houses, except one, had a moisture content measurement less than eight percent, and (6) houses with radiant barriers have higher humidity levels within the living space than houses without radiant barrier installation.

Mendenhall, R.L.

1990-01-01T23:59:59.000Z

126

Interconnection Panel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interconnection Panel Dan Tunnicliff, P.E. Manager, Government Segment, Southern California Edison Southern California Edison Application Processing Technical Scoping Meeting Technical Studies Interconnection Agreement Project Implementation Overview of Generation Interconnection Process (GIP) * Transmission Level Interconnections - Governed by CAISO Tariff. * Generally for 220 kV and higher. * All applications must be submitted to the CAISO. * CAISO administers its tariff, which is approved by FERC. * Distribution Level Interconnections - Governed by SCE's WDAT. * Generally below 220 kV. * All applications must be submitted to SCE. * SCE administers its tariff, which is approved by FERC. 2 Southern California Edison Interconnection agreements are critically

127

Heat Exchangers  

Science Conference Proceedings (OSTI)

Table 16   Ceramic heat exchanger systems...Soaking pit 870â??1230 1600â??2250 Fe, Si, alkalis Solar Turbines â?¦ 4â??8 OD Ã? 180 long (440 tubes) Aluminum melt furnaces 1010 1850 Alkali salts Plate fin GTE 0.6, 1.6 25â??46 Multiple 870â??1370 1600â??2250 Clean (good), alkalis (poor) Coors 0.25, 1.0 30 Ã? 30 Ã? 46 Multiple Clean (good), alkalis (poor) Radiant...

128

Residential space heating cost: geothermal vs conventional systems  

SciTech Connect

The operating characteristics and economies of several representative space heating systems are analyzed. The analysis techniques used may be applied to a larger variety of systems than considered herein, thereby making this document more useful to the residential developer, heating and ventilating contractor, or homeowner considering geothermal space heating. These analyses are based on the use of geothermal water at temperatures as low as 120/sup 0/F in forced air systems and 140/sup 0/F in baseboard convection and radiant floor panel systems. This investigation indicates the baseboard convection system is likely to be the most economical type of geothermal space heating system when geothermal water of at least 140/sup 0/F is available. Heat pumps utilizing water near 70/sup 0/F, with negligible water costs, are economically feasible and they are particularly attractive when space cooling is included in system designs. Generally, procurement and installation costs for similar geothermal and conventional space heating systems are about equal, so geothermal space heating is cost competitive when the unit cost of geothermal energy is less than or equal to the unit cost of conventional energy. Guides are provided for estimating the unit cost of geothermal energy for cases where a geothermal resource is known to exist but has not been developed for use in residential space heating.

Engen, I.A.

1978-02-01T23:59:59.000Z

129

Solar collector panels (process-method). Rainwater collection and storage  

DOE Green Energy (OSTI)

A process for producing panels for solar heating of potable water is described. The panels have PVC tubing flat-coiled into square or rectangular shapes. Also described is a cistern for collecting and storing rainwater. (LEW)

Mowery, J.W.

1981-10-15T23:59:59.000Z

130

Base load fuel comsumption with radiant boiler simulation  

Science Conference Proceedings (OSTI)

The operating point of an oil fired radiant boiler, 580 Megawatt capacity, is critical in maximizing the availability, performance, reliability, and maintainability of a power producing system. Operating the unit above the design operating point causes outages to occur sooner than scheduled. When the boiler is operated below the design operating point, fuel is wasted because the quantity of fuel required to operate a radiant boiler is the same, whether the design setpoint is maintained or not. This paper demonstrates by means of simulation software that the boiler design setpoints is critical to fuel consumption and optimum output megawatts. A boiler with this capacity is used to provide a portion of the base load of an electric utility in order to sustain revenues and maintain reliable generation.

Shwehdi, M.H. (Pennsylvania State Univ., Wilkes-Barre, Lehman, PA (United States)); Hughes, C.M. (Naval Aviation Depot, NAS Jacksonville, Jacksonville, FL (United States)); Quasem, M.A. (Howard Univ. School of Business, Washington, DC (United States))

1992-12-01T23:59:59.000Z

131

Radiant Barrier Insulation Performance in Full Scale Attics with Soffit and Ridge Venting  

E-Print Network (OSTI)

There is a limited data base on the full scale performance of radiant barrier insulation in attics. The performance of RBS have been shown to be dependent on attic ventilation characteristics. Tests have been conducted on a duplex located in Florida with soffit and ridge venting to measure attic performance. The unique features of these experiments are accurate and extensive instrumentation with heat flow meters, field verification of HFM calibration, extensive characterization of the installed ceiling insulation, ventilation rate measurements and extensive temperature instrumentation. The attics are designed to facilitate experimental changes without damaging the installed insulation. RBS performance has been measured for two natural ventilation levels for soffit and ridge venting. Previously, no full scale data have been developed for these test configurations. Test data for each of the test configurations was acquired for a minimum of two weeks with some acquired over a five week period. The Rl9 insulation performed as expected.

Ober, D. G.; Volckhausen, T. W.

1988-01-01T23:59:59.000Z

132

CFD Simulation and Analysis of the Combined Evaporative Cooling and Radiant Ceiling Air-conditioning System  

E-Print Network (OSTI)

Due to such disadvantages as large air duct and high energy consumption of the current all- outdoor air evaporative cooling systems used in the dry region of Northwest China, as well as the superiority of the ceiling cooling system in improving thermal comfort and saving energy, a combined system is presented in this paper. It combines an evaporative cooling system with ceiling cooling, in which the evaporative cooling system handles the entire latent load and one part of the sensible loads, and the ceiling cooling system deals with the other part of sensible loads in the air-conditioned zone, so that the condensation on radiant panels and the insufficiency of cooling capacity can be avoided. The cooling water at 18? used in the cooling coils of ceiling cooling system can be ground water, tap water or the cooled water from cooling towers in the summer. This new air-conditioning system and existing all- outdoor air evaporative cooling system are applied to a project in the city of Lanzhou. Energy consumption analysis of the building is carried out using the energy consumption code. Velocity and temperature distribution in the air-conditioned zone is computed using CFD. According to the results, the energy consumption and indoor human thermal comfort of both systems are then compared. It is concluded that the new system occupies less building space, reduces energy consumption, improves indoor human thermal comfort and saves initial investment.

Xiang, H.; Yinming, L.; Junmei, W.

2006-01-01T23:59:59.000Z

133

The Super-Radiant Mechanism, Doorway States, and Nuclear Reactions  

SciTech Connect

In 1954 the possibility of forming a 'super-radiant' (SR) state in a gas of atoms confined to a volume of a size smaller than the wave length of radiation was suggested by Dicke. The atoms, with two levels, are coupled through their common radiation field. This indirect coupling leads to a redistribution of decay widths among unstable intrinsic states. A strongly decaying SR state is created at the expense of the rest of the states of the system. The connection of this mechanism to the notion of doorway states in low-energy nuclear reactions is discussed and applications to well known nuclear physics phenomena are presented.

Auerbach, Naftali [School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 69978 (Israel)

2010-11-24T23:59:59.000Z

134

Radiant Energy Power Source for Jet Aircraft. Final performance report  

DOE Green Energy (OSTI)

This report beings with a historical overview on the origin and early beginnings of Radiant Energy Power Source for Jet Aircraft. The report reviews the work done in Phase I (Grant DE-FG01-82CE-15144) and then gives a discussion of Phase II (Grant DE-FG01-86CE-15301). Included is a reasonably detailed discussion of photovoltaic cells and the research and development needed in this area. The report closes with a historical perspective and summary related to situations historically encountered on projects of this nature. 15 refs.

Doellner, O.L.

1992-02-01T23:59:59.000Z

135

Cooling season energy measurements of dust and ventilation effects on radiant barriers  

Science Conference Proceedings (OSTI)

Cooling season tests were conducted in three unoccupied ranch-style houses in Karns, Tennessee, to determine the effects on attic radiant barrier performance incurred by changes in attic ventilation area ratio, attic ventilation type, and the buildup of dust on horizontal radiant barriers. All three houses had R-19 fiberglass batt insulation in their attics. Horizontal radiant barriers were artificially dusted and the dusted barriers showed measurable performance degradations, although the dusted barriers were still superior to no radiant barriers. Dust loadings of 0.34 and 0.74 mg/cm{sup 2} reduced a clean radiant barrier surface emissivity of 0.055 to 0.125 and 0.185, respectively. Total house cooling load increases amounted to 2.3 and 8.4% compared to house loads with clean horizontal barriers, respectively. When compared to R-19 with no horizontal radiant barrier conditions, the dusted horizontal radiant barriers reduced cooling loads by about 7%. Testing showed that increasing the attic ventilation area ratio from the minimum recommended of 1/300 (1 ft{sup 2} of effective ventilation area per 300 ft{sup 2} of attic area) to 1/150 had little if any effect on the house cooling load with either truss or horizontal barriers present in the attics. Radiant barriers, however, still reduced the house cooling load. 18 refs., 17 figs., 26 tabs.

Levins, W.P.; Karnitz, M.A. (Oak Ridge National Lab., TN (USA)); Hall, J.A. (Tennessee Valley Authority, Chattanooga, TN (USA))

1990-03-01T23:59:59.000Z

136

Analysis of Annual Thermal and Moisture Performance of Radiant Barrier Systems  

Science Conference Proceedings (OSTI)

A detailed thermal energy analysis model helps identify locations where radiant barriers are cost-effective while analyzing moisture performance to predict potential problem areas. The model described in this report estimates annual energy savings and moisture accumulation rates from horizontal radiant barrier applications in a variety of climates.

1991-09-03T23:59:59.000Z

137

Dust and ventilation effects on radiant barriers: Cooling season energy measurements  

Science Conference Proceedings (OSTI)

Cooling season tests were conducted in three unoccupied ranch-style houses in Karns, Tennessee, to determine the effects on attic radiant barrier performance incurred by changes in attic ventilation area ratio, attic ventilation type, and the buildup of dust on horizontal radiant barriers. All three houses had R-19 fiberglass batt insulation in their attics. Horizontal radiant barriers were artificially dusted and the dusted barriers showed measurable performance degradations, although the dusted barriers were still superior to no radiant barriers. Dust loadings of 0.34 and 0.74 mg/cm{sup 2} reduced a clean radiant barrier surface emissivity of 0.055 to 0.125 and 0.185, respectively. Total house cooling load increases amounted to 2.3 and 8.4% compared to house loads with clean horizontal barriers, respectively. When compared to R-19 with no horizontal radiant barrier conditions, the dusted horizontal radiant barriers reduced cooling loads by about 7%. Testing showed that increasing the attic ventilation area ratio from the minimum recommended of 1/300 to 1/150 had little if any effect on the house cooling load with either truss or horizontal barriers present in the attics. Radiant barriers, however, still reduced the house cooling load. There was essentially no difference in house cooling load reduction between either ridge/soffit or gable/soffit vent type with a truss radiant barrier, as both reduced cooling loads by about 8% when compared to no radiant barrier conditions. The attic-ventilation-type testing was done with a ventilation area ratio of 1/150.

Levins, W.P.; Karnitz, M.A. (Oak Ridge National Lab., TN (USA)); Hall, J.A. (Tennessee Valley Authority, Knoxville, TN (USA))

1990-05-01T23:59:59.000Z

138

Proposal Review Panel Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposal Review Panel Descriptions Proposal Review Panel Descriptions To ensure competent scientific review, a proposal may be assigned to a different panel (at the discretion of the Review Panel Chair), or the panel may seek additional ad hoc reviews from other experts. High-Pressure This panel reviews scattering and diffraction proposals that focus on materials at high pressure. Techniques such as (but not limited to) diffraction, nuclear resonant scattering, and inelastic x-ray scattering for materials at high pressure are appropriate for this panel to consider. Instrumentation This panel reviews proposals related to the development of beamline instrumentation, sample environments, x-ray optical components, and/or detectors that are relevant to synchrotron radiation research. This panel

139

Panels for collecting solar energy  

Science Conference Proceedings (OSTI)

A solar energy collecting panel is described for heating by solar radiation a liquid circulating in a section of piping and constituted by a flat rectangular box thermally closed by a cover transparent to solar radiation and containing the said section of piping. The said box is constituted by a stamped metal sheet whose surface is less than 1 M squared and also contains a stamped copper tray in intimate contact with the piping section, the said tray supporting by itself the transparent cover and being thermally spaced from the box, the insulating pad being constituted by a in situ moulded block of rigid foam. Such a panel is intended to be used for feeding a central heating system and/or a hot water distribution system, especially for household purposes or swimming pools.

Neny, M.

1980-11-18T23:59:59.000Z

140

Efficient Low-Lift cooling with Radiant Distribution, Thermal Storage and Variable-Speed Chiller Controls  

DOE Green Energy (OSTI)

The U.S. Department of Energy’s Building Technologies Program goal is to develop cost-effective technologies and building practices that will enable the design and construction of net-zero energy buildings by 2025. To support this goal, Pacific Northwest National Laboratory evaluated an integrated technology that through utilization of synergies between emerging heating, ventilation and air conditioning systems can significantly reduce energy consumption in buildings. This set consists of thermal storage, dedicated outdoor air system, radiant heating/cooling with a variable speed low-lift-optimized vapor compression system. The results show that the low-lift cooling system provides significant energy savings in many building types and climates locations. This market represents well over half of the entire U.S. commercial building sector. This analysis shows that significant cooling system efficiency gains can be achieved by integrating low-lift cooling technologies. The cooling energy savings for a standard-performance building range from 37% to 84% and, for a high-performance building, from -9% to 70%.

Katipamula, Srinivas; Armstrong, Peter; Wang, Weimin; Fernandez, Nicholas

2010-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Development of periodic response factors for use with the radiant time series method  

SciTech Connect

Harris and McQuiston (1988) developed conduction transfer function (CTF) coefficients corresponding to 41 representative wall assemblies and 42 representative roof assemblies for use with the transfer function method (TFM). They also developed a grouping procedure that allows design engineers to determine the correct representative wall or roof assembly that most closely matches a specific wall or roof assembly. The CTF coefficients and the grouping procedure have been summarized in the ASHRAE Handbook--Fundamentals (1989, 1993, 1997) and the ASHRAE Cooling and Heating Load Calculation Manual, second edition. More recently, a new, simplified design cooling load calculation procedure, the radiant time series method (RTSM), has been developed. The RTSM uses periodic response factors to model transient conductive heat transfer. While not a true manual load calculation procedure, it is quite feasible to implement the RTSM in a spreadsheet. To be useful in such an environment, it would be desirable to have a pre-calculated set of periodic response factors. Accordingly, a set of periodic response factors has been calculated and is presented in this paper.

Spitler, J.D.; Fisher, D.E.

1999-07-01T23:59:59.000Z

142

Cooling load differences between radiant and air systems  

E-Print Network (OSTI)

the differences of the heat transfer process in zonesto capture detailed heat transfer processes in the zones and

Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

2013-01-01T23:59:59.000Z

143

Cooling season energy measurements of dust and ventilation effects on radiant barriers  

Science Conference Proceedings (OSTI)

Cooling season tests were conducted in three unoccupied ranch-style houses in Karns, Tennessee, to determine the effects on attic radiant barrier performance incurred by changes in attic ventilation area ratio, attic ventilation type, and the buildup of dust on horizontal radiant barriers. All three houses had R-19 fiberglass batt insulation in their attics. Horizontal radiant barriers were artificially dusted and the dusted barriers showed measurable performance degradations, although the dusted barriers were still superior to no radiant barriers. Dust loadings of 0.34 and 0.74 mg/cm{sup 2} reduced a clean radiant barrier surface emissivity of 0.055 to 0.125 and 0.185, respectively. Total house cooling load increases amounted to 2.3 and 8.4% compared to house loads with clean horizontal barriers, respectively. When compared to R-19 with no horizontal radiant barrier conditions, the dusted horizontal radiant barriers reduced cooling loads by about 7%. 18 refs., 18 figs., 30 tabs.

Levins, W.P.; Karnitz, M.A. (Oak Ridge National Lab., TN (USA)); Hall, J.A. (Tennessee Valley Authority, Knoxville, TN (USA))

1990-02-01T23:59:59.000Z

144

Interactive optical panel  

DOE Patents (OSTI)

An interactive optical panel assembly 34 includes an optical panel 10 having a plurality of ribbon optical waveguides 12 stacked together with opposite ends thereof defining panel first and second faces 16, 18. A light source 20 provides an image beam 22 to the panel first face 16 for being channeled through the waveguides 12 and emitted from the panel second face 18 in the form of a viewable light image 24a. A remote device 38 produces a response beam 40 over a discrete selection area 36 of the panel second face 18 for being channeled through at least one of the waveguides 12 toward the panel first face 16. A light sensor 42,50 is disposed across a plurality of the waveguides 12 for detecting the response beam 40 therein for providing interactive capability.

Veligdan, James T. (Manorville, NY)

1995-10-03T23:59:59.000Z

145

Analysis of a hybrid UFAD and radiant hydronic slab HVAC system  

E-Print Network (OSTI)

Air- Conditioning Engineers HVAC & R Research, vol. 50, Sep.and radiant hydronic slab HVAC system.   Paul RAFTERY a,* ,of a novel integrated HVAC system. This system combines an

Raftery, Paul; Lee, Kwang Ho; Webster, Thomas; Bauman, Fred

2011-01-01T23:59:59.000Z

146

Determination of Unfiltered Radiances from the Clouds and the Earth’s Radiant Energy System Instrument  

Science Conference Proceedings (OSTI)

A new method for determining unfiltered shortwave (SW), longwave (LW), and window radiances from filtered radiances measured by the Clouds and the Earth’s Radiant Energy System (CERES) satellite instrument is presented. The method uses ...

Norman G. Loeb; Kory J. Priestley; David P. Kratz; Erika B. Geier; Richard N. Green; Bruce A. Wielicki; Patricia O’Rawe Hinton; Sandra K. Nolan

2001-04-01T23:59:59.000Z

147

Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment  

Science Conference Proceedings (OSTI)

Clouds and the Earth's Radiant Energy System (CERES) is an investigation to examine the role of cloud/radiation feedback in the Earth's climate system. The CERES broadband scanning radiometers are an improved version of the Earth Radiation Budget ...

Bruce A. Wielicki; Bruce R. Barkstrom; Edwin F. Harrison; Robert B. Lee III; G. Louis Smith; John E. Cooper

1996-05-01T23:59:59.000Z

148

Temporal Interpolation Methods for the Clouds and the Earth’s Radiant Energy System (CERES) Experiment  

Science Conference Proceedings (OSTI)

The Clouds and the Earth’s Radiant Energy System (CERES) is a NASA multisatellite measurement program for monitoring the radiation environment of the earth–atmosphere system. The CERES instrument was flown on the Tropical Rainfall Measuring ...

D. F. Young; P. Minnis; D. R. Doelling; G. G. Gibson; T. Wong

1998-06-01T23:59:59.000Z

149

Active Solar Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Active Solar Heating Active Solar Heating Active Solar Heating June 24, 2012 - 5:58pm Addthis This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL What does this mean for me? If you live in a cold climate and have unobstructed access to the sun during the heating season, an active solar heating system might make sense for you. You can buy a manufactured active solar system or build your own.

150

Radiant cooling in US office buildings: Towards eliminating the perception of climate-imposed barriers  

Science Conference Proceedings (OSTI)

Much attention is being given to improving the efficiency of air-conditioning systems through the promotion of more efficient cooling technologies. One such alternative, radiant cooling, is the subject of this thesis. Performance information from Western European buildings equipped with radiant cooling systems indicates that these systems not only reduce the building energy consumption but also provide additional economic and comfort-related benefits. Their potential in other markets such as the US has been largely overlooked due to lack of practical demonstration, and to the absence of simulation tools capable of predicting system performance in different climates. This thesis describes the development of RADCOOL, a simulation tool that models thermal and moisture-related effects in spaces equipped with radiant cooling systems. The thesis then conducts the first in-depth investigation of the climate-related aspects of the performance of radiant cooling systems in office buildings. The results of the investigation show that a building equipped with a radiant cooling system can be operated in any US climate with small risk of condensation. For the office space examined in the thesis, employing a radiant cooling system instead of a traditional all-air system can save on average 30% of the energy consumption and 27% of the peak power demand due to space conditioning. The savings potential is climate-dependent, and is larger in retrofitted buildings than in new construction. This thesis demonstrates the high performance potential of radiant cooling systems across a broad range of US climates. It further discusses the economics governing the US air-conditioning market and identifies the type of policy interventions and other measures that could encourage the adoption of radiant cooling in this market.

Stetiu, C.

1998-01-01T23:59:59.000Z

151

Technical Review Panel Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRP Report v7, 12 Aug 2012 TRP Report Final December 2012 TRP Report v7, 12 Aug 2012 TRP Report Final December 2012 Advanced Reactor Concepts Technical Review Panel Report Evaluation and Identification of future R&D on eight Advanced Reactor Concepts, conducted April - September 2012 December 2012 Public release version 2 Public release version 3 Table of Contents Summary ................................................................................................................................... 4 1. Overview of the Technical Review Panel Process ............................................................... 5 2. Technical Review Panel Criteria ......................................................................................... 6 3. Concept Summaries ........................................................................................................... 8

152

Universal solar concentrator panel  

SciTech Connect

This patent describes a solar concentrator device. It comprises: a solar energy receiver; and a flat solar energy reflector arranged to reflect solar energy to the receiver, the reflector including a substantially square-shaped frame limiting an inner space, individual flat reflective panels arranged in the space in a first group or rows extending in a first direction and a second group of rows extending in a second direction substantially transverse to the first direction and so that each of the panels is turnable about three mutually perpendicular axes, and means for mounting the panels so that they are turnable about the axes. The mounting means including first means which connect the panels in the rows extending in one of the directions so that the panels in each of the rows extending in the one direction are jointly turnable about a first one of the axes, second means for mounting each of the panels so that in each of the rows extending in the one direction each of the panels is turnable about a second one of the axes, and third means for mounting each panel in each of the rows extending in the one direction so that each of the panels is turnable about a third one of the axes. This patent also describes a solar concentrator device, wherein the receiver includes a box forming an inner chamber, a plurality of photovoltaic cells sealed with a clear plastic and accommodated in the chamber, and water filling the chamber and surrounding the photovoltaic cells.

Bagno, R.G.

1991-03-12T23:59:59.000Z

153

Solar reflection panels  

DOE Patents (OSTI)

A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front surface of the composite panel. The composite panel comprises a front sheet affixed to a surface of a core material, preferably a core material comprising a honeycomb structure, and a back sheet affixed to an opposite surface of the core material. The invention may further comprise a sealing strip, preferably comprising EPDM, positioned between the glass mirror and the front surface of the composite panel. The invention also is of methods of making such solar collectors.

Diver, Jr., Richard B. (Albuquerque, NM); Grossman, James W. (Albuquerque, NM); Reshetnik, Michael (Boulder, CO)

2006-07-18T23:59:59.000Z

154

Flexible optical panel  

DOE Patents (OSTI)

A flexible optical panel includes laminated optical waveguides, each including a ribbon core laminated between cladding, with the core being resilient in the plane of the core for elastically accommodating differential movement thereof to permit winding of the panel in a coil.

Veligdan, James T. (Manorville, NY)

2001-01-01T23:59:59.000Z

155

Reinventing the solar panel  

SciTech Connect

This article discusses new technology in solar panels. PowerSource is a solar collector which not only is less expensive than conventional panels to purchase and install, but also increases the electrical output by almost 20%. This article describes the results of testing this system.

Scanlon, M.

1995-08-01T23:59:59.000Z

156

Effect of radiant barriers and attic ventilation on residential attics and attic duct systems: New tools for measuring and modeling  

Science Conference Proceedings (OSTI)

A simple duct system was installed in an attic test module for a large scale climate simulator at a US national laboratory. The goal of the tests and subsequent modeling was to develop an accurate method of assessing duct system performance in the laboratory, enabling limiting conditions to be imposed at will and results to be applied to residential attics with attic duct systems. Steady-state tests were done at a severe summer and a mild winter condition. In all tests the roof surface was heated above ambient air temperatures by infrared lights. The attic test module first included then did not include the duct system. Attic ventilation from eave vents to a ridge vent was varied from none to values achievable by a high level of power ventilation. A radiant barrier was attached to the underside of the roof deck, both with and without the duct system in place. Tests were also done without the radiant barrier, both with and without the duct system. When installed, the insulated ducts ran along the floor of the attic, just above the attic insulation and along the edge of the attic near the eaves and one gable. These tests in a climate simulator achieved careful control and reproducibility of conditions. This elucidated dependencies that would otherwise be hidden by variations in uncontrolled variables. Based on the comparisons with the results of the tests at the mild winter condition and the severe summer condition, model predictions for attic air and insulation temperatures should be accurate within {+-} 10 F ({+-} 6 C). This is judged adequate for design purposes and could be better when exploring the effect of changes in attic and duct parameters at fixed climatic conditions.

