Sample records for heat plant improvements

  1. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat...

  2. Improving heat capture for power generation in coal gasification plants

    E-Print Network [OSTI]

    Botros, Barbara Brenda

    2011-01-01T23:59:59.000Z

    Improving the steam cycle design to maximize power generation is demonstrated using pinch analysis targeting techniques. Previous work models the steam pressure level in composite curves based on its saturation temperature ...

  3. Improving central heating plant performance at the defense construction supply center (DCSC): Advanced operation and maintenance methods. Final report

    SciTech Connect (OSTI)

    Savoie, M.J.; Standerfer, J.; Schmidt, C.M.; Gostich, J.; Mignacca, J.

    1994-11-01T23:59:59.000Z

    A 1987 air pollution emissions test done by the U.S. Army Environmental Hygiene Agency (USAEHA) identified several problems with the central heating plant (CHP) at the Defense Construction Supply Center (DCSC), Columbus, OH. Though DCSC repaired the specified problems, improved coal specifications, and tried to reduce air infiltration, CHP performance remained at unacceptable levels. Consequently, DCSC contracted the U.S. Army Construction Engineering Research Laboratories (USACERL) to apply advanced operation and maintenance procedures to improve its combustion system. This study employed a system-wide approach to evaluate the CHP 5 fuel storage, combustion, heat distribution, and the control of air emissions. Many short-term improvements to the CHP were identified and tested. Subsequent combustion and air emissions tests revealed that the recommended improvements successfully increased CHP efficiency. Long-term improvements were also recommended to help maintain the short-term improvements.

  4. Improved solar heating systems

    DOE Patents [OSTI]

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16T23:59:59.000Z

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  5. EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1)

    Broader source: Energy.gov [DOE]

    Draft Supplemental Environmental Assessment This EA will evaluate the environmental impacts of a proposal to make improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of regional wood sources.

  6. Pinch Application- Heat Pump Study in a Food Plant

    E-Print Network [OSTI]

    Chao, Y. T.; Tripathi, P.

    was to appropriatly place and size the heat pump system in a food plant. A change in the process configuration was recommended as a result of this study to increase the heat pump profitability and to improve the product quality....

  7. Geothermal Heat Flow and Existing Geothermal Plants | Department...

    Energy Savers [EERE]

    Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click...

  8. Preliminary Retro-Commissioning Study on Optimal Operation for the Heat Source System of a District Heating Cooling Plant

    E-Print Network [OSTI]

    Shingu, H.; Yoshida, H.; Wang, F.; Ono, E.

    In order to improve the energy performance of a district heating and cooling (DHC) plant, the expected performance of the plant is studied using simulations based on mathematical models. A complete heat source system model, equipped with an embedded...

  9. Combined Heat and Power Plant Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

  10. Waste Heat Management Options for Improving Industrial Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Management Options for Improving Industrial Process Heating Systems Waste Heat Management Options for Improving Industrial Process Heating Systems This presentation covers...

  11. Heat Integrate Heat Engines in Process Plants

    E-Print Network [OSTI]

    Hindmarsh, E.; Boland, D.; Townsend, D. W.

    ~C. T min Table 3. Problem Table Algorithm Applied to Petrochemicals Process Interval GJ ltiour 'Temperatures ! C! 2 ) ? ~ Cold. Hot Aecumulated Heat Heat FJ.owa Interval Streams StrePlS Deficit. Input OUtput -OUtt!utInput. 20 30 -2... of heat which can be passed on in this manner is performed in column 2 and column 3 of Table 3. It is initially assumed that the heat input from external utilities is zero. This is represented in Table 3 by a zero input to the top interval. Having...

  12. Proceedings of the 1992 EPRI heat rate improvement conference

    SciTech Connect (OSTI)

    Henry, R.E. (Sargent and Lundy, Chicago, IL (United States))

    1993-03-01T23:59:59.000Z

    Diverse but compelling forces such as increasing fuel prices, greater power demands, growing competition, and ever more aggressive regulatory incentives are causing utilities to place additional focus on power plant heat rate. The 1992 heat rate improvement conference was a gathering of utility industry experts to share knowledge and concerns on such key issues as on-line measurement of stack gas mass flow rate-increasingly important because of the regulations of the Clean Air Act of 1990. These proceedings present the latest developments by EPRI and the utility industry to improve heat rate. Representatives of utilities, architect/engineering firms, research firms, and manufacturers presented 71 papers, and a panel discussion by the ASME performance test code committee on PTC 46 provided a forum on the overall plant performance test code. These proceedings report on a number of heat rate improvement programs, both in development and in place, including EPRI's Plant Monitoring Workstation (PMW), the State-of-the-Art Power Plant (SOAPP) conceptual design tool, and several developments in boiler performance monitoring, including an on-line system at PEPCO's Morgantown unit 2. Other conference papers describe advances in heat rate improvement through (1) computer software tools modeling boiler cleanliness, heat balance, duct system dynamics, heat rate root cause diagnosis, and conceptual plant design; (2) new instruments and testing systems in the areas of performance testing, heat rate monitoring, circulating water flow measurement, and low-pressure turbine efficiency measurement; and (3) auxiliary equipment improvements such as condensing heat exchangers, macrobiofouling control, condenser in-leakage and air binding control, air heater monitoring, and feedwater heater level control. Individual papers are indexed separately.

  13. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    process configurations for solar power plants with sensible-heatsolar power plant with sensible-heat storage since the chemical~heat storage processsolar power plant with a sulfur-oxide storage process. chemical~heat

  14. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  15. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

    1985-01-01T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  16. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

  17. Improving pulverized coal plant performance

    SciTech Connect (OSTI)

    Regan, J.W.; Borio, R.W.; Palkes, M.; Mirolli, M. [ABB Combustion Engineering, Inc., Windsor, CT (United States); Wesnor, J.D. [ABB Environmental Systems, Birmingham, AL (United States); Bender, D.J. [Raytheon Engineers and Constructors, Inc., New York, NY (United States)

    1995-12-31T23:59:59.000Z

    A major deliverable of the U.S. Department of Energy (DOE) project ``Engineering Development of Advanced Coal-Fired Low-Emissions Boiler Systems`` (LEBS) is the design of a large, in this case 400 MWe, commercial generating unit (CGU) which will meet the Project objectives. The overall objective of the LEBS Project is to dramatically improve environmental performance of future pulverized coal fired power plants without adversely impacting efficiency or the cost of electricity. The DOE specified the use of near-term technologies, i.e., advanced technologies that partially developed, to reduce NO{sub x}, SO{sub 2} and particulate emissions to be substantially less than current NSPS limits. In addition, air toxics must be in compliance and waste must be reduced and made more disposable. The design being developed by the ABB Team is projected to meet all the contract objectives and to reduce emission of NO{sub x}, SO{sub 2} and particulates to one-fifth to one-tenth NSPS limits while increasing net station efficiency significantly and reducing the cost of electricity. This design and future work are described in the paper.

  18. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Topping of the Steam-Cycle Power Plant . A COMPARISON OFTOPPING OF THE STEAM-CYCLE POWER PLANT The proposed solarreceiver and a steam-cycle power plant. To transport heat, a

  19. Improving Process Heating System Performance: A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating System Performance: A Sourcebook for Industry, Second Edition Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition This...

  20. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and...

  1. Molecular mechanisms of the plant heat stress response

    SciTech Connect (OSTI)

    Qu, Ai-Li; Ding, Yan-Fei; Jiang, Qiong [China Jiliang University, Xueyuan Road 258, Hangzhou 310018 (China)] [China Jiliang University, Xueyuan Road 258, Hangzhou 310018 (China); Zhu, Cheng, E-mail: pzhch@cjlu.edu.cn [China Jiliang University, Xueyuan Road 258, Hangzhou 310018 (China)] [China Jiliang University, Xueyuan Road 258, Hangzhou 310018 (China)

    2013-03-08T23:59:59.000Z

    Highlights: ? This review elaborates the response networks of heat stress in plants. ? It elaborates proteins responding to heat stress in special physiological period. ? The proteins and pathways have formed a basic network of the heat stress response. ? Achievements of the various technologies are also combined. -- Abstract: High temperature has become a global concern, which seriously affects the growth and production of plants, particularly crops. Thus, the molecular mechanism of the heat stress response and breeding of heat-tolerant plants is necessary to protect food production and ensure crop safety. This review elaborates on the response networks of heat stress in plants, including the Hsf and Hsp response pathways, the response of ROS and the network of the hormones. In addition, the production of heat stress response elements during particular physiological periods of the plant is described. We also discuss the existing problems and future prospects concerning the molecular mechanisms of the heat stress response in plants.

  2. Heat pipe with improved wick structures

    DOE Patents [OSTI]

    Benson, David A. (Albuquerque, NM); Robino, Charles V. (Albuquerque, NM); Palmer, David W. (Albuquerque, NM); Kravitz, Stanley H. (Placitas, NM)

    2000-01-01T23:59:59.000Z

    An improved planar heat pipe wick structure having projections formed by micromachining processes. The projections form arrays of interlocking, semi-closed structures with multiple flow paths on the substrate. The projections also include overhanging caps at their tops to increase the capillary pumping action of the wick structure. The capped projections can be formed in stacked layers. Another layer of smaller, more closely spaced projections without caps can also be formed on the substrate in between the capped projections. Inexpensive materials such as Kovar can be used as substrates, and the projections can be formed by electrodepositing nickel through photoresist masks.

  3. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN); Murphy, Richard W. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

  4. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  5. Cooking utensil with improved heat retention

    DOE Patents [OSTI]

    Potter, T.F.; Benson, D.K.; Burch, S.D.

    1997-07-01T23:59:59.000Z

    A cooking utensil with improved heat retention includes an inner pot received within an outer pot and separated in a closely spaced-apart relationship to form a volume or chamber there between. The chamber is evacuated and sealed with foil leaves at the upper edges of the inner and outer pot. The vacuum created between the inner and outer pot, along with the minimum of thermal contact between the inner and outer pot, and the reduced radiative heat transfer due to low emissivity coatings on the inner and outer pot, provide for a highly insulated cooking utensil. Any combination of a plurality of mechanisms for selectively disabling and re-enabling the insulating properties of the pot are provided within the chamber. These mechanisms may include: a hydrogen gas producing and reabsorbing device such as a metal hydride, a plurality of metal contacts which can be adjusted to bridge the gap between the inner and outer pot, and a plurality of bimetallic switches which can selectively bridge the gap between the inner and outer pot. In addition, phase change materials with superior heat retention characteristics may be provided within the cooking utensil. Further, automatic and programmable control of the cooking utensil can be provided through a microprocessor and associated hardware for controlling the vacuum disable/enable mechanisms to automatically cook and save food. 26 figs.

  6. Cooking utensil with improved heat retention

    DOE Patents [OSTI]

    Potter, Thomas F. (Denver, CO); Benson, David K. (Golden, CO); Burch, Steven D. (Golden, CO)

    1997-01-01T23:59:59.000Z

    A cooking utensil with improved heat retention includes an inner pot received within an outer pot and separated in a closely spaced-apart relationship to form a volume or chamber therebetween. The chamber is evacuated and sealed with foil leaves at the upper edges of the inner and outer pot. The vacuum created between the inner and outer pot, along with the minimum of thermal contact between the inner and outer pot, and the reduced radiative heat transfer due to low emissivity coatings on the inner and outer pot, provide for a highly insulated cooking utensil. Any combination of a plurality of mechanisms for selectively disabling and re-enabling the insulating properties of the pot are provided within the chamber. These mechanisms may include: a hydrogen gas producing and reabsorbing device such as a metal hydride, a plurality of metal contacts which can be adjusted to bridge the gap between the inner and outer pot, and a plurality of bimetallic switches which can selectively bridge the gap between the inner and outer pot. In addition, phase change materials with superior heat retention characteristics may be provided within the cooking utensil. Further, automatic and programmable control of the cooking utensil can be provided through a microprocessor and associated hardware for controlling the vacuum disable/enable mechanisms to automatically cook and save food.

  7. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

  8. Plant improvement Contribution of some agronomic traits

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Plant improvement Contribution of some agronomic traits to durum wheat performance in a dry, the contribution of these traits to genotype discrimination proved rather lim- ited when combined with grain yield; Contribution de quelques caractŤres agronomiques au rendement du blť dur dans une rťgion mť- diterranťenne

  9. Renewable Fuel Heating Plant SyStem SpecificationS

    E-Print Network [OSTI]

    Renewable Fuel Heating Plant SyStem SpecificationS Manufacturer: Advanced Recycling Equipment efficiency of natural gas combustion) The facility is designed to meet additional future heating loads, so annual output will increase when the Research Support Facility comes online What it will heat

  10. The new Kaiserstuhl coking plant: The heating system -- Design, construction and initial operating experience

    SciTech Connect (OSTI)

    Strunk, J.

    1996-12-31T23:59:59.000Z

    At the end of 1992 the new coke plant Kaiserstuhl in Dortmund/Germany with presently the largest coke ovens world-wide started its production operation in close linkage to the Krupp-Hoesch Metallurgical Works after about 35 months construction time. This plant incorporating comprehensive equipment geared to improve environmental protection is also considered as the most modern coke plant of the world. The heating-system and first results of operation will be presented.

  11. IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN...

    Open Energy Info (EERE)

    USING MICROEARTHQUAKE DATA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES...

  12. Coal system improvements at Union Electric's Labadie Plant

    SciTech Connect (OSTI)

    Graham, D.; Mahr, D.

    1998-07-01T23:59:59.000Z

    Union Electric's Labadie Plant is a 2,400 MWe (4 x 600) coal-fired power generating station. It is located 35 miles west of St. Louis. The four units were commissioned between 1970 and 1973. Units No. 1 and 2 have individual stacks, while Units No. 3 and 4 have a common stack. In response to the lower sulfur requirements of Clean Air Act Amendments, a fuel switching project was implemented in 1991. The plant was originally designed to burn a bituminous, Midwestern coal from the Illinois Basin. This fuel is characterized as a relatively high Btu, high sulfur coal. To met sulfur emission standards, Union Electric modified the boilers, precipitators, and coal handling system to accommodate Powder River Basin (PRB) coal. PRB coal has a lower heating value, 8,500 Btu/lb, versus 12,000 Btu/lb. for the Illinois coal. It is more economical than the available high Btu, low sulfur coals. A switch from Illinois coal to PRB coal has helped the Labadie Plant meet new air quality standards and minimize fuel cost. The increased belt speeds and inherent characteristics of PRB coal amplified handling problems. Dust, spillage increased and the impact on plant operations was more severe. To combat these problems, Union Electric implemented an ongoing improvement program. As experienced was gained, a number of solutions were initiated through several engineering/construction programs and a number of solutions contributed by coal yard personnel. While many of these improvements were a direct result of the switch to PRB coal, they would also be useful on systems handling bituminous coal. New ideas were needed to meet plant objectives of doing more with fewer people. The improvement at Labadie is apparent throughout the coal yard, in access, safety, and cleanliness. Plant improvement is a continuing task. Additional areas within the coal yard are being more closely examined to determine if they can benefit from new techniques that might be applied.

  13. Potential for a cycling steam power plant with TES to supply district heating in Washington DC

    SciTech Connect (OSTI)

    Hobson, M.J.

    1984-02-01T23:59:59.000Z

    The Energy Office of the District of Columbia is planning the conversion of a 1500 TPD incinerator for district heating and the generation of electric power for sale to the local utility, PEPCO. This paper records a preliminary evaluation of whether hot water storage would be appropriate at the heat source plant to maximize power sales and improve the reliability of the district heat service. Hot water storage is being employed successfully at Herning, Denmark, in conjunction with a cogeneration plant heat source, and this concept is adapted to Washington D.C. area needs for heating and cooling service. Heat storage allows a 7% increase in power sales based on a simplified approach to daily load profiles and PEPCO's proposed avoided cost rates. Pressurized storage is uneconomic due to the high cost of containment, but atmospheric storage at 200F shows a simple payback of 5 years.

  14. Application of Industrial Heat Improving energy efficiency of

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    compared with Residential Heat Pumps High energy efficiency = high coefficient of performance (COP) (eApplication of Industrial Heat Pumps Improving energy ­ efficiency of industrial processes . H.J. Laue Information Centre on Heat Pumps and Refrigeration IZW e.V. #12;2 Welcome Achema Congress 2012

  15. Corrosion Investigations at Masned Combined Heat and Power Plant

    E-Print Network [OSTI]

    Corrosion Investigations at Masned√ł Combined Heat and Power Plant Part VI Melanie Montgomery Company Ole Hede Larsen Elsam ¬≠ Fynsv√¶rket F√¶lleskemikerne February 2001. #12;CORROSION INVESTIGATIONS.................................................................................................. 16 3.1. Measured corrosion attack

  16. Water recovery using waste heat from coal fired power plants.

    SciTech Connect (OSTI)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01T23:59:59.000Z

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  17. Idaho Chemical Processing Plant Process Efficiency improvements

    SciTech Connect (OSTI)

    Griebenow, B.

    1996-03-01T23:59:59.000Z

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  18. Mobile power plants : waste body heat recovery

    E-Print Network [OSTI]

    Gibbons, Jonathan S. (Jonathan Scott), 1979-

    2004-01-01T23:59:59.000Z

    Novel methods to convert waste metabolic heat into useful and useable amounts of electricity were studied. Thermoelectric, magneto hydrodynamic, and piezo-electric energy conversions at the desired scope were evaluated to ...

  19. Proceedings: 2003 EPRI Heat Rate Improvement Conference: January 28-30, 2003, Birmingham, AL

    SciTech Connect (OSTI)

    None

    2003-04-01T23:59:59.000Z

    Every utility strives both to become a low-cost electricity producer and to meet the emission standards set by the Clean Air Act Amendment. In the early round of cost and emission reduction, most utilities opted to blend or switch to lower-cost fuels such as Powder River Basin coal and natural gas. Over the years, EPRI, industry vendors, and the utilities themselves have learned not only to reduce the difficulties encountered with fuel blending and switching, but also to improve plant heat rate with various cost-effective solutions. The 2003 Heat Rate Improvement Conference provided an opportunity for the industry to share its knowledge and experience.

  20. Improved Economic Performance Municipal Solid Waste Combustion Plants

    E-Print Network [OSTI]

    Van den Hof, Paul

    Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based Combustion Control #12;#12;Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based-of-the-art and challenges in the operation of MSWC plants . . . 1 1.1.1 The aims of municipal solid waste combustion

  1. Aging management guideline for commercial nuclear power plants - heat exchangers

    SciTech Connect (OSTI)

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01T23:59:59.000Z

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  2. Effect of plants on sunspace passive solar heating

    SciTech Connect (OSTI)

    Best, E.D.; McFarland, R.D.

    1985-01-01T23:59:59.000Z

    The effect of plants on sunspace thermal performance is investigated, based on experiments done in Los Alamos using two test rooms with attached sunspaces, which were essentially identical except for the presence of plants in one. Performance is related to plant transpiration, evaporation from the soil, condensation on the glazing and the absorbtance of solar energy by the lightweight leaves. Performance effects have been quantified by measurements of auxiliary heat consumption in the test rooms and analyzed by means of energy balance calculations. A method for estimating the transpiration rate is presented.

  3. Corrosion Investigations at Masned Combined Heat and Power Plant

    E-Print Network [OSTI]

    Corrosion Investigations at Masned√ł Combined Heat and Power Plant Part VII Melanie Montgomery Ole Hede Larsen Elsam ¬≠ Fynsv√¶rket F√¶lleskemikerne December 2002. #12;CORROSION INVESTIGATIONS.................................................................................................... 6 3.1. Measured corrosion attack on the fireside

  4. Method to improve drought tolerance in plants

    DOE Patents [OSTI]

    Schroeder, Julian I.; Kwak, June Myoung

    2003-10-21T23:59:59.000Z

    A method to increase drought resistance in plants is provided. The method comprises inhibiting or disabling inward-rectifying K.sup.+ (K.sup.+.sub.in) channels in the stomatal guard cells of the plant.

  5. Pinch Application- Heat Pump Study in a Food Plant

    E-Print Network [OSTI]

    Chao, Y. T.; Tripathi, P.

    1990-01-01T23:59:59.000Z

    will not only result in energy savings but also lead to creative ideas to improve product quality. This paper presents the recent results of a heat pump study by TENSA Services with support from the Department of Energy. The objective of the study...

  6. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Mathur, Anoop [Terrafore Inc.] [Terrafore Inc.

    2013-08-14T23:59:59.000Z

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

  7. Improving pumping system efficiency at coal plants

    SciTech Connect (OSTI)

    Livoti, W.C.; McCandless, S.; Poltorak, R. [Baldor Electric Co. (United States)

    2009-03-15T23:59:59.000Z

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  8. Energy Productivity Improvement in Petrochemical Plants

    E-Print Network [OSTI]

    Robinson, A. M.

    1984-01-01T23:59:59.000Z

    Energy Management and Conservation have become mutually inclusive in operation of today's petrochemical plants. This presentation shows how the efficient conversion and distribution of energy and the efficient energy utilization by the various...

  9. Compositions and methods for improved plant feedstock

    DOE Patents [OSTI]

    Shen, Hui; Chen, Fang; Dixon, Richard A

    2014-12-02T23:59:59.000Z

    The invention provides methods for modifying lignin content and composition in plants and achieving associated benefits therefrom involving altered expression of newly discovered MYB4 transcription factors. Nucleic acid constructs for modifying MYB4 transcription factor expression are described. By over-expressing the identified MYB4 transcription factors, for example, an accompanying decrease in lignin content may be achieved. Plants are provided by the invention comprising such modifications, as are methods for their preparation and use.

  10. Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant

    E-Print Network [OSTI]

    Keinan, Alon

    Cornell's conversion of a coal fired heating plant to natural Gas University began operating with natural gas, instead of the coal-fired generators of the coal that had been stockpiled, the Plant is running completely on natural gas

  11. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01T23:59:59.000Z

    central receiver of a solar plant, that absorbs heat duringper kW-hr produced by the solar plant and the sulfur-oxideis essential if solar power plants are ever to supply a

  12. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01T23:59:59.000Z

    System for a Solar Steam Power Plant." 12th Intersoc. Energywith a solar-heated steam power plant during daylight hoursa conventional steam-cycle power plant. for both the power

  13. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems

    Broader source: Energy.gov [DOE]

    This project will improve the capability of engineers to design heat pump systems that utilize surface water or standing column wells (SCW) as their heat sources and sinks.

  14. Nuclear reactor fuel element having improved heat transfer

    DOE Patents [OSTI]

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03T23:59:59.000Z

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  15. Assessment of next generation nuclear plant intermediate heat exchanger design.

    SciTech Connect (OSTI)

    Majumdar, S.; Moisseytsev, A.; Natesan, K.; Nuclear Engineering Division

    2008-10-17T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP), which is an advanced high temperature gas reactor (HTGR) concept with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 900-1000 C. In the indirect cycle system, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, nitrogen/helium mixture, or a molten salt. The system concept for the vary high temperature reactor (VHTR) can be a reactor based on the prismatic block of the GT-MHR developed by a consortium led by General Atomics in the U.S. or based on the PBMR design developed by ESKOM of South Africa and British Nuclear Fuels of U.K. This report has made an assessment on the issues pertaining to the intermediate heat exchanger (IHX) for the NGNP. A detailed thermal hydraulic analysis, using models developed at ANL, was performed to calculate heat transfer, temperature distribution, and pressure drop. Two IHX designs namely, shell and straight tube and compact heat exchangers were considered in an earlier assessment. Helical coil heat exchangers were analyzed in the current report and the results were compared with the performance features of designs from industry. In addition, a comparative analysis is presented between the shell and straight tube, helical, and printed circuit heat exchangers from the standpoint of heat exchanger volume, primary and secondary sides pressure drop, and number of tubes. The IHX being a high temperature component, probably needs to be designed using ASME Code Section III, Subsection NH, assuming that the IHX will be classified as a class 1 component. With input from thermal hydraulic calculations performed at ANL, thermal conduction and stress analyses were performed for the helical heat exchanger design and the results were compared with earlier-developed results on shell and straight tube and printed circuit heat exchangers.

  16. Combined heat and mass transfer device for improving separation process

    DOE Patents [OSTI]

    Tran, Thanh Nhon (Flossmoor, IL)

    1999-01-01T23:59:59.000Z

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

  17. Combined heat and mass transfer device for improving separation process

    DOE Patents [OSTI]

    Tran, T.N.

    1999-08-24T23:59:59.000Z

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

  18. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    SciTech Connect (OSTI)

    Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

    2010-03-01T23:59:59.000Z

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  19. Economics of planting improved Sitka spruce -Seed Orchard and VP

    E-Print Network [OSTI]

    Economics of planting improved Sitka spruce - Seed Orchard and VP Steve Lee and Guy Watt Forest Research, and John Clegg and associates. #12;6th November 20082 Economics of Sitka spruce www 20083 Economics of Sitka spruce www.forestresearch.gov.uk Background · Different sources of improved SS

  20. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps and Central Air Conditioners†

    E-Print Network [OSTI]

    O'Neal, D. L.; Boecker, C. L.; Penson, S. B.

    1986-01-01T23:59:59.000Z

    This report summarizes: (1) the performance improvements possible for central air conditioners and heat pumps using conventional design improvements, (2) the development of a methodology for estimating the seasonal performance of variable speed heat...

  1. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    SciTech Connect (OSTI)

    William M. Bond; Salih Ersayin

    2007-03-30T23:59:59.000Z

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern Minnesota, and future proposals are pending with non-taconite mineral processing applications.

  2. UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings

    E-Print Network [OSTI]

    Hayden, Nancy J.

    UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings Sunday 19 heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES > Given Boiler Plant will be in operation to provide heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES

  3. Guide for prioritizing power plant productivity improvement projects: handbook of availability improvement methodology

    SciTech Connect (OSTI)

    Not Available

    1981-09-15T23:59:59.000Z

    As part of its program to help improve electrical power plant productivity, the Department of Energy (DOE) has developed a methodology for evaluating productivity improvement projects. This handbook presents a simplified version of this methodology called the Availability Improvement Methodology (AIM), which provides a systematic approach for prioritizing plant improvement projects. Also included in this handbook is a description of data taking requirements necessary to support the AIM methodology, benefit/cost analysis, and root cause analysis for tracing persistent power plant problems. In applying the AIM methodology, utility engineers should be mindful that replacement power costs are frequently greater for forced outages than for planned outages. Equivalent availability includes both. A cost-effective ranking of alternative plant improvement projects must discern between those projects which will reduce forced outages and those which might reduce planned outages. As is the case with any analytical procedure, engineering judgement must be exercised with respect to results of purely mathematical calculations.

  4. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Subsystem Summary Heat Input to the Receiver - 513 MW Heathours, assuming constant heat input to the receiver, Enoughwhich assumed constant heat input to the central receiver 8

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    18 5.2 Heating, Ventilation, and Air Conditioning (HVAC)plant. Heating, ventilation, and air conditioning (HVAC) islighting Heating, ventilation and air conditioning (HVAC)

  6. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

    2012-07-01T23:59:59.000Z

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  7. Pulse*Star Inertial Confinement Fusion Reactor: heat transfer loop and balance of plant considerations

    SciTech Connect (OSTI)

    McDowell, M.W.; Murray, K.A.

    1984-05-09T23:59:59.000Z

    A conceptual heat transfer loop and balance of plant design for the Pulse*Star Inertial Confinement Fusion Reactor has been investigated and results are presented. The Pulse*Star reaction vessel, a perforated steel bell jar approximately 11 m in diameter, is immersed in Li/sub 17/Pb/sub 83/ coolant which flows through the perforations and forms a 1.5 m thick plenum of droplets around an 8 m diameter inner chamber. The reactor and associated pumps, piping, and steam generators are contained within a 17 m diameter pool of Li/sub 17/Pb/sub 83/ coolant to minimize structural requirements and occupied space, resulting in reduced cost. Four parallel heat transfer loops with flow rates of 5.5 m/sup 3//s each are necessary to transfer 3300 MWt of power. The steam generator design was optimized by finding the most cost-effective combination of heat exchanger area and pumping power. Power balance calculations based on an improved electrical conversion efficiency revealed a net electrical output of 1260 MWe to the bus bar and a resulting net efficiency of 39%. Suggested balance-of-plant layouts are also presented.

  8. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps†

    E-Print Network [OSTI]

    O'Neal, D. L.; Boecker, C. L.; Murphy, W. E.; Notman, J. R.

    1986-01-01T23:59:59.000Z

    The objectives of this study included: (1) development of classes of heat pumps, (2) evaluation and selection of a suitable heat pump design model, (3) characterization of suitable baseline heat pump designs, (4) selection of design options that can...

  9. Selection guidelines for central heat plant controls. Final report

    SciTech Connect (OSTI)

    Warner, S.R.; Lin, M.C.; Schandche, G.W.

    1994-11-01T23:59:59.000Z

    The operation and control of Central Heating Plants (CHPs) are important factors in maintaining the readiness of U.S. Army installations. Aging CHPs often experience increased interruptions, maintenance difficulties, and inefficient operation. As fuel costs increase, there is a growing need to take advantage of new, emerging control technologies. Microprocessor-based controls can provide opportunities for increased reliability, enhanced safety, better performance monitoring, and cost reduction. However, upgraded control systems cannot compensate for a boiler in poor mechanical condition. Any proposed control systems upgrade must be preceded by a mechanical assessment of the boiler. These CHP control guidelines can help installation personnel develop budgetary-cost proposals to upgrade gas/oil-fired boiler controls for gas/oil-fired steam or high temperature hot water (HTHW) systems. These general guidelines provide basic information to evaluate the feasibility of upgrading boiler control systems, and a methodology for developing budget proposals. Judgement is required to develop designs for specific unit and site characteristics, boiler safety codes, and local regulatory requirements. These guidelines do not eliminate the need for competent professional engineers to finalize assessments of existing conditions, to develop a plant control system design that meets existing and new requirements, and to evaluate alternative contractor proposals.

