Sample records for heat pump phase

  1. MIXED PHASE COMPRESSION HIGH EFFICIENCY HEAT PUMP.

    E-Print Network [OSTI]

    Chan, WenYen

    2014-01-01T23:59:59.000Z

    ??The objective of this thesis is the design and realization of a higher efficiency air source heat pump. The improved pump???s operating cost must rival… (more)

  2. Two component absorption/phase separation chemical heat pump to provide temperature amplification to waste heat streams

    DOE Patents [OSTI]

    Scott, T.C.; Kaplan, S.I.

    1987-09-04T23:59:59.000Z

    A chemical heat pump that utilizes liquid/liquid phase separation rather than evaporation to separate two components in a heat of mixing chemical heat pump process. 3 figs.

  3. Berry-Phase induced Heat Pumping and its Impact on the Fluctuation Theorem

    E-Print Network [OSTI]

    Ren, Jie; Li, Baowen

    2010-01-01T23:59:59.000Z

    Applying adiabatic, cyclic two parameter modulations we investigate quantum heat transfer across an anharmonic molecular junction contacted with two heat baths. We demonstrate that the pumped heat typically exhibits a Berry phase effect in providing an additional geometric contribution to heat flux. Remarkably, a robust fractional quantized geometric phonon response is identified as well. The presence of this geometric phase contribution in turn causes a breakdown of the fluctuation theorem of the Gallavotti-Cohen type for quantum heat transfer. This can be restored only if (i) the geometric phase contribution vanishes and if (ii) the cyclic protocol preserves the detailed balance symmetry.

  4. Super energy saver heat pump with dynamic hybrid phase change material

    DOE Patents [OSTI]

    Ally, Moonis Raza (Oak Ridge, TN) [Oak Ridge, TN; Tomlinson, John Jager (Knoxville, TN) [Knoxville, TN; Rice, Clifford Keith (Clinton, TN) [Clinton, TN

    2010-07-20T23:59:59.000Z

    A heat pump has a refrigerant loop, a compressor in fluid communication with the refrigerant loop, at least one indoor heat exchanger in fluid communication with the refrigerant loop, and at least one outdoor heat exchanger in fluid communication with the refrigerant loop. The at least one outdoor heat exchanger has a phase change material in thermal communication with the refrigerant loop and in fluid communication with an outdoor environment. Other systems, devices, and methods are described.

  5. Methanol-based heat pump for solar heating, cooling, and storage. Phase III. Final report

    SciTech Connect (OSTI)

    Offenhartz, P O'D; Rye, T V; Malsberger, R E; Schwartz, D

    1981-03-01T23:59:59.000Z

    The reaction of CH/sub 3/OH vapor with solid (pellet) CaCl/sub 2/ to form the solid phase compound CaCll/sub 2/ . 2CH/sub 3/OH can be used as the basis of a combined solar heat pump/thermal energy storage system. Such a system is capable of storing heat indefinitely at ambient temperature, and can be used for space and domestic hot water heating, and for air conditioning with forced air (dry) heat rejection. It combines all features required of a residential or commercial space conditioning system except for solar collection. A detailed thermal analysis shows that the coefficient of performance for heating is greater than 1.5, and for cooling, greater than 0.5. This has been confirmed by direct experimental measurement on an engineering development test unit (EDTU). The experimental rate of CH/sub 3/OH absorption is a strong function of the absorber-evaporator temperature difference. The minimum practical hourly rate, 0.10 moles CH/sub 3/OH per mole CaCl/sub 2/, was observed with the salt-bed heat transfer fluid at 40/sup 0/C and the CH/sub 3/OH evaporator at -15/sup 0/C. a detailed performance and economic analysis was carried out for a system operated in Washington, DC. With 25 square meters of evacuated tube solar collectors, the CaCl/sub 2/-CH/sub 3/OH chemical heat pump should be capable of meeting over 90% of the cooling load, 80% of the heating load, and 70% of the domestic hot water load with nonpurchased energy in a typical well-insulated single family residence, thus saving about $600 per year. In small-scale production, the installed cost of the system, including solar collectors and backup, is estimated to be about $10,000 greater than a conventional heating and cooling system, and a much lower cost should be possible in the longer term.

  6. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building

    E-Print Network [OSTI]

    Zhu, N.

    2014-01-01T23:59:59.000Z

    Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building Na Zhu*, Yu Lei, Pingfang Hu, Linghong Xu, Zhangning Jiang Department of Building Environment and Equipment Engineering... heat pump system integrated with phase change cooling storage technology could save energy and shift peak load. This paper studied the optimal design of a ground source heat pump system integrated with phase change thermal storage tank in an office...

  7. Berry-Phase-Induced Heat Pumping and Its Impact on the Fluctuation Theorem Jie Ren (),1,2,* Peter Hanggi,2,3,

    E-Print Network [OSTI]

    Li, Baowen

    Berry-Phase-Induced Heat Pumping and Its Impact on the Fluctuation Theorem Jie Ren (),1,2,* Peter heat baths. We demonstrate that the pumped heat typically exhibits a Berry-phase effect in providing-dependent manipulations various molecular heat pumps have been proposed to efficiently control heat flux against thermal

  8. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  9. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  10. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  11. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  12. Metal hydride/chemical heat-pump development project. Phase I. Final report

    SciTech Connect (OSTI)

    Argabright, T.A.

    1982-02-01T23:59:59.000Z

    The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 110/sup 0/C (160 to 230/sup 0/F) for the source heat and 140 to 190/sup 0/C (280 to 375/sup 0/F) for the product heat. These ranges are applicable to many processes in industries such as food, textile, paper and pulp, and chemical. The hydride pair well suited for these temperatures is LaNi/sub 5//LaNi/sub 4/ /sub 5/Al/sub 0/ /sub 5/. The EDTU was designed for the upgrade cycle. It is a compact finned tube arrangement enclosed in a pressure vessel. This design incorporates high heat transfer and low thermal mass in a system which maximizes the coefficient of performance (COP). It will be constructed in Phase II. Continuation of this effort is recommended.

  13. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  14. Mechanical Compression Heat Pumps

    E-Print Network [OSTI]

    Apaloo, T. L.; Kawamura, K.; Matsuda, J.

    MECHANICAL COMPRESSION HEAT PUMPS Thomas-L. Apaloo and K. Kawamura Mycom Corporation, Los Angeles, California J. Matsuda, Mayekawa Mfg. Co., Tokyo, Japan ABSTRACT Mechanical compression heat pumping is not new in industrial applications.... In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been...

  15. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  16. Policies supporting Heat Pump Technologies

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

  17. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  18. Ammoniated salt heat pump

    SciTech Connect (OSTI)

    Haas, W.R.; Jaeger, F.J.; Giordano, T.J.

    1981-01-01T23:59:59.000Z

    A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat.

  19. Molecular heat pump

    E-Print Network [OSTI]

    Dvira Segal; Abraham Nitzan

    2005-10-11T23:59:59.000Z

    We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

  20. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  1. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  2. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  3. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  4. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  5. Experimental study of an air-source heat pump for simultaneous heating and cooling Part 2: Dynamic behaviour and two-phase thermosiphon

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Experimental study of an air-source heat pump for simultaneous heating and cooling ­ Part 2 the concepts of an air-source Heat Pump for Simultaneous heating and cooling (HPS) designed for hotels. Unlike conventional air-source heat pumps, defrosting is carried out without stopping the heat production

  6. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1981-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  7. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  8. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  9. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  10. Geothermal Heat Pump Grant Program

    Broader source: Energy.gov [DOE]

    The Maryland Energy Administration (MEA) offers rebates of $3,000 for residential geothermal heat pump systems and up to $4,500 for non-residential geothermal heat pump systems. The residential...

  11. Heat Pumps - Theory and Applications

    E-Print Network [OSTI]

    Altin, M.

    1982-01-01T23:59:59.000Z

    compressors (heat pumps) with actual applications in Monsanto. Guidelines for possible application areas are drawn from the analysis, and conclusions are drawn both about the usefulness of exergy analysis and about the heat pump application areas....

  12. North Village Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals.

  13. Water and Space Heating Heat Pumps

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  14. Industrial Heat Pumps: Where and When

    E-Print Network [OSTI]

    Ranade, S. M.; Chao, Y. T.

    pump analysis. INDUSTRIAL HEAT PUMPS: WHAT NEXT? There is definitely a need to develop heat pump systems with higher delivery temperatures. Chemical heat pumps (based on two-step endothermic/exothermic reactions) seem promising in this regard...

  15. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  16. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  17. Heat Pump Strategies and Payoffs

    E-Print Network [OSTI]

    Gilbert, J. S.

    1982-01-01T23:59:59.000Z

    After evaluating numerous waste heat sources and heat pump designs for energy recovery, we have become aware that a great deal of confusion exists about the economics of heat pumps. The purpose of this article is to present some simple formulas...

  18. Modelling and simulation of a heat pump for simultaneous heating and cooling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modelling and simulation of a heat pump for simultaneous heating and cooling Paul Byrne1 *, Jacques-012-0089-0 #12;1. ABSTRACT The heat pump for simultaneous heating and cooling (HPS) carries out space heating to a standard reversible heat pump (HP). The air evaporator is defrosted by a two-phase thermosiphon without

  19. Free-piston Stirling engine diaphragm-coupled Heat-Actuated Heat Pump component technology program: Volume 1, Phase 2A and 2B final report: Technical discussion

    SciTech Connect (OSTI)

    Ackermann, R.A.

    1988-01-25T23:59:59.000Z

    This report presents the results of an effort to develop and demonstrate the technical feasibility of a residential size Stirling-engine-driven diaphragm-coupled compressor for a heat pump application. The heat pump module consists of a 3-kW free-piston Stirling engine (FPSE), an efficient hydraulic transmission, and a nominal 3-ton capacity refrigerant (R-22) reciprocating compressor. During earlier Phase 1 activity, the lower end (hydraulic transmission and compressor) was designed, fabricated, mated to an existing Mechanical Technology Incorporated (MTI) FPSE, and tested. After several years of development, this heat pump module achieved a capacity of 2.5 refrigeration tons at 95/degree/F ambient conditions. While this was below the module's rated 3.0-ton capacity, it demonstrated the potential of the FPSE heat pump (FPSE/HP) and identified a lack of engine power as the main reason for the low capacity. During a companion engine development program sponsored by the Gas Research Institute, the engine was improved by developing a new displacer drive that increased the FPSE's power capability. During Phase 2, the new engine, the Mark I, was mated to the lower end (transmission/compressor) and tested. The testing of the Mark I FPSE/HP module was very successful, with the system achieving its 3.0-ton capacity goal and all other proof-of-concepts targets. Included herein is a discussion of the Phase 2 activity, including the results of the Mark I FPSE/HP module testing, a component design effort of several key lower end components that was performed to optimize the design, and the Lennox evaluation. 91 figs., 36 tabs.

  20. Heat Pump for High School Heat Recovery

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  1. Promotion of efficient heat pumps for heating (ProHeatPump)

    E-Print Network [OSTI]

    Project Promotion of efficient heat pumps for heating (ProHeatPump) EIE/06/072 / S12.444283 Supplementary report: Heat pumps in Norway May 2009 Work Package 4: Policy context and measures Authors: Nils of the industry and markets in the ProHeatPump partner countries, and should provide useful comparisons

  2. Heat Pump Markets UK in Europe

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Heat Pump Markets UK in Europe IEA Heat Pump Workshop 13. November 2012 Zoltan Karpathy #12;2 Excellence in Market Intelligence Agenda About BSRIA WMI UK in the European Heat Pump Market Heating BSRIA WMI UK in the European Heat Pump Market Heating Technologies in New and Existing Buildings Hybrid

  3. Development Requirements for Advanced Industrial Heat Pumps

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  4. Human Health Science Building Geothermal Heat Pumps

    Broader source: Energy.gov (indexed) [DOE]

    HUMAN HEALTH SCIENCE BLDG GEO HEAT PUMP SYSTEMS Principal Investigator Source Heat Pumps Demo Projects May 20, 2010 This presentation does not contain any proprietary confidential,...

  5. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  6. Phase I-B development of kinematic Stirling/Rankine commercial gas-fired heat-pump system. Final report, September 1983-December 1985

    SciTech Connect (OSTI)

    Monahan, R.E.

    1986-07-01T23:59:59.000Z

    The Kinematic Stirling/Rankine gas heat pump concept is based on the application of a Stirling engine that has been under development for over a decade. The engine has been converted to natural gas and is characterized with many thousand hours of operating experience. The goal of the project is to develop a commercial-size Stirling engine-driven gas heat pump with a cooling capacity of 10-ton, and a COP (heating) of 1.8 and COP (cooling) of 1.1. The project is a multi-phase development with commercialization planned for 1989. In this phase, an HVAC systems manufacturer (Borg-Warner) is working with SPS to develop a prototype gas-heat-pump system. To date, a piston-type open-shaft refrigeration compressor was selected as the best match for the engine. Both the engine and compressor have been tested and characterized by performance maps, and the experimental heat-pump systems designed, built, and preliminary testing performed. Close agreement with computer model output has been achieved. SPS has continued to focus on improving the Stirling-engine performance and reliability for the gas-heat-pump application.

  7. Energy 101: Geothermal Heat Pumps

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  8. Industrial Heat Pump Case Study

    E-Print Network [OSTI]

    Wagner, J. R.; Brush, F. C.

    with operating the evaporator. The open-cycle heat pump design uses an electrically driven centrifugal compressor to recover the latent heat of the water vapor generated by the evaporator. (Steam was the original heat source but is now only needed for start...

  9. Energy 101: Geothermal Heat Pumps

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  10. Industrial Heat Pump Design Options

    E-Print Network [OSTI]

    Gilbert, J. S.

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  11. temperature heat pumps applied to

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Very high- temperature heat pumps applied to energy efficiency in industry Application June 21th 2012 Energy efficiency : A contribution to environmental protection Kyoto Copenhage Emission, plastics Partnership : EDF R&D Bil

  12. Energy 101: Geothermal Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Addthis Description An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the...

  13. Heat pump market and statistics report 2013

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Heat pump market and statistics report 2013 Thomas Nowak Secretary General European Heat Pump Summit 15.10./16.10.2013 | Nuremberg #12;European Heat Pump Association (EHPA) · 107 members from 22 countries (status 08/2013) ­ Heat pump manufacturers ­ Component manufacturers ­ National associations

  14. Human Health Science Building Geothermal Heat Pumps | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Human Health Science Building Geothermal Heat Pumps Human Health Science Building Geothermal Heat Pumps Project objectives: Construct a ground sourced heat pump, heating,...

  15. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  16. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  17. Phase 1-supplemental development of a kinematic Stirling/Rankine commercial gas-fired heat-pump system. Final report, January 1989-June 1989

    SciTech Connect (OSTI)

    Monahan, R.

    1989-06-01T23:59:59.000Z

    The kinematic Stirling/Rankine gas heat pump concept is based on the application of a Stirling engine that has been under development for over a decade. The engine has been converted to natural gas and is characterized with many thousand hours of operating experience. The goal of the project is to develop a commercial size Stirling engine-driven gas heat pump with a cooling capacity of 10 tons, a COP (heating) of 1.8 and a COP (cooling) of 1.1. The project is a multi-phase development with commercialization planned for the mid-1990's. In previous phases, an HVAC-systems manufacturer (York International) had been working with SPS to develop a prototype gas-heat-pump system. To date, two generations of prototype GHP systems have been built and tested and have demonstrated significant operating cost savings over the conventional electric heat pump. Under the program, a number of design and manufacturing process changes were made to the engine to reduce costs and improve endurance and shaft efficiency and are described. The adaptation and operation of a computer optimization code was accomplished under the program and is reported herein.

  18. Geothermal Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it work? A geothermal heat pump uses the constant below ground temperature of soil or water to heat and cool your home. Geothermal heat pumps (GHPs), sometimes referred to as...

  19. Absorption-heat-pump system

    DOE Patents [OSTI]

    Grossman, G.; Perez-Blanco, H.

    1983-06-16T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  20. Integration of heat pumps into industrial processes

    SciTech Connect (OSTI)

    Chappell, R.N. (USDOE, Washington, DC (USA)); Priebe, S.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1989-01-01T23:59:59.000Z

    The Department of Energy and others have funded studies to assess the potential for energy savings using industrial heat pumps. The studies included classifications of heat pumps, economic evaluations, and placement of heat pumps in industrial processes. Pinch technology was used in the placement studies to determine the placement, size, and type of heat pumps for a given applications. There appears to be considerable scope for heat pumping in several industries, but, where maximum process energy savings are desired, it is important to consider heat pumping in the context of overall process integration. 19 refs., 15 figs.

  1. Heat pumps in industrial cleaning applications

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Heat pumps in industrial cleaning applications Achema 2012 - Frankfurt Bjarke Paaske, bjpa consuming n Plants are often heated by electricity n No standard heat pump units available Project to promote heat pumps in industrial cleaning apps. #12;Cleaning plant, drum type Items enter here #12;Washing

  2. Dawdon Mine Water Heat Pump Trial

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    14-Dec-12 Dawdon Mine Water Heat Pump Trial #12;14 December 2012 2 Potential for Mine Water sourced heating Dawdon heat pump trial A demonstration project Contents #12;Friday, 14 December 2012 3 The UK salinity High Iron (removed by lime treatment) Offices , 8 rooms #12;Dawdon heat pump Warm mine water

  3. Complex Compound Chemical Heat Pumps

    E-Print Network [OSTI]

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    -Vapor Energy Storage Systems," Final Report, ORNL, under contract No. 86X-57432'J, in print. 4. Rockenfeller, U., et. al., "Development of Dual Temperature Ammines for Heat Pump latent Storage Application," Final Report, ORNL, under Contract No. 86X-4'i...

  4. IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER

    E-Print Network [OSTI]

    IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS #12;ii IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS............................................................... 2 1.3. Overview of the Parameter Estimation Water-to-Water Heat Pump Model ........... 5 1

  5. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    M.V. Lapsa. 2001. Residential Heat Pump Water Heater (HPWH)Calwell. 2005. Residential Heat Pump Water Heaters: Energyfor Residential Heat Pump Water Heaters Installed in

  6. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    2001. Residential Heat Pump Water Heater (HPWH) Development2005. Residential Heat Pump Water Heaters: Energy Efficiencyfor Residential Heat Pump Water Heaters Installed in

  7. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Broader source: Energy.gov [DOE]

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  8. Industrial Heat Pumps--Types and Costs

    E-Print Network [OSTI]

    Chappell, R. N.; Bliem, C. J.; Mills, J. I.; Demuth, O. J.; Plaster, D. S.

    Many potentially beneficial applications for industrial heat pumps are not being pursued because of confusion regarding both energy savings and economics. Part of this confusion stems from the variety of heat pumps available and the fact...

  9. Portland General Electric- Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Portland General Electric's (PGE) Heat Pump Rebate Program offers residential customers a $200 rebate for an energy-efficient heat pump installed to PGE’s standards by a PGE-approved contractor....

  10. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations

    E-Print Network [OSTI]

    Kirol, L. D.

    -807. (5) K. Kesavan. The Use of Dissociating Gases As the Working Fluid in Thermodynamic Power Conversion Cycles, Ph.D. thesis. Carnegie-Mellon University, 1978, Ann Arbor, MI: University Microfilms International, 1978. 5. Heat amplifier with a gas...ABSTRACT Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, hl~a: driven heat pumps in which either heat engine or heat pump working fluid...

  11. Heat Pump Application- An Industrial Case Study

    E-Print Network [OSTI]

    Shukla, D.; Umoh, R.

    HEAT PUMP APPLICATION- AN INDUSTRIAL CASE STUDY Deepak Shukla, Ph.D. Sr. Process Engineer TENSA services, Inc. Houston, Texas ABSTRACT The economics of heat pumping across a distillation column is usually dependent on the amount... of additional compressor work required to lift thermal energy from a low source temperature to a high sink temperature. A reduction of this work improves the heat pump economics. This paper presents the results of a heat pump study conducted by TENSA...

  12. Duplex Stirling gas-fired heat pump. Phase 2. Breadboard demonstration. Final report, May 1981-November 1982

    SciTech Connect (OSTI)

    Gedeon, D.; Penswick, B.; Beale, W.

    1982-11-01T23:59:59.000Z

    This program represents the first attempt to design, fabricate, and test a breadboard gas-fired duplex Stirling heat pump in a heating only mode. The system was designed to obtain a COP of 1.5 at an ambient temperature of 17F and have an output sufficient for an average residential home. The design methodology, detailed system description and test results for sub components and the entire system are discussed. Technical problems encountered in the program, and recommendations for further efforts are detailed.

  13. Ductless Heat Pumps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommittee DraftforJefferson LabC L A

  14. GEOTHERMAL HEAT PUMPS Jack DiEnna

    E-Print Network [OSTI]

    by DOE, "a Geothermal heat pump is a highly efficient RENEWABLE energy technology". #12;ArgumentGEOTHERMAL HEAT PUMPS THE "PLAYBOOK" Jack DiEnna Executive Director The Geothermal National What do we call it... Geothermal, Ground Source, GeoExchange. The feds call it geothermal heat pumps

  15. Free-piston Stirling engine diaphragm-coupled heat-actuated heat pump component technology program. Phase I/IA. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-06-01T23:59:59.000Z

    This report presents the results of an effort to develop and demonstrate the technical feasibility of a residential size Stirling engine driven, diaphragm coupled compressor for a heat pump application. The module was to consist of a free piston resonant engine capable of producing 3 kW of useable power, a low loss hydraulic transmission and a nominal 3 ton refrigerant-22 reciprocating compressor. Presented are details of analysis predicted performance goals, design, development of hardware, component testing, and engine/compressor breadboard testing. The test results demonstrated the mechanical feasibility and operational stability of the design concept. The assembly did not stroke out to achieve the full capacity levels predicted, however, and a follow on phase IA was initiated in which the reasons for the short fall will be determined. Details of phase IA are included in the appendix. In general, it was concluded that losses in the hydraulic transmission were excessive to the point where insufficient power was available to the compressor to satisfy its driving requirements at the design point conditions. Future work is recommended to reduce the transmission losses so that full capacity can be achieved. 69 figs., 47 tabs.

  16. PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP for space heating since it directly utilizes the engine waste heat in addition to the energy obtained

  17. DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS

    E-Print Network [OSTI]

    Dao, K.

    2013-01-01T23:59:59.000Z

    DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS K. Dao, M.ABSORPTION AIR CONDITIONERS AND HEAT PUMPS* K. DAO, M.

  18. advanced heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  19. absorption heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heating capacity k jet nozzle Closed Cycles: AbsorptionAdsorption heat pump thermal compressor driven by waste heat1 Industrial heat pumps in Germany - potentials,...

  20. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN); Murphy, Richard W. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

  1. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  2. Industrial heat pumps - types and costs

    SciTech Connect (OSTI)

    Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

    1985-08-01T23:59:59.000Z

    Confusion about energy savings and economics is preventing many potentially beneficial applications for industrial heat pumps. The variety of heat pumps available and the lack of a standard rating system cause some of this confusion. The authors illustrate how a simple categorization based on coefficient of performance (COP) can compare the cost of recovering waste energy with heat pumps. After evaluating examples in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs, they compare heat pumps from the various categories on the basis of economics. 6 references, 6 figures, 1 table.

  3. Residential Geothermal Heat Pump Retrofit Webinar

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory Senior Engineer Erin Anderson about geothermal heat pump (GHP) technology options, applications, and installation costs for residences.

  4. Natural Refrigerant (R-729) Heat Pump

    Energy Savers [EERE]

    Manufactured in the U.S. 2 Problem Statement * Current commercial and industrial heat pumps - Poor coefficient of performance (COP) at low temperatures * HFC refrigerant...

  5. Energy 101: Geothermal Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps January 4, 2011 - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves...