Petrie, T.W.; Childs, P.W.; Christian, J.E.; Wilkes, K.E.

1998-07-01T23:59:59.000Z

157

Cooling load differences between radiant and air systems  

E-Print Network (OSTI)

M. Filippi, B.W. Olesen, Solar radiation and cooling loaddependant upon solar radiation, ASHRAE Transactions, (2006)heat gains also included solar radiation through windows. G3

Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

2013-01-01T23:59:59.000Z

158

Modeling thermal comfort with radiant floors and ceilings  

E-Print Network (OSTI)

limits for heated ceilings. ASHRAE Transactions 86(2): 141-Radiation and discomfort. ASHRAE Journal Griffiths, I. S.active human sub- jects. ASHRAE Transactions 74: 131 -143.

2009-01-01T23:59:59.000Z

159

NSLS Committees | Proposal Oversight Panel  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposal Oversight Panel Charge Assume responsibility for completing any missing third reviews of the regular Proposal Review Panels. Review proposals with large rating...

160

Hexagon solar power panel  

SciTech Connect

A solar energy panel comprises a support upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

Rubin, Irwin (Oxnard, CA)

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

City and County of Denver - Solar Panel Permitting (Colorado) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Panel Permitting (Colorado) Solar Panel Permitting (Colorado) City and County of Denver - Solar Panel Permitting (Colorado) < Back Eligibility Commercial Construction General Public/Consumer Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Colorado Program Type Solar/Wind Permitting Standards Provider Department of Development Services Construction, Electrical, Plumbing and Zoning Permits* are required for Photovoltaic (PV) systems installed in the city of Denver. Denver provides same day permit review for most solar panel projects. More complex engineering projects may still be required to go through the Plan Review process. To obtain Zoning Permits for flush mounted solar panels, applicants must

162

Heat Recovery from Coal Gasifiers  

E-Print Network (OSTI)

This paper deals with heat recovery from pressurized entrained and fixed bed coal gasifiers for steam generation. High temperature waste heat, from slagging entrained flow coal gasifier, can be recovered effectively in a series of radiant and convection waste heat boilers. Medium level waste heat leaving fixed bed type gasifiers can be recovered more economically by convection type boilers or shell and tube heat exchangers. An economic analysis for the steam generation and process heat exchanger is presented. Steam generated from the waste heat boiler is used to drive steam turbines for power generation or air compressors for the oxygen plant. Low level heat recovered by process heat exchangers is used to heat product gas or support the energy requirement of the gasification plant. The mechanical design for pressure vessel shell and boiler tubes is discussed. The design considers metallurgical requirements associated with hydrogen rich, high temperature, and high pressure atmosphere.

Wen, H.; Lou, S. C.

1981-01-01T23:59:59.000Z

163

Appendix D Eligibility Criteria for Radiant Barriers Page D-1 2013 Residential Compliance Manual January 2014  

E-Print Network (OSTI)

shall meet specific eligibility and installation criteria to be modeled by any ACM and receive energy (stapled) to the bottom surface of the truss/rafter (top chord). A minimum air space shall be maintained of the radiant barrier and the top of the ceiling insulation to allow ventilation air to flow between the roof

164

The Clouds and the Earth's Radiant Energy System (CERES) Sensors and Preflight Calibration Plans  

Science Conference Proceedings (OSTI)

The Clouds and the Earth's Radiant Energy System (CERES) spacecraft sensors are designed to measure broadband earth-reflected solar shortwave (0.3–5 µm) and earth-emitted longwave (5– > 100 µm) radiances at the top of the atmosphere as part of ...

Robert B. Lee III; Bruce R. Barkstrom; G. Louis Smith; John E. Cooper; Leonard P. Kopia; R. Wes Lawrence; Susan Thomas; Dhirendra K. Pandey; Dominique A. H. Crommelynck

1996-04-01T23:59:59.000Z

165

Modular panels prevent window heat losses  

SciTech Connect

A Parker Hannifin plant in Cleveland found it possible to provide insulation which would handle a variety of temperature changes. The answer was a modular insulation system which covers windows in the winter, yet allows for adequate ventilation in the summer.

1981-04-01T23:59:59.000Z

166

Numerical study of a ventilated facade panel  

Science Conference Proceedings (OSTI)

An energy-saving facade panel for non-residential buildings has been numerically investigated. Structured like a composite Trombe-Michel wall, the panel consists of a glazing, an absorber plate and insulation and contains a dead air space between glazing and absorber, as well as a convection channel between absorber and insulation. The influence of convection channel spacing on both recovery of solar energy during sunshine periods and on heat losses during night hours has been assessed. Two different options have been considered. First, the total panel thickness was maintained, which involves an increase of channel spacing having to be compensated by a corresponding decrease of the insulation thickness. Then, this constraint was removed so that an increase in channel spacing was allowed to entail an equivalent increase of the total panel thickness. The results indicate that large spacing favors energy recovery during sunshine periods for both options and reduces, although only slightly, heat losses during night hours for the second option. In the case of the first option, however, these losses tend to grow when channel spacing increases. 15 refs., 5 figs.

Mootz, F.; Bezian, J.J. [Centre d`Energetique de l`Ecole des Mines de Paris (France)

1996-07-01T23:59:59.000Z

167

SSRL- Proposal Review Panel  

NLE Websites -- All DOE Office Websites (Extended Search)

Stanford Synchrotron Radiation Lab Stanford Synchrotron Radiation Lab search Go [an error occurred while processing this directive] Proposal Review Panel Sub Panels Structural Molecular Biology & Biophysics Materials 1: Structure, Reactivity & Self-Assembly Materials 2: Electronic Properties, Magnetic Properties & Surface Science Molecular Environmental & Interface Science Membership Torgny Gustafsson Rutgers University Dept of Physics & Astronomy 136 Frelinghuysen Rd Piscataway NJ 08854-0849 Victor Henrich Yale University Dept of Applied Physics 327 Becton Center, 15 Prospect St. New Haven CT 06511 Christopher P. Hill University of Utah Biochemistry 15 N. Medical Dr. East, Rm 4100 Salt Lake City, UT 84112-5650 Franz Himpsel University of Wisconsin Dept of Physics 1150 University Avenue

168

2009 Smart Distribution Panel  

Science Conference Proceedings (OSTI)

The smart distribution panel (SDP) is an integrated demand management system, designed to manage demand by automatically switching user-prioritized branch circuits, either off the grid or to a secondary power source. In 2008, EPRI tested the performance of an IEC (European) compliant modelresults can be found in EPRI report 1016079. After the 2008 test, the SDP received UL 50 and UL 67 approvals for a new 240/120V 250A panel designed for the North American market. In 2009, EPRI tested the UL certified pa...

2009-12-11T23:59:59.000Z

169

Solar heat collector  

Science Conference Proceedings (OSTI)

A solar heat collector is described that pre-heats water for a household hot water heating system, and also heats the air inside a house. The device includes solar heating panels set into an A-shape, and enclosing an area therein containing a water tank and a wristatic fan that utilize the heat of the enclosed air, and transmit the thermal energy therefrom through a water line and an air line into the house.

Sykes, A.B.

1981-07-28T23:59:59.000Z

170

Field Study Of A Radiant Heating System For Sleep Thermal Comfort And Potential Energy Saving.  

E-Print Network (OSTI)

??As sleep is unconscious, the traditional definition of thermal comfort with conscious judgment does not apply. In this thesis sleep thermal comfort is defined as… (more)

Wang, Christopher L. K.

2011-01-01T23:59:59.000Z

171

Impact of Solar Heat Gain on Radiant Floor Cooling System Design  

E-Print Network (OSTI)

Y. Chen, The effect of solar radiation on dynamic thermaldependant upon solar radiation, ASHRAE Transactions, (2006)M. Filippi, B.W. Olesen, Solar radiation and cooling load

Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

2013-01-01T23:59:59.000Z

172

Ocean Radiant Heating. Part II: Parameterizing Solar Radiation Transmission through the Upper Ocean  

Science Conference Proceedings (OSTI)

Accurate determination of sea surface temperature (SST) is critical to the success of coupled ocean–atmosphere models and the understanding of global climate. To accurately predict SST, both the quantity of solar radiation incident at the sea ...

J. Carter Ohlmann; David A. Siegel

2000-08-01T23:59:59.000Z

173

Ocean Mixed Layer Radiant Heating and Solar Penetration: A Global Analysis  

Science Conference Proceedings (OSTI)

A hybrid parameterization for the determination of in-water solar fluxes is developed and applied to compute the flux of solar radiation that penetrates beyond the upper-ocean mixed layer into permanent pycnocline waters on global space and ...

J. Carter Ohlmann; David A. Siegel; Catherine Gautier

1996-10-01T23:59:59.000Z

174

Solar Panels Plus LLC | Open Energy Information  

Open Energy Info (EERE)

Panels Plus LLC Jump to: navigation, search Name Solar Panels Plus LLC Place Chesapeake, Virginia Zip 23320 Sector Solar Product Solar Panels Plus LLC distributes solar energy...

175

Solar heat pipe feedback turbogenerator  

SciTech Connect

The conversion of radiant heat to electricity by a heat pipe-turbogenerator combination is described. The heat pipe-tubogenerator assembly is suitably externally insulated, as by a vacuum shield, to prevent heat losses and heat is recovered from the condenser portion of the heat pipe and returned to the evaporator portions. An application of the generic invention is discussed which it is employed on wall or roof portions of a building and serves as at least a partial supporting structure for these. In another application the solar heat pipe feedback turbogenerator may be incorporated in or used with reflective means, such as reflective sheet material of large area positioned to direct solar radiation onto the evaporator section of the heat pipe. The reflective means may be changed in position to follow the sun to produce maximum power during operation.

Decker, B.J.

1978-10-24T23:59:59.000Z

176

Greenhouse of an underground heat accumulation system  

SciTech Connect

A greenhouse of an underground heat accumulation system is described wherein the radiant energy of the sun or wasted thermal energy is accumulated in the soil below the floor of the greenhouse over a prolonged period of time, and spontaneous release of the accumulated energy into the interior of the greenhouse begins in the wintertime due to a time lag of heat transfer through the soil. The release of the accumulated energy lasts throughout the winter.

Fujie, K.; Abe, K.; Uchida, A.

1983-11-01T23:59:59.000Z

177

Twilight Irradiance Reflected by the Earth Estimated from Clouds and the Earth's Radiant Energy System (CERES) Measurements  

Science Conference Proceedings (OSTI)

The upward shortwave irradiance at the top of the atmosphere when the solar zenith angle is greater than 90° (twilight irradiance) is estimated from radiance measurements by the Clouds and the Earth's Radiant Energy System (CERES) instrument on ...

Seiji Kato; Norman G. Loeb

2003-08-01T23:59:59.000Z

178

Clouds and the Earth''s Radiant Energy System (CERES) Algorithm Theoretical Basis Document. Volume I-Overviews (Subsystem 0)  

Science Conference Proceedings (OSTI)

The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and the Earth''s Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies ...

Team CERES Science

1995-12-01T23:59:59.000Z

179

Lighting Technology Panel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Panel Technology Panel Federal Utility Partnership Working Group N b 2009 November 1 1 8, 2009 Doug Avery Southern California Edison Southern California Edison National Energy Conservation M d t Mandates * There are Federal and State Mandates to reduce energy consumption - California Investor Owned Electric Utilities are ordered to save around 3 Billion kWh's each y year from 2007-2113 - Federal buildings ordered to reduce electrical Federal buildings ordered to reduce electrical energy consumption 35% by 2012 Energy Consump ption gy Lighting accounts for 42 7% of energy consumption Lighting accounts for 42.7% of energy consumption Data Courtesy of SDG&E Data Courtesy of SDG&E Energy Consump ption gy More than ¾ of the lighting load is non-residential. Data Courtesy of SDG&E

180

Development and evaluation of sealing technologies for photovoltaic panels  

DOE Green Energy (OSTI)

This report summarizes the results of a study to develop and evaluate low temperature glass sealing technologies for photovoltaic applications. This work was done as part of Cooperative Research and Development Agreement (CRADA) No. SC95/01408. The sealing technologies evaluated included low melting temperature glass frits and solders. Because the glass frit joining required a material with a melting temperature that exceeded the allowable temperature for the active elements on the photovoltaic panels a localized heating scheme was required for sealing the perimeter of the glass panels. Thermal and stress modeling were conducted to identify the feasibility of this approach and to test strategies designed to minimize heating of the glass panel away from its perimeter. Hardware to locally heat the glass panels during glass frit joining was designed, fabricated, and successfully tested. The same hardware could be used to seal the glass panels using the low temperature solders. Solder adhesion to the glass required metal coating of the glass. The adhesion strength of the solder was dependent on the surface finish of the glass. Strategies for improving the polyisobutylene (PIB) adhesive currently being used to seal the panels and the use of Parylene coatings as a protective sealant deposited on the photovoltaic elements were also investigated. Starting points for further work are included.

Glass, S.J.; Hosking, F.M.; Baca, P.M. [and others

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners  

SciTech Connect

A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

Ternes, M.P.; Levins, W.P.

1992-08-01T23:59:59.000Z

182

Photovoltaic panel clamp  

SciTech Connect

A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

Mittan, Margaret Birmingham (Oakland, CA); Miros, Robert H. J. (Fairfax, CA); Brown, Malcolm P. (San Francisco, CA); Stancel, Robert (Loss Altos Hills, CA)

2012-06-05T23:59:59.000Z

183

Photovoltaic panel clamp  

DOE Patents (OSTI)

A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

2013-03-19T23:59:59.000Z

184

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler  

Science Conference Proceedings (OSTI)

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

Andrew Seltzer

2005-01-01T23:59:59.000Z

185

WIPP_Panel_7_Approved  

NLE Websites -- All DOE Office Websites (Extended Search)

Panel 7 Certified and Ready for Waste Disposal Panel 7 Certified and Ready for Waste Disposal CARLSBAD, N.M., August 1, 2013 - In mid-July 2013, the New Mexico Environment Department (NMED) approved the use of Panel 7 for disposal of defense- related transuranic (TRU) waste at the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP). Approval by NMED for each underground waste disposal panel prior to use is required under the WIPP Hazardous Waste Facility Permit (Permit). A panel consists of seven waste disposal rooms and each room is approximately 13 feet high, 33 feet wide and 300 feet long. Mining and outfitting, which includes installation of electricity, monitoring equipment and air regulating bulkheads, of a panel takes about two to two and a half years. Once the mining and outfitting are completed,

186

Solar air heating system for combined DHW and space heating  

E-Print Network (OSTI)

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren �stergaard Jensen

187

Microgap flat panel display  

DOE Patents (OSTI)

A microgap flat panel display which includes a thin gas-filled display tube that utilizes switched X-Y "pixel" strips to trigger electron avalanches and activate a phosphor at a given location on a display screen. The panel utilizes the principal of electron multiplication in a gas subjected to a high electric field to provide sufficient electron current to activate standard luminescent phosphors located on an anode. The X-Y conductive strips of a few micron widths may for example, be deposited on opposite sides of a thin insulating substrate, or on one side of the adjacent substrates and function as a cathode. The X-Y strips are separated from the anode by a gap filled with a suitable gas. Electrical bias is selectively switched onto X and Y strips to activate a "pixel" in the region where these strips overlap. A small amount of a long-lived radioisotope is used to initiate an electron avalanche in the overlap region when bias is applied. The avalanche travels through the gas filled gap and activates a luminescent phosphor of a selected color. The bias is adjusted to give a proportional electron multiplication to control brightness for given pixel.

Wuest, Craig R. (Danville, CA)

1998-01-01T23:59:59.000Z

188

Efficient Low-Lift cooling with Radiant Distribution, Thermal Storage and Variable-Speed Chiller Controls Part II: Annual Energy Use and Savings  

DOE Green Energy (OSTI)

This paper evaluates the potential cooling efficiency improvements to be gained by integrating radiant cooling, cool storage, and variable-speed compressor and transport motor controls.

Armstrong, Peter; Jiang, Wei; Winiarski, David W.; Katipamula, Srinivas; Norford, L. K.

2009-03-31T23:59:59.000Z

189

Thermal insulations using vacuum panels  

DOE Patents (OSTI)

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

190

Heat Distribution Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distribution Systems Distribution Systems Heat Distribution Systems May 16, 2013 - 5:26pm Addthis Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Heat is distributed through your home in a variety of ways. Forced-air systems use ducts that can also be used for central air conditioning and heat pump systems. Radiant heating systems also have unique heat distribution systems. That leaves two heat distribution systems -- steam radiators and hot water radiators. Steam Radiators Steam heating is one of the oldest heating technologies, but the process of boiling and condensing water is inherently less efficient than more modern systems, plus it typically suffers from significant lag times between the

191

Total System Performance Assessment Peer Review Panel | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total System Performance Assessment Peer Review Panel Total System Performance Assessment Peer Review Panel Total System Performance Assessment Peer Review Panel Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain. TSPA First Interim Report - June 20, 1997 TSPA Second Interim Report - December 12, 1997 TSPA Third Interim Report - March, 1998 TSPA Final Report - February 11, 1999 Joint NEA-IAEA International Peer Review of the Yucca Mountain Site Characterization Project's Total System Performance Assessment Supporting the Site Recommendation Process - December, 2001 More Documents & Publications Yucca Mountain Science and Engineering Report TSPA Model Development and Sensitivity Analysis of Processes Affecting Performance of a Salt Repository for Disposal of Heat-Generating Nuclear

192

Total System Performance Assessment Peer Review Panel | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total System Performance Assessment Peer Review Panel Total System Performance Assessment Peer Review Panel Total System Performance Assessment Peer Review Panel Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain. TSPA First Interim Report - June 20, 1997 TSPA Second Interim Report - December 12, 1997 TSPA Third Interim Report - March, 1998 TSPA Final Report - February 11, 1999 Joint NEA-IAEA International Peer Review of the Yucca Mountain Site Characterization Project's Total System Performance Assessment Supporting the Site Recommendation Process - December, 2001 More Documents & Publications Yucca Mountain Science and Engineering Report TSPA Model Development and Sensitivity Analysis of Processes Affecting Performance of a Salt Repository for Disposal of Heat-Generating Nuclear

193

NREL: News Feature - Building Panels Protect, Provide Comfort  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Panels Protect, Provide Comfort Building Panels Protect, Provide Comfort October 30, 2009 Walking into a building constructed before the days of heating systems and air conditioning, such as a southwestern adobe, still elicits a sense of comfort and coziness. The concept of using thermal mass in walls to help maintain the temperature of a building is not new. And now, this tried and true method is being used to regulate comfort systems of NREL's Research Support Facilities (RSF), one of the most energy efficient buildings in the world. "In this case, the exterior skin of the building is doing more than just keeping the weather out," Philip Macey, project manager for RNL, the design firm for the RSF, said. "Precast panels installed as the walls are actually part of the heating and cooling system for the building.

194

Solar photovoltaic panels tracking system  

Science Conference Proceedings (OSTI)

This research project concentrates on the design and control of a two-degrees-of-freedom orientation system for the photovoltaic solar panels in sunny regions which are considered very rich in solar energy. A brief background on the sun path and behavior ... Keywords: altitude, azimuth, closed-loop control, open-loop control, orientation, sensor, solar photovoltaic panels, solar tracking

Ahmed Abu Hanieh

2010-05-01T23:59:59.000Z

195

Electric Resistance Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

196

Electric Resistance Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

197

Reducing heat loss from the energy absorber of a solar collector  

DOE Patents (OSTI)

A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

Chao, Bei Tse (Urbana, IL); Rabl, Ari (Downers Grove, IL)

1976-01-01T23:59:59.000Z

198

Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones  

E-Print Network (OSTI)

In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones. The analysis shows that the low-temperature radiant floor heating system is more suitable for natural gas- condensing water boilers. It is more comfortable, more economical, and can save more energy than other heating systems.

Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

2006-01-01T23:59:59.000Z

199

Panelized wall system with foam core insulation  

DOE Patents (OSTI)

A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

Kosny, Jan (Oak Ridge, TN); Gaskin, Sally (Houston, TX)

2009-10-20T23:59:59.000Z

200

Exascale Workshop Panel Report Meeting  

SciTech Connect

The Exascale Review Panel consists of 12 scientists and engineers with experience in various aspects of high-performance computing and its application, development, and management. The Panel hear presentations by several representatives of the workshops and town meetings convened over the past few years to examine the need for exascale computation capability and the justification for a U.S. Department of Energy (DOE) program to develop such capability. This report summarizes information provided by the presenters and substantial written reports to the Panel in advance of the meeting in Washington D.C. on January 19-20, 2010. The report also summarizes the Panel's conclusions with regard to the justification of a DOE-led exascale initiative.

Khaleel, Mohammad A.

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Exascale Workshop Panel Report Meeting  

SciTech Connect

The Exascale Review Panel consists of 12 scientists and engineers with experience in various aspects of high-performance computing and its application, development, and management. The Panel hear presentations by several representatives of the workshops and town meetings convened over the past few years to examine the need for exascale computation capability and the justification for a U.S. Department of Energy (DOE) program to develop such capability. This report summarizes information provided by the presenters and substantial written reports to the Panel in advance of the meeting in Washington D.C. on January 19-20, 2010. The report also summarizes the Panel's conclusions with regard to the justification of a DOE-led exascale initiative.

Khaleel, Mohammad A.

2010-07-01T23:59:59.000Z

202

IBM's New Flat Panel Displays  

NLE Websites -- All DOE Office Websites (Extended Search)

by J. Sthr (SSRL), M. Samant (IBM), J. Lning (SSRL) Today's laptop computers utilize flat panel displays where the light transmission from the back to the front of the display...

203

Comparative Testing of the Combined Radiant Barrier and Duct Models in the ESL's Code-Compliant Simulation Model  

E-Print Network (OSTI)

This report presents a study of the application of the radiant barrier / duct models to the DOE-2.1e simulation program based on the previous methods (eQuest version 3.55 and EnergyGauge version 2.42) and the comparison of the results of the ESL’s model and the EnergyGauge program by the Florida Solar Energy Center (FSEC). Sensitivity analyses were performed by varying duct insulation level, supply duct area, return duct area, supply duct leakage, return duct leakage, and ceiling insulation levels. The results of sensitivity analyses show acceptable agreement versus the EnergyGauge program for duct insulation level, supply duct area, return duct area, supply duct leakage, and ceiling insulation level. Significant differences in the return duct leakage calculations were observed. These comparisons show the ESL model is more sensitive to return duct leakage than the EnergyGauge model Comparison of the results of the duct model for two cases (with radiant barrier and without radiant barrier) show acceptable agreements for the parameters of duct insulation, supply duct surface area, return duct surface area, supply duct leakage and ceiling insulation. The results of savings (with and without radiant barriers) indicate that the ESL model shows slightly more savings for all parameters. In terms of the sensitivity of the results, the ESL model also shows more sensitivity for all parameters except supply duct leakage.

Kim, S.; Haberl, J. S.

2007-07-10T23:59:59.000Z

204

The Annual Cycle of Earth Radiation Budget from Clouds and the Earth’s Radiant Energy System (CERES) Data  

Science Conference Proceedings (OSTI)

The seasonal cycle of the Earth radiation budget is investigated by use of data from the Clouds and the Earth’s Radiant Energy System (CERES). Monthly mean maps of reflected solar flux and Earth-emitted flux on a 1° equal-angle grid are used for ...

Pamela E. Mlynczak; G. Louis Smith; David R. Doelling

2011-12-01T23:59:59.000Z

205

Analysis of 3-panel and 4-panel microscale ionization sources  

Science Conference Proceedings (OSTI)

Two designs of a microscale electron ionization (EI) source are analyzed herein: a 3-panel design and a 4-panel design. Devices were fabricated using microelectromechanical systems technology. Field emission from carbon nanotube provided the electrons for the EI source. Ion currents were measured for helium, nitrogen, and xenon at pressures ranging from 10{sup -4} to 0.1 Torr. A comparison of the performance of both designs is presented. The 4-panel microion source showed a 10x improvement in performance compared to the 3-panel device. An analysis of the various factors affecting the performance of the microion sources is also presented. SIMION, an electron and ion optics software, was coupled with experimental measurements to analyze the ion current results. The electron current contributing to ionization and the ion collection efficiency are believed to be the primary factors responsible for the higher efficiency of the 4-panel microion source. Other improvements in device design that could lead to higher ion source efficiency in the future are also discussed. These microscale ion sources are expected to find application as stand alone ion sources as well as in miniature mass spectrometers.

