Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Photovoltaic roof heat flux  

E-Print Network (OSTI)

and could the heat transfer processes be modeled to estimateindicating that the heat transfer processes were modeled w i

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

2

Photovoltaic roof heat flux  

E-Print Network (OSTI)

of ~24°C, indicating that heat conduction was small. T h i sday, indicating large heat conduction a n d storage. Control2.1.3 showed that conduction heat flux through the roof was

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

3

Use of photovoltaics for waste heat recovery  

DOE Patents (OSTI)

A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

Polcyn, Adam D

2013-04-16T23:59:59.000Z

4

A novel hybrid (wind-photovoltaic) system sizing procedure  

SciTech Connect

Wind-photovoltaic hybrid system (WPHS) utilization is becoming popular due to increasing energy costs and decreasing prices of turbines and photovoltaic (PV) panels. However, prior to construction of a renewable generation station, it is necessary to determine the optimum number of PV panels and wind turbines for minimal cost during continuity of generated energy to meet the desired consumption. In fact, the traditional sizing procedures find optimum number of the PV modules and wind turbines subject to minimum cost. However, the optimum battery capacity is either not taken into account, or it is found by a full search between all probable solution spaces which requires extensive computation. In this study, a novel description of the production/consumption phenomenon is proposed, and a new sizing procedure is developed. Using this procedure, optimum battery capacity, together with optimum number of PV modules and wind turbines subject to minimum cost can be obtained with good accuracy. (author)

Hocaoglu, Fatih O. [Afyon Kocatepe University, Dept. of Electronics and Communication Eng., 03200 Afyonkarahisar (Turkey); Gerek, Oemer N.; Kurban, Mehmet [Anadolu University, Dept. of Electrical and Electronics Eng., 26555 Eskisehir (Turkey)

2009-11-15T23:59:59.000Z

5

ENERGY MODELING OF A LEAD-ACID BATTERY WITHIN HYBRID WIND / PHOTOVOLTAIC SYSTEMS  

E-Print Network (OSTI)

ENERGY MODELING OF A LEAD-ACID BATTERY WITHIN HYBRID WIND / PHOTOVOLTAIC SYSTEMS O. GERGAUD, G Abstract: Within the scope of full-scale energy modeling of a hybrid wind / photovoltaic system coupled / photovoltaic production system coupled to the network grid (with energy storage) ENERGY MODELING OF A LEAD

Paris-Sud XI, Université de

6

Photovoltaic module with removable wind deflector  

DOE Patents (OSTI)

A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA); Culligan, Matthew (Berkeley, CA)

2012-08-07T23:59:59.000Z

7

Photovoltaic module with removable wind deflector  

DOE Patents (OSTI)

A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

2013-05-28T23:59:59.000Z

8

Sizing Wind/Photovoltaic Hybrids for Households in Inner Mongolia  

DOE Green Energy (OSTI)

Approximately 140,000 wind turbines currently provide electricity to about one-third of the non-grid-connected households in Inner Mongolia. However, these households often suffer from a lack of power during the low-wind summer months. This report describes an analysis of hybrid wind/photovoltaic (PV) systems for such households. The sizing of the major components is based on a subjective trade-off between the cost of the system and the percent unmet load, as determined by the Hybrid 2 software in conjunction with a simplified time-series model. Actual resource data (wind speed and solar radiation) from the region are processed so as to best represent the scenarios of interest. Small wind turbines of both Chinese and U.S. manufacture are considered in the designs. The results indicate that combinations of wind and PV are more cost-effective than either one alone, and that the relative amount of PV in the design increases as the acceptable unmet load decreases and as the average wind sp eed decreases.

Barley, C. D.; Lew, D. J.; Flowers, L. T.

1997-06-01T23:59:59.000Z

9

Studies of Photovoltaic Roofing Systems at Wind Engineering and Fluids Laboratory at Colorado State University  

E-Print Network (OSTI)

Studies of Photovoltaic Roofing Systems at Wind Engineering and Fluids Laboratory at Colorado State of photovoltaic technology to generate electricity. Various innovative systems incorporating photovoltaic panels and Fluids Laboratory (WEFL) at Colorado State University (CSU, www.windlab.colostate.edu) have been involved

10

Optimal Sizing of a Stand-alone Wind/Photovoltaic Generation Unit using Particle Swarm Optimization  

Science Conference Proceedings (OSTI)

A hybrid wind/photovoltaic generation system is designed to supply power demand. The aim of this design is minimization of the overall cost of the generation scheme over 20 years of operation. Full demand supply is modeled as constraint for optimization ... Keywords: genetic algorithm, optimal sizing, particle swarm optimization, photovoltaic, wind energy

Ali Kashefi Kaviani; Hamid Reza Baghaee; Gholam Hossein Riahy

2009-02-01T23:59:59.000Z

11

Chaninik Wind Group Wind Heat Smart Grids Final Report  

DOE Green Energy (OSTI)

Final report summarizes technology used, system design and outcomes for US DoE Tribal Energy Program award to deploy Wind Heat Smart Grids in the Chaninik Wind Group communities in southwest Alaska.

Meiners, Dennis [Technical Contact

2013-06-29T23:59:59.000Z

12

The Heating & Acceleration of the Solar Wind  

E-Print Network (OSTI)

The Heating & Acceleration of the Solar Wind Eliot Quataert (UC Berkeley) Collaborators: Steve & Slow Winds · The Puzzle of the High Frequency Cascade (or the lack thereof ....) · Possible Solutions #12;Background · Heating required to accelerate the solar wind · Early models invoked e- conduction

Wurtele, Jonathan

13

Feasibility Study for Photovoltaics, Wind, solar Hot Water and Hybrid Systems  

DOE Green Energy (OSTI)

Southwestern Indian Polytechnic Institute (SIPI) located in Albuquerque New Mexico is a community college that serves American Indians and Alaska Natives. SIPI’s student body represents over 100 Native American Tribes. SIPI completed a renewable energy feasibility study program and established renewable energy hardware on the SIPI campus, which supplements and creates an educational resource to teach renewable energy courses. The SIPI campus is located, and has as student origins, areas, in which power is an issue in remote reservations. The following hardware was installed and integrated into the campus facilities: small wind turbine, large photovoltaic array that is grid-connected, two photovoltaic arrays, one thin film type, and one polycrystalline type, one dual-axis active tracker and one passive tracker, a hot air system for heating a small building, a portable hybrid photovoltaic system for remote power, and a hot water system to preheat water used in the SIPI Child Care facility. Educational curriculum has been developed for two renewable energy courses one being the study of energy production and use, and especially the roles renewable energy forms like solar, wind, geothermal, hydro, and biomass plays, and the second course being a more advanced in-depth study of renewable energy system design, maintenance, installation, and applications. Both courses rely heavily on experiential learning techniques so that installed renewable energy hardware is continuously utilized in hand-on laboratory activities and are part of the Electronics program of studies. Renewable energy technologies and science has also been included in other SIPI programs of study such as Environmental Science, Natural Resources, Agriculture, Engineering, Network Management, and Geospatial Technology.

Hooks, Ronald; Montoya, Valerie

2008-03-26T23:59:59.000Z

14

Photovoltaics  

Energy.gov (U.S. Department of Energy (DOE))

Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity.

15

Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode  

Science Conference Proceedings (OSTI)

An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

2010-09-15T23:59:59.000Z

16

Coronal Heating versus Solar Wind Acceleration  

E-Print Network (OSTI)

Parker's initial insights from 1958 provided a key causal link between the heating of the solar corona and the acceleration of the solar wind. However, we still do not know what fraction of the solar wind's mass, momentum, and energy flux is driven by Parker-type gas pressure gradients, and what fraction is driven by, e.g., wave-particle interactions or turbulence. SOHO has been pivotal in bringing these ideas back to the forefront of coronal and solar wind research. This paper reviews our current understanding of coronal heating in the context of the acceleration of the fast and slow solar wind. For the fast solar wind, a recent model of Alfven wave generation, propagation, and non-WKB reflection is presented and compared with UVCS, SUMER, radio, and in-situ observations at the last solar minimum. The derived fractions of energy and momentum addition from thermal and nonthermal processes are found to be consistent with various sets of observational data. For the more chaotic slow solar wind, the relative roles of steady streamer-edge flows (as emphasized by UVCS abundance analysis) versus bright blob structures (seen by LASCO) need to be understood before the relation between streamer heating and and slow-wind acceleration can be known with certainty. Finally, this presentation summarizes the need for next-generation remote-sensing observations that can supply the tight constraints needed to unambiguously characterize the dominant physics.

Steven R. Cranmer

2004-09-29T23:59:59.000Z

17

Photovoltaics  

DOE Green Energy (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

Not Available

2008-09-01T23:59:59.000Z

18

Value of electrical heat boilers and heat pumps for wind power integration  

E-Print Network (OSTI)

Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link\\ZRUGV wind power, integration, heat pumps, electric heat boilers ,QWURGXFWLRQ 3UREOHP RYHUYLHZ The Danish

19

Modeling of Performance, Cost, and Financing of Concentrating Solar, Photovoltaic, and Solar Heat Systems (Poster)  

SciTech Connect

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, 2006 in Boulder, Colorado, discusses the modeling, performance, cost, and financing of concentrating solar, photovoltaic, and solar heat systems.

Blair, N.; Mehos, M.; Christiansen, C.

2006-10-03T23:59:59.000Z

20

Wind loads on flat plate photovoltaic array fields. Phase II. Final report  

SciTech Connect

This report describes a theoretical study of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays. Local pressure distributions and total aerodynamic forces on the arrays are shown. Design loads are presented to cover the conditions of array angles relative to the ground from 20/sup 0/ to 60/sup 0/, variable array spacings, a ground clearance gap up to 1.2 m (4 ft) and array slant heights of 2.4 m (8 ft) and 4.8 m (16 ft). Several means of alleviating the wind loads on the arrays are detailed. The expected reduction of the steady state wind velocity with the use of fences as a load alleviation device are indicated to be in excess of a factor of three for some conditions. This yields steady state wind load reductions as much as a factor of ten compared to the load incurred if no fence is used to protect the arrays. This steady state wind load reduction is offset by the increase in turbulence due to the fence but still an overall load reduction of 2.5 can be realized. Other load alleviation devices suggested are the installation of air gaps in the arrays, blocking the flow under the arrays and rounding the edges of the array. Included is an outline of a wind tunnel test plan to supplement the theoretical study and to evaluate the load alleviation devices.

Miller, R.; Zimmerman, D.

1979-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Wind Stress and Heat Flux over the Ocean in Gale Force Winds  

Science Conference Proceedings (OSTI)

An offshore stable platform has been instrumented with wind turbulence, temperature and wave height sensors. Data from this platform have been analyzed by the eddy correlation method to obtain wind stress and heat flux at wind speeds from 6 to 22 ...

Stuart D. Smith

1980-05-01T23:59:59.000Z

22

Wind heat transfer coefficient in solar collectors in outdoor conditions  

Science Conference Proceedings (OSTI)

Knowledge of wind heat transfer coefficient, h{sub w}, is required for estimation of upward losses from the outer surface of flat plate solar collectors/solar cookers. In present study, an attempt has been made to estimate the wind induced convective heat transfer coefficient by employing unglazed test plate (of size about 0.9 m square) in outdoor conditions. Experiments, for measurement of h{sub w}, have been conducted on rooftop of a building in the Institute campus in summer season for 2 years. The estimated wind heat transfer coefficient has been correlated against wind speed by linear regression and power regression. Experimental values of wind heat transfer coefficient estimated in present work have been compared with studies of other researchers after normalizing for plate length. (author)

Kumar, Suresh; Mullick, S.C. [Centre for Energy Studies, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016 (India)

2010-06-15T23:59:59.000Z

23

List of Photovoltaics Incentives | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Incentives Photovoltaics Incentives Jump to: navigation, search The following contains the list of 2359 Photovoltaics Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1500) CSV (rows 1501-2000) CSV (rows 2001-2359) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No AEP Ohio - Renewable Energy Credit (REC) Purchase Program (Ohio) Performance-Based Incentive Ohio Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Photovoltaics Wind energy Yes AEP Ohio - Renewable Energy Technology Program (Ohio) Utility Rebate Program Ohio Agricultural

24

Intermittent Dissipation and Local Heating in the Solar Wind  

E-Print Network (OSTI)

Evidence for inhomogeneous heating in the interplanetary plasma near current sheets dynamically generated by magnetohydrodynamic (MHD) turbulence is obtained using measurements from the ACE spacecraft. These coherent structures only constitute 19% of the data, but contribute 50% of the total plasma internal energy. Intermittent heating manifests as elevations in proton temperature near current sheets, resulting in regional heating and temperature enhancements extending over several hours. The number density of non-Gaussian structures is found to be proportional to the mean proton temperature and solar wind speed. These results suggest magnetofluid turbulence drives intermittent dissipation through a hierarchy of coherent structures, which collectively could be a significant source of coronal and solar wind heating.

Osman, K T; Wan, M; Rappazzo, A F

2011-01-01T23:59:59.000Z

25

Turbulent heating of the corona and solar wind: the heliospheric  

E-Print Network (OSTI)

of telegraph services - Once per 500 years (ice cores) - Solar-terrestrial connection - Interplanetary space of radiators - Dust environment - Cp/Cg problems - Solar panels and power #12;Solar Probe Plus 2018 launch 35Turbulent heating of the corona and solar wind: the heliospheric dark energy problem Stuart D. Bale

26

Optimization of Electric Power Systems for Off-Grid Domestic Applications: An Argument for Wind/Photovoltaic Hybrids  

SciTech Connect

The purpose of this research was to determine the optimal configuration of home power systems relevant to different regions in the United States. The hypothesis was that, regardless of region, the optimal system would be a hybrid incorporating wind technology, versus a photovoltaic hybrid system without the use of wind technology. The method used in this research was HOMER, the Hybrid Optimization Model for Electric Renewables. HOMER is a computer program that optimizes electrical configurations under user-defined circumstances. According to HOMER, the optimal system for the four regions studied (Kansas, Massachusetts, Oregon, and Arizona) was a hybrid incorporating wind technology. The cost differences between these regions, however, were dependent upon regional renewable resources. Future studies will be necessary, as it is difficult to estimate meteorological impacts for other regions.

Jennings, W.; Green, J.

2001-01-01T23:59:59.000Z

27

U.S. West Coast Surface Heat Fluxes, Wind Stress, and Wind Stress Curl from a Mesoscale Model  

Science Conference Proceedings (OSTI)

Monthly averages of numerical model fields are beneficial for depicting patterns in surface forcing such as sensible and latent heat fluxes, wind stress, and wind stress curl over data-sparse ocean regions. Grid resolutions less than 10 km ...