  10. Efficiency improvement of a ground coupled heat pump system from energy management

    E-Print Network [OSTI]

    FernŠndez de Cůrdoba, Pedro

    Efficiency improvement of a ground coupled heat pump system from energy management N. Pardo a,*, Ń coupled heat pump Energy efficiency Numerical simulation a b s t r a c t The installed capacity of an air to improve the efficiency of a ground coupled heat pump air conditioning system by adapting its produced

  11. IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS

    E-Print Network [OSTI]

    IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS M. T. de of thermoelectric genera- tors (TEGs) by using a lens to concentrate heat on the heat source of a TEG. Initial : Thermoelectric generator, Solar heat concentrator, Carnot efficiency I - Introduction The global energy crisis

  12. South Ukraine NPP: Safety improvements through Plant Computer upgrade

    SciTech Connect (OSTI)

    Brenman, O. [Westinghouse Electric Company, 4350 Northern Pike, Monroeville, PA 15146 (United States); Chernyshov, M. A. [Westron, LLC, 1 Acad. Proskura St., Kharkiv 61070 (Ukraine); Denning, R. S. [Battelle, 505 King Ave, Columbus, OH 43201 (United States); Kolesov, S. A. [NAEK Energoatom, 3 Vetrov Str., Kiev, 01032 (Ukraine); Balakan, H. H.; Bilyk, B. I.; Kuznetsov, V. I. [PO South Ukraine NPP, NAEK Energoatom, Mylolayv Region, 55000 (Ukraine); Trosman, G. [US Dept. of Energy, International Nuclear Safety Program, Washington, DC 20585 (United States)

    2006-07-01T23:59:59.000Z

    This paper summarizes some results of the Plant Computer upgrade at the Units 2 and 3 of South Ukraine Nuclear Power Plant (NPP). A Plant Computer, which is also called the Computer Information System (CIS), is one of the key safety-related systems at VVER-1000 nuclear plants. The main function of the CIS is information support for the plant operators during normal and emergency operational modes. Before this upgrade, South Ukraine NPP operated out-of-date and obsolete systems. This upgrade project wax founded by the U.S. DOE in the framework of the International Nuclear Safety Program (INSP). The most efficient way to improve the quality and reliability of information provided to the plant operator is to upgrade the Human-System Interface (HSI), which is the Upper Level (UL) CIS. The upgrade of the CIS data-acquisition system (DAS), which is the Lower Level (LL) CIS, would have less effect on the unit safety. Generally speaking, the lifetime of the LL CIS is much higher than one of the UL CIS. Unlike Plant Computers at the Western-designed plants, the functionality of the WER-1000 CISs includes a control function (Centralized Protection Testing) and a number of the plant equipment monitoring functions, for example, Protection and Interlock Monitoring and Turbo-Generator Temperature Monitoring. The new system is consistent with a historical migration of the format by which information is presented to the operator away from the traditional graphic displays, for example, Piping and Instrument Diagrams (P and ID's), toward Integral Data displays. The cognitive approach to information presentation is currently limited by some licensing issues, but is adapted to a greater degree with each new system. The paper provides some lessons learned on the management of the international team. (authors)

  13. Improving fractionation lowers butane sulfur level at Saudi gas plant

    SciTech Connect (OSTI)

    Harruff, L.G.; Martinie, G.D.; Rahman, A. [Saudi Arabian Oil Co., Dhahran (Saudi Arabia)

    1998-10-12T23:59:59.000Z

    Increasing the debutanizer reflux/feed ratio to improve fractionation at an eastern Saudi Arabian NGL plant reduced high sulfur in the butane product. The sulfur resulted from dimethyl sulfide (DMS) contamination in the feed stream from an offshore crude-oil reservoir in the northern Arabian Gulf. The contamination is limited to two northeastern offshore gas-oil separation plants operated by Saudi Arabian Oil Co. (Saudi Aramco) and, therefore, cannot be transported to facilities outside the Eastern Province. Two technically acceptable solutions for removing this contaminant were investigated: 13X molecular-sieve adsorption of the DMS and increased fractionation efficiency. The latter would force DMS into the debutanizer bottoms.

  14. Method of operating a coal predrying and heating plant in connection with a coking plant

    SciTech Connect (OSTI)

    Bocsanczy, J.; Knappstein, J.; Stalherm, D.

    1981-01-27T23:59:59.000Z

    A method of preparing and delivering coal to a coking plant comprises conveying the coal to the plant on a moving conveyor while an inert combustion gas is directed over the coal being conveyed. The combustion gas is generated by burning a fuel with air to produce a substantially inert combustion gas which is passed over the coal during its conveying and, thereafter, passed through a cooler for removing the moisture which has been picked up from the coal by the gas. The heating and predrying inert gases are advantageously generated by the direct combustion of air and fuel which are passed through flash dryer tubes and one or more separate separator systems and then delivered into a conveyor pipeline through which the coal is conveyed. A portion of the gases which are generated are also directed with a return gas to a filter for removal of any coal therefrom and to a cooler for removing the moisture picked up from the coal and then back into the stream for delivery to the conveyor for the coal. The inert gas may also be a gas which is circulated in heat exchange relationship with combustion gases which are generated by a combustion of the coal itself. In such a system, a portion of the combustion gases generated are also passed through a condenser or cooler and the cooled and dried waste gases are circulated over the coal being conveyed to the coking oven or its bunkers.

  15. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Summary of the Proposed Solar Power Plant Design The ImpactGenerated by this Solar Power Plant The Impact of StorageVessel Design on the Solar Power Plant III I;l f> (I Q I)

  16. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    D. , The Central Reciever Power Plant: An Environmental,of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of Storage

  17. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    of sites suitable for a solar plant with sulfur oxide TableProcess for a Steam Solar Electric Plant Report No. LBL-Summary of the Proposed Solar Power Plant Design The Impact

  18. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of StorageDesign on the Solar Power Plant III I;l f> (I Q I) II (I

  19. 7-122 A solar pond power plant operates by absorbing heat from the hot region near the bottom, and rejecting waste heat to the cold region near the top. The maximum thermal efficiency that the power plant

    E-Print Network [OSTI]

    Bahrami, Majid

    , and rejecting waste heat to the cold region near the top. The maximum thermal efficiency that the power plant

  20. Improving Heating System Operations Using Water Re-Circulation

    E-Print Network [OSTI]

    Li, F.; Han, J.

    2006-01-01T23:59:59.000Z

    In order to solve the imbalance problem of a heating system, brought about by consumer demand and regulation, and save the electricity energy consumed by a circulation pump, a water mixing and pressure difference control heating system is proposed...

  1. SCALE RESISTANT HEAT EXCHANGER FOR LOW TEMPERATURE GEOTHERMAL BINARY CYCLE POWER PLANT

    SciTech Connect (OSTI)

    HAYS, LANCE G

    2014-11-18T23:59:59.000Z

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ļF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ļF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ļF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the ďpiggybackĒ demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required process conditions for the TGH demonstration. Operation of the TGH with and without the ABS system will demonstrate an increase in geothermal resource productivity for the VPC from 1 MW/(million lb) of brine to 1.75 MW/(million lb) of brine, a 75% increase.

  2. District heating from electric-generating plants and municipal incinerators: local planner's assessment guide

    SciTech Connect (OSTI)

    Pferdehirt, W.; Kron, N. Jr.

    1980-11-01T23:59:59.000Z

    This guide is designed to aid local government planners in the preliminary evaluation of the feasibility of district heating using heat recovered from electric generating plants and municipal incinerators. System feasibility is indicated by: (1) the existence of an adequate supply of nearby waste heat, (2) the presence of a sufficiently dense and large thermal load, and (3) a favorable cost comparison with conventional heating methods. 34 references.

  3. Heat exchanger for fuel cell power plant reformer

    DOE Patents [OSTI]

    Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

    1988-01-01T23:59:59.000Z

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  4. Heat Integration and Heat Recovery at a Large Chemical Manufacturing Plant

    E-Print Network [OSTI]

    Togna, K .A.

    2012-01-01T23:59:59.000Z

    opportunities for heat recovery and heat integration were identified. A feasibility study and economic analysis were performed on the two opportunities, and both projects were implemented. The first project utilized the heat contained in a distillation process...

  5. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect (OSTI)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01T23:59:59.000Z

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  6. Improved irradiances for use in ocean heating, primary production, and photo-oxidation calculations

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    penetration on upper-ocean heating and circulation. The first model assumed that all solar ir- radianceImproved irradiances for use in ocean heating, primary production, and photo-oxidation calculations Accurate calculation of underwater light is fundamental to predictions of upper-ocean heating, primary

  7. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    for concentrating solar-thermal energy use a large number ofBoth solar power plants absorb thermal energy in high-of a solar power plant that converts thermal energy into

  8. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01T23:59:59.000Z

    Flows and stream conditions in steam power cycle. Table 4.1in the low-temperature reactor system. Steam power cycle 8.1Heat Storage System for a Solar Steam Power Plant." 12th

  9. Using Remote Control Systems for the Re-Commissioning of Heating Plants of School Building

    E-Print Network [OSTI]

    Vaezi-Nejad, H.; Detaille, C.; Jandon, M.; Bruyat, F.

    2004-01-01T23:59:59.000Z

    The objective of this work is to develop a semi-automatic commissioning tool that can be implemented in Remote Control Systems to help building operators test the performance of heating plants in school buildings. The work was carried out...

  10. The 2001 Power Plant Improvement Initiative | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon2001 Power Plant Improvement Initiative The

  11. Adjusting Milk Replacer Intake During Heat Stress and Non-heat Stress as a Means of Improving Dairy Calf Performance

    E-Print Network [OSTI]

    Chavez, Theresa Marie

    2012-07-16T23:59:59.000Z

    ADJUSTING MILK REPLACER INTAKE DURING HEAT STRESS AND NON-HEAT STRESS AS A MEANS OF IMPROVING DAIRY CALF PERFORMANCE A Thesis by THERESA MARIE CHAVEZ Submitted to the Office of Graduate Studies of Texas A&M University... A Thesis by THERESA MARIE CHAVEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Co-Chairs of Committee, Glenn Holub...

  12. Dual Heating and Cooling Sorption Heat Pump for a Food Plant

    E-Print Network [OSTI]

    Rockenfeller, U.; Dooley, B.

    Complex compound sorption reactions are ideally suited for use in high temperature lift industrial heat pump cycles. Complex compound heat pumping and refrigeration provides a number of energy-saving advantages over present vapor compression systems...

  13. Improving Air-Conditioner and Heat Pump Modeling (Presentation)

    SciTech Connect (OSTI)

    Winkler, J.

    2012-03-01T23:59:59.000Z

    A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

  14. Identification of existing waste heat recovery and process improvement technologies

    SciTech Connect (OSTI)

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01T23:59:59.000Z

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  15. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    insure constant output from a solar power plant. However. aoutput from the steam turbines is maintained. Equipment design for the proposed solar power

  16. Theoretical Design of Thermosyphon for Process Heat Transfer from NGNP to Hydrogen Plant

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Fred Gunnerson

    2008-09-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ~ 1300K) and industrial scale power transport (=50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via Ďpumping a fluidí, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization / condensing process. The condensate is further returned to the hot source by gravity, i.e. without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) or vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  17. Optimal Scheduling of Industrial Combined Heat and Power Plants

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    -output relationships that are thermodynamically sound, such as the Willans line for steam turbines. Furthermore, we-switching for boilers and supplementary firing for gas turbines, and transitional behavior. Transitional behavior economies such as India and China. Many of the CHP plants are industrial CHP plants that supply steam

  18. Central Heating Plant site characterization report, Marine Corps Combat Development Command, Quantico, Virginia

    SciTech Connect (OSTI)

    Not Available

    1990-08-01T23:59:59.000Z

    This report presents the methodology and results of a characterization of the operation and maintenance (O M) environment at the US Marine Corps (USMC) Quantico, Virginia, Central Heating Plant (CHP). This characterization is part of a program intended to provide the O M staff with a computerized artificial intelligence (AI) decision support system that will assist the plant staff in more efficient operation of their plant. 3 refs., 12 figs.

  19. Parallel Condensing System As A Heat Sink For Power Plants

    E-Print Network [OSTI]

    Akhtar, S. Z.

    Conventional heat sink technologies of use the condenser/cooling tower arrangement or an air cooled condenser for condensing exhaust steam from steam turbines. Each of these two systems have certain advantages as well as disadvantages. This paper...

  20. Optimal Operation of a Waste Incineration Plant for District Heating Johannes Jaschke, Helge Smedsrud, Sigurd Skogestad*, Henrik Manum

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Optimal Operation of a Waste Incineration Plant for District Heating Johannes J®aschke, Helge@chemeng.ntnu.no off-line. This systematic approach is here applied to a waste incineration plant for district heating. In district heating networks, operators usually wish to ob- tain the lowest possible return temperature

  1. Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities

    E-Print Network [OSTI]

    Hata, S.; Horiba, J.; Sicker, M.

    2011-01-01T23:59:59.000Z

    of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance...

  2. Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities†

    E-Print Network [OSTI]

    Hata, S.; Horiba, J.; Sicker, M.

    2011-01-01T23:59:59.000Z

    of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance...

  3. Current performance and potential improvements in solar thermal industrial heat

    SciTech Connect (OSTI)

    Hale, M.J.; Williams, T.; Barker, G.

    1992-12-01T23:59:59.000Z

    A representive current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more am 50% improvement in the annual energy delivered by a 2677 m{sup 2} system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

  4. Current performance and potential improvements in solar thermal industrial heat

    SciTech Connect (OSTI)

    Hale, M.J.; Williams, T.; Barker, G.

    1992-12-01T23:59:59.000Z

    A representive current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more am 50% improvement in the annual energy delivered by a 2677 m[sup 2] system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

  5. Heat and corrosion resistant cast CF8C stainless steel with improved...

    Office of Scientific and Technical Information (OSTI)

    Heat and corrosion resistant cast CF8C stainless steel with improved high temperature strength and ductility Re-direct Destination: A CF8C type stainless steel alloy and articles...

  6. Heat Integration and Heat Recovery at a Large Chemical Manufacturing Plant

    E-Print Network [OSTI]

    Togna, K .A.

    2012-01-01T23:59:59.000Z

    (in the form of waste heat steam) to preheat the feed material in an adjacent process. This was accomplished via a heat exchanger, and reduced the utility steam requirement by 8,000 pph. These two energy projects required $1.1 million of capital...

  7. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    SciTech Connect (OSTI)

    Grogan, Dylan C. P.

    2013-08-15T23:59:59.000Z

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power PlantsĒ describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the projectís Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50Ę/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12Ę/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

  8. Underwater nuclear power plants: improved safety, environmental compatibility and efficiency

    SciTech Connect (OSTI)

    Galustov, K.Z.; Abadjyan, K.A.; Pavlov, A.B.

    1991-01-01T23:59:59.000Z

    The further development of nuclear power engineering depends on the creation of a new generation of nuclear power plant (NPP) projects that have a high degree of safety. Decisions ensuring secure NPP exploitation must be based on the possibility of eliminating or localizing accidents. Using environmental properties to achieve secure NPP exploitation and accident elimination leads to suggest the construction of NPPs in water. An efficient way to provide energy to remote coastal areas is through use of floatable construction of prefabricated units. Floatable construction raises the quality of works, reduces expenditures on industrial facilities, and facilities building conditions in districts with extreme climatic conditions. A type of NPP that is situated on a shelf with the reactor compartment placed at the sea bottom is proposed. The underwater location of the reactor compartment on the fixed depth allows the natural water environment conditions of natural hydrostatic pressure, heat transfer and circulation to provide NPP safety. An example of new concept for power units with under-water localization of the reactor compartment is provided by the double-block NPP in a VVER reactor.

  9. Three important parts of an integrated plant are reactors, separators and a heat exchanger network (HEN) for heat recovery. Within the process engineering community, much

    E-Print Network [OSTI]

    Skogestad, Sigurd

    exchanger network (HEN) for heat recovery. Within the process engineering community, much attention has beeni ABSTRACT Three important parts of an integrated plant are reactors, separators and a heat and in particular to optimal operation of HENs. The purpose of heat integration is to save energy, but the HEN also

  10. Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)

    E-Print Network [OSTI]

    Demirel, Melik C.

    Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. ∑ Correlations relating our experimental results to a waste heat boiler

  11. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01T23:59:59.000Z

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 įC to 950 įC, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

  12. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect (OSTI)

    Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

    2014-11-01T23:59:59.000Z

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  13. Waste Heat Recovery in Cement Plants By Fluidized Beds

    E-Print Network [OSTI]

    Fraley, L. D.; Ksiao, H. K.; Thunem, C. B.

    1984-01-01T23:59:59.000Z

    the alkali bypass gas stream with a specially designed fluidized bed cooler. The heat recovery tubes are kept clean by the scrubbing action of the fluidized bed. A circulating fluidized bed combustor utilizes hot air from the clinker cooler as preheated... combustion air. Air from the clinker cooler which is in excess of the combustion air required for the circulating fluidized bed, is used for preheating of boiler feedwater. A conventional economizer located in the gas stream is used for this service...

  14. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps

    E-Print Network [OSTI]

    O'Neal, D. L.; Boecker, C. L.; Murphy, W. E.; Notman, J. R.

    1986-01-01T23:59:59.000Z

    4-1 Model Methodology 4-1 Compressor Models 4-2 Condenser and Evaporator Models 4-2 Expansion Devices 4-3 Refrigerant Charge Inventory 4-4 Fan Power Calculations 4-4 Model Output 4-4 Conclusions of Model Selection 4-5 Steady State Model Validation 4...) Increased tube rows 5-21C) Increased fin density 5-2 1D) Increased heat transfercoefficient 5-3 2) Decreased Compressor Size 5-3 3) Increased Combined Fan and MotorEfficiency 5-3 4) Demand Defrost Control Systems 5-4 5) High Efficiency Compressors 5-4 6) Two...

  15. IMPROVING THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL DRUM TYPEPACKAGES BY USING HEAT PIPES

    SciTech Connect (OSTI)

    Gupta, N

    2007-03-06T23:59:59.000Z

    This paper presents a feasibility study to improve thermal loading of existing radioactive material packages by using heat pipes. The concept could be used to channel heat in certain directions and dissipate to the environment. The concept is applied to a drum type package because the drum type packages are stored and transported in an upright position. This orientation is suitable for heat pipe operation that could facilitate the heat pipe implementation in the existing well proven package designs or in new designs where thermal loading is high. In this position, heat pipes utilize gravity very effectively to enhance heat flow in the upward direction Heat pipes have extremely high effective thermal conductivity that is several magnitudes higher than the most heat conducting metals. In addition, heat pipes are highly unidirectional so that the effective conductivity for heat transfer in the reverse direction is greatly reduced. The concept is applied to the 9977 package that is currently going through the DOE certification review. The paper presents computer simulations using typical off-the-shelf heat pipe available configurations and performance data for the 9977 package. A path forward is outlined for implementing the concepts for further study and prototype testing.

  16. Evaluation on Energy Performance of Heating Plant System Installed Energy Saving Technologies†

    E-Print Network [OSTI]

    Song, Y.; Akashi, Y.; Kuwahara, Y.; Baba, Y.; Iribe, M.

    2004-01-01T23:59:59.000Z

    is paper presents all of the heating plant system except steam heating as boilers. Integrated Cooling Tower In general, the traditional relations between cooling towers and refrigerating machines are on a one to one basis. But in the case... water outlet temperature in cooling tower. When the quantity of the flow exceeds the default values, another group of unit cells goes stand by mode. And if the overflow state continues beyond a set time, another group of unit cells runs. In the case...

  17. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2010-12-31T23:59:59.000Z

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  18. -Improved estimates of incident radiation and heat load -751 Journal of Vegetation Science 18: 751-754, 2007

    E-Print Network [OSTI]

    McCune, Bruce

    as predictors. Heat load was calculated as a 45 degree rotation of the PDIR response surface. Results- Improved estimates of incident radiation and heat load - 751 Journal of Vegetation Science 18 regression (NPMR) improve estimates of potential direct incident radia- tion (PDIR) and heat load based

  19. Stirling engine or heat pump having an improved seal

    DOE Patents [OSTI]

    White, Maurice A. (2802 S. Everett Pl., Kennewick, WA 99337); Riggle, Peter (616 Fuller, Richland, WA 99352); Emigh, Stuart G. (67 Park St., Richland, WA 99352)

    1985-01-01T23:59:59.000Z

    A Stirling Engine or Heat Pump having two relatively movable machine elements for power transmission purposes includes a hermetic seal bellows interposed between the elements for separating a working gas from a pressure compensating liquid that balances pressure across the bellows to reduce bellows stress and to assure long bellows life. The volume of pressure compensating liquid displaced due to relative movement between the machine elements is minimized by enclosing the compensating liquid within a region exposed to portions of both machine elements at one axial end of a slidable interface presented between them by a clearance seal having an effective diameter of the seal bellows. Pressure equalization across the bellows is achieved by a separate hermetically sealed compensator including a movable enclosed bellows. The interior of the compensator bellows is in communication with one side of the seal bellows, and its exterior is in communication with the remaining side of the seal bellows. A buffer gas or additional liquid region can be provided at the remaining axial end of the clearnace seal, along with valved arrangements for makeup of liquid leakage through the clearance seal.

  20. Heat-rate improvements obtained by retubing condensers with new, enhanced tube types

    SciTech Connect (OSTI)

    Rabas, T.J. [Argonne National Lab., IL (United States); Taborek, J. [Consulting Services, Virginia Beach, VA (United States)

    1995-01-01T23:59:59.000Z

    Significant fuel savings can be achieved at power plants by retubing the condensers with enhanced tubes. Because of the higher overall heat-transfer coefficient, the exhaust steam is condensed at a lower pressure and the plant efficiency is therefore increased or plant heat rate is reduced. Only the spirally indented type of enhanced tube is currently being used in the U.S. and most other countries; however, different types of enhanced tubes have been proposed for power-plant condensers, each with their own set of attributes. This paper determines what attributes and their magnitudes of enhanced tubes lead to the most energy savings as measured by reduction of the plant heat rate. The particular attributes considered are the inside and outside enhancement levels, the inside efficiency index (inside enhancement level divided by pressure-drop increase), and the enhanced-tube fouling-rate multiplier. Two particular condensers were selected because all necessary information were known from previous heat-rate studies such as the condenser geometry, the circulating-water pump and system information, and the low-pressure turbine characteristics. These are {open_quotes}real-world{close_quotes} condensers and therefore the finding will be representative for many other condenser-retubing applications. However, the authors strongly recommend that an economic evaluation be performed at each site to determine the energy savings and payback time. This generic investigation showed that the outside enhancement level is the most important attribute, and a value of about 1.5 can lead to heat-rate savings of about 20 to 40 Btu/kW-hr. Increasing the inside enhancement is less effective because of the increased pressure drop that leads to a reduction of the coolant flow rate and velocity.

  1. Using Genetic Algorithms to Improve the Visual Quality of Fractal Plants Generated with CSGPLSystems

    E-Print Network [OSTI]

    1 Using Genetic Algorithms to Improve the Visual Quality of Fractal Plants Generated with CSG­system, that generates a desired plant. Especially the tuning of the parameter values is time consuming and demands a lot genetic algorithms to find PL­systems that generate natural looking plants of a desired species. PL

  2. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps and Central Air Conditioners

    E-Print Network [OSTI]

    O'Neal, D. L.; Boecker, C. L.; Penson, S. B.

    1986-01-01T23:59:59.000Z

    ) Increased tube rows 3.1 1C) Increased fin density 3.2 ID) Increased heat transfer coefficient 3.2 IE) Increased parallel circuits 3.2 2) Decreased Compressor Size 3.2 3) Increased Combined Fan and Motor Efficiency 3.2 4) Demand Defrost Control Systems (Heat... Pumps Only) 3.3 5) High Efficiency Compressors 3.3 6) Two Speed Compressors 3.3 References 3.4 iii CHAPTER PAGE 4 CONVENTIONAL DESIGN IMPROVEMENTS: RESULTS 4.1 Heat Pumps 4.1 Baseline Units 4.2 Final Conventional Designs 4.7 3 Ton Split Systems 4.7 3 Ton...

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    excess steam and power produced outside the olefin plant (Heat and Power (CHP) plants and other parts of the steamin combined heat and power (CHP) plants. Steam production in

  4. Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time-sensi%ve Electricity Prices

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time-sensi%ve Electricity Prices Summary In this case study, a CHP plant increases its profit%ons with the power grid 4 Power Grid CHP plant Typically mul%ple boilers and turbines

  5. THE EVALUATION OF THE HEAT LOADING FROM STEADY, TRANSIENT AND OFF-NORMAL CONDITIONS IN ARIES POWER PLANTS*

    E-Print Network [OSTI]

    California at San Diego, University of

    PLANTS* C. E. Kessel1, M. S. Tillack2, J. P. Blanchard3 1Princeton Plasma Physics Laboratory, P.O. Box limitation for design and operation of the first wall, divertor, and other special components. Power plants. The characterization of heat loads developed for ITER1 can be applied to power plants to better develop the operating

  6. Worker Involvement Improves Safety at Hanford Site's Plutonium Finishing Plant

    Broader source: Energy.gov [DOE]

    Employees at the Hanford site are working together to find new and innovative ways to stay safe at the Plutonium Finishing Plant, one of the siteís most complex decommissioning projects.

  7. Energy Management of Chiller Plant for Improved Efficiency and Operation

    E-Print Network [OSTI]

    Alexander, D. P.; Rice, L. S.

    while meeting the operational requirements of plant chillers. The chiller energy management is an integrated part of total energy management system including the boilers. A uniform display is used for boilers, chillers, compressors, etc. Specific... displayed and organized so that the plant is easily manageable. With the outdated equipment, a major control system failure could generate discomfort. Furthermore, more manual observation and adjustments were required to provide a trouble-free operation...

  8. Improved wastewater treatment at Wheeling-Pittsburgh Steel Corporations`s Steubenville East Coke Plant

    SciTech Connect (OSTI)

    Goshe, A.J.; Nodianos, M.J. [Wheeling-Pittsburgh Steel Corp., Follansbee, WV (United States)

    1995-12-01T23:59:59.000Z

    Wheeling-Pittsburgh Steel Corporation recently improved its wastewater treatment at it`s by-products coke plant. This has led to greatly improved effluent quality. Excess ammonia liquor, along with wastewater from the light oil recovery plant, desulfurization facility, and coal pile runoff, must be treated prior to being discharged into the Ohio River. This is accomplished using a biological wastewater treatment plant to remove 99.99% of the organic contaminants and ammonia. Biologically treated, clarified wastewater is now polished in the newly constructed tertiary treatment plant.

  9. Integrated supercritical water gasification combined cycle (IGCC) systems for improved performance and reduced operating costs in existing plants

    SciTech Connect (OSTI)

    Tolman, R.; Parkinson, W.J.

    1999-07-01T23:59:59.000Z

    A revolutionary hydrothermal heat recovery steam generator (HRSG) is being developed to produce clean fuels for gas turbines from slurries and emulsions of opportunity fuels. Water can be above 80% by weight and solids below 20%, including coal fines, coal water fuels, biomass, composted municipal refuse, sewage sludge and bitumen/Orimulsion. The patented HRSG tubes use a commercial method of particle scrubbing to improve heat transfer and prevent corrosion and deposition on heat transfer surfaces. A continuous-flow pilot plant is planned to test the HRSG over a wide range of operating conditions, including the supercritical conditions of water, above 221 bar (3,205 psia) and 374 C (705 F). Bench scale data shows, that supercritical water gasification below 580 C (1,076 F) and low residence time without catalysts or an oxidizer can produce a char product that can contain carbon up to the amount of fixed carbon in the proximate analysis of the solids in the feed. This char can be burned with coal in an existing combustion system to provide the heat required for gasification. The new HRSG tubes can be retrofitted into existing power plant boilers for repowering of existing plants for improved performance and reduced costs. A special condensing turbine allows final low-temperature cleaning and maintains quality and combustibility of the fuel vapor for modern gas turbine in the new Vapor Transmission Cycle (VTC). Increased power output and efficiency can be provided for existing plants, while reducing fuel costs. A preliminary computer-based process simulation model has been prepared that includes material and energy balances that simulate commercial-scale operations of the VTC on sewage sludge and coal. Results predict over 40% HHV thermal efficiency to electric power from sewage sludge at more than 83% water by weight. The system appears to become autothermal (no supplemental fuel required) at about 35% fixed carbon in the feed. Thus, bituminous and lignite coal slurries could be gasified at less than 25% coal and more than 75% water. Preliminary life cycle cost analyses indicate that disposal fees for sewage sludge improve operating economics over fuel that must be purchased, the cost and schedule advantages of natural gas-fired combined cycle systems are preserved. Sensitivity analyses show that increasing capital costs by 50% can be offset by an increase in sewage sludge disposal fees of $10/metric ton.

  10. Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from a Heavy-Duty

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from, Antonio Sciarretta, Luc Voise, Pascal Dufour, Madiha Nadri Abstract-- In recent years, waste heat recovery waste heat from a heavy- duty diesel engine. For this system, a hierarchical and modular control

  11. PERFORMANCE IMPROVEMENTS IN COMMERCIAL HEAT PUMP WATER HEATERS USING CARBON DIOXIDE

    SciTech Connect (OSTI)

    BOWERS C.D.; ELBEL S.; PETERSEN M.; HRNJAK P.S.