Natarajan, Srividya; Parker, Charles B.; Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Piascik, Jeffrey R.; Gilchrist, Kristin H. [Center for Materials and Electronic Technologies, RTI International, Research Triangle Park, North Carolina 27709 (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Center for Materials and Electronic Technologies, RTI International, Research Triangle Park, North Carolina 27709 (United States)

2010-06-15T23:59:59.000Z

206

Detector Advisory Panel (DAP) Report  

NLE Websites -- All DOE Office Websites (Extended Search)

ATLAS Project Manager's Review ATLAS Project Manager's Review 1-2 April 2010 Panel Members Lothar Bauerdick, FNAL Ray Larsen, SLAC Ronald Lipton, FNAL David Morrison, BNL Robert Roser, FNAL Steve Wolbers, FNAL Brookhaven National Laboratory Upton, New York 10 May 2010 Executive Summary The Detector and Computing Advisory Panels (DAP and CAP) reviewed the status and plans of the US-ATLAS Program at Brookhaven National Laboratory on April 1-2, 2010. The Panel was extremely pleased to hear of the highly successful commissioning of the ATLAS detector during early LHC collisions. The detector operated successfully, with no worse than 97% active channel count in any subsystem, from the start of collisions. There appears to be an excellent understanding of the detector performance via simulations. The BNL computing center has

207

Plasma Panel Based Radiation Detectors  

Science Conference Proceedings (OSTI)

The plasma panel sensor (PPS) is a gaseous micropattern radiation detector under current development. It has many operational and fabrication principles common to plasma display panels (PDPs). It comprises a dense matrix of small, gas plasma discharge cells within a hermetically sealed panel. As in PDPs, it uses non-reactive, intrinsically radiation-hard materials such as glass substrates, refractory metal electrodes, and mostly inert gas mixtures. We are developing these devices primarily as thin, low-mass detectors with gas gaps from a few hundred microns to a few millimeters. The PPS is a high gain, inherently digital device with the potential for fast response times, fine position resolution (< 50 m RMS) and low cost. In this paper we report here on prototype PPS experimental results in detecting betas, protons and cosmic muons, and we extrapolate on the PPS potential for applications including detection of alphas, heavy-ions at low to medium energy, thermal neutrons and X-rays.

Friedman, Dr. Peter S. [Integrated Sensors, LLC; Varner Jr, Robert L [ORNL; Ball, Robert [University of Michigan; Beene, James R [ORNL; Ben Moshe, M. [Tel Aviv University; Benhammou, Yan [Tel Aviv University; Chapman, J. Wehrley [University of Michigan; Etzion, E [Tel Aviv University; Ferretti, Claudio [University of Michigan; Bentefour, E [Ion Beam Applications; Levin, Daniel S. [University of Michigan; Moshe, M. [Tel Aviv University; Silver, Yiftah [Tel Aviv University; Weaverdyck, Curtis [University of Michigan; Zhou, Bing [University of Michigan

2013-01-01T23:59:59.000Z

208

Solar Decathlon Technology Spotlight: Structural Insulated Panels |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decathlon Technology Spotlight: Structural Insulated Panels Decathlon Technology Spotlight: Structural Insulated Panels Solar Decathlon Technology Spotlight: Structural Insulated Panels September 20, 2011 - 7:13am Addthis These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) Alexis Powers EDITOR'S NOTE: Originally posted on the Solar Decathlon News Blog on September 19, 2011. Editor's Note: This post is one of a series of technology spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Structural insulated panels (SIPs) are prefabricated structural elements

209

Clouds and the Earth''s Radiant Energy System (CERES) Algorithm Theoretical Basis Document. Volume II-Geolocation, Calibration, and ERBE-Like Analyses (Subsystems 1-3)  

Science Conference Proceedings (OSTI)

The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth''s Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies ...

Team CERES Science

1995-12-01T23:59:59.000Z

210

Top-of-Atmosphere Direct Radiative Effect of Aerosols over the Tropical Oceans from the Clouds and the Earth's Radiant Energy System (CERES) Satellite Instrument  

Science Conference Proceedings (OSTI)

Nine months of the Clouds and the Earth's Radiant Energy System (CERES)/Tropical Rainfall Measuring Mission (TRMM) broadband fluxes combined with the TRMM visible infrared scanner (VIRS) high-resolution imager measurements are used to estimate ...

Norman G. Loeb; Seiji Kato

2002-06-01T23:59:59.000Z

211

Peg supported thermal insulation panel  

DOE Patents (OSTI)

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

1985-01-01T23:59:59.000Z

212

Peg supported thermal insulation panel  

DOE Patents (OSTI)

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

Nowobilski, J.J.; Owens, W.J.

1985-04-30T23:59:59.000Z

213

Development and extended operation of a high power radiation loaded heat pipe  

SciTech Connect

A high temperature, high power molybdenum-lithium heat pipe has been fabricated and tested at 1500 K for 1700 hours with radiant heat rejection. Power throughput during the test was approximately 14 kW, corresponding to an axial flux density of 11 kW/cm/sup 2/ for the 1.59 cm diameter heat pipe. Radial flux density was 70 W/cm/sup 2/ over an evaporator length of 40.0 cm. Condenser length was approximately 150 cm with radiant heat rejection from the condenser to a coaxial water cooled radiation calorimeter. A plasma sprayed, high emissivity coating was used on the condenser surface to increase the radiant heat rejection during the tests. The heat pipe was operated for 514 hours at steady state conditions before being damaged during a planned shutdown for test equipment maintenance. The damage was repaired and the initial 1000 hour test period completed without further incident. After physical examination of the heat pipe at 1000 hours the test was resumed and the heat pipe operated at the same conditions for an additional 700 hours before conclusion of this test phase.

Merrigan, M.A.; Keddy, E.S.; Runyan, J.R.; Martinez, H.E.

1984-06-01T23:59:59.000Z

214

Building Energy Software Tools Directory: Panel Shading  

NLE Websites -- All DOE Office Websites (Extended Search)

Panel Shading Panel Shading lets you optimize the geometry of rows of flat-plate solar collectors (PV or solar thermal) by visualizing on an annual basis how much the rows shade...

215

MODIFICATIONS TO THE WIPP PANEL CLOSURE  

NLE Websites -- All DOE Office Websites (Extended Search)

Methods Assessment for Run-of-Mine Salt Panel Closures, Interim Report For Scenario 1 Testing, Washington TRU Solutions, Carlsbad New Mexico. Appendix 1-A 1-A-54 of 100 Panel...

216

Solar reflection panels - Energy Innovation Portal  

A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front surface of the composite panel. The composite ...

217

Solar Reflection Panels - Energy Innovation Portal  

Patent 7,077,532: Solar reflection panels A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front ...

218

Carports with Solar Panels do Double Duty for Navy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carports with Solar Panels do Double Duty for Navy Carports with Solar Panels do Double Duty for Navy Carports with Solar Panels do Double Duty for Navy May 14, 2010 - 12:22pm Addthis Joshua DeLung What does this project do? In total, all of China Lake's solar PV projects generate enough electricity a year to power up to 1,200 houses on the grid provided by Southern California Edison, the local utility. The base estimates that it saves about $557,000 a year from the solar panels. At Naval Air Weapons Station China Lake, heat is a fact of life. The base is located on the edge of the Mojave Desert near Ridgecrest, Calif., where the blistering summer heat can actually peel the paint off cars. Longtime desert residents know how to deal with it, but thanks to an ongoing environmental program, many base employees no longer have to do so. Since

219

Optimization of Combustion Efficiency for Supplementally Fired Gas Turbine Cogenerator Exhaust Heat Receptors  

E-Print Network (OSTI)

A broad range of unique cogeneration schemes are being installed or considered for application in the process industries involving gas turbines with heat recovery from the exhaust gas. Depending on the turbine design, exhaust gases will range from 800 to 1000 F with roughly 15 to 18 percent remaining oxygen. The overall heat utilization efficiency and the net effective heat rate of the cogenerating facility varies widely with the degree of supplemental firing of the heat receptor. This effect is explained and its economic significance defined. Other effects are also explored, such as adiabatic and equilibrium combustion temperatures; and variations in radiant versus convection heat transfer in the heat receptor furnace or boiler.

Waterland, A. F.

1984-01-01T23:59:59.000Z

220

IOM panel recommends tripling vitamin D intake: Panel’s conservative approach receives criticism  

Science Conference Proceedings (OSTI)

The 102nd AOCS Annual Meeting & Expo, held in Cincinnati, Ohio, USA, May 1–4, 2011, featured a Hot Topic Symposium and subsequent panel discussion on the new intake recommendations for vitamin D made by the US Institute of Medicine. Science and health writ

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Novel Lamination Method for Large Armor Panels  

Science Conference Proceedings (OSTI)

New Saccharification Process of Cellulosic Biomass by Microwave Irradiation · Novel Lamination Method for Large Armor Panels · Raman Spectroscopy for ...

222

Structural Interactions in Spatial Panels  

E-Print Network (OSTI)

; Pesaran et al., 2004, Holly et al., 2008), socio-cultural distance (Conley and Topa, 2002; Bhattacharjee and Jensen-Butler, 2005), and transportation costs and time (Gibbons and Machin, 2005; Bhattacharjee and Jensen-Butler, 2005) have been highlighted... at higher lags in the dynamic panel data model), who are correlated with the above set of endogenous variables, but not with the idiosyncratic errors ?1?? ?2?? ? ? ? ? ??? from the interaction error equation (2). In social networks agents who have weak ties...

Bhattacharjee, Arnab; Holly, Sean

223

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Supercritical O2-Based PC Boiler  

Science Conference Proceedings (OSTI)

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Supercritical Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE, Siemens, and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by forced circulation to the waterwalls at the periphery and divisional wall panels within the furnace. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) with cryogenic air separation unit (ASU) and (2) with oxygen ion transport membrane (OITM). The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from T2 to T92. Compared to the air-fired heat recovery area (HRA), the oxygen-fired HRA total heat transfer surface is 35% less for the cryogenic design and 13% less for the OITM design due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are nearly the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are similar.

Andrew Seltzer

2006-05-01T23:59:59.000Z

224

Assessment of Energy Use and Comfort in Buildings Utilizing Mixed-Mode Controls with Radiant Cooling  

E-Print Network (OSTI)

can often be met by cooling towers, heat exchange with theradiant surfaces, and cooling towers that chill water toby evaporative chillers or cooling towers) and/or night

Borgeson, Samuel Dalton

2010-01-01T23:59:59.000Z

225

Solar Panels Â… A Life Story  

NLE Websites -- All DOE Office Websites (Extended Search)

PLAN PLAN Solar Panels: A Life Story Grade Level: 7-9 Subjects: Science & Economics Length: 3-4 Class Periods Solar Panels - A Life Story INTRODUCTION As solar power gains popularity, solar panels are quickly becoming a part of everyday life. However, the public knows surprisingly little about these energy sources. Where do solar panels come from? How do they work? How much do they really cost? This lesson plan will guide students toward answers by exploring the many factors that influence how solar panels are manufactured. LESSON OVERVIEW Grade Level & Subject: 7 - 9, Science and Economics Length: 3 - 4 class periods Objectives: After completing this lesson, students will be able to: ï‚· Identify the raw materials that comprise a solar (photovoltaic, or PV) panel, where

226

Multi-clad black display panel  

DOE Patents (OSTI)

A multi-clad black display panel, and a method of making a multi-clad black display panel, are disclosed, wherein a plurality of waveguides, each of which includes a light-transmissive core placed between an opposing pair of transparent cladding layers and a black layer disposed between transparent cladding layers, are stacked together and sawed at an angle to produce a wedge-shaped optical panel having an inlet face and an outlet face.

Veligdan, James T. (Manorville, NY); Biscardi, Cyrus (Bellport, NY); Brewster, Calvin (North Patchogue, NY)

2002-01-01T23:59:59.000Z

227

Building Energy Software Tools Directory: Panel Shading  

NLE Websites -- All DOE Office Websites (Extended Search)

Audience Architects, builders, homeowners, passive solar designers, energy analysts, solar energy system installers. Input Location, surface tilt, panel spacing, tilt, and...

228

Radio Frequency Lamination for Photovoltaic Panels  

Science Conference Proceedings (OSTI)

Strategies for overcoming residual stress in interlayers surrounding embedded PV cells will be discussed. Working prototypes of RF laminated solar panels will ...

229

Powder Panels for Dry Bay Fire Protection  

Science Conference Proceedings (OSTI)

... powder panel by a rotor blade resulted in ... by one of the vehicle manufacturers for the ... specific requirement is proprietary to the manufacturer, but will ...

2011-10-20T23:59:59.000Z

230

Sandia National Laboratories Solar Reflection Panels  

Sandia National Laboratories Solar Reflection Panels HTTPS://IP.SANDIA.GOV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia ...

231

Solar Decathlon Technology Spotlight: Structural Insulated Panels...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2011 - 7:13am Addthis These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) These...

232

Gas-Filled Panels, High Performance Insulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Filled Panels high performance insulation Windows & Daylighting | Building Technologies | Environmental Energy Technologies Division | Berkeley Lab gfp4b.jpg (5624 bytes)...

233

Effects of solar photovoltaic panels on roof heat transfer  

E-Print Network (OSTI)

PV) systems for building insulation are quantified  through 0.09 to 0.75  on a building without insulation resulted in to 0.75 on a building with R?30 insulation (an addition of 

Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

2011-01-01T23:59:59.000Z

234

Genetic structure, consanguineous marriages and economic development: Panel cointegration and panel cointegration neural network analyses  

Science Conference Proceedings (OSTI)

Consanguineous marriages and their effects on human beings in light of biological effects of genetic sicknesses are discussed in many studies. Among many, the likelihood of sicknesses such as phenylketonuria, thalassemia, Landsteiner-Fanconi-Anderson's ... Keywords: Cansanguine marriage, Economic development, Economic growth, Human genetics, Panel cointegration MLP model, Panel data analysis, Panel neural network analysis

Melike Bildirici; Özgür Ömer Ersin; Meltem Kökdener

2011-05-01T23:59:59.000Z

235

JGI - CSP Proposal Study Panel  

NLE Websites -- All DOE Office Websites (Extended Search)

User Programs User Programs Project Management Office Community Science Program Emerging Technologies Opportunity Program Technology Development Pilot Program Genomic Encyc. of Bacteria and Archaea MyJGI: Information for Collaborators The CSP Proposal Study Panel CSP | Overview | How to Propose a Project | Review Process | DOE Relevance Proposal Schedule | Project Management | Forms | FAQ | People and Contacts Members Nina Agabian University of California, San Francisco, http://www.ucsf.edu Chris Amemiya Benaroya Research Institute at Virginia Mason, http://www.benaroyaresearch.org Gary L. Andersen Lawrence Berkeley National Laboratory, http://www.lbl.gov Jo Ann Banks Purdue University, http://www.purdue.edu John Battista Louisiana State University, http://www.lsu.edu Fred Brockman

236

AQUEOUS HOMOGENEOUS REACTORTECHNICAL PANEL REPORT  

Science Conference Proceedings (OSTI)

Considerable interest has been expressed for developing a stable U.S. production capacity for medical isotopes and particularly for molybdenum- 99 (99Mo). This is motivated by recent re-ductions in production and supply worldwide. Consistent with U.S. nonproliferation objectives, any new production capability should not use highly enriched uranium fuel or targets. Conse-quently, Aqueous Homogeneous Reactors (AHRs) are under consideration for potential 99Mo production using low-enriched uranium. Although the Nuclear Regulatory Commission (NRC) has guidance to facilitate the licensing process for non-power reactors, that guidance is focused on reactors with fixed, solid fuel and hence, not applicable to an AHR. A panel was convened to study the technical issues associated with normal operation and potential transients and accidents of an AHR that might be designed for isotope production. The panel has produced the requisite AHR licensing guidance for three chapters that exist now for non-power reactor licensing: Reac-tor Description, Reactor Coolant Systems, and Accident Analysis. The guidance is in two parts for each chapter: 1) standard format and content a licensee would use and 2) the standard review plan the NRC staff would use. This guidance takes into account the unique features of an AHR such as the fuel being in solution; the fission product barriers being the vessel and attached systems; the production and release of radiolytic and fission product gases and their impact on operations and their control by a gas management system; and the movement of fuel into and out of the reactor vessel.

Diamond, D.J.; Bajorek, S.; Bakel, A.; Flanagan, G.; Mubayi, V.; Skarda, R.; Staudenmeier, J.; Taiwo, T.; Tonoike, K.; Tripp, C.; Wei, T.; Yarsky, P.

2010-12-03T23:59:59.000Z

237

Handbook of radiative heat transfer in high-temperature gases  

Science Conference Proceedings (OSTI)

This work offers both an original method for calculating optical properties of low-temperature plasma at elevated densities ... and an effective new means for calculating radiative heat transfer in hot gases and plasma with arbitrary temperature and pressure distributions. These methods allow for automatic accounting of all details of the plasma spectrum, including the line structure. This volume contains radiant transfer in problems of heat transfer; integration over frequency; methods of partial characteristics; method of effective populations; calculation of partial characteristics; appendix: tabular data.

Soloukhin, R.I.; Golovnev, I.F.; Zamurayev, V.P.; Katsnelson, S.S.; Kovalskaya, G.A.; Sevastyanenko, V.G.; Soloukhin, R.I.

1987-01-01T23:59:59.000Z

238

Expert Panel: Forecast Future Demand for Medical Isotopes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expert Panel: Expert Panel: Forecast Future Demand for Medical Isotopes March 1999 Expert Panel: Forecast Future Demand for Medical Isotopes September 25-26, 1998 Arlington, Virginia The Expert Panel ............................................................................................. Page 1 Charge To The Expert Panel........................................................................... Page 2 Executive Summary......................................................................................... Page 3 Introduction ...................................................................................................... Page 4 Rationale.......................................................................................................... Page 6 Economic Analysis...........................................................................................

239

Kingspan Insulated Panels: Order (2013-CE-5353)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Kingspan Insulated Panels, Inc. to pay a $8,000 civil penalty after finding Kingspan Insulated Panels had failed to certify that any basic models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

240

Solar heating system  

DOE Patents (OSTI)

An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Improved solar heating systems  

DOE Patents (OSTI)

An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

Schreyer, J.M.; Dorsey, G.F.

1980-05-16T23:59:59.000Z

242

Solar heated building structure  

Science Conference Proceedings (OSTI)

A solar heated building structure comprises an exterior shell including side walls and a roof section with the major portion of the roof section comprised of light transmitting panels or panes of material to permit passage of sunlight into the attic section of the building structure. The structure is provided with a central vertical hollow support column containing liquid storage tanks for the circulation and collection of heated water from a flexible conduit system located on the floor of the attic compartment. The central column serves as a heating core for the structure and communicates by way of air conduits or ducts with the living areas of the structure. Fan means are provided for continuously or intermittently circulating air over the hot water storage tanks in the core to transfer heat therefrom and distribute the heated air into the living areas.

Rugenstein, R.W.

1980-03-11T23:59:59.000Z

243

Report of the Federal Internetworking Requirements Panel  

SciTech Connect

The Federal Internetworking Requirements Panel (FIRP) was established by the National Institute of Standards and Technology (NIST) to reassess Federal requirements for open systems networks and to recommend policy on the Government`s use of networking standards. The Panel was chartered to recommend actions which the Federal Government can take to address the short and long-term issues of interworking and convergence of networking protocols--particularly the Internet Protocol Suite (IPS) and Open Systems Interconnection (OSI) protocol suite and, when appropriate, proprietary protocols. The Panel was created at the request of the Office of Management and Budget in collaboration with the Federal Networking Council and the Federal Information Resources Management Policy Council. The Panel`s membership and charter are contained in an appendix to this report.

1994-05-31T23:59:59.000Z

244

Thin film photovoltaic panel and method  

DOE Patents (OSTI)

A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

1991-06-11T23:59:59.000Z

245

Validation of Geolocation of Measurements of the Clouds and the Earth’s Radiant Energy System (CERES) Scanning Radiometers aboard Three Spacecraft  

Science Conference Proceedings (OSTI)

The Clouds and the Earth’s Radiant Energy System (CERES) instrument is a scanning radiometer for measuring Earth-emitted and -reflected solar radiation to understand Earth’s energy balance. One CERES instrument was placed into orbit aboard the ...

G. Louis Smith; Kory J. Priestley; Phillip C. Hess; Chris Currey; Peter Spence

2009-11-01T23:59:59.000Z

246

Cloud Effects on the Meridional Atmospheric Energy Budget Estimated from Clouds and the Earth’s Radiant Energy System (CERES) Data  

Science Conference Proceedings (OSTI)

The zonal mean atmospheric cloud radiative effect, defined as the difference between the top-of-the-atmosphere (TOA) and surface cloud radiative effects, is estimated from 3 yr of Clouds and the Earth’s Radiant Energy System (CERES) data. The ...

Seiji Kato; Fred G. Rose; David A. Rutan; Thomas P. Charlock

2008-09-01T23:59:59.000Z

247

Solar-receiver heat-flux capability and structural integrity. Final report  

DOE Green Energy (OSTI)

An experimental program was conducted to determine the operating characteristics of full length (65 feet) single and multi-tube once-through steam generator test sections subjected to radiant heat flux levels commensurate with commercial solar tower receiver application. Absorbed heat flux levels ranging from 0.15 to 0.71 Btu/in./sup 2/-sec (0.25 to 1.16 MW/m/sup 2/) were achieved in a horizontal facility utilizing graphite radiant heater arrays. Steam exit temperatures ranged from 625 F (two-phase) to 1380 F at pressures of 1000 to 2300 psia. Wall temperature profiles and fluid pressure losses were obtained and compared with an existing computer model.

Tobin, R.D.

1976-05-01T23:59:59.000Z

248

Structural Analysis of Sandwich Foam Panels  

SciTech Connect

The Sandwich Panel Technologies including Structural Insulated Panels (SIPs) can be used to replace the conventional wooden-frame construction method. The main purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and SGI Venture, Inc. was to design a novel high R-value type of metal sandwich panelized technology. This CRADA project report presents design concept discussion and numerical analysis results from thermal performance study of this new building envelope system. The main objective of this work was to develop a basic concept of a new generation of wall panel technologies which will have R-value over R-20 will use thermal mass to improve energy performance in cooling dominated climates and will be 100% termite resistant. The main advantages of using sandwich panels are as follows: (1) better energy saving structural panels with high and uniform overall wall R-value across the elevation that could not be achieved in traditional walls; and (2) reducing the use of raw materials or need for virgin lumber. For better utilization of these Sandwich panels, engineers need to have a thorough understanding of the actual performance of the panels and system. Detailed analysis and study on the capacities and deformation of individual panels and its assembly have to be performed to achieve that goal. The major project activity was to conduct structural analysis of the stresses, strains, load capacities, and deformations of individual sandwich components under various load cases. The analysis simulated the actual loading conditions of the regular residential building and used actual material properties of the steel facings and foam.

Kosny, Jan [ORNL; Huo, X. Sharon [Tennessee Technological University

2010-04-01T23:59:59.000Z

249

Recommendations of the industry advisory panel on geothermal reservoir definition  

DOE Green Energy (OSTI)

The objectives of the August 1984 meeting of the advisory panel are listed. The panel's comments on DOE's Geothermal Program and industry's needs and priorities are presented. (MHR)

Gulati, M.S.; Lippmann, M.J.

1985-01-01T23:59:59.000Z

250

Performance Standard for Wood-Based Structural-Use Panels  

Science Conference Proceedings (OSTI)

... except that Structural I panels meet additional requirements in this Standard for cross-panel strength and stiffness and for racking load performance ...

2011-06-10T23:59:59.000Z

251

Ultrafast thermal cycling of solar panels  

SciTech Connect

Two new cyclers that utilize a novel hybrid approach to perform fast thermal cycling of solar panels have been built and are now operational in the Mechanics and Materials Technology Center at The Aerospace Corporation. These cyclers are part of a continuing effort to minimize solar cell life test durations by accelerating the cycling rates. These fully automated cyclers, which provide continuous unmanned cycling in a gaseous nitrogen atmosphere, can execute 5 min cycles, thus yielding in excess of 100,000 cycles per year. They also have a unique capability of verifying solar panel functionality without interruption of cycling, so that cycling doesn`t continue on nonfunctioning panels.

Wall, T.S.; Valenzuela, P.R.; Sue, C.