T. Haack; S. D. Burk; R. M. Hodur

2005-11-01T23:59:59.000Z

28

Lessons Learned from the U.S. Photovoltaic Industry and Implications for Development of Distributed Small Wind: Preprint  

DOE Green Energy (OSTI)

In recent years, advocates for the solar photovoltaic (PV) industry have developed successful strategies for marketing PV as a customer-sited energy resource. Their efforts have ranged from supporting effective Federal programs and incentives to initiating state and local efforts to remove siting barriers and industry efforts that build consumer confidence. More important, PV advocates have established relationships that define customer-sited PV as a viable and important technology. The PV industry's record of success and its persistent challenges can be instructive to the small wind industry. These industries share many characteristics in terms of system outputs, applications, economics, and industry goals. In some ways, small wind is staged for growth just as PV was a decade ago. The authors provide an examination of market development issues in these industries, including Federal policy infrastructure and incentives, state and local policy infrastructure, and business support. Subsequently, the authors provide recommendations for distributed wind development that include collaborations with the PV industry and as stand-alone small wind initiatives. In particular, the authors suggest aligning customer-sited small wind (and PV) with demand-side energy strategies and emphasizing the need to address all customer-sited renewables under a cohesive distributed generation development strategy.

Forsyth, T.; Tombari, C.; Nelson, M.

2006-06-01T23:59:59.000Z

29

Lessons Learned from the U.S. Photovoltaic Industry and Implications for Development of Distributed Small Wind: Preprint  

SciTech Connect

In recent years, advocates for the solar photovoltaic (PV) industry have developed successful strategies for marketing PV as a customer-sited energy resource. Their efforts have ranged from supporting effective Federal programs and incentives to initiating state and local efforts to remove siting barriers and industry efforts that build consumer confidence. More important, PV advocates have established relationships that define customer-sited PV as a viable and important technology. The PV industry's record of success and its persistent challenges can be instructive to the small wind industry. These industries share many characteristics in terms of system outputs, applications, economics, and industry goals. In some ways, small wind is staged for growth just as PV was a decade ago. The authors provide an examination of market development issues in these industries, including Federal policy infrastructure and incentives, state and local policy infrastructure, and business support. Subsequently, the authors provide recommendations for distributed wind development that include collaborations with the PV industry and as stand-alone small wind initiatives. In particular, the authors suggest aligning customer-sited small wind (and PV) with demand-side energy strategies and emphasizing the need to address all customer-sited renewables under a cohesive distributed generation development strategy.

Forsyth, T.; Tombari, C.; Nelson, M.

2006-06-01T23:59:59.000Z

30

Lessons Learned from the U.S. Photovoltaic Industry and Implications for Development of Distributed Small Wind  

Science Conference Proceedings (OSTI)

In recent years, advocates for the solar photovoltaic (PV) industry have developed successful strategies for marketing PV as a customer-sited energy resource. Their efforts have ranged from supporting effective Federal programs and incentives to initiating state and local efforts to remove siting barriers and industry efforts that build consumer confidence. More important, PV advocates have established relationships that define customer-sited PV as a viable and important technology. The PV industry's record of success and its persistent challenges can be instructive to the small wind industry. These industries share many characteristics in terms of system outputs, applications, economics, and industry goals. In some ways, small wind is staged for growth just as PV was a decade ago. The authors provide an examination of market development issues in these industries, including Federal policy infrastructure and incentives, state and local policy infrastructure, and business support. Subsequently, the authors provide recommendations for distributed wind development that include collaborations with the PV industry and as stand-alone small wind initiatives. In particular, the authors suggest aligning customer-sited small wind (and PV) with demand-side energy strategies and emphasizing the need to address all customer-sited renewables under a cohesive distributed generation development strategy.

Forsyth, T.; Tombari, C.; Nelson, M.

2006-01-01T23:59:59.000Z

31

Simulation of a photovoltaic/thermal heat pump system having a modified collector/evaporator  

SciTech Connect

A new photovoltaic/thermal heat pump (PV/T-HP) system having a modified collector/evaporator (C/E) has been developed and numerically studied. Multi-port flat extruded aluminum tubes were used in the modified C/E, as compared to round copper tubes used in a conventional C/E. Simulation results suggested that a better operating performance can be achieved for a PV/T-HP system having such a modified C/E. In addition, using the meteorological data in both Nanjing and Hong Kong, China, the simulation results showed that this new PV/T-HP system could efficiently generate electricity and thermal energy simultaneously in both cities all-year-round. Furthermore, improved operation by using variable speed compressor has been designed and discussed. (author)

Xu, Guoying [School of Energy and Environment, Southeast University, 210096 Nanjing (China); Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Deng, Shiming [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Zhang, Xiaosong; Yang, Lei; Zhang, Yuehong [School of Energy and Environment, Southeast University, 210096 Nanjing (China)

2009-11-15T23:59:59.000Z

32

Analysis of the value of battery storage with wind and photovoltaic generation to the Sacramento Municipal Utility District  

DOE Green Energy (OSTI)

This report describes the results of an analysis to determine the economic and operational value of battery storage to wind and photovoltaic (PV) generation technologies to the Sacramento Municipal Utility District (SMUD) system. The analysis approach consisted of performing a benefit-cost economic assessment using established SMUD financial parameters, system expansion plans, and current system operating procedures. This report presents the results of the analysis. Section 2 describes expected wind and PV plant performance. Section 3 describes expected benefits to SMUD associated with employing battery storage. Section 4 presents preliminary benefit-cost results for battery storage added at the Solano wind plant and the Hedge PV plant. Section 5 presents conclusions and recommendations resulting from this analysis. The results of this analysis should be reviewed subject to the following caveat. The assumptions and data used in developing these results were based on reports available from and interaction with appropriate SMUD operating, planning, and design personnel in 1994 and early 1995 and are compatible with financial assumptions and system expansion plans as of that time. Assumptions and SMUD expansion plans have changed since then. In particular, SMUD did not install the additional 45 MW of wind that was planned for 1996. Current SMUD expansion plans and assumptions should be obtained from appropriate SMUD personnel.

Zaininger, H.W. [Zaininger Engineering Co., Inc., Roseville, CA (United States)

1998-08-01T23:59:59.000Z

33

Rectified Wind Forcing and Latent Heat Flux Produced by the Madden–Julian Oscillation  

Science Conference Proceedings (OSTI)

Rectification of (Madden–Julian oscillation) MJO-induced wind speed and latent heat flux variations across the tropical Indian and western Pacific Oceans is estimated using 51 yr of NCEP–NCAR reanalysis. The rectified wind speed anomaly is ...

Toshiaki Shinoda; Harry H. Hendon

2002-12-01T23:59:59.000Z

34

Comparison of the Global Meridional Ekman Heat Flux Estimated from Four Wind Sources  

Science Conference Proceedings (OSTI)

The variability in the meridional Ekman heat flux estimated using wind data from four different sources is examined. The wind vectors are obtained from the European Remote Sensing (ERS), Quick Scatterometer (Quikscat), and Special Sensor ...

Olga T. Sato; Paulo S. Polito

2005-01-01T23:59:59.000Z

35

A GUI simulation system for integrating photovoltaic and wind units into power grids  

Science Conference Proceedings (OSTI)

This paper presents a design of simulation software developed in MATLAB environment and within a Graphical User Interface (GUI) framework for performance and economical assessment of Distributed Renewable Energy Systems as they get integrated in the ... Keywords: GUI, photovoltaic, renewable energy

Adel A. Ghandakly; Rostan Rodrigues

2010-07-01T23:59:59.000Z

36

Kolmogorov versus IroshnikovKraichnan spectra: Consequences for ion heating in the solar wind  

E-Print Network (OSTI)

heating in the solar wind C. S. Ng,1 A. Bhattacharjee,2 D. Munsi,2 P. A. Isenberg,2 and C. W. Smith2 an open question, theoretically as well as observationally. The ion heating profile observed in the solar. Recently, a solar wind heating model based on Kolmogorov spectral scaling has produced reasonably good

Ng, Chung-Sang

37

Concentrating Photovoltaics  

Science Conference Proceedings (OSTI)

Concentrating photovoltaics (CPV) are a promising alternative to flat-plate photovoltaics in high direct normal irradiance (DNI) environments. The technology’s basic operating characteristics offer significant upside compared with other solar technologies: higher system efficiencies of upwards of 30%+; higher capacity factors, generated through two-axis tracking, exceeding 30% in ideal locations; lower cellular degradation from heat compared to flat-plate PV; lower water requirements; and reduced footpri...

2010-11-19T23:59:59.000Z

38

Wind energy/geothermic/solar heating system. Final report  

SciTech Connect

I've observed three distinct ''camps'' of renewable energy resources; WIND, Geothermic, and Solar. None of the three are completely adequate for the NE by themselves. I observe little effort to combine them to date. My objective has been to demonstrate that the three can be combined in a practical system. To mitagate the high cost and poor payback for individual residences, I believe neighborhoods of 4 to 5 homes, apartment complexes or condominiums could form an Energy Association alloting a piece of ground (could be a greenbelt) which would contain the well or wells, solar boosted underground water storage and the Solar banks. These are the high cost items which could be prorated and ammortized by the Association. Easements would permit each residence underground insulated water lines for individual heat pump conversions to existing forced air furnaces. Where regulations permit, an individual home could erect his own windmill to belt drive his freon compressor. With or without the optional windmill the water to freon heat pump with its solar boosts on the well water, will enjoy COP's (coefficient of Performances or times better than electric resistance heat) beyond anything on the market today. In a neighborhood energy association, all trenching could be done together all plumbing could be one contract and they could qualify for quantity discounts on heat pump units, chillers and components and installation.

Not Available

1981-01-01T23:59:59.000Z

39

Wind effects on convective heat loss from a cavity receiver for a parabolic concentrating solar collector  

DOE Green Energy (OSTI)

Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.

Ma, R.Y. [California State Polytechnic Univ., Pomoma, CA (United States). Dept. of Mechanical Engineering

1993-09-01T23:59:59.000Z

40

Uncertainty of Boundary Layer Heat Budgets Computed from Wind Profiler—RASS Networks  

Science Conference Proceedings (OSTI)

Uncertainties in the evaluation of the atmospheric heat budget, in which the turbulent heat flux divergence term is calculated as a residual, are investigated for a triangular array of 915-MHz wind profilers—radio acoustic sounding systems (RASS) ...

Markus Furger; C. David Whiteman; James M. Wilczak

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

PHOTOVOLTAIC SOLAR ELECTRIC SYSTEM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Buying a PHOTOVOLTAIC SOLAR ELECTRIC SYSTEM A Consumer Guide 2003 System: A Consumer Guide i Buying a Photovoltaic Solar Electric System A Consumer Guide California Energy water system that uses the sun's energy to heat water, solar electric or photovoltaic technology uses

Krothapalli, Anjaneyulu

42

Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume I. Study summary and concept screening. Final report  

DOE Green Energy (OSTI)

This study was directed at a review of storage technologies, and particularly those which might be best suited for use in conjunction with wind and photovoltaics. The potential ''worth'' added by incorporating storage was extensively analyzed for both wind and photovoltaics. Energy storage concepts studied include (1) above ground pumped hydro storage, (2) underground pumped hydro storage, (3) thermal storage-oil, (4) thermal storage-steam, (5) underground compressed air storage, (6) pneumatic storage, (7) lead-acid batteries, (8) advanced batteries, (9) inertial storage (flywheel), (10) hydrogen generation and storage, and (11) superconducting magnetic energy storage. The investigations performed and the major results, conclusions, and recommendations are presented in this volume. (WHK)

Not Available

1978-01-01T23:59:59.000Z

43

Interbasin Heat Exchange; a Study of the Response to Changes in Wind Patterns  

E-Print Network (OSTI)

Interbasin Heat Exchange; a Study of the Response to Changes in Wind Patterns Hanna E. N. Kling of the vertical air-sea heat exchange through the "heat potential". An analogy is electrical potential Fo = "#$ Q = SST - relaxation temperature; the air-sea heat exchange Fo = divergence of Q

Corell, Hanna

44

Effects of variable wind stress on ocean heat content  

E-Print Network (OSTI)

Ocean heat content change (ocean heat uptake) has an important role in variability of the Earth's heat balance. The understanding of which methods and physical processes control ocean heat uptake needs improvement in order ...

Klima, Kelly

2008-01-01T23:59:59.000Z

45

List of Solar Pool Heating Incentives | Open Energy Information  

Open Energy Info (EERE)

Heating Incentives Heating Incentives Jump to: navigation, search The following contains the list of 118 Solar Pool Heating Incentives. CSV (rows 1 - 118) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Personal Property Tax Exemption (Michigan) Property Tax Incentive Michigan Commercial Industrial Biomass CHP/Cogeneration Fuel Cells Microturbines Photovoltaics

46

Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology  

DOE Green Energy (OSTI)

During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heat sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.

Kosny, Jan [ORNL; Miller, William A [ORNL; Childs, Phillip W [ORNL; Biswas, Kaushik [ORNL

2011-01-01T23:59:59.000Z

47

Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report  

DOE Green Energy (OSTI)

This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

Not Available

1978-01-01T23:59:59.000Z

48

Electron and proton heating by solar wind turbulence  

E-Print Network (OSTI)

Previous formulations of heating and transport associated with strong magnetohydrodynamic (MHD) turbulence are generalized to incorporate separate internal energy equations for electrons and protons. Electron heat conduction is included. Energy is supplied by turbulent heating that affects both electrons and protons, and is exchanged between them via collisions. Comparison to available Ulysses data shows that a reasonable accounting for the data is provided when (i) the energy exchange timescale is very long and (ii) the deposition of heat due to turbulence is divided, with 60% going to proton heating and 40% into electron heating. Heat conduction, determined here by an empirical fit, plays a major role in describing the electron data.

Breech, B; Cranmer, S R; Kasper, J C; Oughton, S

2009-01-01T23:59:59.000Z

49

NO EVIDENCE FOR HEATING OF THE SOLAR WIND AT STRONG CURRENT SHEETS  

SciTech Connect

It has been conjectured that strong current sheets are the sites of proton heating in the solar wind. For the present study, a strong current sheet is defined by a >45{sup 0} rotation of the solar-wind magnetic-field direction in 128 s. A total of 194,070 strong current sheets at 1 AU are analyzed in the 1998-2010 ACE solar-wind data set. The proton temperature, proton specific entropy, and electron temperature at each current sheet are compared with the same quantities in the plasmas adjacent to the current sheet. Statistically, the plasma at the current sheets is not hotter or of higher entropy than the plasmas just outside the current sheets. This is taken as evidence that there is no significant localized heating of the solar-wind protons or electrons at strong current sheets. Current sheets are, however, found to be more prevalent in hotter solar-wind plasma. This is because more current sheets are counted in the fast solar wind than in the slow solar wind, and the fast solar wind is hotter than the slow solar wind.