  6. Industrial and Commercial Heat Pump Applications in the United States

    E-Print Network [OSTI]

    Niess, R. C.

    compression cycle. Using readily available fluorocarbon refrigerants as the heat pump working fluid, this cycle is commonly used because of its wide application opportunities. Compressed Vapors Heat Pump Compressor Heat Sink PrOCess (Condenser... and refrigerants most commonly used and the open-cycle mechanical vapor compression heat pumps. Waste heat sources, heat loads served by heat pumps--and typical applications using heat pumps for large-scale space heating, domestic water heating, and industrial...

  7. Geothermal heat pump grouting materials

    SciTech Connect (OSTI)

    Allan, M.

    1998-08-01T23:59:59.000Z

    The thermal conductivity of cementitious grouts has been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. The cement-sand grouts were also tested for rheological characteristics, bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the thermal conductivity, permeability, bonding and exotherm data for selected cementitious grouts. The theoretical reduction in bore length that could be achieved with the BNL-developed cement-sand grouts is examined. Finally, the FY 98 research and field trials are discussed.

  8. Frostless heat pump having thermal expansion valves

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN)

    2002-10-22T23:59:59.000Z

    A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.

  9. D-Zero HVAC Heat Pump Controls

    SciTech Connect (OSTI)

    Markley, Dan; /Fermilab

    2004-04-14T23:59:59.000Z

    This engineering note documents the integration of Dzero Heat Pump 1 through Heat Pump 15 into the cryo/gas process control system commonly referred to as the cryo control system. Heat pumps 1 through 15 control the ambient air temperature on the 3rd, 5th, and 6th floor office areas at Dzero. The entire Johnson HVAC control system was replaced with a Siemens control system in 1999 leaving behind the 15 heat pumps with stand-alone Johnson controllers. Now, these 15 heat pump Johnson controllers are being replaced with small stand alone Beckhoff BC9000 controllers. The Beckhoff BC9000 controllers are network able into the existing Intellution control system. The Beckhoff BC9000 controllers use the cryo private Ethernet network and an OPC driver to get data into the Intellution SCADA node databases. The BC9000 is also programmed over this same Ethernet network.

  10. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    Central Air Conditioners and Heat Pumps Including. May,pump technology to extract heat from the surrounding air (air flow requirements of HPWHs increase installation costs. Introduction A heat pump

  11. White County REMC- Residential Geothermal Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    White County REMC offers incentives for the purchase and installation of energy efficient heat pumps. Air-source heat pumps are eligible for a rebate of $300, while geothermal heat pumps are...

  12. MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP

    E-Print Network [OSTI]

    MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS Thesis Approved by: Dr.................................................................................................................... 16 MODELING OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS

  13. air heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 1320 ? low temperature water is supplied to the water loop heat pump unit....

  14. `Heat pumps in Smart Grids' IEA Annex 42

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    facility Scandinavian interconnections Demand side Response (via smart grid) Industrial Residential.M. Wagener Managing Consultant OPERATING AGENT: #12;GAS HEAT PUMPS COMMERCIAL SECTOR RESEARCH, STRATEGY AUTOMATION HEAT PUMPS DOMESTIC AND COMMERCIAL BUILDINGS WORKING GROUP THERMAL DRIVEN HEAT PUMPS TARGET

  15. Performance of Horizontal Field Earth-Coupled Heat Pumps

    E-Print Network [OSTI]

    Abbott, C. A.

    1986-01-01T23:59:59.000Z

    An alternative to traditional methods of residential heating and cooling is the heat pump. However, heat pumps which use the outside air as a heat source/sink become inefficient during the periods of highest demand. Another possible heat source...

  16. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, P.H.

    1984-09-28T23:59:59.000Z

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  17. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, Paul H. (Oakland, CA)

    1986-01-01T23:59:59.000Z

    A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

  18. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01T23:59:59.000Z

    The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

  19. Chemical heat pump project: Final report

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    Solid/vapor working media can be used as working fluids in industrial heat pumps for heat amplifier and temperature amplifier concepts. This report describes the theoretical investigation of candidate solid/vapor fluids and the development of single and multi-stage heat pump cycles. Ammoniated complex compounds, hydrated complex compounds, metal carbonate-metal oxide media, and metal hydrides were investigated. A preliminary computer model was developed to predict the performance characteristics of a single-stage complex compound temperature amplifier and to outline the limitations of such concepts. A preliminary first cost calculation was performed in order to determine the economical feasibility of solid/vapor industrial heat pumps in comparison to boilers nd state-of-the-art heat pump equipment.

  20. TVA Partner Utilities- Energy Right Heat Pump Program

    Broader source: Energy.gov [DOE]

    The Tennessee Valley Authority (TVA) ''energy right'' Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation,...

  1. TVA Partner Utilities- Energy Right Heat Pump Program

    Broader source: Energy.gov [DOE]

    The Tennessee Valley Authority (TVA) energy right Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation,...

  2. Illustrative Calculation of Economics for Heat Pump and "Grid...

    Energy Savers [EERE]

    Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Rate...

  3. Develop Standard Method of Test for Integrated Heat Pump - 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Emerging Technologies...

  4. Flathead Electric Cooperative Facility Geothermal Heat Pump System...

    Broader source: Energy.gov (indexed) [DOE]

    Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Project Will Take Advantage of...

  5. Data Analysis from Ground Source Heat Pump Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis from Ground Source Heat Pump Demonstration Projects Data Analysis from Ground Source Heat Pump Demonstration Projects Comparison of building energy use before and after...

  6. Natural Gas Heat Pump and Air Conditioner | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Natural Gas Heat Pump and Air Conditioner Natural Gas Heat Pump and Air Conditioner Lead Performer: Thermolift - Stony Brook, NY Partners: -- New York State Energy Research &...

  7. Advanced Variable Speed Air-Source Integrated Heat Pump 2013...

    Energy Savers [EERE]

    Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Emerging Technologies Project for...

  8. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    2001. Residential Heat Pump Water Heater (HPWH) DevelopmentJ. 2003. Incorporating Water Heater Replacement into The2005. Residential Heat Pump Water Heaters: Energy Efficiency

  9. 7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-47 7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily. HP Wnet,in QH QL TL TH Analysis The maximum heat pump coefficient of performance would occur if the heat pump were completely reversible, 5.7 K026K300 K300 COP maxHP, LH H TT

  10. Heat pump with freeze-up prevention

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX)

    1981-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

  11. Hybrid Heat Pump Design and Application

    E-Print Network [OSTI]

    Wagner, J. R.; Koebberman, W. F.

    The Hybrid Heat Pump (HHP) converts industrial waste heat into process steam. Waste heat at temperatures as low as approximately 200°F can be used. Steam output covers a range between 12,000 Ib/h and 50,000 Ib/h, depending on the application...

  12. Phases I-C, I-D and I-E development of Kinematic Stirling/Rankine commercial gas-fired heat pump system. Final report, January 1986-September 1988

    SciTech Connect (OSTI)

    Monahan, R.E.

    1988-10-01T23:59:59.000Z

    The Kinematic Stirling/Rankine gas-heat-pump concept is based on the application of a Stirling engine under development for over a decade. The engine was converted to natural gas and is characterized with many thousand hours of operating experience. The goal of the project is to develop a commercial-size Stirling engine-driven gas heat pump with a cooling capacity of 10-tons, a COP (heating) of 1.8 and a COP (cooling) of 1.1. The project is a multi-phase development with commercialization planned for 1990. In these phases, an HVAC systems manufacturer (York International) has been working with SPS to develop a prototype gas-heat-pump system. To date, two generations of prototype GHP systems have been built and tested and have demonstrated significant operating cost savings over the conventional electric heat pump. Data are presented for environmental laboratory testing of both prototype gas heat pumps as well as durability, reliability, performance, and emission testing of the V160 Stirling engine. A number of design and manufacturing process changes were made to the engine to reduce costs and improve endurance and shaft efficiency and are described.

  13. Industrial heat pumps: types and costs

    SciTech Connect (OSTI)

    Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

    1985-03-01T23:59:59.000Z

    Many potentially beneficial applications for industrial heat pumps are not being pursued because of confusion regarding both energy savings and economics. Part of this confusion stems from the variety of heat pumps available and the fact that the measure of merit, the coefficient of performance (COP), is commonly defined in at least three different ways. In an attempt to circumvent this problem, a simple categorization was developed based on the commonly accepted COP definitions. Using this categorization, the cost of recovering waste energy with heat pumps was examined. Examples were evaluated in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs. Heat pumps from the various categories were then compared on the basis of economics.

  14. Industrial heat pumps - types and costs

    SciTech Connect (OSTI)

    Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

    1985-01-01T23:59:59.000Z

    Many potentially beneficial applications for industrial heat pumps are not being pursued because of confusion regarding both energy savings and economics. Part of this confusion stems from the variety of heat pumps available and the fact that the measure of merit, the coefficient of performance (COP) is commonly defined in at least three different ways. In an attempt to circumvent this problem, a simple categorization was developed based on the commonly accepted COP definitions. Using this categorization, the cost of recovering waste energy with heat pumps was examined. Examples were evaluated in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs. Heat pumps from the various categories were then compared on the basis of economics. 6 refs., 7 figs.

  15. Marshfield Utilities- Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Marshfield Utilities offers cash-back rewards for Ground Source Heat Pumps, as well as Focus on Energy program incentives. A rebate of $550 will be given to customers who purchase and install...

  16. Geothermal Heat Pump Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    [http://www.emnrd.state.nm.us/ECMD/LawsRegulationsExecutiveOrders/documen... HB 375], signed in April 2009, created a tax credit in New Mexico for geothermal heat pumps purchased and installed...

  17. Absorption Heat Pumping- Have You Tried It?

    E-Print Network [OSTI]

    Davis, R. C.

    The concept of a thermal powered absorption heat pump is not a new or revolutionary idea. It has been successfully demonstrated in the lab and prototypes have been installed in the field. Units have been successfully applied in a number...

  18. Geothermal Heat Pump Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    [http://www.emnrd.state.nm.us/ECMD/LawsRegulationsExecutiveOrders/documen... HB 375], signed in April 2009, created a tax credit in New Mexico for geothermal heat pumps purchased and installed...

  19. Edmond Electric- Residential Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

  20. Industrial heat pumps in Germany -potentials, technological development

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    1 Industrial heat pumps in Germany - potentials, technological development and application examples of Energy (IER) Universität Stuttgart ACHEMA 2012 Application of industrial heat pumps Improving energy-efficiency of industrial processes 13. Juni 2012 #12;ACHEMA 2012 - Industrial heat pumps 21st June 2012 Types of Heat Pumps

  1. E-Print Network 3.0 - air source heat pumps Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat pumps, heat pipes,Heat pumps, heat pipes, Summary: vcmfiles electricity) for heating and air conditioning purposes Heat pumps became popular in :www.bge.c Heat pumps......

  2. Cold Climates Heat Pump Design Optimization

    SciTech Connect (OSTI)

    Abdelaziz, Omar [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Heat pumps provide an efficient heating method; however they suffer from sever capacity and performance degradation at low ambient conditions. This has deterred market penetration in cold climates. There is a continuing effort to find an efficient air source cold climate heat pump that maintains acceptable capacity and performance at low ambient conditions. Systematic optimization techniques provide a reliable approach for the design of such systems. This paper presents a step-by-step approach for the design optimization of cold climate heat pumps. We first start by describing the optimization problem: objective function, constraints, and design space. Then we illustrate how to perform this design optimization using an open source publically available optimization toolbox. The response of the heat pump design was evaluated using a validated component based vapor compression model. This model was treated as a black box model within the optimization framework. Optimum designs for different system configurations are presented. These optimum results were further analyzed to understand the performance tradeoff and selection criteria. The paper ends with a discussion on the use of systematic optimization for the cold climate heat pump design.

  3. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, J.C.

    1997-05-13T23:59:59.000Z

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  4. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, Joseph C. (Gainesville, GA)

    1997-01-01T23:59:59.000Z

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

  5. Indoor unit for electric heat pump

    DOE Patents [OSTI]

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22T23:59:59.000Z

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  6. Idaho Falls Power- Energy Efficient Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power offers zero interest loans to all eligible customers for the purchase and installation of energy efficient heat pumps. The Heat Pump Program applies to heating or cooling in...

  7. Process Integration of Industrial Heat Pumps

    E-Print Network [OSTI]

    Priebe, S. J.; Chappell, R. N.

    , COP Carnot T W---i Figure 6. Grand composite curve with electric drive system The COP for a prime heat system assumes the exhaust heat from the driver is used in the process. The COP is then the ratio of total heat delivered (Q4 + QZ.... Nomenclature is as given in Figures 6-8. The electric drive heat pump is the most widely understood system. It has the advantage of simplic ity and requires little disruption of the process. However, an electric drive may upset the utility power/heat...

  8. Heat pumps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer CountyCorridorPart A PermitValles Caldera, New Mexico |pumps

  9. Multi-stage quantum absorption heat pumps

    E-Print Network [OSTI]

    Luis A. Correa

    2014-01-16T23:59:59.000Z

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized $N$-dimensional ideal heat pumps by merging $N-2$ elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths, and study their maximum achievable cooling power and the corresponding efficiency as a function of $N$. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

  10. Numerical Simulation of a Latent Heat Storage System of a Solar-Aided Ground Source Heat Pump

    E-Print Network [OSTI]

    Wang, F.; Zheng, M.; Li, Z.; Lei, B.

    2006-01-01T23:59:59.000Z

    In this study, the rectangular phase change storage tank (PCST) linked to a solar-aided ground source heat pump (SAGSHP) system is investigated experimentally and theoretically. The container of the phase change material (PCM) is the controlling...

  11. Flathead Electric Cooperative Facility Geothermal Heat Pump System...

    Broader source: Energy.gov (indexed) [DOE]

    Cooperative is uniquely positioned to provide marketing of ground source heat pump systems * 15' Static Water Level * Low Pumping Power * Reduced Installation Costs * Good...

  12. Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles

    SciTech Connect (OSTI)

    None

    2011-11-21T23:59:59.000Z

    HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

  13. Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs

    E-Print Network [OSTI]

    Huang, Y.; Sun, D.

    2006-01-01T23:59:59.000Z

    An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

  14. Geothermal Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps Geothermal Heat Pumps June

  15. Heat driven heat pump using paired ammoniated salts

    SciTech Connect (OSTI)

    Dunlap, R.M.

    1980-08-29T23:59:59.000Z

    A cycle for a heat driven heat pump using two salts CaCl/sup 2/.8NH/sup 3/, and ZnCl/sup 2/.4NH3 which may reversibly react with ammonia with the addition or evolution of heat. These salts were chosen so that both ammoniation processes occur at the same temperature so that the heat evolved may be used for comfort heating. The heat to drive the system need only be slightly hotter than 122 C. The low temperature source need only be slightly warmer than 0 C.

  16. Case Studies of Waste Heat Driven Industrial Heat Pumps from the North Carolina State University Industrial Assessment Center.

    E-Print Network [OSTI]

    Lewis, Nathaniel Bates

    2007-01-01T23:59:59.000Z

    ??Waste heat driven heat pumps can produce useful heat streams for manufacturing facilities. A heat pump system that uses a waste heat stream as the… (more)

  17. Submersible pumping system with heat transfer mechanism

    DOE Patents [OSTI]

    Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

    2014-04-15T23:59:59.000Z

    A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

  18. Control and optimal operation of simple heat pump cycles

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control and optimal operation of simple heat pump cycles Jørgen Bauck Jensen and Sigurd Skogestad in the opposite direction, the "heat pump", has recently become pop- ular. These two applications have also merged. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined

  19. DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP R. C. Meier, Program Manager, Gas Heat Pump Program General Electric Company P. 0. Box 8555 Philadelphia, Pennsylvania 19101 FILE COPY DO NOT REMOVE SUMMARY The Stirling/Rankine Heat Activated Heat Pump is a high performance product for space

  20. Scroll compressor modelling for heat pumps using hydrocarbons as refrigerants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Scroll compressor modelling for heat pumps using hydrocarbons as refrigerants Paul BYRNE and to install heat pumps in unoccupied spaces. Nevertheless manufacturers keep working on components for hydrocarbons. In the frame of a research project on heat pumps for simultaneous heating and cooling, an R407C

  1. Ground Source Heat Pump System Data Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Source Heat Pump Subprogram Overview Ground

  2. DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS

    E-Print Network [OSTI]

    Dao, K.

    2013-01-01T23:59:59.000Z

    AIR CONDITIONERS AND HEAT PUMPS K. Dao, M. Wahlig, E. Wali,are liquid paths. DM: multistage pump driver, driven by highvapor. DW: main circulation pump driven by strong absorbent.

  3. Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump Systems and Solutions

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump use of buildings Gas Heat Pump Solution #12;Gas Heat Pump - deserves special attention due to its source in addition to the outside air ·A further essential component of Gas Heat Pump air conditioning

  4. Brayton Cycle Heat Pump for VOC Control

    E-Print Network [OSTI]

    Kovach, J. L.

    The first full size continuous operation Brayton Cycle Heat Pump (1)(2)(3) application for VOC recovery occurred in 1988. The mixed solvent recovery system was designed and supplied by NUCON for the 3M facility in Weatherford, OK (4). This first...

  5. Geothermal Heat Pumps Produce Dramatic Savings

    E-Print Network [OSTI]

    Niess, R. C.

    1983-01-01T23:59:59.000Z

    applications. One approach now expanding the direct use of geothermal energy is coupling this energy resource with high temperature, industrial-type water-to water heat pumps. Such systems can tap geothermal energy in 50 F to 120 F water, normally available...

  6. Covered Product Category: Residential Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including geothermal heat pumps, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  7. State Regulatory Oversight of Geothermal Heat Pump

    E-Print Network [OSTI]

    State Regulatory Oversight of Geothermal Heat Pump Installa:ons: 2012 & 2009 Kevin McCray, Execu:ve Director #12;2009 #12;Sponsors ·The Geothermal Hea requested geothermal hea:ng and cooling regulatory data. · An email containing

  8. Ground Loops for Heat Pumps and Refrigeration

    E-Print Network [OSTI]

    Braud, H. J.

    1986-01-01T23:59:59.000Z

    Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

  9. Thermosyphon coil arrangement for heat pump outdoor unit

    DOE Patents [OSTI]

    Draper, R.

    1984-05-22T23:59:59.000Z

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement there for which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil has a feed portion and an exit portion leading to a separator drum from which liquid refrigerant is returned through downcomer line for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation. 9 figs.

  10. Thermosyphon coil arrangement for heat pump outdoor unit

    DOE Patents [OSTI]

    Draper, Robert (Churchill, PA)

    1984-01-01T23:59:59.000Z

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement therefor which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil 32 has a feed portion 30 and an exit portion 34 leading to a separator drum 36 from which liquid refrigerant is returned through downcomer line 42 for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation.

  11. Overview of DOE-Sponsored Heat Pump Research DOE research activities related to residential and commercial heat pump

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Overview of DOE-Sponsored Heat Pump Research DOE research activities related to residential and commercial heat pump technology are supported by the Office of Building Energy Research and Development%) allocated to elec- tric and heat-actuated heat pump research. The remaining 15% is allocated to appliance

  12. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    as other types of air source heat pumps, VRF systems needconventional packaged air source heat pumps. Typical GSHPis basically an air source heat pump), especially when the

  13. Solar-powered turbocompressor heat pump system

    DOE Patents [OSTI]

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12T23:59:59.000Z

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  14. Comfort-constrained distributed heat pump management

    E-Print Network [OSTI]

    Parkinson, Simon; Crawford, Curran; Djilali, Ned

    2011-01-01T23:59:59.000Z

    This paper introduces the design of a demand response network control strategy aimed at thermostatically controlled electric heating and cooling systems in buildings. The method relies on the use of programmable communicating thermostats, which are able to provide important component-level state variables to a system-level central controller. This information can be used to build power density distribution functions for the aggregate heat pump load. These functions lay out the fundamental basis for the methodology by allowing for consideration of customer-level constraints within the system-level decision making process. The proposed strategy is then implemented in a computational model to simulate a distribution of buildings, where the aggregate heat pump load is managed to provide the regulation services needed to successfully integrate wind power generators. Increased exploitation of wind resources will place similarly themed ancillary services in high-demand, traditionally provided by dispatchable energy ...

  15. Indoor unit for electric heat pump

    DOE Patents [OSTI]

    Draper, Robert (Churchill, PA); Lackey, Robert S. (Pittsburgh, PA); Fagan, Jr., Thomas J. (Penn HIlls, PA); Veyo, Stephen E. (Murrysville, PA); Humphrey, Joseph R. (Grand Rapids, MI)

    1984-01-01T23:59:59.000Z

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module 10, an air mover module 12, and a resistance heat package module 14, the refrigeration module including all of the indoor refrigerant circuit components including the compressor 36 in a space adjacent the heat exchanger 28, the modules being adapted to be connected to air flow communication in several different ways as shown in FIGS. 4-7 to accommodate placement of the unit in various orientations.

  16. adsorption heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995...

  17. Pinch Application- Heat Pump Study in a Food Plant

    E-Print Network [OSTI]

    Chao, Y. T.; Tripathi, P.

    was to appropriatly place and size the heat pump system in a food plant. A change in the process configuration was recommended as a result of this study to increase the heat pump profitability and to improve the product quality....

  18. Advances in the Research of Heat Pump Water Heaters

    E-Print Network [OSTI]

    Shan, S.; Wang, D.; Wang, R.

    2006-01-01T23:59:59.000Z

    This paper presents the progress of many recently correlative research works on the heat pump water heater (HPWH) and on solar-assisted heat pump water heaters. The advances in the research on compressor development, alternative refrigerant...

  19. Clark Public Utilities- Residential Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Clark Public Utilities offers loans of up to $20,000 for air-source heat pumps and $30,000 for geothermal heat pumps. Loans will help customers cover the up-front cost of installing a highly...

  20. Red River Valley REA- Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

  1. Tennessee: Ground-Source Heat Pump Receives Innovation Award...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    equipment and greater than 30% versus current state-of-the-art two-stage geothermal heat pumps. This water-to-air packaged heat pump provides significantly lower energy...

  2. Rock Hill Utilities- Water Heater and Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed...

  3. DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)

    SciTech Connect (OSTI)

    Anderson, E. R.

    2010-12-14T23:59:59.000Z

    This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

  4. Efficient Engine-Driven Heat Pump for the Residential Sector

    Broader source: Energy.gov [DOE]

    Building on previous work on an 11-ton packaged natural gas heat pump, this project will develop hardware and software for engine and system controls for a residential gas heat pump system that...

  5. Heat Pump Water Heater using Solid-State Energy Converters |...

    Energy Savers [EERE]

    Heat Pump Water Heater using Solid-State Energy Converters Heat Pump Water Heater using Solid-State Energy Converters Sheetak will work on developing a full scale prototype of its...

  6. DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS

    E-Print Network [OSTI]

    Dao, K.

    2013-01-01T23:59:59.000Z

    SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS K.Driven Absorption Air-Conditioner", K. Dao, M. Simmons, R.SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS* K.

  7. NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.

  8. A Comparative Economic Evaluation of Industrial Heat Pumps

    E-Print Network [OSTI]

    Mills, J. I.; Bliem, C. J.; Chappell, R. N.

    )st of delivering process heat with state-of t:ll(:-iJrt heat pump systems. Sixteen heat pump systems w~re configured for relative cost comparisons. These systheat pumps of the open, semiopen and closed type. In addition, a waste energy driven absorption heat pump was analyzed. A conceptual 11{~sign of each system was created using off-the-shelf components generally available to engineering firms...

  9. DOE Webinar ? Residential Geothermal Heat Pump Retrofits (Presentation)

    Broader source: Energy.gov [DOE]

    DOE webinar, Residential Geothermal Heat Pump Retrofits presented at the DOE EERE Webinar Series on Dec. 14, 2010.