1998-08-15T23:59:59.000Z

252

Flat or curved thin optical display panel  

DOE Patents (OSTI)

An optical panel includes a plurality of waveguides stacked together, with each waveguide having a first end and an opposite second end. The first ends collectively define a first face, and the second ends collectively define a second face of the panel. The second face is disposed at an acute face angle relative to the waveguides to provide a panel which is relatively thin compared to the height of the second face. In an exemplary embodiment for use in a projection TV, the first face is substantially smaller in height than the second face and receives a TV image, with the second face defining a screen for viewing the image enlarged. 7 figures.

Veligdan, J.T.

1995-01-10T23:59:59.000Z

253

Development of a Heat Transfer Model for the Integrated Facade Heating  

E-Print Network (OSTI)

Façade heating is a special application of radiant heating and cooling technology and is used to enhance the indoor comfort level of offices, hotels and museums. Mullion radiators are typically used to implement façade heating. This paper analyzes the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts the measured temperatures with a root mean squared error (RMSE) of the hot water return temperature, the mullion surface temperature, and the window surface temperature of 0.90°F, 0.98°F and 1.15°F, respectively. The factors which affect the heating capacity of mullion radiators have been analyzed. The analysis shows that the supply water temperature is the primary factor which affects the heating or cooing capacity of window mullions and the mullion surface temperature. Return water temperature and mullion surface temperature are quasi-linear functions often water supply temperature. Mullion surface temperature, indoor air temperature gradient on the glazing surface within one foot from mullions is much higher than in the central part of the window. The temperatures in the central 2 feet of a 4-foot window show almost no influence by the mullion surface temperature. Also, the conductive thermal resistance of the mullion double tubes with fillings between two tubes plays a decisive role in controlling the mullion and window frame temperatures.

Gong, X.; Archer, D. H.; Claridge, D. E.

2007-01-01T23:59:59.000Z

254

Proposal Review Panel | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposal Review Panel Proposal Review Panel Submitting a proposal is the first step to access beam time at SSRL. Proposals are peer reviewed and rated by the SSRL Proposal Review Panel (PRP) on a scale from 1 (highest) to 5 (lowest). Successful proposals are eligble to request and may be awarded beam time on SSRL beam lines, with priority given to the highest rated proposals and those which demonstrate efficient and productive use of beam time. We have three proposal calls per year with one on-site PRP meeting at SSRL annually. Access Policy The work of the PRP is accomplished with four subpanels: BIO - The biology panel reviews proposals requesting beam time for imaging, X-ray spectroscopic studies, small-angle scattering experiments, and crystallography of biologically important samples.

255

Plasma panel-based radiation detectors  

E-Print Network (OSTI)

The plasma panel sensor (PPS) is a gaseous micropattern radiation detector under current development. It has many operational and fabrication principles common to plasma display panels. It comprises a dense matrix of small, gas plasma discharge cells within a hermetically sealed panel. As in plasma display panels, it uses nonreactive, intrinsically radiation-hard materials such as glass substrates, refractory metal electrodes, and mostly inert gas mixtures. We are developing these devices primarily as thin, low-mass detectors with gas gaps from a few hundred microns to a few millimeters. The PPS is a high gain, inherently digital device with the potential for fast response times, fine position resolution (cost. In this paper, we report on prototype PPS experimental results in detecting betas, protons, and cosmic muons, and we extrapolate on the PPS potential for applications including the detection of alphas, heavy ions at low-to-medium energy, thermal neutrons, and X-rays.

Peter Friedman; Robert Ball; James Beene; Yan Benhammou; Meny Ben-Moshe; Hassan Bentefour; J. W. Chapman; Erez Etzion; Claudio Ferretti; Daniel Levin; Yiftah Silver; Robert Varner; Curtis Weaverdyck; Bing Zhou

2013-05-10T23:59:59.000Z

256

Panels with Nonstationary Multifactor Error Structures  

E-Print Network (OSTI)

panel regressions with multifactor error structure. This paper extends this work and examines the important case where the unobserved common factors follow unit root processes and could be cointegrated. It is found that the presence of unit roots does...

Kapetanios, George; Pesaran, M Hashem; Yamagata, Takashi

257

REPOSITORY RECONFIGURATION OF PANELS 9 AND 10  

NLE Websites -- All DOE Office Websites (Extended Search)

of the text that were changed are highlighted in yellow. 2-2: PMR Section A-4 Facility Type, Pages B-6 Provide redline strike out text revising sentence from "as Panels 1...

258

Panel on future challenges in modeling methodology  

Science Conference Proceedings (OSTI)

This panel paper presents the views of six researchers and practitioners of simulation modeling. Collectively we attempt to address a range of key future challenges to modeling methodology. It is hoped that the views of this paper, and the presentations ...

Simon J. E. Taylor; Peter Lendermann; Ray J. Paul; Steven W. Reichenthal; Steffen Straßburger; Stephen J. Turner

2004-12-01T23:59:59.000Z

259

Transparent solar heat collector  

SciTech Connect

Infrared solar radiation is absorbed by a transparent converter glass for conversion of the infrared radiation into thermal energy. Liquid or air forms a transparent fluid medium that is conducted into heat transfer contact with the glass to carry the thermal energy away from the glass to a point of utilization. In one embodiment, the transparent converter glass consists of sintered particles of infrared absorptive glass located within a collector space formed within an all-glass panel. The panel includes glass walls extending outwardly of the walls forming the collector space. In a further embodiment, the transparent converter glass consists of elongated strips of infrared absorptive glass carried by support members so that the strips extend in a parallel, spaced-apart relation to form a venetian blind-like structure between glass panels. In a still further embodiment, the transparent converter glass consists of a slab of infrared absorptive glass extending vertically within a building structure to form a passageway for the flow of convectivelydriven air between the glass slab and two window panels forming a dry airspace therebetween. Instead of a thick unitary glass slab, smaller bricks of infrared absorptive glass are arranged to form courses of an internal wall within a building structure adjacent a glass window.

Deminet, C.

1980-08-12T23:59:59.000Z

260

Flat panel ferroelectric electron emission display system  

DOE Patents (OSTI)

A device is disclosed which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density. 6 figs.

Sampayan, S.E.; Orvis, W.J.; Caporaso, G.J.; Wieskamp, T.F.

1996-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Flat panel ferroelectric electron emission display system  

DOE Patents (OSTI)

A device which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density.

Sampayan, Stephen E. (Manteca, CA); Orvis, William J. (Livermore, CA); Caporaso, George J. (Livermore, CA); Wieskamp, Ted F. (Livermore, CA)

1996-01-01T23:59:59.000Z

262

Phosphors for flat panel emissive displays  

Science Conference Proceedings (OSTI)

An overview of emissive display technologies is presented. Display types briefly described include: cathode ray tubes (CRTs), field emission displays (FEDs), electroluminescent displays (ELDs), and plasma display panels (PDPs). The critical role of phosphors in further development of the latter three flat panel emissive display technologies is outlined. The need for stable, efficient red, green, and blue phosphors for RGB fall color displays is emphasized.

Anderson, M.T.; Walko, R.J.; Phillips, M.L.F.

1995-07-01T23:59:59.000Z

263

A security panel with a keypad  

DOE Patents (OSTI)

Several control panels presently use keypads to enter data. Sometimes panels require secure keypads in that they must prevent others nearby from seeing the information inputted by the keypad. The invention provides a secure keypad, which is easy to use by the user, yet is difficult for a nonuser to see. The invention places the keypad in a cavity, and provides an opening to allow access to the keypad and a window for viewing the keypad.

Banks, W.W. Jr.; Uhlig, F.

1988-09-27T23:59:59.000Z

264

Solar heat collectors. (Latest citations from the US Patent database). Published Search  

SciTech Connect

The bibliography contains selected patents concerning solar heat collector apparatus and systems. Building panels, air conditioning systems, chemical heat pumps, refrigeration systems, and controls are discussed. Applications include residential and commercial building space and water heating, greenhouse heating, and swimming pool heating. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-07-01T23:59:59.000Z

265

Progressive collapse simulation of precast panel shear walls during earthquakes  

Science Conference Proceedings (OSTI)

A distinct element method (DEM) program is modified to model precast panel shear walls. The influence of collapse time t"0 of local failure of a panel is presented. Integrity analyses of a twelve-storey, three-bay precast panel shear wall in different ... Keywords: Concrete panels, Distinct element method, Earthquakes, Failure process simulation, Progressive collapse

O. A. Pekau; Yuzhu Cui

2006-01-01T23:59:59.000Z

266

Building Technologies Office: Vacuum Insulation Panels Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Insulation Vacuum Insulation Panels Research Project to someone by E-mail Share Building Technologies Office: Vacuum Insulation Panels Research Project on Facebook Tweet about Building Technologies Office: Vacuum Insulation Panels Research Project on Twitter Bookmark Building Technologies Office: Vacuum Insulation Panels Research Project on Google Bookmark Building Technologies Office: Vacuum Insulation Panels Research Project on Delicious Rank Building Technologies Office: Vacuum Insulation Panels Research Project on Digg Find More places to share Building Technologies Office: Vacuum Insulation Panels Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research

267

Heat pipe array heat exchanger  

DOE Patents (OSTI)

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

268

Design, construction, and testing of the direct absorption receiver panel research experiment  

DOE Green Energy (OSTI)

A panel research experiment (PRE) was designed, built, and tested as a scaled-down model of a direct absorption receiver (DAR). The PRE is a 3-MW{sub t}DAR experiment that will allow flow testing with molten nitrate salt and provide a test bed for DAR testing with actual solar heating. In a solar central receiver system DAR, the heat absorbing fluid (a blackened molten nitrate salt) flows in a thin film down a vertical panel (rather than through tubes as in conventional receiver designs) and absorbs the concentrated solar flux directly. The ability of the flowing salt film to absorb flux directly. The ability of the flowing salt film to absorb the incident solar flux depends on the panel design, hydraulic and thermal fluid flow characteristics, and fluid blackener properties. Testing of the PRE is being conducted to demonstrate the engineering feasibility of the DAR concept. The DAR concept is being investigated because it offers numerous potential performance and economic advantages for production of electricity when compared to other solar receiver designs. The PRE utilized a 1-m wide by 6-m long absorber panel. The salt flow tests are being used to investigate component performance, panel deformations, and fluid stability. Salt flow testing has demonstrated that all the DAR components work as designed and that there are fluid stability issues that need to be addressed. Future solar testing will include steady-state and transient experiments, thermal loss measurements, responses to severe flux and temperature gradients and determination of peak flux capability, and optimized operation. In this paper, we describe the design, construction, and some preliminary flow test results of the Panel Research Experiment. 11 refs., 8 figs., 2 tabs.

Chavez, J.M.; Rush, E.E.; Matthews, C.W.; Stomp, J.M.; Imboden, J.; Dunkin, S.

1990-01-01T23:59:59.000Z

269

Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part I: Methodology  

Science Conference Proceedings (OSTI)

Clouds and the Earth's Radiant Energy System (CERES) investigates the critical role that clouds and aerosols play in modulating the radiative energy flow within the Earth–atmosphere system. CERES builds upon the foundation laid by previous ...

Norman G. Loeb; Natividad Manalo-Smith; Seiji Kato; Walter F. Miller; Shashi K. Gupta; Patrick Minnis; Bruce A. Wielicki

2003-02-01T23:59:59.000Z

270

Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth's Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part II: Validation  

Science Conference Proceedings (OSTI)

Top-of-atmosphere (TOA) radiative fluxes from the Clouds and the Earth's Radiant Energy System (CERES) are estimated from empirical angular distribution models (ADMs) that convert instantaneous radiance measurements to TOA fluxes. This paper ...

Norman G. Loeb; Konstantin Loukachine; Natividad Manalo-Smith; Bruce A. Wielicki; David F. Young

2003-12-01T23:59:59.000Z

271

Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part I: Methodology  

Science Conference Proceedings (OSTI)

The Clouds and Earth’s Radiant Energy System (CERES) provides coincident global cloud and aerosol properties together with reflected solar, emitted terrestrial longwave, and infrared window radiative fluxes. These data are needed to improve the ...

Norman G. Loeb; Seiji Kato; Konstantin Loukachine; Natividad Manalo-Smith

2005-04-01T23:59:59.000Z

272

Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part II: Validation  

Science Conference Proceedings (OSTI)

Errors in top-of-atmosphere (TOA) radiative fluxes from the Clouds and the Earth’s Radiant Energy System (CERES) instrument due to uncertainties in radiance-to-flux conversion from CERES Terra angular distribution models (ADMs) are evaluated ...

Norman G. Loeb; Seiji Kato; Konstantin Loukachine; Natividad Manalo-Smith; David R. Doelling

2007-04-01T23:59:59.000Z

273

Transient heat pipe investigations for space power systems  

SciTech Connect

A 4-meter long, high temperature, high power, molybdenum-lithium heat pipe has been fabricated and tested in transient and steady state operation at temperatures to 1500 K. Maximum power throughput during the tests was approximately 37 kW/cm/sup 2/ for the 1.4 cm diameter vapor space of the annular wick heat pipe. The evaporator flux density for the tests was 150.0 W/cm/sup 2/ over a length of 40 cm. Condenser length was approximately 3.0 m with radiant heat rejection from the condenser to a coaxial, water cooled radiation calorimeter. A variable radiation shield, controllable from the outside of the vacuum enclosure, was used to vary the load on the heat pipe during the tests. 1 ref., 9 figs.

Merrigan, M.A.; Keddy, E.S.; Sena, J.T.

1985-01-01T23:59:59.000Z

274

The Atomic Safety and Licensing Board Panel  

SciTech Connect

Through the Atomic Energy Act, Congress made is possible for the public to get a full and fair hearing on civilian nuclear matters. Individuals who are directly affected by any licensing action involving a facility producing or utilizing nuclear materials may participate in a formal hearing, on the record, before independent judges on the Atomic Safety and Licensing Board Panel (ASLBP or Panel). Frequently, in deciding whether a license, permit, amendment, or extension should be granted to a particular applicant, the Panel members must be more than mere umpires. If appropriate, they are authorized to go beyond the issues the parties place before them in order to identify, explore, and resolve significant questions involving threats to the public health and safety that come to a board`s attention during the proceedings. This brochure explains the purpose of the panel. Also addressed are: type of hearing handled; method of public participation; formality of hearings; high-level waste; other panel responsibilities and litigation technology.

NONE

1998-03-01T23:59:59.000Z

275

Flat or curved thin optical display panel  

DOE Patents (OSTI)

An optical panel 10 includes a plurality of waveguides 12 stacked together, with each waveguide 12 having a first end 12a and an opposite second end 12b. The first ends 12a collectively define a first face 16, and the second ends 12b collectively define a second face 18 of the panel 10. The second face 18 is disposed at an acute face angle relative to the waveguides 12 to provide a panel 10 which is relatively thin compared to the height of the second face. In an exemplary embodiment for use in a projection TV, the first face 16 is substantially smaller in height than the second face 18 and receives a TV image, with the second face 18 defining a screen for viewing the image enlarged.

Veligdan, James T. (Manorville, NY)

1995-01-10T23:59:59.000Z

276

Implementation of Safeguards and Security Policy Panels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5,2008 5,2008 MEMORANDUM FOR DISTRIBUTION FROM URITY OFFICER AND SECURITY SUBJECT: Implementation of Safeguards and Security Policy Panels The Office of Health, Safety and Security (HSS) recognizes the importance of well- conceived strategies and policies to support and communicate the security posture of the Department. In order for our security policies to properly reflect and enable Department of Energy corporate strategies, early and frequent communication between policy makers and end users is essential. As outlined in the attached HSS memo, dated December 3,2007, subject: Safeguards and Security Policy Panels, the HSS Office of Security Policy is establishing several new policy panels that will create new opportunities for communication and will include those

277

Panel Discussion | OpenEI Community  

Open Energy Info (EERE)

86 86 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142234786 Varnish cache server Panel Discussion Home Kyoung's picture Submitted by Kyoung(155) Contributor 10 October, 2012 - 09:02 GRR Workshop at GRC GRC GRR Panel Discussion workshop Last week, Tuesday (10/2), we held an all-day workshop at the Peppermill Hotel in Reno, NV. The workshop included presentations on the project background and history, status updates, analysis summary and future directions. The day ended with a panel discussion, with members including

278

Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting  

DOE Patents (OSTI)

The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

Sanders, William J. (Kansas City, KS); Snyder, Marvin K. (Overland Park, KS); Harter, James W. (Independence, MO)

1983-01-01T23:59:59.000Z

279

Panel Session III: Innovation and Coordination  

NLE Websites -- All DOE Office Websites (Extended Search)

Lessons Learned for Hydrogen Panel Session III: Innovation Panel Session III: Innovation and Coordination and Coordination ______________________________ Stefan Unnasch Life Cycle Associates 3 April 2008 2 Hydrogen Vision Life Cycle Associates 3 Hydrogen Infrastructure Today Life Cycle Associates Source: Weinert, J. X., et al.. (2005). CA Hydrogen Highway Network Blueprint Plan, Economics Report 4 Innovation and Coordination Life Cycle Associates Innovation Coordination ☯ Slow Fast Cars Codes 5 Innovation and Coordination Life Cycle Associates Innovation Coordination ☯ Slow Fast Cars Codes Fuel production and delivery technology Vehicle technology Marketing Policy Early introduction strategy GHG strategies

280

Gridcore corners the market on lightweight panels  

Science Conference Proceedings (OSTI)

When David Saltman, vice president of marketing and sales for Gridcore Systems International (GSI, Long Beach, CA), talks of his company's 100% recycled-content product, he does not start off by touting the product's environmental benefits. Instead, he delivers a litany of reasons his company's panels, which are made from waste paper and primarily used by the exhibit, entertainment, and interior design industries, are better than panels made from plywood or particle board. GSI's product is of equivalent strength but less than half the weight of these forest products. It also is cheaper to ship, easier on machinery and the work force, and customers find it more portable.

Rabasca, L.

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Installation package for concentrating solar collector panels  

DOE Green Energy (OSTI)

Northrup, Inc., has developed and delivered 300 square feet of Concentrating Solar Collector (ML Series) and Attitude Control System, under the direction of the National Aeronautics and Space Administration. The ''ML Series'' Solar Collector Panels comprise a complete package array consisting of collector panels using modified Fresnel Prismatic Lenses for a 10 to 1 concentrating ration, supporting framework, fluid manifolding and tracking drive system, in unassembled components for field erection. The Installation, Operation and Maintenance Manual, Warranty, List of Materials, Sub-Assembly drawings and Final Field Assembly Drawings are included in the package.

Not Available

1978-08-01T23:59:59.000Z

282

Testing wall panels for earthquake response  

SciTech Connect

As part of the structural response research program being conducted for the Nevada Operations Office of ERDA a testing program for the investigation of nonstructural wall panels subjected to racking was developed and conducted. The objectives of the testing program were to determine thresholds for damage to partitions due to horizontal adjacent story displacement in high-rise buildings and to gather data that can be used to determine the influence of nonstructural partitions on the structural response of high-rise buildings. In general, the wall panels were constructed to represent typical partitions used in high-rise building construction. Some of the panels were used for special parameter studies or for comparisons with other test programs. A specially designed testing frame simulated cyclic lateral displacement, parallel to the plane of the wall panels, that might be experienced during the response of a building to strong winds or earthquake motion. Stiffness and strength characteristics, estimates of equivalent viscous damping, and damage threshold results were obtained. The data appear to give a good approximate evaluation of the performance of non-load-bearing partitions under cyclic loading. (LCL)

Freeman, S.A.

1976-01-01T23:59:59.000Z

283

ROBOTIC DEVICE FOR CLEANING PHOTOVOLTAIC PANEL ARRAYS  

E-Print Network (OSTI)

output from a photovoltaic cell installed at Northeastern University., Boston, MA, USA. The graph shows to human crews and current hardware alternatives. A photovoltaic cell is an electronic device that converts1 ROBOTIC DEVICE FOR CLEANING PHOTOVOLTAIC PANEL ARRAYS MARK ANDERSON, ASHTON GRANDY, JEREMY HASTIE

Mavroidis, Constantinos

284

Terrestrial applications of bifacial photovoltaic solar panels  

Science Conference Proceedings (OSTI)

Bifacial Photovoltaic solar cells (so-called transparent bifacial photovoltaic solar cells) offer additional absorption by rear side, which is a significant advantage over ordinary Photovoltaic solar cells. A range of experiments have been done on bifacial ... Keywords: absorption, panels, photovoltaic, solar cells, terrestrial

P. Ooshaksaraei; R. Zulkifli; S. H. Zaidi; M. Alghoul; A. Zaharim; K. Sopian

2011-10-01T23:59:59.000Z

285

Federal Technical Capability Panel Conference Call Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Capability Panel Conference Call Schedule CY 2013 Time: 11:00 an -12:00pm (EST) * 10:00-11:00 am (CST) * 9:00-10:00 am (MST) * 8:00-9:00am (PST) Date Call-In Number June 19, 2013...

286

Seismic hazard analysis. Volume 5. Review panel, Ground Motion Panel, and feedback results  

SciTech Connect

The Site Specific Spectra Project (SSSP) was a multi-year study funded by the US Nuclear Regulatory Commission to provide estimates of the seismic hazards at a number of nuclear power plant sites in the Eastern US. A key element of our approach was the Peer Review Panel, which we formed in order to ensure that our use of expert opinion was reasonable. We discuss the Peer Review Panel results and provide the complete text of each member's report. In order to improve the ground motion model, an Eastern US Ground Motion Model Panel was formed. In Section 4 we tabulate the responses from the panel members to our feedback questionnaire and discuss the implications of changes introduced by them. We conclude that the net difference in seismic hazard values from those presented in Volume 4 is small and does not warrant a reanalysis. 22 figs.

Bernreuter, D.L.

1981-08-01T23:59:59.000Z

287

Teaching the classics of simulation to beginners, panel: teaching the classics of simulation to beginners (panel)  

Science Conference Proceedings (OSTI)

In order to get more people to use and understand simulation, improved teaching of simulation to beginners is important. The panel members share their experience in teaching the classic systems of simulation, used for several decades, to novice students.

Ingolf Ståhl; Raymond R. Hill; Joan M. Donohue; Henry Herper; Catherine M. Harmonosky; W. David Kelton

2003-12-01T23:59:59.000Z

288

Heat pipe heat amplifier  

SciTech Connect

In a heat pipe combination consisting of a common condenser section with evaporator sections at either end, two working fluids of different vapor pressures are employed to effectively form two heat pipe sections within the same cavity to support an amplifier mode of operation.

Arcella, F.G.

1978-08-15T23:59:59.000Z

289

Heat Pipe Integrated Microsystems  

SciTech Connect

The trend in commercial electronics packaging to deliver ever smaller component packaging has enabled the development of new highly integrated modules meeting the demands of the next generation nano satellites. At under ten kilograms, these nano satellites will require both a greater density electronics and a melding of satellite structure and function. Better techniques must be developed to remove the subsequent heat generated by the active components required to-meet future computing requirements. Integration of commercially available electronics must be achieved without the increased costs normally associated with current generation multi chip modules. In this paper we present a method of component integration that uses silicon heat pipe technology and advanced flexible laminate circuit board technology to achieve thermal control and satellite structure. The' electronics/heat pipe stack then becomes an integral component of the spacecraft structure. Thermal management on satellites has always been a problem. The shrinking size of electronics and voltage requirements and the accompanying reduction in power dissipation has helped the situation somewhat. Nevertheless, the demands for increased onboard processing power have resulted in an ever increasing power density within the satellite body. With the introduction of nano satellites, small satellites under ten kilograms and under 1000 cubic inches, the area available on which to place hot components for proper heat dissipation has dwindled dramatically. The resulting satellite has become nearly a solid mass of electronics with nowhere to dissipate heat to space. The silicon heat pipe is attached to an aluminum frame using a thermally conductive epoxy or solder preform. The frame serves three purposes. First, the aluminum frame provides a heat conduction path from the edge of the heat pipe to radiators on the surface of the satellite. Secondly, it serves as an attachment point for extended structures attached to the satellite such as solar panels, radiators, antenna and.telescopes (for communications or sensors). Finally, the packages make thermal contact to the surface of the silicon heat pipe through soft thermal pads. Electronic components can be placed on both sides of the flexible circuit interconnect. Silicon heat pipes have a number of advantages over heat pipe constructed from other materials. Silicon heat pipes offer the ability to put the heat pipe structure beneath the active components of a processed silicon wafer. This would be one way of efficiently cooling the heat generated by wafer scale integrated systems. Using this technique, all the functions of a satellite could be reduced to a few silicon wafers. The integration of the heat pipe and the electronics would further reduce the size and weight of the satellite.