    2011-07-01T23:59:59.000Z

    Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82√?¬ļC (180√?¬ļF), as required by sanitary codes in the U.S.(Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20%.

  12. NEXT GENERATION COMMERCIAL HEAT PUMPWATER HEATER USING CARBON DIOXIDE USING DIFFERENT IMPROVEMENT APPROACHES

    SciTech Connect (OSTI)

    Chad Bowers; Michael Petersen; Stefan Elbel; Pega Hrnjak

    2012-04-01T23:59:59.000Z

    Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82√?¬ļC, as required by sanitary codes in the U.S. (Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35 kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20 %.

  13. EIS-0224: Southeast Regional Wastewater Treatment Plant Facilities Improvements

    Broader source: Energy.gov [DOE]

    "This EIS analyzes the Lake County Sanitation District joint venture with the geothermal industry, specifically the Northern California Power Agency, Calpine Corporation (Calpine), and Pacific Gas and Electric Company, to develop a plan for disposal of secondary-treated effluent from the Southeast Regional Wastewater Treatment Plant near the City of Clearlake, California, in the Southeast Geysers Geothermal Steam Field."

  14. Improving Energy Efficiency and Reducing Greenhouse Gas Emissions in BPs PTA Manufacturing Plants

    E-Print Network [OSTI]

    Clark, F.

    2008-01-01T23:59:59.000Z

    Improving Energy Efficiency and Reducing Greenhouse Gas Emissions in BPs PTA Manufacturing Plants Fred Clark Energy/GHG Advisor BP Aromatics & Acetyls Naperville, Illinois BP is the world?s leading producer of purified terephthalic acid...

  15. Planting improvement : the rhetoric and practice of scientific agriculture in northern British America, 1670-1820

    E-Print Network [OSTI]

    Zilberstein, Anya

    2008-01-01T23:59:59.000Z

    "Planting Improvement: The Rhetoric and Practice of Scientific Agriculture in Northern British America, 1670-1820," explores the history and cultural politics of environmental change in the British empire through a focus ...

  16. Significant Improvement in Energy Efficiency in Manufacturing at Rohm and Haasí Kankakee, Illinois, Plant

    E-Print Network [OSTI]

    Brinkley, T.

    2007-01-01T23:59:59.000Z

    Significant improvement in energy efficiency was achieved at Rohm and Haasí Kankakee, Illinois facility last year through the combined efforts of all plant personnel. In total, a 24% reduction in energy requirements per pound of product produced...

  17. Significant Improvement in Energy Efficiency in Manufacturing at Rohm and Haasí Kankakee, Illinois, Plant

    E-Print Network [OSTI]

    Brinkley, T.

    2007-01-01T23:59:59.000Z

    Significant improvement in energy efficiency was achieved at Rohm and Haasí Kankakee, Illinois facility last year through the combined efforts of all plant personnel. In total, a 24% reduction in energy requirements per pound of product produced...

  18. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    SciTech Connect (OSTI)

    Torok, Tamas

    2013-02-04T23:59:59.000Z

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  19. Floating atomic central heating-and-power plant converted from a strategic submarine

    SciTech Connect (OSTI)

    Bilashenko, V.P.; Gorigledzhan, E.A.; Slonimsky, V.J. [Military Regiment Nl., Moscow (Russian Federation)

    1993-12-31T23:59:59.000Z

    In accordance with {open_quotes}The Treaty on the Reduction of Strategic Offensive Arms{close_quotes} signed in July 1991, the operations envisages by {open_quotes}The Procedures for elimination of SSBN`s Launchers{close_quotes} should be accomplished at submarines of the second generation both by eliminating missile compartments together with launchers and by removal of launchers only from missile compartments. THe number of such ships could reach 30 units as has been forecasted for the year of 1998 inclusive. With regard to the fact that the remaining operation life of the main power plant equipment of a nuclear submarine decommissioned in accordance with the Treaty is about 50 per cent, potentially there is a possibility to convert them into floating atomic central heating-and-power plants. The latter variant envisaged in the {open_quotes}Procedures...{close_quotes} is preferable for developing a floating plant based on ships decommissioned from the Navy, since it permits to remove launchers without cutting and subsequent connection of main cables, pipelines and systems which provide the control of the main power plant, nuclear safety, radiological safety, damage control and fire safety of the floating plant. A submarine could be delivered for refitting into a floating plant only after accomplishing the works envisaged by the {open_quotes}Procedures...{close_quotes}.

  20. On-line continuous unit heat rate measurement using EPRI`s plant monitoring workstation

    SciTech Connect (OSTI)

    Levy, E.; Sarunac, N. [Lehigh Univ., Bethlehem, PA (United States); Schnetzler, D. [Potomac Electric Power Company, Newburg, MD (United States)] [and others

    1995-06-01T23:59:59.000Z

    Software for both the Output/Loss and Boiler-Turbine Cycle Efficiency (BTCE) methods for measuring unit heat rate of pulverized coal units is now available with the latest version of EPRI`s Plant Monitoring Workstation (PMW). Both methods are the latest version of EPRI`s Plant Monitoring Workstation (PMW). Both methods are running continuously and on-line at PEPCO`s Morgantown Unit 2. Comparisons have been made between the results generated by the two methods and with measured plant data for parameters such as coal feed rate and stack gas flow rate. This paper reviews the basis of the two measurement methods, explains how they were implemented at Morgantown Unit 2, and gives results showing how the calculated values compare with measurements for a range of unit operating conditions.

  1. Improved assessment of population doses and risk factors for a nuclear power plant under accident conditions†

    E-Print Network [OSTI]

    Meyer, Christopher Martin

    1985-01-01T23:59:59.000Z

    of the requirements for the degree of MASTER OF SCIENCE August 1985 Major Subject: Nuclear Engineering IMPROVED ASSESSMENT OF POPULATION DOSES AND RISK FACTORS FOR A NUCLEAR POWER PLANT UNDER ACCIDENT CONDITIONS A Thesis by CHRISTOPHER MARTIN MEYER Approved... as to style and content by: G. A. Schlapper (Chair of Committee R. B. Ko zen (Member) R. R. Hart (Member) . Erdman (Head of Department) August 1985 ABSTRACT Improved Assessment of Population Doses and Risk Factors for a Nuclear Power Plant Under...

  2. Improved Economic Operation of MSWC Plants with a New Model Based PID Control Strategy

    E-Print Network [OSTI]

    Van den Hof, Paul

    Improved Economic Operation of MSWC Plants with a New Model Based PID Control Strategy M. Leskens the performance of the MSWC plant combustion control system, which typically is of the PID-type. In this paper models. More specific, from a closer analysis of the dynamics of these models a new PID-type of MSWC

  3. SU(3) Latent Heat and Surface Tension from Tree Level and Tadpole Improved Actions

    E-Print Network [OSTI]

    B. Beinlich; F. Karsch; A. Peikert

    1996-08-27T23:59:59.000Z

    We analyze the latent heat and surface tension at the SU(3) deconfinement phase transition with tree level and tadpole improved Symanzik actions on lattices with temporal extent $N_\\tau = 3$ and 4 and spatial extent $N_\\sigma/ N_\\tau = 4$, 6 and 8. In comparison to the standard Wilson action we do find a drastic reduction of cut-off effects already with tree level improved actions. On lattices with temporal extent $N_\\tau=4$ results for the surface tension and latent heat obtained with a tree level improved action agree well with those obtained with a tadpole improved action. A comparison with $N_\\tau=3$ calculations, however, shows that results obtained with tadpole action remain unaffected by cut-off effects even on this coarse lattice, while the tree level action becomes sensitive to the cut-off. For the surface tension and latent heat we find $\\sigma_I/ T_c^3 = 0.0155~(16)$ and $\\Delta\\epsilon/T_c^4 = 1.40~(9)$, respectively.

  4. SU(3) Latent Heat and Surface Tension from Tree Level and Tadpole Improved Actions

    E-Print Network [OSTI]

    Beinlich, B; Peikert, A

    1996-01-01T23:59:59.000Z

    We analyze the latent heat and surface tension at the SU(3) deconfinement phase transition with tree level and tadpole improved Symanzik actions on lattices with temporal extent $N_\\tau = 3$ and 4 and spatial extent $N_\\sigma/ N_\\tau = 4$, 6 and 8. In comparison to the standard Wilson action we do find a drastic reduction of cut-off effects already with tree level improved actions. On lattices with temporal extent $N_\\tau=4$ results for the surface tension and latent heat obtained with a tree level improved action agree well with those obtained with a tadpole improved action. A comparison with $N_\\tau=3$ calculations, however, shows that results obtained with tadpole action remain unaffected by cut-off effects even on this coarse lattice, while the tree level action becomes sensitive to the cut-off. For the surface tension and latent heat we find $\\sigma_I/ T_c^3 = 0.0155~(16)$ and $\\Delta\\epsilon/T_c^4 = 1.40~(9)$, respectively.

  5. Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution

    E-Print Network [OSTI]

    Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

    A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARPô) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver...

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    Government. Glossary ASD CDA CHP CIPEC cfm CO 2 EIA ft 2 GBPCombined Heat and Power (CHP) plants and other parts of thein combined heat and power (CHP) plants. Steam production in

  7. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11T23:59:59.000Z

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore†ĽFO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.ę†less

  8. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi [Carnegie Mellon Univ., Pittsburgh, PA (United States); Gingerich, Daniel B. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2015-06-11T23:59:59.000Z

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  9. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-01-01T23:59:59.000Z

    Nexus Group, 2002a,b). 9 The power-to-heat ratio of a steamof electricity. The power-to-heat ratio of a gas turbine-based on average US power plant heat rates. To convert HP to

  10. Systematic method for the condition assessment of central heating plants in Air Force Logistics Command. Master's thesis

    SciTech Connect (OSTI)

    Starmack, G.J.

    1990-09-01T23:59:59.000Z

    Air Force Logistics Command (AFLC), facing decreasing funds and aging utility systems, needed a method to objectively rate its central heating plants. Such a rating system would be used to compare heating plants throughout the command to identify potential problem areas and prioritize major repair projects. This thesis used a Delphi questionnaire to gather opinions from heating plant experts in order to identify and prioritize components considered most critical to overall plant operation. In addition, the experts suggested measurements which could be used to evaluate component conditions. By combining expert opinions and reading from technical literature, component model rating schemes were developed for AFLC's steam and high temperature hot water plants. Based on measurements and observations of critical components in the plant, a score between 0 and 100 is assigned to each component (for example, condensate piping, deaerator, etc.), each plant subsystem (distribution system, water treatment system, etc.), and to the plant as a whole. These component model rating schemes and the resultant overall condition index scores will enable AFLC to focus their management attention and allocate needed resources to the plants in greatest need of repair.

  11. T:\\013.ffentlichkeitsarbeit\\05.Vortrge\\32.NAWTEC 11 Florida 2003\\A_Ways to Improve the Efficiency of Waste to Energy Plants.doc Ways to Improve the Efficiency of Waste to Energy Plants

    E-Print Network [OSTI]

    Columbia University

    of Waste to Energy Plants.doc Ways to Improve the Efficiency of Waste to Energy Plants for the Production@mvr-hh.de Abstract Up to now the emissions of waste-to-energy plants have been of major concern for the operators of waste incineration plants and the public. In Germany the emission standards for waste incineration

  12. A Case Study of a Commissioning Process for Demand Side Energy Conservation of the Large Heat Source Plant in Kyoto Station Building-APCBC

    E-Print Network [OSTI]

    Matsushita, N.; Yoshida,H.

    2014-01-01T23:59:59.000Z

    5 Heat source plant ?Total capacity?26.3MW? Substation ? ? ? Total : 6 Substations Bleed-in Control Substation ? ? ? The chilled water delivery system Large heat source plant similar to a DHC plant ? Total refrigerator capacity 26.3 MW ? Chilled... water is supplied 6 substations - Department store - Hotel - Theater - Train station etc. ? Bleed-in Control ? Commonly equipped in the substations of DHC plants. ? This control maintains the return water temperature to the plant by controlling...

  13. Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

    E-Print Network [OSTI]

    1994-01-01T23:59:59.000Z

    Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

  14. Luminant's Big Brown Plant wins for continuous improvement and safety programs

    SciTech Connect (OSTI)

    Peltier, R.

    2008-07-15T23:59:59.000Z

    Staff from Luminant's Big Brown Plant accepted the PRB Coal Users' Group's top honour for innovative improvements to coal-handling systems and a sterling safety record. The numbers reveal their accomplishments: an average EFOR less than 4%, an availability factor averaging 90% for a plant that burns a lignite/PRB mix, and staff who worked more than 2.6 million man-hours since March 2000 without a lost-time injury. 13 photos., 1 tab.

  15. Poloidal Inhomogeneity of the Particle Fluctuation Induced Fluxes near of the LCFS at Lower Hybrid Heating and Improved Confinement

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Hybrid Heating (LHH), when external (ETB) transport barrier followed by Internal (ITB) transport barrierPoloidal Inhomogeneity of the Particle Fluctuation Induced Fluxes near of the LCFS at Lower Hybrid Heating and Improved Confinement Transition at the FT - 2 Tokamak. S.I. Lashkul, S.V.Shatalin* , A

  16. Experiments to investigate direct containment heating phenomena with scaled models of the Surry Nuclear Power Plant

    SciTech Connect (OSTI)

    Blanchat, T.K.; Allen, M.D.; Pilch, M.M. [Sandia National Labs., Albuquerque, NM (United States); Nichols, R.T. [Ktech Corp., Albuquerque, NM (United States)

    1994-06-01T23:59:59.000Z

    The Containment Technology Test Facility (CTTF) and the Surtsey Test Facility at Sandia National Laboratories are used to perform scaled experiments that simulate High Pressure Melt Ejection accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effects of direct containment heating (DCH) phenomena on the containment load. High-temperature, chemically reactive melt (thermite) is ejected by high-pressure steam into a scale model of a reactor cavity. Debris is entrained by the steam blowdown into a containment model where specific phenomena, such as the effect of subcompartment structures, prototypic air/steam/hydrogen atmospheres, and hydrogen generation and combustion, can be studied. Four Integral Effects Tests (IETs) have been performed with scale models of the Surry NPP to investigate DCH phenomena. The 1/61{sup th} scale Integral Effects Tests (IET-9, IET-10, and IET-11) were conducted in CTRF, which is a 1/6{sup th} scale model of the Surry reactor containment building (RCB). The 1/10{sup th} scale IET test (IET-12) was performed in the Surtsey vessel, which had been configured as a 1/10{sup th} scale Surry RCB. Scale models were constructed in each of the facilities of the Surry structures, including the reactor pressure vessel, reactor support skirt, control rod drive missile shield, biological shield wall, cavity, instrument tunnel, residual heat removal platform and heat exchangers, seal table room and seal table, operating deck, and crane wall. This report describes these experiments and gives the results.

  17. Light oil yield improvement project at Granite City Division Coke/By-Product Plant

    SciTech Connect (OSTI)

    Holloran, R.A. [National Steel Corp., Granite City, IL (United States). Granite City Div.

    1995-12-01T23:59:59.000Z

    Light oil removal from coke oven gas is a process that has long been proven and utilized throughout many North American Coke/By-Products Plants. The procedures, processes, and equipment requirements to maximize light oil recovery at the Granite City By-Products Plant will be discussed. The Light Oil Yield Improvement Project initially began in July, 1993 and was well into the final phase by February, 1994. Problem solving techniques, along with utilizing proven theoretical recovery standards were applied in this project. Process equipment improvements and implementation of Operator/Maintenance Standard Practices resulted in an average yield increase of 0.4 Gals./NTDC by the end of 1993.

  18. Use of fuel cells for improving on-site emergency power availability and reliability ad nuclear power plants

    E-Print Network [OSTI]

    Akkaynak, Derya

    2005-01-01T23:59:59.000Z

    To assure safe shutdown of a nuclear power plant, there must always be reliable means of decay heat removal provided, in last resort, by an Emergency Core Cooling System (ECCS). Currently the majority of nuclear power ...

  19. Design study of a coal-fired thermionic (THX) topped power plant. Volume IV. Thermionic heat exchanger design and costing

    SciTech Connect (OSTI)

    Dick, R.S.; Britt, E.J.

    1980-10-15T23:59:59.000Z

    This volume deals with the details of how thermionic conversion works, and how it is used in a coal-fired furnace to achieve power plant efficiencies of 45%, and overall costs of 36.3 mills/kWh. A review of the fundamental technical aspects of thermionic conversion is given. The overall Thermionic Heat Exchanger (THX) design, the heat pipe design, and the interaction of the heat pipes with the furnace are presented. Also, the operational characteristics of thermionic converters are described. Details on the computer program used to perform the parametric study are given. The overall program flow is reviewed along with the specifics of how the THX subroutine designed the converter to match the conditions imposed. Also, input costs and variables effecting the THX's performance are detailed. The efficiencies of the various power plants studied are given as a function of the air preheat temperature, size of the power plant, and thermionic level of performance.

  20. Hybrid Ground-Source Heat Pump Installations: Experiences, Improvements, and Tools

    SciTech Connect (OSTI)

    Scott Hackel; Amanda Pertzborn

    2011-06-30T23:59:59.000Z

    One innovation to ground-source heat pump (GSHP, or GHP) systems is the hybrid GSHP (HyGSHP) system, which can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. This work uses three case studies (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. Three buildings were studied for a year; the measured data was used to validate models of each system. The models were used to analyze further improvements to the hybrid approach, and establish that this approach has positive impacts, both economically and environmentally. Lessons learned by those who design and operate the systems are also documented, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, the measured data sets and models that were created during this work are described; these materials have been made freely available for further study of hybrid systems.

  1. Commissioning Process and Operational Improvement in the District Heating and Cooling-APCBC

    E-Print Network [OSTI]

    Takase,T.; Takada,O; Shima,K.; Moriya, M.; Shimoda,Y.

    2014-01-01T23:59:59.000Z

    : 2,900kW TR1,2 Centrifugal Chiller (Constant Speed ) Cooling Capacity : 3,516kW (1,000RT) 2 TR3,4 Inverter Centrifugal Chiller Cooling Capacity : 1,758kW (500RT) 2 BTR1,2 Centrifugal Chiller for Ice Storage Cooling Capacity : 1,571kW (447RT) 2 Ice... Making Capacity : 1297kW (369RT) IST1,2 Ice Storage Tank Capacity of Thermal Storage :11,603kWh (3,300RTh) 2 BO1,2 Hot Water Boiler Heating Capacity : 465kW 2 7 ABOUT THE DHC PLANT ESL-IC-14-09-25 Proceedings of the 14th International Conference...

  2. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect (OSTI)

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01T23:59:59.000Z

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  3. Giprokoks proposals for improvement in air quality at coke battery 1A of Radlin coke plant

    SciTech Connect (OSTI)

    T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    Coke battery 1A, which uses rammed batch, has gone into production at Radlin coke plant (Poland), on the basis of Giprokoks designs. Up-to-date dust-trapping methods are used for the first time within the aspiration systems in the coal-preparation shop and in improving dust collection within the production buildings.

  4. An overview of the US Department of Energy Plant Lifetime Improvement Program

    SciTech Connect (OSTI)

    Moonka, A.K. [Los Alamos National Lab., NM (United States); Harrison, D.L. [USDOE, Washington, DC (United States)

    1995-08-01T23:59:59.000Z

    This paper provides a brief summary of the U.S. Department of Energy`s (USDOE`s) cooperative effort with the nuclear industry to develop technology to manage the effects of material degradation in systems, structures and components (SSCs) that impact plant safety or can significantly improve plant performance/economics and to establish and demonstrate the license renewal process. Also included are efforts to reduce decontamination/decommission costs, and reduce the uncertainty in long-term service-life decision making. During 1995, the Plant Lifetime Improvement (PLIM) Program was renamed the Commercial Operating Light Water Reactor (COLWR) Program activities are focused on sustaining the LWR option for domestic electricity generation by supporting operation of existing LWRs as long as they are safe, efficient, and economical. The status of the key projects is discussed in this paper.

  5. Testing the improved method for calculating the radiation heat generation at the periphery of the BOR-60 reactor core

    SciTech Connect (OSTI)

    Varivtsev, A. V., E-mail: vav3@niiar.ru; Zhemkov, I. Yu. [JSC ďSSC RIAR,Ē Dimitrovgrad-10 (Russian Federation)

    2014-12-15T23:59:59.000Z

    The application of the improved method for calculating the radiation heat generation in the elements of an experimental device located at the periphery of the BOR-60 reactor core results in a significant reduction in the discrepancies between the calculated and the experimental data. This allows us to conclude that the improved method has an advantage over the one used earlier.

  6. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    SciTech Connect (OSTI)

    J. K. Wright

    2010-09-01T23:59:59.000Z

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900įC and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Todayís high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760įC. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  7. Proposed finding of no significant impact for the Sakakawea Medical Center coal-fired heating plant

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The Department of Energy (the Department) has prepared an environmental assessment (Assessment) (DOE/EA-0949) to identify and evaluate the potential environmental impacts of a proposed action at the Sakakawea Medical Center (the Center) in Hazen, North Dakota. The proposed action would replace the existing No. 2 fuel oil-fired boilers supplemented by electric reheat with a new coal-fired hot water heating plant, using funds provided from a grant under the Institutional Conservation Program. Based on the analysis in DOE/EA-0949, the Department has determined that the proposed action is not a major federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969, as amended. Therefore, preparation of an Environmental Impact Statement is not required, and the Department is issuing this Finding of No Significant Impact (Finding).

  8. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    SciTech Connect (OSTI)

    J. K. Wright

    2008-04-01T23:59:59.000Z

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900įC and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Todayís high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760įC. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  9. An overview of the United States Department of Energy plant lifetime improvement program

    SciTech Connect (OSTI)

    Rosinski, S.T.; Clauss, J.M. [Sandia National Labs., Albuquerque, NM (United States); Harrison, D.L. [USDOE, Washington, DC (United States)

    1993-08-01T23:59:59.000Z

    Today, 109 nuclear power plants provide over 20 percent of the electrical energy generated in the US. The operating license of the first of these plants will expire in the year 2000; one third of the operating licenses will expire by 2010 and the remaining plant licenses are scheduled to expire by 2033. The National Energy Strategy assumes that 70 percent of these plants will continue to operate beyond their current license expiration to assist in ensuring an adequate, diverse, and environmentally acceptable energy supply for economic growth. In order to preserve this energy resource in the US three major tasks must be successfully completed: (1) establishment of the regulations, technical standards, and procedures for the preparation and review of a license renewal application; (2) development, verification, and validation of the various technical criteria and bases for needed monitoring, refurbishment, or replacement of plant equipment; and (3) demonstration of the regulatory process. Since 1985, the US Department of Energy (DOE) has been working with the nuclear industry and the US Nuclear Regulatory Commission (NRC) to establish and demonstrate the option to extend the life of nuclear power plants through the renewal of operating licenses. This paper focuses primarily on DOE`s Plant Lifetime Improvement (PLIM) Program efforts to develop the technical criteria and bases for effective aging management and lifetime improvement for continued operation of nuclear power plants. This paper describes current projects to resolve generic technical issues, including degradation of long-lived components, reactor pressure vessel (RPV) embrittlement management approaches, and analytical methodologies to characterize RPV integrity.

  10. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect (OSTI)

    Daniel S. Wendt; Greg L. Mines

    2010-09-01T23:59:59.000Z

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ĎAir-Cooled Condensers in Next- Generation Conversion Systemsí. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of recuperation, the use of turbine reheat, and the non-consumptive use of EGS make-up water to supplement heat rejection

  11. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps, Final Report, May 1986†

    E-Print Network [OSTI]

    O'Neal, D. L.; Murphy, W. E.

    1985-01-01T23:59:59.000Z

    The objectives of this study included: (1) development of classes of heat pumps, (2) evaluation and selection of a suitable heat pump design model, (3) characterization of suitable baseline heat pump designs, (4) selection of design options that can...

  12. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01T23:59:59.000Z

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  13. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems

    E-Print Network [OSTI]

    Walker, I.S.; Degenetais, G.; Siegel, J.A.

    2002-01-01T23:59:59.000Z

    the effect of heating and cooling system inefficiencies onwith inefficient heating and cooling systems in CaliforniaOperation of Residential Cooling Systems. Proceedings of the

  14. Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981

    SciTech Connect (OSTI)

    Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

    1981-06-01T23:59:59.000Z

    The results of the feasibility study for utilizing low temperature geothermal heat in the City of San Bernardino Wastewater Treatment Plant are summarized. The study is presented in terms of preliminary engineering design, economic analysis, institutional issues, environmental impacts, resource development, and system implementation.

  15. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01T23:59:59.000Z

    CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRICCHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRICprocess Boeing solar receiver [5J Internal detail of Boeing solar receiver [5J . 2.4 Heat

  16. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01T23:59:59.000Z

    D1ST2630 3Z FORMATI/3X. *HEAT INPUT TO KEBOILER IS NOTlargest source of heat input into the storage system (theresults in a ratio of solar heat input to the two systems of

  17. Improvement of productivity of sintering plant at Nagoya Works of NSC

    SciTech Connect (OSTI)

    Yoshida, Hitoshi; Iida, Hiroyuki; Kabuto, Shigehisa; Suzuki, Haruhisa

    1996-12-31T23:59:59.000Z

    It is well known that in the sintering process generally, the state of charging raw materials into the sintering machine and whether or not its stability is good significantly influence the productivity, quality and cost of this process. At the Nagoya sintering plant, therefore, the peripheral of the slit bar-type segregation charging equipment developed by Nippon Steel were improved in 1994. The main improvements were: the improvement of the raw materials charging control mode, the introduction of fluffer bar to improve permeability and the addition of equipment for removal of lumps from sinter mix. After these measures were taken, the state of segregation of the raw materials and carbon between the upper and lower portions of the sinter bed was improved, the charging stability was also improved and the charging density was decreased, making it possible to achieve productivity improvement and cost reduction as originally intended. This report described the outline and concept of the equipment improvement measures and the operation results of the actual machine.

  18. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 6: Process Heat and Hydrogen Co-Generation PIRTs

    SciTech Connect (OSTI)

    Forsberg, Charles W [ORNL; Gorensek, M. B. [Savannah River National Laboratory (SRNL); Herring, S. [Idaho National Laboratory (INL); Pickard, P. [Sandia National Laboratories (SNL)

    2008-03-01T23:59:59.000Z

    A Phenomena Identification and Ranking Table (PIRT) exercise was conducted to identify potential safety-0-related physical phenomena for the Next Generation Nuclear Plant (NGNP) when coupled to a hydrogen production or similar chemical plant. The NGNP is a very high-temperature reactor (VHTR) with the design goal to produce high-temperature heat and electricity for nearby chemical plants. Because high-temperature heat can only be transported limited distances, the two plants will be close to each other. One of the primary applications for the VHTR would be to supply heat and electricity for the production of hydrogen. There was no assessment of chemical plant safety challenges. The primary application of this PIRT is to support the safety analysis of the NGNP coupled one or more small hydrogen production pilot plants. However, the chemical plant processes to be coupled to the NGNP have not yet been chosen; thus, a broad PIRT assessment was conducted to scope alternative potential applications and test facilities associated with the NGNP. The hazards associated with various chemicals and methods to minimize risks from those hazards are well understood within the chemical industry. Much but not all of the information required to assure safe conditions (separation distance, relative elevation, berms) is known for a reactor coupled to a chemical plant. There is also some experience with nuclear plants in several countries that have produced steam for industrial applications. The specific characteristics of the chemical plant, site layout, and the maximum stored inventories of chemicals can provide the starting point for the safety assessments. While the panel identified events and phenomena of safety significance, there is one added caveat. Multiple high-temperature reactors provide safety-related experience and understanding of reactor safety. In contrast, there have been only limited safety studies of coupled chemical and nuclear plants. The work herein provides a starting point for those studies; but, the general level of understanding of safety in coupling nuclear and chemical plants is less than in other areas of high-temperature reactor safety.

  19. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-Eís HEATS program, short for ďHigh Energy Advanced Thermal Storage,Ē seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  20. Cost benefits from applying advanced heat rejection concepts to a wet/dry-cooled binary geothermal plant

    SciTech Connect (OSTI)

    Faletti, D.W.

    1981-03-01T23:59:59.000Z

    Optimized ammonia heat rejection system designs were carried out for three water allocations equivalent to 9, 20, and 31% of that of a 100% wet-cooled plant. The Holt/Procon design of a 50-MWe binary geothermal plant for the Heber site was used as a design basis. The optimization process took into account the penalties for replacement power, gas turbine capital, and lost capacity due to increased heat rejection temperature, as well as added base plant capacity and fuel to provide fan and pump power to the heat rejection system. Descriptions of the three plant designs are presented. For comparison, a wet tower loop was costed out for a 100% wet-cooled plant using the parameters of the Holt/Procon design. Wet/dry cooling was found to increase the cost of electricity by 28% above that of a 100% wet-cooled plant for all three of the water allocations studied (9, 20, and 31%). The application selected for a preconceptual evaluation of the BCT (binary cooling tower) system was the use of agricultural waste water from the New River, located in California's Imperial Valley, to cool a 50-MWe binary geothermal plant. Technical and cost evaluations at the preconceptual level indicated that performance estimates provided by Tower Systems Incorporated (TSI) were reasonable and that TSI's tower cost, although 2 to 19% lower than PNL estimates, was also reasonable. Electrical cost comparisonswere made among the BCT system, a conventional 100% wet system, and a 9% wet/dry ammonia system, all using agricultural waste water with solar pond disposal. The BCT system cost the least, yielding a cost of electricity only 13% above that of a conventional wet system using high quality water and 14% less than either the conventional 100% wet or the 9% wet/dry ammonia system.