Borovsky, Joseph E. [Los Alamos National Laboratory, Los Alamos, NM (United States); Denton, Michael H. [Department of Physics, Lancaster University, Lancaster (United Kingdom)

2011-10-01T23:59:59.000Z

50

Simulated and Observed Influence of the Nocturnal Urban Heat Island on the Local Wind Field  

Science Conference Proceedings (OSTI)

A three-dimensional primative equation model was used to simulate the low-level wind field, given the urban heat island as the lower temperature boundary condition. The specification of the average heat island bypassed the need to calculate the ...

Roland R. Draxler

1986-08-01T23:59:59.000Z

51

Stochastic Heating, Differential Flow, and the Alpha-to-Proton Temperature Ratio in the Solar Wind  

E-Print Network (OSTI)

We extend previous theories of stochastic ion heating to account for the motion of ions along the magnetic field. We derive an analytic expression for the ion-to-proton perpendicular temperature ratio in the solar wind for any ion species, assuming that stochastic heating is the dominant ion heating mechanism. This expression describes how this temperature ratio depends upon the average velocity of the ions along the magnetic field direction and the ratio of the parallel proton pressure to the magnetic pressure. We compare our model with previously published measurements of alpha particles and protons from the WIND spacecraft. We find that stochastic heating offers a promising explanation for these measurements when the fractional cross helicity and Alfven ratio at the proton-gyroradius scale have values that are broadly consistent with solar-wind measurements.

Chandran, B D G; Quataert, E; Kasper, J C; Isenberg, P A; Bourouaine, S

2013-01-01T23:59:59.000Z

52

The turbulent cascade and proton heating in the solar wind during solar minimum  

Science Conference Proceedings (OSTI)

Solar wind measurements at 1 AU during the recent solar minimum and previous studies of solar maximum provide an opportunity to study the effects of the changing solar cycle on in situ heating. Our interest is to compare the levels of activity associated with turbulence and proton heating. Large-scale shears in the flow caused by transient activity are a source that drives turbulence that heats the solar wind, but as the solar cycle progresses the dynamics that drive the turbulence and heat the medium are likely to change. The application of third-moment theory to Advanced Composition Explorer (ACE) data gives the turbulent energy cascade rate which is not seen to vary with the solar cycle. Likewise, an empirical heating rate shows no significan changes in proton heating over the cycle.

Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire (United States); Stawarz, Joshua E. [Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, Colorado (United States); Forman, Miriam A. [Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, New York (United States)

2013-06-13T23:59:59.000Z

53

From wind power to heat pumps (Smart Grid Project) | Open Energy  

Open Energy Info (EERE)

From wind power to heat pumps (Smart Grid Project) From wind power to heat pumps (Smart Grid Project) Jump to: navigation, search Project Name From wind power to heat pumps Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Simulation of Photovoltaic Panel Production as Complement to Ground Source Heat Pump System.  

E-Print Network (OSTI)

?? This master thesis presents a new technological combination of two environmentally friendly sources of energy in order to provide DHW, and space heating. Solar… (more)

Badri, Seyed Ali Mohammad

2013-01-01T23:59:59.000Z

55

Prediction of the Proton-to-Total Turbulent Heating in the Solar Wind  

E-Print Network (OSTI)

This paper employs a recent turbulent heating prescription to predict the ratio of proton-to-total heating due to the kinetic dissipation of Alfvenic turbulence as a function of heliocentric distance. Comparing to a recent empirical estimate for this turbulent heating ratio in the high-speed solar wind, the prediction shows good agreement with the empirical estimate for R >~ 0.8 AU, but predicts less ion heating than the empirical estimate at smaller heliocentric radii. At these smaller radii, the turbulent heating prescription, calculated in the gyrokinetic limit, fails because the turbulent cascade is predicted to reach the proton cyclotron frequency before Landau damping terminates the cascade. These findings suggest that the turbulent cascade can reach the proton cyclotron frequency at R ~ 0.8 AU, this turbulent heating prescription contains all of the necessary physical mechanisms needed to reproduce the empirically estimated proton-to-total heating ratio.

Howes, G G

2011-01-01T23:59:59.000Z

56

Turbulent Heating in the Solar Wind and in the Solar Corona  

E-Print Network (OSTI)

In this paper we calculate the turbulent heating rates in the solar wind using the Kolmogorov-like MHD turbulence phenomenology with Kolmogorov's constants calculated by {\\it Verma and Bhattacharjee }[1995b,c]. We find that the turbulent heating can not account for the total heating of the nonAlfv\\'enic streams in the solar wind. We show that dissipation due to thermal conduction is also a potential heating source. Regarding the Alfv\\'enic streams, the predicted turbulent heating rates using the constants of {\\it Verma and Bhattacharjee }[1995c] are higher than the observed heating rates; the predicted dissipation rates are probably overestimates because Alfv\\'enic streams have not reached steady-state. We also compare the predicted turbulent heating rates in the solar corona with the observations; the Kolmogorov-like phenomenology predicts dissipation rates comparable to the observed heating rates in the corona [{\\it Hollweg, }% 1984], but Dobrowoly et al.'s generalized Kraichnan model yields heating rates much less than that required.

Mahendra K. Verma

1995-09-05T23:59:59.000Z

57

Turbulent Heating in the Solar Wind and in the Solar Corona  

E-Print Network (OSTI)

In this paper we calculate the turbulent heating rates in the solar wind using the Kolmogorov-like MHD turbulence phenomenology with Kolmogorov’s constants calculated by Verma and Bhattacharjee [1995b,c]. We find that the turbulent heating can not account for the total heating of the nonAlfvénic streams in the solar wind. We show that dissipation due to thermal conduction is also a potential heating source. Regarding the Alfvénic streams, the predicted turbulent heating rates using the constants of Verma and Bhattacharjee [1995c] are higher than the observed heating rates; the predicted dissipation rates are probably overestimates because Alfvénic streams have not reached steady-state. We also compare the predicted turbulent heating rates in the solar corona with the observations; the Kolmogorov-like phenomenology predicts dissipation rates comparable to the observed heating rates in the corona [Hollweg, 1984], but Dobrowoly et al.’s generalized Kraichnan model yields heating rates much less than that required. 1 1

Mahendra K. Verma

2008-01-01T23:59:59.000Z

58

Geothermal-heating facilities for Carson Elementary School and Wind River Middle School  

DOE Green Energy (OSTI)

Carson Elementary School and Wind River Middle School are located in Carson, Washington, adjacent to the Wind River. Both schools are operated by the Stevenson-Carson School District. Carson Elementary, comprised of 49,000 square feet, was constructed in several phases beginning in 1951. The construction is variable, but is characterized by large expanses of single glass and uninsulated masonry areas. An oil fired steam boiler supplies a variety of terminal equipment. Wind River Middle School was built in 1972 and, as a result, exhibits much greater insulation levels. The 38,000 square foot structure is heated entirely by an electric resistance terminal reheat system. Carson Hot Springs Resort, located approximately one half mile from the schools, exhibits temperatures of 124/sup 0/F. In addition, geological work is in progress to better define the local geothermal resource. The feasibility of geothermal use at the school for space heating purposes is examined.

Not Available

1982-02-01T23:59:59.000Z

59

A prototype photovoltaic/thermal system integrated with transpired collector  

SciTech Connect

Building-integrated photovoltaic/thermal (BIPV/T) systems may be utilized to produce useful heat while simultaneously generating electricity from the same building envelope surface. A well known highly efficient collector is the open-loop unglazed transpired collector (UTC) which consists of dark porous cladding through which outdoor air is drawn and heated by absorbed solar radiation. Commercially available photovoltaic systems typically produce electricity with efficiencies up to about 18%. Thus, it is beneficial to obtain much of the normally wasted heat from the systems, possibly by combining UTC with photovoltaics. Combination of BIPV/T and UTC systems for building facades is considered in this paper - specifically, the design of a prototype facade-integrated photovoltaic/thermal system with transpired collector (BIPV/T). A full scale prototype is constructed with 70% of UTC area covered with PV modules specially designed to enhance heat recovery and compared to a UTC of the same area under outdoor sunny conditions with low wind. The orientation of the corrugations in the UTC is horizontal and the black-framed modules are attached so as to facilitate flow into the UTC plenum. While the overall combined thermal efficiency of the UTC is higher than that of the BIPV/T system, the value of the generated energy - assuming that electricity is at least four times more valuable than heat - is between 7% and 17% higher. Also, the electricity is always useful while the heat is usually utilized only in the heating season. The BIPV/T concept is applied to a full scale office building demonstration project in Montreal, Canada. The ratio of photovoltaic area coverage of the UTC may be selected based on the fresh air heating needs of the building, the value of the electricity generated and the available building surfaces. (author)

Athienitis, Andreas K.; Bambara, James; O'Neill, Brendan; Faille, Jonathan [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 Maisonneuve W., Montreal, Quebec (Canada)

2011-01-15T23:59:59.000Z

60

Kolmogorov versus Iroshnikov-Kraichnan spectra: Consequences for ion heating in the solar wind  

E-Print Network (OSTI)

Whether the phenomenology governing MHD turbulence is Kolmogorov or Iroshnikov-Kraichnan (IK) remains an open question, theoretically as well as observationally. The ion heating profile observed in the solar wind provides a quantitative, if indirect, observational constraint on the relevant phenomenology. Recently, a solar wind heating model based on Kolmogorov spectral scaling has produced reasonably good agreement with observations, provided the effect of turbulence generation due to pickup ions is included in the model. Without including the pickup ion contributions, the Kolmogorov scaling predicts a proton temperature profile that decays too rapidly beyond a radial distance of 15 AU. In the present study, we alter the heating model by applying an energy cascade rate based on IK scaling, and show that the model yields higher proton temperatures, within the range of observations, with or without the inclusion of the effect due to pickup ions. Furthermore, the turbulence correlation length based on IK scalin...

Ng, C S; Munsi, D; Isenberg, P A; Smith, C W; 10.1029/2009JA014377

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan  

SciTech Connect

To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

Yu-Ming Kuo; Yasuhiro Fukushima [National Cheng Kung University, Tainan City (Taiwan). Department of Environmental Engineering

2009-03-15T23:59:59.000Z

62

Extended Coronal Heating and Solar Wind Acceleration Over the Solar Cycle  

E-Print Network (OSTI)

This paper reviews our growing understanding of the physics behind coronal heating (in open-field regions) and the acceleration of the solar wind. Many new insights have come from the last solar cycle's worth of observations and theoretical work. Measurements of the plasma properties in the extended corona, where the primary solar wind acceleration occurs, have been key to discriminating between competing theories. We describe how UVCS/SOHO measurements of coronal holes and streamers over the last 14 years have provided clues about the detailed kinetic processes that energize both fast and slow wind regions. We also present a brief survey of current ideas involving the coronal source regions of fast and slow wind streams, and how these change over the solar cycle. These source regions are discussed in the context of recent theoretical models (based on Alfven waves and MHD turbulence) that have begun to successfully predict both the heating and acceleration in fast and slow wind regions with essentially no fre...

Cranmer, Steven R; Miralles, Mari Paz; van Ballegooijen, Adriaan A

2010-01-01T23:59:59.000Z

63

Empirical Constraints on Proton and Electron Heating in the Fast Solar Wind  

E-Print Network (OSTI)

We analyze measured proton and electron temperatures in the high-speed solar wind in order to calculate the separate rates of heat deposition for protons and electrons. When comparing with other regions of the heliosphere, the fast solar wind has the lowest density and the least frequent Coulomb collisions. This makes the fast wind an optimal testing ground for studies of collisionless kinetic processes associated with the dissipation of plasma turbulence. Data from the Helios and Ulysses plasma instruments were collected to determine mean radial trends in the temperatures and the electron heat conduction flux between 0.29 and 5.4 AU. The derived heating rates apply specifically for these mean plasma properties and not for the full range of measured values around the mean. We found that the protons receive about 60% of the total plasma heating in the inner heliosphere, and that this fraction increases to approximately 80% by the orbit of Jupiter. A major factor affecting the uncertainty in this fraction is th...

Cranmer, Steven R; Breech, Benjamin A; Kasper, Justin C

2009-01-01T23:59:59.000Z

64

PREDICTION OF THE PROTON-TO-TOTAL TURBULENT HEATING IN THE SOLAR WIND  

SciTech Connect

This paper employs a recent turbulent heating prescription to predict the ratio of proton-to-total heating due to the kinetic dissipation of Alfvenic turbulence as a function of heliocentric distance. Comparing to a recent empirical estimate for this turbulent heating ratio in the high-speed solar wind, the prediction shows good agreement with the empirical estimate for R {approx}> 0.8 AU, but predicts less ion heating than the empirical estimate at smaller heliocentric radii. At these smaller radii, the turbulent heating prescription, calculated in the gyrokinetic limit, fails because the turbulent cascade is predicted to reach the proton cyclotron frequency before Landau damping terminates the cascade. These findings suggest that the turbulent cascade can reach the proton cyclotron frequency at R {approx}< 0.8 AU, leading to a higher level of proton heating than predicted by the turbulent heating prescription in the gyrokinetic limit. At larger heliocentric radii, R {approx}> 0.8 AU, this turbulent heating prescription contains all of the necessary physical mechanisms needed to reproduce the empirically estimated proton-to-total heating ratio.

Howes, G. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States)

2011-09-01T23:59:59.000Z

65

Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume III. Wind conversion systems with energy storage. Final report  

DOE Green Energy (OSTI)

The variability of energy output inherent in wind energy conversion systems (WECS) has led to the investigation of energy storage as a means of managing the available energy when immediate, direct use is not possible or desirable. This portion of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a wind energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with wind energy conversion systems.

Not Available

1978-01-01T23:59:59.000Z

66

Relative Roles of Elevated Heating and Surface Temperature Gradients in Driving Anomalous Surface Winds over Tropical Oceans  

Science Conference Proceedings (OSTI)

Elevated heating by cumulus convection and sea surface temperature gradients are both thought to contribute to surface winds over tropical oceans. The relative strength and role of each mechanism is examined by imposing forcing derived from data ...

John C. H. Chiang; Stephen E. Zebiak; Mark A. Cane

2001-06-01T23:59:59.000Z

67

Photovoltaic Systems  

Energy.gov (U.S. Department of Energy (DOE))

A photovoltaic (PV), or solar electric system, is made up of several photovoltaic solar cells. An individual PV cell is usually small, typically producing about 1 or 2 watts of power. To boost the...