Gass, K.; Robertson, P.J.; Shul, R.; Tigges, C.

1999-03-30T23:59:59.000Z

290

Design considerations for a thermophotovoltaic energy converter using heat pipe radiators  

DOE Green Energy (OSTI)

The purpose of this paper is to discuss concepts for using high temperature heat pipes to transport energy from a heat source to a thermophotovoltaic (TPV) converter. Within the converter, the condenser portion of each heat pipe acts as a photon radiator, providing a radiant flux to adjacent TPV cells, which in turn create electricity. Using heat pipes in this way could help to increase the power output and the power density of TPV systems. TPV systems with radiator temperatures in the range of 1,500 K are expected to produce as much as 3.6 W/cm{sup 3} of heat exchanger volume at an efficiency of 20% or greater. Four different arrangements of heat pipe-TPV energy converters are considered. Performance and sizing calculations for each of the concepts are presented. Finally, concerns with this concept and issues which remain to be considered are discussed.

Ashcroft, J.; DePoy, D. [Lockheed Martin Corp., Schenectady, NY (United States)

1997-06-01T23:59:59.000Z

291

Mechanical behavior of dip-brazed aluminum sandwich panels  

E-Print Network (OSTI)

An experimental study was carried out to determine the mechanical behavior of sandwich panels containing cellular cores of varying shape. Compression and four point bend tests were performed on sandwich panels with square ...

Hohmann, Brian P. (Brian Patrick)

2007-01-01T23:59:59.000Z

292

Solar Panels to Help Iowa Students Learn About Renewable Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Panels to Help Iowa Students Learn About Renewable Energy Solar Panels to Help Iowa Students Learn About Renewable Energy May 10, 2010 - 10:53am Addthis Five Iowa schools...

293

Carports with Solar Panels do Double Duty for Navy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carports with Solar Panels do Double Duty for Navy Carports with Solar Panels do Double Duty for Navy May 14, 2010 - 12:22pm Addthis Joshua DeLung What does this project do? In...

294

Olive Oil Sensory Panel Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Olive oil. Sensory panel determination of Extra Virgin, Virgin, Lampante using International Olive Council guideline COI/T.20/Doc. No 15/Rev. 4 Olive Oil Sensory Panel Laboratory Proficiency Testing Program Olive Oil

295

San Diego Solar Panels Generate Clean Electricity Along with...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Diego Solar Panels Generate Clean Electricity Along with Clean Water San Diego Solar Panels Generate Clean Electricity Along with Clean Water May 26, 2010 - 12:11pm Addthis San...

296

Development and Demonstration of a High Efficiency, Rapid Heating, Low NOx Alternative to Conventional Heating of Round Steel Shapes, Steel Substrate (Strip) and Coil Box Transfer Bars  

SciTech Connect

Direct Flame Impingement involves the use of an array of very high-velocity flame jets impinging on a work piece to rapidly heat the work piece. The predominant mode of heat transfer is convection. Because of the locally high rate of heat transfer at the surface of the work piece, the refractory walls and exhaust gases of a DFI furnace are significantly cooler than in conventional radiant heating furnaces, resulting in high thermal efficiency and low NOx emissions. A DFI furnace is composed of a successive arrangement of heating modules through or by which the work piece is conveyed, and can be configured for square, round, flat, and curved metal shapes (e.g., billets, tubes, flat bars, and coiled bars) in single- or multi-stranded applications.

Kurek, Harry; Wagner, John

2010-01-25T23:59:59.000Z

297

An innovative and sustainable building system using structural insulated panels  

E-Print Network (OSTI)

An innovative and sustainable building system using structural insulated panels Researcher: Mrst October 2010 Funding bodies: EPSRC and ErgoHome Ltd. Introduction Structural Insulated Panels (SIPs) are high performance building panels which are considered to be the next generation of timber

Birmingham, University of

298

5 Cool Things about Solar Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 Cool Things about Solar Heating 5 Cool Things about Solar Heating 5 Cool Things about Solar Heating March 26, 2013 - 3:08pm Addthis Solar heating systems can be a cost-effective way to heat your home. | Photo courtesy of Solar Design Associates, Inc. Solar heating systems can be a cost-effective way to heat your home. | Photo courtesy of Solar Design Associates, Inc. Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Read Energy Saver's article on solar heating systems to see whether see whether active solar heating is a good option for you. Most people are familiar with solar photovoltaic panels, but far fewer know about using solar as a source of heat in their homes. Active solar heating uses solar energy to heat fluid or air, which then transfers the solar heat

299

Bexar County Parking Garage Photovoltaic Panels  

Science Conference Proceedings (OSTI)

The main objective of the Bexar County Parking Garage Photovoltaic (PV) Panel project is to install a PV System that will promote the use of renewable energy. This project will also help sustain Bexar County ongoing greenhouse gas emissions reduction and energy efficiency goals. The scope of this project includes the installation of a 100-kW system on the top level of a new 236,285 square feet parking garage. The PV system consists of 420 solar panels that covers 7,200 square feet and is tied into the electric-grid. It provides electricity to the office area located within the garage. The estimated annual electricity production of the PV system is 147,000 kWh per year.

Golda Weir

2012-01-23T23:59:59.000Z

300

Proposal Review Panels (Areas Other Than Crystallography)  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposal Review Panels Proposal Review Panels High Pressure Instrumentation Imaging/ Microbeam Macromolecular Crystallography Scattering Applied Materials Stanislav Sinogeikin, Chair Tim Graber, Chair Patrick LaRiviere, Chair John Rose, Chair Robert Suter, Chair Ercan Alp Maria Baldini Bin Chen Przemyslaw Dera Lars Ehm Ravi Kumar Barbara Lavina Sang-Heon (Dan) Shim Heather Watson Keith Brister Wenjun Liu Darren Dale Matthew Ginder-Vogel Xiaojing Huang (guest) Tony Lanzirotti Lisa Miller Mark Pfeifer Martina Ralle Xianghui Xiao Hanfei Yan Arnon Lavie Anne Mulichak Armand Beaudoin Dillon Fong Dileep Singh Mike Toney Bob Von Dreele Scattering Condensed Matter Scattering Chem/Biol/Environ Small Angle Scattering (SAXS) Spectroscopy Structural Science Roy Clarke, Chair Lynda Soderholm, Chair Peter Jemian, Chair Mali Balasubramanian, Chair

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MEMOCODE 2003 Panel Stephen A. Edwards  

E-Print Network (OSTI)

MEMOCODE 2003 Panel Stephen A. Edwards Department of Computer Science, Columbia University www-level synthesis and validation. #12;Euclid's Algorithm on the PDP-11 .globl _gcd GPRs: r0-r7 .text r7=PC, r6=SP, r5=FP _gcd: jsr r5, rsave Save SP in FP L2: mov 4(r5), r1 r1 = n sxt r0 sign extend div 6(r5), r0 r0

302

IV Estimation of Panels with Factor Residuals  

E-Print Network (OSTI)

. In microeconometric panels, the factor structure may capture different sources of unobserved individual-specific heterogeneity, the impact of which varies intertem- porally in an arbitrary way. For instance, in studies of production functions, the factor loadings may... supply, Euler equations for household consumption, and em- pirical growth models. In these models the coefficient of the lagged dependent variable captures inertia, habit formation and costs of adjustment and therefore it has structural significance (see...

Robertson, Donald; Sara dis, Vasilis

2013-06-04T23:59:59.000Z

303

Solar heating shingle roof structure  

Science Conference Proceedings (OSTI)

A solar heating roof shingle roof structure which combines the functions of a roof and a fluid conducting solar heating panel. Each shingle is a hollow body of the general size and configuration of a conventional shingle, and is provided with a fluid inlet and a fluid outlet. Shingles are assembled in a normal overlapping array to cover a roof structure, with interconnections between the inlets and outlets of successive shingles to provide a fluid path through the complete array. An inlet manifold is contained in a cap used at the peak of the roof and an outlet manifold is connected to the lowest row of shingles.

Straza, G.T.

1984-01-31T23:59:59.000Z

304

Heat Transfer Correlation for Finned Casks  

SciTech Connect

Design of finned casks for dissipation of heat from radioactive decay usually requires reliance on generalized correlations in the literature which do not necessarily apply to the specific cask design. A correlation was developed, based on temperature profile measurements, for the design of upright cylindrical casks with vertical fins for convective and radiant heat transfer to ambient air. Temperature data at various heat loads were obtained for two different cask sizes of the same basic design. Each cask is mounted on a steel pallet and contained within a steel mesh cage. The smaller cask, which has 23 fins, has been approved (DOT-SP-6321) for shipment of up to 1400 W (th), and approval is being obtained (AEC AL USA/9503 BLF) for shipment of up to 3500 W heat load in the larger, 60-fin cask. The applicable theoretical equations were fit to the temperature data for both casks by simply adjusting the value used for the number of fins. The resulting correlation provides a reliable method for interpolation and extrapolation and for design of similar finned casks.

Griffin, J. F.

1974-04-01T23:59:59.000Z

305

Evaluation of The Thermal Performance and Cost Effectiveness of Radiant Barrier Thermal Insulation Materials In Residential Construction.  

E-Print Network (OSTI)

??Reducing heating and cooling systems loads in buildings is a cost effective way to decrease energy consumption in residential houses. This reduction can be achieved… (more)

Asadi, Somayeh

2012-01-01T23:59:59.000Z

306

R & D Services, Inc.  

Science Conference Proceedings (OSTI)

... [01/F07] 16 CFR-Part 1209.6 Critical Radiant Flux (Radiant Panel, Cellulosic Fiber). ... [01/V16] ASTM C1549 Determination of Solar Reflectance Near ...

2013-09-20T23:59:59.000Z

307

Radiant energy collector  

SciTech Connect

An electromagnetic energy collection device is provided which does not require a solar tracking capability. It includes an energy receiver positioned between two side walls which reflect substantially all incident energy received over a predetermined included angle directly onto the energy receiver.

Winston, Roland (Chicago, IL)

1977-01-11T23:59:59.000Z

308

Standard practice for infrared flash thermography of composite panels and repair patches used in aerospace applications  

E-Print Network (OSTI)

1.1 This practice describes a procedure for detecting subsurface flaws in composite panels and repair patches using Flash Thermography (FT), in which an infrared (IR) camera is used to detect anomalous cooling behavior of a sample surface after it has been heated with a spatially uniform light pulse from a flash lamp array. 1.2 This practice describes established FT test methods that are currently used by industry, and have demonstrated utility in quality assurance of composite structures during post-manufacturing and in-service examinations. 1.3 This practice has utility for testing of polymer composite panels and repair patches containing, but not limited to, bismaleimide, epoxy, phenolic, poly(amide imide), polybenzimidazole, polyester (thermosetting and thermoplastic), poly(ether ether ketone), poly(ether imide), polyimide (thermosetting and thermoplastic), poly(phenylene sulfide), or polysulfone matrices; and alumina, aramid, boron, carbon, glass, quartz, or silicon carbide fibers. Typical as-fabricate...

American Society for Testing and Materials. Philadelphia

2007-01-01T23:59:59.000Z

309

Heating Alloys  

Science Conference Proceedings (OSTI)

...are used in many varied applications--from small household appliances to large industrial process heating systems and furnaces. In appliances or industrial process heating, the heating elements are usually either open

310

Method for molding threads in graphite panels  

DOE Patents (OSTI)

A graphite panel (10) with a hole (11) having a damaged thread (12) is repaired by drilling the hole (11) to remove all of the thread and make a new hole (13) of larger diameter. A bolt (14) with a lubricated thread (17) is placed in the new hole (13) and the hole (13) is packed with graphite cement (16) to fill the hole and the thread on the bolt. The graphite cement (16) is cured, and the bolt is unscrewed therefrom to leave a thread (20) in the cement (16) which is at least as strong as that of the original thread (12).

Short, William W. (Livermore, CA); Spencer, Cecil (Silverton, OR)

1994-01-01T23:59:59.000Z

311

Method for molding threads in graphite panels  

DOE Patents (OSTI)

A graphite panel with a hole having a damaged thread is repaired by drilling the hole to remove all of the thread and making a new hole of larger diameter. A bolt with a lubricated thread is placed in the new hole and the hole is packed with graphite cement to fill the hole and the thread on the bolt. The graphite cement is cured, and the bolt is unscrewed therefrom to leave a thread in the cement which is at least as strong as that of the original thread. 8 figures.

Short, W.W.; Spencer, C.

1994-11-29T23:59:59.000Z

312

Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

A variety of heating technologies are available today. In addition to heat pumps, which are discussed separately, many homes and buildings use the following approaches:

313

Light redirective display panel and a method of making a light redirective display panel  

DOE Patents (OSTI)

An optical display panel which provides improved light intensity at a viewing angle by redirecting light emitting from the viewing screen, and a method of making a light redirective display panel, are disclosed. The panel includes an inlet face at one end for receiving light, and an outlet screen at an opposite end for displaying the light. The inlet face is defined at one end of a transparent body, which body may be formed by a plurality of waveguides, and the outlet screen is defined at an opposite end of the body. The screen includes light redirective elements at the outlet screen for re-directing light emitting from the outlet screen. The method includes stacking a plurality of glass sheets, with a layer of adhesive or epoxy between each sheet, curing the adhesive to form a stack, placing the stack against a saw and cutting the stack at two opposite ends to form a wedge-shaped panel having an inlet face and an outlet face, and forming at the outlet face a plurality of light redirective elements which direct light incident on the outlet face into a controlled light cone.

Veligdan, James T. (Manorville, NY)

2002-01-01T23:59:59.000Z

314

EnergyPlus Review Panel: Summary of Conclusions  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyPlus Review Panel: Summary of Conclusions EnergyPlus Review Panel: Summary of Conclusions Speaker(s): Charles S. "Chip" Barnaby Robert Sonderegger Date: May 13, 2010 - 2:00pm Location: 90-3075 A five-member panel of "outsiders" has recently examined the software architecture of DOE's EnergyPlus building energy simulation program with respect to robustness, computational efficiency, extensibility, maintainability, and usability. Two members of the panel will informally present conclusions from that study and then open the floor for discussion of the panel's recommendations. Barnaby is Vice-President of Research at software developer Wrightsoft Corporation in Lexington, MA and is Chair of the Review Panel. He has a B.A. in Engineering and Applied Physics from Harvard University and a M.Arch. from the University of California,

315

Solar Panels to Help Iowa Students Learn About Renewable Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Panels to Help Iowa Students Learn About Renewable Energy Panels to Help Iowa Students Learn About Renewable Energy Solar Panels to Help Iowa Students Learn About Renewable Energy May 10, 2010 - 10:53am Addthis Five Iowa schools will receive rooftop solar panels this summer to help teach students about the technology | File Photo Five Iowa schools will receive rooftop solar panels this summer to help teach students about the technology | File Photo Stephen Graff Former Writer & editor for Energy Empowers, EERE Learning about the sun's power is just as important as harnessing it. New solar panels to be installed on the rooftops of five Iowa middle schools will give students hands-on experience with the technology and help offset some energy costs. "We really want this be an educational component to the schools'

316

Cross-Laminated Timber Panels | Open Energy Information  

Open Energy Info (EERE)

Laminated Timber Panels Laminated Timber Panels Jump to: navigation, search TODO: add page breaks/images Cross-Laminated Timer Panels are formed using planed "lamellas" (planed boards from 1" thick x 5"-7" wide) laid and glued using formaldehyde-free, food-grade glue in a vacuum press in alternate layers, at 90 degrees to each other, creating panels that are from 3 to 11 layers thick. These panels form a robust, structurally strong building system that outperforms anything currently available in the USA. Quality control is optimized with the pre-fabrication of the structural panels in an atmospherically controlled facility using computer controlled cutting equipment. State-of-the-art computer aided design programming is transferred directly to the manufacturing process. More information can

317

Compact x-ray source and panel  

SciTech Connect

A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

Sampayon, Stephen E. (Manteca, CA)

2008-02-12T23:59:59.000Z

318

DOE Hydrogen and Fuel Cells Program: Advisory Panels  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Background Budget Timeline Program Activities Advisory Panels Hydrogen and Fuel Cell Technical Advisory Committee National Research Council External Coordination U.S....

319

Study of Alternative Approaches for Transite Panel Removal  

Energy.gov (U.S. Department of Energy (DOE))

Bechtel Jacobs Company LLC (BJC) assembled an experienced team from both sites to evaluate both the manual and mechanical methods of transite panel removal.

320

Intergovernmental Panel on Climate Change (IPCC), Working Group...  

NLE Websites -- All DOE Office Websites (Extended Search)

Intergovernmental Panel on Climate Change (IPCC), Working Group 1, 1994: Modelling Results Relating Future Atmospheric CO2 Concentrations to Industrial Emissions DB1009 data Data...

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy Materials Blue Ribbon Panel Releases Vision Report  

Science Conference Proceedings (OSTI)

Jun 22, 2010 ... Said Blue Ribbon Panel member Michael J. Dolan, senior vice ... Solar technology, while being designated as a moderately important MSE ...

322

"Increasing Solar Panel Efficiency And Reliability By Evaporative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing Solar Panel Efficiency And Reliability By Evaporative Cooling" Inventors..--.. Lewis Meixler, Charles Gentile, Patricia Hillyer, Dylan Carpe, Jason Wang, Caroline Brooks...

323

Energy Materials Blue Ribbon Panel Report June 2010 - TMS  

Science Conference Proceedings (OSTI)

Jun 22, 2010 ... The Energy Materials Blue Ribbon Panel convened by TMS has released “ Linking Transformational Materials and Processing for an Energy- ...

324

Intergovernmental Panel on Climate Change (IPCC) Special Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) Print E-mail...

325

Smart panels with SISO or MIMO velocity feedback control systems  

Science Conference Proceedings (OSTI)

This paper summarizes and contrasts the research work that has been carried out on two types of smart panels with ASAC control systems: first

2003-01-01T23:59:59.000Z

326

Postlaunch Radiometric Validation of the Clouds and the Earth’s Radiant Energy System (CERES) Proto-Flight Model on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft through 1999  

Science Conference Proceedings (OSTI)

Each Clouds and the Earth’s Radiant Energy System (CERES) instrument contains three scanning thermistor bolometer radiometric channels. These channels measure broadband radiances in the shortwave (0.3–5.0 ?m), total (0.3–>100 ?m), and water vapor ...

Kory J. Priestley; Bruce R. Barkstrom; Robert B. Lee III; Richard N. Green; Susan Thomas; Robert S. Wilson; Peter L. Spence; Jack Paden; D. K. Pandey; Aiman Al-Hajjah

2000-12-01T23:59:59.000Z

327

Federal Technical Capability Panel Contacts list  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 U. S. Department of Energy and National Nuclear Security Administration Federal Technical Capability Panel Organization Name Telephone Fax E-Mail FTCP CHAIR Chair (DOE/NTC) Karen L. Boardman (505) 845-6444 (505) 845-6079 kboardman@ntc.doe.gov FTCP Deputy Dave Chaney (505) 845-4300 (505) 845-4879 david.chaney@nnsa.doe.gov FTCP Technical Standards Mgr. Jeanette Yarrington (301) 903-7030 (301) 903-3445 Jeanette.Yarrington@hq.doe.gov FTCP Coordinator Patricia Parrish (505) 845-4057 (505) 284-7057 patricia.parrish@nnsa.doe.gov FTCP Agents DOE Headquarters Chief of Nuclear Safety (CNS) Richard Lagdon (202) 586-9471 (202) 586-5533 Chip.Lagdon@eh.doe.gov Office of Health, Safety & Security Pat Worthington (301) 903-6929 (301) 903-3445 pat.worthington@hq.doe.gov

328

Energy Physics Advisory Panel met at Fermilab  

NLE Websites -- All DOE Office Websites (Extended Search)

Charged with recommending how best to Charged with recommending how best to position the U.S. particle physics community for new facilities beyond CERN's Large Hadron Collider, a subpanel of the High- Energy Physics Advisory Panel met at Fermilab August 14-16 to hear presentations on such topics as the research agenda for Fermilab's Run II, the complicated upgrades to the CDF and DZero detectors and research on future accelerators. Volume 20 Friday, August 29, 1997 Number 17 Photo by Reidar Hahn HEPAP Looks into the Future HEPAP subpanel meets at Fermilab to chart the future of high-energy physics in the U.S. by Donald Sena and Sharon Butler, Office of Public Affairs In a letter to HEPAP, Martha Krebs, Director of the U.S. Department of Energy's Office of Energy Research, directed the subpanel to "recommend a scenario for an

329

Solar heating unit  

SciTech Connect

A solar heating unit is disclosed for disposition exteriorly of a building window for heating the air within the space interiorly of the window embodying a casing with a transverse divider for creating a rear passage and a front passage which are in communication in their lower portions. The upper end of the rear passage connects with the forward end of a rearwardly extending lower duct having a cool air inlet at the rearward end thereof. The upper end of the front passage connects with the forward end of an upper duct progressing rearwardly above the lower duct and with there being a warm air outlet at the rearward extremity thereof. A heat exchanger is disposed within the front passage for impingement thereon of solar radiation passing through a transparent panel defining the front of said casing. A thermal responsive closure is provided at the upper end of said front passage for closing same when the temperature within the front passage has descended to a predetermined level.

Grisbrook, R.B.

1978-10-24T23:59:59.000Z

330

Microsoft PowerPoint - 16.1400_Panel PMCDP CRB Panel slides final March 4 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Program (PMCDP) Peter O'Konski PE, PMP, CCE Facility Policy & Professional Development Office of Engineering and Construction Management Agenda g * Update on the PMCDP Program - Key program updates - Maturing of the program - Challenges - Current statistics Website - Website * Certification Review Board Panel Discussion * Certification Review Board Panel Discussion 3/16/2011 2 Key Program Updates * Process changes * Process changes - Virtual voting for Level 1 and 2 candidates - Reference checks for Level 3 and 4 candidates * Curriculum updates - Changes to PMP® waivers - Course updates - Continuous improvement * Expect to remain static for next 1-2 years p y * Administration - Website updated 3 3/16/2011 Maturing of the Program Maturing of the Program aka: Leadership Matters * Project success is the ultimate goal

331

Proceedings: photovoltaics user review panel. March 6 and 7, 1979  

SciTech Connect

The discussions, recommendations, and conclusions of the Photovoltaics User Review Panel are presented. The purpose of the panel discussions was to determine the Technical Information Dissemination (TID) needs for target audiences, to reach agreement on what informational products could fill these needs and who should produce the materials, and to establish priorities for the need for the TID products.

Carroll, S.

1979-08-01T23:59:59.000Z

332

Integrity Lessons from the WAAS Integrity Performance Panel (WIPP)  

E-Print Network (OSTI)

Integrity Lessons from the WAAS Integrity Performance Panel (WIPP) Todd Walter, Per Enge, Stanford that the integrity requirement would be met, the FAA formed the WAAS Integrity Performance Panel (WIPP). The role of the WIPP is to independently assess the safety of WAAS and to recommend system improvements. To accomplish

Stanford University

333

Infrared NDT methods applied to solar cell and panel characterization  

DOE Green Energy (OSTI)

Infrared nondestructive testing (NDT) methods are described that have a good potential for providing valuable data concerning solar cell or panel characteristics without requiring contact with the photovoltaic device. Preliminary tests with cells and panels were conducted and the infrared NDT results are presented and discussed. (MHR)

Green, D. R.; Olsen, L. C.

1978-10-20T23:59:59.000Z

334

NCAQ Panel Examines Uses and Limitations of Air Quality Models  

Science Conference Proceedings (OSTI)

The results of a 22-member expert panel On dispersion modeling, which was convened by the National Commission on Air Quality in 1979, are reviewed. The panel affirmed the validity of using models in support of air quality regulations. It also ...

Douglas G. Fox; James E. Fairobent

1981-02-01T23:59:59.000Z

335

Evaluation of the thermal resistance of a roof-mounted multi-reflective radiant barrier for tropical and humid conditions: Experimental study from field measurements  

E-Print Network (OSTI)

This paper deals with the experimental evaluation of a roof-mounted multi-reflective radiant barrier (MRRB), installed according to the state of the art, on a dedicated test cell. An existing experimental device was completed with a specific system for the regulation of the airflow rate in the upper air layer included in a typical roof from Reunion Island. Several experimental sequences were conducted to determine the thermal resistance of the roof according to several parameters and following a specific method. The mean method, well known in international standards (ISO 9869 - 1994) for the determination of the thermal resistance using dynamic data, was used. The method was implemented in a building simulation code in order to allow the determination of the thermal indicator automatically. Experimental results are proposed according to different seasonal periods and for different values of the airflow rate in the upper air layer.