  10. Application of an Industrial Heat Pump to a Specialty Chemical Plant

    E-Print Network [OSTI]

    Tripathi, P. C.; Chao, P.

    This paper presents the results of a heat pump study conducted by TENSA Services and sponsored by the U.S. Department of Energy. In the previous phase of this project, a heat pump potential was identified through a rigorous pinch analysis...

  11. Natural Refrigerant High-Performance Heat Pump for Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    (DE-FOA-0000823) Project Objective This project aims to develop a regenerative air source heat pump for commercial and industrial heating, ventilation, and air conditioning (HVAC)...

  12. Lessons learned How to Build Successful Heat Pump Markets

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;2 Lessons learned ­ How to Build Successful Heat Pump Markets Lukas Bergmann, Delta Energy & Environment European Heat Pump Summit 2013 Nürnberg, 15th October 2013 Contact: lukas CHP Small Wind Photovoltaics Energy Efficiency Smart Demand Heat Pumps Networks Micro-CHP Energy

  13. Achema Congress 2012 Application of Industrial Heat Pumps

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Achema Congress 2012 Session Application of Industrial Heat Pumps Improving energy by Information Centre on Heat Pumps and Refrigeration - IZW e.V. International Energy Agency - IEA Agreements "Heat Pump Programme" and "Industrial Energy-related Technologies and Systems" Programme Introduction H

  14. Ground-Source Heat Pumps in Cold Climates

    E-Print Network [OSTI]

    Wagner, Diane

    Ground-Source Heat Pumps in Cold Climates The Current State of the Alaska Industry, a Review-Source Heat Pumps in Cold Climates The Current State of the Alaska Industry, a Review of the Literature and contributions from individuals and organizations involved in ground-source heat pump installation around Alaska

  15. Overcoming Barriers to Ground Source Heat Pumps in California

    E-Print Network [OSTI]

    Overcoming Barriers to Ground Source Heat Pumps in California Geothermal Resources Development Account http://www.energy.ca.gov/geothermal/ grda.html May 2011 The Issue Ground source heat pumps can far made little impact in California. Estimates are that adoption of ground source heat pumps

  16. Working on new gas turbine cycle for heat pump drive

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor, is sized for a 10-ton heat pump system - will be scaled to power a commercial product line ranging from 7 of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

  17. www.heatpumpcentre.org IEA HEAT PUMP PROGRAMME

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    for buildings in cold climates Annex 40 - Heat pump concepts for near zero- energy buildings (Operating Agent boilers and gas boilers Annex 38 - Systems using solar thermal energy in combination with heat pumps (Operating Agent: CH) The aim is to analyse solar and heat pump configurations with respect to energy savings

  18. APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO

    E-Print Network [OSTI]

    APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO BUILDINGS AND BRIDGE DECKS. By MAHADEVAN Chapter Page 1. Introduction 1.1. Overview of hybrid ground source heat pump systems 1.2. Literature review 1.3. Thesis objective and scope 2. Optimal sizing of hybrid ground source heat pump system

  19. PARAMETER ESTIMATION BASED MODELS OF WATER SOURCE HEAT PUMPS

    E-Print Network [OSTI]

    PARAMETER ESTIMATION BASED MODELS OF WATER SOURCE HEAT PUMPS By HUI JIN Bachelor of Science validation of the water-to-air heat pump model. It's hard to find any words to express the thanks to my BASED MODELS OF WATER SLOURCE HEAT PUMPS Thesis Approved: Thesis Adviser Dean of the Graduate College ii

  20. Refrigerant charge management in a heat pump water heater

    DOE Patents [OSTI]

    Chen, Jie; Hampton, Justin W.

    2014-06-24T23:59:59.000Z

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  1. Policy Supporting Energy Efficiency and Heat Pump Technology

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Policy Supporting Energy Efficiency and Heat Pump Technology Antonio M. Bouza, DOE/BTP Technology Space Heating ResidentialMELs Residential Lighting ResidentialWashing & drying Residential Cooking Residential Refrigeration Residential Water Heating Residential Space Cooling Residential Space Heating 80

  2. E-Print Network 3.0 - adsorption heat pumps Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pumps Search Powered by Explorit Topic List Advanced Search Sample search results for: adsorption heat pumps...

  3. E-Print Network 3.0 - absorption heat pumps Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pumps Search Powered by Explorit Topic List Advanced Search Sample search results for: absorption heat pumps...

  4. E-Print Network 3.0 - advanced heat pumps Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pumps Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced heat pumps...

  5. E-Print Network 3.0 - air heat pumps Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pumps Search Powered by Explorit Topic List Advanced Search Sample search results for: air heat pumps...

  6. E-Print Network 3.0 - assisted heat pumps Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pumps Search Powered by Explorit Topic List Advanced Search Sample search results for: assisted heat pumps...

  7. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect (OSTI)

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24T23:59:59.000Z

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  8. Field Monitoring Protocol: Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01T23:59:59.000Z

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  9. IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    00149 -1- 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH R-1234yf Sorina Mortada, Ph.D. student, Center for Energy and Processes Abstract: Significant improvements in energy performance of air-to-air heat pumps are the major reason

  10. IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan ON SIDE REFRIGERANT MEASUREMENT OF HEAT PUMP

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - 1 - 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan ON SIDE REFRIGERANT MEASUREMENT OF HEAT PUMP SEASONAL PERFORMANCES C. T. Tran, PhD student, Centre for Energy and Processes, MINES, Research Engineer, ENERBAT, Electricity of France R&D, Moret/Loing, France Abstract Heat pump systems have

  11. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  12. 500°F Absorption Heat Pump Under Development

    E-Print Network [OSTI]

    Davidson, W. F.; Erickson, D. C.

    fluid. It is rated as chemically stable up to 595 0 C (Olin, 1982). There are many instances of industriAl use of this salt, for heat treatment as well as for heat transfer. An example of current interest is the Molten Salt Electric Experiment... and IN800 in Molten Nitrate Salts". Sandia Report, SAND08l-8210. Sandia National Laboratories, Al buquerque, New Mexico. Davidson, W. F., and Erickson, D. C. 198'6. "New High Temperature Absorbent for Abs 0 r pt ion He a t PUmps " . To be pu h 1...

  13. IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR SOURCE HEAT PUMP WATER

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Compared to those water heaters, heat pump water heating systems can supply much more heat just with the same amount of electric input used for electric water heaters. The ASHPWH absorbs heat from the ambient- 1 - 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR

  14. Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings.

    E-Print Network [OSTI]

    Chuduk, Svetlana

    2010-01-01T23:59:59.000Z

    ??In bachelor’s thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case… (more)

  15. The Advantages of Sealless Pumps in Heat Transfer Fluid Services

    E-Print Network [OSTI]

    Smith, M. D.

    THE ADV ANTAGES OF SEALLESS PUMPS IN HEAT TRANSFER FLUID SERVICES Michael D. Smith Engineering Manager Sundstrand Fluid Handling Arvada, CO ABSTRACT The expectations for heat transfer fluid (HTF) system safety and reliability... of the issues which challenge mechanical seals. In addition, one type of sealless pump, the canned motor pump, raises the thermal efficiency of HTF systems. Waste heat from the drive motors of m'ost pumps is dissipated to the air. A shaft driven fan wastes...

  16. Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings Redouane) 141-149" DOI : 10.1016/j.enbuild.2013.12.047 #12;ABSTRACT In several situations, a heat pump occur. Unlike a reversible heat pump that works alternatively in heating or cooling, a HPS operates

  17. Water-loop heat pump systems

    SciTech Connect (OSTI)

    Eley, C.; Hydeman, M. (Eley (Charles) Associates, San Francisco, CA (United States))

    1992-12-01T23:59:59.000Z

    Water-loop heat pump (WLHP) systems are reliable, versatile, energy-efficient alternatives to conventional systems such as packaged rooftop or central chiller systems. These systems offer low installed costs, unparalleled design flexibility, and an inherent ability to recover heat in a variety of commercial and multifamily residential buildings for both new construction and retrofit markets. Southern California Edison Co. (SCE) teamed with EPRI to develop a comprehensive design guide for WLHP systems that incorporated recent research by EPRI, SCE, and others. The project team reviewed current literature, equipment data, and design guidelines from equipment manufacturers. They next discussed design and application practices with consulting engineers as well as design and building contractors. The team also ran extensive computer simulations on commercial and multifamily residential building models for Southern California, both to determine the sensitivity of energy use to WLHP system design parameters and to establish optimal design parameters. This information culminated in a comprehensive engineering guide. Volume 1 of this report, provides step-by-step technical design data for selection, application, and specification of WLHP systems. This guide emphasizes energy-efficient design principles and incorporates the findings of the computer simulations and research. For example, it recommends lowering the loop temperature in buildings dominated by internal loads. Reducing the loop temperature from 90 to 80[degrees]F provides a 7--10% savings in the total system energy in Southern California climate areas. Other recommendations include (1) installing a cooling tower with a propeller fan, which uses one fourth to one third of the energy of a cooling tower with a centrifugal fan; and (2) incorporating variable-speed pumps in conjunction with two-position valves in the heat pumps to reduce the system pump energy use by up to 50%.

  18. 2005 ASHRAE. 109 Groundwater heat pump systems using standing column

    E-Print Network [OSTI]

    ©2005 ASHRAE. 109 ABSTRACT Groundwater heat pump systems using standing column wells as their ground heat exchanger can be used as a highly efficient source of heating and cooling in residential the well through the heat pump in an open-loop pipe circuit. Standing column wells have been in use

  19. Vapor-phase heat-transport system

    SciTech Connect (OSTI)

    Hedstrom, J.C.

    1983-01-01T23:59:59.000Z

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  20. Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment.

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment. In a Ground Coupled Heat Pump (GCHP) system a length of pipe is buried in the ground and the ground acts as a reservoir to store the heat

  1. Foundation House, New York, geothermal heat pump

    SciTech Connect (OSTI)

    Lund, J.W.

    1997-08-01T23:59:59.000Z

    The Foundation House, planned to house half a dozen nonprofit foundations, will be constructed on 64th Street just east of Central Park in Manhattan, New York. It is in a Landmark District and designed by the architectural firm of Henry George Greene, AIA of Scarsdale, NY (project architect, David Wasserman). The 20,000-square foot building of five floors above ground and two below, will illustrate how energy-savings technology and environmentally sensitive construction methods can be economical. The heating and cooling system, including refrigeration requirements for the freezers and refrigerators in the commercial kitchen, will be provided by geothermal heat pumps using standing column wells. The facility is the first building on the island of Manhattan to feature geothermal heating and cooling. The mechanical system has been the assistance of Carl Orio`s firm of Water & Energy Systems corporation of Atkinson, New Hampshire. The two 1550-foot standing column wells were drilled by John Barnes of Flushing, NY.

  2. Commercialization of Industrialized Absorption Heat Pumps in the US

    E-Print Network [OSTI]

    Pettigrew, M. G.

    COMMERCIALIZATION OF INDUSTRIAL ABSORPTION HEAT PUMPS IN THE US MALCOLM G. PETTIGREW LITWIN ENGINEERS &CONSTRUCTORS, INC. HOUSTON, ABSTRACT The recovery of waste heat through absorption heat pumping is quite appeal ing to U.S. industry.... However, although this technology has been successfully applied in Europe and Japan, a cauti ous atmosphere wi 11 continue to prevail in the U.S. until the first absorption heat pump is built and successfully demonstrates it's viability...

  3. Industrial Process Heat Pumps--Some Unconventional Wisdom

    E-Print Network [OSTI]

    Karp, A.

    INDUSTRIAL PROCESS HEAT PUMPS--SOME UNCONVENTIONAL WISDOM ALAN KARP Project Manager Electric Power Research Institute Palo Alto, California ABSTRACT Recent research on the cost-effective use of industrial process heat pumps challenges... integration insights. BUilding on previously formulated prin ciples of "appropriate placement," a generic metho dology has been developed for examining heat pump ing as an alternative to increased heat integration in any process. PC-based software...

  4. Industrial Heat Pumps Using Solid/Vapor Working Fluids

    E-Print Network [OSTI]

    Rockenfeller, U.

    INDUSTRIAL HEAT PUMPS USING SOLID/VAPOR WORKING FLUIDS Uwe Rockenfeller, Desert Research Institute, Boulder City, Nevada ABSTRACT Industrial heat pumps have the potential to reduce the operating costs of chemical and heat treating processes... with vapor re-compression recovery systems. The state-of-the-art heat pump equipment employing liquid/vapor working fluids fulfills the requirements only in some applications. The employment of solid/vapor complex compounds leads to 'nore cost effective...

  5. Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump

    E-Print Network [OSTI]

    Wang, Z.; Gu, J.; Lu, Z.

    2006-01-01T23:59:59.000Z

    , the effect of the heat storage tank to the air source heat pump defrosting is test. Owing to the existence of the heat storage tank, thermal inertia of the loop is relatively high. The frosting and defrosting course of the air source heat pump have little...

  6. Heat pumping with optically driven excitons

    E-Print Network [OSTI]

    Erik M. Gauger; Joachim Wabnig

    2010-06-07T23:59:59.000Z

    We present a theoretical study showing that an optically driven excitonic two-level system in a solid state environment acts as a heat pump by means of repeated phonon emission or absorption events. We derive a master equation for the combined phonon bath and two-level system dynamics and analyze the direction and rate of energy transfer as a function of the externally accessible driving parameters. We discover that if the driving laser is detuned from the exciton transition, cooling the phonon environment becomes possible.

  7. Heat pumping with optically driven excitons

    E-Print Network [OSTI]

    Gauger, Erik M

    2010-01-01T23:59:59.000Z

    We present a theoretical study showing that an optically driven excitonic two-level system in a solid state environment acts as a heat pump by means of repeated phonon emission or absorption events. We derive a master equation for the combined phonon bath and two-level system dynamics and analyze the direction and rate of energy transfer as a function of the externally accessible driving parameters. We discover that if the driving laser is detuned from the exciton transition, cooling the phonon environment becomes possible.

  8. Geothermal Heat Pumps | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergy (5 Activities) GeothermalHeat Pumps

  9. Absorption Heat Pump Basics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OF THE| DepartmentUsAbout theHeat Pump

  10. Tips: Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler Tina Butler Tina-Butler.jpg Tina L.Ducts Tips:Heat Pumps

  11. WARMWASSER ERNEUERBARE ENERGIEN KLIMA RAUMHEIZUNG Adsorption Heat-Pumps for domestic heating

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    1 #12;WARMWASSER ERNEUERBARE ENERGIEN KLIMA RAUMHEIZUNG Adsorption Heat-Pumps for domestic heating module Gas adsorption heat pump #12;5 Zeolite ­ a natural mineral [1] von www.vaillant.de [2] www is not suitable for being a source of an zeolite adsorption heat pump #12;14 > Low temperature level of the source

  12. Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications

    E-Print Network [OSTI]

    Bahrami, Majid

    Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating of a transcritical carbon dioxide heat pump system are presented in this article. A computer code has been developed conditions. q 2004 Elsevier Ltd and IIR. All rights reserved. Keywords: Optimization; Heat pump; Carbon

  13. Free-piston Stirling engine diaphragm-coupled Heat-Actuated Heat Pump component technology program: Volume 2, Phase 2A and 2B final report: Lennox test program

    SciTech Connect (OSTI)

    Ackermann, R.A.

    1988-01-25T23:59:59.000Z

    This volume addresses the testing of the Mark I heat pump module conducted by Lennox Industries. The following information is contained herein: Lennox Test Plan; Lennox Test Data Spread Sheet; Lennox Parametric Test Data Plots; and Lennox Parametric Test Data Sheets.

  14. Thermoeconomic Analysis of a Solar Heat-Pump System

    E-Print Network [OSTI]

    Gao, Y.; Wang, S.

    2006-01-01T23:59:59.000Z

    This paper introduces a solar energy heat-pump system and analyzes the thermoeconomics. The results show that the solar energy heat-pump system can be operated in different modes and used for room heating in winter and cooling in summer and...

  15. Value of electrical heat boilers and heat pumps for wind power integration

    E-Print Network [OSTI]

    Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link between the heat and power production in combined heat and power plants. Each of these measures has

  16. Low GWP Working Fluid for High Temperature Heat Pumps

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Low GWP Working Fluid for High Temperature Heat Pumps: DR-2 Chemical Stability at High Temperatures Temp Heat Pumps: DR-2 Very Low GWP AND Non-Flammable HFC-245fa DR-2 Chemical Formula CF3CH2CHF2 HFO 171.3 Pcr [MPa] 3.65 2.9 Kontomaris-DuPont; European Heat Pump Summit, Nuremberg, October 15th, 2013

  17. Piedmont EMC- Residential Energy Efficient Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Piedmont Electric Membership Corporation (PEMC) offers a financial incentive for residential members to install energy efficient heat pumps and compact fluorescent lighting in eligible homes....

  18. NREL Develops Heat Pump Water Heater Simulation Model (Fact Sheet)

    SciTech Connect (OSTI)

    Hudon, K.

    2012-05-01T23:59:59.000Z

    A new simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes.

  19. Covered Product Category: Residential Air-Source Heat Pumps

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for residential air-source heat pumps, which is an ENERGY STAR-qualified product category.

  20. Monitoring SERC Technologies —Geothermal/Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory Project Leader Dave Peterson about Geothermal/Ground Source Heat Pumps and how to properly monitor its installation.

  1. Optimal Ground-Source Heat Pump System Design

    Broader source: Energy.gov (indexed) [DOE]

    Ground-Source Heat Pump System Design May 19, 2010 Geothermal Technologies Program 2010 Peer Review ENVIRON International PI : Metin Ozbek Track : GSHP Demonstration Projects This...

  2. Dual Heating and Cooling Sorption Heat Pump for a Food Plant

    E-Print Network [OSTI]

    Rockenfeller, U.; Dooley, B.

    Complex compound sorption reactions are ideally suited for use in high temperature lift industrial heat pump cycles. Complex compound heat pumping and refrigeration provides a number of energy-saving advantages over present vapor compression systems...

  3. E-Print Network 3.0 - absorption-sorption heat pumps Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

  4. E-Print Network 3.0 - absorption-type heat pumps Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

  5. A simplified methodology for sizing ground coupled heat pump heat exchangers in cooling dominated climates

    E-Print Network [OSTI]

    Gonzalez, Jose Antonio

    1993-01-01T23:59:59.000Z

    between GSIM and two commercially available heat exchanger sizing methods, the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA) methods, was performed. GSIM heat exchanger lengths for Dallas were... Pump Capacity and Cooling Load. . . . . Oversizing and Undersizing the Heat Pump. . . . . . . . . . . . . . Summary. . 72 74 76 78 80 82 85 87 90 92 IX COMPARISON OF HEAT EXCHANGER SIZING METHODS . . 93 International Ground Source Heat...

  6. Ground-source Heat Pumps Applied to Commercial Buildings

    SciTech Connect (OSTI)

    Parker, Steven A.; Hadley, Donald L.

    2009-07-14T23:59:59.000Z

    Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

  7. SYSTEM PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    AUG 1979 SYSTEM PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. Richards W The development of the first prototype heat activated heat pump (HAHP) jointly sponsored by the Gas Research as a unitary heating and cooling product competing for the same market as is currently served by the gas year

  8. Present and Future Uses of Industrial Absorption Heat Pumps

    E-Print Network [OSTI]

    Erickson, D. C.; Davidson, W. F.

    This paper examines the present and projects the future uses of industrial absorption heat pumping. AHP technology is seen as an increasingly important component of plant and process heat integration for energy conservation. Existing installations...

  9. LOW COST HEAT PUMP WATER HEATER (HPWH)

    SciTech Connect (OSTI)

    Mei, Vince C [ORNL; Baxter, Van D [ORNL

    2006-01-01T23:59:59.000Z

    Water heating accounts for the second largest portion of residential building energy consumption, after space conditioning. Existing HPWH products are a technical success, with demonstrated energy savings of 50% or more compared with standard electric resistance water heaters. However, current HPWHs available on the market cost an average of $1000 or more, which is too expensive for significant market penetration. What is needed is a method to reduce the first cost of HPWHs, so that the payback period will be reduced from 8 years to a period short enough for the market to accept this technology. A second problem with most existing HPWH products is the reliability issue associated with the pump and water loop needed to circulate cool water from the storage tank to the HPWH condenser. Existing integral HPWHs have the condenser wrapped around the water tank and thus avoid the pump and circulation issues but require a relatively complex and expensive manufacturing process. A more straightforward potentially less costly approach to the integral, single package HPWH design is to insert the condenser directly into the storage tank, or immersed direct heat exchanger (IDX). Initial development of an IDX HPWH met technical performance goals, achieving measured efficiencies or energy factors (EF) in excess of 1.79. In comparison conventional electric water heaters (EWH) have EFs of about 0.9. However, the initial approach required a 2.5" hole on top of the tank for insertion of the condenser - much larger than the standard openings typically provided. Interactions with water heater manufacturers indicated that the non standard hole size would likely lead to increased manufacturing costs (at least initially) and largely eliminate any cost advantage of the IDX approach. Recently we have been evaluating an approach to allow use of a standard tank hole size for insertion of the IDX condenser. Laboratory tests of a prototype have yielded an EF of 2.02.

  10. Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage

    E-Print Network [OSTI]

    Han, Z.; Zheng, M.; Liu, W.; Wang, F.

    2006-01-01T23:59:59.000Z

    -reaching meaning of solving energy and environment problems if new type energy conservation and environment protection heating system ? solar assisted ground-source heat pump (SAGHP) heating system with a latent heat storage tank will be practical... was established at the laboratory of construction energy conservation in Harbin Institute of Technology (HIT) in 2004. It added a latent heat storage tank in original SAGHP system. The schematic diagram of the system is shown in Figure 1. The experimental...

  11. www.heatpumpcentre.or IEA HEAT PUMP PROGRAMME

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ) #12;www.heatpumpcentre.or g Annex 41 ­ Cold climate heat pumps (Improving low ambient temperature to efficient and reliable systems and equipment for buildings in cold climates Annex 40 Heat pump concepts technologies, such as pellet boilers and gas boilers Annex 38 Systems using solar thermal energy

  12. Corrosion protection of steel in ammonia/water heat pumps

    DOE Patents [OSTI]

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14T23:59:59.000Z

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  13. E-Print Network 3.0 - air-source heat pumps Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pumps Search Powered by Explorit Topic List Advanced Search Sample search results for: air-source heat pumps...

  14. High-lift chemical heat pump technologies for industrial processes

    SciTech Connect (OSTI)

    Olszewski, M.; Zaltash, A.

    1995-03-01T23:59:59.000Z

    Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

  15. INTEGRATED CO2 HEAT PUMP SYSTEMS FOR SPACE HEATING AND HOT WATER HEATING IN LOW-ENERGY HOUSES AND

    E-Print Network [OSTI]

    J. Stene

    designed as stand-alone systems, i.e. a heat pump water heater (HPWH) in combination with separate units

  16. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    tool for geothermal water loop heat pump systems, 9thInternational IEA Heat Pump Conference, Zürich, Switzerland,Performance of ground source heat pump system in a near-zero

  17. Do Heat Pump Clothes Dryers Make Sense for the U.S. Market

    E-Print Network [OSTI]

    Meyers, Steve

    2011-01-01T23:59:59.000Z

    N ATIONAL L ABORATORY Do Heat Pump Clothes Dryers Make SenseUniversity of California. Do Heat Pump Clothes Dryers MakeCalifornia ABSTRACT Heat pump clothes dryers (HPCDs) can be

  18. Application analysis of ground source heat pumps in building space conditioning

    E-Print Network [OSTI]

    Qian, Hua

    2014-01-01T23:59:59.000Z

    temporal variation of the heat pump COP over the three-monthfor ground-source heat pumps. in ASHRAE Summer Meeting.savings of ground source heat pump systems in Europe: A

  19. Application analysis of ground source heat pumps in building space conditioning

    E-Print Network [OSTI]

    Qian, Hua

    2014-01-01T23:59:59.000Z

    for ground-source heat pumps. in ASHRAE Summer Meeting.savings of ground source heat pump systems in Europe: Afor ground-source heat pumps: A literature review,

  20. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    multiple water-to-air heat pump units, which are connectedeach of the water-to-air heat pump units can run in eitheras other types of air source heat pumps, VRF systems need

  1. "Elevated heat pump" hypothesis for the aerosolmonsoon hydroclimate link: "Grounded" in observations?