  1. Morris Plant Energy Efficiency Program†

    E-Print Network [OSTI]

    Betczynski, M. T.

    2004-01-01T23:59:59.000Z

    installed on several olefins cracking furnaces in order to improve heat recovery from the cracked process gas. As a result of the additional heat recovery, steam imported from the cogeneration facility was reduced by 45,000 lbs/hr. The large turbines... integrated an Aspen-based plant-wide data historian, which is utilized to compile process data from control and measurement points throughout the Morris plant. On-line optimization using this extensive data repository has helped the plant better...

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    In addition, the coking coal market began to deteriorateits permeability. Bituminous, or coking coal, is blended andmerchant coke plants, coking coal is heated in a low-oxygen,

  3. Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The initial RELAP5 run outputs steady state conditions which were then compared to the heat exchanger performance theory to ensure accurate design is being simulated. An exponential loss of pressure transient was simulated. This LOCA describes a loss of coolant pressure in the primary side over a 20 second time period. The results for the simulation indicate that heat is initially transferred from the primary loop to the secondary loop, but after the loss of pressure occurs, heat transfers from the secondary loop to the primary loop.

  4. Resolution of the direct containment heating issue for all Westinghouse plants with large dry containments or subatmospheric containments

    SciTech Connect (OSTI)

    Pilch, M.M.; Allen, M.D.; Klamerus, E.W. [Sandia National Labs., Albuquerque, NM (United States)

    1996-02-01T23:59:59.000Z

    This report uses the scenarios described in NUREG/CR-6075 and NUREG/CR-6075, Supplement 1, to address the direct containment heating (DCH) issue for all Westinghouse plants with large dry or subatmospheric containments. DCH is considered resolved if the conditional containment failure probability (CCFP) is less than 0.1. Loads versus strength evaluations of the CCFP were performed for each plant using plant-specific information. The DCH issue is considered resolved for a plant if a screening phase results in a CCFP less than 0.01, which is more stringent than the overall success criterion. If the screening phase CCFP for a plant is greater than 0.01, then refined containment loads evaluations must be performed and/or the probability of high pressure at vessel breach must be analyzed. These analyses could be used separately or could be integrated together to recalculate the CCFP for an individual plant to reduce the CCFP to meet the overall success criterion of less than 0.1. The CCFPs for all of the Westinghouse plants with dry containments were less than 0.01 at the screening phase, and thus, the DCH issue is resolved for these plants based on containment loads alone. No additional analyses are required.

  5. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01T23:59:59.000Z

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  6. North American Overview - Heat Pumps Role in Buildings Energy Efficiency Improvement

    SciTech Connect (OSTI)

    Baxter, Van D [ORNL; Bouza, Antonio [U.S. Department of Energy; GiguŤre, Daniel [Natural Resources Canada; Hosatte, Sophie [Natural Resources Canada

    2011-01-01T23:59:59.000Z

    A brief overview of the situation in North America regarding buildings energy use and the current and projected heat pump market is presented. R&D and deployment strategies for heat pumps, and the impacts of the housing market and efficiency regulations on the heating and cooling equipment market are summarized as well.

  7. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01T23:59:59.000Z

    Heat Trimmer Dist. Condenser Turbine Steam Leaks LP TurbineWaste Heat Trimmer Turbine Steam Leaks LP Turbine CondenserHR) CARRIED BY LP TURBINE STEAM. *STC OFL RH ll~ PRESSURE

  8. Beam Induced Ferrite Heating of the LHC Injection Kickers and Proposals for Improved Cooling

    E-Print Network [OSTI]

    Barnes, M J; Calatroni, S; Day, H; DucimetiŤre, L; GarlaschŤ, M; Gomes Namora, V; Mertens, V; Sobiech, Z; Taborelli, M; Uythoven, J; Weterings, W

    2013-01-01T23:59:59.000Z

    The two LHC injection kicker systems produce an integrated field strength of 1.3 T∑m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen is placed in the aperture of each magnet, which consists of a ceramic tube with conductors in the inner wall. The conductors provide a path for the beam image current and screen the ferrite yoke against wakefields. Recent LHC operation, with high intensity beam stable for many hours, resulted in significant heating of both the ferrite yoke and beam impedance reduction ferrites. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the ferrite yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. Thermal measurement data has been analysed, a thermal model developed and emissivity measurements carried out. Various measures to improve the ferrite cooling have...

  9. Using heat demand prediction to optimise Virtual Power Plant production capacity

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    CHP) appliances, micro gas turbines, micro- windmills, heat exchangers, etc.) is expected. A microCHP appliance

  10. The (safety-related) heat exchangers aging management guideline for commercial nuclear power plants, and developments since 1994

    SciTech Connect (OSTI)

    Clauss, J.M.

    1998-08-01T23:59:59.000Z

    The US Department of Energy (DOE), in cooperation with the Electric Power Research Institute (EPRI) and US nuclear power plant utilities, is preparing a series of aging management guidelines (AMGs) for commodity types of components (e.g., heat exchangers, electrical cable and terminations, pumps). Commodities are included in this series based on their importance to continued nuclear plant operation and license renewal. The AMGs contain a detailed summary of operating history, stressors, aging mechanisms, and various types of maintenance and surveillance practices that can be combined to create an effective aging management program. Each AMG is intended for use by the systems engineers and plant maintenance staff (i.e., an AMG is intended to be a hands-on technical document rather than a licensing document). The heat exchangers AMG, published in June 1994, includes the following information of interest to nondestructive examination (NDE) personnel: aging mechanisms determined to be non-significant for all applications; aging mechanisms determined to be significant for some applications; effective conventional programs for managing aging; and effective unconventional programs for managing aging. Since the AMG on heat exchangers was published four years ago, a brief review has been conducted to identify emerging regulatory issues, if any. The results of this review and lessons learned from the collective set of AMGs are presented.

  11. Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

  12. Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?

    E-Print Network [OSTI]

    Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

    2004-01-01T23:59:59.000Z

    Cost Efficiency of Electric Generating Plants: A Stochasticat US Electricity Generating Plants? Kira Markiewicz, Nancyat US Electricity Generating Plants? Kira Markiewicz UC

  13. Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems

    SciTech Connect (OSTI)

    Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Briggs, Thomas E [ORNL

    2010-01-01T23:59:59.000Z

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery, turbocharging or turbo-compounding, and exhaust aftertreatment.

  14. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps, Final Report, May 1986

    E-Print Network [OSTI]

    O'Neal, D. L.; Murphy, W. E.

    1985-01-01T23:59:59.000Z

    -17 3 HEAT PUMP CLASSES 3-1 References 3-6 4 SELECTION AND VALIDATION OF PERFORMANCE MODELS 4-1 Steady State Model Selection 4-1 Model Methodology 4-1 Compressor Models 4-2 Condenser and Evaporator Models 4-2 Expansion Devices 4-3 Refrigerant Charge... 5-1 1) Increased Condenser and Evaporator Heat Exchanger Performance 5-1 1A) Increased heat exchanger frontal area 5-2 1B) Increased tube rows 5-2 1C) Increased fin density 5-2 1D) Increased heat transfer coefficient 5-3 2) Decreased Compressor Size...

  15. Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition

    SciTech Connect (OSTI)

    Not Available

    2008-02-01T23:59:59.000Z

    This is one in a series of sourcebooks to help manufacturers optimize their industrial systems; this particular sourcebook addresses process heating systems.

  16. Experiments to investigate direct containment heating phenomena with scaled models of the Calvert Cliffs Nuclear Power Plant

    SciTech Connect (OSTI)

    Blanchat, T.K.; Pilch, M.M.; Allen, M.D.

    1997-02-01T23:59:59.000Z

    The Surtsey Test Facility is used to perform scaled experiments simulating High Pressure Melt Ejection accidents in a nuclear power plant (NPP). The experiments investigate the effects of direct containment heating (DCH) on the containment load. The results from Zion and Surry experiments can be extrapolated to other Westinghouse plants, but predicted containment loads cannot be generalized to all Combustion Engineering (CE) plants. Five CE plants have melt dispersal flow paths which circumvent the main mitigation of containment compartmentalization in most Westinghouse PWRs. Calvert Cliff-like plant geometries and the impact of codispersed water were addressed as part of the DCH issue resolution. Integral effects tests were performed with a scale model of the Calvert Cliffs NPP inside the Surtsey test vessel. The experiments investigated the effects of codispersal of water, steam, and molten core stimulant materials on DCH loads under prototypic accident conditions and plant configurations. The results indicated that large amounts of coejected water reduced the DCH load by a small amount. Large amounts of debris were dispersed from the cavity to the upper dome (via the annular gap). 22 refs., 84 figs., 30 tabs.

  17. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01T23:59:59.000Z

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

  18. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

    2006-03-07T23:59:59.000Z

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  19. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS.

    SciTech Connect (OSTI)

    JOE,J.

    2007-07-08T23:59:59.000Z

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders.

  20. Improved method for calculating the radiation heat generation in the BOR-60 reactor

    SciTech Connect (OSTI)

    Varivtsev, A. V., E-mail: vav3@niiar.ru; Zhemkov, I. Yu. [JSC ďSSC RIAR,Ē Dimitrovgrad-10 (Russian Federation)

    2014-12-15T23:59:59.000Z

    The results of theoretical and experimental studies aimed at determining the radiation heat generation in the BOR-60 reactor reveal the drawbacks of the computational methods used at present. An algorithm that is free from these drawbacks and allows one to determine the radiation heat generation computationally is proposed.

  1. Validation of ANS-5. 1 as the decay heat standard at the Savannah River Plant

    SciTech Connect (OSTI)

    Apperson, Jr, C E

    1982-01-01T23:59:59.000Z

    The Savannah River Laboratory (SRL) is upgrading the methods used to predict the post shutdown decay heat of the Savannah River reactors by implementing procedures based on the ANS Decay Heat Power in Light Water Reactors standard. This approach takes advantage of the large volume of research used in developing the standard and establishes compatibility with the nuclear industry. To qualify the decay heat standard for use, a series of comparisons were made between detailed decay heat calculations performed using the SHIELD code system and results obtained from the standard.

  2. Application of an Industrial Heat Pump to a Specialty Chemical Plant

    E-Print Network [OSTI]

    Tripathi, P. C.; Chao, P.

    1993-01-01T23:59:59.000Z

    This paper presents the results of a heat pump study conducted by TENSA Services and sponsored by the U.S. Department of Energy. In the previous phase of this project, a heat pump potential was identified through a rigorous pinch analysis...

  3. Application of an Industrial Heat Pump to a Specialty Chemical Plant

    E-Print Network [OSTI]

    Tripathi, P. C.; Chao, P.

    This paper presents the results of a heat pump study conducted by TENSA Services and sponsored by the U.S. Department of Energy. In the previous phase of this project, a heat pump potential was identified through a rigorous pinch analysis...

  4. A Partial Load Model for a Local Combined Heat and Power Plant

    E-Print Network [OSTI]

    the so- called economic dispatch (the task of dispatching the entire system at least cost given a certain also possess a heat storage facility (typ- ically a large hot water tank) and/or a purely heat, and thus disregarding ramp rates in the model is not unreasonable. The unit commitment problem in energy

  5. Recent Improvements in Interface Management for Hanford's Waste Treatment and Immobilization Plant - 13263

    SciTech Connect (OSTI)

    Arm, Stuart T.; Van Meighem, Jeffery S. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States)] [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States); Duncan, Garth M.; Pell, Michael J. [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States)] [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States); Harrington, Christopher C. [Department of Energy - Office of River Protection, 2440 Stevens Center Place, Richland, Washington, 99352 (United States)] [Department of Energy - Office of River Protection, 2440 Stevens Center Place, Richland, Washington, 99352 (United States)

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which includes the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number of technical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. Partly in response to a DNFSB recommendation, the WTP interface management process managing these technical services has recently been improved through changes in organization and issue management. The changes are documented in an Interface Management Plan. The organizational improvement is embodied in the One System Integrated Project Team that was formed by integrating WTP and tank farms staff representing interfacing functional areas into a single organization. A number of improvements were made to the issue management process but most notable was the formal appointment of technical, regulatory and safety subject matter experts to ensure accurate identification of issues and open items. Ten of the thirteen active WTP Interface Control Documents have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule and accurately identify technical, regulatory and safety issues and open items. (authors)

  6. Improved Electrical Load Match In California By Combining Solar Thermal Power Plants with Wind Farms

    SciTech Connect (OSTI)

    Vick, B. D.; Clark, R. N.; Mehos, M.

    2008-01-01T23:59:59.000Z

    California with its hydro, geothermal, wind, and solar energy is the second largest producer of renewable electricity in the United States (Washington state is the largest producer of renewable energy electricity due to high level of hydro power). Replacing fossil fuel electrical generation with renewable energy electrical generation will decrease the release of carbon dioxide into the atmosphere which will slow down the rapid increase in global warming (a goal of the California state government). However, in order for a much larger percentage of the total electrical generation in California to be from renewable energies like wind and solar, a better match between renewable energy generation and utility electrical load is required. Using wind farm production data and predicted production from a solar thermal power plant (with and without six hours of storage), a comparison was made between the renewable energy generation and the current utility load in California. On a monthly basis, wind farm generated electricity at the three major wind farm areas in California (Altamont Pass, east of San Francisco Bay area; Tehachapi Pass in the high desert between Tehachapi and Mojave; and San Gorgonio Pass in the low desert near Palm Springs) matches the utility load well during the highest electrical load months (May through September). Prediction of solar thermal power plant output also indicates a good match with utility load during these same high load months. Unfortunately, the hourly wind farm output during the day is not a very good match to the utility electrical load (i.e. in spring and summer the lowest wind speed generally occurs during mid-day when utility load is highest). If parabolic trough solar thermal power plants are installed in the Mojave Desert (similar to the 354 MW of plants that have been operating in Mojave Desert since 1990) then the solar electrical generation will help balance out the wind farm generation since highest solar generated electricity will be during mid-day. Adding six hours of solar thermal storage improved the utility load match significantly in the evening and reliability was also improved. Storage improves reliability because electrical production can remain at a high level even when there are lulls in the wind or clouds decrease the solar energy striking the parabolic trough mirrors. The solar energy from Mojave Desert and wind energy in the major wind farm areas are not a good match to utility load during the winter in California, but if the number of wind farms were increased east of San Diego, then the utility renewable energy match would be improved (this is because the wind energy is highest during the winter in this area). Currently in California, wind electrical generation only contributes 1.8% of total electricity and solar electrical generation only contributes 0.2%. Combining wind farms and solar thermal power plants with storage would allow a large percentage of the electrical load in California to be met by wind and solar energy due to a better match with utility load than by either renewable resource separately.

  7. Transitions to improved confinement regimes induced by changes in heating in zero-dimensional models for tokamak plasmas

    SciTech Connect (OSTI)

    Zhu, H. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Chapman, S. C. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Department of Mathematics and Statistics, University of Tromso, Tromso (Norway); Dendy, R. O. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Itoh Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Itoh, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Itoh Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan)

    2014-06-15T23:59:59.000Z

    It is shown that rapid substantial changes in heating rate can induce transitions to improved energy confinement regimes in zero-dimensional models for tokamak plasma phenomenology. We examine for the first time the effect of step changes in heating rate in the models of Kim and Diamond [Phys. Rev. Lett. 90, 185006 (2003)] and Malkov and Diamond [Phys. Plasmas 16, 012504 (2009)], which nonlinearly couple the evolving temperature gradient, micro-turbulence, and a mesoscale flow; and in the extension of Zhu et al. [Phys. Plasmas 20, 042302 (2013)], which couples to a second mesoscale flow component. The temperature gradient rises, as does the confinement time defined by analogy with the fusion context, while micro-turbulence is suppressed. This outcome is robust against variation of heating rise time and against introduction of an additional variable into the model. It is also demonstrated that oscillating changes in heating rate can drive the level of micro-turbulence through a period-doubling path to chaos, where the amplitude of the oscillatory component of the heating rate is the control parameter.

  8. Analysis of Heat Rate Improvement Potential at Coal-Fired Power Plants

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOil andEnergyAnalysis

  9. Analysis of Heat Rate Improvement Potential at Coal-Fired Power Plants -

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAge Refining Air1,D O E / E I AU.S. Energy

  10. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner56: MitigationEnergyRenewable Energy

  11. Recent Improvements In Interface Management For Hanfords Waste Treatment And Immobilization Plant - 13263

    SciTech Connect (OSTI)

    Arm, Stuart T. [Washington River Protection Solutions, Richland, WA (United States); Pell, Michael J. [Bechtel National, Inc., Richland, WA (United States); Van Meighem, Jeffery S. [Washington River Protection Solutions, Richland, WA (United States); Duncan, Garth M. [Bechtel National, Inc., Richland, WA (United States); Harrington, Christopher C. [Department of Energy, Office of River Protection, Richland, Washington (United States)

    2012-11-20T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number oftechnical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. The WTP interface management process has recently been improved through changes in organization and technical issue management documented in an Interface Management Plan. Ten of the thirteen active WTP Interface Control Documents (ICDs) have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule.

  12. District heating and cooling systems for communities through power plant retrofit distribution network. Phase 2. Final report, March 1, 1980-January 31, 1984. Volume IV

    SciTech Connect (OSTI)

    Not Available

    1984-01-31T23:59:59.000Z

    This volume contains the following: discussion of cost estimating methodology, detailed cost estimates of Hudson No. 2 retrofit, intermediate thermal plant (Kearny No. 12) and local heater plants; transmission and distribution cost estimate; landfill gas cost estimate; staged development scenarios; economic evaluation; fuel use impact; air quality impact; and alternatives to district heating.

  13. New industrial heat pump applications to a synthetic rubber plant. Final report, Phase IIA

    SciTech Connect (OSTI)

    NONE

    1993-12-31T23:59:59.000Z

    This report summarizes the results of the Phase IIA of the DOE sponsored study titled, Advanced Industrial Heat Pump Application and Evaluation. The scope of this phase of the study was to finalize the process design of the heat pump scheme, develop a process and instrumentation diagram, and a detailed cost estimate for the project. This information is essential for the site management to evaluate the economic viability and operability of the proposed heat pump design, prior to the next phase of installation and testing.

  14. Temperature profile and heat transfer model for a chemical wastewater treatment plant

    SciTech Connect (OSTI)

    Brown, E.V. (CH2M HILL, Atlanta, GA (United States)); Enzminger, J.D. (CH2M HILL, Parsippany, NJ (United States))

    1991-08-01T23:59:59.000Z

    This paper presents a heat transfer model for equalization, activated sludge, and trickling filter unit processes than can be used to assess the effect of operating temperature on unit process selection, materials of construction selection, and heat retention and cooling requirements. In developing this model, the individual variables that affect the operating temperature of biological systems were first identified. Mathematical relationships were then developed to describe system behavior, based on conservation laws and rate equations. The heat transfer models were then used to developed a temperature profile of the two alternative WWTP configurations.

  15. Energy Efficiency of Phthalic Anhydride Plants

    E-Print Network [OSTI]

    Keunecke, G.; Mitchem, C.

    1982-01-01T23:59:59.000Z

    Developments in catalyst technology have played a major role implementing phthalic anhydride process improvements. Steam turbines yield large energy savings, and are flexible in achieving a process heat/energy balance. Modern plants are major...

  16. Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands

    SciTech Connect (OSTI)

    Akbari, Hashem

    2007-07-01T23:59:59.000Z

    World energy use is the main contributor to atmospheric CO2. In 2002, about 7.0 giga metric tons of carbon (GtC) were emitted internationally by combustion of gas, liquid, and solid fuels (CDIAC, 2006), 2 to 5 times the amount contributed by deforestation (Brown et al., 1988). The share of atmospheric carbon emissions for the United States from fossil fuel combustion was 1.6 GtC. Increasing use of fossil fuel and deforestation together have raised atmospheric CO{sub 2} concentration some 25% over the last 150 years. According to global climate models and preliminary measurements, these changes in the composition of the atmosphere have already begun raising the Earth's average temperature. If current energy trends continue, these changes could drastically alter the Earth's temperature, with unknown but potentially catastrophic physical and political consequences. During the last three decades, increased energy awareness has led to conservation efforts and leveling of energy consumption in the industrialized countries. An important byproduct of this reduced energy use is the lowering of CO{sub 2} emissions. Of all electricity generated in the United States, about one-sixth is used to air-condition buildings. The air-conditioning use is about 400 tera-watt-hours (TWh), equivalent to about 80 million metric tons of carbon (MtC) emissions, and translating to about $40 billion (B) per year. Of this $40 B/year, about half is used in cities that have pronounced 'heat islands'. The contribution of the urban heat island to the air-conditioning demand has increased over the last 40 years and it is currently at about 10%. Metropolitan areas in the United States (e.g., Los Angeles, Phoenix, Houston, Atlanta, and New York City) have typically pronounced heat islands that warrant special attention by anyone concerned with broad-scale energy efficiency (HIG, 2006). The ambient air is primarily heated through three processes: direct absorption of solar radiation, convection of heat from hot surfaces, and man-made heat (exhaust from cars, buildings, etc.). Air is fairly transparent to light--the direct absorption of solar radiation in atmospheric air only raises the air temperature by a small amount. Typically about 90% of solar radiation reaches the Earth's surface and then is either absorbed or reflected. The absorbed radiation on the surface increases the surface temperature. And in turn the hot surfaces heat the air. This convective heating is responsible for the majority of the diurnal temperature range. The contribution of man-made heat (e.g., air conditioning, cars) is very small, compared to the heating of air by hot surfaces, except for the downtown high-rise areas.

  17. Proceedings: Heat exchanger workshop

    SciTech Connect (OSTI)

    Not Available

    1987-07-01T23:59:59.000Z

    Heat transfer processes are of controlling importance in the operation of a thermal power plant. Heat exchangers are major cost items and are an important source of problems causing poor power plant availability and performance. A workshop to examine the improvements that can be made to heat exchangers was sponsored by the Electric Power Research Institute (EPRI) on June 10-11, 1986, in Palo Alto, California. This workshop was attended by 25 engineers and scientists representing EPRI-member utilities and EPRI consultants. A forum was provided for discussions related to the design, operation and maintenance of utility heat transfer equipment. The specific objectives were to identify research directions that could significantly improve heat exchanger performance, reliability and life cycle economics. Since there is a great diversity of utility heat transfer equipment in use, this workshop addressed two equipment categories: Boiler Feedwater Heaters (FWH) and Heat Recovery Steam Generators (HRSG). The workshop was divided into the following panel sessions: functional design, mechanical design, operation, suggested research topics, and prioritization. Each panel session began with short presentations by experts on the subject and followed by discussions by the attendees. This report documents the proceedings of the workshop and contains recommendations of potentially valuable areas of research and development. 4 figs.

  18. Systems Level Engineering of Plant Cell Wall Biosynthesis to Improve Biofuel Feedstock Quality

    SciTech Connect (OSTI)

    Hazen, Samuel

    2013-09-27T23:59:59.000Z

    Our new regulatory model of cell wall biosynthesis proposes original network architecture with several newly incorporated components. The mapped set of protein-DNA interactions will serve as a foundation for 1) understanding the regulation of a complex and integral plant component and 2) the manipulation of crop species for biofuel and biotechnology purposes. This study revealed interesting and novel aspects of grass growth and development and further enforce the importance of a grass model system. By functionally characterizing a suite of genes, we have begun to improve the sparse model for transcription regulation of biomass accumulation in grasses. In the process, we have advanced methodology and brachy molecular genetic tools that will serve as valuable community resource.

  19. Solar production of intermediate temperature process heat. Phase I design. Final report. [For sugarcane processing plant in Hawaii

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    This report is the final effort in the Phase I design of a solar industrial process heat system for the Hilo Coast Processing Company (HCPC) in Pepeekeo, Hawaii. The facility is used to wash, grind and extract sugar from the locally grown sugarcane and it operates 24 hours a day, 305 days per year. The major steam requirements in the industrial process are for the prime movers (mill turbines) in the milling process and heat for evaporating water from the extracted juices. Bagasse (the fibrous residue of milled sugarcane) supplied 84% of the fuel requirement for steam generation in 1979, while 65,000 barrels of No. 6 industrial fuel oil made up the remaining 16%. These fuels are burned in the power plant complex which produces 825/sup 0/F, 1,250 psi superheated steam to power a turbogenerator set which, in addition to serving the factory, generates from 7 to 16 megawatts of electricity that is exported to the local utility company. Extracted steam from the turbo-generator set supplies the plant's process steam needs. The system consists of 42,420 ft./sup 2/ of parabolic trough, single axis tracking, concentrating solar collectors. The collectors will be oriented in a North-South configuration and will track East-West. A heat transfer fluid (Gulf Synfluid 4cs) will be circulated in a closed loop fashion through the solar collectors and a series of heat exchangers. The inlet and outlet fluid temperatures for the collectors are 370/sup 0/F and 450/sup 0/F respectively. It is estimated that the net useable energy delivered to the industrial process will be 7.2 x 10/sup 9/ Btu's per year. With an HCPC boiler efficiency of 78% and 6.2 x 10/sup 6/ Btu's per barrel of oil, the solar energy system will displace 1489 barrels of oil per year. (WHK)

  20. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01T23:59:59.000Z

    heat available at night) Gas Turbine Work Table 3.2. StreamTurbine (small turbine) Gas Turbine Parasitic Power BFW PumpHours) Generator Terminals Gas Turbine Parasitic Power BFW

  1. Design of organic Rankine cycles for conversion of waste heat in a polygeneration plant

    E-Print Network [OSTI]

    DiGenova, Kevin (Kevin J.)

    2011-01-01T23:59:59.000Z

    Organic Rankine cycles provide an alternative to traditional steam Rankine cycles for the conversion of low grade heat sources, where steam cycles are known to be less efficient and more expensive. This work examines organic ...

  2. Heating control methodology in coke oven battery at Rourkela Steel Plant

    SciTech Connect (OSTI)

    Bandyopadhyay, S.S.; Parthasarathy, L.; Gupta, A.; Bose, P.R.; Mishra, U.

    1996-12-31T23:59:59.000Z

    A methodology of heating control was evolved incorporating temperature data generated through infra-red sensor at quenching station and thermocouples specially installed in the gooseneck of coke oven battery No. 3 of RSP. Average temperature of the red-hot coke as pushed helps in diagnosis of the abnormal ovens and in setting the targeted battery temperature. A concept of coke readiness factor (Q) was introduced which on optimization resulted in lowering the specific heat consumption by 30 KCal/Kg.

  3. Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?

    E-Print Network [OSTI]

    Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

    2004-01-01T23:59:59.000Z

    in electricity generation, relative to IOU plants in stateselectricity generation sector restructuring in the United States on plant-plant over the year, measured by annual net megawatt-hours of electricity generation,

  4. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08T23:59:59.000Z

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study therefore determines the steam cycle parameters and combustion technology that would yield the lowest cost of electricity (COE) for the next generation of coal-fired steam power plants. The second part of the study (Repowering) explores the means of upgrading the efficiency and output of an older existing coal fired steam power plant. There are currently more than 1,400 coal-fired units in operation in the United States generating about 54 percent of the electricity consumed. Many of these are modern units are clean and efficient. Additionally, there are many older units in excellent condition and still in service that could benefit from this repowering technology. The study evaluates the technical feasibility, thermal performance, and economic viability of this repowering concept.

  5. Modeling Improvements for Air Source Heat Pumps using Different Expansion Devices at Varied Charge Levels Part II

    SciTech Connect (OSTI)

    Shen, Bo [ORNL

    2011-01-01T23:59:59.000Z

    This paper describes steady-state performance simulations performed on a 3-ton R-22 split heat pump in heating mode. In total, 150 steady-state points were simulated, which covers refrigerant charge levels from 70 % to 130% relative to the nominal value, the outdoor temperatures at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C), indoor air flow rates from 60% to 150% of the rated air flow rate, and two types of expansion devices (fixed orifice and thermostatic expansion valve). A charge tuning method, which is to calibrate the charge inventory model based on measurements at two operation conditions, was applied and shown to improve the system simulation accuracy significantly in an extensive range of charge levels. In addition, we discuss the effects of suction line accumulator in modeling a heat pump system using either a fixed orifice or thermal expansion valve. Last, we identify the issue of refrigerant mass flow mal-distribution at low charge levels and propose an improved modeling approach.

  6. Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods

    SciTech Connect (OSTI)

    Donald Olander

    2005-08-24T23:59:59.000Z

    A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

  7. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    SciTech Connect (OSTI)

    Jurns, John M. [European Spallation Source ESS AB, P.O. Box 176, 221 00 Lund (Sweden); Bšck, Harald [Sweco Industry AB, P.O. Box 286, 201 22 MalmŲ (Sweden); Gierow, Martin [Lunds Energikoncernen AB, P.O. Box 25, 221 00 Lund (Sweden)

    2014-01-29T23:59:59.000Z

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  8. Energy Conservation Through Heating/Cooling Retrofits in Small and Medium-Sized Industrial Plants

    E-Print Network [OSTI]

    Saman, N.; Eggebrecht, J.

    .1O/MCF). The estimated implementation cost is $6524 resulting in a simple payback period of 2.2 years. 2- HVAC Controls and Operations Manual thermostats were suggested to be replaced by programmable thermostats at different industrial plants... office areas. We will discuss three examples that involve plants manufacturing drill bits for the petroleum industry, soft drinks and soft drink syrups, and newspaper industries [7,8,9]. For the drill bits industry, none of the several thermostats...