Frédéric Miranville; Ali Hamada Fakra; Stéphane Guichard; Harry Boyer; Jean Philippe Praene; Dimitri Bigot

2012-12-19T23:59:59.000Z

336

Evaluation of the thermal resistance of a roof-mounted multi-reflective radiant barrier for tropical and humid conditions: Experimental study from field measurements  

E-Print Network (OSTI)

This paper deals with the experimental evaluation of a roof-mounted multi-reflective radiant barrier (MRRB), installed according to the state of the art, on a dedicated test cell. An existing experimental device was completed with a specific system for the regulation of the airflow rate in the upper air layer included in a typical roof from Reunion Island. Several experimental sequences were conducted to determine the thermal resistance of the roof according to several parameters and following a specific method. The mean method, well known in international standards (ISO 9869 - 1994) for the determination of the thermal resistance using dynamic data, was used. The method was implemented in a building simulation code in order to allow the determination of the thermal indicator automatically. Experimental results are proposed according to different seasonal periods and for different values of the airflow rate in the upper air layer

Miranville, Frédéric; Guichard, Stéphane; Boyer, Harry; Praene, Jean Philippe; Bigot, Dimitri

2012-01-01T23:59:59.000Z

337

Expert Panel: Forecast Future Demand for Medical Isotopes | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes The Expert Panel has concluded that the Department of Energy and National Institutes of Health must develop the capability to produce a diverse supply of radioisotopes for medical use in quantities sufficient to support research and clinical activities. Such a capability would prevent shortages of isotopes, reduce American dependence on foreign radionuclide sources and stimulate biomedical research. The expert panel recommends that the U.S. government build this capability around either a reactor, an accelerator or a combination of both technologies as long as isotopes for clinical and research applications can be supplied reliably, with diversity in adequate

338

Diversified Panels Systems: Proposed Penalty (2013-CE-5346) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diversified Panels Systems: Proposed Penalty (2013-CE-5346) Diversified Panels Systems: Proposed Penalty (2013-CE-5346) Diversified Panels Systems: Proposed Penalty (2013-CE-5346) February 21, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Diversified Panels Systems, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Diversified Panels Systems: Proposed Penalty (2013-CE-5346) More Documents & Publications

339

Memorandum, Safeguards & Security Policy Panels - February 15, 2008 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorandum, Safeguards & Security Policy Panels - February 15, 2008 Memorandum, Safeguards & Security Policy Panels - February 15, 2008 Memorandum, Safeguards & Security Policy Panels - February 15, 2008 February 15, 2008 As outlined in the attached HSS memo, dated December 3,2007, subject: Safeguards and Security Policy Panels, the HSS Office of Security Policy is establishing several new policy panels that will create new opportunities for communication and will include those current active groups that are now effectively promoting cominunications in theirsafeguards and security topical areas. The Office of Health, Safety and Security (HSS) recognizes the importance of well conceived strategies and policies to support and communicate the security posture of the Department. In order for our security policies to

340

Kingspan Insulated Panels: Proposed Penalty (2013-CE-5353) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kingspan Insulated Panels: Proposed Penalty (2013-CE-5353) Kingspan Insulated Panels: Proposed Penalty (2013-CE-5353) Kingspan Insulated Panels: Proposed Penalty (2013-CE-5353) March 26, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Kingspan Insulated Panels, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Kingspan Insulated Panels: Proposed Penalty (2013-CE-5353) More Documents & Publications

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Solar Panels Hit Energy Milestone For Potawatomi and Milwaukee | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Panels Hit Energy Milestone For Potawatomi and Milwaukee Panels Hit Energy Milestone For Potawatomi and Milwaukee Solar Panels Hit Energy Milestone For Potawatomi and Milwaukee October 26, 2011 - 10:44am Addthis The Forest County Potawatomi Tribe finishes installing solar panels on a Milwaukee, Wisconsin, administration building. | Photo courtesy of the Forest County Potawatomi Tribe The Forest County Potawatomi Tribe finishes installing solar panels on a Milwaukee, Wisconsin, administration building. | Photo courtesy of the Forest County Potawatomi Tribe Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office "With the help of Recovery Act funding, clean energy projects across the county are creating skilled jobs, reducing our reliance on fossil fuels and saving consumers money on their energy bills."

342

Rule-based Mamdani-type fuzzy modelling of thermal performance of multi-layer precast concrete panels used in residential buildings in Turkey  

Science Conference Proceedings (OSTI)

Heat insulation applied on outer wall surfaces of buildings for the purpose of conserving energy, can be analyzed experimentally, mathematically and by using simulation modelling. In this study, simulation modelling of insulation layer (d"2), for residential ... Keywords: Insulation, Prefabricated panel, Rule-based Mamdani-type fuzzy modelling, Thermal analysis

M. Tosun; K. Dincer; S. Baskaya

2011-05-01T23:59:59.000Z

343

Heat Conduction  

Science Conference Proceedings (OSTI)

Table 2   Differential equations for heat conduction in solids...conduction in solids General form with variable thermal properties General form with constant thermal properties General form, constant properties, without heat

344

Heat-sound insulating wall  

SciTech Connect

The wall comprises a closed acoustic box-structure which is defined by a slightly ribbed sheet and a flat sheet. The boxstructure has lateral ribs which extend beyond the sheet. A panel of high-density mineral wool which is of small thickness is enclosed inside the box-structure. A heat insulator covers the box-structure and the ribs of the box-structure and is protected by an outer trough which has ribs or corrugations perpendicular to the ribs of the box-structure.

Ovaert, F.; Reneault, P.

1980-10-21T23:59:59.000Z

345

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

Daman, Ernest L. (Westfield, NJ); McCallister, Robert A. (Mountain Lakes, NJ)

1979-01-01T23:59:59.000Z

346

Microsoft PowerPoint - 15.1615_Cost Estimating Panel | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

615Cost Estimating Panel Microsoft PowerPoint - 15.1615Cost Estimating Panel Microsoft PowerPoint - 15.1615Cost Estimating Panel More Documents & Publications Contractor SOW...

347

Performance Testing of Radiant Barriers (RB) with R11, R19, and R30 Cellulose and Rock Wool Insulation  

E-Print Network (OSTI)

TVA has previously conducted testing to determine the effects of attic RBs when used with R19 fiberglass insulation during summer and winter conditions. This previous testing, and the testing described in this paper, used five small test cells exposed to ambient conditions. Heat flux transducers measured heat transfer between the attic and conditioned space. The objective of the testing described in this paper was to determine summer and winter RB performance when used with cellulose and rock wool insulations at R-vale levels of R11, R19, and R30. In addition, several summer side-by-side tests were conducted to determine the effects of: dust on RB performance, a low-emissivity paint, a high-emissivity material (black plastic) laid directly on top of the insulation, and single-sided RB placed on top of the insulation (RBT) with the reflective side down.

Hall, J. A.

1988-01-01T23:59:59.000Z

348

Atomic Safety and Licensing Board Panel annual report, Fiscal year 1992  

SciTech Connect

In Fiscal Year 1992, the Atomic Safety and Licensing Board Panel (``the Panel``) handled 38 proceedings. The cases addressed issues in the construction, operation, and maintenance of commercial nuclear power reactors and other activities requiring a license from the Nuclear Regulatory Commission. This reports sets out the Panel`s caseload during the year and summarizes, highlights, and analyzes how the wide-ranging issues raised in those proceedings were addressed by the Panel`s judges and licensing boards.

Not Available

1993-09-01T23:59:59.000Z

349

Photovoltaic roof heat flux  

E-Print Network (OSTI)

showed that a solar panel over a rooftop w i l l lead to aalbedo (or solar reflectance) by painting the rooftops whitesolar panel offset height became a key component for rooftop

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

350

Development effort of sheet molding compound (SMC) parabolic trough panels  

SciTech Connect

The objectives of the development effort are to: investigate the problems of molding parabolic trough solar reflector panels of sheet molding compound (SMC); develop molding techniques and processes by which silvered glass reflector sheets can be integrally molded into SMC trough panels; provide representative prototype panels for evaluation; and provide information regarding the technical feasibility of molding SMC panels in high volume production. The approach taken to meet the objectives was to design the parabolic panel, fabricate a prototype die, choose an SMC formulation and mold the glass and SMC together into a vertex to rim mirrored panel. The main thrust of the program was to successfully co-mold a mirrored glass sheet with the SMC. Results indicate that mirrored glass sheets, if properly strengthened to withstand the temperature and pressure of the molding process, can be successfully molded with SMC in a single press stroke using standard compression molding techniques. The finalized design of the trough panel is given. The SMC formulation chosen is a low shrink, low profile SMC using 40% by weight one inch chopped glass fibers in a uv stabilized polyester resin matrix. A program to test for the adhesion between mirrored glass sheets and the SMC is discussed briefly. (LEW)

Kirsch, P.A.; Champion, R.L.

1982-01-01T23:59:59.000Z

351

Alaska panel urges oil tanker changes  

Science Conference Proceedings (OSTI)

A commission assigned by the state of Alaska to investigate the Exxon Valdez oil spill says the Coast Guard's regulation of oil transportation had grown slack over the decade preceding the 11 million-gallon spill. The vigilance over tanker traffic that was established in the early days of pipeline flow had given way to complacency and neglect, says the commission's report, which calls for a revamping of the U.S. oil transportation system. The review places the blame for the spill not only on the Coast Guard but on the oil industry's thirst for profits in the 1980s and blames the state itself for not living up to its obligation to manage and protect its own waters. The report offers 59 recommendations that cover tanker construction and crew training, spill prevention, strategies for responding to spills and cleanup technologies. The panel also wants to see more stringent tanker safety standards, strengthened enforcement of the new regulations and greater penalties levied against violators. The Coast Guard expects that it will be some time before revisions in its tanker monitoring operations are in place.

Dillingham, S.

1990-02-05T23:59:59.000Z

352

Photovoltaic roof heat flux  

E-Print Network (OSTI)

many solar installations have basic weather stations. Withthe solar panels. Figure 6: Setup #1 on RIMAC roof. Weather

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

353

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

354

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

355

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

356

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

357

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

358

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

359

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

360

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Automatic ranging circuit for a digital panel meter  

DOE Patents (OSTI)

This invention relates to a range changing circuit that operates in conjunction with a digital panel meter of fixed sensitivity. The circuit decodes the output of the panel meter and uses that information to change the gain of an input amplifier to the panel meter in order to insure that the maximum number of significant figures is always displayed in the meter. The circuit monitors five conditions in the meter and responds to any of four combinations of these conditions by means of logic elements to carry out the function of the circuit.

Mueller, Theodore R. (Oak Ridge, TN); Ross, Harley H. (Oak Ridge, TN)

1976-01-01T23:59:59.000Z

362

2 15.10.2013 Van D. BaxterVolker Weinmann Hybrid heat pump system as chance for the  

E-Print Network (OSTI)

pumps Condensing gas and oil boilers DHW tanks Solar panels Under floor heating Installation equipment condsing Oil non condensing Heat pumps Biomass 612.500638.000550.000 618.500762.000751.500 735#12;2 15.10.2013 Van D. BaxterVolker Weinmann Hybrid heat pump system as chance for the renovation

Oak Ridge National Laboratory

363

Heating 7.2 user`s manual  

SciTech Connect

HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

Childs, K.W.

1993-02-01T23:59:59.000Z

364

PANEL OP CONSULTrnS MEETING ON RULISON  

Office of Legacy Management (LM)

PANEL OP CONSULTrnS MEETING ON RULISON PANEL OP CONSULTrnS MEETING ON RULISON . - . . .. W V E Y GAP DAM) .. . . .. . N E V m OPERATIONS OFFICE Reported By: ( 2 - I / RTiXN0T.S ELECTRICAL U. ENGINEERING CO., INC., J 4 - .I, / I i Q b OFFICE OF COORDINATOR-BOARDS & PANELS This page intentionally left blank S.GETY PANEL 0 7 CC'_

365

EERE Roofus' Solar and Efficient Home: Solar Panels  

NLE Websites -- All DOE Office Websites (Extended Search)

of Roofus, a golden retriever, sitting in front of three black, rectangular solar panels. When you turn on a light in your home, electricity flows through wires up to...

366

Advanced Reactor Concepts Technical Review Panel Report | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Concepts Technical Review Panel Report Advanced Reactor Concepts Technical Review Panel Report Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. A goal of the process is to facilitate greater engagement between DOE and industry. The process involved establishing evaluation criteria, conducting a pilot review, soliciting concept inputs from industry entities, reviewing the concepts by TRP members and compiling the results. The eight concepts received from industry spanned a range of reactor types

367

CDM Accreditation Panel CDM AP | Open Energy Information  

Open Energy Info (EERE)

CDM Accreditation Panel CDM AP CDM Accreditation Panel CDM AP Jump to: navigation, search Name CDM Accreditation Panel (CDM-AP) Place Bonn, Germany Zip 53153 Product The CDM accreditation panel (CDM-AP) prepares the decision making of the Executive Board in accordance with the procedure for accrediting operational entities. Coordinates 50.7323°, 7.101695° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.7323,"lon":7.101695,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Study of Alternative Approaches for Transite Panel Removal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Tennessee Technology Park Tennessee Washington Study of Alternative Approaches for Transite Panel Removal Challenge Large facilities operated by the U.S. Department of Energy (DOE) such as the Gaseous Diffusion Plant at Oak Ridge, TN and the former processing facilities at Hanford, WA are paneled entirely with transite siding (an early form of cement composite drywall panel containing up to 50% asbestos). Asbestos removal raises important worker safety issues. The panels must be treated as non-friable asbestos (Category II) with the potential of becoming friable if broken or crushed. Asbestos is considered friable if, when dry, it can be crumbled, pulverized or reduced to powder by hand pressure. These facilities comprise millions of square feet of transite which must be

369

Integrated thermal treatment systems study. Internal review panel report  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Technology Development (OTD) commissioned two studies to evaluate nineteen thermal treatment technologies for treatment of DOE mixed low-level waste. These studies were called the Integrated Thermal Treatment System (ITTS) Phase I and Phase II. With the help of the DOE Office of Environmental Management (EM) Mixed Waste Focus Group, OTD formed an ITTS Internal Review Panel to review and comment on the ITTS studies. This Panel was composed of scientists and engineers from throughout the DOE complex, the U.S. Environmental Protection Agency, the California EPA, and private experts. The Panel met from November 15-18, 1994 to review the ITTS studies and to make recommendations on the most promising thermal treatment systems for DOE mixed low-level wastes and on research and development necessary to prove the performance of the technologies. This report describes the findings and presents the recommendations of the Panel.

Cudahy, J.; Escarda, T.; Gimpel, R. [and others

1995-04-01T23:59:59.000Z

370

Obama Administration Announces Plans to Install New Solar Panels...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

By installing solar panels on their homes, consumers are able to effectively lock in the price of electricity they will pay in the years ahead, acting as an insulator against...

371

Information tracking and sharing in organic photovoltaic panel manufacturing  

E-Print Network (OSTI)

The MIT MEng team of four worked with Konarka Technologies, a world leading organic solar panel manufacturer, on production tracking and analysis as well as various operational improvement projects. MIT's collaborative ...

Gong, Ming, M. Eng. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

372

Discrete, recursive supply chain model for solar panel manufacturing  

E-Print Network (OSTI)

A computer model to optimize global expansion of the production of solar panels is presented. The model is modular, extensible, and fast compared to existing specialized optimization software which use integer linear ...

Páez, Daýan

2010-01-01T23:59:59.000Z

373

Second Panel of Disposal Rooms Completed in WIPP Underground  

NLE Websites -- All DOE Office Websites (Extended Search)

Isolation Pilot Plant P.O. Box 3090 Carlsbad, New Mexico 88221 DOENews -2- Underground waste disposal panels are arranged in parallel sets of seven rooms each. Each set of seven...

374

Intergovernmental Panel on Climate Change (IPCC) Special Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Intergovernmental Panel on Climate Change (IPCC) Special Report on Renewable Energy Sources and Climate Change Mitigation Print E-mail Introduction As part of the U.S. Government...

375

Proceedings: special panel on geothermal model intercomparison study  

DOE Green Energy (OSTI)

Separate abstracts were prepared for five papers. Two papers were abstracted previously for EDB. Five panel responses to the project, three workshop session summaries, and conclusions drawn are also included in this report. (MHR)

Not Available

1980-12-17T23:59:59.000Z

376

Panel data analyses of urban economics and housing markets  

E-Print Network (OSTI)

The thesis looks three pertinent issues in Housing Market and Urban Economics literature with panel data- home sales and house price relationship, efficiency of housing market and commercial property taxation. For the first ...

Lee, Nai Jia

2009-01-01T23:59:59.000Z

377

Panel data analysis of U.S. coal productivity  

E-Print Network (OSTI)

We analyze labor productivity in coal mining in the United States using indices of productivity change associated with the concepts of panel data modeling. This approach is valuable when there is extensive heterogeneity ...

Stoker, Thomas M.

2000-01-01T23:59:59.000Z

378

Solar heating shingle roof structure  

Science Conference Proceedings (OSTI)

A solar heating roof shingle roof structure which combines the functions of a roof and a fluid conducting solar heating panel. Each shingle is a hollow body of the general size and configuration of a conventional shingle, and is provided with a fluid inlet socket at the upper end and a fluid outlet plug at the lower end with a skirt at the lower end overlapping the plug. Shingles are assembled in an overlapping array to cover a roof structure, with interconnections between the inlets and outlets of successive longitudinally positioned shingles to provide fluid paths through the complete array. An inlet manifold is positioned at the upper end of the array or in the alternative contained in a cap used at the peak of the roof and an outlet manifold is connected to the outlet of the lowest row of shingles.

Straza, G.T.

1981-01-13T23:59:59.000Z

379

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 28840 of 31,917 results. 31 - 28840 of 31,917 results. Download DOE Organization Chart- July 23, 2013 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. http://energy.gov/downloads/doe-organization-chart-july-23-2013 Article Evaporative Cooling Basics Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. http://energy.gov/eere/energybasics/articles/evaporative-cooling-basics Article Radiant Heating Basics Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is

380

Turbulent heating of the corona and solar wind: the heliospheric  

E-Print Network (OSTI)

of telegraph services - Once per 500 years (ice cores) - Solar-terrestrial connection - Interplanetary space of radiators - Dust environment - Cp/Cg problems - Solar panels and power #12;Solar Probe Plus 2018 launch 35Turbulent heating of the corona and solar wind: the heliospheric dark energy problem Stuart D. Bale

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

New NIST Test for Firefighter Breathing Equipment Goes into ...  

Science Conference Proceedings (OSTI)

... the new version contains a new "Lens Radiant Heat Test" that subjects the SCBA facepieces to a radiant heat flux of 15 kilowatts per square meter ...

2013-06-25T23:59:59.000Z

382

Concentrating Solar Power Ã?¢Ã?Â?Ã?Â? Central Receiver Panel Component Fabrication and Testing FINAL REPORT  

SciTech Connect

The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to test scale prototype receiver, off sun but at temperature, at a molten salt loop at ground level adjacent to the tower also had to be abandoned. Thus, no test facility existed for a molten salt receiver test. As a result, PWR completed the prototype receiver design and then fabricated key components for testing instead of fabricating the complete prototype receiver. A number of innovative design ideas have been developed. Key features of the receiver panel have been identified. This evaluation includes input from Solar 2, personal experience of people working on these programs and meetings with Sandia. Key components of the receiver design and key processes used to fabricate a receiver have been selected for further evaluation. The Test Plan, Concentrated Solar Power Receiver In Cooperation with the Department of Energy and Sandia National Laboratory was written to define the scope of the testing to be completed as well as to provide details related to the hardware, instrumentation, and data acquisition. The document contains a list of test objectives, a test matrix, and an associated test box showing the operating points to be tested. Test Objectives: 1. Demonstrate low-cost manufacturability 2. Demonstrate robustness of two different tube base materials 3. Collect temperature data during on sun operation 4. Demonstrate long term repeated daily operation of heat shields 5. Complete pinhole tube weld repairs 6. Anchor thermal models This report discusses the tests performed, the results, and implications for design improvements and LCOE reduction.

McDowell, Michael W [Pratt & Whitney Rocketdyne; Miner, Kris [Pratt & Whitney Rocketdyne

2013-03-30T23:59:59.000Z

383

Bonded Bracket Assmebly for Frameless Solar Panels  

SciTech Connect

In February 2011 the US Department of Energy announced their new Sunshot Initiative. The Sunshot goal is to reduce the total cost of solar energy systems by about 75 percent before the end of the decade. The DOE estimated that a total installed cost of $1 per watt for photovoltaic systems would be equivalent to 6���¢/kilowatt hour (kWh) for energy available from the grid. The DOE also estimated that to meet the $1 per watt goal, PV module costs would need to be reduced to $.50 per watt, balance of systems costs would need to be reduced to $.40 per watt, and power electronic costs would need to reach $.10 per watt. To address the BOS balance of systems cost component of the $1 per watt goal, the DOE announced a funding opportunity called (BOS-X) Extreme Balance of System Hardware Cost Reductions. The DOE identified eight areas within the total BOS costs: 1) installation labor, 2) installation materials, 3) installation overhead and profit, 4) tracker, 5) permitting and commissioning, 6) site preparation, 7) land acquisition, 8) sales tax. The BOS-X funding announcement requested applications in four specific topics: Topic 1: Transformational Building Integrated Photovoltaic (BIPV) Modules Topic 2: Roof and Ground Mount Innovations Topic 3: Transformational Photovoltaic System Designs Topic 4: Development of New Wind Load Codes for PV Systems The application submitted by ARaymond Tinnerman reflected the requirements listed in Topic #2, Roof and Ground Mount Innovations. The goal of topic #2 was to develop technologies that would result in the extreme reduction of material and labor costs associated with applications that require physical connections and attachments to roof and ground mount structures. The topics researched in this project included component cost reduction, labor reduction, weight reduction, wiring innovations, and alternative material utilization. The project objectives included: 1) The development of an innovative quick snap bracket assembly that would be bonded to frameless PV modules for commercial rooftop installations. 2) The development of a composite pultruded rail to replace traditional racking materials. 3) In partnership with a roofing company, pilot the certification of a commercial roof to be solar panel compliant, eliminating the need for structural analysis and government oversight resulting in significantly decreased permitting costs. 4) Reduce the sum of all cost impacts in topic #2 from a baseline total of $2.05/watt to $.34/watt.

Murray, Todd

2013-01-30T23:59:59.000Z

384

Influence of Infrared Radiation on Attic Heat Transfer  

E-Print Network (OSTI)

An experimental study concerned with different modes of heal transfer in fibrous and cellulose insulating material is presented. A series of experiments were conducted using an attic simulator to determine the effects of ventilation on attic heat transfer, and the effect of infrared radiation on the thermal conductivity of the insulation system and on attic heat transfer. All the tests were performed at steady state conditions by controlling the roof deck temperature. Calculations are performed for insulation thicknesses between 1 inch (2.54cm) and 6.0 inches (15.24cm) and roof deck temperatures between 145°F (62.78°C) and 100°F (36.78°C). The temperature profiles within the insulation were measured by placing thermocouples at various levels within the insulation. The profiles for the cellulose insulation are linear. The profiles within the glass fiber insulation are non-linear due to the effect of infrared radiation. Also heat fluxes were measured through different insulation thicknesses and for different roof temperatures. It was found that a radiant barrier such as aluminum foil can reduce the heat flux significantly. Experimental results were compared to a Three-Region approximate solution developed at Oak Ridge National Laboratories (ORNL). The model was in good agreement with experimental results.

Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

1985-01-01T23:59:59.000Z

385

What would Nelson and Plosser ...nd had they used panel unit root tests?  

E-Print Network (OSTI)

What would Nelson and Plosser ...nd had they used panel unit root tests? Christophe Hurlin y Revised Version. June 2007 Abstract In this study, we systemically apply nine recent panel unit root tests with panel unit root tests. We con...rm the fact that panel methods must be very carefully used for testing

Paris-Sud XI, Université de

386

Identification of Convection Heat Transfer Coefficient of Secondary Cooling Zone of CCM based on Least Squares Method and Stochastic Approximation Method  

E-Print Network (OSTI)

The detailed mathematical model of heat and mass transfer of steel ingot of curvilinear continuous casting machine is proposed. The process of heat and mass transfer is described by nonlinear partial differential equations of parabolic type. Position of phase boundary is determined by Stefan conditions. The temperature of cooling water in mould channel is described by a special balance equation. Boundary conditions of secondary cooling zone include radiant and convective components of heat exchange and account for the complex mechanism of heat-conducting due to airmist cooling using compressed air and water. Convective heat-transfer coefficient of secondary cooling zone is unknown and considered as distributed parameter. To solve this problem the algorithm of initial adjustment of parameter and the algorithm of operative adjustment are developed.