    E-Print Network [OSTI]

    Nigam, Sumant

    "Elevated heat pump" hypothesis for the aerosolmonsoon hydroclimate link: "Grounded April 2010; published 18 August 2010. [1] The viability of the elevated heat pump hypothesis, S., and M. Bollasina (2010), "Elevated heat pump" hypothesis for the aerosolmonsoon hydroclimate

  2. Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions

    E-Print Network [OSTI]

    Kirol, L.

    ically feasible systems have significant potential advantage over conventional tech nology. An electric drive reactive heat pump can use smaller heat exchangers and compressor than a vapor-compression machine, and have more flexible operating... are discussed, and performance is bounded. A discussion on liquid-vapor equilibria is included as introduction to the systems I- considered. The electric drive heat pump and TA are promising systems; the TA has potential for higher COP than absorption...

  3. Mathematical and experimental modelling of heat pump assisted microwave drying

    SciTech Connect (OSTI)

    Xiguo Jia (Univ. of Queensland (Australia))

    1993-01-01T23:59:59.000Z

    Drying is one of the most energy intensive operations in industry and agriculture. In the quest to increase drying efficiency and product quality, new technologies and methods are constantly being sought. Of these technologies, heat pump assisted drying and microwave drying have proved to be the most promising contenders. In order to achieve a better understanding and provide a computer design tool for heat pump assisted convective and microwave drying, both mathematical modelling and experimental investigations of heat pump assisted microwave dryers have been undertaken in this study. A mathematical model has been developed to predict the steady-state performance of a heat pump assisted continuous microwave dryer, with emphasis on the simulation of heat and mass transfer processes in the evaporator and drying chamber. The model is intend to serve as a design tool in the study of heat pump dryers. To achieve the optimum design, the influences of the key design and operating parameters, as well as the comparison of different drying configurations, have been examined. Based on investigation results, several methods have been proposed to improve the performance of heat pump assisted microwave drying, such as the use of a recuperator. To validate the above mathematical model, extensive drying tests using foam rubber as the test material have been conducted on a prototype heat pump assisted microwave dryer. The prototype heat pump input power was 5 kW with a maximum microwave input power of 10 kW. The experimental performance data confirmed the veracity of the simulation model. The experimental results on drying test materials indicate that with careful design heat pump assisted microwave drying is comparable to convective drying in energy consumption while with a much higher drying speed.

  4. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...

    Office of Environmental Management (EM)

    will build on system concepts and technical solutions developed for an 11-ton packaged natural gas heat pump. Residential Multi-Function Gas Heat Pump More Documents &...

  5. AN ASSESSMENT OF HEAT PUMP APPLICATION AT WATER TREATMENT FACILITIES-THAT USE SURFACE WATER.

    E-Print Network [OSTI]

    YAN, WENPENG

    2013-01-01T23:59:59.000Z

    ??Energy-efficient heat pumps have been applied in the United States and other regions of the world for decades. Geothermal heat pumps have been used, but… (more)

  6. Simulation Study of Heat Transportation in an Aquifer about Well-water-source Heat Pump

    E-Print Network [OSTI]

    Cong, X.; Liu, Y.; Yang, W.

    2006-01-01T23:59:59.000Z

    The study of groundwater reinjection, pumping and heat transportation in an aquifer plays an important theoretical role in ensuring the stability of deep-well water reinjection and pumping as well as smooth reinjection. Based on the related...

  7. Performance Evaluation of a Retrofit Industrial Heat Pump

    E-Print Network [OSTI]

    Wagner, J.R.

    the choice of power generation and heat pumping should be employed. The simplistic answer to only pump heat across the pinch will not provide sufficient guidance. The purpose of this paper is to provide a simple but accurate analysis to any process... that will indicate where power should be made through cogeneration and even prime power use as well as where heat pumps should be employed. Actual case studies are provided to illustrate the analytical framework and actual results for a small refinery, chemical...

  8. Liquid Phase Heating Systems

    E-Print Network [OSTI]

    Mordt, E. H.

    1979-01-01T23:59:59.000Z

    saturation pressure is ju'st under 278 psig. To this, pump head, pump NPSH and static head due to elevated piping must l be added to arrive at total pressure in a steam cushioned HTW system. Nitrogen cushioned systems are more common, and expansion...

  9. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    SciTech Connect (OSTI)

    Mittereder, N.; Poerschke, A.

    2013-11-01T23:59:59.000Z

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  10. Combined permeable pavement and ground source heat pump systems 

    E-Print Network [OSTI]

    Grabowiecki, Piotr

    2010-01-01T23:59:59.000Z

    The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in these systems allows for the survival of pathogenic organisms within...

  11. Ground-Coupled Heat Pump Applications and Case Studies

    E-Print Network [OSTI]

    Braud, H. J.

    1989-01-01T23:59:59.000Z

    The paper presents an overview of ground loops for space-conditioning heat pumps, hot water, ice machines, and water-cooled refrigeration in residential and commercial applications. In Louisiana, a chain of hamburger drive-ins uses total ground...

  12. Sand Mountain Electric Cooperative- Residential Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    The Sand Mountain Electric Cooperative offers a heat pump loan program to eligible residential members. To qualify, members must have had power with Sand Mountain Electric Cooperative for at least...

  13. Blue Ridge Electric Cooperative- Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Blue Ridge Electric Cooperative (BREC) offers low interest loans to help members finance the purchase of energy efficient heat pumps. Loans under $1,500 can be financed for up to 42 months, and...

  14. Optimal Design for a Hybrid Ground-Source Heat Pump

    E-Print Network [OSTI]

    Yu, Z.; Yuan, X.; Wang, B.

    2006-01-01T23:59:59.000Z

    Although the advantages of ground-source heat pumps over their conventional alternatives make these systems a very attractive choice for air conditioning, not only for residential buildings but increasingly also for institutional and commercial...

  15. Geothermal: Sponsored by OSTI -- Geothermal Heat Pumps in K-12...

    Office of Scientific and Technical Information (OSTI)

    Heat Pumps in K-12 Schools -- A Case Study of the Lincoln, Nebraska, Schools Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

  16. A R&D Program for Advanced Industrial Heat Pumps

    E-Print Network [OSTI]

    Hayes, A. J.

    The overall goal of the DOE Industrial Heat Pump Program is to foster research and development which will allow more efficient and economical recovery of waste energy in industry. Specifically, the program includes the identification of appropriate...

  17. Field Monitoring Protocol: Mini-Split Heat Pumps

    SciTech Connect (OSTI)

    Christensen, D.; Fang, X.; Tomerlin, J.; Winkler, J.; Hancock, E.

    2011-03-01T23:59:59.000Z

    The report provides a detailed method for accurately measuring and monitoring performance of a residential Mini-Split Heat Pump. It will be used in high-performance retrofit applications, and as part of DOE's Building America residential research program.

  18. EnergyUnited- Residential Energy Efficient Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    EnergyUnited offers rebates to residential customers who upgrade to high efficiency heat pumps. Rebates range from $150 - $300, varying by efficiency. The rebate form can be found on the program...

  19. Advanced Mechanical Heat Pump Technologies for Industrial Applications

    E-Print Network [OSTI]

    Mills, J. I.; Chappell, R. N.

    , advanced chemical and mechanical heat pump technologies are being developed for industrial application. Determining which technologies are appropriate for particular industrial applications and then developing those technologies is a stepped process which...

  20. Haywood EMC- Residential Heat Pump and Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Haywood EMC offers a low interest loan to their residential customers to finance the purchase of an energy efficient heat pump and certain weatherization measures. The current interest rate is 5%...

  1. Bandera Electric Cooperative- Residential Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    The Bandera Electric Cooperative offers a $200 rebate for the installation of a 15 SEER or higher heat pumps in existing homes. This program is designed to promote energy efficiency in existing...

  2. Recovery Act-Funded Geothermal Heat Pump projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) was allocated funding from the American Recovery and Reinvestment Act to conduct research into ground source heat pump technologies and applications. Projects...

  3. Union Power Cooperative- Residential Energy Efficient Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Union Power Cooperative offers low interest loans to help its residential customers finance new, energy-efficient heat pumps. Interest rates, currently at 9%, will be fixed for the term of the loan...

  4. York Electric Cooperative- Dual Fuel Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    York Electric Cooperative, Inc. (YEC) offers a $400 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residence and/or commercial and...

  5. The Design of Ground-Coupled Heat Pump Systems

    E-Print Network [OSTI]

    Parker, J. D.

    1985-01-01T23:59:59.000Z

    Ground-coupled heat pumps are being installed in increasing numbers due to proven performance and economy. The overall thermal resistance between the ground coupling fluid and a given type of surrounding soil is affected by pipe material, wall...

  6. (International Energy Agency Heat Pump Center Working Team meeting)

    SciTech Connect (OSTI)

    Broders, M.A.

    1990-11-20T23:59:59.000Z

    The traveler, serving as Delegate from the United States Heat Pump Center National Team, participated in the activities of the second International Energy Agency Heat Pump Center (IEA-HPC) Working Team meeting. This included a 20 minute presentation by the traveler about the Development and Activities of the IEA Heat Pump Center US National Team.'' Highlights of this meeting included development of 1991 IEA-HPC work plans including a prioritization of activities, introduction of the newly appointed IEA-HPC Advisory Board, and discussion of a new IEA Clearinghouse Network initiative. Pre-meeting discussions were held with IEA-HPC staff members which focused on US Heat Pump Center National Team contributions to the IEA-HPC Newsletter and participation in other IEA-HPC sponsored activities.

  7. Heat pump augmented radiator for low-temperature space applications

    SciTech Connect (OSTI)

    Olszewski, M.; Rockenfeller, U.

    1988-01-01T23:59:59.000Z

    Closed-cycle, space-based heat rejection systems depend solely on radiation to achieve their heat dissipation function. Since the payload heat rejection temperature is typically 50 K above that of the radiation sink in near earth orbit, the size and mass of these systems can be appreciable. Size (and potentially mass) reductions are achievable by increasing the rejection temperature via a heat pump. Two heat pump concept were examined to determine if radiator area reductions could be realized without increasing the mass of the heat rejection system. The first was a conventional, electrically-driven vapor compression system. The second is an innovative concept using a solid-vapor adsorption system driven by reject heat from the prime power system. The mass and radiator area of the heat pumpradiator systems were compared to that of a radiator only system to determine the merit of the heat pump concepts. Results for the compressor system indicated that the mass minimum occured at a temperature lift of about 50 K and radiator area reductions of 35% were realized. With a radiator specific mass of 10 kgm/sup 2/, the heat pump system is 15% higher than the radiator only baseline system. The complex compound chemisorption systems showed more promising results. Using water vapor as the working fluid in a single stage heat amplifier resulted in optimal temperature lifts exceeding 150 K. This resulted in a radiator area reduction of 83% with a mass reduction of 64%. 7 refs., 9 figs.

  8. Heat transfer enhancement resulting from induction electrohydrodynamic pumping

    E-Print Network [OSTI]

    Margo, Bryan David

    1992-01-01T23:59:59.000Z

    HEAT TRANSFER ENHANCEMENT RESULTING FROM INDUCTION ELECTROHYDRODYNAMIC PUMPING A Thesis by BRYAN DAVID MARGO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1992 Major Subject: Mechanical Engineering HEAT TRANSFER ENHANCEMENT RESULTING FROM INDUCTION ELECTROHYDRODYNAMIC PUMPING A Thesis by BRYAN DAVID MARGO Approved as to style and content by: Jamal Seyed- Yagoobi (Chair...

  9. Improving Air-Conditioner and Heat Pump Modeling (Presentation)

    SciTech Connect (OSTI)

    Winkler, J.

    2012-03-01T23:59:59.000Z

    A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

  10. Development of ammonia-sodium bromide heat pump/dual temperature storage concept. Final report

    SciTech Connect (OSTI)

    Rockenfeller, U.

    1986-10-01T23:59:59.000Z

    An effective dual temperature heat pump/storage system can be based on the use of ammoniated complex compounds as the storage medium and heat pump working fluid. This report describes the development of an ammoniated complex system, suitable for dual temperature storage, chill storage and heat pumping, as well as the hardware design required for the heat pump/storage operation. Several storage media modifications, heat exchanger designs, and reaction related parameters were investigated in terms of effective heat pumping, dual temperature storage and chill storage characteristics. The modifications were tested in a subscale prototype and compared to the results of the basic experiments performed in Phase I of this project. The computer model developed in Phase I was refined. The sorption reactions and their thermodynamic properties are described as a function of reaction progress allowing coefficient of performance (COP) predictions at varying building loads. A comparison of this system with state-of-the-art thermal storage systems was performed considering the energy density, operating cost, and the environmental impact reflected in building codes.

  11. Industrial Heat Pumps- A Reexamination in Light of Current Energy Trends

    E-Print Network [OSTI]

    Lewis, N.; Simon, M.; Terry, S.; Leach, J.

    Heat pumps have been used for nearly one hundred years mostly providing heating and cooling for homes and residential settings. However, industrial heat pumps are also used and may be driven by waste heat streams from the manufacturing facility...

  12. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI); Marsala, Joseph (Glen Ellyn, IL)

    1994-11-29T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.

  13. The Application of Frequency-Conversion Technology in Groundwater Source Heat Pump System Reconstruction

    E-Print Network [OSTI]

    Dai, X.; Song, S.

    2006-01-01T23:59:59.000Z

    Deep well pump power is relatively ubiquitous in the groundwater heat pump air-conditioning system in some hotels in Hunan, and the heat pump usually meets the change of the load by throttling. Therefore, frequency conversion technology is proposed...

  14. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    SciTech Connect (OSTI)

    Josh A. Salmond

    2009-08-07T23:59:59.000Z

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  15. Commercial Air-Source Heat Pumps, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-11T23:59:59.000Z

    Energy efficiency purchasing specifications for federal procurements of commercial air-source heat pumps.

  16. Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

  17. TEST RESULTS FOR A STIRLING-ENGINE-DRIVEN HEAT-ACTUATED HEAT PUMP BREADBOARD SYSTEM T.M. Moynihan

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    , is a heat-actuated heat pump '_ ~*,^ (HAHP) that was developed for residential appli- -, / Combustor cations849044 TEST RESULTS FOR A STIRLING-ENGINE-DRIVEN HEAT-ACTUATED HEAT PUMP BREADBOARD SYSTEM T-Piston Stirling - *- Compression Engine (FPSE)-driven heat pump to demonstrate Chamber product potential

  18. A Simplified Procedure for Sizing Vertical Ground Coupled Heat Pump Heat Exchangers for Residences in Texas

    E-Print Network [OSTI]

    O'Neal, D. L.; Gonzalez, J. A.; Aldred, W.

    1994-01-01T23:59:59.000Z

    the simplified method were compared to two available heat exchanger sizing methods: the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA). The simplified method predicted shorter lengths than those from...

  19. Development of an Ionic-Liquid Absorption Heat Pump

    SciTech Connect (OSTI)

    Holcomb, Don

    2011-03-29T23:59:59.000Z

    Solar Fueled Products (SFP) is developing an innovative ionic-liquid absorption heat pump (ILAHP). The development of an ILAHP is extremely significant, as it could result in annual savings of more than 190 billion kW h of electrical energy and $19 billion. This absorption cooler uses about 75 percent less electricity than conventional cooling and heating units. The ILAHP also has significant environmental sustainability benefits, due to reduced CO2 emissions. Phase I established the feasibility and showed the economic viability of an ILAHP with these key accomplishments: • Used the breakthrough capabilities provided by ionic liquids which overcome the key difficulties of the common absorption coolers. • Showed that the theoretical thermodynamic performance of an ILAHP is similar to existing absorption-cooling systems. • Established that the half-effect absorption cycle reduces the peak generator temperature, improving collector efficiency and reducing collector area. • Component testing demonstrated that the most critical components, absorber and generator, operate well with conventional heat exchangers. • Showed the economic viability of an ILAHP. The significant energy savings, sustainability benefits, and economic viability are compelling reasons to continue the ILAHP development.

  20. System Modeling of Gas Engine Driven Heat Pump

    SciTech Connect (OSTI)

    Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL] [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

    2012-01-01T23:59:59.000Z

    To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

  1. Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps

    SciTech Connect (OSTI)

    Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

  2. An analysis of a reversed absorption heat pump for low temperature waste heat utilization

    E-Print Network [OSTI]

    Wade, Glenn William

    1979-01-01T23:59:59.000Z

    AN ANALYSIS OF A REVERSED ABSORPTION HEAT PUMP FOR LOW TEMPERATURE WASTE HEAT UTILIZATION A Thesis by GLENN WILLIAM WADE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE May 1979 Major Subject: Mechanical Engineering AN ANALYSIS OF A REVERSED ABSORPTION HEAT PUMP FOR LOW TEMPERATURE WASTE HEAT UTILIZATION A Thesis by GLENN WILLIAM WADE Approved as to style and content by: Chai n of Committee...

  3. Water-to-Air Heat Pump Performance with Lakewater

    E-Print Network [OSTI]

    Kavanaugh, S.; Pezent, M. C.

    1989-01-01T23:59:59.000Z

    The performance of water-to-air heat pumps using lakewater as the heat source and sink has been investigated. Direct cooling with deep lakewater has also been considered. Although the emphasis of the work was with southern lakes, many results also...

  4. Applications Tests of Commercial Heat Pump Water Heaters

    E-Print Network [OSTI]

    Oshinski, J. N..; Abrams, D. W.

    1987-01-01T23:59:59.000Z

    Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat...

  5. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Sparn, B.; Hudon, K.; Christensen, D.

    2011-09-01T23:59:59.000Z

    This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

  6. Stirling cycle engine and heat pump

    SciTech Connect (OSTI)

    Mitchell, M.P.

    1986-11-18T23:59:59.000Z

    A method is described of operating a hot gas engine comprising a cylinder having one end thereof connected to the other end thereof through at least two separate closed heat exchanger assemblies. Each comprises heated heat exchanger means and cooled heat exchanger means serially arranged, the hot end of each such closed heat exchanger assembly is attached to the same end of the cylinder. Each closed heat exchanger assembly is equipped with valve means at each end thereof, the cylinder accommodating a double-acting reciprocating piston means. The piston means cyclically displaces and is displaced by a volume of gas for each such closed heat exchanger assembly. The volumes of gas are alternately confined in and released from the closed heat exchanger assemblies by the valves.

  7. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    SciTech Connect (OSTI)

    Dentz, J.; Podorson, D.; Varshney, K.

    2014-05-01T23:59:59.000Z

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  8. Proposal for a novel chemical heat pump dryer

    SciTech Connect (OSTI)

    Ogura, Hironao; Mujumdar, A.S.

    2000-05-01T23:59:59.000Z

    A new chemical heat pump (CHP) system for ecofriendly effective utilization of thermal energy in drying is proposed from the viewpoints of energy saving and environmental impact. CHPs can store thermal energy in the form of chemical energy by an endothermic reaction and release it at various temperature levels for heat demands by exo/endothermic reactions. CHPs have potential for heat recovery and dehumidification in the drying process by heat storage and high/low temperature heat release. In this study, the authors estimate the potential of the CHP application to drying systems for industrial use. Some combined systems of CHPs and dryers are proposed as chemical heat pump dryers (CHPD). The potential for commercialization of CHPDs is discussed.

  9. Heat pump water heater and method of making the same

    DOE Patents [OSTI]

    Mei, Viung C. (Oak Ridge, TN); Tomlinson, John J. (Knoxville, TN); Chen, Fang C. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    An improved heat pump water heater wherein the condenser assembly of the heat pump is inserted into the water tank through an existing opening in the top of the tank, the assembly comprising a tube-in-a-tube construction with an elongated cylindrical outer body heat exchanger having a closed bottom with the superheated refrigerant that exits the compressor of the heat pump entering the top of the outer body. As the refrigerant condenses along the interior surface of the outer body, the heat from the refrigerant is transferred to the water through the outer body. The refrigerant then enters the bottom of an inner body coaxially disposed within the outer body and exits the top of the inner body into the refrigerant conduit leading into the expansion device of the heat pump. The outer body, in a second embodiment of the invention, acts not only as a heat exchanger but also as the sacrificial anode in the water tank by being constructed of a metal which is more likely to corrode than the metal of the tank.

  10. 1 CO2 Heat Pump System for Space Heating and Hot Water Heating in Low-Energy Houses and Passive

    E-Print Network [OSTI]

    J. Stene

    2008-01-01T23:59:59.000Z

    designed as a stand-alone system, i.e. a heat pump water heater in combination with a separate unit for

  11. Development of an integrated building load and ground source heat pump model to assess heat pump and ground loop design and performance in a commercial office building.

    E-Print Network [OSTI]

    Blair, Jacob Dale

    2014-01-01T23:59:59.000Z

    ??Ground source heat pumps (GSHPs) offer an efficient method for cooling and heating buildings, reducing energy usage and operating cost. In hot, arid regions such… (more)

  12. Chemical heat pump and chemical energy storage system

    DOE Patents [OSTI]

    Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

    1985-08-06T23:59:59.000Z

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  13. GROUND-COUPLED HEAT-PUMP-SYSTEM EXPERIMENTAL RESULTS* Philip D. Metz

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;GROUND-COUPLED HEAT-PUMP-SYSTEM EXPERIMENTAL RESULTS* Philip D. Metz _Solar and Renewables house in Upton, Long Island, New York has been heated and cooled by a liquid source heat pump using- saving construction with a heating load of 7.8 X 106 J/OC-day (4.1 X 103 Btu/ OF-day). The heat pump used

  14. Feasibility Study of Using Ground Source Heat Pumps in Two Buildings

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Feasibility Study of Using Ground Source Heat Pumps in Two Buildings at Whidbey Island Naval Air and Mt. Olympus BOQ) presently heated by steam from the central steam plant. Ground source heat pump source heat pumps provide both heating and cooling, there would essentially be no cost increase

  15. Cowlitz County PUD- H2 AdvantagePlus Residential Heat Pump Program

    Broader source: Energy.gov [DOE]

    Cowlitz County PUD will provide rebates to customer homeowners who have a PUD-qualified heat pump dealer upgrade their heating system with the installation of a premium efficiency heat pump system,...

  16. Discussion of an Optimization Scheme for the Ground Source Heat Pump System of HVAC

    E-Print Network [OSTI]

    Mu, W.; Wang, S.; Pan, S.; Shi, Y.

    2006-01-01T23:59:59.000Z

    With the implementation of the global sustainable development strategy, people pay more attention to renewable energy resources such as ground source heat pumps. The technology of ground source heat pump is widely applied to heat and cold...

  17. Application of industrial heat pumps Proven applications in 2012 for Megawatt+

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Application of industrial heat pumps Proven applications in 2012 for Megawatt+ Heatpumps within a technical, commercial and sustainable framework Application of industrial heat pumps Proven applications Emerson Climate Technologies Core Offerings & Key Brands Residential Heating & Air Conditioning Commercial

  18. Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2: +33 2 23 23 42 97 Fax: +33 2 23 23 40 51 ABSTRACT This article presents a Heat Pump for Simultaneous heat pump i in is isentropic mec mechanical nof without frosting o out r refrigerant S sublimation sc

  19. Materials corrosion in ammonia/solid heat pump working media

    SciTech Connect (OSTI)

    Wilson, D.F.; Howell, M.; DeVan, J.H.