  9. Continuous Improvement and the Safety Case for the Waste Isolation Pilot Plant Geologic Repository - 13467

    SciTech Connect (OSTI)

    Van Luik, Abraham; Patterson, Russell; Nelson, Roger [US Department of Energy, Carlsbad Field Office, 4021 S. National parks Highway, Carlsbad, NM 88220 (United States)] [US Department of Energy, Carlsbad Field Office, 4021 S. National parks Highway, Carlsbad, NM 88220 (United States); Leigh, Christi [Sandia National Laboratories Carlsbad Operations, 4100 S. National parks Highway, Carlsbad, NM 88220 (United States)] [Sandia National Laboratories Carlsbad Operations, 4100 S. National parks Highway, Carlsbad, NM 88220 (United States)

    2013-07-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is a geologic repository 2150 feet (650 m) below the surface of the Chihuahuan desert near Carlsbad, New Mexico. WIPP permanently disposes of transuranic waste from national defense programs. Every five years, the U.S. Department of Energy (DOE) submits an application to the U.S. Environmental Protection Agency (EPA) to request regulatory-compliance re-certification of the facility for another five years. Every ten years, DOE submits an application to the New Mexico Environment Department (NMED) for the renewal of its hazardous waste disposal permit. The content of the applications made by DOE to the EPA for re-certification, and to the NMED for permit-renewal, reflect any optimization changes made to the facility, with regulatory concurrence if warranted by the nature of the change. DOE points to such changes as evidence for its having taken seriously its 'continuous improvement' operations and management philosophy. Another opportunity for continuous improvement is to look at any delta that may exist between the re-certification and re-permitting cases for system safety and the consensus advice on the nature and content of a safety case as being developed and published by the Nuclear Energy Agency's Integration Group for the Safety Case (IGSC) expert group. DOE at WIPP, with the aid of its Science Advisor and teammate, Sandia National Laboratories, is in the process of discerning what can be done, in a reasonably paced and cost-conscious manner, to continually improve the case for repository safety that is being made to the two primary regulators on a recurring basis. This paper will discuss some aspects of that delta and potential paths forward to addressing them. (authors)

  10. A Proposed Method for Improving Residential Heating Energy Estimates Based on Billing Data

    E-Print Network [OSTI]

    Lee, A. D.; Hadley, D. L.

    1988-01-01T23:59:59.000Z

    on these homes by the Bonneville Power Administration (Bonneville) and Pacific Power. Manufactured home billing data, for four years, and 15-min. measured space-heating data for a subset of homes, for two years, were available to us for analysis. Data were...

  11. Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981

    SciTech Connect (OSTI)

    Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

    1981-06-01T23:59:59.000Z

    A system was developed for utilizing nearby low temperature geothermal energy to heat two high-rate primary anaerobic digesters at the San Bernardino Wastewater Treatment Plant. The geothermal fluid would replace the methane currently burned to fuel the digesters. A summary of the work accomplished on the feasibility study is presented. The design and operation of the facility are examined and potentially viable applications selected for additional study. Results of these investigations and system descriptions and equipment specifications for utilizing geothermal energy in the selected processes are presented. The economic analyses conducted on the six engineering design cases are discussed. The environmental setting of the project and an analysis of the environmental impacts that will result from construction and operation of the geothermal heating system are discussed. A Resource Development Plan describes the steps that the San Bernardino Municipal Water Department could follow in order to utilize the resource. A preliminary well program and rough cost estimates for the production and injection wells also are included. The Water Department is provided with a program and schedule for implementing a geothermal system to serve the wastewater treatment plant. Regulatory, financial, and legal issues that will impact the project are presented in the Appendix. An outline of a Public Awareness Program is included.

  12. Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance

    E-Print Network [OSTI]

    Wray, Craig P.

    2008-01-01T23:59:59.000Z

    Heating, Ventilating, and Air-Conditioning: Recent Advancesthe energy efficiency of many heating, ventilating, and air-system, which delivers heating, cooling, and ventilation air

  13. The oxidation behavior of SiC sintered with Al-B-C and improved oxidation resistance via heat treatments

    SciTech Connect (OSTI)

    Sixta, M. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States). Materials Science Div.

    1997-12-01T23:59:59.000Z

    The oxidation behavior of high strength and high toughness SiC, sintered with Al, B, and C (ABC-SiC), was examined. Kinetic data were acquired and the parabolic rate constant for oxidation was determined and compared with literature data on various SiC materials. The role of secondary phases on the oxide morphology was explored. ABC-SiC was compared to commercially available SiC, Hexoloy, and SiC sintered with 10% yttrium aluminum garnet (YAG). Two-step sintering (pre-coarsening) was employed with holds for 48 hours at 600--1,600 C, prior to the typical hot-pressing conditions of 1,900 C for 1 hour, to change the chemistry and reduce the number of bubbles in the silica scale. The effects on the oxide thickness and integrity was examined as a function of the precoarsening heat treatment temperature. Additionally, the hot-pressed ABC-SiC was subjected to heat treatments (anneals) at 1,800 C for 1 hour in nitrogen, Ar, and vacuum environments, and the effects on subsequent oxidation were evaluated. The Ar and vacuum heat treatments dramatically improved the oxidation resistance of ABC-SiC. Finally, reoxidation experiments were performed to try to alter the surface chemistry of the SiC to improve the oxidation resistance. The four-point bend strengths and two-parameter Weibull plots of the most successful heat treatments were compared with the standard ABC-SiC to ensure that significant degradation did not result from altering the processing of the material.

  14. Slovak Centre of Biomass Use for Energy Wood Fired Heating Plant in Slovakia

    E-Print Network [OSTI]

    authorities CHP Planning issues Transport companies District Heating Sustainable communities Utilities Solar the object of interest of municipalities and management of companies, is the issue of how to reconstruct out processing companies are represented in the region. Forest sector produces about 1.5 million m3 of wood

  15. Slovak Centre of Biomass Use for Energy Wood Fired Heating Plant in Slovakia

    E-Print Network [OSTI]

    authorities CHP Planning issues Transport companies District Heating Sustainable communities Utilities Solar the object of interest of municipalities and management of companies, is the issue of how to reconstruct out. Wood exploitation is well developed: many forestry and wood processing companies are represented

  16. Plant Maintenance and Improvement Experiences for Control System in UCN 5 and 6

    SciTech Connect (OSTI)

    Choi, D.R.; Lee, K.B.; Kim, C.J.; Chung, Y.M. [Korea Hydro and Nuclear Power Co., Ltd., no. 84-1, Bugu-ri, Buk-Myeon, Ulchin-gun, Kyong-buk (Korea, Republic of)

    2006-07-01T23:59:59.000Z

    The Plant Control System (PCS) in Korean Standard Nuclear Power Plant (KSNP) is designed to perform data acquisition and transfer function via communication data links to control most of the field components such as pumps, fans, valves, dampers and circuit breakers. The PCS installed at UCN 5 and 6 for both safety related and non -safety related functions is microprocessor based system supplied by HF Controls. Safety related functions are provided by redundant trains of microprocessor based single loop controllers with direct connections to the field input/output instruments but non-safety related functions utilize a similar construction with the input/output boards to be remotely located in cabinet arrangements near the field components. Whatever the functions, the signals to control and monitor field devices are processed through communication master (CM), HFC distributed control system, which uses Multibus I back-plane design to accommodate the requirement of multiple processors. The complex programmable logic device (CPLD) mounted on the A233 back-plane of the CM controls the processors for an adequate access to the bus so that 16 microprocessor based circuitries acting as bus masters share the public memory properly through the common bus. The bus occupation of each processor should not affect overall system response time to keep appropriate system performance. This paper discusses the comparison evaluation between the difference priority techniques and hardware change on A233 back-plane to improve the communication methods, etc., as to the bus arbitration schemes of communication master(CM) applied to UCN site based on the waveform data acquired from A233 CPLD and HFC bus design specification. (authors)

  17. Constraining coronal heating: employing Bayesian analysis techniques to improve the determination of solar atmospheric plasma parameters

    E-Print Network [OSTI]

    Sotiris Adamakis; Anthony J. Morton-Jones; Robert W. Walsh

    2011-02-01T23:59:59.000Z

    One way of revealing the nature of the coronal heating mechanism is by comparing simple theoretical one dimensional hydrostatic loop models with observations at the temperature and/or density structure along these features. The most well-known method for dealing with comparisons like that is the $\\chi^2$ approach. In this paper we consider the restrictions imposed by this approach and present an alternative way for making model comparisons using Bayesian statistics. In order to quantify our beliefs we use Bayes factors and information criteria such as AIC and BIC. Three simulated datasets are analyzed in order to validate the procedure and assess the effects of varying error bar size. Another two datasets (Ugarte-Urra et al., 2005; Priest et al., 2000) are re-analyzed using the method described above. In one of these two datasets (Ugarte-Urra et al., 2005), due to the error estimates in the observed temperature values, it is not posible to distinguish between the different heating mechanisms. For this we suggest that both Classical and Bayesian statistics should be applied in order to make safe assumptions about the nature of the coronal heating mechanisms.

  18. Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications

    E-Print Network [OSTI]

    Williams, F. D. M.; Kondratas, H. M.

    1983-01-01T23:59:59.000Z

    and should enable substantial capital cost savings in new furnace applications. Recent performance improvements established from tests of high intensity combustion systems are described along with advances made in the analytical prediction of design...

  19. Solar power-propulsion plant using heat accumulators of solar energy

    SciTech Connect (OSTI)

    Popov, E.B.; Salnikov, V.A.; Fedik, I.I. [Scientific Production Association ``Lutch``, Podolsk, Moscow Region (Russia)

    1996-03-01T23:59:59.000Z

    This work covers the concept of a power-propulsion plant (PPP) for spacecraft. The PPP is intended: (a) to transport a spacecraft from one orbit to another to perform the spacecraft tasks; (b) to provide the spacecraft with electric power. {copyright} {ital 1996 American Institute of Physics.}

  20. Assessing the Impact of Heat Rejection Technology on CSP Plant Revenue: Preprint

    SciTech Connect (OSTI)

    Wagner, M. J.; Kutscher, C. F.

    2010-10-01T23:59:59.000Z

    This paper explores the impact of cooling technology on revenue for hybrid-cooled plants with varying wet cooling penetration for four representative locations in the American Southwest. The impact of ACC design-point initial temperature difference (ITD - the difference between the condensing steam temperature and ambient dry-bulb) is also included in the analysis.

  1. Cold side thermal energy storage system for improved operation of air cooled power plants

    E-Print Network [OSTI]

    Williams, Daniel David

    2012-01-01T23:59:59.000Z

    Air cooled power plants experience significant performance fluctuations as plant cooling capacity reduces due to higher daytime temperature than nighttime temperature. The purpose of this thesis is to simulate the detailed ...

  2. Heat Loading in ARIES Power Plants: Steady State, Transient and Off-Normal

    E-Print Network [OSTI]

    California at San Diego, University of

    = 45 MW PSOL = 290 MW Wth = 690 MJ Wmag int = 140 MJ Ip = 15.0 MA R = 6.20 m a = 2.0 m V = 837 m3 Asurf localized modes (ELMs) The timescale for ELMs to deliver power to the divertor or the first wall is a few x-U #12;Transient Heat Loading, ELMs The amount of energy released by an ELM has been scaled to the energy

  3. Eddy current inspection of power plant heat-exchanger tubing in the USA

    SciTech Connect (OSTI)

    Fishkin, P.; Nash, J. [MQS Inspection, Inc., Chicago, IL (United States)

    1995-02-01T23:59:59.000Z

    The latest experience in the eddy current inspection of heat-exchanger tubing by means of ID probes is reported and generalized. The authors demonstrate the feasibility of using modern, general-purpose, digital eddy current flaw detectors equipped with microprocessors, displays, the capability for recording inspection results on paper or magnetic media, sound and visual alarms. The NDE personnel qualification and certification requirements are described.

  4. Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition. Industrial Technologies Program (ITP) (Book)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling andProgram Improving

  5. Efficiency Improvements with Low Heat Rejection Concepts Applied to Low Temperature Combustion

    E-Print Network [OSTI]

    Penny, Michael

    2014-06-25T23:59:59.000Z

    combustion engines. Simultaneously, there are on-going efforts to increase fuel efficiency to curb usage of natural resources and emission of carbon. In general, improvements in one of these areas comes at the cost of the other; however, the results of a...

  6. Investigating the use of nanofluids to improve high heat flux cooling systems

    E-Print Network [OSTI]

    Barrett, T R; Flinders, K; Sergis, A; Hardalupas, Y

    2013-01-01T23:59:59.000Z

    The thermal performance of high heat flux components in a fusion reactor could be enhanced significantly by the use of nanofluid coolants, suspensions of a liquid with low concentrations of solid nanoparticles. However, before they are considered viable for fusion, the long-term behaviour of nanofluids must be investigated. This paper reports an experiment which is being prepared to provide data on nanofluid stability, settling and erosion in a HyperVapotron device. Procedures are demonstrated for nanofluid synthesis and quality assessment, and the fluid sample analysis methods are described. The end results from this long-running experiment are expected to allow an initial assessment of the suitability of nanofluids as coolants in a fusion reactor.

  7. COMING IN FROM THE COLD Improving District Heating Policy in Transition Economies

    E-Print Network [OSTI]

    unknown authors

    autonomous body which was established in November 1974 within the framework of the Organisation for Economic Co-operation and Development (OECD) to implement an international energy programme. It carries out a comprehensive programme of energy cooperation among twenty-six * of the OECDís thirty member countries. The basic aims of the IEA are: ēto maintain and improve systems for coping with oil supply disruptions; ēto promote rational energy policies in a global context through co-operative relations with nonmember countries, industry and international organisations; ēto operate a permanent information system on the international oil market; ēto improve the worldís energy supply and demand structure by developing alternative energy sources and increasing the efficiency of energy use; ēto assist in the integration of environmental and energy policies.

  8. Olkiluoto 1 and 2 - Plant efficiency improvement and lifetime extension-project (PELE) implemented during outages 2010 and 2011

    SciTech Connect (OSTI)

    Kosonen, M.; Hakola, M. [Teollisuuden Voima Oyj, F- 27160 Eurajoki (Finland)

    2012-07-01T23:59:59.000Z

    Teollisuuden Voima Oyj (TVO) is a non-listed public company founded in 1969 to produce electricity for its stakeholders. TVO is the operator of the Olkiluoto nuclear power plant. TVO follows the principle of continuous improvement in the operation and maintenance of the Olkiluoto plant units. The PELE project (Plant Efficiency Improvement and Lifetime Extension), mainly completed during the annual outages in 2010 and 2011, and forms one part of the systematic development of Olkiluoto units. TVO maintains a long-term development program that aims at systematically modernizing the plant unit systems and equipment based on the latest technology. According to the program, the Olkiluoto 1 and Olkiluoto 2 plant units are constantly renovated with the intention of keeping them safe and reliable, The aim of the modernization projects is to improve the safety, reliability, and performance of the plant units. PELE project at Olkiluoto 1 was done in 2010 and at Olkiluoto 2 in 2011. The outage length of Olkiluoto 1 was 26 d 12 h 4 min and Olkiluoto 2 outage length was 28 d 23 h 46 min. (Normal service-outage is about 14 days including refueling and refueling-outage length is about seven days. See figure 1) The PELE project consisted of several single projects collected into one for coordinated project management. Some of the main projects were as follows: - Low pressure turbines: rotor, stator vane, casing and turbine instrumentation replacement. - Replacement of Condenser Cooling Water (later called seawater pumps) pumps - Replacement of inner isolation valves on the main steam lines. - Generator and the generator cooling system replacement. - Low voltage switchgear replacement. This project will continue during future outages. PELE was a success. 100 TVO employees and 1500 subcontractor employees participated in the project. The execution of the PELE projects went extremely well during the outages. The replacement of the low pressure turbines and seawater pumps improved the efficiency of the plant units, and a power increase of nearly 20 MW was achieved at both plant units. PELE wonderfully manifests one of the strategic goals of our company; developing the competence of our in-house personnel by working in projects. (authors)

  9. The interrelationship between environmental goals, productivity improvement, and increased energy efficiency in integrated paper and steel plants

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    This report presents the results of an investigation into the interrelationships between plant-level productivity, energy efficiency, and environmental improvements for integrated pulp and paper mills and integrated steel mills in the US. Integrated paper and steel plants are defined as those facilities that use some form of onsite raw material to produce final products (for example, paper and paperboard or finished steel). Fully integrated pulp and paper mills produce onsite the pulp used to manufacture paper from virgin wood fiber, secondary fiber, or nonwood fiber. Fully integrated steel mills process steel from coal, iron ore, and scrap inputs and have onsite coke oven facilities.

  10. Evaluation on Energy Performance of Heating Plant System Installed Energy Saving Technologies

    E-Print Network [OSTI]

    Song, Y.; Akashi, Y.; Kuwahara, Y.; Baba, Y.; Iribe, M.

    2004-01-01T23:59:59.000Z

    of Production Area [GJ (MBtu)] Electric Consumption [MWh (MBtu)] Refrigerating Machines Pumps, Fans 2002 COP[-] Turbo Screw Iced-thermalSystem WholeSystem Figure3. Relation Between Cooling Water Temperature and the COP of Refrigerating machine and System 0 2 4... Production Area (North) Production Area (South) Water Treatment Plant 21Cells Unit (14.1MW) Turbo Refrigerating Machines (1.4MW, 2units/ 4.2MW,6units) Screw Refrigerating Machines (0.8MW, 2units) Iced-thermal Storage Tank (28.5GJ, 2units) HEX for Additional...

  11. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor

    SciTech Connect (OSTI)

    C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

    2005-06-01T23:59:59.000Z

    The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermal-hydraulic and efficiency points of view. These evaluations also determined which configurations and options do not appear to be feasible at the current time.

  12. Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant

    SciTech Connect (OSTI)

    Not Available

    2006-02-01T23:59:59.000Z

    This DOE Industrial Technologies Program spotlight describes how Rohm and Haas's Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

  13. Energy Conservation Through Improved Industrial Ventilation in Small and Medium-Sized Industrial Plants

    E-Print Network [OSTI]

    Saman, N. F.; Nutter, D. W.

    of the baghouses at the zinc plant and the main dust collector filter at the diapers plant, prevents high static pressure build up in the air cleaning system. The power savings (hp) associated with one inch rise in the static pressure was calculated from equations... of the baghouses at the zinc plant and the main dust collector filter at the diapers plant, prevents high static pressure build up in the air cleaning system. The power savings (hp) associated with one inch rise in the static pressure was calculated from equations...

  14. Improving Vortex Generators to Enhance the Performance of Air-Cooled Condensers in a Geothermal Power Plant

    SciTech Connect (OSTI)

    Manohar S. Sohal

    2005-09-01T23:59:59.000Z

    This report summarizes work at the Idaho National Laboratory to develop strategies to enhance air-side heat transfer in geothermal air-cooled condensers such that it should not significantly increase pressure drop and parasitic fan pumping power. The work was sponsored by the U.S. Department of Energy, NEDO (New Energy and Industrial Technology Development Organization) of Japan, Yokohama National University, and the Indian Institute of Technology, Kanpur, India. A combined experimental and numerical investigation was performed to investigate heat transfer enhancement techniques that may be applicable to largescale air-cooled condensers such as those used in geothermal power applications. A transient heat transfer visualization and measurement technique was employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements were obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that included four tube rows in a staggered array. Heat transfer and pressure drop measurements were also acquired in a separate multiple-tube row apparatus in the Single Blow Test Facility. In addition, a numerical modeling technique was developed to predict local and average heat transfer for these low-Reynolds number flows, with and without winglets. Representative experimental and numerical results were obtained that reveal quantitative details of local finsurface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. Heat transfer and pressure-drop results were obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500. The winglets were of triangular (delta) shape with a 1:2 or 1:3 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface heat transfer results indicate a significant level of heat transfer enhancement (in terms of Colburn j-factor) associated with deployment of the winglets with circular as well as oval tubes. In general, toe-in (common flow up) type winglets appear to have better performance than the toe-out (common flow down) type winglets. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. During the course of their independent research, all of the researchers have established that about 10 to 30% enhancement in Colburn j-factor is expected. However, actual increase in heat transfer rate from a heat exchanger employing finned tubes with winglets may be smaller, perhaps on the order of 2 to 5%. It is also concluded that for any specific application, more full-size experimentation is needed to optimize the winglet design for a specific heat exchanger application. If in place of a circular tube, an oval tube can be economically used in a bundle, it is expected that the pressure drop across the tube bundle with the application of vortex generators (winglets) will be similar to that in a conventional circular tube bundle. It is hoped that the results of this research will demonstrate the benefits of applying vortex generators (winglets) on the fins to improve the heat transfer from the air-side of the tube bundle.

  15. Tribology of improved transformation-toughened ceramics-heat engine test

    SciTech Connect (OSTI)

    Lilley, E.; Rossi, G.A.; Pelletier, P.J. (Norton Co., Northboro, MA (United States). Advanced Ceramics Div.)

    1992-04-01T23:59:59.000Z

    A short term study has been carried out to evaluate the suitability as cam roller followers of three ceria zirconia toughened aluminas and two yttria stabilized tetragonal zirconias (YTZPs) previously enhanced in programs supported by ORNL. Norton Si{sub 3}N{sub 4} (NBD-100) was also included in this study as a reference material, because it was known from work at Northwestern University that Si{sub 3}N{sub 4} to experienced little or no wear in this application, and NBD-100 is currently a successful commercial bearing material. The tribological studies were subcontracted to the Torrington Company. They found that in cam roller follower simulated tests that there was essentially no wear after 1 hour and 5 hours of testing detectable by weighing and concluded that all of these ceramics are, therefore, candidate materials. Because of the minute amounts of wear it was not possible to identify the wear mechanism or to make any correlations with the other physical properties which were evaluated such as MOR, K{sub IC} hardness, density and grain size. Phase transformation during rolling has been of interest in the tribology of zirconia contain materials. The least stable of the ceria zirconia toughened aluminas resulted in as much as 33% monoclinic phase after testing whereas the yttria stabilized (TTZ) contained very little of this transformed phase. The results of this study show that oxide materials can now be considered as candidates for cam roller followers in heat engines.

  16. Environmental improvements resulting from the use of renewable energy sources and nonpolluting fuels and technologies with district heating and cooling

    SciTech Connect (OSTI)

    Kainlauri, E.O. [Iowa State Univ., Ames, IA (United States)

    1996-12-31T23:59:59.000Z

    The use of district heating and cooling (DHC) for a group of buildings or on a city-wide basis does by itself usually improve the local environmental conditions, regardless of the type of fuel used, as the DHC system replaces a larger number of individual units and is able to utilize anti-pollution and emission-cleaning devices at a central location. The DHC system may also be able to use several alternative choices for fuel, including renewable energy sources, depending on both economic and environmentally required conditions. The DHC systems are also safe and clean for the users, eliminating the need for fuel-burning equipment in their buildings. Solar energy is being utilized to a small degree in district heating systems, sometimes with the assistance of energy storage facilities, to reduce the amount of fuel needed to burn for the total system. The use of municipal and industrial waste as fuel helps reduce the amount of fossil fuel being burned and also reduces the areas of landfill needed to dispose wastes, but special care must be exercised to avoid releases of toxic gases into the atmosphere. This paper describes a few examples of the use of solar energy and energy storage in community-wide systems (Lyckebo in Sweden, Kerava in Finland), the use of natural gas in DHC (Lappenranta and Lahti in Finland), and applications of heat pump utilization in DHC (Uppsala wastewater and Stockholm preheat system in Sweden). Some projections are made of several alternative fuels derived from biomass, recycling, and other possible technologies in the future development of waste-handling and DHC systems. A brief discussion is included regarding the environmental concerns and legislative development in the US and elsewhere in the world.

  17. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 1: Cost of feedstock supply logistics

    SciTech Connect (OSTI)

    Sokhansanj, Shahabaddine [ORNL; Mani, Sudhagar [University of Georgia; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

    2010-01-01T23:59:59.000Z

    Supply of corn stover to produce heat and power for a typical 170 dam3 dry mill ethanol plant is proposed. The corn ethanol plant requires 5.6 MW of electricity and 52.3 MW of process heat, which creates the annual stover demand of as much as 140 Gg. The corn stover supply system consists of collection, preprocessing, transportation and on-site fuel storage and preparation to produce heat and power for the ethanol plant. Economics of the entire supply system was conducted using the Integrated Biomass Supply Analysis and Logistics (IBSAL) simulation model. Corn stover was delivered in three formats (square bales, dry chops and pellets) to the combined heat and power plant. Delivered cost of biomass ready to be burned was calculated at 73 $ Mg-1 for bales, 86 $ Mg-1 for pellets and 84 $ Mg-1 for field chopped biomass. Among the three formats of stover supply systems, delivered cost of pelleted biomass was the highest due to high pelleting cost. Bulk transport of biomass in the form of chops and pellets can provide a promising future biomass supply logistic system in the US, if the costs of pelleting and transport are minimized.

  18. Gas turbine cycles with solid oxide fuel cells. Part 1: Improved gas turbine power plant efficiency by use of recycled exhaust gases and fuel cell technology

    SciTech Connect (OSTI)

    Harvey, S.P.; Richter, H.J. (Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering)

    1994-12-01T23:59:59.000Z

    The energy conversion efficiency of the combustion process can be improved if immediate contact of fuel and oxygen is prevent4ed and an oxygen carrier is used. In a previous paper (Harvey et al., 1992), a gas turbine cycle was investigated in which part of the exhaust gases are recycled and used as oxygen-carrying components. For the optimized process, a theoretical thermal efficiency of 66.3% was achieved, based on the lower heating value (LHV) of the methane fuel. One means to further improve the exergetic efficiency of a power cycle is to utilize fuel cell technology. Solid oxide fuel cells (SOFC) have many features that make them attractive for utility and industrial applications. In this paper, the authors will therefore consider SOFC technology. In view of their high operating temperatures and the incomplete nature of the fuel oxidation process, fuel cells must be combined with conventional power generation technology to develop power plant configurations that are both functional and efficient. In this paper, the authors will show how monolithic SOFC (MSOFC) technology may be integrated into the previously described gas turbine cycle using recycled exhaust gases as oxygen carriers. An optimized cycle configuration will be presented based upon a detailed cycle analysis performance using Aspen Plus[trademark] process simulation software and a MSOFC fuel cell simulator developed by Argonne National Labs. The optimized cycle achieves a theoretical thermal efficiency of 77.7%, based on the LHV of the fuel.

  19. Energy Savings and Comfort Improvements through Plant- and Operating mode Optimisation Demonstrated by Means of Project Examples†

    E-Print Network [OSTI]

    Muller, C.

    2008-01-01T23:59:59.000Z

    Saving energy and improving comfort through plant optimization using practical examples Dipl.-Ing. Christian Mueller Honeywell Building Solutions GmbH ESL-IC-08-10-67a Proceedings of the Eighth International Conference for Enhanced Building...-22, 2008 Thank you for your attention! Dipl.-Ing. Christian Mueller christian.mueller@honeywell.com ESL-IC-08-10-67a Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 ...

  20. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01T23:59:59.000Z

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  1. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    SciTech Connect (OSTI)

    Wan, Jinrong; Stacey, Gary; Stacey, Minviluz; Zhang, Xuecheng

    2013-10-15T23:59:59.000Z

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  2. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    SciTech Connect (OSTI)

    Wan, Jinrong (Columbia, MO); Stacey, Gary (Columbia, MO); Stacey, Minviluz (Columbia, MO); Zhang, Xuecheng (Columbia, MO)

    2012-01-17T23:59:59.000Z

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  3. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.

    SciTech Connect (OSTI)

    Belle R. Upadhyaya; J. Wesley Hines

    2004-09-27T23:59:59.000Z

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. (6) Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform. (7) Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. (8) Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. (9) Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. A journal manuscript was submitted for publication. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.

  4. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2.

    SciTech Connect (OSTI)

    Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu; Huang, Xuedong; Penha, Rosani, L.; Perillo, Sergio, R.; Zhao, Ke

    2005-06-03T23:59:59.000Z

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬? September 2004. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬∑ Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform

  5. Improving Energy Efficiency at U.S. Plastics Manufacturing Plants: Summary Report and Case Studies

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    Industrial Technologies Programs BestPractices report based on a comprehensive plant assessment project with ITP's Industrial Assessment Center, The Society of the Plastics Industry, Inc., and several of its member companies.

  6. ECOTOXICITY TEST AND ECOSCORES TO IMPROVE POLLUTED SOILS MANAGEMENT: CASE OF A SECONDARY LEAD SMELTER PLANT.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SMELTER PLANT. Yann FOUCAULT 1,2,3 (y.foucault@stc-metaux.com), Marie-José DURAND 4 (marie-urban areas, trace metals are often present in soils [4]; atmosphere emissions by smelters being one

  7. Use of prolines for improving growth and other properties of plants and algae

    DOE Patents [OSTI]

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2003-07-15T23:59:59.000Z

    Increasing the concentration of prolines, such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that over-express glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  8. Use of prolines for improving growth and other properties of plants and algae

    DOE Patents [OSTI]

    Unkefer, Pat J. (Los Alamos, NM); Knight, Thomas J. (Portland, ME); Martinez, Rodolfo A. (Santa Fe, NM)

    2003-04-29T23:59:59.000Z

    Increasing the concentration of prolines such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that overexpress glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramnate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  9. Use of prolines for improving growth and other properties of plants and algae

    DOE Patents [OSTI]

    Unkefer, Pat J. (Los Alamos, NM); Knight, Thomas J. (Portland, ME); Martinez, Rodolfo A. (Santa Fe, NM)

    2004-12-14T23:59:59.000Z

    Increasing the concentration of prolines, such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that over-express glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  10. An Improved Procedure for Developing a Calibrated Hourly Simulation Model of an Electrically Heated and Cooled Commercial Buildling

    E-Print Network [OSTI]

    Bou-Saada, Tarek Edmond

    lighting, energy efficient heat pumps, a photovoltaic system, envelope measures, and a solar domestic water heating system. To accomplish this, a DOE-2 baseline model was calibrated to the measured hourly data and compared to a building model constructed...