Ivanova, Anna

2010-01-01T23:59:59.000Z

387

Heat Stroke  

NLE Websites -- All DOE Office Websites (Extended Search)

stress, from exertion or hot environments, places stress, from exertion or hot environments, places workers at risk for illnesses such as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body becomes unable to control its temperature, and can cause death or permanent disability. Symptoms â–  High body temperature â–  Confusion â–  Loss of coordination â–  Hot, dry skin or profuse sweating â–  Throbbing headache â–  Seizures, coma First Aid â–  Request immediate medical assistance. â–  Move the worker to a cool, shaded area. â–  Remove excess clothing and apply cool water to their body. Heat Exhaustion The body's response to an excessive loss of water and salt, usually through sweating. Symptoms â–  Rapid heart beat â–  Heavy sweating â–  Extreme weakness or fatigue â– 

388

Heat reclaimer  

Science Conference Proceedings (OSTI)

A device for reclaiming heat from stove pipes and the like. A semi-circular shaped hollow enclosed housing with a highly thermal-conductive concave surface is mounted contactingly to surround approximately one-half of the circumference of the stove pipe. The concave surface is formed to contact the pipe at a maximum number of points along that surface. The hollow interior of the housing contains thin multi-surfaced projections which are integral with the concave surface and conductively transfer heat from the stove pipe and concave surface to heat the air in the housing. A fan blower is attached via an air conduit to an entrance opening in the housing. When turned on, the blower pushes the heated interior air out a plurality of air exit openings in the ends of the housing and brings in lower temperature outside air for heating.

Parham, F.

1985-04-09T23:59:59.000Z

389

Heat transfer. [heat transfer roller employing a heat pipe  

SciTech Connect

A heat transfer roller embodying a heat pipe is disclosed. The heat pipe is mounted on a shaft, and the shaft is adapted for rotation on its axis.

Sarcia, D.S.

1978-05-23T23:59:59.000Z

390

Combined-load buckling behavior of metal-matrix composite sandwich panels under different thermal environments  

Science Conference Proceedings (OSTI)

Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.

Ko, W.L.; Jackson, R.H.

1991-09-01T23:59:59.000Z

391

Atomic Safety and Licensing Board Panel Biennial Report, Fiscal Years 1993--1994. Volume 6  

SciTech Connect

In Fiscal Year 1993, the Atomic Safety and Licensing Board Panel (``the Panel``) handled 30 proceedings. In Fiscal Year 1994, the Panel handled 36 proceedings. The cases addressed issues in the construction, operation, and maintenance of commercial nuclear power reactors and other activities requiring a license form the Nuclear Regulatory Commission. This report sets out the Panel`s caseload during the year and summarizes, highlight, and analyzes how the wide- ranging issues raised in those proceedings were addressed by the Panel`s judges and licensing boards.

NONE

1995-08-01T23:59:59.000Z

392

Solar air collector  

SciTech Connect

A solar heating system including a radiant heat collector apparatus made up of an enclosure having glazed panels. The collector provided within the enclosure is upstanding with the enclosure and the collector has heat absorbent flat walls spaced inwardly from the glazed panels. A heat storage core is provided centrally within the collector and spaced from the walls of the collector. The heat storage core includes an insulated housing and a heat retaining member within the insulated housing. Air passageways are formed between the collector walls and the insulated housing for passing input air, and duct members are provided for communicating with a household.

Deschenes, D.; Misrahi, E.

1981-12-15T23:59:59.000Z

393

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

394

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

395

Application of Heat Pipes to the ATSF Spacecraft  

SciTech Connect

The Applications Technology Satellite (ATS) heat pipe program is an extensive effort requiring the fabrication and testing of more than 300 flight qualified heat pipes. The spacecraft itself contains 55 heat pipes in three configurations and 13 sizes. The design selected for ATS was an axially groved 6061 aluminum-ammonia heat pipe. Several developmental programs and extensive testing, including individual heat pipes, heat pipes bonded into honeycomb panels, and a large number of life tests, were included within the overall effort. Results are presented for the thermal modeling of the heat pipes with the spacecraft. Results of thermal-vacuum testing of a thermal structural model and sounding rocket testing of the ATS axially grooved pipe are also discussed. Several problems including hydrogen gas generation, were encountered during the course of the program. The steps taken to solve these problems may be applicable to future programs.

Berger, M.E.; Kelly, W.H.

1973-01-01T23:59:59.000Z

396

Thermal Testing of Tow-Placed Variable Stiffness Panels  

E-Print Network (OSTI)

Commercial systems for precise placement of pre-preg composite tows are enabling technology that allows fabrication of advanced composite structures in which the tows may be precisely laid down along curvilinear paths within a given ply. For laminates with curvilinear tow paths, the fiber orientation angle varies continuously throughout the laminate, and is not required to be straight and parallel in each ply as in conventional composite laminates. Hence, the stiffness properties vary as a function of location in the laminate, and the associated composite structure is called a Òvariable stiffnessÓ composite structure. Previous analytical studies indicate that variable stiffness structures have great potential for improving the structural performance of composite structures. In the present research, an experimental program has been conducted to evaluate the thermal performance of two variable stiffness panels fabricated using the Viper Fiber Placement System developed by Cincinnati Machine. These variable stiffness panels have the same layup, but one panel has overlapping tows and the other panel does not. Results of thermal tests of the variable stiffness panels are presented and com-

K. Chauncey Wu; Zafer Gÿrdal

2001-01-01T23:59:59.000Z

397

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating Heat...

398

Heat reclaimer  

SciTech Connect

An apparatus for reclaiming heat from the discharge gas from a combustion fuel heating unit, which has: inlet and outlet sections; an expansion section whose circumference gradually increases in the direction of flow, thereby providing an increased area for heat transfer; flow splitter plates which lie within and act in conjunction with the expansion section wall to form flow compartments, which flow splitter plates and expansion section wall have a slope, with respect to the centroidal axis of the flow compartment not exceeding 0.1228, which geometry prevents a separation of the flow from the enclosing walls, thereby increasing heat transfer and maintaining the drafting function; and a reduction section which converges the flow to the outlet section.

Horkey, E.J.

1982-06-29T23:59:59.000Z

399

High-performance, non-CFC-based thermal insulation: Gas filled panels  

SciTech Connect

Because of the forthcoming phase-out of CFCs and to comply with the more stringent building and appliance energy-use standards, researchers in industry and in the public sector are pursuing the development of non-CFC-based, high-performance insulation materials. This report describes the results of research and development of one alternative insulation material: highly insulating GFPs. GFPs insulate in two ways: by using a gas barrier envelope to encapsulate a low-thermal-conductivity gas or gas mixture (at atmospheric pressure), and by using low-emissivity baffles to effectively eliminate convective and radiative heat transfer. This approach has been used successfully to produce superinsulated windows. Unlike foams or fibrous insulations, GFPs are not a homogeneous material but rather an assembly of specialized components. The wide range of potential applications of GFPs (appliances, manufactured housing, site-built buildings, refrigerated transport, and so on) leads to several alternative embodiments. While the materials used for prototype GFPs are commercially available, further development of components may be necessary for commercial products. With the exception of a description of the panels that were independently tested, specific information concerning panel designs and materials is omitted for patent reasons; this material is the subject of a patent application by Lawrence Berkeley Laboratory.

Griffith, B.T.; Arasteh, D.; Selkowitz, S.

1992-04-01T23:59:59.000Z

400

Process Heating  

Science Conference Proceedings (OSTI)

This technical update uses real world examples to discuss applications of electrotechnology in industrial process heating and to highlight some of the emerging technologies in this field. These emerging technologies, when implemented in a plant, will provide significant energy savings as well as increase productivity. The report presents three case studies of successful implementation of two different electric process-heating technologies in three different industries. The case studies show that in some ...

2011-12-07T23:59:59.000Z

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

HEAT EXCHANGER  

DOE Patents (OSTI)

A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

1962-10-23T23:59:59.000Z

402

Corrosive resistant heat exchanger  

DOE Patents (OSTI)

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

403

Nuclear Energy Panel Discussion at University of Chicago  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Energy Panel Discussion at University of Chicago Nuclear Energy Panel Discussion at University of Chicago Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Nuclear Energy Panel Discussion at University of Chicago Did you miss this event? Watch recording of "Lessons from Fukushima" The event's webcast is over, but you can still watch and/or download the

404

REPORT OF THE BASIC ENERGY SCIENCES ADVISORY COMMITTEE PANEL  

NLE Websites -- All DOE Office Websites (Extended Search)

BASIC ENERGY SCIENCES BASIC ENERGY SCIENCES ADVISORY COMMITTEE PANEL ON D.O.E. SYNCHROTRON RADIATION SOURCES AND SCIENCE NOVEMBER 1997 EPRI Electric Power Research Institute Powering Progress through Innovative Solutions January 14th, 1998 Dr. Martha A. Krebs, Director Office of Energy Research United States Department of Energy Washington, DC 20585 Dear Martha, The purpose of this letter is to summarize the discussions of the Basic Energy Sciences Advisory Committee at its meeting on October 8 - 9, 1997 at the Holiday Inn in Gaithersburg as they related to the report from our Panel on Synchrotron Radiation Sources and Science. This Panel was assembled in response to the Charge presented to BESAC in your letter of October 9th, 1996 to reassess the need for and the opportunities presented by each of the four synchrotron

405

Plasma Panel Sensors for Particle and Beam Detection  

E-Print Network (OSTI)

The plasma panel sensor (PPS) is an inherently digital, high gain, novel variant of micropattern gas detectors inspired by many operational and fabrication principles common to plasma display panels (PDPs). The PPS is comprised of a dense array of small, plasma discharge, gas cells within a hermetically-sealed glass panel, and is assembled from non-reactive, intrinsically radiation-hard materials such as glass substrates, metal electrodes and mostly inert gas mixtures. We are developing the technology to fabricate these devices with very low mass and small thickness, using gas gaps of at least a few hundred micrometers. Our tests with these devices demonstrate a spatial resolution of about 1 mm. We intend to make PPS devices with much smaller cells and the potential for much finer position resolutions. Our PPS tests also show response times of several nanoseconds. We report here our results in detecting betas, cosmic-ray muons, and our first proton beam tests.

Peter S. Friedman; Robert Ball; James R. Beene; Yan Benhammou; E. H. Bentefour; J. W. Chapman; Erez Etzion; Claudio Ferretti; Nir Guttman; Daniel S. Levin; Meny Ben-Moshe; Yiftah Silver; Robert L. Varner; Curtis Weaverdyck; Bing Zhou

2012-11-23T23:59:59.000Z

406

Warm Bending Magnesium Sheet for Automotive Closure Panels  

Science Conference Proceedings (OSTI)

For automotive production, hemming equipment would be augmented with a rapid heating technology to locally heat the bend region, complete the hem and ...

407

Structural and heat-flow implications of infrared anomalies at Mt. Hood, Oregon  

DOE Green Energy (OSTI)

Surface thermal features occur in an area of 9700 m/sup 2/ at Mt. Hood, on the basis of an aerial line-scan survey made April 26, 1973. The distribution of the thermal areas below the summit of Mt. Hood, shown on planimetrically corrected maps at 1 : 12,000, suggests structural control by a fracture system and brecciated zone peripheral to a hornblende-dacite plug dome (Crater Rock), and by a concentric fracture system that may have been associated with development of the present crater. The extent and inferred temperature of the thermal areas permits a preliminary estimate of a heat discharge of 10 megawatts, by analogy with similar fumarole and thermal fields of Mt. Baker, Washington. This figure includes a heat loss of 4 megawatts (MW) via conduction, diffusion, evaporation, and radiation to the atmosphere, and a somewhat less certain loss of 6 MW via fumarolic mass transfer of vapor and advective heat loss from runoff and ice melt. The first part of the estimate is based on two-point models for differential radiant exitance and differential flux via conduction, diffusion, evaporation, and radiation from heat balance of the ground surface. Alternate methods for estimating volcanogenic geothermal flux that assume a quasi-steady state heat flow also yield estimates in the 5-11 MW range. Heat loss equivalent to cooling of the dacite plug dome is judged to be insufficient to account for the heat flux at the fumarole fields.

Friedman, J.D.; Frank, D.

1977-01-01T23:59:59.000Z

408

Functional requirements for component films in a solar thin-film photovoltaic/thermal panel  

SciTech Connect

The functional requirements of the component films of a solar thin-film photovoltaic/thermal panel were considered. Particular emphasis was placed on the new functions, that each layer is required to perform, in addition to their pre-existing functions. The cut-off wavelength of the window layer, required for solar selectivity, can be achieved with charge carrier concentrations typical of photovoltaic devices, and thus does not compromise electrical efficiency. The upper (semiconductor) absorber layer has a sufficiently high thermal conductivity that there is negligible temperature difference across the film, and thus negligible loss in thermal performance. The lower (cermet) absorber layer can be fabricated with a high ceramic content, to maintain high solar selectivity, without significant increase in electrical resistance. A thin layer of molybdenum-based cermet at the top of this layer can provide an Ohmic contact to the upper absorber layer. A layer of aluminium nitride between the metal substrate and the back metal contact can provide electrical isolation to avoid short-circuiting of series-connected cells, while maintaining a thermal path to the metal substrate and heat extraction systems. Potential problems of differential contraction of heated films and substrates were identified, with a recommendation that fabrication processes, which avoid heating, are preferable. (author)

Johnston, David [Power and Energy Research Group, School of Engineering, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST (United Kingdom)

2010-03-15T23:59:59.000Z

409

Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.  

SciTech Connect

Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

Blanchat, Thomas K.; Hanks, Charles R.

2013-04-01T23:59:59.000Z

410

Heat recovery in laundry yields 18-month payback  

SciTech Connect

A heat exchanger used to preheat hot water in a commercial laundry paid for itself in 19 months, despite a 10% increase in local natural gas rates. The Aurora, Illinois hospital commercial laundry chose a water-to-water shell and tube heat reclaimer system. A programmed control panel opens and closes valves at the proper temperature. Dirty water from the laundry cycle is screened to remove particles and returned to the heat exchanger to preheat incoming city water. Dirty water from the exchanger is discharged into the city sewer.

Hines, V.

1985-07-29T23:59:59.000Z

411

HEAT GENERATION  

DOE Patents (OSTI)

Heat is generated by the utilization of high energy neutrons produced as by nuclear reactions between hydrogen isotopes in a blanket zone containing lithium, a neutron moderator, and uranium and/or thorium effective to achieve multtplicatton of the high energy neutron. The rnultiplied and moderated neutrons produced react further with lithium-6 to produce tritium in the blanket. Thermal neutron fissionable materials are also produced and consumed in situ in the blanket zone. The heat produced by the aggregate of the various nuclear reactions is then withdrawn from the blanket zone to be used or otherwise disposed externally. (AEC)

Imhoff, D.H.; Harker, W.H.

1963-12-01T23:59:59.000Z

412

Report of the Energy Research Advisory Board Direct Heat Subpanel of the Geothermal Panel  

DOE Green Energy (OSTI)

Geothermal resources and their market potential, barriers to development, the present federal program, and needed information are discussed. (MHR)

Not Available

1980-11-01T23:59:59.000Z

413

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

414

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

415

Suggested Questions for Panel Discussion: Infrastructure and Transportation  

E-Print Network (OSTI)

Suggested Questions for Panel Discussion: Infrastructure and Transportation Moderator: Kirk Panelists: Jim Wood, Director of the Office of Policy Planning, Florida Department of Transportation (FDOT will face due to future changes in climate/climate variability, and sea levels? Jim Wood: One

Watson, Craig A.

416

Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels  

E-Print Network (OSTI)

1 Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels Solar Thermal R-35 Rim Joist Area 5" open cell spray foam 2" mineral wool insulation blanket R-10 Basement Slab electric WH #12;NZERTF Gaithersburg, MD Solar Photovoltaic Array Roof Mounted South half of main roof

Oak Ridge National Laboratory

417

An integrated maximum power point tracker for photovoltaic panels  

E-Print Network (OSTI)

Abstract- This paper proposes a maximum power point tracker (MPPT) for a photovoltaic panel, that is to be integrated with the panel during manufacturing. The MPPT is inexpensive, efficient and has few components that serve to increase the MPPT’s mean time between failures (MTBF). The MPPT uses an inexpensive micro-controller to perform all of its functions. This includes maximum power point tracking, series battery voltage regulation, sensorless short circuit protection of the MPPT’s converter and intelligent shutdown and wakeup at dusk and dawn. The MPPT can source 10 A to a 6 V- 36 V lead-acid storage battery and can be connected in parallel or series with other MPPTs. The MPPT may be easily configured to perform output voltage regulation on passive and water pumping loads. It could also control the actuation of a diesel generator in a hybrid remote area power supply (RAPS). Energy transfer enhancements of up to 26%, compared to solar panels without MPPTs, have been measured. The complete component and materials cost of the MPPT is approximately 2’8 % of the cost of photovoltaic panels with a peak power rating of 154 W. The integrated MPPT also consumes no stored energy at night. 1.

Wernher Swiegers

1998-01-01T23:59:59.000Z

418

Mir Environmental Effects Payload and Returned Mir Solar Panel Cleanliness  

Science Conference Proceedings (OSTI)

The MIR Environmental Effects Payload (MEEP) was attached to the Docking Module of the MIR space station for 18 months during calendar years 1996 and 1997 (March 1996, STS 76 to October 1997, STS 86). A solar panel array with more than 10 years space ...

Harvey Gale A.; Humes Donald H.; Kinard William H.

1999-05-01T23:59:59.000Z

419

Emerging trends around big data analytics and security: panel  

Science Conference Proceedings (OSTI)

This panel will discuss the interplay between key emerging security trends centered around big data analytics and security. With the explosion of big data and advent of cloud computing, data analytics has not only become prevalent but also a critical ... Keywords: analytics, big data, privacy, security

Rafae Bhatti; Ryan LaSalle; Rob Bird; Tim Grance; Elisa Bertino

2012-06-01T23:59:59.000Z

420

EXPERIMENTAL TESTING OF TWO SOLAR PANEL SIMULATIONS Krisztina Leban  

E-Print Network (OSTI)

from both models with experimental results, we can conclude that model 2 is the most reliable one. Key standard test condition values for temperature and irradiance. 2. Photovoltaic panel models 2.1. First PV was neglected in order to simplify the model [2], [3]. The diode, D represents the PN junction of the PV solar

Ritchie, Ewen

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Modular container assembled from fiber reinforced thermoplastic sandwich panels  

DOE Patents (OSTI)

An improved, load bearing, modular design container structure assembled from thermoformed FRTP sandwich panels in which is utilized the unique core-skin edge configuration of the present invention in consideration of improved load bearing performance, improved useful load volume, reduced manufacturing costs, structural weight savings, impact and damage tolerance and repair and replace issues.

Donnelly, Mathew William (Edgewood, NM); Kasoff, William Andrew (Albuquerque, NM); Mcculloch, Patrick Carl (Irvine, CA); Williams, Frederick Truman (Albuquerque, NM)

2007-12-25T23:59:59.000Z

422

Earth's Heat Source - The Sun  

E-Print Network (OSTI)

The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

Manuel, Oliver K

2009-01-01T23:59:59.000Z

423

Earth's Heat Source - The Sun  

E-Print Network (OSTI)

The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

Oliver K. Manuel

2009-05-05T23:59:59.000Z

424

Behavior of Concrete Panels Reinforced with Synthetic Fibers, Mild Steel, and GFRP Composites Subjected to Blasts  

SciTech Connect

The paper presents experimental data generated for calibrating finite element models to predict the performance of reinforced concrete panels with a wide range of construction details under blast loading. The specimens were 1.2 m square panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consisted of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bars; FRC panels without additional reinforcement; FRC panels with steel bars; NWC panels with glass fiber reinforced polymer (GFRP) bars; and NWC panels reinforced with steel bars and external GFRP laminates on both faces. Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. FRC panels with steel bars had the best performance for new construction. NWC panels reinforced with steel bars and external GFRP laminates on both faces had the best performance for strengthening or rehabilitation of existing structures. The performance of NWC panels with GFRP bars was strongly influenced by the bar spacing. The behavior of the panels is classified in terms of damage using immediate occupancy, life safety, and near collapse performance levels. Preliminary dynamic simulations are compared to the experimental results.

C. P. Pantelides; T. T. Garfield; W. D. Richins; T. K. Larson; J. E. Blakeley

2012-03-01T23:59:59.000Z

425

Heat reclaimer  

Science Conference Proceedings (OSTI)

A heat reclaimer for the exhaust flue of a heating unit comprises a housing having an air input space, an air output space, and an exhaust space, with a plurality of tubes connected between and communicating the air input space with the air output space and extending through the exhaust space. The exhaust flue of the heating unit is connected into the exhaust space of the housing and an exhaust output is connected to the housing extending from the exhaust space for venting exhaust coming from the heater into the exhaust space to a chimney, for example. A float or level switch is connected to the housing near the bottom of the exhaust space for switching, for example, an alarm if water accumulates in the exhaust space from condensed water vapor in the exhaust. At least one hole is also provided in the housing above the level of the float switch to permit condensed water to leave the exhaust space. The hole is provided in case the float switch clogs with soot. A wiping device may also be provided in the exhaust space for wiping the exterior surfaces of the tubes and removing films of water and soot which might accumulate thereon and reduce their heat transfer capacity.

Bellaff, L.

1981-10-20T23:59:59.000Z

426

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

Wolowodiuk, Walter (New Providence, NJ)

1976-01-06T23:59:59.000Z

427

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

428

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

429

Method of and apparatus for enabling output power of solar panel to be maximized  

SciTech Connect

The D.C. Power supplied by a photovoltaic solar panel to a load is controlled by monitoring the slope of the panel voltage vs. Current characteristic and adjusting the current supplied by the panel to the load so that the slope is approximately unity. The slope is monitored by incrementally changing the panel load and indicating whether the resulting change in current derived from the panel is above or below a reference value, indicative of the panel voltage. In response to the change in the monitored current being above the reference value, the slope of a voltage vs. Current curve is greater than unity and the load is adjusted to decrease the current supplied by the panel to the load. Conversely, in response to the current being less than the reference value, the slope of the voltage vs. Current curve is less than unity and the load is adjusted to increase the current supplied by the panel to the load.

Baker, R.H.

1983-03-01T23:59:59.000Z

430

March 29, 2011, Federal Technical Capabilities Panel Face-to-Face Meeting - National Training Center Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Training National Training National Training National Training National Training National Training Center Center National Training National Training Center Center Federal Technical Capability Federal Technical Capability Panel (FTCP) Meeting Panel (FTCP) Meeting Federal Technical Capability Federal Technical Capability Panel (FTCP) Meeting Panel (FTCP) Meeting Panel (FTCP) Meeting Panel (FTCP) Meeting Panel (FTCP) Meeting Panel (FTCP) Meeting March 29, 2011 March 29, 2011 March 29, 2011 March 29, 2011 Discussion Topics Discussion Topics p p * NTC Initiatives Update p Lesley Gasperow, Acting Director, NTC * Safety Training Program Update Jeannie Lozoya, Safety Training Program Manager, NTC * Security Training Program Update R Sh Di t S it T i i O ti NTC Russ Showers, Director, Security Training Operations, NTC

431

Panel: How Can Software Reliability Engineering (SRE) Help System Engineers and Software Architects?  

Science Conference Proceedings (OSTI)

This panel session will discuss how Systems Engineers and Software Architects can benefit porn using SRE. Members of the panel will discuss how their respective organizations use (or anticipate using) SRE earlier in the software development life-cycle. ...

Panel chair; W. Ehrlich; J. Musa; P. Mangan; R. Yacobellis

1996-10-01T23:59:59.000Z

432

Final Report of theIgneous Consequences Peer Review Panel | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report of theIgneous Consequences Peer Review Panel Final Report of theIgneous Consequences Peer Review Panel A report for the DOE on the Yucca Mountain Project. Final Report...

433

Panel assemblage for housing : some form and construction explorations for small buildings  

E-Print Network (OSTI)

This thesis examines the consequences of building homes in a factory and explores viable construction alternatives using factory-made panels. The exploration considers panelized systems of dwelling construction and its ...