    1992-01-01T23:59:59.000Z

    Salt/ammonia complexes will undergo thermal cycles during use as working media for heat pumps. The interaction between container materials and complexes under thermal cyclic conditions was assessed to screen possible containment materials. Aluminum alloys 3003, 1100, and 6063 and carbon steel A214 were tested against possible heat pump working media SrCl{sub 2}/NH{sub 3}, CaBr{sub 2}/NH{sub 3}, and CaCl{sub 2}/NH{sub 3}. None of the containment materials showed susceptibility to stress corrosion cracking. While all the materials demonstrated excellent general corrosion resistance to SrCl{sub 2}/NH{sub 3}, only A214 displayed good general corrosion resistance to CaCl{sub 2}/NH{sub 3}. The complex CaBr{sub 2}/NH{sub 3} was found to be subject to thermal cyclic instability and should not be used as a heat pump working medium.

  20. Heat pump/refrigerator using liquid working fluid

    DOE Patents [OSTI]

    Wheatley, John C. (Del Mar, CA); Paulson, Douglas N. (Del Mar, CA); Allen, Paul C. (Solana Beach, CA); Knight, William R. (Corvallis, OR); Warkentin, Paul A. (San Diego, CA)

    1982-01-01T23:59:59.000Z

    A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.

  1. Enchancement of heat pipes with ion-drag pumps

    E-Print Network [OSTI]

    Babin, Bruce Russell

    1991-01-01T23:59:59.000Z

    ENHANCEMENT OF HEAT PIPES WITH ION-DRAG PUMPS A Thesis by BRUCE RUSSELL BABIN Submitted to the Office of Graduate Studies of Texas AE'M I. niversity in partial fulfillment of the requirements for the degree of MASTER OF SCIEiVCE August 1991... Malor Subject: Mechanical Engineering ENHANCEMENT OF HEAT PIPES WITH ION-DRAG PUMPS A Thesis by BRUCE RUSSELL BABIN Approved as to style and content by G. P. Peterson (Charr of Committee) L. S. Fletcher (Member) . Hassan ( Member) W. L...

  2. STUDY OF FROST GROWTH ON HEAT EXCHANGERS USED AS OUTDOOR COILS IN AIR SOURCE HEAT PUMP SYSTEMS

    E-Print Network [OSTI]

    STUDY OF FROST GROWTH ON HEAT EXCHANGERS USED AS OUTDOOR COILS IN AIR SOURCE HEAT PUMP SYSTEMS OF FROST GROWTH ON HEAT EXCHANGERS USED AS OUTDOOR COILS IN AIR SOURCE HEAT PUMP SYSTEMS Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5.3 Air Side Heat Transfer Rates . . . . . . . . . . . . . . . . . . 43 3.5.4 Fluid Side Heat

  3. Heat Pump Systems | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossary ofGroundwaterHCHearings HearingsPump Systems

  4. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., 1979) |Haar, 1986)EnergyOpenPumps

  5. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    SciTech Connect (OSTI)

    Liu, Xiaobing [Oak Ridge National Lab] [Oak Ridge National Lab

    2014-06-01T23:59:59.000Z

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

  6. The Role of the Consultant in Marketing Industrial Heat Pumps

    E-Print Network [OSTI]

    Gilbert, J. S.; Niess, R. C.

    device that serves a process heating load or provides space heating for relatively large loads in an in dustrial plant or complex. A heat pump is typi cally driven by electric motors ranging from 25 kW up to several thousand kW motor input power... considered for development and conunercialization, but few of these have been placed in service in the United States. Process heat recovery designs have been installed with electrical inputs of more than 10,000 kW and with coefficients of performance...

  7. Control and optimal operation of simple heat pump cycles Jrgen B. Jensen and Sigurd Skogestad

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control and optimal operation of simple heat pump cycles Jørgen B. Jensen and Sigurd Skogestad cycle. Keywords: Operation, heat pump cycle, cyclic process, charge, self-optimizing control 1. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (re- frigerator, A

  8. Degrees of freedom and optimal operation of simple heat pump cycles

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Degrees of freedom and optimal operation of simple heat pump cycles Jørgen Bauck Jensen and Sigurd in the opposite direction, the "heat pump", has recently become pop- ular. These two applications have also merged of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined as COPh = Qh

  9. Comparative Performance of Heat Pumps and R&D Requirements

    E-Print Network [OSTI]

    Ally, M. R.

    in a role of both increasing the process effi ciencies and recovering and reusing waste energy emitted in industrial manufacturing processes. The lead laboratories doing research in heat pumps in the U.S. are the Oak Ridge National Laboratory (ORNL... that have low-film heat and mass transfer coefficients, be able to operate at high temperatures if needed, operate within reasonable pressure limits, be stable, non-toxic, and above all, inexpensive. The program at ORNL addresses these issues...

  10. Ground Source Heat Pump Subprogram Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Source Heat Pump Subprogram Overview Ground Source

  11. Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System

    E-Print Network [OSTI]

    Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

    2006-01-01T23:59:59.000Z

    Based on the heating and air-conditioning system of a high-rise residential building in Northern city, this paper provides a discussion on the choice and matching of different types of Waste Water Resource Heat Pump (WWRHP) heating and air...

  12. Evaluation of solar collectors for heat pump applications. Final report

    SciTech Connect (OSTI)

    Skartvedt, Gary; Pedreyra, Donald; McMordle, Dr., Robert; Kidd, James; Anderson, Jerome; Jones, Richard

    1980-08-01T23:59:59.000Z

    The study was initiated to evaluate the potential utility of very low cost (possibly unglazed and uninsulated) solar collectors to serve as both heat collection and rejection devices for a liquid source heat pump. The approach consisted of exercising a detailed analytical simulation of the complete heat pump/solar collector/storage system against heating and cooling loads derived for typical single-family residences in eight US cities. The performance of each system was measured against that of a conventional air-to-air heat pump operating against the same loads. In addition to evaluation of solar collector options, the study included consideration of water tanks and buried pipe grids to provide thermal storage. As a supplement to the analytical tasks, the study included an experimental determination of night sky temperature and convective heat transfer coefficients for surfaces with dimensions typical of solar collectors. The experiments were conducted in situ by placing the test apparatus on the roofs of houses in the Denver, Colorado, area. (MHR)

  13. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01T23:59:59.000Z

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  14. Ductless Mini-Split Heat Pump Comfort Evaluation

    SciTech Connect (OSTI)

    Roth, K.; Sehgal, N.; Akers, C.

    2013-03-01T23:59:59.000Z

    Field tests were conducted in two homes in Austin, TX to evaluate the comfort performance of ductless mini-split heat pumps (DMSHPs), measuring temperature and relative humidity measurements in four rooms in each home before and after retrofitting a central HVAC system with DMSHPs.

  15. Covered Product Category: Residential Heat Pump Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including residential heat pump water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  16. Marketing Ground Source Heat Pump Advanced Applications that

    E-Print Network [OSTI]

    Solar Thermal n Real World Examples Overview #12;n High First Cost n Incompetent Contractor n Operating Wallace President, Energy Environmental Corporation October 9, 2013 #12;Within the United States, what is the fastest growing market with the available capital and need for the benefits of ground source heat pumps

  17. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1996-12-03T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.

  18. Groundwater Heat Pump with Pumping and Recharging in the Same Well in China

    E-Print Network [OSTI]

    Ni, L.; Jiang, Y.; Yao, Y.; Ma, Z.

    2006-01-01T23:59:59.000Z

    In China, a new-style groundwater heat pump emerged in 2000. In this system, the production well and the injection well is integrated into one well, which is divided into three parts by clapboards: a low pressure (production) space, a seals section...

  19. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  20. Study of Frost Growth on Heat Exchangers Used as Outdoor Coils in Air Source Heat Pump Systems.

    E-Print Network [OSTI]

    Padhmanabhan, Sankaranarayanan K.

    2011-01-01T23:59:59.000Z

    ??During winter heating operation, the outdoor coil of a heat pump acts as an evaporator and when the ambient temperature is near freezing, the moisture… (more)

  1. An Evaluation of Industrial Heat Pumps for Effective Low-Temperature Heat Utilization

    E-Print Network [OSTI]

    Leibowitz, H. M.; Colosimo, D. D.

    1980-01-01T23:59:59.000Z

    The implementation of industrial heat pumps utilizing waste water from various industrial processes for the production of process steam is presented as a viable economic alternative to a conventional fossil-fired boiler and as an effective fuel...

  2. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01T23:59:59.000Z

    Central Air Conditioners and Heat Pumps Energy ConservationCentral Air Conditioners and Heat Pumps. Washington DC:Central Air Conditioners and Heat Pumps Energy Conservation

  3. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01T23:59:59.000Z

    Products: Central Air Conditioners and Heat Pumps EnergyResidential Central Air Conditioners and Heat Pumps.Products: Central Air Conditioners and Heat Pumps Energy

  4. Heat Generation by Heat Pump for LNG Plants.

    E-Print Network [OSTI]

    Moe, Bjørn Kristian

    2011-01-01T23:59:59.000Z

    ?? Abstract The LNG production plant processing natural gas from the Snøhvit field outside Hammerfest in northern Norway utilizes heat and power produced locally with… (more)

  5. Hybrid Heat Pumps Using Selective Water Sorbents (SWS)

    SciTech Connect (OSTI)

    Ally, M. R.

    2006-11-30T23:59:59.000Z

    The development of the ground-coupled and air-coupled Heating Ventilation and Air-Conditioning (HVAC) system is essential in meeting the goals of Zero Energy Houses (ZEH), a viable concept vigorously pursued under DOE sponsorship. ORNL has a large Habitat for Humanity complex in Lenoir City where modem buildings technology is incorporated on a continual basis. This house of the future is planned for lower and middle income families in the 21st century. The work undertaken in this CRADA is an integral part of meeting DOE's objectives in the Building America program. SWS technology is a prime candidate for reducing the footprint, cost and improve the performance of ground-coupled heat pumps. The efficacy of this technique to exchange energy with the ground is a topic of immense interest to DOE, builders and HVAC equipment manufacturers. If successful, the SWS concept will become part of a packaged ZEH kit for affordable and high-end houses. Lennox Industries entered into a CRADA with Oak Ridge National Laboratory in November 2004. Lennox, Inc. agreed to explore ways of using Selective Water Sorbent materials to boost the efficiency of air-coupled heat pumps whereas ORNL concentrated on ground-coupled applications. Lennox supplied ORNL with heat exchangers and heat pump equipment for use at ORNL's Habitat for Humanity site in Lenoir City, Tennessee. Lennox is focused upon air-coupled applications of SWS materials at the Product Development and Research Center in Carrollton, TX.

  6. Thermally conductive cementitious grout for geothermal heat pump systems

    DOE Patents [OSTI]

    Allan, Marita (Old Field, NY)

    2001-01-01T23:59:59.000Z

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  7. Heat Pump Water Heaters | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9HarveyWellnessFebruaryWater Heaters Heat

  8. Supercharger for Heat Pumps in Cold Climates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 RecoveryJulyEvaluationOffi ceSupercharger for Heat

  9. High Efficiency Cold Climate Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency Cold Climate

  10. NREL: Learning - Geothermal Heat Pump Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLizResults InterpretingBiofuels BasicsFuelHeat

  11. High Efficiency R-744 Commercial Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Elbel, Dr. Stefan W.; Petersen, Michael

    2013-04-25T23:59:59.000Z

    The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

  12. Heat-pump-centered integrated community energy systems: system development summary

    SciTech Connect (OSTI)

    Calm, J.M.

    1980-02-01T23:59:59.000Z

    An introduction to district heating systems employing heat pumps to enable use of low-temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service-water heating, and other thermal services. Otherwise-wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. These sources are abundant, and their use would conserve scarce resources and reduce adverse environmental impacts. More than one-quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less-scarce resources not practical in smaller, individual-building systems. Seven studies performed for the system development phase of the Department of Energy's Heat-Pump-Centered Integrated Community Energy Systems Project and to related studies are summarized. A concluding chapter tabulates data from these separately published studies.

  13. Marshall County REMC- Geothermal and Add-on Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Marshall County REMC provides a rebate for its residential customers for the purchase and installation of an add-on heat pump and/or a geothermal heat pump. Customers can receive $300 for the...

  14. The Design of an Open Rankine-Cycle Industrial Heat Pump

    E-Print Network [OSTI]

    Leibowitz, H. M.; Chaudoir, D. W.

    1981-01-01T23:59:59.000Z

    An open Rankine-cycle heat pump is ideally suited for producing low-pressure industrial process steam. Because steam serves as both the heat pump motive fluid and process fluid, the system achieves a unique simplicity and versatility...

  15. Kosciusko REMC- Residential Geothermal and Air-source Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Kosciusko REMC offers rebates (as bill credits) to residential members for the purchase and installation of high efficiency air-source heat pumps, geothermal heat pumps, and electric water heaters....

  16. Ground and Water Source Heat Pump Performance and Design for Southern Climates

    E-Print Network [OSTI]

    Kavanaugh, S.

    1988-01-01T23:59:59.000Z

    Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

  17. Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China

    E-Print Network [OSTI]

    Chen, H.; Li, D.; Dai, X.

    2006-01-01T23:59:59.000Z

    This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

  18. Color Key 1/25/2012 4.1.1 PTCS and Heat Pump Measures

    E-Print Network [OSTI]

    Color Key 1/25/2012 4.1.1 PTCS and Heat Pump Measures Staff Summary of Ecotope Recommendation: Staff Response and Recommended Action: 4.1.3 Ductless Heat Pumps Staff Summary of Ecotope Recommendation

  19. 1.12.2014bo Akademi Univ -Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/24 8. Heat pumps, heat pipes,

    E-Print Network [OSTI]

    Zevenhoven, Ron

    pumps, heat pipes, cold thermal energy storage Ron Zevenhoven Ã?bo Akademi University Thermal and Flow for heating is referred to as a heat pump (mostly based on a vapour-compression cycle) Heat pumps make use electricity!) for heating and air conditioning purposes Heat pumps became popular in the 1970s

  20. Potential for Heat Pumps in the U.S. Process Industries

    E-Print Network [OSTI]

    Rossiter, A. P.; Seetharam, R. V.; Ranade, S. M.

    POTENTIAL FOR HEAT PUMPS IN THE U. S. PROCESS INDUSTRIES A.P. ROSSITER, R.V. SEETHARAM AND S.M. RANADE TENSA Services Houston, ABSTRACT Two major criteria for successful heat pump installations in process plants are the "appropriate... placement" and "appropriate sizing" of the heat pump, consistent with the thermodynamics of the process. Failure to fulfil these conditions will result in the heat pump not achieving the anticipated savings and may even cause a net increase in process...

  1. Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript

    Broader source: Energy.gov [DOE]

    Transcript for a U.S. Department of Energy Webinar on Dec. 14, 2010, about residential geothermal heat pump retrofits

  2. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief

    SciTech Connect (OSTI)

    Not Available

    2003-06-01T23:59:59.000Z

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  3. Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters

    Broader source: Energy.gov [DOE]

    Provides and overview of field testing of 18 pre-production prototype residential heat pump water heaters

  4. Status report on survey of alternative heat pumping technologies

    SciTech Connect (OSTI)

    Fischer, S.

    1998-07-01T23:59:59.000Z

    The Department of Energy is studying alternative heat pumping technologies to identify possible cost effective alternatives to electric driven vapor compression heat pumps, air conditioners, and chillers that could help reduce CO{sub 2} emissions. Over thirty different technologies are being considered including: engine driven systems, fuel cell powered systems, and alternative cycles. Results presented include theoretical efficiencies for all systems as well as measured performance of some commercial, prototype, or experimental systems. Theoretical efficiencies show that the alternative electric-driven technologies would have HSPFs between 4 and 8 Btu/Wh (1.2 to 2.3 W/W) and SEERs between 3 and 9.5 Btu/Wh (0.9 and 2.8 W/W). Gas-fired heat pump technologies have theoretical seasonal heating gCOPs from 1.1 to 1.7 and cooling gCOPs from 0.95 to 1.6 (a SEER 12 Btu/Wh electric air conditioner has a primary energy efficiency of approximately 1.4 W/W).

  5. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems

    Broader source: Energy.gov [DOE]

    This project will improve the capability of engineers to design heat pump systems that utilize surface water or standing column wells (SCW) as their heat sources and sinks.

  6. Model Based Diagnosis of an Air Source Heat Pump; Modellbaserad Diagnos av en Luftvärmepump.

    E-Print Network [OSTI]

    Alfredsson, Sandra

    2011-01-01T23:59:59.000Z

    ?? The purpose of a heat pump is to control the temperature of an enclosed space. This is done by using heat exchange with a… (more)

  7. OPTIMIZED CONTROL STRATEGIES FOR A TYPICAL WATER LOOP HEAT PUMP SYSTEM.

    E-Print Network [OSTI]

    Lian, Xu

    2011-01-01T23:59:59.000Z

    ??Water Loop Heat Pump (WLHP) System has been widely utilized in the Heating, Ventilating and Air Conditioning (HVAC) industry for several decades. There is no… (more)

  8. PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION

    E-Print Network [OSTI]

    PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION M in a ground source heat pump system falls near or below 0o C, an antifreeze mixture must be used to prevent freezing in the heat pump. The antifreeze mixture type and concentration has a number of implications

  9. THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER Laboratory testing and field testing have shown that a heat pump water heater (HPWH) uses about half the electrical energy input that an electric resistance water heater does. However, since the heat pump water heater

  10. DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT CHAMOUN MARWAN to improve industrial energy efficiency, the development of a high temperature heat pump using water vapor as refrigerant is investigated. Technical problems restraining the feasibility of this industrial heat pump

  11. State of the Art of Air-source Heat Pump for Cold Regions

    E-Print Network [OSTI]

    Tian, C.; Liang, N.

    2006-01-01T23:59:59.000Z

    In this paper, research on air source heat pump systems for cold regions in recent years is first summarized and compared. These systems can be divided into three kinds: a single-stage compression heat pump, liquid/vapor injection heat pump, and a...

  12. Short communication Optimization of hybrid ground coupled and air source heat pump systems

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Short communication Optimization of hybrid ­ ground coupled and air source ­ heat pump systems 2008 Accepted 14 January 2010 Available online 28 January 2010 Keywords: Ground coupled heat pump Air to water heat pump Thermal storage device Hybrid HVAC system Energy efficiency Numerical simulation a b

  13. Efficiency, Economic and Environmental Assessment of Ground-Source Heat Pumps in

    E-Print Network [OSTI]

    Blumsack, Seth

    1 Efficiency, Economic and Environmental Assessment of Ground-Source Heat Pumps in Central pump (GSP) for heating, cooling and hot water in a Central Pennsylvania residence (namely, the author, the efficiency gain for the ground-source heat pump compared to electricity is 43% for cooling and 81

  14. SURVEY OF ADVANCED HEAT PUMP DEVELOPMENTS FOR SPACE CONDITIONING* Phillip D. Fairchild

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;SURVEY OF ADVANCED HEAT PUMP DEVELOPMENTS FOR SPACE CONDITIONING* Phillip D. Fairchild Energy Division Oak Ridge National Laboratory it*~~ ~Oak Ridge, Tennessee ABSTRACT Because of the heat pump energy research organiza- tions. This paper presents a survey of heat pump RD&D projects with special

  15. 192 ASHRAE Transactions: Research Ground-source heat pumps for cooling-dominated

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    192 ASHRAE Transactions: Research ABSTRACT Ground-source heat pumps for cooling- tion of the heat pump performance is avoided by offsetting the annual load imbalance in the borefield operating and control strategies in a hybrid ground-source heat pump application using an hourly system

  16. Efficiency improvement of a ground coupled heat pump system from energy management

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Efficiency improvement of a ground coupled heat pump system from energy management N. Pardo a,*, Á coupled heat pump Energy efficiency Numerical simulation a b s t r a c t The installed capacity of an air to improve the efficiency of a ground coupled heat pump air conditioning system by adapting its produced

  17. MODELING PACKAGED HEAT PUMPS IN A QUASI-STEADY STATE ENERGY

    E-Print Network [OSTI]

    the experimental data for water-to-air heat pumps. Last but not least, financial support from the U.S Department ........................................................ 6 2.1. Steady State Air-to-Air Heat Pump Models........................................................ 13 2.2. Steady State Water-to-Air Heat Pump Models

  18. STATE OF CALIFORNIA CONSTANT VOLUME SINGLE ZONE UNITARY AIR CONDITIONER AND HEAT PUMP SYSTEMS

    E-Print Network [OSTI]

    STATE OF CALIFORNIA CONSTANT VOLUME SINGLE ZONE UNITARY AIR CONDITIONER AND HEAT PUMP SYSTEMS CEC Volume Single Zone Unitary Air Conditioner and Heat Pump Systems (Page 1 of 4) Project Name CONSTANT VOLUME SINGLE ZONE UNITARY AIR CONDITIONER AND HEAT PUMP SYSTEMS CEC-MECH-3A (Revised 08

  19. HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+

    E-Print Network [OSTI]

    HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+ M.H. Khan, 74078, USA ABSTRACT This paper presents a simulation of a hybrid ground source heat pump system, performed using a new graphical user interface for HVACSIM+. Hybrid ground source heat pump systems

  20. Jason Demicoli 16 October 2013 1 EUROPEAN HEAT PUMP SUMMIT 2013

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Jason Demicoli 16° October 2013 1 #12;EUROPEAN HEAT PUMP SUMMIT 2013 Improved heat pump control Sales Companies 4 Logistic Centres #12;Jason Demicoli 16° October 2013 4 Real-life performance of heat pump Alarm visualisation on user screen Remote monitoring of relative parameters Low investment

  1. ORNL/TM-2000/80 Geothermal Heat Pumps in K12

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ORNL/TM-2000/80 Geothermal Heat Pumps in K­12 Schools A Case Study of the Lincoln, Nebraska Government or any agency thereof. #12;ORNL/TM-2000/80 Geothermal Heat Pumps in K­12 Schools A Case Study DE-AC05-00OR22725 #12;Geothermal Heat Pumps in K­12 Schools iii CONTENTS List of Figures

  2. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, B.A.; Zawacki, T.S.

    1998-07-21T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration. 5 figs.

  3. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1998-07-21T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration.

  4. AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo, Manager, Heat Exchange Systems Research

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo S. E. Veyo, Manager, Heat Exchange Systems Research Westinghouse Electric Corporation, R&D Center 1310 Beulah Road Pittsburgh, PA 15235 KEYWORDS: heat pump, air conditioner, electric, residential, energy, compressor, fan, blower, heat

  5. Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System

    E-Print Network [OSTI]

    Qian, J.; Sun, D.; Li, X.; Li, G.

    2006-01-01T23:59:59.000Z

    This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project...

  6. Using Exergy Analysis Methodology to Assess the Heating Efficiency of an Electric Heat Pump

    E-Print Network [OSTI]

    Ao, Y.; Duanmu, L.; Shen, S.

    2006-01-01T23:59:59.000Z

    The authors, using exergy analysis methodology, propose that it should consider not only the COP (coefficient of Performance) value of the electric power heat pump set (EPHPS/or HP set), but also the exergy loss at the heating exchanger of the HP...

  7. Heat Pump Cycle with Solution Circuit and Internal Heat Exchange

    E-Print Network [OSTI]

    Radermacher, R.

    -stage cycle, the heat transfer area required on the refrigerant side will increase by 10~ compared to the ammonia cycl e. CONCLUSIONS The hea t p1llllp cycl e employ ing one sol ut ion circuit and absorber/de sorber heat exchange has a more sophisticated... when a two-stage version fed into the same compressor. While ammonia of this cycl e is used. In this paper. another evaporate s out of an ammonia-water sol ution on C version of such cycles will be discussed which the composition. X. of this solution...