68

Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence  

E-Print Network (OSTI)

We present a series of models for the plasma properties along open magnetic flux tubes rooted in solar coronal holes, streamers, and active regions. These models represent the first self-consistent solutions that combine: (1) chromospheric heating driven by an empirically guided acoustic wave spectrum, (2) coronal heating from Alfven waves that have been partially reflected, then damped by anisotropic turbulent cascade, and (3) solar wind acceleration from gradients of gas pressure, acoustic wave pressure, and Alfven wave pressure. The only input parameters are the photospheric lower boundary conditions for the waves and the radial dependence of the background magnetic field along the flux tube. For a single choice for the photospheric wave properties, our models produce a realistic range of slow and fast solar wind conditions by varying only the coronal magnetic field. Specifically, a 2D model of coronal holes and streamers at solar minimum reproduces the latitudinal bifurcation of slow and fast streams seen by Ulysses. The radial gradient of the Alfven speed affects where the waves are reflected and damped, and thus whether energy is deposited below or above the Parker critical point. As predicted by earlier studies, a larger coronal ``expansion factor'' gives rise to a slower and denser wind, higher temperature at the coronal base, less intense Alfven waves at 1 AU, and correlative trends for commonly measured ratios of ion charge states and FIP-sensitive abundances that are in general agreement with observations. These models offer supporting evidence for the idea that coronal heating and solar wind acceleration (in open magnetic flux tubes) can occur as a result of wave dissipation and turbulent cascade. (abridged abstract)

Steven R. Cranmer; Adriaan A. van Ballegooijen; Richard J. Edgar

2007-03-13T23:59:59.000Z

69

Building Integrated Photovoltaic Testbed  

Science Conference Proceedings (OSTI)

... Comparisons are based on energy production, operating temperature, heat flux, and ... An ultrasonic wind sensor is used to measure the magnitude ...

2011-11-15T23:59:59.000Z

70

List of Passive Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 278 Passive Solar Space Heat Incentives. CSV (rows 1 - 278) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy and Energy Conservation Patent Exemption (Corporate) (Massachusetts) Industry Recruitment/Support Massachusetts Commercial Biomass Fuel Cells Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Municipal Solid Waste Passive Solar Space Heat Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy and Energy Conservation Patent Exemption (Personal) (Massachusetts) Industry Recruitment/Support Massachusetts General Public/Consumer Biomass

71

Scaling Laws of Turbulence and Heating of Fast SolarWind: The Role of Density Fluctuations  

E-Print Network (OSTI)

Incompressible and isotropic magnetohydrodynamic turbulence in plasms can be described by an exact relation for the energy flux through the scales. This Yaglom-like scaling law has been recently observed in the solar wind above the solar poles observed by the Ulysses spacecraft, where the turbulence is in an Alfv\\'enic state. An analogous phenomenological scaling law, suitably modified to take into account compressible fluctuations, is observed more frequently in the same dataset. Large scale density fluctuations, despite their low amplitude, play thus a crucial role in the basic scaling properties of turbulence. The turbulent cascade rate in the compressive case can moreover supply the energy dissipation needed to account for the local heating of the non-adiabatic solar wind.

Carbone, V; Sorriso-Valvo, L; Noullez, A; Bruno, R

2010-01-01T23:59:59.000Z

72

Organic Photovoltaic Cells with an Electric Field Integrally ...  

Vehicles and Fuels; Wind Energy; Partners (27) Visual Patent ... This method is applicable to organic photovoltaic cell manufacturers; Technology Status. Technology ID

73

City of San Jose - Photovoltaic Permit Requirements (California...  

Open Energy Info (EERE)

Jose - Solar Hot Water Heaters & Photovoltaic Systems Permit Requirements Incentive Type SolarWind Permitting Standards Applicable Sector Commercial, Construction, Industrial,...

74

On the Use of Agent-Based Simulation for Efficiency Analysis of Domestic Heating Using Photovoltaic Solar Energy  

E-Print Network (OSTI)

Solar Energy Production Combined with a Heatpump Jan Treur VU University Amsterdam, Agent Systems on a heatpump together with a photovoltaic (PV) solar energy installation. A simulation model for the cost (in to a simulation model for the yields of a PV installation agent to estimate produced solar energy (in kWh per day

Treur, Jan

75

Photovoltaic roof heat flux  

E-Print Network (OSTI)

and a major factor of energy usage (-37%) is the amount ofdesign approaches to reduce energy usage i n order to coollongest, a n d hence the energy usage was the largest d u r

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

76

Photovoltaic roof heat flux  

E-Print Network (OSTI)

showed that a solar panel over a rooftop w i l l lead to aalbedo (or solar reflectance) by painting the rooftops whitesolar panel offset height became a key component for rooftop

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

77

Photovoltaic roof heat flux  

E-Print Network (OSTI)

represent the total H V A C energy usage for that day. Otherrepresent the total H V A C energy usage for that day. Other

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

78

Photovoltaic roof heat flux  

E-Print Network (OSTI)

many solar installations have basic weather stations. Withthe solar panels. Figure 6: Setup #1 on RIMAC roof. Weather

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

79

Observational Test of Stochastic Heating in Low-$\\beta$ Fast Solar Wind Streams  

E-Print Network (OSTI)

Spacecraft measurements show that protons undergo substantial perpendicular heating during their transit from the Sun to the outer heliosphere. In this paper, we use {\\em Helios~2} measurements to investigate whether stochastic heating by low-frequency turbulence is capable of explaining this perpendicular heating. We analyze {\\em Helios~2} magnetic-field measurements in low-$\\beta$ fast-solar-wind streams between heliocentric distances $r=0.29$ AU and $r=0.64$ AU to determine the rms amplitude of the fluctuating magnetic field, $\\delta B_{\\rm p}$, near the proton gyroradius scale $\\rho_{\\rm p}$. We then evaluate the stochastic heating rate $Q_{\\perp \\rm stoch}$ using the measured value of $\\delta B_{\\rm p}$ and a previously published analytical formula for $Q_{\\perp \\rm stoch}$. Using {\\em Helios} measurements we estimate the `empirical' perpendicular heating rate $Q_{\\perp \\rm emp} = (k_{\\rm B}/m_{\\rm p}) B V (d/dr) (T_{\\perp \\rm p}/B)$ that is needed to explain the $T_{\\perp \\rm p}$ profile. We find that $...

Bourouaine, Sofiane

2013-01-01T23:59:59.000Z

80

Wind turbine generators having wind assisted cooling systems ...  

Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic; Solar Thermal; Startup America; Vehicles and Fuels; Wind ...

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Low-cost, Modular, Building-integrated Photovoltaic-Thermal ...  

... hot water and pre-heated ventilation air production in ... Heat collection will improve solar electric output by actively cooling the photovoltaic ...

82

Economic analysis of wind-powered farmhouse and farm building heating systems. Final report  

DOE Green Energy (OSTI)

The study evaluated the break-even values of wind energy for selected farmhouses and farm buildings focusing on the effects of thermal storage on the use of WECS production and value. Farmhouse structural models include three types derived from a national survey - an older, a more modern, and a passive solar structure. The eight farm building applications that were analyzed include: poultry-layers, poultry-brooding/layers, poultry-broilers, poultry-turkeys, swine-farrowing, swine-growing/finishing, dairy, and lambing. These farm buildings represent the spectrum of animal types, heating energy use, and major contributions to national agricultural economic values. All energy analyses were based on hour-by-hour computations which allowed for growth of animals, sensible and latent heat production, and ventilation requirements. Hourly or three-hourly weather data obtained from the National Climatic Center was used for the nine chosen analysis sites, located throughout the United States and corresponding to regional agricultural production centers.

Stafford, R.W.; Greeb, F.J.; Smith, M.F.; Des Chenes, C.; Weaver, N.L.

1981-01-01T23:59:59.000Z

83

Module Handbook Specialisation Photovoltaics  

E-Print Network (OSTI)

#12;Specialisation Photovoltaics, University of Northumbria Module 1/Photovoltaics: PHOTOVOLTAIC CELL AND MODULE TECHNOLOGY Module name: PHOTOVOLTAIC CELL AND MODULE TECHNOLOGY Section EUREC · Chemistry · Physics Target learning outcomes The module Photovoltaic Cell and Module Technology teaches

Habel, Annegret

84

Photovoltaic-thermal collectors  

DOE Patents (OSTI)

A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

Cox, III, Charles H. (Carlisle, MA)

1984-04-24T23:59:59.000Z

85

Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils  

Science Conference Proceedings (OSTI)

Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

Peter K. F. Hwang

2007-10-22T23:59:59.000Z

86

Photovoltaic cell  

DOE Patents (OSTI)

In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

Gordon, Roy G. (Cambridge, MA); Kurtz, Sarah (Somerville, MA)

1984-11-27T23:59:59.000Z

87

Coronal Heating and Acceleration of the High/Low-Speed Solar Wind by Fast/Slow MHD Shock Trains  

E-Print Network (OSTI)

We investigate coronal heating and acceleration of the high- and low-speed solar wind in the open field region by dissipation of fast and slow magnetohydrodynamical (MHD) waves through MHD shocks. Linearly polarized \\Alfven (fast MHD) waves and acoustic (slow MHD) waves travelling upwardly along with a magnetic field line eventually form fast switch-on shock trains and hydrodynamical shock trains (N-waves) respectively to heat and accelerate the plasma. We determine one dimensional structure of the corona from the bottom of the transition region (TR) to 1AU under the steady-state condition by solving evolutionary equations for the shock amplitudes simultaneously with the momentum and proton/electron energy equations. Our model reproduces the overall trend of the high-speed wind from the polar holes and the low-speed wind from the mid- to low-latitude streamer except the observed hot corona in the streamer. The heating from the slow waves is effective in the low corona to increase the density there, and plays an important role in the formation of the dense low-speed wind. On the other hand, the fast waves can carry a sizable energy to the upper level to heat the outer corona and accelerate the high-speed wind effectively. We also study dependency on field strength, $B_0$, at the bottom of the TR and non-radial expansion of a flow tube, $f_{\\rm max}$, to find that large $B_0/f_{\\rm max}\\gtrsim 2$ but small $B_0\\simeq 2$G are favorable for the high-speed wind and that small $B_0/f_{\\rm max}\\simeq 1$ is required for the low-speed wind.

Takeru K. Suzuki

2003-12-22T23:59:59.000Z

88

Photovoltaics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaics Photovoltaics August 16, 2013 - 4:47pm Addthis Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as...

89

Energy Basics: Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photovoltaics Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be...

90

Tellus 000, 000000 (0000) Printed 12 August 2009 (Tellus LATEX style file v2.2) Wind sensitivity of the inter-ocean heat exchange  

E-Print Network (OSTI)

of the inter-ocean heat exchange By HANNA CORELL1 , JOHAN NILSSON1 , KRISTOFER D¨O¨OS1 , and G¨ORAN BROSTR¨OM2 is used to investigate the impact of the wind field on the heat exchange between the ocean basins-OCEAN HEAT EXCHANGE 3 heat transport, and the meridional overturning by increasing the upwelling of deep

Nilsson, Johan

91

Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report  

DOE Green Energy (OSTI)

Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

1980-03-01T23:59:59.000Z

92

ANNUAL REPORT 1998 PHOTOVOLTAICS GROUP  

E-Print Network (OSTI)

RESEARCH COUNCIL Cover Photo: Wind, Solar Powered Car & Building (G8 Building at Birmingham, Photo Courtesy ENGINEERING) Photovoltaics Group School of Electrical Engineering University of New South Wales Sydney NSW ELECTRICITY INDUSTRY RESTRUCTURING & REGULATION 24 SYSTEM HARDWARE AND PERFORMANCE MONITORING 24 EDUCATION

93

Photovoltaic Cells  

Energy.gov (U.S. Department of Energy (DOE))

Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV cells are the building blocks of all PV systems because they are the devices that...

94

Photovoltaics I  

Science Conference Proceedings (OSTI)

Mar 13, 2012 ... TiO2 is an attractive material for dye sensitized solar cells (DSSC) ... Second, I will discuss our design of photovoltaic (PV) materials that exploit ...

95

Solar and Wind Energy Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) Corporate) Solar and Wind Energy Credit (Corporate) < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate Varies by technology and property type (see summary for details) Program Info Start Date 7/1/2009 State Hawaii Program Type Corporate Tax Credit Rebate Amount Solar Thermal and PV: 35%; Wind: 20% Provider Hawaii Department of Taxation Note: The Hawaii Department of Taxation issued temporary administrative rules in November 2012 for photovoltaic systems installed on or after January 1, 2013. A formal rulemaking is underway. See "[http://www6.hawaii.gov/tax/tir/tir12-01.pdf Tax Information Release

96

Solar and Wind Energy Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Personal) Personal) Solar and Wind Energy Credit (Personal) < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate Varies by technology and property type (see summary for details) Program Info Start Date 7/1/2009 State Hawaii Program Type Personal Tax Credit Rebate Amount Solar Thermal and PV: 35%; Wind: 20% Provider Hawaii Department of Taxation Note: The Hawaii Department of Taxation issued temporary administrative rules in November 2012 for photovoltaic systems installed on or after January 1, 2013. A formal rulemaking is underway. See "[http://www6.hawaii.gov/tax/tir/tir12-01.pdf Tax Information Release

97

NREL: Photovoltaics Research - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials, Devices, & Processes Testing & Analysis Facilities National Center for Photovoltaics...

98

EELE408 Photovoltaics Lecture 20: Photovoltaic Systems  

E-Print Network (OSTI)

into the grid 2 Application Areas 3 Photovoltaic System Basics · Photovoltaic Systems ­ Cell Panel Array1 EELE408 Photovoltaics Lecture 20: Photovoltaic Systems Dr. Todd J. Kaiser tjkaiser Panel 4 · DC · AC / = ACDC Charge Regulator Inverter Battery DC Load AC Load Modularity: Solar Cell

Kaiser, Todd J.

99

Table 10.9 Photovoltaic Cell and Module Shipments by Sector and ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Table 10.9 Photovoltaic Cell and Module Shipments by Sector and End Use, 1989-2010

100

The Effect of Heat Waves and Drought on Surface Wind Circulations in the Northeast of the Iberian Peninsula during the Summer of 2003  

Science Conference Proceedings (OSTI)

Variations in the diurnal wind pattern associated with heat waves and drought conditions are investigated climatologically at a regional level (northeast of the Iberian Peninsula). The study, based on high-density observational evidence and fine ...

Pedro A. Jiménez; Jordi Vilà-Guerau de Arellano; J. Fidel González-Rouco; Jorge Navarro; Juan P. Montávez; Elena García-Bustamante; Jimy Dudhia

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Successful Coronal Heating and Solar Wind Acceleration by MHD Waves by Numerical Simulations from Photosphere to 0.3AU  

E-Print Network (OSTI)

We show that the coronal heating and the acceleration of the fast solar wind in the coronal holes are natural consequence of the footpoint fluctuations of the magnetic fields at the photosphere by one-dimensional, time-dependent, and nonlinear magnetohydrodynamical simulation with radiative cooling and thermal conduction. We impose low-frequency ( = 0.7$km/s. In spite of the attenuation in the chromosphere by the reflection, the sufficient energy of the generated outgoing Alfven waves transmit into the corona to heat and accelerate of the plasma by nonlinear dissipation. Our result clearly shows that the initial cool (10^4K) and static atmosphere is naturally heated up to 10^6K and accelerated to 800km/s, and explain recent SoHO observations and Interplanetary Scintillation measurements.