Borenstein, David Reed

1984-01-01T23:59:59.000Z

434

Design and analysis of a concrete modular housing system constructed with 3D panels  

E-Print Network (OSTI)

An innovative modular house system design utilizing an alternative concrete residential building system called 3D panels is presented along with an overview of 3D panels as well as relevant methods and markets. The proposed ...

Sarcia, Sam Rhea, 1982-

2004-01-01T23:59:59.000Z

435

ABSORPTION HEAT PUMP IN THE DISTRICT HEATING  

E-Print Network (OSTI)

#12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation #12;JSC RGAS SILTUMS · the biggest District Heating company in Latvia and in the Baltic states

Oak Ridge National Laboratory

436

Calibration of a FE model of masonry shear panels strengthened by metal sheathing  

Science Conference Proceedings (OSTI)

In order to calibrate advanced FE Model experimental tests on masonry wall panel specimens in shear as well as on some panels strengthened by ductile steel are used. Application of finite element material models to simulate the behavior of masonry is ... Keywords: FE model, innovative retrofitting techniques, masonry shear panels, material models

A. Dogariu; F. Campitiello

2010-04-01T23:59:59.000Z

437

Electrically heated liquid tank employing heat pipe heat transfer means  

SciTech Connect

The heating apparatus for applying heat to the interior of a chamber includes a modular, removable, electrical, heat-producing unit and a heat pipe mountable in a wall of the chamber with one end of the pipe arranged to receive heat from the electrical heat producing unit exterior of the housing and with another end of the pipe constructed and arranged to apply heat to the medium within the chamber. The heat pipe has high conductivity with a low temperature differential between the ends thereof and the heat producing unit includes an electric coil positioned about and removably secured to the one end of the heat pipe. The electric coil is embedded in a high thermal conducitivity, low electrical conductivity filler material which is surrounded by a low thermal conductivity insulating jacket and which is received around a metal core member which is removably secured to the one end of the heat pipe.

Shutt, J.R.

1978-12-26T23:59:59.000Z

438

Investigation of cold filling receiver panels and piping in molten-nitrate-salt central-receiver solar power plants  

DOE Green Energy (OSTI)

Cold filling refers to flowing a fluid through piping or tubes that are at temperatures below the fluid`s freezing point. Since the piping and areas of the receiver in a molten-nitrate salt central-receiver solar power plant must be electrically heated to maintain their temperatures above the nitrate salt freezing point (430{degrees}F, 221{degrees}C), considerable energy could be used to maintain such temperatures during nightly shut down and bad weather. Experiments and analyses have been conducted to investigate cold filling receiver panels and piping as a way of reducing parasitic electrical power consumption and increasing the availability of the plant. The two major concerns with cold filling are: (1) how far can the molten salt penetrate cold piping before freezing closed and (2) what thermal stresses develop during the associated thermal shock. Cold fill experiments were conducted by flowing molten salt at 550{degrees}F (288{degrees}C) through cold panels, manifolds, and piping to determine the feasibility of cold filling the receiver and piping. The transient thermal responses were measured and heat transfer coefficients were calculated from the data. Nondimensional analysis is presented which quantifies the thermal stresses in a pipe or tube undergoing thermal shock. In addition, penetration distances were calculated to determine the distance salt could flow in cold pipes prior to freezing closed.

Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.

1994-12-31T23:59:59.000Z

439

Solar heat collector  

SciTech Connect

A solar heat collector comprises an evacuated transparent pipe; a solar heat collection plate disposed in the transparent pipe; a heat pipe, disposed in the transparent pipe so as to contact with the solar heat collection plate, and containing an evaporable working liquid therein; a heat medium pipe containing a heat medium to be heated; a heat releasing member extending along the axis of the heat medium pipe and having thin fin portions extending from the axis to the inner surface of the heat medium pipe; and a cylindrical casing surrounding coaxially the heat medium pipe to provide an annular space which communicates with the heat pipe. The evaporable working liquid evaporates, receiving solar heat collected by the heat collection plate. The resultant vapor heats the heat medium through the heat medium pipe and the heat releasing member.

Yamamoto, T.; Imani, K.; Sumida, I.; Tsukamoto, M.; Watahiki, N.

1984-04-03T23:59:59.000Z

440

Geothermal district heating systems  

DOE Green Energy (OSTI)

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Novel Opencell™ Metal Sandwich Panels - Programmaster.org  

Science Conference Proceedings (OSTI)

... Corrosion Inhibition for Hydrochloric Acid Pickling · Using Resistance Heating to Create Full-Scale API RP2Z CTOD Samples ...

442

Overview: Home Cooling Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

than earlier models. Dehumidifying heat pipes can help an air conditioner remove humidity and more efficiently cool the air. Radiant Cooling Radiant cooling cools a floor or...

443

Energy savings estimates and cost benefit calculations for high performance relocatable classrooms  

E-Print Network (OSTI)

Roof”) coating for the radiant barrier in the attic space.barrier. Other possible heating systems compatible with the IDEC cooling system, such as electric ceiling radiant

Rainer, Leo I.; Hoeschele, Marc A.; Apte, Michael G.; Shendell, Derek G.; Fisk, William J.

2003-01-01T23:59:59.000Z

444

ORNL's Jeskie active on chemical safety panels | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

865.574.4399 865.574.4399 ORNL's Jeskie active on chemical safety panels Oak Ridge National Laboratory's Kim Jeskie. Oak Ridge National Laboratory's Kim Jeskie. OAK RIDGE, Oct. 3, 2013 -- Oak Ridge National Laboratory's Kim Jeskie led the 12-member committee that developed new chemical safety guidelines described in the report, "Identifying and Evaluating Hazards in Research Laboratories," released by the American Chemical Society (ACS) at its 246th National Meeting & Exposition held in September. Jeskie was also appointed last spring to serve on the National Research Council Committee on Establishing and Promoting a Culture of Safety in Academic Laboratory Research. That panel is examining chemical research laboratory safety in nonindustrial settings.

445

MORPHOMETRIC SUBTYPING FOR A PANEL OF BREAST CANCER CELL LINES  

Science Conference Proceedings (OSTI)

A panel of cell lines of diverse molecular background offers an improved model system for high-content screening, comparative analysis, and cell systems biology. A computational pipeline has been developed to collect images from cell-based assays, segment individual cells and colonies, represent segmented objects in a multidimensional space, and cluster them for identifying distinct subpopulations. While each segmentation strategy can vary for different imaging assays, representation and subpopulation analysis share a common thread. Application of this pipeline to a library of 41 breast cancer cell lines is demonstrated. These cell lines are grown in 2D and imaged through immunofluorescence microscopy. Subpopulations in this panel are identified and shown to correlate with previous subtyping literature that was derived from transcript data.

Han, Ju; Chang, Hang; Fontenay, Gerald; Wang, Nicholas J.; Gray, Joe W.; Parvin, Bahram

2009-05-08T23:59:59.000Z

446

Radiant Barriers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photo courtesy of Cellulose Insulation Manufacturers Association. Insulation Materials Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient...

447

Radiant Barriers | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

and follow the manufacturer's instructions and safety precautions and check your local building and fire codes. The reflective insulation trade association also offers...

448

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1982-01-01T23:59:59.000Z

449

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1979-01-01T23:59:59.000Z

450

Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing  

NLE Websites -- All DOE Office Websites (Extended Search)

Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) Print E-mail Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) Print E-mail Introduction The United States Global Change Research Program, in cooperation with the Department of State, request expert review of the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX)of the Intergovernmental Panel on Climate Change (IPCC). On behalf of the U.S. Department of State, the U.S. Global Change Research Program is coordinating the solicitation of comments by U.S. experts to inform development of an integrated set of U.S. Government comments on the report. The Global Change Research Program Office will coordinate collation of U.S. expert comments and the review of the report by panels of Federal scientists and program managers in order to develop a consolidated U.S. Government submission. Expert comments must be received via the internet-based application by Midnight, Eastern Daylight Time, 7 March 2011 to be considered for inclusion in the U.S. Government submission. An expert reviewer may also be asked to participate in the government review organized within his or her own country. In such a case, he/she should submit comments either as an individual or as part of the government review, but not both.

451

Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing  

NLE Websites -- All DOE Office Websites (Extended Search)

Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) Print E-mail Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) Print E-mail Introduction The United States Global Change Research Program, in cooperation with the Department of State, request expert review of the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) of the Intergovernmental Panel on Climate Change (IPCC). On behalf of the U.S. Department of State, thethe U.S. Global Change Research Program is coordinating the solicitation of comments by U.S. experts to inform development of an integrated set of U.S. Government comments on the report. The Global Change Research Program Office will coordinate collation of U.S. expert comments and the review of the report by panels of Federal scientists and program managers in order to develop a consolidated U.S. Government submission. Expert comments must be received via the internet-based application by Midnight, Eastern Daylight Time, 7 March 2011 to be considered for inclusion in the U.S. Government submission. An expert reviewer may also be asked to participate in the government review organized within his or her own country. In such a case, he/she should submit comments either as an individual or as part of the government review, but not both.

452

Report of the Ad Hoc Panel on heavy ion facilities  

SciTech Connect

In response to a request from the USAEC, the President of the National Academy of Sciences appointed an Ad Hoc Panel under the NAS-NRC Committee on Nuclear Science to make an intensive study of various aspects of the science and technology involved in heavy ion research in light of the needs of the national program in this field. In particular, the panel was asked to formulate and evaluate various options for the development of heavy ion facilities that would include an appropriate accelerator complex capable of producing heavy ion beams and the ancillary apparatus required for experimental exploitation. Also, the Panel was asked to evaluate the current status and potentialities of the Super HILAC and Bevalac accelerators of the Lawrence Radiation Laboratory, Berkeley. Results of the study are presented. Topics include heavy ions in nuclear physics and chemistry, atomic physics, heavy ions and astro and space physics, materials science and solid state, and biomedicine. The state of the technology related to the choice of a heavy ion accelerator system is reviewed, and the various possible choices are reviewed including the large tandem accelerator, tandem- cyclotron systems, and linear accelerators. The upgrading of existing facilities (Super HILAC, Bevalac, and PPA) is discussed. Cost estimates for various heavy ion facilities are briefly discussed. (WHK)

1974-01-01T23:59:59.000Z

453

Divya Energy Solar Panel Savings Calculator | Open Energy Information  

Open Energy Info (EERE)

Divya Energy Solar Panel Savings Calculator Divya Energy Solar Panel Savings Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Divya Energy Solar Panel Savings Calculator Agency/Company /Organization: Boston Cleanweb Hackathon Resource Type: Application prototype User Interface: Website Website: hackerleague.org/hackathons/boston-cleanweb-hackathon/hacks/divya-ener Web Application Link: www.divyaenergy.com/cleanweb/ OpenEI Keyword(s): Cleanweb Hackathon, Boston, Community Generated Coordinates: 42.3490737°, -71.0481764° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3490737,"lon":-71.0481764,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Heat transfer and heat exchangers reference handbook  

Science Conference Proceedings (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

455

Heating systems for heating subsurface formations  

Science Conference Proceedings (OSTI)

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

456

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

457

2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Panel Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its bi-annual peer review of the Smart Grid Research and Development Program on June 7-8, 2012. More than 30 projects were presented at San Diego Gas & Electric's Energy Innovation Center. Presentations from the Day 2 Smart Grid panel discussion are below. Moderator: Lee Kreval, SDG&E 2012 SG Peer Review - Day 2 Panel Discussion: Puesh Kumar, American Public Power Association 2012 SG Peer Review - Day 2 Panel Discussion: Rogelio Sullivan, NC State University 2012 SG Peer Review - Day 2 Panel Discussion: Matt Wakefield, EPRI More Documents & Publications Smart Grid Characteristics, Values, and Metrics

458

Another SunShot Success: GE to Make PrimeStar Solar Panels at New Colorado  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Another SunShot Success: GE to Make PrimeStar Solar Panels at New Another SunShot Success: GE to Make PrimeStar Solar Panels at New Colorado Plant Another SunShot Success: GE to Make PrimeStar Solar Panels at New Colorado Plant October 14, 2011 - 4:03pm Addthis Thin film solar panels produced by General Electric’s PrimeStar in Arvada, Colorado | Image courtesy of Edelman. Thin film solar panels produced by General Electric's PrimeStar in Arvada, Colorado | Image courtesy of Edelman. Minh Le Minh Le Program Manager, Solar Program Yesterday, General Electric (GE) announced that it will build a new thin-film photovoltaic (PV) solar panel manufacturing facility in Aurora, Colorado, to produce highly-efficient, low-cost panels that are based on innovative technology originally developed at the Energy Department's

459

Arkansas Students Get Their Hands Dirty in Solar Panel Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Students Get Their Hands Dirty in Solar Panel Project Arkansas Students Get Their Hands Dirty in Solar Panel Project Arkansas Students Get Their Hands Dirty in Solar Panel Project September 9, 2010 - 5:47pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this mean for me? Lamar School District installed four solar panels with Recovery Act funds,10 more on the way Students helped install solar panels as part of school-to-work transition program 45 panels at City Hall to be installed by students Wallie Shaw remembers where he got the idea to do a hands-on solar panel project for his Jobs for America's Graduates (JAG) students, a school-to-work transition program focused on helping at-risk youth graduate from high school. "Having been in the military and stationed in Germany, I saw a magazine

460

Radiofrequency plasma heating: proceedings  

SciTech Connect

The conference proceedings include sessions on Alfven Wave Heating, ICRF Heating and Current Drive, Lower Hybrid Heating and Current Drive, and ECRF Heating. Questions of confinement, diagnostics, instabilities and technology are considered. Individual papers are cataloged separately. (WRF)

Swenson, D.G. (ed.)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat radiant panels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Photovoltaic roof heat flux  

E-Print Network (OSTI)

and could the heat transfer processes be modeled to estimateindicating that the heat transfer processes were modeled w i

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

462

Heat Transfer in Complex Fluids  

SciTech Connect

Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

Mehrdad Massoudi

2012-01-01T23:59:59.000Z

463

Heat pipe methanator  

DOE Patents (OSTI)

A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

Ranken, William A. (Los Alamos, NM); Kemme, Joseph E. (Los Alamos, NM)

1976-07-27T23:59:59.000Z

464

Segmented heat exchanger  

DOE Patents (OSTI)

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

465

Dual source heat pump  

DOE Patents (OSTI)

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

466

Heat reclaimer for a heat pump  

Science Conference Proceedings (OSTI)

This invention relates to a heat reclaiming device for a heat pump. The heat reclaimer is able to absorb heat from the compressor by circulating cooling fluid through a circuit which is mounted in good heat transfer relationship with the condenser, then around the shell of the motor-compressor and lastly around the hollow tube which connects the condenser to the compressor. The reclaiming circuit is connected into a fluid circulating loop which is used to supply heat to the evaporator coil of the heat pump.

Beacham, W.H.

1981-02-03T23:59:59.000Z

467

Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests  

DOE Green Energy (OSTI)

Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

1995-01-01T23:59:59.000Z

468

Ultrasonic Plate Wave Evaluation Of Natural Fiber Composite Panels  

Science Conference Proceedings (OSTI)

Two key shortcomings of current ultrasonic nondestructive evaluation (NDE) techniques for plywood, medium density fiberboard (MDF), and oriented strandboard are the reliance on empirical correlations and the neglect of valuable waveform information. The research reported herein examined the feasibility of using fundamental mechanics, wave propagation, and laminated, shear deformable plate theories to nondestructively evaluate material properties in natural fiber-based composite panels. Dispersion curves were constructed exhibiting the variation of flexural plate wave phase velocity with frequency. Based on shear deformable laminated plate wave theory, flexural and transverse shear rigidity values for solid transversely isotropic, laminated transversely isotropic, and solid orthotropic natural fiber-based composite panels were obtained from the dispersion curves. Axial rigidity values were obtained directly from extensional plate wave phase velocity. Excellent agreement (within 3%) of flexural rigidity values was obtained between NDE and mechanical testing for most panels. Transverse shear modulus values obtained from plate wave tests were within 4% of values obtained from through-thickness ultrasonic shear wave speed. Tensile and compressive axial rigidity values obtained from NDE were 22% to 41% higher than mechanical tension and compression test results. These differences between NDE and axial mechanical testing results are likely due to load-rate effects; however, these large differences were not apparent in the flexural and transverse shear comparisons. This fundamental research advances the state-of-the-art of NDE of wood-based composites by replacing empirical approaches with a technique based on fundamental mechanics, shear deformation laminated plate theory, and plate wave propagation theory.

Tucker, Brian J. (BATTELLE (PACIFIC NW LAB)); Bender, Donald A. (Washington State University); Pollock, David G. (Washington State University); Wolcott, Michael P. (Washington State University)

2003-04-01T23:59:59.000Z

469

Toward integrated PV panels and power electronics using printing technologies  

SciTech Connect

In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

Ababei, Cristinel; Yuvarajan, Subbaraya [Electrical and Computer Engineering Department, North Dakota State University, Fargo, ND 58108 (United States); Schulz, Douglas L. [Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND 58102 (United States)

2010-07-15T23:59:59.000Z

470

Installation system for integral mounting of thermal or photovoltaic panels  

Science Conference Proceedings (OSTI)

A unique installation system for mounting solar thermal or photovoltaic solar collector panels as an integral part of a structure is described. The most common example would have the collector array replacing the sheathing and shingles of a roof supported by trusses or rafters on 24 inch centers. The design achieves the goals of a good integral installation which is reliably weathertight, rapid and easy to execute by typical construction workers with little specific extra training and no special tools. All materials and components are commercially available and have proven performance.

Rost, D.F. (Solar Energy Engineering, Poland, OH); Ameduri, G.; Groves, L.

1981-01-01T23:59:59.000Z

471

DOE Hydrogen and Fuel Cell Activities Panel Discussion  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy 1 DOE Hydrogen and Fuel Cell Activities Panel Discussion Dr. Sunita Satyapal Chief Engineer & Deputy Program Manager Fuel Cell Technologies Program United States Department of Energy SAE World Congress SAE World Congress April 15, 2010 April 15, 2010 U. S. Department of Energy 2 2 Technology Barriers* Economic & Institutional Barriers Fuel Cell Cost & Durability Targets*: Vehicles: $30 per kW, 5,000-hr durability Stationary Systems: $750 per kW, 40,000-hr durability Safety, Codes & Standards Development Domestic Manufacturing & Supplier Base Public Awareness & Acceptance Hydrogen Supply & Delivery Infrastructure Hydrogen Cost Target: $2 - 3 /gge, delivered Key Challenges Technology Validation: Technologies must

472

Review of current status of high flux heat transfer techniques. Volume I. Text + Appendix A  

SciTech Connect

The scope of this work comprised two tasks. The first was to review high heat flux technology with consideration given to heat transfer panel configuration, diagnostics techniques and coolant supply. The second task was to prepare a report describing the findings of the review, to recommend the technology offering the least uncertainty for scale-up for the MFTF-B requirement and to recommend any new or perceived requirements for R and D effort.

Bauer, W.H.; Gordon, H.S.; Lackner, H.; Mettling, J.R.; Miller, J.E.

1980-09-01T23:59:59.000Z

473

Novel heat pipe combination  

SciTech Connect

The basic heat pipe principle is employed in a heat pipe combination wherein two heat pipes are combined in opposing relationship to form an integral unit; such that the temperature, heat flow, thermal characteristics, and temperature-related parameters of a monitored environment or object exposed to one end of the heat pipe combination can be measured and controlled by controlling the heat flow of the opposite end of the heat pipe combination.

Arcella, F.G.

1978-01-10T23:59:59.000Z

474

The Reality of Solar Panels at 50% Cost | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Reality of Solar Panels at 50% Cost The Reality of Solar Panels at 50% Cost The Reality of Solar Panels at 50% Cost August 3, 2010 - 12:01pm Addthis Dr. Arun Majumdar Dr. Arun Majumdar Former Director, Advanced Research Projects Agency - Energy Last week, residents in the Baltimore-Washington area experienced their 42nd day of 90+ degree temperatures this year. Wouldn't it be nice to capture more of that intense sunlight and convert it into electricity? Modern photovoltaic cells (more commonly known as solar panels) were invented in the 1950s at Bell Laboratories. But despite the passage of over fifty years, solar energy's full potential has yet to be tapped due in part to the cost of actually putting the pieces of a solar panel together -- installing solar panels still far exceeds the cost of using traditional

475

Seismic Rehabilitation of RC Frames by Using Steel Panels  

Science Conference Proceedings (OSTI)

Every major earthquake in Turkey causes a large number of building suffer moderate damage due to poor construction. If a proper and fast retrofit is not applied, the aftershocks, which may sometimes come days or weeks after the main shock, can push a moderately damaged building into a major damage or even total collapse. This paper presents a practical retrofit method for moderately damaged buildings, which increases the seismic performance of the structural system by reducing the displacement demand. Fabricated steel panels are used for the retrofit. They are light-weight, easy to handle, and can be constructed very quickly. Moreover, they are cheap, and do not need formwork or skilled workers. They can be designed to compensate for the stiffness and strength degradation, and to fit easily inside a moderately damaged reinforced concrete frame.To test the concept, a half-scale, single-story 3D reinforced concrete frame specimen was constructed at the shake-table laboratories of the Kandilli Observatory and Earthquake Research Institute of Bogazici University, and subjected to recorded real earthquake base accelerations. The amplitudes of base accelerations were increased until a moderate damage level is reached. Then, the damaged RC frames was retrofitted by means of steel panels and tested under the same earthquake. The seismic performance of the specimen before and after the retrofit was evaluated using FEMA356 standards, and the results were compared in terms of stiffness, strength, and deformability. The results have confirmed effectiveness of the proposed retrofit scheme.

Mowrtage, Waiel [Kandilli Observatory and Earthquake Research Institute of Bogazici University, Earthquake Engineering Department, Istanbul (Turkey)

2008-07-08T23:59:59.000Z

476

Multiple source heat pump  

DOE Patents (OSTI)

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

477

Use of bark-derived pyrolysis oils ass a phenol substitute in structural panel adhesives  

DOE Green Energy (OSTI)

The main objective of this program was to pilot the world's first commercial-scale production of an acceptable phenol formaldehyde (PF) resin containing natural resin (NR) ingredients, for use as an adhesive in Oriented-Strand Board (OSB) and plywood panel products. Natural Resin products, specifically MNRP are not lignin ''fillers''. They are chemically active, natural phenolics that effectively displace significant amounts of phenol in PF resins, and which are extracted from bark-derived and wood-derived bio-oils. Other objectives included the enhancement of the economics of NR (MNRP) production by optimizing the production of certain Rapid Thermal Processing (RTP{trademark}) byproducts, particularly char and activated carbon. The options were to activate the char for use in waste-water and/or stack gas purification. The preliminary results indicate that RTP{trademark} carbon may ultimately serve as a feedstock for activated carbon synthesis, as a fuel to be used within the wood product mill, or a fuel for an electrical power generating facility. Incorporation of the char as an industrial heat source for use in mill operations was L-P's initial intention for the carbon, and was also of interest to Weyerhaeuser as they stepped into in the project.

Louisiana Pacific Corp

2004-03-01T23:59:59.000Z

478

Exploration methods for hot dry rock. Report of the panel held June 22, 1976  

DOE Green Energy (OSTI)

The geological and geophysical characteristics of hot dry rock (HDR) necessary for an effective exploration program were discussed. The type of HDR project discussed, that being developed by the Los Alamos Scientific Laboratory (LASL), would utilize hydraulic fracturing to develop a large surface area in rock of low permeability, 10/sup -6/ darcys, and at temperatures greater than 200/sup 0/C. A better definition of the thermal regime in the crust and mantle at reconnaissance (hundreds to tens of kilometers) and exploration (tens of kilometers to 1 km) scales is needed. Geophysical methods capable of deep investigation would be used with the near-surface geologic information to extrapolate conditions at the depth of interest. Detection of HDR per se may be difficult because the contrast in physical properties of HDR and other rock is not always unambiguous, but boundaries between rock environments can be delineated. When patterns and coincidence of various types of geophysical anomalies and geologic maps are used, the probability of the detection of HDR is greatly increased, especially when a consistent picture is described. Various geophysical methods are required to detect these anomalies: (a) electromagnetic techniques can map deep electrically conductive structures, which to some extent can be used to infer isotherms. (b) Bouguer gravity maps corrected for regional topography are found to correlate with large silicic intrusive bodies, which are often associated with high heat flow. (c) isotherms and open crack systems at depth can be inferred from seismic wave attenuations, dispersions, and delay times. (d) heat flow measurements are useful as a primary tool and as a check on the results of other methods. Abstracts for individual presentations by the twelve panel members are included. 111 references.

West, F.G.; Shankland, T.J. (comps.)

1977-03-01T23:59:59.000Z