  8. Work and energy gain of heat-pumped quantized amplifiers

    E-Print Network [OSTI]

    David Gelbwaser-Klimovsky; Robert Alicki; Gershon Kurizki

    2013-10-09T23:59:59.000Z

    We investigate heat-pumped single-mode amplifiers of quantized fields in high-Q cavities based on non-inverted two-level systems. Their power generation is shown to crucially depend on the capacity of the quantum state of the field to accumulate useful work. By contrast, the energy gain of the field is shown to be insensitive to its quantum state. Analogies and differences with masers are explored.

  9. Phase transitions in full counting statistics for periodic pumping

    E-Print Network [OSTI]

    Dmitri A. Ivanov; Alexander G. Abanov

    2010-07-16T23:59:59.000Z

    We discuss the problem of full counting statistics for periodic pumping. The probability generating function is usually defined on a circle of the "physical" values of the counting parameter, with its periodicity corresponding to charge quantization. The extensive part of the generating function can either be an analytic function on this circle or have singularities. These two cases may be interpreted as different thermodynamic phases in time domain. We discuss several examples of phase transitions between these phases for classical and quantum systems. Finally, we prove a criterion for the "analytic" phase in the problem of a quantum pump for noninteracting fermions.

  10. Develop Standard Method of Test for Integrated Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesiree PipkinsSuperIntegrated Heat

  11. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01T23:59:59.000Z

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  12. Ground-source heat pump case studies and utility programs

    SciTech Connect (OSTI)

    Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

    1995-04-01T23:59:59.000Z

    Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The case studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.

  13. The Evolution of the U.S. Heat Pump Market

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss [ORNL] [ORNL; Khowailed, Gannate [Sentech, Inc.] [Sentech, Inc.

    2011-01-01T23:59:59.000Z

    The heating and cooling equipment market in the United States (U.S.) evolved in the last two decades affected by the housing market and external market conditions. The average home size increased by 25% since 1999, contributing to increased average equipment size of heat pumps (HPs) and air conditioners (ACs). The home size increase did not correlate with higher residential energy used. The last decade is recognized for improved home insulation and equipment efficiency, which has made up for the larger home size and still yielded lower residential energy use. The lower energy use coincides with more homes using HPs. HP growth was supported by the price stability and affordability of electricity. The heating and cooling equipment market also seems to be rebounding faster than the housing market after the economic crises. In 2009 only 22% of HPs were sold to new homes, reflecting increased heat pump sales for add-on and replacement applications. HPs are growing in popularity and becoming an established economic technology. The increased usage of HPs will result in reduced residential heating energy use and carbon dioxide emissions.

  14. Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  15. Underground Mine Water Heating and Cooling Using Geothermal Heat Pump Systems

    SciTech Connect (OSTI)

    Watzlaf, G.R.; Ackman, T.E.

    2006-03-01T23:59:59.000Z

    In many regions of the world, flooded mines are a potentially cost-effective option for heating and cooling using geothermal heat pump systems. For example, a single coal seam in Pennsylvania, West Virginia, and Ohio contains 5.1 x 1012 L of water. The growing volume of water discharging from this one coal seam totals 380,000 L/min, which could theoretically heat and cool 20,000 homes. Using the water stored in the mines would conservatively extend this option to an order of magnitude more sites. Based on current energy prices, geothermal heat pump systems using mine water could reduce annual costs for heating by 67% and cooling by 50% over conventional methods (natural gas or heating oil and standard air conditioning).

  16. A ground-coupled storage heat pump system with waste heat recovery

    SciTech Connect (OSTI)

    Drown, D.C.; Braven, K.R.D. (Univ. of Idaho, ID (US)); Kast, T.P. (Thermal Dynamic Towers, Boulder, CO (US))

    1992-02-01T23:59:59.000Z

    This paper reports on an experimental single-family residence that was constructed to demonstrate integration of waste heat recovery and seasonal energy storage using both a ventilating and a ground-coupled heat pump. Called the Idaho energy Conservation Technology House, it combines superinsulated home construction with a ventilating hot water heater and a ground coupled water-to-water heat pump system. The ground heat exchangers are designed to economically promote seasonal and waste heat storage. Construction of the house was completed in the spring of 1989. Located in Moscow, Idaho, the house is occupied by a family of three. The 3,500 ft{sup 2} (325 m{sup 2}) two-story house combines several unique sub-systems that all interact to minimize energy consumption for space heating and cooling, and domestic hot water.

  17. Development of a Residential Ground-Source Integrated Heat Pump

    SciTech Connect (OSTI)

    Rice, C Keith [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Hern, Shawn [ClimateMaster, Inc.] [ClimateMaster, Inc.; McDowell, Tim [Thermal Energy System Specialists, LLC] [Thermal Energy System Specialists, LLC; Munk, Jeffrey D [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internal control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.

  18. Performance of Gas-Engine Driven Heat Pump Unit

    SciTech Connect (OSTI)

    Abdi Zaltash; Randy Linkous; Randall Wetherington; Patrick Geoghegan; Ed Vineyard; Isaac Mahderekal; Robert Gaylord

    2008-09-30T23:59:59.000Z

    Air-conditioning (cooling) for buildings is the single largest use of electricity in the United States (U.S.). This drives summer peak electric demand in much of the U.S. Improved air-conditioning technology thus has the greatest potential impact on the electric grid compared to other technologies that use electricity. Thermally-activated technologies (TAT), such as natural gas engine-driven heat pumps (GHP), can provide overall peak load reduction and electric grid relief for summer peak demand. GHP offers an attractive opportunity for commercial building owners to reduce electric demand charges and operating expenses. Engine-driven systems have several potential advantages over conventional single-speed or single-capacity electric motor-driven units. Among them are variable speed operation, high part load efficiency, high temperature waste heat recovery from the engine, and reduced annual operating costs (SCGC 1998). Although gas engine-driven systems have been in use since the 1960s, current research is resulting in better performance, lower maintenance requirements, and longer operating lifetimes. Gas engine-driven systems are typically more expensive to purchase than comparable electric motor-driven systems, but they typically cost less to operate, especially for commercial building applications. Operating cost savings for commercial applications are primarily driven by electric demand charges. GHP operating costs are dominated by fuel costs, but also include maintenance costs. The reliability of gas cooling equipment has improved in the last few years and maintenance requirements have decreased (SCGC 1998, Yahagi et al. 2006). Another advantage of the GHP over electric motor-driven is the ability to use the heat rejected from the engine during heating operation. The recovered heat can be used to supplement the vapor compression cycle during heating or to supply other process loads, such as water heating. The use of the engine waste heat results in greater operating efficiency compared to conventional electric motor-driven units (SCGC 1998). In Japan, many hundreds of thousands of natural gas-driven heat pumps have been sold (typically 40,000 systems annually) (Yahagi et al. 2006). The goal of this program is to develop dependable and energy efficient GHPs suitable for U.S. commercial rooftop applications (the single largest commercial product segment). This study describes the laboratory performance evaluation of an integrated 10-ton GHP rooftop unit (a 900cc Daihatsu-Aisin natural gas engine) which uses R410A as the refrigerant (GEDAC No.23). ORNL Thermally-Activated Heat Pump (TAHP) Environmental Chambers were used to evaluate this unit in a controlled laboratory environment.

  19. Environmental benefits of different types of heat pumps, available and expected

    SciTech Connect (OSTI)

    Hughes, P.J.

    1993-11-01T23:59:59.000Z

    A brief overview of integrated resource planning (IRP) is provided, with emphasis on how stakeholders interact within the process and where the opportunities may lie for heat pump advocates in cold climates. Five heat pump options that represent various approaches for improving heat pump cold weather performance are included here in a comparative analysis: 2-speed electric air source heat pumps, variable-speed electric air source heat pumps, electric ground-source heat pumps, natural gas engine-driven heat pumps, and natural gas absorption heat pumps. The comparative analysis addresses seasonal performance, seasonal peak demand, air pollutant emissions, customer energy costs, and recognition of environmental externalities in IRP, all in the context of a residential application in the Great Lakes region of the US. Several actions that may be in the interest of heat pump stakeholders in cold climates were identified, including: development of improved software for utility planners, advocacy of a practical form of the Societal Test for use in IRP that credits heat pumps for the residential air pollutant emissions that they avoid, and development of practical methods to credit heat pumps with other environmental benefits for which they may be responsible.

  20. Application and Technology Requirements for Heat Pumps at the Process Industries

    E-Print Network [OSTI]

    Priebe, S.; Chappell, R.

    APPLICATION AND TECHNOLOGY REQUIREMENTS FOR HEAT PUMPS AT THE PROCESS INDUSTRIESl Stephen Priebe Engineering Specialist EG&G Idaho, Inc. Idaho Falls, ID There are basically three categories of equip ment used to manage heat energy flows... in an indus trial process. First, heat exchangers are used to move heat through the process down the temperature gradient. Second, heat pumps are used to move heat through the process up the temperature gra dient. Third, heat engines are used to convert...

  1. Low-Cost Gas Heat Pump for Building Space Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term StorageDepartmentSystem for

  2. Geothermal Heat Pumps - Heating Mode | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann George Waldmann Phone 202-586-9904Geothermal(FactHeating Mode

  3. Earth-Coupled Water-Source Heat Pump Research, Design and Applications in Louisiana

    E-Print Network [OSTI]

    Braud, H. J.; Klimkowski, H.; Baker, F. E.

    1985-01-01T23:59:59.000Z

    An earth-coupled water-source heat pump uses the earth as the thermal source and sink for economical, energy efficient, space heating and cooling. Water exiting the heat pump passes through an earth heat exchanger, which is a closed loop of plastic...

  4. Cold Climate Heat Pump Projects at Purdue University & the Living Lab

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    11/10/2011 6 #12;System Design · 19 kW (~65000 Btu/h) at -20 OC (-4 OF) · Install strip electric heat pump optimized for heating » Greatly reduce or eliminate need for auxiliary electric resistance heatingCold Climate Heat Pump Projects at Purdue University & the Living Lab at the new Herrick Labs

  5. Development of dual temperature ammines for heat pump latent heat storage application. Final report

    SciTech Connect (OSTI)

    Rockenfeller, U.

    1986-03-01T23:59:59.000Z

    Ammoniated Complex Compounds can be used as working fluids in space heating and cooling heat pumps and storage systems. This report describes the theoretical and experimental development of complex compound working fluids for a heat pump-storage system. A computerized data base was developed for the preliminary selection of candidate working fluids. The selected substances were experimentally investigated. Several concepts using two ammoniated complex compounds or one complex compound and the plain ligand were developed. A subscale prototype was built using the NaBr-n NH/sub 3/ complex and NH/sub 3/ as the ligand. Two heat exchanger designs were tested and compared in terms of optimum reaction rates. A computer simulation was written to predict the performance of a complex compound heat pump-storage system. The results were compared with a simulation of a conventional R22 heat pump cycle. The influence of additives in the NaBr-n NH/sub 3/ complex was investigated with respect to the adsorption and desprption rates.

  6. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report

    SciTech Connect (OSTI)

    Ganji, A. [San Francisco State Univ., CA (United States). Div. of Engineering

    1992-07-01T23:59:59.000Z

    Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  7. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California

    SciTech Connect (OSTI)

    Ganji, A. (San Francisco State Univ., CA (United States). Div. of Engineering)

    1992-07-01T23:59:59.000Z

    Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  8. One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes

    E-Print Network [OSTI]

    California at Davis, University of

    advances to commercialize stand-alone electric heat-pump storage hot water heaters. These systems offer design uses multiple systems and fuels to provide thermal services, the emerging generation of heat to experience this change as air-source heat-pump water heaters deliver obvious energy savings over electric

  9. DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP

    SciTech Connect (OSTI)

    Horton, W. Travis [Purdue University] [Purdue University; Groll, Eckhard A. [Purdue University] [Purdue University; Braun, James E. [Purdue University] [Purdue University

    2014-06-01T23:59:59.000Z

    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested compression technologies is a lower discharge temperature, which allows for continued operation at lower ambient temperatures. A bin analysis of the vapor injected prototype cold climate heat pump predicts a 6% improvement in HSPF for Minneapolis. This improvement is mainly a result of the increased capacity of the system for active vapor injection. For the oil flooded system, a slightly larger performance improvement is predicted, in this case mostly caused by an increase in heating COP. Based on an economic analysis of these results, the maximum additional cost of the system changes, for the Minneapolis location, are $430 for the vapor injected system and $391 for the oil flooded system. These estimates assume that a 3-year simple payback period is accepted by the customer. For the hybrid flow control of evaporators, a new type of balancing valve was developed together with Emerson Climate technologies to reduce the cost of the control scheme. In contrast to conventional stepper motor valves, this valve requires less cables and can be driven by a cheaper output circuit on the control board. The correct valve size was determined in a dedicated test stand in several design iterations. The performance benefits of the hybrid control of the evaporator coil were determined for clean coil conditions as well as with partial blockage of the air inlet grille and under frosting conditions. For clean coil conditions, the benefits in terms of COP and capacity are negligible. However, significant benefits were noted for severely air-maldistributed operating conditions. For the H2-test, the maximum COP improvement of 17% along with a capacity improvement of nearly 40% was observed. Overall, the hybrid control scheme leads to a significant amount of performance improvement, if the air inlet conditions to the evaporator are maldistributed.

  10. National Certification Standard for Ground Source Heat Pump Personnel

    SciTech Connect (OSTI)

    Kelly, John [Geothermal Heat Pump Consortium] [Geothermal Heat Pump Consortium

    2013-07-31T23:59:59.000Z

    The National Certification Standard for the Geothermal Heat Pump Industry adds to the understanding of the barriers to rapid growth of the geothermal heat pump (GHP) industry by bringing together for the first time an analysis of the roles and responsibilities of each of the individual job tasks involved in the design and installation of GHP systems. The standard addresses applicable qualifications for all primary personnel involved in the design, installation, commissioning, operation and maintenance of GHP systems, including their knowledge, skills and abilities. The resulting standard serves as a foundation for subsequent development of curriculum, training and certification programs, which are not included in the scope of this project, but are briefly addressed in the standard to describe ways in which the standard developed in this project may form a foundation to support further progress in accomplishing those other efforts. Follow-on efforts may use the standard developed in this project to improve the technical effectiveness and economic feasibility of curriculum development and training programs for GHP industry personnel, by providing a more complete and objective assessment of the individual job tasks necessary for successful implementation of GHP systems. When incorporated into future certification programs for GHP personnel, the standard will facilitate increased consumer confidence in GHP technology, reduce the potential for improperly installed GHP systems, and assure GHP system quality and performance, all of which benefit the public through improved energy efficiency and mitigated environmental impacts of the heating and cooling of homes and businesses.

  11. Outdoor unit construction for an electric heat pump

    DOE Patents [OSTI]

    Draper, R.; Lackey, R.S.

    1984-09-11T23:59:59.000Z

    The outdoor unit for an electric heat pump is provided with an upper portion containing propeller fan means for drawing air through the lower portion containing refrigerant coil means in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed. 4 figs.

  12. Outdoor unit construction for an electric heat pump

    DOE Patents [OSTI]

    Draper, Robert (Pittsburgh, PA); Lackey, Robert S. (Pittsburgh, PA)

    1984-01-01T23:59:59.000Z

    The outdoor unit for an electric heat pump is provided with an upper portion 10 containing propeller fan means 14 for drawing air through the lower portion 12 containing refrigerant coil means 16 in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs 64 which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed.

  13. List of Heat pumps Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList of Geothermal Incentives Jump to:pumps

  14. Data Analysis from Ground Source Heat Pump Demonstration Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department1 Prepared by:DTE Energy VideoDark Matter and a

  15. Energy 101: Geothermal Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecond stage ofDefects on .Heat Pumps Energy 101:

  16. Application of advanced Stirling engine technology to a commercial size gas-fired heat pump

    SciTech Connect (OSTI)

    Johansson, L.; Agno, J.; Wurm, J.

    1985-08-01T23:59:59.000Z

    The Gas Research Institute sponsored work on the kinematic Stirling engine-driven heat pump, which offers practical improvements in the use of natural gas. Results from the first phase of the program led to the selection of a method of introducing low pressure natural gas into the V160 engine's combustor and testing of the ejector system. Further engine modifications will be needed as well as demonstrations of the performance and reliability of the units. The first phase found all developmental needs to be achievable, making the concept technically feasible. Computer projections based on the system performance of components indicate the gas-fired pump will work better than electric models and be economically feasible as well. 5 figures, 1 table.

  17. BSU GHP District Heating and Cooling System (Phase I)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Concept" completed * Borehole field designed using "Thermal Dynamics" software * Heat Pump Chiller requirements determined * Surveys conducted throughout campus to...

  18. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    SciTech Connect (OSTI)

    Rice, C Keith [ORNL] [ORNL; Uselton, Robert B. [Lennox Industries, Inc] [Lennox Industries, Inc; Shen, Bo [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Shrestha, Som S [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  19. North American Overview - Heat Pumps Role in Buildings Energy Efficiency Improvement

    SciTech Connect (OSTI)

    Baxter, Van D [ORNL; Bouza, Antonio [U.S. Department of Energy; Giguère, Daniel [Natural Resources Canada; Hosatte, Sophie [Natural Resources Canada

    2011-01-01T23:59:59.000Z

    A brief overview of the situation in North America regarding buildings energy use and the current and projected heat pump market is presented. R&D and deployment strategies for heat pumps, and the impacts of the housing market and efficiency regulations on the heating and cooling equipment market are summarized as well.

  20. Analytical and Numerical Study of Joule Heating Effects on Electrokinetically Pumped Continuous Flow PCR Chips

    E-Print Network [OSTI]

    Le Roy, Robert J.

    Analytical and Numerical Study of Joule Heating Effects on Electrokinetically Pumped Continuous, and the potential for integration.1-3 Joule heating is inevitable when electrokinetic pumping is used Form: December 8, 2007 Joule heating is an inevitable phenomenon for microfluidic chips involving

  1. COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM

    SciTech Connect (OSTI)

    Jiang Zhu; Yong X. Tao

    2011-11-01T23:59:59.000Z

    In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

  2. Utilization of Heat Pump Water Heaters for Load Management

    SciTech Connect (OSTI)

    Boudreaux, Philip R [ORNL; Jackson, Roderick K [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL; Lyne, Christopher T [ORNL

    2014-01-01T23:59:59.000Z

    The Energy Conservation Standards for Residential Water Heaters require residential electric storage water heaters with volumes larger than 55 gallons to have an energy factor greater than 2.0 after April 2015. While this standard will significantly increase the energy efficiency of water heaters, large electric storage water heaters that do not use heat pump technologies may no longer be available. Since utilities utilize conventional large-volume electric storage water heaters for thermal storage in demand response programs, there is a concern that the amended standard will significantly limit demand response capacity. To this end, Oak Ridge National Laboratory partnered with the Tennessee Valley Authority to investigate the load management capability of heat pump water heaters that meet or exceed the forthcoming water heater standard. Energy consumption reduction during peak periods was successfully demonstrated, while still meeting other performance criteria. However, to minimize energy consumption, it is important to design load management strategies that consider the home s hourly hot water demand so that the homeowner has sufficient hot water.

  3. Industrial Heat Pumps: Appropriate Placement and Sizing Using the Grand Composite

    E-Print Network [OSTI]

    Ranade, S. M.; Hindmarsh, E.; Boland, D.

    INDUSTRIAL HEAT PUMPS: APPROPRIATE PLACEMENT AND SIZING USING THE GRAND COMPOSITE Saidas M.-Ranade. Eric Hindmarsh and David Boland TENSA Services, Houston, TX ABSTRACT Correct thermodynamic placement ofheat~umps is a necessary condition... characteristics of the total process may result in inefficient designs and is detrimental to the "image" of industrial heat pumps. In this paper the heat pump placement is dis cussed in the context of the total process. The process grand composite curve...

  4. Efficient Heat Engines and Heat Pumps (10 credits) The aim of the module is to introduce the various ideal thermodynamic cycles that form

    E-Print Network [OSTI]

    Miall, Chris

    Efficient Heat Engines and Heat Pumps (10 credits) The aim of the module is to introduce the various ideal thermodynamic cycles that form the basis for power generation, heat pumping and IC Engines performance. Syllabus Heat Engines and Heat Pumps · Second Law of Thermodynamics, Concept

  5. A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2009-01-01T23:59:59.000Z

    Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

  6. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air...

    Broader source: Energy.gov (indexed) [DOE]

    Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 2:17pm Addthis...

  7. E-Print Network 3.0 - air-to-air heat pumps Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions... data on the seasonal performance of air-to-air residential heat pump systems. The purpose of this paper... of operation 10, 197778, the Control House ......

  8. Sustainable Energy Resources for Consumers (SERC)- Geothermal/Ground-Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Transcript of a presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Geothermal/Ground-Source Heat Pumps.

  9. A capital cost comparison of commercial ground-source heat pump systems

    SciTech Connect (OSTI)

    Rafferty, K.

    1994-06-01T23:59:59.000Z

    The report provides a capital cost comparison of commercial ground source heat pump systems. The study includes groundwater systems, ground-coupled systems and hybrid systems.

  10. Sustainable Energy Resources for Consumers (SERC)- Geothermal/Ground-Source Heat Pumps

    Broader source: Energy.gov [DOE]

    This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Geothermal/Ground-Source Heat Pumps.

  11. Experimental analysis of variable capacity heat pump system equipped with vapour injection and permanent magnet motor.

    E-Print Network [OSTI]

    Awan, Umer Khalid

    2012-01-01T23:59:59.000Z

    ?? This study analyzes the performance of variable capacity heat pump scroll compressor which is equipped with vapour injection and permanent magnet motor. Refrigerant used… (more)

  12. Implementation and validation of a Ground Source Heat Pump model in MATLAB.

    E-Print Network [OSTI]

    Casetta, Damien

    2012-01-01T23:59:59.000Z

    ??The aim of the project is the implementation of a simple Ground-Source Heat Pump (GSHP) system model in MATLAB. The program is able to run… (more)

  13. Numerical Investigation of Stratified Thermal Storage Tank Applied in Adsorption Heat Pump Cycle.

    E-Print Network [OSTI]

    Taheri, Hadi

    2014-01-01T23:59:59.000Z

    ??With the aid of the TES (Thermal Energy Storage) in the adsorption heat pump cycle, the COP of the system can be improved. Different geometrical… (more)

  14. Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    Broader source: Energy.gov [DOE]

    Project objective: Create a new modeling decision? tool that will enable ground source heat pump (GSHP) designers and customers to make better design and purchasing decisions.

  15. An experimental study of heating performance and seasonal modeling of vertical U-tube ground coupled heat pumps

    E-Print Network [OSTI]

    Margo, Randal E.

    1992-01-01T23:59:59.000Z

    AN EXPERIMENTAL STUDY OF HEATING PERFORMANCE AND SEASONAL MODELING OF VERTICAL U-TUBE GROUND COUPLED HEAT PUMPS A Thesis by RANDAL E. MARGO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulftilment... of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject: Mechanical Engineering AN EXPERIMENTAL STUDY OF HEATING PERFORMANCE AND SEASONAL MODELING OF VERTICAL U-TUBE GROUND COUPLED HEAT PUMPS A Thesis by RANDAL E. MARGO Approved...

  16. Field Performance of Heat Pump Water Heaters in the Northeast

    SciTech Connect (OSTI)

    Shapiro, C.; Puttagunta, S.

    2013-08-01T23:59:59.000Z

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(tm), A.O. Smith Voltex(r), and Stiebel Eltron Accelera(r)300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  17. Ground Source Integrated Heat Pump (GS-IHP) Development

    SciTech Connect (OSTI)

    Baxter, V. D. [ORNL; Rice, K. [ORNL; Murphy, R. [ORNL; Munk, J. [ORNL; Ally, Moonis [ORNL; Shen, Bo [ORNL; Craddick, William [ORNL; Hearn, Shawn A. [ClimateMaster, Inc.