Takeru K. Suzuki; Shu-ichiro Inutsuka

2005-08-26T23:59:59.000Z

102

Intermediate photovoltaic system application experiment operational performance report. Volume 7, for Newman Power Station, El Paso, TX  

DOE Green Energy (OSTI)

Performance data are given for the month of December, 1981 for a photovoltaic power supply at a Texas power station. Data include: monthly and daily electric energy produced; monthly and daily solar energy received; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature, and hour of the day; monthly and daily electrical energy supplied by the photovoltaic system to the load; daily system availability; monthly and hourly insolation; monthly and hourly ambient temperature; monthly and hourly wind speed; wind direction distribution; heating and cooling degree days; number of freeze/thaw cycles; hourly cell temperature; and a plot of daily data acquisition mode and recording interval. Also included are brief summaries of three site events. (LEW)

Not Available

1982-01-01T23:59:59.000Z

103

NREL: Photovoltaics Research - Events  

NLE Websites -- All DOE Office Websites (Extended Search)

success. The following events and meetings are of interest to partners of NREL Photovoltaics (PV) Research and the National Center for Photovoltaics (NCPV). Printable Version...

104

ORGANIC PHOTOVOLTAIC DEVICE OPTIMIZATION .  

E-Print Network (OSTI)

??Polymer based organic photovoltaic (OPV) is making great progress on solar cell performance in the past decade. As a potential alternative to conventional expensive photovoltaic… (more)

Nie, Wanyi

2012-01-01T23:59:59.000Z

105

Electron heat conduction in the solar wind: transition from Spitzer-H\\"{a}rm to the collisionless limit  

E-Print Network (OSTI)

We use a statistically significant set of measurements to show that the field-aligned electron heat flux $q_\\parallel$ in the solar wind at 1 AU is consistent with the Spitzer-H\\"{a}rm collisional heat flux $q_{sh}$ for temperature gradient scales larger than a few mean free paths $L_T \\gtrsim 3.5 ~\\lambda_{fp}$. This represents about 65% of the measured data and corresponds primarily to high $\\beta$, weakly collisional plasma ('slow solar wind'). In the more collisionless regime $\\lambda_{fp}/L_T \\gtrsim 0.28$, the electron heat flux is limited to $q_\\parallel/q_0 \\sim 0.3$, independent of mean free path, where $q_0$ is the 'free-streaming' value; the measured $q_\\parallel$ does not achieve the full $q_0$. This constraint $q_\\parallel/q_0 \\sim 0.3$ might be attributed to wave-particle interactions, an interplanetary electric potential, or inherent flux limitation. We also show a $\\beta_e$ dependence to these results that is consistent with a local radial electron temperature profile $T_e \\sim r^{-\\alpha}$ th...

Bale, S D; Salem, C; Chen, C H K; Quataert, E

2013-01-01T23:59:59.000Z

106

Momentum, Heat, and Moisture Budgets of the Katabatic Wind Layer over a Midlatitude Glacier in Summer  

Science Conference Proceedings (OSTI)

In the summer of 1994, meteorological measurements were performed on Pasterze Glacier in the eastern Alps. One of the most remarkable observations concerning the observed climate was the persistent glacier wind. On the relatively large glacier, ...

Michiel R. van den Broeke

1997-06-01T23:59:59.000Z

107

Mechanisms of Along-Valley Winds and Heat Exchange over Mountainous Terrain  

Science Conference Proceedings (OSTI)

The physical mechanisms leading to the formation of diurnal along-valley winds are investigated over idealized three-dimensional topography. The topography used in this study consists of a valley with a horizontal floor enclosed by two isolated ...

Juerg Schmidli; Richard Rotunno

2010-09-01T23:59:59.000Z

108

A methodology to assess the influence of local wind conditions and building orientation on the convective heat transfer at building surfaces  

Science Conference Proceedings (OSTI)

Information on the statistical mean convective heat transfer coefficient (CHTC"S"M) for a building surface, which represents the temporally-averaged CHTC over a long time span (e.g. the lifetime of the building), could be useful for example for the optimisation ... Keywords: Building facade, Building orientation, CFD, Convective heat transfer coefficient, Low-Reynolds number modelling, RANS, Wind climate

Thijs Defraeye; Jan Carmeliet

2010-12-01T23:59:59.000Z

109

Wind Turbine R&D and Certification Services: Cooperative Research and Development Final Report, CRADA Number CRD-04-00147  

DOE Green Energy (OSTI)

NREL and Underwriters Laboratories Inc. are developing a domestic certification program for the US wind and photovoltaic (PV) industry.

Link, H.

2011-02-01T23:59:59.000Z

110

Eddy and Wind-Forced Heat Transports in the Gulf of Mexico  

Science Conference Proceedings (OSTI)

The Gulf of Mexico (GOM) receives heat from the Caribbean Sea via the Yucatan–Loop Current (LC) system, and the corresponding ocean heat content (OHC) is important to weather and climate of the continental United States. However, the mechanisms ...

Y-L. Chang; L-Y. Oey

2010-12-01T23:59:59.000Z

111

CORONAL HEATING BY SURFACE ALFVEN WAVE DAMPING: IMPLEMENTATION IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL OF THE SOLAR WIND  

SciTech Connect

The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave-driven model with physical dissipation mechanisms presented in this work is more aligned with an empirical Alfven speed profile. Therefore, a wave-driven model which includes the effects of SAW damping is a better background to simulate coronal-mass-ejection-driven shocks.

Evans, R. M. [NASA Goddard Space Flight Center, Space Weather Lab, Greenbelt, MD 20771 (United States); Opher, M. [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Vasquez, A., E-mail: Rebekah.e.frolov@nasa.gov [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina)

2012-09-10T23:59:59.000Z

112

Terrestrial photovoltaic power systems with sunlight concentration. Annual progress report, January 1, 1975--December 31, 1975  

DOE Green Energy (OSTI)

This annual report is for the second year of a program to investigate the characteristics of the components and the total system using sunlight concentrated onto solar cells. The second year was primarily to experimentally investigate the conclusions of the first year of analytical studies. Cells have been fabricated that are designed for different intensities. Typically the efficiency of a cell will increase from its 11 percent at AM1 peak to efficiency at the designed concentration level and return to its initial efficiency at about 3 times its designed concentration level. The developed cells have been tested under high intensity simulators and in concentrated sunlight and have shown to have the predicted response. The experimental testing of passive cooling limitations for cooling cells with just finned arrangements in the back of the cell has been completed in the controlled environment of a wind tunnel. These experiments have confirmed the heat transfer coefficients that had been used in the analytical studies. Testing was done to collect heat transfer coefficients for actual wind conditions and these data show good agreement with the controlled wind tunnel data. Four photovoltaic/concentrator system experiments have been started with CR of about 3, 10, 25, and 100. System analysis has indicated that photovoltaic concentration systems may be attractive in low solar irradiation areas such as Cleveland.

Backus, C.E.

1976-01-31T23:59:59.000Z

113

PROTON, ELECTRON, AND ION HEATING IN THE FAST SOLAR WIND FROM NONLINEAR COUPLING BETWEEN ALFVENIC AND FAST-MODE TURBULENCE  

Science Conference Proceedings (OSTI)

In the parts of the solar corona and solar wind that experience the fewest Coulomb collisions, the component proton, electron, and heavy ion populations are not in thermal equilibrium with one another. Observed differences in temperatures, outflow speeds, and velocity distribution anisotropies are useful constraints on proposed explanations for how the plasma is heated and accelerated. This paper presents new predictions of the rates of collisionless heating for each particle species, in which the energy input is assumed to come from magnetohydrodynamic (MHD) turbulence. We first created an empirical description of the radial evolution of Alfven, fast-mode, and slow-mode MHD waves. This model provides the total wave power in each mode as a function of distance along an expanding flux tube in the high-speed solar wind. Next, we solved a set of cascade advection-diffusion equations that give the time-steady wavenumber spectra at each distance. An approximate term for nonlinear coupling between the Alfven and fast-mode fluctuations is included. For reasonable choices of the parameters, our model contains enough energy transfer from the fast mode to the Alfven mode to excite the high-frequency ion cyclotron resonance. This resonance is efficient at heating protons and other ions in the direction perpendicular to the background magnetic field, and our model predicts heating rates for these species that agree well with both spectroscopic and in situ measurements. Nonetheless, the high-frequency waves comprise only a small part of the total Alfvenic fluctuation spectrum, which remains highly two dimensional as is observed in interplanetary space.

Cranmer, Steven R.; Van Ballegooijen, Adriaan A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2012-08-01T23:59:59.000Z

114

THE TURBULENT CASCADE AND PROTON HEATING IN THE SOLAR WIND DURING SOLAR MINIMUM  

Science Conference Proceedings (OSTI)

The recently protracted solar minimum provided years of interplanetary data that were largely absent in any association with observed large-scale transient behavior on the Sun. With large-scale shear at 1 AU generally isolated to corotating interaction regions, it is reasonable to ask whether the solar wind is significantly turbulent at this time. We perform a series of third-moment analyses using data from the Advanced Composition Explorer. We show that the solar wind at 1 AU is just as turbulent as at any other time in the solar cycle. Specifically, the turbulent cascade of energy scales in the same manner proportional to the product of wind speed and temperature. Energy cascade rates during solar minimum average a factor of 2-4 higher than during solar maximum, but we contend that this is likely the result of having a different admixture of high-latitude sources.

Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH (United States); Stawarz, Joshua E. [Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CA (United States); Forman, Miriam A., E-mail: jtu46@wildcats.unh.edu, E-mail: Charles.Smith@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: Joshua.Stawarz@Colorado.edu, E-mail: Miriam.Forman@sunysb.edu [Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY (United States)

2012-08-01T23:59:59.000Z

115

Photovoltaics: New opportunities for utilities  

SciTech Connect

This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

Not Available

1991-07-01T23:59:59.000Z

116

Proton, Electron, and Ion Heating in the Fast Solar Wind from Nonlinear Coupling Between Alfvenic and Fast-Mode Turbulence  

E-Print Network (OSTI)

In the parts of the solar corona and solar wind that experience the fewest Coulomb collisions, the component proton, electron, and heavy ion populations are not in thermal equilibrium with one another. Observed differences in temperatures, outflow speeds, and velocity distribution anisotropies are useful constraints on proposed explanations for how the plasma is heated and accelerated. This paper presents new predictions of the rates of collisionless heating for each particle species, in which the energy input is assumed to come from magnetohydrodynamic (MHD) turbulence. We first created an empirical description of the radial evolution of Alfven, fast-mode, and slow-mode MHD waves. This model provides the total wave power in each mode as a function of distance along an expanding flux tube in the high-speed solar wind. Next we solved a set of cascade advection-diffusion equations that give the time-steady wavenumber spectra at each distance. An approximate term for nonlinear coupling between the Alfven and fas...

Cranmer, Steven R

2012-01-01T23:59:59.000Z

117

SunShot Initiative: Photovoltaics  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiative: Photovoltaics on Twitter Bookmark SunShot Initiative: Photovoltaics on Google Bookmark SunShot Initiative: Photovoltaics on Delicious Rank SunShot Initiative:...

118

Quasilinear Evolution of Kinetic Alfven Wave Turbulence and Perpendicular Ion Heating in the Solar Wind  

E-Print Network (OSTI)

It is shown that the quasi-linear evolution of ion and electron distribution functions as result of wave-particle interaction of Kinetic Alfven Waves in the turbulent solar wind plasma leads to instability of long wavelength electromagnetic cyclotron waves and to an increase of the ion temperature perpendicular to the magnetic field.

Rudakov, L; Ganguli, G; Mithaiwala, M

2010-01-01T23:59:59.000Z

119

Eddy Heat Flux in the Southern Ocean: Response to Variable Wind Forcing  

Science Conference Proceedings (OSTI)

The authors assess the role of time-dependent eddy variability in the Antarctic Circumpolar Current (ACC) in influencing warming of the Southern Ocean. For this, an eddy-resolving quasigeostrophic model of the wind-driven circulation is used, and ...

Andrew Mc C. Hogg; Michael P. Meredith; Jeffrey R. Blundell; Chris Wilson

2008-02-01T23:59:59.000Z

120

Statistical Analysis of Sodium Doppler Wind–Temperature Lidar Measurements of Vertical Heat Flux  

Science Conference Proceedings (OSTI)

A statistical study is presented of the errors in sodium Doppler lidar measurements of wind and temperature in the mesosphere that arise from the statistics of the photon-counting process that is inherent in the technique. The authors use data ...

Liguo Su; Richard L. Collins; David A. Krueger; Chiao-Yao She

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Clark County- Solar and Wind Building Permit Guides  

Energy.gov (U.S. Department of Energy (DOE))

Clark County, Nevada has established guides for obtaining building permits for wind and solar photovoltaic (PV) systems for both residential and commercial purposes. The guides outline applicable...

122

doi:10.1088/0004-637X/702/2/1604 EMPIRICAL CONSTRAINTS ON PROTON AND ELECTRON HEATING IN THE FAST SOLAR WIND  

E-Print Network (OSTI)

We analyze measured proton and electron temperatures in the high-speed solar wind in order to calculate the separate rates of heat deposition for protons and electrons. When comparing with other regions of the heliosphere, the fast solar wind has the lowest density and the least frequent Coulomb collisions. This makes the fast wind an optimal testing ground for studies of collisionless kinetic processes associated with the dissipation of plasma turbulence. Data from the Helios and Ulysses plasma instruments were collected to determine mean radial trends in the temperatures and the electron heat conduction flux between 0.29 and 5.4 AU. The derived heating rates apply specifically for these mean plasma properties and not for the full range of measured values around the mean. We found that the protons receive about 60 % of the total plasma heating in the inner heliosphere, and that this fraction increases to approximately 80 % by the orbit of Jupiter. A major factor affecting the uncertainty in this fraction is the uncertainty in the measured radial gradient of the electron heat conduction flux. The empirically derived partitioning of heat between protons and electrons is in rough agreement with theoretical predictions from a model of linear Vlasov wave damping. For a modeled power spectrum consisting only of Alfvénic fluctuations, the best agreement was found for a distribution of wavenumber vectors that evolves toward isotropy as distance increases. Key words: hydrodynamics – MHD – plasmas – solar wind – turbulence – waves Online-only material: color figures 1.