  11. Review of nuclear power plant safety cable aging studies with recommendations for improved approaches and for future work.

    SciTech Connect (OSTI)

    Gillen, Kenneth Todd; Bernstein, Robert

    2010-11-01T23:59:59.000Z

    Many U. S. nuclear power plants are approaching 40 years of age and there is a desire to extend their life for up to 100 total years. Safety-related cables were originally qualified for nuclear power plant applications based on IEEE Standards that were published in 1974. The qualifications involved procedures to simulate 40 years of life under ambient power plant aging conditions followed by simulated loss of coolant accident (LOCA). Over the past 35 years or so, substantial efforts were devoted to determining whether the aging assumptions allowed by the original IEEE Standards could be improved upon. These studies led to better accelerated aging methods so that more confident 40-year lifetime predictions became available. Since there is now a desire to potentially extend the life of nuclear power plants way beyond the original 40 year life, there is an interest in reviewing and critiquing the current state-of-the-art in simulating cable aging. These are two of the goals of this report where the discussion is concentrated on the progress made over the past 15 years or so and highlights the most thorough and careful published studies. An additional goal of the report is to suggest work that might prove helpful in answering some of the questions and dealing with some of the issues that still remain with respect to simulating the aging and predicting the lifetimes of safety-related cable materials.

  12. Low cost improvements in air pollution control for ARMCO's Ashland, Kentucky Works Sinter Plant

    SciTech Connect (OSTI)

    Felton, S.S. (ARMCO Inc., Ashland, KY (US))

    1987-01-01T23:59:59.000Z

    Particulate emissions from sinter plants can contribute a significant percentage of the total emissions from integrated steelmaking facilities. A well-known sinter plant air pollution phenomenon is called blue haze emissions. These emissions are caused when hydrocarbons introduced by filter cake, coke breeze, and mill scale are not burned in the sintering process and pass through the system as a very finely divided stable dispersed fog. The Sinter Plant at Ashland Works consists of Dravo-Lurgi traveling grate sintering machine which processes a mixture of materials including iron ore, iron pellet fines, blast furnace flue dust, limestone, melt shop slag, coke breeze and sinter return fines. This system is illustrated by the authors. Upon completion of the sintering process, the hot agglomerated sinter product is discharged to the sinter crusher. The sinter is then cooled and screened for use in Ashland Works' Amanda Blast Furnace. This system is illustrated. The Ashland Works Sinter Plant complex consists of a Sintering Machine Building, Sinter Screens Building and Ore Screens Building. For the purposes of this study, the Ore Transfer Tower Building was also included. The general layout of the complex is illustrated.

  13. Reducing Pump Power Consumption by 40% (1000 KW) Through Improved Pump Management in a Central Plant

    E-Print Network [OSTI]

    Deng, S.; Liu, M.; Turner, W. D.

    1998-01-01T23:59:59.000Z

    Chilled water system data collection and field measurements performed at the Central Utility Plant of Texas A&M University revealed that 30 - 50 % of the primary pump head is consumed by manual and automatic valves being operated in a partially...

  14. Improving the Capacity or Output of a Steam Turbine Generator at XYZ Power Plant in Illinois

    E-Print Network [OSTI]

    Amoo-Otoo, John Kweku

    2006-05-19T23:59:59.000Z

    Competition has been a prime mover in the energy industry and there is the drive to increase performance of steam turbine-driven equipment. Availability of a unit is also critical to the operation of a plant and has also provided the fundamental...

  15. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    DOE Patents [OSTI]

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29T23:59:59.000Z

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  16. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    -expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat...

  17. COKEMASTER: Coke plant management system

    SciTech Connect (OSTI)

    Johanning, J.; Reinke, M. [Krupp Koppers GmbH, Essen (Germany)

    1996-12-31T23:59:59.000Z

    To keep coke utilization in ironmaking as competitive as possible, the potential to improve the economics of coke production has to be utilized. As one measure to meet this need of its customers, Krupp Koppers has expanded its existing ECOTROL computer system for battery heating control to a comprehensive Coke Plant Management System. Increased capacity utilization, lower energy consumption, stabilization of plant operation and ease of operation are the main targets.

  18. The Plant Cell, Vol. 11, 11651178, June 1999, www.plantcell.org 1999 American Society of Plant Physiologists A Chloroplast-Targeted Heat Shock Protein 70 (HSP70)

    E-Print Network [OSTI]

    Physiologists A Chloroplast-Targeted Heat Shock Protein 70 (HSP70) Contributes to the Photoprotection and Repair conditions exhibited a faster rate of recovery from photoinhibition than did dark-grown cells that were of several nuclear heat shock protein 70 (HSP70) genes, including HSP70B, encoding a chloroplast

  19. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    SciTech Connect (OSTI)

    Spitler, J.D.; Culling, J.R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30T23:59:59.000Z

    Ground-source heat pump (GSHP) systems are perhaps the most widely used ďsustainableĒ heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  20. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOE Patents [OSTI]

    Berry, Gregory F. (Naperville, IL); Minkov, Vladimir (Skokie, IL); Petrick, Michael (Joliet, IL)

    1988-01-01T23:59:59.000Z

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  1. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOE Patents [OSTI]

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02T23:59:59.000Z

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01T23:59:59.000Z

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  3. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  4. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    2002a, 2002b). The power-to- heat ratio of a steam turbine-of electricity. The power-to-heat ratio of a gas turbine-co-generation, combined heat & power and renewable energy

  6. The French nuclear power plant reactor building containment contributions of prestressing and concrete performances in reliability improvements and cost savings

    SciTech Connect (OSTI)

    Rouelle, P.; Roy, F. [Electricite de France, Paris (France). Engineering and Construction Div.

    1998-12-31T23:59:59.000Z

    The Electricite de France`s N4 CHOOZ B nuclear power plant, two units of the world`s largest PWR model (1450 Mwe each), has earned the Electric Power International`s 1997 Powerplant Award. This lead NPP for EDF`s N4 series has been improved notably in terms of civil works. The presentation will focus on the Reactor Building`s inner containment wall which is one of the main civil structures on a technical and safety point of view. In order to take into account the necessary evolution of the concrete technical specification such as compressive strength low creep and shrinkage, the HSC/HPC has been used on the last N4 Civaux 2 NPP. As a result of the use of this type of professional concrete, the containment withstands an higher internal pressure related to severe accident and ensures higher level of leak-tightness, thus improving the overall safety of the NPP. On that occasion, a new type of prestressing has been tested locally through 55 C 15 S tendons using a new C 1500 FE Jack. These updated civil works techniques shall allow EDF to ensure a Reactor Containment lifespan for more than 50 years. The gains in terms of reliability and cost saving of these improved techniques will be developed hereafter.

  7. Improved efficiency and precise temperature control of low-frequency induction-heating pure iron vapor source on ECR ion source

    SciTech Connect (OSTI)

    Kato, Y.; Takenaka, T.; Yano, K.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.; Sato, F.; Iida, T. [Osaka Univ., 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); National Institute of Radiological Science (NIRS), 4-9-1 Anagawa, Inage, Chiba, 263-8555 (Japan); Bio-Nano Electronics Research Centre, Toyo Univ., 2100 Kuzirai, Kawagoe, Saitama, 350-8585 (Japan); Osaka Univ., 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan)

    2012-11-06T23:59:59.000Z

    Multiply charged ions to be used prospectively are produced from solid pure material in an electron cyclotron resonance ion source (ECRIS). Recently a pure iron source is also required for the production of caged iron ions in the fullerene in order to control cells in vivo in bio-nano science and technology. We adopt directly heating iron rod by induction heating (IH) because it has non-contact with insulated materials which are impurity gas sources. We choose molybdenum wire for the IH coils because it doesn't need water cooling. To improve power efficiency and temperature control, we propose to the new circuit without previously using the serial and parallel dummy coils (SPD) for matching and safety. We made the circuit consisted of inductively coupled coils which are thin-flat and helix shape, and which insulates the IH power source from the evaporator. This coupling coils circuit, i.e. insulated induction heating coil transformer (IHCT), can be move mechanically. The secondary current can be adjusted precisely and continuously. Heating efficiency by using the IHCT is much higher than those of previous experiments by using the SPD, because leakage flux is decreased and matching is improved simultaneously. We are able to adjust the temperature in heating the vapor source around melting point. And then the vapor pressure can be controlled precisely by using the IHCT. We can control {+-}10K around 1500 Degree-Sign C by this method, and also recognize to controlling iron vapor flux experimentally in the extreme low pressures. Now we come into next stage of developing induction heating vapor source for materials with furthermore high temperature melting points above 2000K with the IHCT, and then apply it in our ECRIS.

  8. Direct containment heating experiments in Zion Nuclear Power Plant Geometry using prototypic core materials, the U2 test

    SciTech Connect (OSTI)

    Binder, J.L.; McUmber, L.M.; Spencer, B.W.

    1993-05-01T23:59:59.000Z

    A third Direct Containment Heating (DCH) experiments has been completed which utilizes prototypic core materials. The reactor material tests are a follow on to the Integral Effects Testing (IET) DCH program. The IET series of tests primarily addressed the effect of scale on DCH phenomena. This was accomplished by completing a series of counterpart tests in 1/40 and 1/10th linear scale DCH facilities at Argonne National Laboratory (ANL) and Sandia National Laboratories (SNL), respectively. The IET experiments modeled the Zion Nuclear Power Plant Geometry. The scale models included representations of the primary system volume, RPV lower head, cavity and instrument tunnel, and the lower containment structures. The experiments were steam driven at nominally 6.2 MPa. Iron-alumina thermite with chromium was used as a core melt simulant in the IET experiments. While the IET experiments at ANL and SNL provided useful data on the effect of scale on DCH phenomena, a significant question concerns the potential experiment distortions introduced by the use of non-prototypic iron/alumina thermite. Therefore, further testing with prototypic materials has been carried out at ANL. A prototypic core melt was produced for the experiment by first mixing powders of uranium, zirconium, iron oxide (Fe{sub 2}O{sub 3}), and chromium trioxide (CrO{sub 3}). When ignited the powders react exothermically to produce a molten mixture. The amounts of each powder were selected to produce the anticipated composition for a core melt following a station blackout: 57.8 mass% UO{sub 2} 10.5 mass% ZrO{sub 2} 14.3 mass% Fe, 13.7 mass% Zr, and 3.7 mass% Cr. Development tests measured the initial melt temperature to be in the range of 2600 - 2700 K. The total thermal specific energy content of the melt at 2700 K is 1.2 MJ/kg compared to 2.25 MJ/kg for the iron-alumina simulant at its measured initial temperature of 2500 K.

  9. Additional Steam Traps Increase Production of a Drum Oven at a Petroleum Jelly Plant

    SciTech Connect (OSTI)

    Not Available

    2002-03-01T23:59:59.000Z

    Additional steam traps were installed on the drum oven at a petroleum jelly production facility at an ExxonMobil plant in Nigeria. The installation improved heat transfer and saved energy.

  10. Extension and improvement of Central Station District heating budget period 1 and 2, Krakow Clean Fossil Fuels and Energy Efficiency Program. Final report

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    Project aim was to reduce pollution levels in the City of Krakow through the retirement of coal-fired (hand and mechanically-stoked) boiler houses. This was achieved by identifying attractive candidates and connecting them to the Krakow district heating system, thus permitting them to eliminate boiler operations. Because coal is less costly than district hot water, the district heating company Miejskie Przedsiebiorstwo Energetyki Cieplnej S.A., henceforth identified as MPEC, needed to provide potential customers with incentives for purchasing district heat. These incentives consisted of offerings which MPEC made to the prospective client. The offerings presented the economic and environmental benefits to district heating tie-in and also could include conservation studies of the facilities, so that consumption of energy could be reduced and the cost impact on operations mitigated. Because some of the targeted boiler houses were large, the capacity of the district heating network required enhancement at strategic locations. Consequently, project construction work included both enhancement to the district piping network as well as facility tie-ins. The process of securing new customers necessitated the strengthening of MPEC`s competitive position in Krakow`s energy marketplace, which in turn required improvements in marketing, customer service, strategic planning, and project management. Learning how US utilities address these challenges became an integral segment of the project`s scope.

  11. Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief. Industrial Technologies Program (ITP) (Brochure).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |toVEHICLEof EnergyPerformance |Waste Heat

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01T23:59:59.000Z

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  13. An Improved Procedure for Developing a Calibrated Hourly Simulation Model of an Electrically Heated and Cooled Commercial Buildling†

    E-Print Network [OSTI]

    Bou-Saada, Tarek Edmond

    1994-01-01T23:59:59.000Z

    lighting, energy efficient heat pumps, a photovoltaic system, envelope measures, and a solar domestic water heating system. To accomplish this, a DOE-2 baseline model was calibrated to the measured hourly data and compared to a building model constructed... to unpredictable daily habits; for example opening or closing window blinds which have a direct impact on solar gains, or the inconsistent use of lights and office equipment. Tenant influence was also observed in Kaplan et al. (1990a) as reported in Section 2...

  14. Genetic Engineering of Plants to Improve Phytoremediation of Chlorinated Hydrocarbons in Groundwater

    SciTech Connect (OSTI)

    Strand, Stuart E.

    2004-12-01T23:59:59.000Z

    I. Mechanism of halogenated hydrocarbon oxidation We are using poplar culture cells to determine the pathway of TCE metabolism. In our earlier work, we found that trichloroethanol (TCEOH) is a major early intermediate. Our studies this year have focused on the steps that follow this toxic intermediate. We did several experiments to track the disappearance of TCEOH after the cells were removed from TCE. We could conclude that TCEOH is not an end-product but is rapidly degraded. Six flasks of poplar liquid suspension cells were exposed to a level of 50 {micro}g/ml TCE for three days. Three of the cultures were subjected to MTBE extractions to quantify the levels of TCEOH produced. The cells of the remaining three cultures were then pelleted and resuspended in fresh medium. After three more days, these were also subjected to MTBE extractions. The samples were analyzed by GC-ECD. After the three days of further metabolism, an average of 91% of the trichloroethanol was gone. When similar experiments were done with intact plants and both free and conjugated TCEOH were quantified, a similar rapid decline in both forms was seen (Shang, 2001). Therefore, it seems probable that similar mechanisms are taking place in both poplar suspension cells and whole poplar plants, so we continued to do our studies with the suspension cells. Metabolism of trichloroethanol may go through trichloroacetic acid (TCAA) prior to dehalogenation. To test this possibility, we exposed cells to TCE and analyzed for TCAA over time. The cultures were analyzed after 4, 5, 6, and 14 days from TCE exposure. We did not detect any significant amount of TCAA above the background in undosed cells. To determine if trichloroethanol itself is directly dehalogenated, we analyzed TCE-exposed cells for the presence of dichloroethanol. Undosed cells did not have any of the DCEOH peak but TCE-dosed cells that produced the highest levels of trichloroethanol did have a small DCEOH peak. Cultures that did not produce high levels of TCEOH did not have the DCEOH peak. This result repeated in two independent experiments. We decided to expose cells directly to TCEOH and look for DCEOH in the cell extracts. After one week of exposure, the culture cells produced consistent levels of DCEOH of approximately 0.02% of the TCEOH dose. However, when we did a control reaction with no cells, DCEOH was present, indicating that the TCEOH degrades in the absence of cells. We are currently conducting the same experiments with newly-purchased chemicals and in darkness (by wrapping the culture flasks in foil). We have had success using tribromoethanol as a surrogate for trichloroethanol in studying the dehalogenation reaction in poplar cells. We had previously shown that tribromoethanol is steadily metabolized over time in poplar culture cells, producing free bromide ion. TBEOH-dosed dead cells and no cell controls did not have any bromide ion production. We are currently using this system to test P450 inhibitors to determine if dehalogenation of TBEOH is through this mechanism. We have recently purchased tribromoethylene as a more easily monitored surrogate for TCE. We will conduct mass balance experiments to determine what percentage of the bromide is released from tribromoethylene.

  15. IMPROVING ENERGY EFFICIENCY VIA OPTIMIZED CHARGE MOTION AND SLURRY FLOW IN PLANT SCALE SAG MILLS

    SciTech Connect (OSTI)

    Raj K. Rajamani; Sanjeeva Latchireddi; Sravan K. Prathy; Trilokyanath Patra

    2005-12-01T23:59:59.000Z

    The U.S. mining industry operates approximately 80 semi-autogenesis grinding mills (SAG) throughout the United States. Depending on the mill size the SAG mills draws between 2 MW and 17 MW. The product from the SAG mill is further reduced in size using pebble crushers and ball mills. Hence, typical gold or copper ore requires between 2.0 and 7.5 kWh per ton of energy to reduce the particle size. Considering a typical mining operation processes 10,000 to 100,000 tons per day the energy expenditure in grinding is 50 percent of the cost of production of the metal. A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Kennecott Utah Copper Corporation, Process Engineering Resources Inc. and others. In the current project, Cortez Gold Mines played a key role in facilitating the 26-ft SAG mill at Cortez as a test mill for this study. According to plant personnel, there were a number of unscheduled shut downs to repair broken liners and the mill throughput fluctuated depending on ore type. The University team had two softwares, Millsoft and FlowMod to tackle the problem. Millsoft is capable of simulating the motion of charge in the mill. FlowMod calculates the slurry flow through the grate and pulp lifters. Based on this data the two models were fine-tuned to fit the Cortez SAG will. In the summer of 2004 a new design of shell lifters were presented to Cortez and in September 2004 these lifters were installed in the SAG mill. By December 2004 Cortez Mines realized that the SAG mill is drawing approximately 236-kW less power than before while maintaining the same level of production. In the first month there was extreme cycling and operators had to learn more. Now the power consumption is 0.3-1.3 kWh/ton lower than before. The actual SAG mill power draw is 230-370 kW lower. Mill runs 1 rpm lesser in speed on the average. The re-circulation to the cone crusher is reduced by 1-10%, which means more efficient grinding of critical size material is taking place in the mill. All of the savings have resulted in reduction of operating cost be about $0.023-$0.048/ ton.

  16. Improved life of die casting dies of H13 steel by attaining improved mechanical properties and distortion control during heat treatment. Year 1 report, October 1994--September 1995

    SciTech Connect (OSTI)

    Wallace, J.F.; Schwam, D. [Case Western Reserve Univ., Cleveland, OH (United States)

    1995-03-01T23:59:59.000Z

    Optimum heat treatment of dies (quenching) is critical in ensuring satisfactory service performance: rapid cooling rates increase the thermal fatigue/heat checking resistance of the steel, although very fast cooling rates can also lead to distortion and lower fracture toughness, increasing the danger of catastrophic fracture. Goal of this project is to increase die life by using fast enough quenching rates (> 30 F/min ave cooling rate from 1750 to 550 F, 1/2 in. below working surfaces) to obtain good toughness and fatigue resistance in Premium grade H-13 steel dies. An iterative approach of computer modeling validated by experiment was taken. Cooling curves during gas quenching of H-13 blocks and die shapes were measured under 2, 5, and 7.5 bar N2 and 4 bar Ar. Resulting dimensional changes and residual stresses were determined. To facilitate the computer modeling work, a database of H-13 mechanical and physical properties was compiled. Finite element analysis of the heat treated shapes was conducted. Good fit of modeled vs measured quenched rates was demonstrated for simple die shapes. The models predict well the phase transformation products from the quench. There is good fit between predicted and measured distortion contours; however magnitude of predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required.

  17. Emerging Technologies in Wood Energy Wood can already be used to produce heat and

    E-Print Network [OSTI]

    established technologies of District Energy and Combined Heat and Power plants. Using wood to makeEmerging Technologies in Wood Energy Wood can already be used to produce heat and electricity using such as flooring and siding. In Europe, torrefaction has been explored to produce an improved wood pellet

  18. 7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant

    E-Print Network [OSTI]

    Bahrami, Majid

    7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ļC at a specified rate and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

  19. Development of an On-Line Expert System: Heat Rate Degradation Expert System Advisor

    E-Print Network [OSTI]

    Sopocy, D. M.; Henry, R. E.; Gehl, S.; Divakaruni, S. M.

    and performance monitors in evaluating and diagnosing plant performance. Recognizing an industry-wide need for this advanced capability, the Electric Power Research Institute (EPRI) has undertaken the development and demonstration of an on-line expert system... called "Heat Rate Degradation Expert System Advisor." This expert system will enhance the logic trees previously developed and documented in EPRI Report CS-4554, "Heat Rate Improvement Guidelines for Existing Fossil Plants" (1), with analytical...

  20. An improved procedure for developing a calibrated hourly simulation model of an electrically heated and cooled commercial building†

    E-Print Network [OSTI]

    Bou-Saada, Tarek Edmond

    1994-01-01T23:59:59.000Z

    Sections . . . . 85 4. 7 Daycare Center . . . . . . . 86 4, 8 Sun Angle Calculator and Altitude Measurement Device . . . 4. 9 Photovoltaic and Domestic Hot Water Solar Panels. . . . . . . . . . 92 4. 10 Heating, Ventilating, and Air... and Daily Minutes of Sunshine . . . . . . . I 1 5 4. 18 Sky Clearness and Daily Percent Possible Sunshine . . . . . . . . 116 4. 19 Hourly Photovoltaic Electricity and Hourly Solar Radiation. . . . . . . . . . 1 1 8 4. 20 Solar Data Example . . . . . 121...

  1. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01T23:59:59.000Z

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  2. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    application in 1985, modern control systems now find widercontrol systems; many U.S. plants may already have modern

  3. Tushino - 3 district heating project/Moscow

    SciTech Connect (OSTI)

    Mayer, H.W.

    1995-09-01T23:59:59.000Z

    The contract for supply and installation of Honeywell control equipment at the district heating plant in Moscow suburb of Tushino was signed between the Mayor of Moscow and Honeywell in December 1991. Total contract value is US$3 million. The aim is to demonstrate on a pilot project the potential energy savings and improved pleat safety which can be achieved by means of electronic control of latest design. The Honeywell contract basically covers modernization of instrumentation and control of the gas fired heating plant, comprising water preparation and 4 boilers, of 100 Gcal/h each, i.e., 400 Gcal/h total. The plant is feeding the hot water network which has 60 heat exchanger stations connected. The heat exchangers (thermal rating between 2 to 10 Gcal/h each) supply hot water mainly to residential building blocks for apartment heating and domestic hot water. Honeywell`s responsibility covers engineering, supply of TDC 3000 micro-processor based control system for the boilers and DeltaNet Excel control for the Heat Exchangers. The contract also includes installation and start-up of the total control system.

  4. Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01T23:59:59.000Z

    This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    with absorption cooling District heating Alternative fuelsvery efficiently. District heating or a locally producedcooling (DOE, 2003b). District heating. District heating

  6. Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect (OSTI)

    Donna Post Guillen; Jalal Zia

    2013-09-01T23:59:59.000Z

    This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the direct evaporator. A testbed was constructed and the prototype demonstrated at the GE GRC Niskayuna facility.

  7. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gingerich, Daniel B; Mauter, Meagan S

    2015-06-10T23:59:59.000Z

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJthmore†Ľof residual heat in 2012, 4% of which was discharged at temperatures greater than 90 įC. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.ę†less

  8. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2015-06-10T23:59:59.000Z

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJth of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 įC. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01T23:59:59.000Z

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    using multi-stage steam turbines and pre-heating the culletto generate power (using steam turbines), drive blowers orpressure steam. The steam is used in two turbines that drive

  11. Finding More Free Steam From Waste Heat

    E-Print Network [OSTI]

    Stremlow, M. D.

    2014-01-01T23:59:59.000Z

    Corning & Midland Plant ē Thermal Heat Recovery Oxidation Process ē Opportunities ē Implementing Improvements ē Demonstrating Success ē Questions About me ē Mike Stremlow Ė Midland Site Energy Leader Ė Senior mechanical engineer at Dow Corning charged...-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Questions Mike Stremlow, Midland Site Energy Leader Dow Corning Corporation PO Box 994 Midland, MI 48686 mike.stremlow@dowcorning.com (989)496-5662 18 ESL-IE-14-05-01 Proceedings...

  12. Tribology of improved transformation-toughened ceramics-heat engine test. Final report: DOE/ORNL Ceramic Technology Project

    SciTech Connect (OSTI)

    Lilley, E.; Rossi, G.A.; Pelletier, P.J. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.

    1992-04-01T23:59:59.000Z

    A short term study has been carried out to evaluate the suitability as cam roller followers of three ceria zirconia toughened aluminas and two yttria stabilized tetragonal zirconias (YTZPs) previously enhanced in programs supported by ORNL. Norton Si{sub 3}N{sub 4} (NBD-100) was also included in this study as a reference material, because it was known from work at Northwestern University that Si{sub 3}N{sub 4} to experienced little or no wear in this application, and NBD-100 is currently a successful commercial bearing material. The tribological studies were subcontracted to the Torrington Company. They found that in cam roller follower simulated tests that there was essentially no wear after 1 hour and 5 hours of testing detectable by weighing and concluded that all of these ceramics are, therefore, candidate materials. Because of the minute amounts of wear it was not possible to identify the wear mechanism or to make any correlations with the other physical properties which were evaluated such as MOR, K{sub IC} hardness, density and grain size. Phase transformation during rolling has been of interest in the tribology of zirconia contain materials. The least stable of the ceria zirconia toughened aluminas resulted in as much as 33% monoclinic phase after testing whereas the yttria stabilized (TTZ) contained very little of this transformed phase. The results of this study show that oxide materials can now be considered as candidates for cam roller followers in heat engines.

  13. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    SciTech Connect (OSTI)

    Duncan, Garth M. [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States)] [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States); Saunders, Scott A. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States)] [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States)

    2013-07-01T23:59:59.000Z

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two different prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2; - Development of a set of alternatives to the current baseline that involve aspects of direct feed, feed conditioning, and design changes. The One System Technical Organization has served WTP, TOC, and DOE well in managing and resolving issues at the interface. This paper describes the organizational structure used to improve the interface and several examples of technical interface issues that have been successfully addressed by the new organization. (authors)

  14. Challenges in Industrial Heat Recovery

    E-Print Network [OSTI]

    Dafft, T.

    2007-01-01T23:59:59.000Z

    This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

  15. Challenges in Industrial Heat Recovery†

    E-Print Network [OSTI]

    Dafft, T.

    2007-01-01T23:59:59.000Z

    This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    often used is that boiler efficiency can be increased by 1%gas by 1% increases boiler efficiency by 2.5% (CIPEC 2001).Conservation and Boiler Plant Efficiency Advancements. 22 nd

  17. The potential role of new technology for enhanced safety and performance of nuclear power plants through improved service maintenance

    E-Print Network [OSTI]

    Achorn, Ted Glen

    1991-01-01T23:59:59.000Z

    Refinements in the safety and performance of nuclear power plants must be made to maintain public confidence and ensure competitiveness with other power sources. The aircraft industry, US Navy, and other programs have ...

  18. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2011-12-31T23:59:59.000Z

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    lighting and heating, ventilation and air conditioning.lighting and heating, ventilation and air-conditioning (Horsepower Heating, ventilation, and air conditioning

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    Ford, 2001). The ventilation and heating controls werelighting and heating, ventilation and air-conditioning (34 5.6. Heating, Ventilation and Air Conditioning (

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01T23:59:59.000Z

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  2. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions...

  3. Heat and corrosion resistant cast CN-12 type stainless steel with improved high temperature strength and ductility

    DOE Patents [OSTI]

    Mazias, Philip J. (Oak Ridge, TN); McGreevy, Tim (Morton, IL); Pollard,Michael James (East Peoria, IL); Siebenaler, Chad W. (Peoria, IL); Swindeman, Robert W. (Oak Ridge, TN)

    2007-08-14T23:59:59.000Z

    A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC. Such solid solution effects also enhance the stability of the austenite matrix from resistance to excess sigma phase or chrome carbide formation at higher service temperatures. The presence of sulfides is substantially eliminated.

  4. Heat and corrosion resistant cast CF8C stainless steel with improved high temperature strength and ductility

    DOE Patents [OSTI]

    Maziasz, Philip J. (Oak Ridge, TN); McGreevy, Tim (Washington, IL); Pollard, Michael James (Peoria, IL); Siebenaler, Chad W. (Dunlap, IL); Swindeman, Robert W. (Oak Ridge, TN)

    2010-08-17T23:59:59.000Z

    A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon.

  5. Heat and corrosion resistant cast CF8C stainless steel with improved high temperature strength and ductility

    DOE Patents [OSTI]

    Maziasz, Philip J.; McGreevy, Tim; Pollard, Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2006-12-26T23:59:59.000Z

    A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon.

  6. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Technology and Energy ManagementĒ Zement-Kalk-Gips 47 : 630-and Bezant, K.W. , 1990. ďEnergy Management in the UK Cementpotential for improved energy management practices exists.

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    2005). Guidelines for Energy Management. Washington, D.C.Caffal, C. (1995). Energy Management in Industry. Centre forfor improving your energy management practices. Resources

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Raising Awareness Awareness of energy efficiency createdExternal Recognition Awareness of energy efficiency createdout energy audits, improving motivation and awareness in all

  9. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  10. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yadav, Umesh P.; Ayre, Brian G.; Bush, Daniel R.