    2013-05-24T23:59:59.000Z

    Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test experience, CM developed a 2nd generation (or beta) prototype in 2012. Field test verification units were fabricated and installed at the ZEBRAlliance site in Oak Ridge in May 2012 and at several sites near CM headquarters in Oklahoma. Field testing of the units continued through February 2013. Annual performance analyses of the beta unit (prototype 2) with vertical well ground heat exchangers (GHX) in 5 U.S. locations predict annual energy savings of 57% to 61%, averaging 59% relative to the minimum efficiency suite and 38% to 56%, averaging 46% relative to the SOA GSHPwDS. Based on the steady-state performance demonstrated by the test units it was projected that the 2nd generation units would achieve ~58% energy savings relative to the minimum efficiency suite at the Zebra Alliance site with horizontal GHX. A new product based on the beta unit design was announced by CM in 2012 – the Trilogy 40® Q-mode™ (http://cmdealernet.com/trilogy_40.html). The unit was formally introduced in a March 2012 press release (see Appendix A) and was available for order beginning in December 2012.

  18. The development of a kinematic Stirling-engine-driven heat pump

    SciTech Connect (OSTI)

    Monahan, R.E.; Kountz, K.J.; Clinch, J.M.

    1987-06-01T23:59:59.000Z

    The continuing development of a 10-ton light commercial natural-gas-fired kinematic Stirling-engine-driven heat pump system is described. Basic Stirling cycle thermodynamics are presented, and a complete engine heat balance is shown to detail the inherent advantages of the V160 Stirling engine as a prime mover in a heat pump package. Results from environmental laboratory testing of a breadboard prototype are reviewed, and the test procedures used in the evaluation are explained. Seasonal performance of the heat pump package was predicted using a bin-temperature method based on Chicago and Dallas climatic data. Annual energy costs, as predicted by the seasonal performance analytical computer program, have been calculated for a gas furnace, standard electric heat pump, and the Stirling engine-driven prototype heat pump package. These computed costs for these systems are listed and compared.

  19. Successful Application of Heat Pumps to a DHC System in the Tokyo Bay Area

    E-Print Network [OSTI]

    Yanagihara, R.; Okagaki, A.

    2006-01-01T23:59:59.000Z

    The Harumi-Island District Heating & Cooling (DHC), which is located in the Tokyo Bay area, introduced the heat pump and thermal storage system with the aim of achieving minimum energy consumption, minimum environmental load, and maximum economical...

  20. Applications of Commercial Heat Pump Water Heaters in Hot, Humid Climates

    E-Print Network [OSTI]

    Johnson, K. F.; Shedd, A. C.

    Heat pump water heaters can provide high-efficiency water heating and supplemental space cooling and dehumidification in commercial buildings throughout the United States. They are particularly attractive in hot, humid areas where cooling loads...

  1. Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System

    E-Print Network [OSTI]

    Liu, G.; Guo, Z.; Hu, S.

    2006-01-01T23:59:59.000Z

    solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

  2. Program listing for heat-pump seasonal-performance model (SPM). [CNHSPM

    SciTech Connect (OSTI)

    Not Available

    1982-06-30T23:59:59.000Z

    The computer program CNHSPM is listed which predicts heat pump seasonal energy consumption (including defrost, cyclic degradation, and supplementary heat) using steady state rating point performance and binned weather data. (LEW)

  3. Heat pumps: Industrial applications. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The bibliography contains citations concerning design, development, and applications of heat pumps for industrial processes. Included are thermal energy exchanges based on air-to-air, ground-coupled, air-to-water, and water-to-water systems. Specific applications include industrial process heat, drying, district heating, and waste processing plants. Other Published Searches in this series cover heat pump technology and economics, and heat pumps for residential and commercial applications. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  4. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01T23:59:59.000Z

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

  5. Fig. 1: (a) Conventional dual-pump degenerate PSA using a straight HNLF: phase regeneration effect varies with polarization alignment between BPSK signal and two phase-locked pumps. (b) Polarization-diversity PSA

    E-Print Network [OSTI]

    Touch, Joe

    Fig. 1: (a) Conventional dual-pump degenerate PSA using a straight HNLF: phase regeneration effect varies with polarization alignment between BPSK signal and two phase-locked pumps. (b) Polarization. Pump 2Signal Pump 1 HNLF Impaired by phase noise I Q Single-polarization BPSK signal Pump1 (Phase

  6. Energy Savings and Peak Demand Reduction of a SEER 21 Heat Pump vs. a SEER 13 Heat Pump with Attic and Indoor Duct Systems

    SciTech Connect (OSTI)

    Cummings, J.; Withers, C.

    2014-03-01T23:59:59.000Z

    This report describes results of experiments that were conducted in an unoccupied 1600 square foot house--the Manufactured Housing (MH Lab) at the Florida Solar Energy Center (FSEC)--to evaluate the delivered performance as well as the relative performance of a SEER 21 variable capacity heat pump versus a SEER 13 heat pump. The performance was evaluated with two different duct systems: a standard attic duct system and an indoor duct system located in a dropped-ceiling space.

  7. OPTIMIZATION OF HYBRID GEOTHERMAL HEAT PUMP SYSTEMS Scott Hackel, Graduate Research Assistant; Gregory Nellis, Professor; Sanford Klein,

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    1 OPTIMIZATION OF HYBRID GEOTHERMAL HEAT PUMP SYSTEMS Scott Hackel, Graduate Research Assistant, Madison, WI, United States Abstract: Hybrid ground-coupled heat pump systems (HyGCHPs) couple conventional ground- coupled heat pump (GCHP) equipment with supplemental heat rejection or extraction systems

  8. PERFORMANCE EVALUATION OF AN AIR-TO-AIR HEAT PUMP COUPLED WITH TEMPERATE AIR-SOURCES INTEGRATED INTO A DWELLING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PERFORMANCE EVALUATION OF AN AIR-TO-AIR HEAT PUMP COUPLED WITH TEMPERATE AIR-SOURCES INTEGRATED.peuportier@mines-paristech.fr, Tel.: +33 1 40 51 91 51 ABSTRACT An inverter-driven air-to-air heat pump model has been developped capacity air-to-air heat pump coupled with temperate air sources (crawlspace, attic, sunspace, heat

  9. 2 15.10.2013 Joachim Dietle Optimisation of Air-Water HP's Optimisation of Air-Water Heat Pumps

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    -Water Heat Pumps Ziehl-Abegg SE System boundary Improve Air Flow of Fan Improve System Joachim Dietle.10.2013 Joachim Dietle Optimisation of Air-Water HP's System boundary Air Flow in Heat Pumps V q d p st p P P L fan )( 1 Relevant for cooling or heating! Optimise heat pump: reduce pressure drop increase

  10. VAPOR COMPRESSION HEAT PUMP SYSTEM FIELD TESTS AT THE TECH COMPLEX

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series and may well be the most efficient alternative for residences in cold climates. INTRODUCTION A heat pump. Baxter, Energy Division, N8 O Oak Ridge National Laboratory37831 Ridge, Tennessee 37831 WI ' ABSTRACT

  11. Economic Impact and Job Creation aspects of Geothermal Heat Pumps Don Penn, PE, CGD

    E-Print Network [OSTI]

    , geothermal, geothermal heat pumps and other non-petroleum or coal based energy production" for the Renewable Energy Industry. #12;GEOTHERMAL PRESENTATION 1.REMI is an economic-demographic forecasEconomic Impact and Job Creation aspects of Geothermal Heat Pumps Don Penn, PE, CGD Grapevine

  12. AQUIFER BIOTHERMOREMEDIATION USING HEAT PUMPS: SOUND THEORETICAL BASIS AND RESULTS ON THERMAL, GEOCHEMICAL AND

    E-Print Network [OSTI]

    Boyer, Edmond

    example, the long-term use of groundwater heat pumps for air conditioning of homes or buildings can induce and hydrogeological background. The presence of organic pollutants in the aquifer can amplify these phenomena/or the well productivity, (ii) an inappropriate temperature for the use of groundwater heat pumps for air

  13. A COMPARISON OF LABORATORY AND FIELD-TEST MEASUREMENTS OF HEAT PUMP WATER HEATERS

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;A COMPARISON OF LABORATORY AND FIELD-TEST MEASUREMENTS OF HEAT PUMP WATER HEATERS William P a heat pump water heater (HPWH). After developing the HPWH, a field-test plan was implemented whereby 20 evaluate this effect. #12;INTRODUCTION Domestic water heaters account for approximately 2.5 EJ (2.4 x 1015

  14. Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation

    SciTech Connect (OSTI)

    Xing, Lu [Oklahoma State University; Cullin, James [Oklahoma State University; Spitler, Jeffery [Oklahoma State University; Im, Piljae [ORNL; Fisher, Daniel [Oklahoma State University

    2011-01-01T23:59:59.000Z

    A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

  15. Analysis of heat pumps installed in family housing at Hunter Army Air Field

    SciTech Connect (OSTI)

    Parker, S.A.

    1994-08-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) tasked Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) to conduct a postconstruction evaluation of the air-source heat pumps installed in family housing at Hunter Army Air Field (AAF). The objective of this project was to investigate and resolve concerns about an increase in energy costs at Hunter AAF following the installation of heat pumps in November 1992. After completing several analyses and a field inspection of the heat pumps in family housing at Hunter AAF, the following conclusions were made: the installation of air-source heat pumps reduced the annual energy cost in family housing by $46,672 in 1993; the heat pump thermostat controls in Hunter AAF family housing appear to be incorrectly installed; and the Hunter AAF electric utility bill increased 10% during the first 6 months of 1993 compared to the first 6 months of 1992.

  16. Systems study of drilling for installation of geothermal heat pumps

    SciTech Connect (OSTI)

    Finger, J.T.; Sullivan, W.N.; Jacobson, R.D.; Pierce, K.G.

    1997-09-01T23:59:59.000Z

    Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the spread-sheet.

  17. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    the indirect increase in home heating (and the decrease inincrease the home’s heating load in the heating season (Heaters, Direct Heating Equipment, Mobile Home Furnaces,

  18. A Study of Transient Behavior During Start-Up of Residential Heat Pumps

    E-Print Network [OSTI]

    Katipamula, Srinivas

    ); and the efficiency of the heat pump was reduced in transient mode. Miller [1985] also studied refrigerant migration in a heat pump in the heating mode. The results indicated that the indoor coil (condenser) had only 0.5 Ib (the heat pump total charge was 12.5 Ib... original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic print for an additional charge...

  19. Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Nick Rosenberry, Harris Companies

    2012-05-04T23:59:59.000Z

    A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

  20. Energy Consumption Simulation and Analysis of Heat Pump Air Conditioning System in Wuhan by the BIN Method

    E-Print Network [OSTI]

    Wen, Y.; Zhao, F.

    2006-01-01T23:59:59.000Z

    to simulate the annual energy consumption of groundwater heat pump systems (GWHPS) for an office building in Wuhan. Its annual energy consumption was obtained and compared with the partner of the air source heat pump systems (ASHPS). The results show...

  1. Reply to Comments on "Elevated Heat Pump" Hypothesis for the1 AerosolMonsoon Hydroclimate Link: "Grounded" in Observations?2

    E-Print Network [OSTI]

    Nigam, Sumant

    1 Reply to Comments on "Elevated Heat Pump" Hypothesis for the1 Aerosol­Monsoon Hydroclimate Link, hereafter LK11] defense of the Elevated Heat Pump (EHP) hypothesis35 is unsubstantiated. Nigam and Bollasina

  2. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01T23:59:59.000Z

    Central Air Conditioners and Heat Pumps Energy ConservationW.R. Coleman. 1990. “Heat Pump Life and Compressor LongevityC.C.. 1990. “Predicting Future Heat Pump Production Volume

  3. The effects of airflow modulation and multi-stage defrost on the performance of an air source heat pump

    E-Print Network [OSTI]

    Payne, William Vance

    1992-01-01T23:59:59.000Z

    . This transfer of heat energy from a low temperature ambient to the high temperature conditioned space is accomplished by the input of electrical energy to the compressor. During the heating season, the heat pump transfers heat energy from the low temperature... pump refrigeration circuit includes a compressor, an indoor heat exchanger, an outdoor heat exchanger, an expansion device, and fans to transfer heat energy from a low temperature heat energy source to a higher temperature heat energy sink...

  4. A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus

    SciTech Connect (OSTI)

    Raustad, Richard A. [Florida Solar Energy Center

    2013-01-01T23:59:59.000Z

    This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.

  5. Designing, selecting and installing a residential ground-source heat pump system

    SciTech Connect (OSTI)

    Hughes, Patrick [ORNL; Liu, Xiaobing [ORNL; Munk, Jeffrey D [ORNL

    2010-01-01T23:59:59.000Z

    It's a compelling proposition: Use the near-constant-temperature heat underground to heat and cool your home and heat domestic water, slashing your energy bills. Yet despite studies demonstrating significant energy savings from ground-source heat pump (GSHP) systems, their adoption has been hindered by high upfront costs. Fewer than 1% of US homes use a GSHP system. However, compared to a minimum-code-compliant conventional space-conditioning system, when properly designed and installed, a GSHP retrofit at current market prices offers simple payback of 4.3 years on national average, considering existing federal tax credits. Most people understand how air-source heat pumps work: they move heat from indoor air to outdoor air when cooling and from outdoor air to indoor air when heating. The ground-source heat pump operates on the same principle, except that it moves heat to or from the ground source instead of outdoor air. The ground source is usually a vertical or horiontal ground heat exchanger. Because the ground usually has a more favorable temperature than ambient air for the heating and cooling operation of the vapor-compression refrigeration cycle, GSHP sysems can operate with much higher energy efficiencies than air-source heat pump systems when properly designed and installed. A GSHP system used in a residual building typically provides space conditioning and hot water and comprises three major components: a water-source heat pump unit designed to operate at a wider range of entering fluid temperatures (typically from 30 F to 110 F, or 1 C to 43 C) than a conventional water-source heat pump unit; a ground heat exchanger (GHX); and distribution systems to deliver hot water to the storage tank and heating or cooling to the conditioned rooms. In most residual GSHP systems, the circulation pumps and associated valves are integrated with the heat pump to circulate the heat-carrier fluid (water or aqueous antifreeze solution) through the heat pump and the GHX. A recent assessment indicates that if 20% of US homes replaced their existing space-conditioning and water-heating systems with properly designed, installed and operated state-of-the-art GSHP systems, it would yield significant benefits each year. These include 0.8 quad British thermal units (Btu) of primary energy savings, 54.3 million metric tons of CO{sub 2} emission reductions, $10.4 billion in energy cost savings and 43.2 gigawatts of reduction in summer peak electrical demand.

  6. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2010-09-15T23:59:59.000Z

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  7. Modeling the heating of the Green Energy Lab in Shanghai by the geothermal heat pump combined with the solar thermal energy and ground energy storage.

    E-Print Network [OSTI]

    Yu, Candice Yau May

    2012-01-01T23:59:59.000Z

    ?? This work involves the study of heating systems that combine solar collectors, geothermal heat pumps and thermal energy storage in the ground. Solar collectors… (more)

  8. COFELY Refrigeration | Rdiger Roth | European Heat Pump Summit 2013 CopyrightCOFELYDeutuschlandGmbH2009.AlleRechtevorbehalten.

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    COFELY Refrigeration | Rüdiger Roth | European Heat Pump Summit 2013 Seite 1 Copyright©COFELYDeutuschlandGmbH2009.AlleRechtevorbehalten. #12;COFELY Refrigeration | Rüdiger Roth | European Heat Pump Summit 2013 Campaign Spectrum: Heat pump with speed controlled screw compressor #12;COFELY Refrigeration | Rüdiger Roth

  9. NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.

    E-Print Network [OSTI]

    NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones. Heat pump water heaters (HPWHs) have the potential to significantly reduce energy use is a function of surrounding air temperature, humidity, hot water usage, and the logic controlling the heat pump

  10. Stirling engine or heat pump having an improved seal

    DOE Patents [OSTI]

    White, Maurice A. (2802 S. Everett Pl., Kennewick, WA 99337); Riggle, Peter (616 Fuller, Richland, WA 99352); Emigh, Stuart G. (67 Park St., Richland, WA 99352)

    1985-01-01T23:59:59.000Z

    A Stirling Engine or Heat Pump having two relatively movable machine elements for power transmission purposes includes a hermetic seal bellows interposed between the elements for separating a working gas from a pressure compensating liquid that balances pressure across the bellows to reduce bellows stress and to assure long bellows life. The volume of pressure compensating liquid displaced due to relative movement between the machine elements is minimized by enclosing the compensating liquid within a region exposed to portions of both machine elements at one axial end of a slidable interface presented between them by a clearance seal having an effective diameter of the seal bellows. Pressure equalization across the bellows is achieved by a separate hermetically sealed compensator including a movable enclosed bellows. The interior of the compensator bellows is in communication with one side of the seal bellows, and its exterior is in communication with the remaining side of the seal bellows. A buffer gas or additional liquid region can be provided at the remaining axial end of the clearnace seal, along with valved arrangements for makeup of liquid leakage through the clearance seal.

  11. Heat Pump Water Heaters and American Homes: A Good Fit?

    SciTech Connect (OSTI)

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14T23:59:59.000Z

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  12. User's manual for heat-pump seasonal-performance model (SPM) with selected parametric examples

    SciTech Connect (OSTI)

    Not Available

    1982-06-30T23:59:59.000Z

    The Seasonal Performance Model (SPM) was developed to provide an accurate source of seasonal energy consumption and cost predictions for the evaluation of heat pump design options. The program uses steady state heat pump performance data obtained from manufacturers' or Computer Simulation Model runs. The SPM was originally developed in two forms - a cooling model for central air conditioners and heat pumps and a heating model for heat pumps. The original models have undergone many modifications, which are described, to improve the accuracy of predictions and to increase flexibility for use in parametric evaluations. Insights are provided into the theory and construction of the major options, and into the use of the available options and output variables. Specific investigations provide examples of the possible applications of the model. (LEW)

  13. Hybrid Photovoltaic/Thermal Systems with a Solar-Assisted Heat Pump

    SciTech Connect (OSTI)

    Kush, E.A.

    1980-01-01T23:59:59.000Z

    An outline of possibilities for effective use of PV/T collectors with a Solar Assisted Heat Pump is given. A quantitative analysis of the performance and cost of the various configurations as a function of regional climates, using up-to-date results from solar heat pump and PV/T collector studies, will be required for more definitive assessment; and it is recommended that these be undertaken in the PV/T Program. Particular attention should be paid to development of high performance PV/T collectors, matching of heat pump electrical system to PV array and power conditioning characteristics, and optimization of storage options for cost effectiveness and utility impact.

  14. A study of heat pump fin staged evaporators under frosting conditions

    E-Print Network [OSTI]

    Yang, Jianxin

    2004-09-30T23:59:59.000Z

    the performance of fin-and-tube outdoor coils as well as the whole heat pump system. The objective of the experimental part of this study was to investigate the effects of the staging fin on the frost/defrost performance of heat pump outdoor coils under different... and additional energy is used to melt the frost off the evaporator, the defrosting process increases energy consumption and reduces the seasonal efficiency of the heat pump. Frost formation and the subsequent defrost process continues to be a source...

  15. Federal Technology Alert: Ground-Source Heat Pumps Applied to Federal Facilities--Second Edition

    SciTech Connect (OSTI)

    Hadley, Donald L.

    2001-03-01T23:59:59.000Z

    This Federal Technology Alert, which was sponsored by the U.S. Department of Energy's Office of Federal Energy Management Programs, provides the detailed information and procedures that a Federal energy manager needs to evaluate most ground-source heat pump applications. This report updates an earlier report on ground-source heat pumps that was published in September 1995. In the current report, general benefits of this technology to the Federal sector are described, as are ground-source heat pump operation, system types, design variations, energy savings, and other benefits. In addition, information on current manufacturers, technology users, and references for further reading are provided.

  16. Simulation of a High Efficiency Multi-bed Adsorption Heat Pump

    SciTech Connect (OSTI)

    TeGrotenhuis, Ward E.; Humble, Paul H.; Sweeney, J. B.

    2012-05-01T23:59:59.000Z

    Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here effectively transfers heat from beds being cooled to beds being heated, which enables high efficiency in thermally driven heat pumps. A simplified lumped-parameter model and detailed finite element analysis are used to simulate the performance of an ammonia-carbon sorption compressor, which is used to project the overall heat pump coefficient of performance. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system.

  17. High Performance Trays and Heat Exchangers in Heat Pumped Distillation Columns

    E-Print Network [OSTI]

    Wisz, M. W.; Antonelli, R.; Ragi, E. G.

    1981-01-01T23:59:59.000Z

    AND LIQUID now PATHS fOA IltO TltAYS I A number of engineering contractors and 1 operating companies have employed Union Carbide'\\s High Flux and Multiple Downcomer tray technolog~es to improve performance, decrease utilities and I lower operating costs... ? Fi,?'d as nll\\ximum within hf'l~ht n'!:-;tl'ie-tlon. The control scheme for a heat pump can be de signed to be no more complex than a conventional steam/cooling water system which relies on flow and level controllers to set the various column flow...

  18. 00100 -1 -IEA Heat Pump Conference 2011, 1619 May 2011, Tokyo, Japan

    E-Print Network [OSTI]

    Miyashita, Yasushi

    00100 - 1 - 10th IEA Heat Pump Conference 2011, 16­19 May 2011, Tokyo, Japan MEASURING, were estimated based on measurement data in order to improve the efficiency of the heat source-2012. Keywords: Sustainable Campus, University Facilities, Hospital, CO2 Emissions Reduction, Heat

  19. Analysis of Energy and Soft Dirt in an Urban Untreated Sewage Source Heat Pump System

    E-Print Network [OSTI]

    Qian, J.; Sun, D.; Li, X.

    2006-01-01T23:59:59.000Z

    When using urban untreated sewage as a cool and heat source of heat pump, it is unavoidable to form soft dirt. Based on the method of exergy, an analysis is given of the impact the dirt growth of a tube-shell sewage heat exchanger will have...

  20. Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System

    E-Print Network [OSTI]

    Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

    2006-01-01T23:59:59.000Z

    The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source...

  1. Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report

    SciTech Connect (OSTI)

    Bloomquist, R.G. [Washington, State Univ., Pullman, WA (United States); Wegman, S. [South Dakota Utilities Commission (United States)

    1998-04-01T23:59:59.000Z

    The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

  2. Development of a High Performance Air Source Heat Pump for the US Market

    SciTech Connect (OSTI)

    Abdelaziz, Omar [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL; Gao, Zhiming [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Iu, Ipseng [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    Heat pumps present a significant advantage over conventional residential heating technologies due to higher energy efficiencies and less dependence on imported oil. The US development of heat pumps dates back to the 1930 s with pilot units being commercially available in the 1950 s. Reliable and cost competitive units were available in the US market by the 1960 s. The 1973 oil embargo led to increased interest in heat pumps prompting significant research to improve performance, particularly for cold climate locations. Recent increasing concerns on building energy efficiency and environmental emissions have prompted a new wave of research in heat pump technology with special emphasis on reducing performance degradation at colder outdoor air temperatures. A summary of the advantages and limitations of several performance improvement options sought for the development of high performance air source heat pump systems for cold climate applications is the primary focus of this paper. Some recommendations for a high performance cold climate heat pump system design most suitable for the US market are presented.

  3. Maine Public Service Company- Residential and Small Commercial Heat Pump Program (Maine)

    Broader source: Energy.gov [DOE]

    The Public Service Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps are eligible for a rebate of $600, as well as a loan to cover...

  4. Bangor Hydro Electric Company- Residential and Small Commercial Heat Pump Program (Maine)

    Broader source: Energy.gov [DOE]

    Bangor Hydro Electric Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps are eligible for a rebate of $600, as well as a loan to...