Steven R. Cranmer; William H. Matthaeus; Benjamin A. Breech; Justin C. Kasper

2009-01-01T23:59:59.000Z

123

Hybrid photovoltaic/thermal solar energy system  

DOE Green Energy (OSTI)

Heating and cooling systems that use hybrid solar energy collectors (combination photovoltaic-thermal) have the potential for considerable energy savings, particularly when the system includes a heat pump. Economic evaluations show that photovoltaic systems are potentially most economical, but results depend critically on future collector costs as well as energy prices. Results are based on a specially developed computer program that predicted the total auxiliary energy required for five different solar heating/cooling systems. Performance calculations for a modeled residence and small office building were made using meteorological data from four geographic locations. Annual system costs were also calculated.

Kern, E.C. Jr.; Russell, M.C.

1978-03-27T23:59:59.000Z

124

Latent Heat Flux Profiles from Collocated Airborne Water Vapor and Wind Lidars during IHOP_2002  

Science Conference Proceedings (OSTI)

Latent heat flux profiles in the convective boundary layer (CBL) are obtained for the first time with the combination of the Deutsches Zentrum für Luft- und Raumfahrt (DLR) water vapor differential absorption lidar (DIAL) and the NOAA high ...

C. Kiemle; G. Ehret; A. Fix; M. Wirth; G. Poberaj; W. A. Brewer; R. M. Hardesty; C. Senff; M. A. LeMone

2007-04-01T23:59:59.000Z

125

Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Photovoltaics (Redirected from Photovoltaic) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)[1] Photovoltaic Panels Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

126

Perpendicular Ion Heating by Low-Frequency Alfven-Wave Turbulence in the Solar Wind  

E-Print Network (OSTI)

We consider ion heating by turbulent Alfven waves (AWs) and kinetic Alfven waves (KAWs) with perpendicular wavelengths comparable to the ion gyroradius and frequencies smaller than the ion cyclotron frequency. When the turbulence amplitude exceeds a certain threshold, an ion's orbit becomes chaotic. The ion then interacts stochastically with the time-varying electrostatic potential, and the ion's energy undergoes a random walk. Using phenomenological arguments, we derive an analytic expression for the rates at which different ion species are heated, which we test by simulating test particles interacting with a spectrum of randomly phased AWs and KAWs. We find that the stochastic heating rate depends sensitively on the quantity epsilon = dv/vperp, where vperp is the component of the ion velocity perpendicular to the background magnetic field B0, and dv (dB) is the rms amplitude of the velocity (magnetic-field) fluctuations at the gyroradius scale. In the case of thermal protons, when epsilon eps1, the proton ...

Chandran, Benjamin D G; Rogers, Barrett N; Quataert, Eliot; Germaschewski, Kai

2010-01-01T23:59:59.000Z

127

Improved Organic Photovoltaics - Energy Innovation Portal  

Solar Photovoltaic Improved Organic Photovoltaics B4 Materials For Organic Semiconductor Applications, Including Molecular Electronics And Organic Photovoltaics

128

1 Copyright 2011 by ASME MATERIAL OPTIMIZATION FOR CONCENTRATED SOLAR PHOTOVOLTAIC AND  

E-Print Network (OSTI)

photovoltaic and hot water co-generation based on various solar cell technologies and micro channel heat sinks. Concentrated solar Photovoltaic (PV) based on multi junction cells can yield around 35-40% efficiency is moderate [3] in comparison to the concentrated solar photovoltaic, for which multi-junction cells

129

A Model for the Influence of Wind and Oceanic Currents on the Size of a Steady-State Latent Heat Coastal Polynya  

Science Conference Proceedings (OSTI)

This paper presents a model for determining the size and shape of a steady-state latent heat coastal polynya in terms of the following free parameters: 1) the frazil ice production rate (F); 2) the wind stress (?); 3) the surface ocean velocity ...

A. J. Willmott; M. A. Morales Maqueda; M. S. Darby

1997-10-01T23:59:59.000Z

130

Photovoltaic cell assembly  

DOE Patents (OSTI)

A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.

Beavis, Leonard C. (Albuquerque, NM); Panitz, Janda K. G. (Edgewood, NM); Sharp, Donald J. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

131

Photovoltaic cell assembly  

DOE Patents (OSTI)

A photovoltaic assembly for converting high intensity solar radiation into electrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al{sub 2}O{sub 3} in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al{sub 2}O{sub 3} and has a higher thermal conductivity than a layer of styrene-acrylate alone. 2 figs.

Beavis, L.C.; Panitz, J.K.G.; Sharp, D.J.

1989-09-26T23:59:59.000Z

132

Photovoltaic Technology Incubator Awards  

SciTech Connect

This factsheet gives an overview of the Photovoltaic (PV) Technology Incubator Awards and the Solar America Initiative (SAI).

2007-06-01T23:59:59.000Z

133

Energy Basics: Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

134

Energy Basics: Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

135

Energy Basics: Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

136

Electroluminescence in photovoltaic cell  

E-Print Network (OSTI)

Here we propose two methods to get electroluminescence images from photovoltaic cells in a school or home lab.

Petraglia, Antonio; 10.1088/0031-9120/46/5/F01

2011-01-01T23:59:59.000Z

137

Photovoltaics (Fact Sheet)  

DOE Green Energy (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

Not Available

2010-09-01T23:59:59.000Z

138

NIST Photovoltaic carrier dynamics  

Science Conference Proceedings (OSTI)

... carrier dynamics in novel electronic photovoltaic materials being considered and developed for future solar cell and energy capture applications. ...

2013-04-01T23:59:59.000Z

139

Photovoltaics (Fact Sheet)  

DOE Green Energy (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

Not Available

2011-06-01T23:59:59.000Z

140

Photovoltaic Energy Conversion  

E-Print Network (OSTI)

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Buy Solar Energy Stocks? Make Photovoltaics your Profession! #12;Challenges Make solar cells more and fossil fuel depletion problems! #12;Photovoltaics: Explosive Growth #12;Take Advantage of Solar Megatrend

Glashausser, Charles

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High density photovoltaic  

DOE Green Energy (OSTI)

Photovoltaic technology can directly generate high voltages in a solid state material through the series interconnect of many photovoltaic diodes. We are investigating the feasibility of developing an electrically isolated, high-voltage power supply using miniature photovoltaic devices that convert optical energy to electrical energy.

Haigh, R.E.; Jacobson, G.F.; Wojtczuk, S. [Spire Corp., Bedford, MA (United States)

1997-10-14T23:59:59.000Z

142

Photovoltaic Cell And Manufacturing Process  

DOE Patents (OSTI)

Provided is a method for controlling electrical properties and morphology of a p-type material of a photovoltaic device. The p-type material, such as p-type cadmium telluride, is first subjected to heat treatment in an oxidizing environment, followed by recrystallization in an environment substantially free of oxidants. In one embodiment, the heat treatment step comprises first subjecting the p-type material to an oxidizing atmosphere at a first temperature to getter impurities, followed by second subjecting the p-type material to an oxidizing atmosphere at a second temperature, higher than the first temperature, to develop a desired oxidation gradient through the p-type material.

Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes R. (El Paso, TX)

1996-11-26T23:59:59.000Z

143

Description of the University of Texas at Arlington Solar Energy Research Facility photovoltaic/thermal residential system  

DOE Green Energy (OSTI)

The addition of a photovoltaic array to a solar-heated single-family residence at the University of Texas at Arlington permits the study of combined photovoltaic/thermal system operation. Equipment and construction details are presented.

Darkazalli, G.

1979-03-16T23:59:59.000Z

144

Performance Assessment of Photovoltaic Attic Ventilator Fans  

E-Print Network (OSTI)

Controlling summer attic heat gain is important to reducing air conditioning energy use in homes in hot-humid climates. Both heat transfer through ceilings and t attic duct systems can make up a large part of peak cooling demand, Attic ventilation has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance.

Parker, D. S.; Sherwin, J. R.

2000-01-01T23:59:59.000Z

145

List of Wind Incentives | Open Energy Information  

Open Energy Info (EERE)

List of Wind Incentives List of Wind Incentives Jump to: navigation, search The following contains the list of 1937 Wind Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1500) CSV (rows 1501-1937) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Renewable Energy Credit (REC) Purchase Program (Ohio) Performance-Based Incentive Ohio Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Photovoltaics Wind energy Yes AEP Ohio - Renewable Energy Technology Program (Ohio) Utility Rebate Program Ohio Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Photovoltaics Wind energy Yes

146

NREL: Photovoltaics Research - Company Partners in Photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Company Partners in Photovoltaic Manufacturing R&D Company Partners in Photovoltaic Manufacturing R&D More than 40 private-sector companies partnered with NREL on successful efforts within the PV Manufacturing R&D Project. They included manufacturers of crystalline silicon, thin-film, and concentrator solar technologies. The companies are listed below. Advanced Energy Systems Alpha Solarco ASE Americas AstroPower/GE Energy Boeing Aerospace BP Solar Cronar Crystal Systems Dow Corning Energy Conversion Devices Energy Photovoltaics ENTECH Evergreen Solar First Solar Glasstech Solar Global Photovoltaic Specialists Global Solar Energy Golden Photon Iowa Thin Film Technologies ITN Energy Systems Kopin Mobil Solar Energy Omnion Power Engineering Photon Energy Photovoltaics International PowerLight RWE Schott Solar/Schott Solar

147

Photovoltaic Materials  

Science Conference Proceedings (OSTI)

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

148

Definition: Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Photovoltaics Jump to: navigation, search Dictionary.png Photovoltaics Pertaining to the direct conversion of light into electricity[1][2] View on Wikipedia Wikipedia Definition Photovoltaics (PV) is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Materials presently used for photovoltaics include monocrystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and copper indium gallium selenide/sulfide. Due to the increased demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced

149

Maximizing Real-Time Distribution of Wind-Electricity to Electrical Thermal Storage Units for Residential Space Heating.  

E-Print Network (OSTI)

??Wind-electricity is unpredictable in both intensity and duration. This thesis presents the design and implementation of Client-pull and Server-push architectures for the distribution of wind-electricity… (more)

Barnes, Andrew

2011-01-01T23:59:59.000Z

150

NREL: Photovoltaics Research - High-Performance Photovoltaics  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaics In an ideal multijunction cell, the top layer produces most of the total power, so the top layer should be of the highest quality. However, in conventional designs...

151

On the Heating of the Solar Corona and the Acceleration of the Low-Speed Solar Wind by Acoustic Waves Generated in Corona  

E-Print Network (OSTI)

We investigate possibilities of solar coronal heating by acoustic waves generated not at the photosphere but in the corona, aiming at heating in the mid- to low-latitude corona where the low-speed wind is expected to come from. Acoustic waves of period tau ~ 100s are triggered by chromospheric reconnection, one model of small scale magnetic reconnection events recently proposed by Sturrock. These waves having a finite amplitude eventually form shocks to shape sawtooth waves (N-waves), and directly heat the surrounding corona by dissipation of their wave energy. Outward propagation of the N-waves is treated based on the weak shock theory, so that the heating rate can be evaluated consistently with physical properties of the background coronal plasma without setting a dissipation length in an ad hoc manner. We construct coronal structures from the upper chromosphere to the outside of 1AU for various inputs of the acoustic waves having a range of energy flux of F_{w,0} = (1-20) times 10^5 erg cm^{-2} s^{-1} and a period of tau = 60-300s. The heating by the N-wave dissipation effectively works in the inner corona and we find that the waves of F_{w,0} >= 2 times 10^5 erg cm^{-2} s^{-1} and tau >= 60s could maintain peak coronal temperature, T_{max} > 10^6 K. The model could also reproduce the density profile observed in the streamer region. However, due to its short dissipation length, the location of T_{max} is closer to the surface than the observation, and the resultant flow velocity of the solar wind is lower than the observed profile of the low-speed wind. The cooperations with other heating and acceleration sources with the larger dissipation length are inevitable to reproduce the real solar corona.

Takeru Ken Suzuki

2002-06-14T23:59:59.000Z

152

Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Photovoltaics (Redirected from Solar Photovoltaics) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)[1] Photovoltaic Panels Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

153

Modular assembly of a photovoltaic solar energy receiver  

DOE Patents (OSTI)

There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

Graven, Robert M. (Downers Grove, IL); Gorski, Anthony J. (Lemont, IL); Schertz, William W. (Batavia, IL); Graae, Johan E. A. (Elmhurst, IL)

1978-01-01T23:59:59.000Z

154

Lightweight, self-ballasting photovoltaic roofing assembly  

DOE Patents (OSTI)

A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

Dinwoodie, T.L.

1998-05-05T23:59:59.000Z

155

Lightweight, self-ballasting photovoltaic roofing assembly  

DOE Patents (OSTI)

A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

Dinwoodie, Thomas L. (Berkeley, CA)

1998-01-01T23:59:59.000Z

156

Chalcopyrite Heterojunction Photovoltaic Devices  

Science Conference Proceedings (OSTI)

This indicates that a p-n junction with photovoltaic response was formed between the films and Si. The estimated open -circuit voltage VOC for these devices is ...

157

Photovoltaics in the Classroom  

NLE Websites -- All DOE Office Websites (Extended Search)

that addresses several important topics, including: basics of electric power and energy; basics of photovoltaics and solar geometry; basics of data analysis for school...

158

Photovoltaic Cell Materials  

Energy.gov (U.S. Department of Energy (DOE))

Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made of many semiconductor materials. Each material has unique strengths and characteristics...

159

Photovoltaics Business Models  

DOE Green Energy (OSTI)

This report summarizes work to better understand the structure of future photovoltaics business models and the research, development, and demonstration required to support their deployment.

Frantzis, L.; Graham, S.; Katofsky, R.; Sawyer, H.

2008-02-01T23:59:59.000Z

160

Concentrating Photovoltaics (Presentation)  

SciTech Connect

Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

Kurtz, S.

2009-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ligitek Photovoltaic | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Ligitek Photovoltaic Jump to: navigation, search Name Ligitek Photovoltaic Place Taiwan Sector Solar Product Ligitek solar...

162

Next-Generation Photovoltaic Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Photovoltaic Technologies Next-Generation Photovoltaic Technologies Print Monday, 06 February 2012 15:48 Organic solar cells based on the polymerfullerene bulk...

163

Solar and Wind Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Easements Solar and Wind Easements Solar and Wind Easements < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Montana Program Type Solar/Wind Access Policy Provider Montana Department of Environmental Quality Montana's solar and wind easement provisions allow property owners to create solar and wind easements for the purpose of protecting and maintaining proper access to sunlight and wind. Solar easements should be negotiated with neighboring property owners. Montana's solar easement law was enacted in 1979; the wind easement law was originally enacted in 1983.