    2015-04-22T23:59:59.000Z

    The principal components of plant productivity and nutritional value, from the standpoint of modern agriculture, are the acquisition and partitioning of organic carbon (C) and nitrogen (N) compounds among the various organs of the plant. The flow of essential organic nutrients among the plant organ systems is mediated by its complex vascular system, and is driven by a series of transport steps including export from sites of primary assimilation, transport into and out of the phloem and xylem, and transport into the various import-dependent organs. Manipulating C and N partitioning to enhance yield of harvested organs is evident in themore†Ľearliest crop domestication events and continues to be a goal for modern plant biology. Research on the biochemistry, molecular and cellular biology, and physiology of C and N partitioning has now matured to an extent that strategic manipulation of these transport systems through biotechnology are being attempted to improve movement from source to sink tissues in general, but also to target partitioning to specific organs. These nascent efforts are demonstrating the potential of applied biomass targeting but are also identifying interactions between essential nutrients that require further basic research. In this review, we summarize the key transport steps involved in C and N partitioning, and discuss various transgenic approaches for directly manipulating key C and N transporters involved. In addition, we propose several experiments that could enhance biomass accumulation in targeted organs while simultaneously testing current partitioning models.ę†less

  11. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01T23:59:59.000Z

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  12. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yadav, Umesh P.; Ayre, Brian G.; Bush, Daniel R.

    2015-04-22T23:59:59.000Z

    The principal components of plant productivity and nutritional value, from the standpoint of modern agriculture, are the acquisition and partitioning of organic carbon (C) and nitrogen (N) compounds among the various organs of the plant. The flow of essential organic nutrients among the plant organ systems is mediated by its complex vascular system, and is driven by a series of transport steps including export from sites of primary assimilation, transport into and out of the phloem and xylem, and transport into the various import-dependent organs. Manipulating C and N partitioning to enhance yield of harvested organs is evident in the earliest crop domestication events and continues to be a goal for modern plant biology. Research on the biochemistry, molecular and cellular biology, and physiology of C and N partitioning has now matured to an extent that strategic manipulation of these transport systems through biotechnology are being attempted to improve movement from source to sink tissues in general, but also to target partitioning to specific organs. These nascent efforts are demonstrating the potential of applied biomass targeting but are also identifying interactions between essential nutrients that require further basic research. In this review, we summarize the key transport steps involved in C and N partitioning, and discuss various transgenic approaches for directly manipulating key C and N transporters involved. In addition, we propose several experiments that could enhance biomass accumulation in targeted organs while simultaneously testing current partitioning models.

  13. Experiments to investigate direct containment heating phenomena with scaled models of the Zion Nuclear Power Plant in the Surtsey Test Facility

    SciTech Connect (OSTI)

    Allen, M.D.; Pilch, M.M.; Blanchat, T.K.; Griffith, R.O. [Sandia National Labs., Albuquerque, NM (United States); Nichols, R.T. [Ktech Corp., Albuquerque, NM (United States)

    1994-05-01T23:59:59.000Z

    The Surtsey Facility at Sandia National Laboratories (SNL) is used to perform scaled experiments that simulate hypothetical high-pressure melt ejection (HPME) accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effect of specific phenomena associated with direct containment heating (DCH) on the containment load, such as the effect of physical scale, prototypic subcompartment structures, water in the cavity, and hydrogen generation and combustion. In the Integral Effects Test (IET) series, 1:10 linear scale models of the Zion NPP structures were constructed in the Surtsey vessel. The RPV was modeled with a steel pressure vessel that had a hemispherical bottom head, which had a 4-cm hole in the bottom head that simulated the final ablated hole that would be formed by ejection of an instrument guide tube in a severe NPP accident. Iron/alumina/chromium thermite was used to simulate molten corium that would accumulate on the bottom head of an actual RPV. The chemically reactive melt simulant was ejected by high-pressure steam from the RPV model into the scaled reactor cavity. Debris was then entrained through the instrument tunnel into the subcompartment structures and the upper dome of the simulated reactor containment building. The results of the IET experiments are given in this report.

  14. Improving energy efficiency at the Phelps Dodge Hidalgo smelter

    SciTech Connect (OSTI)

    Chen, W.J.; Partelpoeg, E.H.; Davenport, W.G. (Phelps Dodge Univ. of Arizona, AZ (US))

    1988-09-01T23:59:59.000Z

    With the objective of increasing energy efficiencies in a flash furnace, an Arizona-based 500 ton-per-day oxygen plant was disassembled and relocated to the Phelps Dodge Hidalgo smelter in New Mexico. As projected by computer modeling, the expected effects of oxygen enrichment on the furnace heat balance were realized and improvements to boiler operation attained.

  15. Low-temperature waste-heat recovery in the food and paper industries

    SciTech Connect (OSTI)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01T23:59:59.000Z

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    often used is that boiler efficiency can be increased by 1%gas by 1% increases boiler efficiency by 2.5%, although this2001a). Boilers and Heaters, Improving Energy Efficiency.

  17. Energy Savings and Comfort Improvements through Plant- and Operating mode Optimisation Demonstrated by Means of Project Examples

    E-Print Network [OSTI]

    Muller, C.

    More than 40 percent of Europe's primary energy is required for conditioning of buildings. By improving energy efficiency, approximately 30 percent of this energy could be saved. Energy counts for 35 percent of the operating cost and put...

  18. International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This report presents the proceedings of the Specialist`s Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately.

  19. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications Phase II. Final report

    SciTech Connect (OSTI)

    Pujari, V.J.; Tracey, D.M.; Foley, M.R. [and others

    1996-02-01T23:59:59.000Z

    The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370{degrees}C. In Phase I of the program a process was developed that resulted in a silicon nitride - 4 w% yttria HIP`ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens. The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions. Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabricability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21T23:59:59.000Z

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  1. DOE Offers $15 Million Geothermal Heat Recovery Opportunity ...

    Office of Environmental Management (EM)

    15 Million Geothermal Heat Recovery Opportunity DOE Offers 15 Million Geothermal Heat Recovery Opportunity August 25, 2010 - 11:11am Addthis Photo of geothermal power plant....

  2. Improvement of granulation of raw material by using the high-agitating mixer at Kokura No. 3 sintering plant

    SciTech Connect (OSTI)

    Hadano, Yasuhiko; Murai, Tatsunori; Kawaguchi, Yosizumi; Komatsu, Shusaku; Sasakawa, Akira; Kawaguchi, Takazo; Matsumura, Masaru

    1995-12-01T23:59:59.000Z

    Recently, there have been experiments aimed at increasing the pulverized coal injection rate of a blast furnace. When increasing the pulverized coal injection rate, the gas permeability resistance in a blast furnace increases. One of the methods to decrease the gas permeability resistance in a blast furnace is to use an iron ore burden with high iron content and low slag volume. However, the problem of resource drain has already occurred in the hematite deposit in West Australia, which is the principal supplier of a good quality lumpy iron ore. As a result, pellet feed iron ore must be selected as its substitute. In this paper, the authors investigated a granulation technique for producing an iron ore sinter with high iron content and low slag volume. In addition, they developed the granulation technique of agitating materials and water at high speed. It was used in Kokura No. 3 Sinter Plant.

  3. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications, Phase 1. Final report

    SciTech Connect (OSTI)

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Wilkens, C.A.; Yeckley, R.L. [Norton Co., Northboro, MA (United States)

    1993-08-01T23:59:59.000Z

    The program goals were to develop and demonstrate significant improvements in processing methods, process controls and non-destructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1,370{degrees}C. The program focused on a Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} high temperature ceramic composition and hot-isostatic-pressing as the method of densification. Stage I had as major objectives: (1) comparing injection molding and colloidal consolidation process routes, and selecting one route for subsequent optimization, (2) comparing the performance of water milled and alcohol milled powder and selecting one on the basis of performance data, and (3) adapting several NDE methods to the needs of ceramic processing. The NDE methods considered were microfocus X-ray radiography, computed tomography, ultrasonics, NMR imaging, NMR spectroscopy, fluorescent liquid dye penetrant and X-ray diffraction residual stress analysis. The colloidal consolidation process route was selected and approved as the forming technique for the remainder of the program. The material produced by the final Stage II optimized process has been given the designation NCX 5102 silicon nitride. According to plan, a large number of specimens were produced and tested during Stage III to establish a statistically robust room temperature tensile strength database for this material. Highlights of the Stage III process demonstration and resultant database are included in the main text of the report, along with a synopsis of the NCX-5102 aqueous based colloidal process. The R and D accomplishments for Stage I are discussed in Appendices 1--4, while the tensile strength-fractography database for the Stage III NCX-5102 process demonstration is provided in Appendix 5. 4 refs., 108 figs., 23 tabs.

  4. Heat rejection system

    DOE Patents [OSTI]

    Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

    1980-01-01T23:59:59.000Z

    A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    Australia. Heat was recovered at relatively high efficiencies, although it is not specified how much energy

  6. The impact of environmental constraints on productivity improvement and energy efficiency in integrated paper and steel plants

    SciTech Connect (OSTI)

    Boyd, G.A. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.; McClelland, J. [Maryland Univ., College Park, MD (United States). Dept. of Economics

    1996-12-31T23:59:59.000Z

    This paper presents a methodology and results for assessing the impact of production and energy efficiency, environmental regulation, and abatement capital expenditure constraints (e.g. capital rationing) on the productivity of energy and pollution intensive sectors. Energy is treated like any other production input when examining evidence of inefficiency. We find that capital rationing and environmental regulations do contribute to productivity and energy efficiency losses, but do not explain all of the production and energy inefficiencies observed in the paper industry. A summary of the energy source of production inefficiency found in the paper industry, is presented.. Each source is derived as the incremental contribution., i.e. the first is constraints on capital, the second in environmental regulation not accounted for by the first, and the final component is production inefficiency that is not accounted for my any of the- environmental analysis. While the methods are very data intensive, they reveal much more that analysis of aggregate data, 1835 since the only plant level data can provide the estimates of inefficiency that this methodology employs.

  7. Direct containing heating experiments in Zion Nuclear Power Plant Geometry using prototypic core materials, the U1A and U1B tests

    SciTech Connect (OSTI)

    Binder, J.L.; McUmber, L.M.; Spencer, B.W.

    1993-04-01T23:59:59.000Z

    Direct Containment Heating (DCH) experiments have been performed which utilize prototypic core materials. The experiments reported on here are a continuation of the Integral Effects Testing (IET) DCH program. The IET series of tests primarily addressed the effect of scale on DCH phenomena. This was accomplished by completing a series of counterpart tests in 1/40 and 1/10th linear scale DCH facilities at Argonne National Laboratory (ANL) and Sandia National Laboratories (SNL), respectively. The IET experiments modeled the Zion Nuclear Power Plant Geometry. The scale models included representations of the primary system volume, RPV lower head, cavity and instrument tunnel, and the lower containment structures. The experiments were steam driven at nominally 6.2 MPa. Iron-alumina thermite with chromium was used as a core melt simulant in the IET experiments. While the IET experiments at ANL and SNL provided useful data on the effect of scale on DCH phenomena, a significant question concerns the potential experiment distortions introduced by the use of non-prototypic iron/alumina thermite. Therefore, further testing with prototypic materials has been carried out at ANL. A prototypic core melt was produced for the experiments by first mixing powders of uranium, zirconium, iron oxide (Fe{sub 2}O{sub 3}), and chromium trioxide (CrO{sub 3}). When ignited the powders react exothermically to produce a molten mixture. The amounts of each powder were selected to produce the anticipated composition for a core melt following a station blackout: 57.8 mass% UO{sub 2} 10.5 mass% ZrO{sub 2} 14.3 mass% Fe, 13.7 mass% Zr, and 3.7 mass% Cr. Development tests measured the initial melt temperature to be approximately 2700 K. The total thermal specific energy content of the melt at 2700 K is 1.2 MJ/kg compared to 2.25 MJ/kg for the iron-alumina simulant at its measured initial temperature of 2500 K.

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01T23:59:59.000Z

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  9. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    E-Print Network [OSTI]

    Kermeli, Katerina

    2013-01-01T23:59:59.000Z

    heat and generation plant was installed electricity. CHPelectricity prices, and initial investment. Case Study: Co-generation CHP plants,

  10. Effects of variable wind stress on ocean heat content

    E-Print Network [OSTI]

    Klima, Kelly

    2008-01-01T23:59:59.000Z

    Ocean heat content change (ocean heat uptake) has an important role in variability of the Earth's heat balance. The understanding of which methods and physical processes control ocean heat uptake needs improvement in order ...

  11. IEA HPP Annex 41 Cold Climate Heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    of Air-Source Heat Pumps Van D. Baxter Oak Ridge National Laboratory European Heat Pump Summit Nuremberg ¬≠ Cold Climate Heat Pumps Improving low ambient temperature performance of air-source heat pumps as having large number of hours with OD temperature -7 ¬įC (19 ¬įF). Air-source heat pumps (ASHP

  12. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Working...

  13. District heating and cooling systems for communities through power plant retrofit distribution network. Phase 2. Final report, 1 March 1980-31 January 1984. Volume VII. Appendix C

    SciTech Connect (OSTI)

    Not Available

    1984-01-31T23:59:59.000Z

    This volume contains: Hudson No. 2 Limited Retrofit Cost Estimates provided by Stone and Webster Engineering Corp. (SWEC); backup data and basis of estimate for SWEC Heater Plant and Gas Turbine Plant (Kearny No. 12) cost estimates; and Appendices - Analysis of Relevant Tax Laws.

  14. Synergistic diffuser/heat-exchanger design

    E-Print Network [OSTI]

    Lazzara, David S. (David Sergio), 1980-

    2004-01-01T23:59:59.000Z

    The theoretical and numerical evaluation of synergistic diffusing heat-exchanger design is presented. Motivation for this development is based on current diffuser and heat-exchange technologies in cogeneration plants, which ...

  15. The Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Dr. David A. Petti

    2009-01-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) will be a demonstration of the technical, licensing, operational, and commercial viability of High Temperature Gas-Cooled Reactor (HTGR) technology for the production of process heat, electricity, and hydrogen. This nuclear- based technology can provide high-temperature process heat (up to 950įC) that can be used as a substitute for the burning of fossil fuels for a wide range of commercial applications (see Figure 1). The substitution of the HTGR for burning fossil fuels conserves these hydrocarbon resources for other uses, reduces uncertainty in the cost and supply of natural gas and oil, and eliminates the emissions of greenhouse gases attendant with the burning of these fuels. The HTGR is a passively safe nuclear reactor concept with an easily understood safety basis that permits substantially reduced emergency planning requirements and improved siting flexibility compared to other nuclear technologies.

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    scrubber is low, the rotors can become clogged and consume more energy than is saved in the heat recovery.

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    type Infrared paint curing UV paint curing Microwave heatingtype Infrared paint curing UV paint curing Microwave heating

  18. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect (OSTI)

    Donna Post Guillen

    2013-09-01T23:59:59.000Z

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  19. Solar heating system

    DOE Patents [OSTI]

    Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

    1982-01-01T23:59:59.000Z

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  20. Energy Saving Melting and Revert Reduction (E-SMARRT): Optimization of Heat Treatments on Stainless Steel Castings for Improved Corrosion Resistance and Mechanical Properties

    SciTech Connect (OSTI)

    John N. DuPont; Jeffrey D. Farren; Andrew W. Stockdale; Brett M. Leister

    2012-06-30T23:59:59.000Z

    It is commonly believed that high alloy steel castings have inferior corrosion resistance to their wrought counterparts as a result of the increased amount of microsegregation remaining in the as-cast structure. Homogenization and dissolution heat treatments are often utilized to reduce or eliminate the residual microsegregation and dissolve the secondary phases. Detailed electron probe microanalysis (EPMA) and light optical microscopy (LOM) were utilized to correlate the amount of homogenization and dissolution present after various thermal treatments with calculated values and with the resultant corrosion resistance of the alloys.The influence of heat treatment time and temperature on the homogenization and dissolution kinetics were investigated using stainless steel alloys CN3MN and CK3MCuN. The influence of heat treatment time and temperature on the impact toughness and corrosion reistance of cast stainless steel alloys CF-3, CF-3M, CF-8, and CF-8M was also investigated.

  1. Specifying Waste Heat Boilers

    E-Print Network [OSTI]

    Ganapathy, V.

    or hydrochloric acid vapor should be mentioned upfront so the HRSG designer can take proper precauations while designing the unit.Material selection is also impacted by the presence of corrosive gases.If partial pressure of hydrogen is high in the gas stream...SPECIFYING WASTE HEAT BOILERS V.Ganapathy.ABCO Industries Abilene,Texas ABSTRACT Waste heat boilers or Heat Recovery Steam 'Generators(HRSGs) as they are often called are used to recover energy from waste gas streams in chemical plants...

  2. Absorption-heat-pump system

    DOE Patents [OSTI]

    Grossman, G.; Perez-Blanco, H.

    1983-06-16T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  3. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01T23:59:59.000Z

    Technology Roadmap. Energy-efficient Buildings: Heating andtechnology for both improving occupantsí thermal comfort and simultaneously reducing buildingsí heating and

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    plantís energy needs. Oil and gas journal, 10 February 1992.of distillation units. Oil and Gas Journal, 21 June, 1999.in Dutch). Oil and Gas Journal (2005). 2005 Worldwide

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    plantís energy needs. Oil and gas journal, 10 February 1992.of distillation units. Oil and Gas Journal, 21 June, 1999.the Netherlands (in Dutch). Oil and Gas Journal (2005). 2005

  6. Optimization of Heat Exchangers

    SciTech Connect (OSTI)

    Ivan Catton

    2010-10-01T23:59:59.000Z

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  7. Keywordscondensation tube, surface modification, waste heat and condensation water recovery system

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Keywordscondensation tube, surface modification, waste heat and condensation water recovery techniques is waste heat and condensation water recovery system. Waste heat and condensation water recovery system is one of the most important facilities in power plants. High efficiency waste heat

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    Programme (1994). Good Practice Guide 141: Waste heatProgramme (1998). Good Practice Guide 249: Energy Savings inProgramme (1999a). Good Practice Guide 225: Industrial

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    to Introduce New Geothermal Cooling System. Informationcold storage areas Geothermal cooling Reducing building heatCommission 2006). Geothermal cooling. Geothermal cooling

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    Heat from Waste Incineration. Hydrocarbon Processing. 74(9)or destroying them (like incineration). Several of thesetransportation and incineration energy associated with its

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    heat from waste incineration. Hydrocarbon Processing. 74 9,the form of steam from incineration of waste products shouldreaction and of the incineration of waste products via

  12. Systematic investigation of the effects of hydrophilic porosity on boiling heat transfer and critical heat flux

    E-Print Network [OSTI]

    Tetreault-Friend, Melanie

    2014-01-01T23:59:59.000Z

    Predicting the conditions of critical heat flux (CHF) is of considerable importance for safety and economic reasons in heat transfer units, such as in nuclear power plants. It is greatly advantageous to increase this thermal ...

  13. Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (12) Evaluations of Spatial Distributions of Flow and Heat Transfer in Steam Injector

    SciTech Connect (OSTI)

    Yutaka Abe; Yujiro Kawamoto [University of Tsukuba, Tsukuba, Ibaraki (Japan); Chikako Iwaki [Toshiba Corporation (Japan); Tadashi Narabayashi [Hokkaido University, Kita-ku, Sapporo (Japan); Michitsugu Mori; Shuichi Ohmori [Tokyo Electric Power Company (Japan)

    2006-07-01T23:59:59.000Z

    Next-generation nuclear reactor systems have been under development aiming at simplified system and improvement of safety and credibility. One of the innovative technologies is the supersonic steam injector, which has been investigated as one of the most important component of the next-generation nuclear reactor. The steam injector has functions of a passive pump without large motor or turbo-machinery and a high efficiency heat exchanger. The performances of the supersonic steam injector as a pump and a heat exchanger are dependent on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. In previous studies of the steam injector, there are studies about the operating characteristics of steam injector and about the direct contact condensation between static water pool and steam in atmosphere. However, there is a little study about the turbulent heat transfer and flow behavior under the great shear stress. In order to examine the heat transfer and flow behavior in supersonic steam injector, it is necessary to measure the spatial temperature distribution and velocity in detail. The present study, visible transparent supersonic steam injector is used to obtain the axial pressure distributions in the supersonic steam injector, as well as high speed visual observation of water jet and steam interface. The experiments are conducted with and without non-condensable gas. The experimental results of the interfacial flow behavior between steam and water jet are obtained. It is experimentally clarified that an entrainment exists on the water jet surface. It is also clarified that discharge pressure is depended on the steam supply pressure, the inlet water flow rate, the throat diameter and non-condensable flow rate. Finally a heat flux is estimated about 19 MW/m{sup 2} without non-condensable gas condition in steam. (authors)

  14. Energy costs of heating and cooling homes continue to increase. Both rural and urban homeowners can reduce these costs by strategically planting trees in their landscape. In

    E-Print Network [OSTI]

    Blanchette, Robert A.

    to the south, we want our south facing windows to be un-obstructed by trees so passive solar energy from on the north and west side of the house can reduce winter fuel expenses up to 20%. Whether you are planning. Select deciduous shade trees that can be planted 20 feet from the house and will grow at least 10 feet

  15. Utilizing secondary heat to heat wash oil in the coke-oven gas desulfurization division

    SciTech Connect (OSTI)

    Volkov, E.L.

    1981-01-01T23:59:59.000Z

    Removal of hydrogen sulfide from the coke-oven gas by the vacuum-carbonate method involves significant energy costs, comprising about 47% of the total costs of the process. This is explained by the significant demand of steam for regeneration of the wash oil, the cost of which exceeds 30% of the total operating costs. The boiling point of the saturated wash oil under vacuum does not exceed 70/sup 0/C, thus the wash oil entering the regenerator can be heated either by the direct coke-oven gas or by the tar supernatant from the gas collection cycle. Utilizing the secondary heat of the direct coke-oven gas and the tar supernatant liquor (the thermal effect is approximately the same) to heat the wash oil from the gas desulfurization shops significantly improves the industrial economic indices. Heating the wash oil from gas desulfurization shops using the vacuum-carbonate method by the heat of the tar supernatant liquor may be adopted at a number of coking plants which have a scarcity of thermal resources and which have primary coolers with vertical tubes.

  16. Light weight and economical exhaust heat exchanger for waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dual Loop ParallelSeries Waste Heat Recovery System CNG-Hybrid: A Practical Path to "Net Zero Emissions" in Commuter Rail Improving Process Heating System Performance: A...

  17. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, D.M.

    1983-03-22T23:59:59.000Z

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

  18. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, Douglas M. (Colorado Springs, CO)

    1983-01-01T23:59:59.000Z

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

  19. District heating and cooling systems for communities through power plant retrofit distribution network, Phase 2. Final report, 1 March 1980-31 January 1984. Volume II

    SciTech Connect (OSTI)

    Not Available

    1984-01-31T23:59:59.000Z

    This volume begins with an Introduction summarizing the history, methodology and scope of the study, the project team members and the private and public groups consulted in the course of the study. The Load and Service Area Assessment follows, including: a compilation and analysis of existing statistical thermal load data from census data, industrial directories, PSE and G records and other sources; an analysis of responses to a detailed, 4-page thermal load questionnaire; data on public buildings and fuel and energy use provided by the New Jersey Dept. of Energy; and results of other customer surveys conducted by PSE and G. A discussion of institutional questions follows. The general topic of rates is then discussed, including a draft hypothetical Tariff for Thermal Services. Financial considerations are discussed including a report identifying alternative ownership/financing options for district heating systems and the tax implications of these options. Four of these options were then selected by PSE and G and a financial (cash-flow) analysis done (by the PSE and G System Planning Dept.) in comparison with a conventional heating alternative. Year-by-year cost of heat ($/10/sup 6/ Btu) was calculated and tabulated, and the various options compared.

  20. The New Generation of Uranium In Situ Recovery Facilities: Design Improvements Should Reduce Radiological Impacts Relative to First Generation Uranium Solution Mining Plants

    SciTech Connect (OSTI)

    Brown, S.H. [CHP, SHB INC., Centennial, Colorado (United States)

    2008-07-01T23:59:59.000Z

    In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium In Situ Leaching / In Situ Recovery (ISL / ISR - also referred to as 'solution mining'), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and are expected to make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since the mid 1970's. However, current designs are expected to result in less radiological wastes and emissions relative to these 'first' generation plants (which were designed, constructed and operated through the 1980's). These early designs typically used alkaline leach chemistries in situ including use of ammonium carbonate which resulted in groundwater restoration challenges, open to air recovery vessels and high temperature calcining systems for final product drying vs the 'zero emissions' vacuum dryers as typically used today. Improved containment, automation and instrumentation control and use of vacuum dryers in the design of current generation plants are expected to reduce production of secondary waste byproduct material, reduce Radon emissions and reduce potential for employee exposure to uranium concentrate aerosols at the back end of the milling process. In Situ Recovery in the U.S. typically involves the circulation of groundwater, fortified with oxidizing (gaseous oxygen e.g) and complexing agents (carbon dioxide, e.g) into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant ( mill). Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which radon gas is evolved in the process and the unique aspects of controlling solution flow patterns underground. The radiological character of these processes are described using empirical data collected from many operating facilities. Additionally, the major aspects of the health physics and radiation protection programs that were developed at these first generation facilities are discussed and contrasted to circumstances of the current generation and state of the art of uranium ISR technologies and facilities. In summary: This paper has presented an overview of in situ Uranium recovery processes and associated major radiological aspects and monitoring considerations. Admittedly, the purpose was to present an overview of those special health physics considerations dictated by the in situ Uranium recovery technology, to point out similarities and differences to conventional mill programs and to contrast these alkaline leach facilities to modern day ISR designs. As evidenced by the large number of ISR projects currently under development in the U.S. and worldwide, non conventional Uranium recovery techniques

  1. Paramount Petroleum: Plant-Wide Energy-Efficiency Assessment Identifies Three Projects

    SciTech Connect (OSTI)

    Not Available

    2003-07-01T23:59:59.000Z

    The Paramount Petroleum plant-wide energy assessment identified a cost-effective electrical power and heat energy production facility and systems that could benefit from either fuel-burn adjustments or a new drive/control system. This could lead to independence from a local electric utility with much improved reliability, estimated annual energy savings of 1,200,000 kWh of electricity, and estimated annual savings of$4.1 million for energy reduction and other improvements.

  2. Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency; Industrial Technologies Program (ITP) Process Heating Tip Sheet #11 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAXFact Sheet UraniumThrough the Use4heating

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    et al. , 2000). Modern control systems are often not solelyto implement control systems and more modern systems entercontrol systems; many chemical plants may already have modern

  4. Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains

    E-Print Network [OSTI]

    Fay, Noah

    Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains plants radically improve the overall quality of the treated wastewa- ter compared to secondary plants

  5. Heat treatment furnace

    DOE Patents [OSTI]

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21T23:59:59.000Z

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  6. Large-scale Ocean-based or Geothermal Power Plants by Thermoelectric Effects

    E-Print Network [OSTI]

    Liu, Liping

    2012-01-01T23:59:59.000Z

    Heat resources of small temperature difference are easily accessible, free and unlimited on earth. Thermoelectric effects provide the technology for converting these heat resources directly into electricity. We present designs of electricity generators based on thermoelectric effects and using heat resources of small temperature difference, e.g., ocean water at different depths and geothermal sources, and conclude that large-scale power plants based on thermoelectric effects are feasible and economically competitive. The key observation is that the power factor of thermoelectric materials, unlike the figure of merit, can be improved by orders of magnitude upon laminating good conductors and good thermoelectric materials. The predicted large-scale power plants based on thermoelectric effects, if validated, will have a global economic and social impact for its scalability, and the renewability, free and unlimited supply of heat resources of small temperature difference on earth.

  7. District heating and cooling systems for communities through power plant retrofit distribution network, Phase 2. Final report, March 1, 1980-January 31, 1984. Volume 5, Appendix A

    SciTech Connect (OSTI)

    Not Available

    1984-01-31T23:59:59.000Z

    This volume contains the backup data for the portion of the load and service assessment in Section 2, Volume II of this report. This includes: locations of industrial and commercial establishments, locations of high rise buildings, data from the Newark (Essex County) Directory of Business, data from the Hudson County Industrial Directory, data from the N. J. Department of Energy Inventory of Public Buildings, data on commercial and industrial establishments and new developments in the Hackensack Meadowlands, data on urban redevelopment and Operation Breakthrough, and list of streets in the potential district heating areas of Newark/Harrison and Jersey City/Hoboken.

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    1998b). Distributed Small-scale CHP on a Large ManufacturingCADDET). (1998). Free CHP Saves Energy for VehicleCombined heat and power (CHP) CHP combined with absorption

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    2005). Design of a heat-integrated distillation column baseddesign of the various unit operations (e.g. distillation columnsdistillation column can produce significant energy savings. Reflux optimization for new column designs

  10. Using Solid Particles as Heat Transfer Fluid for use in Concentrating...

    Broader source: Energy.gov (indexed) [DOE]

    Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power...

  11. E-Print Network 3.0 - accurate heat capacity Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    equal to half of the heat production capacity of the CHP plants present in each district heating area... to be decommissioned before 2010. As the installed ... Source: Ris...

  12. Optimization of the Heating System Operation†

    E-Print Network [OSTI]

    Xu, W.; Mao, S.

    2006-01-01T23:59:59.000Z

    A new regulation method of the heating system is presented, which is based on the variation of outdoor temperature, to improve the economical efficiency and the timing regulation of the heating system. A function is put forward between the energy...