  5. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect (OSTI)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01T23:59:59.000Z

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  6. Field Performance of a Ground-Coupled Heat Pump in Abilene, Texas

    E-Print Network [OSTI]

    Dobson, M.; O'Neal, D. L.; Aldred, W.; Margo, R.

    1994-01-01T23:59:59.000Z

    U-tube groundcoupled heat pump was installed in guest officer's quarters of Dyess Air Force Base in Abilene, Texas in December 1989. Monitored variables included: water temperature entering and leaving the condenser, temperature and relative...

  7. Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

  8. Procedure for Applying an Open-Cycle Heat Pump to An Existing Evaporator

    E-Print Network [OSTI]

    Wagner, J. R.; Brush, F. C.

    1984-01-01T23:59:59.000Z

    An open-cycle heat pump, or mechanical vapor compression (MVC) system, is often an attractive technique for increasing the energy efficiency of an evaporator. With proper design, an MVC system is capable of dramatic cost savings when retrofitted...

  9. An Investigation of Alternative Methods for Measuring Static Pressure of Unitary Air Conditioners and Heat Pumps

    E-Print Network [OSTI]

    Wheeler, Grant Benson

    2013-08-12T23:59:59.000Z

    This project was created to address an important issue currently faced by test facilities measuring static pressure for air-conditioning and heat pumps. Specifically, ASHRAE Standard 37, the industry standard for test setup, requires an outlet duct...

  10. Development of the Geothermal Heat Pump Market in China; Renewable Energy in China

    SciTech Connect (OSTI)

    Not Available

    2006-03-01T23:59:59.000Z

    This case study is one in a series of Success Stories on developing renewable energy technologies in China for a business audience. It focuses on the development of the geothermal heat pump market in China.

  11. ORNL/TM-2008/232 Geothermal (Ground-Source) Heat Pumps

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ORNL/TM-2008/232 Geothermal (Ground-Source) Heat Pumps: Market Status, Barriers to Adoption Division Sponsored by EERE Geothermal Technologies Program U.S. Department of Energy #12;Page iii DOCUMENT

  12. ORNL/TM-2008/232 Geothermal (Ground-Source) Heat Pumps

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ORNL/TM-2008/232 Geothermal (Ground-Source) Heat Pumps: Market Status, Barriers to Adoption Division Sponsored by EERE Geothermal Technologies Program U.S. Department of Energy #12; Page iii

  13. Geothermal Heat Pump System for the New 500-bed 200,000 SF Student...

    Broader source: Energy.gov (indexed) [DOE]

    200,000 SF Student Housing Project at the University at Albanys Main Campus Geothermal Heat Pump System for the New 500-bed 200,000 SF Student Housing Project at the...

  14. Preliminary Market Assessment for Cold Climate Heat Pumps

    SciTech Connect (OSTI)

    Sikes, Karen [Sentech, Inc.; Khowailed, Gannate [Sentech, Inc.; Abdelaziz, Omar [ORNL

    2011-09-01T23:59:59.000Z

    Cold climate heat pump (HP) technology is relevant to a substantial portion of the U.S. population, especially with more than one-third of U.S. housing stock concentrated in colder regions of the country and another 31% in the mixed-humid climate region. Specifically, it is estimated that in 2010 almost 1.37 million heating equipment units were shipped to the cold/very cold climate regions and that 1.41 million were shipped to the nation s mixed-humid region. On a national level, the trend in the last decade has indicated that shipments of gas furnaces have grown at a slower rate than HPs. This indicates a potential opportunity for the cold climate HP, a technology that may be initially slow to penetrate its potential market because of the less expensive operating and first costs of gas furnaces. Anticipated implementation of regional standards could also negatively affect gas furnace shipments, especially with the higher initial cost for more efficient gas furnaces. However, as of 2011, the fact that there are more than 500 gas furnace product models that already achieve the expected efficiency standard indicates that satisfying the regional standard will be a challenge but not an obstacle. A look at the heating fuel and equipment currently being used in the housing stock provides an insight into the competing equipment that cold climate HPs hope to replace. The primary target market for the cold climate HP is the 2.6 million U.S. homes using electric furnaces and HPs in the cold/very cold region. It is estimated that 4.75% of these homeowners either replace or buy new heating equipment in a given year. Accordingly, the project team could infer that the cold climate HP primary market is composed of 123,500 replacements of electric furnaces and conventional air-to-air HPs annually. A secondary housing market for the cold climate HP comprises homes in the mixed-humid region of the country that are using electric furnaces. Homes using gas furnaces across both the cold/very cold and mixed-humid regions represent another secondary market for the cold climate HP. The cold climate HP could also target as a secondary market homes across both the cold/very cold and mixed-humid regions that use propane and fuel oil as their primary heating fuel. The combined total of homes in these three secondary markets is 46 million, and we can also infer that about 2.2 million of these systems are replaced annually. When comparing heating equipment stock in 2001, 2005, and 2009 in the cold/very cold region of the country, it appears that gas furnaces are slowly losing market share and that electric furnaces and HPs are making gains. The fact that electricity-dependent heating equipment is rising in preference among homeowners in the colder regions of the country shows that future penetration of the cold climate HP holds promise. Accordingly, cold climate HP technology could achieve an attractive position, given certain favorable market conditions such as reaching a competitive cost point, strong federal incentives, a consistent level of reliable performance, and a product rollout by a credible market leader. The project team relied on payback analysis to estimate the potential market penetration for the cold climate HP in each of its primary and secondary markets. In this analysis, we assumed a $250 price premium for the cold climate HP over the baseline HP. Electricity and gas prices and emissions were based on the 2010 Buildings Energy Data Book. The average heating load was calculated as 25.2 MMBTU per year in the cold/very cold and mixed-humid regions of the United States. Typical installed costs were obtained from the technical document supporting the U.S. Department of Energy rulemaking. The analysis showed that the cold climate HP will have a 2.2 year payback period when replacing an existing electric HP in the colder regions of the nation. The cold climate HP will have a 6 year payback period when replacing gas furnaces in the same climate regions. Accordingly, we estimated that the cold climate HP will have a penetration ratio rangin

  15. New industrial heat pump applications to an integrated thermomechanical pulp and paper mill

    SciTech Connect (OSTI)

    none,

    1991-01-01T23:59:59.000Z

    Application of pinch technology US industries in an early screening study done by TENSA Services (DOE/ID/12583-1) identified potential for heat pumps in several industrial sectors. Among these, processes with large evaporation units were found to be some of the most promising sectors for advanced heat pump placement. This report summarizes the results of a study for Bowater Incorporated, Carolina Division. The units selected for this study are the thermo-mechanical pulper (TMP), kraft digester, evaporators, boiler feed water (BFW) train and pulp dryer. Based on the present level of operation, the following recommendations are made: 1. Install a mechanical vapor compression (MVR) heat pump between the TMP mill and {number sign}3 evaporator. This heat pump will compress the 22 psig steam from the TMP heat recovery system and use it to replace about 70% of the 60 psig steam required in {number sign} evaporator. The boiler feed water heat losses (in the low pressure deaerator) will be supplied by heat available in the TMR's zero psig vent steam. 2. Study the digester to verify the practicality of installing an MVR heat pump which will compress the dirty weapons from the cyclone separator. The compressed vapors can be directly injected into the digester and thus reduce the 135 psig steam consumption. 31 figs., 9 tabs.

  16. Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb and heat sink grease respectively). The dynamics of thermal effects is also presented. PACS 42.55.Xi (Diode-pumped in a diode-end-pumped Yb:YAG crystal, using a calibrated infrared camera, with a 60-µm spatial resolution

  17. Heat pump employing optimal refrigerant compressor for low pressure ratio applications

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX)

    1982-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.

  18. Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water

    E-Print Network [OSTI]

    Cawley, R.

    heaters. The methods presented demonstrate how integrated systems can be of value in reducing daily summertime peaks. INTRODUCTION A need for descriptors to evaluate systems that condition space and heat domestic water has been recognized for several... added to and used by the water from the desuperheated refrigerant - heat normally provided by the electric water heater's resistance elements. DESCRIPTION OF EQUIPMENT The system considered for this study is best described by U.S. Patent No. 4...

  19. 7-106 A reversible heat pump is considered. The temperature of the source and the rate of heat transfer to the sink are to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-39 7-106 A reversible heat pump is considered. The temperature of the source and the rate of heat transfer to the sink are to be determined. Assumptions The heat pump operates steadily. Analysis Combining.5¸ ¹ · ¨ © § ¸ ¸ ¹ · ¨ ¨ © § 1.6 1 1)K300( COP 1 1 maxHP, HL TT Based upon the definition of the heat pump coefficient

  20. System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump

    SciTech Connect (OSTI)

    Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

    2013-01-01T23:59:59.000Z

    To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

  1. Reliable, Economic, Efficient CO2 Heat Pump Water Heater for North America

    SciTech Connect (OSTI)

    Radcliff, Thomas D; Sienel, Tobias; Huff, Hans-Joachim; Thompson, Adrian; Sadegh, Payman; Olsommer, Benoit; Park, Young

    2006-12-31T23:59:59.000Z

    Adoption of heat pump water heating technology for commercial hot water could save up to 0.4 quads of energy and 5 million metric tons of CO2 production annually in North America, but industry perception is that this technology does not offer adequate performance or reliability and comes at too high of a cost. Development and demonstration of a CO2 heat pump water heater is proposed to reduce these barriers to adoption. Three major themes are addressed: market analysis to understand barriers to adoption, use of advanced reliability models to design optimum qualification test plans, and field testing of two phases of water heater prototypes. Market experts claim that beyond good performance, market adoption requires 'drop and forget' system reliability and a six month payback of first costs. Performance, reliability and cost targets are determined and reliability models are developed to evaluate the minimum testing required to meet reliability targets. Three phase 1 prototypes are designed and installed in the field. Based on results from these trials a product specification is developed and a second phase of five field trial units are built and installed. These eight units accumulate 11 unit-years of service including 15,650 hours and 25,242 cycles of compressor operation. Performance targets can be met. An availability of 60% is achieved and the capability to achieve >90% is demonstrated, but overall reliability is below target, with an average of 3.6 failures/unit-year on the phase 2 demonstration. Most reliability issues are shown to be common to new HVAC products, giving high confidence in mature product reliability, but the need for further work to minimize leaks and ensure reliability of the electronic expansion valve is clear. First cost is projected to be above target, leading to an expectation of 8-24 month payback when substituted for an electric water heater. Despite not meeting all targets, arguments are made that an industry leader could sufficiently develop this technology to impact the water heater market in the near term.

  2. Modeling of Standing Column Wells in Ground Source Heat Pump Systems Zheng Deng O'Neill, Ph.D., P.E.

    E-Print Network [OSTI]

    Modeling of Standing Column Wells in Ground Source Heat Pump Systems Zheng Deng O'Neill, Ph.D., P Montfort University, Leicester, United Kingdom 1. INTRODUCTION In recent years, ground source heat pump-surface environment: · Ground-coupled heat pump (GCHP) systems (Closed-loop) · Surface water heat pump (SWHP) systems

  3. Evaluation of water source heat pumps for the Juneau, Alaska Area

    SciTech Connect (OSTI)

    Jacobsen, J.J.; King, J.C.; Eisenhauer, J.L.; Gibson, C.I.

    1980-07-01T23:59:59.000Z

    The purposes of this project were to evaluate the technical and economic feasibility of water source heat pumps (WSHP) for use in Juneau, Alaska and to identify potential demonstration projects to verify their feasibility. Information is included on the design, cost, and availability of heat pumps, possible use of seawater as a heat source, heating costs with WSHP and conventional space heating systems, and life cycle costs for WSHP-based heating systems. The results showed that WSHP's are technically viable in the Juneau area, proper installation and maintenance is imperative to prevent equipment failures, use of WSHP would save fuel oil but increase electric power consumption. Life cycle costs for WSHP's are about 8% above that for electric resistance heating systems, and a field demonstration program to verify these results should be conducted. (LCL)

  4. Peak Demand Reduction with Dual-Source Heat Pumps Using Municipal Water

    E-Print Network [OSTI]

    Morehouse, J. H.; Khan, J. A.; Connor, L. N.; Pal, D.

    The objective of this project was to examine a dual-source (air and/or water-coupled) heat pump concept which would reduce or eliminate the need for supplemental electrical resistance heating (strip heaters). The project examined two system options...

  5. Application Prospect Analysis of the Surface Water Source Heat-Pump in China

    E-Print Network [OSTI]

    Zhang, C.; Zhuang, Z.; Huang, L.; Li, X.; Li, G.; Sun, D.

    2006-01-01T23:59:59.000Z

    Surface water resources in China are rather abundant and it can be use as the heat or cool source for heat pump. The winter surface water temperatures of 17 typical cities are investigated in December, and they are all distributed in the interval...

  6. A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System

    E-Print Network [OSTI]

    Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

    2006-01-01T23:59:59.000Z

    In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

  7. The Earth-Coupled or Geothermal Heat Pump Air Conditioning System

    E-Print Network [OSTI]

    Wagers, H. L.; Wagers, M. C.

    1985-01-01T23:59:59.000Z

    of Geothermal Heat. June, 1980. 4. Braud, Dr. Harry. "Harry Braud on the Water-source Heat Pump." Ground Water Age 19-7 (1985): pp. 40-42. 5. Turner, W.D., Zina B. Niemeyer, eds. First Annual Symposium Efficient Utilization of Energy in Residential...

  8. Availability of refrigerants for heat pumps in Europe

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    grids Smart cities #12;8 Residential HPs Refrigerants Use of aero-geo- +hydrothermal renewable energy cooling and heating Residential Future: Heating of electric cars and cooling the batteries Future: Smart

  9. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    SciTech Connect (OSTI)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21T23:59:59.000Z

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  10. Multi-Source Hydronic Heat Pump System Performance Test Bed

    E-Print Network [OSTI]

    Meckler, M.

    1984-01-01T23:59:59.000Z

    pump unit) with a central chilled water storage tank. The MSHHP system uses significantly less energy than a conventional HVAC system, and lowers peak demand by shifting required electrical energy consumption to lower-cost, off-peak and mid-peak rates...

  11. Simulation and Analysis for Applying the Double-Stage Coupled Heat Pump System in the Villa of Cold Area

    E-Print Network [OSTI]

    Yang, L.; Yao, Y.; Ma, Z.

    2006-01-01T23:59:59.000Z

    -to-water double-stage coupled heat pump system, is presented in this paper based on analyzing the characteristics of the villa district heating. Prediction and analysis of the feasibility of the double-stage coupled heat pump system in cold areas were carried...

  12. Technology assessment of external heat systems for Stirling heat pumps. Final report

    SciTech Connect (OSTI)

    Vasilakis, A.D. [Advanced Mechanical Technology, Inc., Newton, MA (United States)

    1993-12-01T23:59:59.000Z

    A technology assessment and design improvement effort was undertaken for the Stirling engine heat pump external heat system (EHS) in order to reduce costs. It was found that only two applicable EHS design approaches have been developed to any extent: a relatively undeveloped design featuring a premixed fuel and air transpiration burner, and a turbulent diffusion type burner system developed by Mechanical Technology, Inc. To evaluate and optimize the design concepts, an analytical model was developed that examined design and performance variables. The model calculated key temperatures, allowing the specification of materials requirements. Adherence to American National Standards Institute appliance furnace code material specifications was assumed. Concepts for EHS control systems were evaluated, and a cost-effective control system design was developed for the turbulent diffusion burner EHS. The study reveals that optimizing the diffusion burner EHS design can result in significant cost savings. No clear choice between the diffusion burner and transpiration burner systems could be determined from this study, but the designs of both were further developed and improved. Estimates show the EHS based on a transpiration burner to have a manufactured cost that is roughly 70% of the turbulent diffusion burner EHS cost, but fuel efficiency is lower by about 18%.

  13. Pilot study of commercial water-loop heat pump compressor life

    SciTech Connect (OSTI)

    Ross, D.P. (Policy Research Associates, Inc., Reston, VA (USA))

    1990-03-01T23:59:59.000Z

    This study of the service life of water-loop heat pump compressors in commercial office buildings, using data gathered from the service records of one heat pump service contractor, focused on the replacement of compressors in small console ( perimeter'') water-loop heat pumps and in larger vertical and horizontal ( core'') units. A statistical methodology for dealing with censored data was developed for this study which is an extension of the methodologies used in other EPRI studies of heat pump and heat pump compressor life. By extrapolating a Weibull distribution curve fitted to the data, the median service life of the sample of perimeter unit compressors (the age at which 50% of the original population of compressors would be expected to have been replaced) was estimated to be 47 years. The median service life of a sample that excluded compressors with a known manufacturing defect was estimated to be 69 years. Core unit compressor replacements were analyzed in the same manner. Extrapolation of a Weibull distribution yielded an estimated median service life of core unit compressors of 12 years. As with the perimeter unit compressors, there was an identified manufacturing defect. When the compressors with the identified fault were excluded from the sample and the data reanalyzed, the median service life for the compressors in the remainder of the buildings was estimated to be 18 years.

  14. Performance analysis of solar-assisted chemical heat-pump dryer

    SciTech Connect (OSTI)

    Fadhel, M.I. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka (Malaysia); Sopian, K.; Daud, W.R.W. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2010-11-15T23:59:59.000Z

    A solar-assisted chemical heat-pump dryer has been designed, fabricated and tested. The performance of the system has been studied under the meteorological conditions of Malaysia. The system consists of four main components: solar collector (evacuated tubes type), storage tank, solid-gas chemical heat pump unit and dryer chamber. A solid-gas chemical heat pump unit consists of reactor, condenser and evaporator. The reaction used in this study (CaCl2-NH{sub 3}). A simulation has been developed, and the predicted results are compared with those obtained from experiments. The maximum efficiency for evacuated tubes solar collector of 80% has been predicted against the maximum experiment of 74%. The maximum values of solar fraction from the simulation and experiment are 0.795 and 0.713, respectively, whereas the coefficient of performance of chemical heat pump (COP{sup h}) maximum values 2.2 and 2 are obtained from simulation and experiments, respectively. The results show that any reduction of energy at condenser as a result of the decrease in solar radiation will decrease the coefficient of performance of chemical heat pump as well as decrease the efficiency of drying. (author)

  15. Design optimization of residential-sized air-source heat pumps

    E-Print Network [OSTI]

    Boecker, Curtis Layne

    1987-01-01T23:59:59.000Z

    Methodology Heat Exchanger Performance Expansion Device Compressor Models Refrigerant Charge Inventory Conclusions of Model Comparison Comparison of the ORNL Model to Manufacturer's Data 14 15 18 19 21 21 23 IV DESIGN OPTIONS 27 Increased Heat... cycle. There are two public domain heat pump models that have received some degree of acceptance in the engi- neering community: the National Bureau of Standards (NBS) model (3) and the Oak Ridge National Laboratories (ORNL) model (4) . Each allows...

  16. Verifying energy savings with minimal metered data: The Hunter heat pump analysis

    SciTech Connect (OSTI)

    Parker, S.A.

    1995-03-01T23:59:59.000Z

    In November 1992, Hunter Army Air Field (AAF) completed the installation of 489 air-source heat pumps -- a new heat pump and air-handling unit for each residence. The air-source heat pumps replaced older, less efficient, air-conditioning systems, fuel oil-fired furnaces, and fan coil units. Hunter AAF originally contacted to upgrade the old family housing heating, ventilating, and air-conditioning (HVAC) systems with high efficiency air-conditioning systems and natural gas furnaces, but an alternative proposal and following energy studies indicated that heat pumps were a more life-cycle cost-effective alternative. Six months after the heat pumps were installed, Hunter`s energy bills appeared to be increasing, not decreasing as expected. In early 1994, Pacific Northwest Laboratory` (PNL) began an analysis to determine if there were any energy savings resulting from the heat pump installation as predicted by previous energy studies. The problem is that the HVAC systems are not specifically submetered to support verifying the resulting energy savings and, as is the case with most federal facilities, even the homes are not individually metered. Savings verification needed to be accomplished with die existing and available metered data. This data consisted primarily of monthly electric submeter readings from the two housing subdivision meters, historical fuel oil delivery records for family housing, and monthly base-wide electric bills. The objective of the study is to verify the change in energy consumption in family housing and, to the extent possible, identify how much of the change in consumption is attributable to the new HVAC system and how much is probably attributable to other factors, such as the weather.

  17. Increasing interest in the gas engine heat pump

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    Increasing primary-energy prices and the availability of untapped heat sources have sparked interest in using a high-efficiency natural gas-driven engine as the power source in a heatpump system. This approach is being studied using a 37-kW Waukesha gas engine; one recently completed installation at Schiedam, Netherlands, extracts heat from a nearby waterway and utilizes the gas engine's waste heat as well.

  18. Application analysis of ground source heat pumps in building space conditioning

    SciTech Connect (OSTI)

    Qian, Hua; Wang, Yungang

    2013-07-01T23:59:59.000Z

    The adoption of geothermal energy in space conditioning of buildings through utilizing ground source heat pump (GSHP, also known as geothermal heat pump) has increased rapidly during the past several decades. However, the impacts of the GSHP utilization on the efficiency of heat pumps and soil temperature distribution remained unclear and needs further investigation. This paper presents a novel model to calculate the soil temperature distribution and the coefficient of performance (COP) of GSHP. Different scenarios were simulated to quantify the impact of different factors on the GSHP performance, including heat balance, daily running mode, and spacing between boreholes. Our results show that GSHP is suitable for buildings with balanced cooling and heating loads. It can keep soil temperature at a relatively constant level for more than 10 years. Long boreholes, additional space between boreholes, intermittent running mode will improve the performance of GSHP, but large initial investment is required. The improper design will make the COP of GSHP even lower than traditional heat pumps. Professional design and maintenance technologies are greatly needed in order to promote this promising technology in the developing world.

  19. West Village Community: Quality Management Processes and Preliminary Heat Pump Water Heater Performance

    SciTech Connect (OSTI)

    Dakin, B.; Backman, C.; Hoeschele, M.; German, A.

    2012-11-01T23:59:59.000Z

    West Village, a multi-use project underway at the University of California Davis, represents a ground-breaking sustainable community incorporating energy efficiency measures and on-site renewable generation to achieve community-level Zero Net Energy (ZNE) goals. The project when complete will provide housing for students, faculty, and staff with a vision to minimize the community's impact on energy use by reducing building energy use, providing on-site generation, and encouraging alternative forms of transportation. This focus of this research is on the 192 student apartments that were completed in 2011 under Phase I of the West Village multi-year project. The numerous aggressive energy efficiency measures implemented result in estimated source energy savings of 37% over the B10 Benchmark. There are two primary objectives of this research. The first is to evaluate performance and efficiency of the central heat pump water heaters as a strategy to provide efficient electric water heating for net-zero all-electric buildings and where natural gas is not available on site. In addition, effectiveness of the quality assurance and quality control processes implemented to ensure proper system commissioning and to meet program participation requirements is evaluated. Recommendations for improvements that could improve successful implementation for large-scale, high performance communities are identified.

  20. The earth-coupled heat pump: Utilizing innovative technology in single family rehabilitation strategies

    SciTech Connect (OSTI)

    Not Available

    1989-11-01T23:59:59.000Z

    The study examines the feasibility of incorporating the use of earth-coupled heat pump technology in single-family housing rehabilitation projects, based on energy conservation attributes and financial considerations. Following evaluation of a theoretical model which indicated that installations of the heat pumps were feasible, the heat pumps were tested under actual conditions in five single family housing units which were part of the Urban Homesteading Program, and were matched with comparable units which did not receive special treatment. Energy consumption information was collected for all units for twelve months. Variables were identified, and the data was analyzed for individual housing units and compared with the results predicted by the theoretical model to determine the practicality of incorporating such technology in large scale rehabilitation projects. 14 refs., 14 figs., 3 tabs.