164

Experiment study on single-pass photovoltaic-thermal (PV/T) air collector with absorber  

Science Conference Proceedings (OSTI)

Problem statement: Solar cell received heat from solar irradiance as well and this will reduce the efficiency of the solar cell. The heat trap at the solar photovoltaic panel becomes waste energy. Approach: The solution for this was by adding a cooling ... Keywords: air collector, photovoltaic thermal, rectangle tunnel absorber, thermal efficiency

Goh Li Jin; Hafidz Ruslan; Sohif Mat; Mohd. Yusof Othman; Azami Zaharim; Kamaruzzaman Sopian

2010-10-01T23:59:59.000Z

165

Photovoltaics for residential applications  

DOE Green Energy (OSTI)

Information is given about the parts of a residential photovoltaic system and considerations relevant to photovoltaic power use in homes that are also tied to utility lines. In addition, factors are discussed that influence implementation, including legal and environmental factors such as solar access and building codes, insurance, utility buyback, and system longevity. (LEW)

Not Available

1984-02-01T23:59:59.000Z

166

A Study of Wind Stress and Heat Flux over the Open Ocean by the Inertial-Dissipation Method  

Science Conference Proceedings (OSTI)

A bow-mounted propeller anemometer and fast-response temperature sensors were operated during several cruises of CSS Dawson. Spectra of wind speed and temperature fluctuations were measured over the open ocean for a wind speed range of 6 to 21 m ...

R. J. Anderson

1993-10-01T23:59:59.000Z

167

Photovoltaic solar concentrator module  

DOE Patents (OSTI)

This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

Chiang, C.J.

1991-05-16T23:59:59.000Z

168

Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Photovoltaics (Redirected from - Solar PV) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)[1] Photovoltaic Panels Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

169

NREL: Photovoltaics Research - Photovoltaic Energy Ratings Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaic Energy Ratings Methods Validation Photovoltaic Energy Ratings Methods Validation The Photovoltaic (PV) Engineering group at NREL validates energy ratings methods by standards committees to establish an energy rating methodology. We are evaluating techniques to account for the impact on PV performance from variations in the spectral distribution of solar radiation. Two types of methods were evaluated for correcting the short-circuit current of PV modules for variations in the solar spectrum under clear skies: (1) empirical relationships based on air mass, and (2) use of spectral irradiance models and PV module spectral response data. Methods of the first type were the Sandia National Laboratories absolute air-mass function, or f(AMa), and the CREST air-mass function, or f(AM). The second

170

Characterization of 3D Photovoltaics  

Science Conference Proceedings (OSTI)

... supporting improved processing and design of Second Generation (thin film) and Third Generation (nanostructured) photovoltaic devices. ...

2012-10-02T23:59:59.000Z

171

Photovoltaic Electrical Contacts and Cell Coatings | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Electrical Contacts and Cell Coatings Photovoltaic Electrical Contacts and Cell Coatings August 19, 2013 - 4:12pm Addthis The outermost layers of photovoltaic (PV)...

172

Concentrator Photovoltaic Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrator Photovoltaic Systems Concentrator Photovoltaic Systems August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material than other...

173

Scattering Properties of nanostructures : applications to photovoltaics  

E-Print Network (OSTI)

2nd World Conf. Photovoltaic Energy Conversion, Vienna, p.the 12th European Photovoltaic Solar Energy Conference, p.12th European Photovoltaic Solar Energy Conf. , p. 1481 (

Derkacs, Daniel

2009-01-01T23:59:59.000Z

174

Category:Photovoltaic | Open Energy Information  

Open Energy Info (EERE)

The following 7 pages are in this category, out of 7 total. A American Photovoltaics B British Photovoltaic Association I Integrated Photovoltaics L Ligitek...

175

Energy 101: Solar Photovoltaics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Solar Photovoltaics Energy 101: Solar Photovoltaics February 10, 2011 - 5:29pm Addthis Learn more about photovoltaic systems that convert light energy into electricity....

176

Wind Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Technology Basics Wind Energy Technology Basics Wind Energy Technology Basics August 15, 2013 - 4:10pm Addthis Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain. Most wind energy technologies can be used as stand-alone applications, connected to a utility power grid, or even combined with a photovoltaic system. For utility-scale sources of wind energy, a large number of turbines are usually built close together to form a wind farm that provides grid power. Several electricity providers use wind farms to supply power to their customers. Stand-alone turbines are typically used for water pumping or

177

Photovoltaics in the Czech Republic: example of a distorted market  

Science Conference Proceedings (OSTI)

Analysing the development of "sustainable energy" incentives in the Czech Republic over the last five years and drawing on experience from other countries, the study discovers that the "environmental friendliness" of the so-called "renewable sources", ... Keywords: electricity, energy industry, energy security, environment, investment bubble, photovoltaics, political decisions, renewable sources, wind turbines

Luboš Smr?ka

2011-02-01T23:59:59.000Z

178

NREL: Photovoltaics Research - Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaic Engineering Photovoltaic Engineering Photovoltaic (PV) Engineering at NREL supports commercial and emerging PV technology development. Our support covers the following three areas: Engineering Testing and Evaluation. We provide engineering testing and evaluation of PV products developed by companies during work sponsored by the U.S. Department of Energy (DOE). We determine if products meet performance criteria established by DOE for a company's contractual obligations. Standards Development. We support the development of national and international standards. Current work includes investigating methods of preconditioning cadmium telluride and copper indium gallium diselenide PV modules so that when they are tested for reporting conditions, the results are correlated with subsequent field measurements.

179

Solar photovoltaic/thermal residential systems  

DOE Green Energy (OSTI)

The results of a conceptual design study using computer simulations to determine the physical and economic performance of combined photovoltaic/thermal collector heat-pump solar systems for a single-family residence are presented. Economic analyses are based upon projected costs for a 1986 system installation. The results show that PV/T collector systems can be economically competitive for a cold climate residence, that systems employing on-site electrical storage batteries are not economically competitive with utility-interactive systems, and that an ambient-air-source heat-pump system has a lower life-cycle cost than a solar-source heat-pump system.

Russell, M.C.

1979-12-28T23:59:59.000Z

180

968 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 34 A New Method for Estimation of the Sensible Heat Flux under Unstable Conditions Using Satellite Vector Winds  

E-Print Network (OSTI)

It has been difficult to estimate the sensible heat flux at the air–sea interface using satellite data because of the difficulty in remotely observing the sea level air temperature. In this study, a new method is developed for estimating the sensible heat flux using satellite observations under unstable conditions. The basic idea of the method is that the air–sea temperature difference is related to the atmospheric convergence. Employed data include the wind convergence, sea level humidity, and sea surface temperature. These parameters can be derived from the satellite wind vectors, Special Sensor Microwave Imager (SSM/I) precipitable water, and Advanced Very High Resolution Radiometer (AVHRR) observations, respectively. The authors selected a region east of Japan as the test area where the atmospheric convergence appears all year. Comparison between the heat fluxes derived from the satellite data and from the National Centers for Environmental Prediction (NCEP) data suggests that the rms difference between the two kinds of sensible heat fluxes has low values in the sea area east of Japan with a minimum of 10.0 W m ?2. The time series of the two kinds of sensible heat fluxes at 10 locations in the area are in agreement, with rms difference ranging between 10.0 and 14.1 W m ?2 and correlation coefficient being higher than 0.7. In addition, the National Aeronautics and Space Administration (NASA) Goddard Satellite-Based Surface Turbulent Flux (GSSTF) was used for a further comparison. The low-rms region with high correlation coefficient (?0.7) was also found in the region east of Japan with a minimum of 12.2 W m ?2. Considering the nonlinearity in calculation of the sensible monthly means, the authors believe that the comparison with GSSTF is consistent with that with NCEP data. 1.

Jiayi Pan; Xiao-hai Yan; Young-heon Jo; Quanan Zheng; W. Timothy Liu

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

photovoltaics | OpenEI  

Open Energy Info (EERE)

photovoltaics photovoltaics Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

182

Photovoltaic System Performance  

Energy.gov (U.S. Department of Energy (DOE))

Photovoltaic (PV) systems are usually composed of numerous solar arrays, which in turn, are composed of numerous PV cells. The performance of the system is therefore dependent on the performance of...

183

Three-dimensional photovoltaics  

E-Print Network (OSTI)

The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint ...

Myers, Bryan

184

Nanocarbon-Based Photovoltaics  

E-Print Network (OSTI)

Carbon materials are excellent candidates for photovoltaic solar cells: they are Earth-abundant, possess high optical absorption, and maintain superior thermal and photostability. Here we report on solar cells with active ...

Bernardi, Marco

185

Photovoltaic decision analysis  

E-Print Network (OSTI)

This paper is concerned with the development and implementation of a methodology that analyzes information relating to the choice between flat plate and concentrator technologies for photovoltaic development. A

Goldman, Neil L.

1977-01-01T23:59:59.000Z

186

Concentrator Photovoltaic Systems  

Energy.gov (U.S. Department of Energy (DOE))

Concentrator photovoltaic (PV) systems use less solar cell material than other PV systems. PV cells are the most expensive components of a PV system, on a per-area basis. A concentrator makes use...

187

Photovoltaic Cell Structures  

Energy.gov (U.S. Department of Energy (DOE))

The actual structural design of a photovoltaic (PV), or solar cell, depends on the limitations of the material used in the PV cell. The four basic device designs are:

188

Photovoltaic Cell Performance  

Energy.gov (U.S. Department of Energy (DOE))

Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount of electricity produced depends on the quality of the light available and the performance of...

189

Photovoltaic solar cell  

DOE Patents (OSTI)

A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

2013-11-26T23:59:59.000Z

190

Organic photovoltaics and concentrators  

E-Print Network (OSTI)

The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

Mapel, Jonathan King

2008-01-01T23:59:59.000Z

191

Photovoltaic Cell Conversion Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity....

192

Photovoltaic Cell Quantum Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

Quantum efficiency (QE) is the ratio of the number of charge carriers collected by a photovoltaic (PV) cell to the number of photons—or packets of light—of a given energy shining on the solar cell....

193

Photovoltaics: Separating Multiple Excitons  

Science Conference Proceedings (OSTI)

Scientists have demonstrated an efficient process for generating multiple excitons in adjacent silicon nanocrystals from a single high-energy photon. Their findings could prove useful for a wide range of photovoltaic applications.

Nozik, A. J.

2012-05-01T23:59:59.000Z

194

Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

(The following text is derived from NREL's description of photovoltaic (The following text is derived from NREL's description of photovoltaic technology.)[1] Photovoltaic Panels Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual solar PV systems. Utility companies are also using PV technology for large

195

Photovoltaic systems and applications  

DOE Green Energy (OSTI)

Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

Not Available

1982-01-01T23:59:59.000Z

196

Photovoltaic Power Generation  

E-Print Network (OSTI)

This report is an overview of photovoltaic power generation. The purpose of the report is to provide the reader with a general understanding of photovoltaic power generation and how PV technology can be practically applied. There is a brief discussion of early research and a description of how photovoltaic cells convert sunlight to electricity. The report covers concentrating collectors, flat-plate collectors, thin-film technology, and building-integrated systems. The discussion of photovoltaic cell types includes single-crystal, poly-crystalline, and thin-film materials. The report covers progress in improving cell efficiencies, reducing manufacturing cost, and finding economic applications of photovoltaic technology. Lists of major manufacturers and organizations are included, along with a discussion of market trends and projections. The conclusion is that photovoltaic power generation is still more costly than conventional systems in general. However, large variations in cost of conventional electrical power, and other factors, such as cost of distribution, create situations in which the use of PV power is economically sound. PV power is used in remote applications such as communications, homes and villages in developing countries, water pumping, camping, and boating. Gridconnected applications such as electric utility generating facilities and residential rooftop installations make up a smaller but more rapidly expanding segment of PV use. Furthermore, as technological advances narrow the cost gap, more applications are becoming economically feasible at an accelerating rate. iii TABLE OF CONTENTS LIST OF TABLES AND FIGURES ...................................................................................v

Tom Penick; Gale Greenleaf Instructor; Thomas Penick; Bill Louk; Bill Louk

1998-01-01T23:59:59.000Z

197

Expedited Permitting Process for Solar Photovoltaic Systems ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expedited Permitting Process for Solar Photovoltaic Systems (Vermont) Expedited Permitting Process for Solar Photovoltaic Systems (Vermont) Eligibility Agricultural Commercial...

198

Wind Power | Open Energy Information  

Open Energy Info (EERE)

Wind Power Wind Power Jump to: navigation, search Wind Power WIndfarm.Sunset.jpg Wind power is a form of solar energy.[1] Wind is caused by the uneven heating of the atmosphere by the sun, variations in the earth's surface, and rotation of the earth. Mountains, bodies of water, and vegetation all influence wind flow patterns[2], [3]. Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the energy in wind to electricity by rotating propeller-like blades around a rotor. The rotor turns the drive shaft, which turns an electric generator.[2] Three key factors affect the amount of energy a turbine can harness from the wind: wind speed, air density, and swept area.[4] Mechanical power can also be utilized directly for specific tasks such as

199

NREL: Photovoltaics Research - Accomplishments in Photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Accomplishments in Photovoltaic Manufacturing R&D Accomplishments in Photovoltaic Manufacturing R&D Successful efforts within the PV Manufacturing R&D Project were recognized by the solar industry. Key highlights from the project are summarized below. Overall, the project resulted in a more than 50% reduction in manufacturing costs and a substantial return on investment for both the U.S. government and the industries involved. A number of companies participating in the project were able to make technological advances that helped them attract millions of dollars in private investment capital. The project focused on four primary areas of solar manufacturing: Solar cells and modules Manufacturing processes Systems integration System components. Solar Cells and Modules Advances in solar cells and modules were made that significantly reduced

200

Meridional Heat Transport by the Subtropical Cell  

Science Conference Proceedings (OSTI)

The wind-driven circulation adds a significant contribution to poleward meridional heat transport. Numerical models indicate that equatorward of 0, the zero wind stress latitude (30° lat), most of the wind-induced heat transport is due to the ...

Barry A. Klinger; Jochem Marotzke

2000-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A Test of a Lapse Rate/Wind Speed Model for Estimating Heat Island Magnitude in an Urban Airshed  

Science Conference Proceedings (OSTI)

In the winter of 1975/76 a helicopter was used to obtain temperature profiles across the city of Calgary. This operation was supported by airborne measurements of wind speed and lapse rate at the edge of the city, upwind. Regression analysis ...

Lawrence C. Nkemdirim

1980-06-01T23:59:59.000Z

202

EELE408 Photovoltaics Lecture 18 Photovoltaic Arrays & Modules  

E-Print Network (OSTI)

1 EELE408 Photovoltaics Lecture 18 Photovoltaic Arrays & Modules Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman Photovoltaic Arrays PV PV Open Circuit Current reduced from this block by 25 % Current reduced from this cell by 25 % 3

Kaiser, Todd J.

203

Alternating Current Photovoltaic Building Block  

This technology provides a fully integrated and self-containing alternating current (AC) photovoltaic (PV) Building Block device and method that allows photovoltaic applications to become true plug-and-play devices. The Building Block combines, ...