  13. Power Plant Power Plant

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

  14. The growth and survival of brown shrimp (Penaeus aztecus) and blue crabs (Callinectes sapidus) in ponds receiving heated bay water from an electric power plant

    E-Print Network [OSTI]

    Gould, Robert Andrew

    1973-01-01T23:59:59.000Z

    . In the 6 month experiment survival was 3-27/G, growth was 15. 8-18. 5 mm per month, yields were 7. 8-80. 5 kg per ha (6. 9-71. 0 pounds per acre), and food conversion rates were 32. 1-328. 0 g of feed per gram increase of crab. Eleven 0. 1-ha ponds were... 14 Arrangement of ponds at research facility 15 Hydrological data for pond 22 31 Hydrological data, pond 23, with power plant intake and di charge water temperature . 32 Hydrological data for pond 8 Hydrological data for pond 9 Hydrological...

  15. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01T23:59:59.000Z

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  16. Sauget Plant Flare Gas Reduction Project

    E-Print Network [OSTI]

    Ratkowski, D. P.

    2007-01-01T23:59:59.000Z

    Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams....

  17. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01T23:59:59.000Z

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OITís Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the ďwasteĒ water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the ďwasteĒ water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  18. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  19. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  20. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  1. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  2. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    W.R. Grace: Plant Uses Six Sigma Methodology and Traditionalsystem such as ISO 14001 or Six Sigma can help companies tosuch as ISO 14001 and Six Sigma, can be used to complement

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    often used is that boiler efficiency can be increased by 1%flue gas by 1% increases boiler efficiency by 2.5%. Boiler -Conservation and Boiler Plant Efficiency Advancements. In:

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    http://www.sierraclub.org/sierra/200105/hearth.asp. Honda. (2001). Honda of America Manufacturing, Marysville, Ohio,STIGs at Japanese plants of Honda and Suzuki in 1999 and

  6. Waste Heat Doesn't Have to be a Waste of Money- The American & Efird Heat Recovery Project: A First for the Textile Industry†

    E-Print Network [OSTI]

    Smith, S. W.

    1991-01-01T23:59:59.000Z

    In 1989 American & Efird, Inc., decided to upgrade their heat recovery system at its Dyeing & Finishing Plant in Mt. Holly, North Carolina. They chose an electric industrial process heat pump to enhance heat recovery and to lower operating costs...

  7. Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    years." The new low-temperature, binary cycle plant uses waste heat from the geothermal brine of an existing geothermal plant at the facility. The new plant will add approximately...

  8. Combined Heat and Power Research and Development

    Broader source: Energy.gov (indexed) [DOE]

    system performance e.g., effect of low-temperature combustion strategies, improved turbo-machinery, etc on process heat production and system efficiency Fuel flexibility...

  9. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-01-01T23:59:59.000Z

    Canadian Industry Program for Energy Conservation (CIPEC). (2001a). Boilers and Heaters, Improving Energy Efficiency.Resources Canada, Office of Energy Efficiency. August.

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    rule of thumb is that boiler efficiency can be increased bytemperature, and boiler efficiency. They are a recommendedresult is improved boiler efficiency. Turbulator installers

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    7.1 summarizes the boiler efficiency measures, while Tablerule of thumb is that boiler efficiency can be increased by2001). Boilers and Heaters, Improving Energy Efficiency.

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    Nath (2000). Improve Steam Turbine Efficiency. HydrocarbonOIT (1999). Rebuilding steam turbine generator reduces costscan be driven by a steam turbine or an electric motor. Hot

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    Nath (2000). Improve Steam Turbine Efficiency. HydrocarbonOIT (2000c). New steam turbine saves chemical manufacturer $demand. Back-pressure steam turbines which may be used to

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    E. Masanet (2005a). Energy Efficiency Improvement and CostA.R. Ganji (2005). Energy Efficiency Opportunities in FreshSummer Study on Energy Efficiency in Industry, American

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    Natural gas expansion turbine Steam Distribution SystemNath (2000). Improve Steam Turbine Efficiency. Hydrocarbona steam boiler and steam turbine (back pressure turbine) to

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    Steam expansion turbines Steam Distribution Systems andNath (2000). Improve Steam Turbine Efficiency. HydrocarbonOIT (2000c). New steam turbine saves chemical manufacturer $

  17. Heating system

    SciTech Connect (OSTI)

    Nishman, P.J.

    1983-03-08T23:59:59.000Z

    A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

  18. Regulatory status of transgrafted plants is unclear

    E-Print Network [OSTI]

    Haroldsen, Victor M; Paulino, Gabriel; Chi-ham, Cecilia; Bennett, Alan B

    2012-01-01T23:59:59.000Z

    publicatie/new-techniques-in- plant-biotechnology (accessedJuglans regia L. ). ).Plant Sci 163(3):591Ė7. Gonsalves D.improvement. Frontiers Plant Sci 3:39. Heselmans M. 2011.

  19. Thermal Solar Energy Systems for Space Heating of Buildings

    E-Print Network [OSTI]

    Gomri, R.; Boulkamh, M.

    2010-01-01T23:59:59.000Z

    combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage...

  20. Use Lower Flammable Limit Monitoring Equipment to Improve Process...

    Broader source: Energy.gov (indexed) [DOE]

    Check Burner Air to Fuel Ratios Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating...

  1. Main Canal, Maverick County Water Control and Improvement District above Central Power and Light hydro-electric plant, at Maverick and Kinney Counties, Texas

    E-Print Network [OSTI]

    Ledbetter, John J

    1952-01-01T23:59:59.000Z

    BAIN CANAL NA~ICK COUNTY WATW CONTROL AND INPROllZXBZ DISTRICT ABOVE C~ POWER AND LION HYDRO ELECTRIC PLANT& AT, SIAVERICK AND KINNEY COUNT'S, T~~S By John J. Ledbetter, Jr. Approved as to style and content by: (Che man Committee Heed of pa... ment or Student Advisor May l952 MAIN CANAL RIA~ICK C01E1TY EATER CONTROL AND INPROVZGiWZ DISTRICT ABOVE G~ F01' AND LIGHT HYDRO-ELECTRIC PLANT, AT MAVERICK AND KINNEY GGKJZIES ~ TEXAS By John J. Ledbetter, Jr, A Thesis Submitted...

  2. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    SciTech Connect (OSTI)

    Edward Levy

    2012-06-29T23:59:59.000Z

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination with feedwater heating, would result in heat rate reductions of 7.43 percent for PRB coal and 10.45 percent for lignite.

  3. STARFIRE: a commercial tokamak fusion power plant study

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    STARFIRE is a 1200 MWe central station fusion electric power plant that utilizes a deuterium-tritium fueled tokamak reactor as a heat source. Emphasis has been placed on developing design features which will provide for simpler assembly and maintenance, and improved safety and environmental characteristics. The major features of STARFIRE include a steady-state operating mode based on continuous rf lower-hybrid current drive and auxiliary heating, solid tritium breeder material, pressurized water cooling, limiter/vacuum system for impurity control and exhaust, high tritium burnup and low vulnerable tritium inventories, superconducting EF coils outside the superconducting TF coils, fully remote maintenance, and a low-activation shield. A comprehensive conceptual design has been developed including reactor features, support facilities and a complete balance of plant. A construction schedule and cost estimate are presented, as well as study conclusions and recommendations.

  4. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Costs by Increasing Energy Efficiency in Process Heating Systems ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) Improving Process Heating System...

  5. Good Samaritan Hospital`s energy efficiency improvements

    SciTech Connect (OSTI)

    Sterrett, R.; Dobberpuhl, W.; Gernet, B.; O`Brien, T.

    1995-06-01T23:59:59.000Z

    Arizona Public Service (APS) encourages its customers to use energy wisely by providing incentives to install energy efficient systems. APS provided an incentive to the Good Samaritan Hospital, located in Phoenix, Arizona, to install a Waste Heat Recovery Unit and an Economizer Cooling System to improve the performance of the hospital`s central plant. Waste heat recovered from the boilers stacks is used to preheat combustion air and boiler feed water. The Economizer Cooling System uses a plate and frame heat exchanger to cool the hospital with cold water produced by the cooling tower rather than an electrical chiller. To determine the effectiveness of these two systems APS initiated a project to monitor their performance. Alternative Energy Systems Consulting, Inc. (AESC) has installed instrumentation to monitor the performance of the above systems and will document their energy savings and effectiveness at reducing energy costs.

  6. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2014-09-01T23:59:59.000Z

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  7. DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY

    SciTech Connect (OSTI)

    Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

    2007-12-19T23:59:59.000Z

    Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

  8. 1984 power plant performance monitoring workshop: proceedings

    SciTech Connect (OSTI)

    Not Available

    1986-05-01T23:59:59.000Z

    An EPRI workshop on fossil plant performance monitoring and improvement was conducted in Washington, DC, October 23-25, 1984. The main theme of the workshop was the EPRI-PEPCo performance monitoring project (EPRI projects RP1681 and RP2153) highlighted in the opening session. The objective of this project is to develop an advanced instrumentation and monitoring system to improve heat rate, recover lost capacity, optimize system dispatch, and plan maintenance more effectively. Interim results of this project, which can now be used by the utility industry, were emphasized in the presentations including (1) the boiler parametric analysis program for optimizing boiler combustion efficiency and (2) the N2 packing monitor that measures the steam leakage from the high-pressure to the intermediate-pressure turbine. Other EPRI projects, such as RP1711-2 and RP1878-1, were also highlighted. RP1711-2 employs root-cause investigation techniques to trace plant heat-rate degradation problems and recommend cost-effective solutions, while RP1878-1 introduces a nonradioactive tracer technique to monitor turbine efficiency. Twenty-seven papers have been entered individually into EDB and ERA. Section 6 - working group minutes - was not entered by itself. (LTN)

  9. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2005-03-01T23:59:59.000Z

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the program period in the areas of technology, manufacturing processes, cost reduction and balance-of-plant equipment designs is discussed in this report.

  10. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Broader source: Energy.gov (indexed) [DOE]

    of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants, seeks to determine whether the inorganic fluids (molten salts) offer a sufficient...

  11. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01T23:59:59.000Z

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  12. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25T23:59:59.000Z

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  13. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1984-01-01T23:59:59.000Z

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  14. E-Print Network 3.0 - animal disseminated plants Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DHP") n Implementation (,,Utilization of biomass from... municipal coal-fired district heating plants to combined heat and power with utilisation of biomass Source: Louisiana...

  15. Waste Heat Recapture from Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A [ORNL

    2011-11-01T23:59:59.000Z

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  16. Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms

    E-Print Network [OSTI]

    Apte, Michael; Michael G. Apte, Bourassa Norman, David Faulkner, Alfred T. Hodgson,; Toshfumi Hotchi, Michael Spears, Douglas P. Sullivan, and Duo Wang

    2008-01-01T23:59:59.000Z

    a prototype improved heat pump air conditioner was developedwith standard 10 SEER heat pump air conditioner equipment.generated by the wall mount heat pump air conditioner (HPAC)

  17. Plants & Animals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plants & Animals Plants & Animals Plant and animal monitoring is performed to determine whether Laboratory operations are impacting human health via the food chain. February 2,...

  18. Preliminary business plan: District Heating Company for the city of Handlova, Slovakia

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The city of Handlova, Slovakia, needs to replace its district heating system, which is old, unreliable, and expensive to maintain. The current plant is owned by a state-run utility, the Slovensky Energeticky Podnik (SEP). The plan is to privatize the heating plant, acquire capital to rehabilitate the central plant (converting it to a cogeneration facility), install a new hot-water distribution system, and implement an extensive energy efficiency effort in the residential buildings on the system. System capacity is 100 MWt, with annual heat sales estimated to be 450,000 gigajoules per year (GJ/yr). The capital necessary for system improvements is estimated to be 465 million Slovakian Krowns (SK) (in 1997 price levels). The total market value of existing fixed assets that will survive the rehabilitation effort as part of the new systems is estimated at 342 million SK. There has been substantial analysis and preparation for this activity, which is documented in demand-side and supply-side technical and economic analyses, an integrated demand/supply report, and this preliminary business plan. The preparation includes investigation of ownership, management, and technology alternatives; estimation of the market value of existing assets and investment requirements; and forecasting of future cash flows. These preliminary projections indicate that the cost of heating from the new system will be reasonable from both a cost per unit of energy basis (SK/GJ) and, form the perspective of an apartment dweller in Handlova, on a total cost per year basis. Delivering heat at the projected cost will, however, require a substantial change in the way that the heating plant is run, with proportionally very large reductions in labor, operations and maintenance, and overhead charges. In addition, there will need to be significant revenues from the sale of electricity to the national grid.

  19. Waste Heat Management Options for Improving Industrial Process Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships Toolkit VoluntaryHURRICANELocalDepartmentSystems |

  20. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01T23:59:59.000Z

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  1. High-lift chemical heat pump technologies for industrial processes

    SciTech Connect (OSTI)

    Olszewski, M.; Zaltash, A.

    1995-03-01T23:59:59.000Z

    Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

  2. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  3. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  4. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30T23:59:59.000Z

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  5. Heat Pump Application- An Industrial Case Study

    E-Print Network [OSTI]

    Shukla, D.; Umoh, R.

    of additional compressor work required to lift thermal energy from a low source temperature to a high sink temperature. A reduction of this work improves the heat pump economics. This paper presents the results of a heat pump study conducted by TENSA... technology and by making some process modifications, the compressor work can be reduced significantly. INTRODUCTION Heat pumps, used in conjunction with conventional heat exchangers networks (HEN) provide an effective means for reducing the energy...

  6. Plant-Wide Energy Conservation Program Yields Impressive Results†

    E-Print Network [OSTI]

    Adlkes, R. P.; Zupko, A. J.; Adams, J. W.

    1980-01-01T23:59:59.000Z

    to heating system and process changes by Installing improved boiler control systems and Initiating operator training programs. ? When rebuilding heat treating equipment, ceramic fiber insulation was used, yielding reduced heat losses and faster...

  7. Making Use of Low-Level Heat

    E-Print Network [OSTI]

    Plaster, W. E.

    1979-01-01T23:59:59.000Z

    to the atmosphere through cooling towers and air fin coolers. We will designate this as "low-level heat". Between 20 to 30% of all the energy that enters a plant is lost as low-level heat. In a 100,000 BPD refinery, this is the equivalent of about 2,500 BPD of oil...

  8. Simulation Models for Improved Water Heating Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01T23:59:59.000Z

    and Simulation of a Smart Water Heater. Ē In Workshop inFreezers, Furnaces, Water Heaters, Room and Central AirNovember. ADL. 1982b. Water Heater Computer Model Userís

  9. Simulation Models for Improved Water Heating Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01T23:59:59.000Z

    Difference Across the Heater and Water Flow Rate MeasuredDifference Across the Heater and Water Flow Rate Measurednew_specs/downloads/water _heaters/Water_Heater_Market_

  10. Heat transfer in the plate heat exchanger of an ammonia-synthesis column

    SciTech Connect (OSTI)

    Obolentsev, Y.G.; Chus', M.S.; Norobchanskii, O.A.; Teplitshi, Y.S.; Tovazhnyanskii, L.L.

    1983-01-01T23:59:59.000Z

    The planning and construction of high-capacity synthetic ammonia plants requires the development and fabrication of unique, high unit-power equipment with high technical and economic characteristics. In foreign and domestic practice, tubular heat exchangers with relatively low heat-transfer coefficients are used. Plate heat exchangers are a promising alternative. They are compact and have a high heat energy efficiency and a relatively small metal content. To make an experimental check of the operating capability of a plate heat exchanger under ammonia production conditions, a welded plate heat exchanger was designed for an ammonia synthesis column 800mm in diameter. On prolonged testing (four years), the device provided an autothermal operating mode in the column and the heat transfer coefficient was practically constant for fixed space velocities. Consequently, the heat exchange surface was not contaminated significantly with catalyst dust, confirmed by visual observation of the heat exchanger after disassembly.

  11. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ≠? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ≠? behaviour; setTemp : Room ≠? num; heatSwitchOn, heatSwitchOff, userReset : simple

  12. Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO{sub 2} Capture

    SciTech Connect (OSTI)

    Liu, Kunlei; Chen, Liangyong; Zhang, Yi; Richburg, Lisa; Simpson, James; White, Jay; Rossi, Gianalfredo

    2013-12-31T23:59:59.000Z

    The purpose of this document is to report the final result of techno-economic analysis for the proposed 550MWe integrated pressurized chemical looping combustion combined cycle process. An Aspen Plus based model is delivered in this report along with the results from three sensitivity scenarios including the operating pressure, excess air ratio and oxygen carrier performance. A process flow diagram and detailed stream table for the base case are also provided with the overall plant energy balance, carbon balance, sulfur balance and water balance. The approach to the process and key component simulation are explained. The economic analysis (OPEX and CAPX) on four study cases via DOE NETL Reference Case 12 are presented and explained.

  13. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O; Bell, Alexander; Bollinger, Benjamin R; Shang, Andrew; Chmiel, David; Richter, Horst; Magari, Patrick; Cameron, Benjamin

    2013-07-02T23:59:59.000Z

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  14. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O.; Bell, Alexander; Bollinger, Benjamin R.

    2012-08-07T23:59:59.000Z

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  15. Case Study - The Challenge: Improving Ventilation System Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Energy Efficiency in a Textile Plant Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant This case study examines how...

  16. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    SciTech Connect (OSTI)

    PROJECT STAFF

    2011-10-31T23:59:59.000Z

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and

  17. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12T23:59:59.000Z

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer FluidsĒ Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  18. Method and apparatus for improving the performance of a steam driven power system by steam mixing

    DOE Patents [OSTI]

    Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA); Prichard, Andrew W. (Richland, WA); Reid, Bruce D. (Pasco, WA); Burritt, James (Virginia Beach, VA)

    1998-01-01T23:59:59.000Z

    A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  19. Conservation, An In-Plant Energy Resource

    E-Print Network [OSTI]

    Skudneski, L. A.

    1980-01-01T23:59:59.000Z

    annealing and continuous or batch type heat treating. Improvements discussed include skid and support pipe insulation for under fired furnaces, positive and adequate controls, recuperation, and combustion equipment....

  20. UNCONVENTIONAL METHODS FOR YIELD IMPROVEMENT

    E-Print Network [OSTI]

    Beckermann, Christoph

    methods (active heating and cooling, directional solidifi- cation) Novel yield improvement techniques through a vari- ety of active heating and cooling schemes. It is envisioned that the techniques will allow techniques for decreasing the size and number of risers re- quired to produce quality castings

  1. Heat Recovery and Indirect Evaporative Cooling for Energy Conservation

    E-Print Network [OSTI]

    Buckley, C. C.

    1984-01-01T23:59:59.000Z

    Two thirds of the waste heat sources in the U.S. are in the low temperature range of less than 200 deg F. A primary contributor of this heat is building exhaust. Heat pipe exchangers are ideally suited for recovering this waste. Plant comfort air...

  2. Thermodynamics -2 A cogeneration plant (plant which provides both electricity and thermal energy) executes a cycle

    E-Print Network [OSTI]

    Virginia Tech

    ) executes a cycle while receiving from a thermal reservoir at 900 K, supplying heat to a process at 400 K, rejecting heat to the environment at 325 K, and producing power. In the cycle shown, steam enters at P3 = 30 kPa. All components of the plant are well insulated, pressure drops in heat exchangers

  3. Pinch Retrofits Provide Cost-Effective Plant Uprating Potential

    E-Print Network [OSTI]

    Rossiter, A. P.; Spriggs, H. D.; McMullan, A. S.

    ~2) (3) and (4), and these are, therefore, not r~p~at~d here. Rather, the specific factors that make this technique useful in debottlenecking projects a d QH Heat Sink Pinch 0.0 ._-_...... --------_. Temperature Heat Source QC Figure 1... in plant uprating paper. Specific applications are described. are in given an in this ethylene plant ETHYLENE PROCESS Ethylene plants are extremely complex and generally include dedicated utility systems for heating, cooling (including ethylene...

  4. Wood Burning Combined Cycle Power Plant

    E-Print Network [OSTI]

    Culley, J. W.; Bourgeois, H. S.

    1984-01-01T23:59:59.000Z

    A combined cycle power plant utilizing wood waste products as a fuel has been designed. This plant will yield a 50% efficiency improvement compared to conventional wood-fueled steam power plants. The power plant features an externally-fired gas...

  5. advanced power plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  6. advanced nuclear plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  7. advanced nuclear plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  8. advanced steam plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  9. advanced steam plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  10. advanced passive plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  11. advanced power plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  12. advanced astroculture plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  13. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  14. A Review of Ground Coupled Heat Pump Models Used in Whole-Building Computer Simulation Programs†

    E-Print Network [OSTI]

    Do, S. L.; Haberl, J. S.

    2010-01-01T23:59:59.000Z

    Increasingly, building owners are turning to ground source heat pump (GSHP) systems to improve energy efficiency. Ground-coupled heat pump (GCHP) systems with a vertical closed ground loop heat exchanger are one of the more widely used systems. Over...

  15. Industrial Heat Pumps: Appropriate Placement and Sizing Using the Grand Composite†

    E-Print Network [OSTI]

    Ranade, S. M.; Hindmarsh, E.; Boland, D.

    1986-01-01T23:59:59.000Z

    Correct thermodynamic placement of heat pumps is a necessary condition for optimality. The most sophisticated equipment designs can do very little to improve the cost-effectiveness of inappropriately placed heat pumps. The practice of designing heat...

  16. Experimental Investigation on Thermal Properties of a Steel-jacketed Steam Heating Pipeline with Vacuum Insulation†

    E-Print Network [OSTI]

    Na, W.; Zou, P.

    2006-01-01T23:59:59.000Z

    The steel-jacketed steam heating pipeline employs vacuum insulation to improve the insulating effect and reduce the corrosion, and hence increases the heat transfer efficiency of the heating network and building energy efficiency. It is important...

  17. Investigation of a Novel Solar Assisted Water Heating System with Enhanced Energy Yield for Buildings†

    E-Print Network [OSTI]

    Zhang, X.; Zhao, X.; Xu, J.; Yu, X.

    2012-01-01T23:59:59.000Z

    simulation and experimental verification. The unique characteristic of such system consists in the integrated loop heat pipe and heat pump unit (LHP-HP), which was proposed to improve solar photovoltaic (PV) generation, capture additional solar heat...

  18. Geothermal heating

    SciTech Connect (OSTI)

    Aureille, M.

    1982-01-01T23:59:59.000Z

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  19. "Potential for Combined Heat and Power and District Heating and Cooling from Waste-to-Energy Facilities in the U.S. Learning from the Danish Experience"

    E-Print Network [OSTI]

    Shepard, Kenneth

    "Potential for Combined Heat and Power and District Heating and Cooling from Waste- to Engineering Center and the Henry Krumb School of Mines May 2007 #12;1 Executive Summary In District Heating is used for the generation of electricity. The advantages of district heating using WTE plants are

  20. Water and Space Heating Heat Pumps†

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  1. Water and Space Heating Heat Pumps

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  2. Industrial Waste Heat Recovery Using Heat Pipes†

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  3. CSEM WP 135 Has Restructuring Improved Operating Efficiency

    E-Print Network [OSTI]

    California at Berkeley. University of

    CSEM WP 135 Has Restructuring Improved Operating Efficiency at US Electricity Generating Plants Operating Efficiency at US Electricity Generating Plants? Kira Markiewicz UC Berkeley, Haas School assesses the impact of electricity industry restructuring on generating plant operating efficiency. Cost

  4. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26T23:59:59.000Z

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  5. Techniques in the Control of Interconnected Plants Morten Hovd \\Lambda

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Techniques in the Control of Interconnected Plants Morten Hovd \\Lambda Fantoft Prosess Teknostallen. This is caused by tighter integration of heat and mass in modern chemical plants, and the decreased volumes (or throughout a modern chemical plant than in older plants. This puts greater demands on the control system

  6. Gasification Plant Cost and Performance Optimization

    SciTech Connect (OSTI)

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01T23:59:59.000Z

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air-blown gasification combined heat and power facility based on the Subtask 3.2 design. The air-blown case was chosen since it was less costly and had a better return on investment than the oxygen-blown gasifier case. Under appropriate conditions, this study showed a combined heat and power air-blown gasification facility could be an attractive option for upgrading or expanding the utilities area of industrial facilities. Subtask 3.4 developed a base case design for a large lignite-fueled IGCC power plant that uses the advanced GE 7FB combustion turbine to be located at a generic North Dakota site. This plant uses low-level waste heat to dry the lignite that otherwise would be rejected to the atmosphere. Although this base case plant design is economically attractive, further enhancements should be investigated. Furthermore, since this is an oxygen-blown facility, it has the potential for capture and sequestration of CO{sub 2}. The third objective for Task 3 was accomplished by having NETL personnel working closely with Nexant and Gas Technology Institute personnel during execution of this project. Technology development will be the key to the long-term commercialization of gasification technologies. This will be important to the integration of this environmentally superior solid fuel technology into the existing mix of power plants and industrial facilities. As a result of this study, several areas have been identified in which research and development will further advance gasification technology. Such areas include improved system availability, development of warm-gas clean up technologies, and improved subsystem designs.

  7. Hybrid Wet/Dry Cooling for Power Plants (Presentation)

    SciTech Connect (OSTI)

    Kutscher, C.; Buys, A.; Gladden, C.

    2006-02-01T23:59:59.000Z

    This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

  8. Heat Exchanger Technologies for Distillation Columns

    E-Print Network [OSTI]

    Polley, G. T.

    Heat Exchanger Technologies for Distillation Columns G.T.Polley Pinchtechnology.com In this paper we look at the challenges that improvements in energy efficiency of distillation systems presents the heat exchanger designer. We examine... condensate sub-cooling. So, if this condensate subsequently requires re-heating both energy and capital have been wasted. If the condensate forms a feed to another distillation column it results in increased energy consumption if that separation...

  9. Design optimization of conventional heat pumps: application to steady-state heating efficiency

    SciTech Connect (OSTI)

    Rice, C.K.; Fischer, S.K.; Ellison, R.D.; Jackson, W.L.

    1981-01-01T23:59:59.000Z

    A physically-based heat pump model was connected to an optimiztion program to form a computer code for use in the design of high-efficiency heat pumps. The method used allows for the simultaneous optimization of selected design variables, taking proper account of their interactions, while constraining other parameters to chosen limits or fixed values. For optimiztion of the steady-state heating efficiency of conventional heat pumps, ten variables were optimized while heating capacity was fixed; the results may, however, be scaled to other capacities. Calculations were made for a range of component efficiencies and heat exchanger sizes. The results predict substantial improvement in heating performance due to both optimal system configurations and the use of improved components. Sensitivity analyses show that there is considerable latitude for deviating from the optimum design to make use of available component sizes and for accomodating the compromises needed for good cooling performance.

  10. Use Feedwater Economizers for Waste Heat Recovery

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  11. Heat Pump Application- An Industrial Case Study†

    E-Print Network [OSTI]

    Shukla, D.; Umoh, R.

    1990-01-01T23:59:59.000Z

    The economics of heat pumping across a distillation column is usually dependent on the amount of additional compressor work required to lift thermal energy from a low source temperature to a high sink temperature. A reduction of this work improves...

  12. An Introduction to Waste Heat Recovery

    E-Print Network [OSTI]

    Darby, D. F.

    our dependence on petroleum-based fuels, paper, glass, and agricultural and automotive and hence improve our merchandise .trade balance. equipment industries have all had proven success with heat recovery projects. Solar, wind, geothermal, oil shale...

  13. Clean Boiler Waterside Heat Transfer Surfaces

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  14. Dead heat

    SciTech Connect (OSTI)

    Oppenheimer, M.; Boyle, R.H.

    1990-01-01T23:59:59.000Z

    This paper reports on the prospect of global warming. This paper proposes a workable solution, and a road map for getting there. The author explains how we became addicted to fossil fuels and evokes a bleak picture should this dependence continue. But the book also explores how industry can become a vehicle for solving, instead of precipitating, the global environmental crisis. The decoupling of energy from pollution can be accomplished without sacrificing prosperity by powering the economy with solar energy. Dead Heat takes us step by step to a greenhouse-friendly world fueled only by the sun.

  15. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions. deer09yang2.pdf More Documents & Publications...

  16. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland. merit08schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Efficiency Improvement in an...

  17. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  18. Segmented heat exchanger

    DOE Patents [OSTI]

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14T23:59:59.000Z

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  19. Greenhouse Heating Checklist1 R. A. Bucklin, P. H. Jones, B.A. Barmby, D. B. McConnell, and R. W. Henley2

    E-Print Network [OSTI]

    Watson, Craig A.

    CIR791 Greenhouse Heating Checklist1 R. A. Bucklin, P. H. Jones, B.A. Barmby, D. B. Mc heating is the union of an appropriate heat source and an efficient heat distribu- tion system. The best greenhouse heat source in the world is useless if the heat cannot be transferred to the plant environment

  20. Study on release and transport of aerial radioactive materials in reprocessing plants

    SciTech Connect (OSTI)

    Amano, Y.; Tashiro, S.; Uchiyama, G.; Abe, H.; Yamane, Y.; Yoshida, K. [Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Kodama, T. [Japan Nuclear Fuel Ltd., 4-108 Okitsuke, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori, 039-3212 (Japan)

    2013-07-01T23:59:59.000Z

    The release and transport characteristics of radioactive materials at a boiling accident of the high active liquid waste (HALW) in a reprocessing plant have been studied for improving experimental data of source terms of the boiling accident. In the study, a heating test and a thermogravimetry and differential thermal analysis (TG-DTA) test were conducted. In the heating test using a simulated HALW, it was found that ruthenium was mainly released into the air in the form of gas and that non-volatile elements were released into the air in the form of mist. In the TG-DTA test, the rate constants and reaction heat of thermal decomposition of ruthenium nitrosyl nitrate were obtained from TG and DTA curves. (authors)