204

Energy Basics: Photovoltaic Cell Structures  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

205

Energy Basics: Photovoltaic Cell Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

206

Energy Basics: Concentrator Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

207

Energy Basics: Photovoltaic System Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

208

Energy Basics: Photovoltaic Cell Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

209

EA-341 Photovoltaic Technologies, LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Photovoltaic Technologies, LLC EA-341 Photovoltaic Technologies, LLC Order authorizing Photovoltaic Technologies, LLC to export electric energy to Mexico EA- 341 Photovoltaic...

210

International Photovoltaic Program Plan  

SciTech Connect

The International Photovoltaics Program Plan is in direct response to the Solar Photovoltaic Energy Research, Development, and Demonstration Act of 1978 (PL 95-590). As stated in the Act, the primary objective of the plan is to accelerate the widespread use of photovoltaic systems in international markets. Benefits which could result from increased international sales by US companies include: stabilization and expansion of the US photovoltaic industry, preparing the industry for supplying future domestic needs; contribution to the economic and social advancement of developing countries; reduced world demand for oil; and improvements in the US balance of trade. The plan outlines programs for photovoltaic demonstrations, systems developments, supplier assistance, information dissemination/purchaser assistance, and an informaion clearinghouse. Each program element includes tactical objectives and summaries of approaches. A program management office will be established to coordinate and manage the program plan. Although the US Department of Energy (DOE) had the lead responsibility for preparing and implementing the plan, numerous federal organizations and agencies (US Departments of Commerce, Justice, State, Treasury; Agency for International Development; ACTION; Export/Import Bank; Federal Trade Commission; Small Business Administration) were involved in the plan's preparation and implementation.

Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

1979-12-01T23:59:59.000Z

211

International Photovoltaic Program Plan  

DOE Green Energy (OSTI)

The International Photovoltaics Program Plan is in direct response to the Solar Photovoltaic Energy Research, Development, and Demonstration Act of 1978 (PL 95-590). As stated in the Act, the primary objective of the plan is to accelerate the widespread use of photovoltaic systems in international markets. Benefits which could result from increased international sales by US companies include: stabilization and expansion of the US photovoltaic industry, preparing the industry for supplying future domestic needs; contribution to the economic and social advancement of developing countries; reduced world demand for oil; and improvements in the US balance of trade. The plan outlines programs for photovoltaic demonstrations, systems developments, supplier assistance, information dissemination/purchaser assistance, and an informaion clearinghouse. Each program element includes tactical objectives and summaries of approaches. A program management office will be established to coordinate and manage the program plan. Although the US Department of Energy (DOE) had the lead responsibility for preparing and implementing the plan, numerous federal organizations and agencies (US Departments of Commerce, Justice, State, Treasury; Agency for International Development; ACTION; Export/Import Bank; Federal Trade Commission; Small Business Administration) were involved in the plan's preparation and implementation.

Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

1979-12-01T23:59:59.000Z

212

High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed*  

E-Print Network (OSTI)

(G2ELab) 38402 Saint-Martin d'Heres, France Abstract-- High altitude wind energy (HAWE) is a new interest in sustainable development, renewable energy systems, such as solar photo-voltaic, wind and tidal systems, are heavily explored. One ideal source of renewable energy is the wind. Tradi- tionally, wind

213

Optimal control of photovoltaic arrays  

Science Conference Proceedings (OSTI)

A high value of the energy conversion efficiency is not the only feature a photovoltaic power processing system must have. An optimal control of the photovoltaic generator must be also designed in order to maximize the electrical power it produces, even ... Keywords: Maximum power point tracking, Photovoltaic systems, Power electronics

N. Femia, G. Petrone, G. Spagnuolo, M. Vitelli

2013-05-01T23:59:59.000Z

214

Models of Photovoltaic Module Performance  

Science Conference Proceedings (OSTI)

An analysis of data collected over a three-year period at Pacific Gas and Electric Company's Photovoltaic Test Facility has enabled the prediction of photovoltaic (PV) module performance under conditions different from the test environment. The equations developed by PG&E provide a basis for rating photovoltaic modules and systems more accurately than in the past.

1988-09-01T23:59:59.000Z

215

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

216

photovoltaic | OpenEI  

Open Energy Info (EERE)

photovoltaic photovoltaic Dataset Summary Description Global PV grid parity and market potential. Data is courtesy of Sean Ong. Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords grid Parity Payback photovoltaic price PV Residential Data text/csv icon globalgridparity.csv (csv, 4.8 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Creative Commons CCZero Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating.

217

Photovoltaic Subcontract Program  

DOE Green Energy (OSTI)

This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

Not Available

1993-03-01T23:59:59.000Z

218

High efficiency photovoltaic device  

DOE Patents (OSTI)

An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

Guha, Subhendu (Troy, MI); Yang, Chi C. (Troy, MI); Xu, Xi Xiang (Findlay, OH)

1999-11-02T23:59:59.000Z

219

Photovoltaic array performance model.  

DOE Green Energy (OSTI)

This document summarizes the equations and applications associated with the photovoltaic array performance model developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, 'translation' of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.

Kratochvil, Jay A.; Boyson, William Earl; King, David L.

2004-08-01T23:59:59.000Z

220

Portable thermo-photovoltaic power source  

DOE Patents (OSTI)

A miniature thermo-photovoltaic (TPV) device for generation of electrical power for use in portable electronic devices. A TPV power source is constructed to provide a heat source chemical reactor capable of using various fuels, such as liquid hydrocarbons, including but not limited to propane, LPG, butane, alcohols, oils and diesel fuels to generate a source of photons. A reflector dish guides misdirected photon energy from the photon source toward a photovoltaic array. A thin transparent protector sheet is disposed between the photon source and the array to reflect back thermal energy that cannot be converted to electricity, and protect the array from thermal damage. A microlens disposed between the protector sheet and the array further focuses the tailored band of photon energy from the photon source onto an array of photovoltaic cells, whereby the photon energy is converted to electrical power. A heat recuperator removes thermal energy from reactor chamber exhaust gases, preferably using mini- or micro-bellows to force air and fuel past the exhaust gases, and uses the energy to preheat the fuel and oxidant before it reaches the reactor, increasing system efficiency. Mini- or micro-bellows force ambient air through the system both to supply oxidant and to provide cooling. Finally, an insulator, which is preferably a super insulator, is disposed around the TPV power source to reduce fuel consumption, and to keep the TPV power source cool to the touch so it can be used in hand-held devices.

Zuppero, Anthony C. (Idaho Falls, ID); Krawetz, Barton (Idaho Falls, ID); Barklund, C. Rodger (Idaho Falls, ID); Seifert, Gary D. (Idaho Falls, ID)

1997-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A two dimensional thermal network model for a photovoltaic solar wall  

Science Conference Proceedings (OSTI)

A two dimensional thermal network model is proposed to predict the temperature distribution for a section of photovoltaic solar wall installed in an outdoor room laboratory in Concordia University, Montreal, Canada. The photovoltaic solar wall is constructed with a pair of glass coated photovoltaic modules and a polystyrene filled plywood board as back panel. The active solar ventilation through a photovoltaic solar wall is achieved with an exhaust fan fixed in the outdoor room laboratory. The steady state thermal network nodal equations are developed for conjugate heat exchange and heat transport for a section of a photovoltaic solar wall. The matrix solution procedure is adopted for formulation of conductance and heat source matrices for obtaining numerical solution of one dimensional heat conduction and heat transport equations by performing two dimensional thermal network analyses. The temperature distribution is predicted by the model with measurement data obtained from the section of a photovoltaic solar wall. The effect of conduction heat flow and multi-node radiation heat exchange between composite surfaces is useful for predicting a ventilation rate through a solar ventilation system. (author)

Dehra, Himanshu [1-140 Avenue Windsor, Lachine, Quebec (Canada)

2009-11-15T23:59:59.000Z

222

Reticulated Organic Photovoltaics  

Science Conference Proceedings (OSTI)

This paper shows how the self-assembled interlocking of two nanostructured materials can lead to increased photovoltaic performance. A detailed picture of the reticulated 6-DBTTC/C{sub 60} organic photovoltaic (OPV) heterojunction, which produces devices approaching the theoretical maximum for these materials, is presented from near edge X-ray absorption spectroscopy (NEXAFS), X-ray photoelectron spectroscopy (XPS), Grazing Incidence X-ray diffraction (GIXD) and transmission electron microscopy (TEM). The complementary suite of techniques shows how self-assembly can be exploited to engineer the interface and morphology between the cables of donor (6-DBTTC) material and a polycrystalline acceptor (C{sub 60}) to create an interpenetrating network of pure phases expected to be optimal for OPV device design. Moreover, we find that there is also a structural and electronic interaction between the two materials at the molecular interface. The data show how molecular self-assembly can facilitate 3-D nanostructured photovoltaic cells that are made with the simplicity and control of bilayer device fabrication. The significant improvement in photovoltaic performance of the reticulated heterojunction over the flat analog highlights the potential of these strategies to improve the efficiency of organic solar cells.

Schiros T.; Yager K.; Mannsfeld S.; Chiu C.-Y.; Ciston J.; Gorodetsky A.; Palma M.; Bullard Z.; Kramer T.; Delongchamp D.; Fischer D.; Kymissis I.; Toney M.F.; Nuckolls C.

2012-03-21T23:59:59.000Z

223

Photovoltaic radiation detector element  

DOE Patents (OSTI)

A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

Agouridis, Dimitrios C. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

224

Multiple gap photovoltaic device  

DOE Patents (OSTI)

A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

Dalal, Vikram L. (Newark, DE)

1981-01-01T23:59:59.000Z

225

Integrated photovoltaic electrolytic cell  

SciTech Connect

A photovoltaic-electrolytic unit is provided to produce an electric current from solar energy and utilize the current to produce hydrogen by the electrolysis of water. The unit floats in an aqueous medium so that photoelectric cells are exposed to solar radiation, and electrodes submerged in the medium produce oxygen which is vented and hydrogen which is collected in the unit.

Ohkawa, T.

1982-10-05T23:59:59.000Z

226

Photovoltaics (Fact Sheet)  

SciTech Connect

DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

Not Available

2011-10-01T23:59:59.000Z

227

Thin film photovoltaic cell  

DOE Patents (OSTI)

A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

1982-01-01T23:59:59.000Z

228

Photovoltaic radiation detector element  

DOE Patents (OSTI)

A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

Agouridis, D.C.

1980-12-17T23:59:59.000Z

229

Photovoltaics (Fact Sheet)  

SciTech Connect

The U.S. Department of Energy (DOE) works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV) domestically. The SunShot Initiative aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

Not Available

2012-11-01T23:59:59.000Z

230

Tianda Photovoltaic Co Ltd Yunnan Tianda Photovoltaic | Open Energy  

Open Energy Info (EERE)

Tianda Photovoltaic Co Ltd Yunnan Tianda Photovoltaic Tianda Photovoltaic Co Ltd Yunnan Tianda Photovoltaic Jump to: navigation, search Name Tianda Photovoltaic Co Ltd (Yunnan Tianda Photovoltaic) Place Kunming, Yunnan Province, China Zip 650033 Sector Solar Product Crystalline solar cell and module manufacturer. Coordinates 25.051001°, 102.702011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.051001,"lon":102.702011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 499 Solar Space Heat Incentives. CSV (rows 1 - 499) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat

232

Copper oxide/N-silicon heterojunction photovoltaic device  

DOE Patents (OSTI)

A photovoltaic device having characteristics of a high efficiency solar cell comprising a Cu.sub.x O/n-Si heterojunction. The Cu.sub.x O layer is formed by heating a deposited copper layer in an oxygen containing ambient.

Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

1982-01-01T23:59:59.000Z

233

Wound tube heat exchanger  

DOE Patents (OSTI)

What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

234

Photovoltaic module and interlocked stack of photovoltaic modules  

DOE Patents (OSTI)

One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

Wares, Brian S.

2012-09-04T23:59:59.000Z

235

NREL: Photovoltaics Research - Photovoltaic Manufacturing R&D...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the background. BP Solar's manufacturing capabilities include automatic sorting of solar cells after final testing. NREL's Photovoltaic (PV) Manufacturing Research and...

236

Photon management in thermal and solar photovoltaics  

E-Print Network (OSTI)

Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

Hu, Lu

2008-01-01T23:59:59.000Z

237

Puerto Rico - Tax Deduction for Solar and Wind Energy Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puerto Rico - Tax Deduction for Solar and Wind Energy Systems Puerto Rico - Tax Deduction for Solar and Wind Energy Systems Eligibility Residential Savings For Heating & Cooling...

238

Solar and Wind Contractor Licensing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating Program Information Louisiana Program Type SolarWind Contractor Licensing All solar and wind energy installations must be performed by a contractor duly licensed by and...

239

Analysis methods for photovoltaic applications  

DOE Green Energy (OSTI)

Because photovoltaic power systems are being considered for an ever-widening range of applications, it is appropriate for system designers to have knowledge of and access to photovoltaic power systems simulation models and design tools. This brochure gives brief descriptions of a variety of such aids and was compiled after surveying both manufacturers and researchers. Services available through photovoltaic module manufacturers are outlined, and computer codes for systems analysis are briefly described. (WHK)

None

240

FEMP--Photovoltaics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaics is a technology that converts radiant Photovoltaics is a technology that converts radiant light energy (photo) to electricity (voltaics). Photo- voltaic (PV) cells are the basic building blocks of this energy technology. PV cells (also called solar cells) are made of semicon- ductor materials, most typically silicon. The amount of electricity a PV cell produces depends on its size, its conversion efficiency (see box on reverse), and the intensity of the light source. Sunlight is the most common source of the energy used by PV cells to produce an electric current. It takes just a few PV cells to produce enough elec- tricity to power a small watch or solar calculator. For more power, cells are connected together to form larger units called modules. Modules, in turn, are connected to form arrays, and arrays can be

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NREL: Photovoltaics Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL's world-class research facilities provide the venue for innovative advances in photovoltaic technologies and applications. These facilities within the National Center for Photovoltaics (NCPV) serve both multi-use and dedicated-use functions. We encourage our research colleagues in industry, universities, and other laboratories to pursue opportunities in working with our staff in these facilities. Dedicated-Use Facilities Photo of a red-hot coil glowing inside a round machine. Research within these facilities focuses on targeted areas of interest that require specific tools, techniques, or unique capabilities. Our two main dedicated-use facilities are the following: Outdoor Test Facility (OTF) OTF researchers study and evaluate advanced or emerging PV technologies

242

Photovoltaics: Reality and Prospects  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaics: Reality and Prospects Photovoltaics: Reality and Prospects Speaker(s): David Faiman Date: August 7, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Donald Grether David Faiman is on the faculty of Ben-Gurion University and also in the Department of Energy and Environmental Physics at the Jacob Blaustein Institute for Desert Research. The Department is an interdisciplinary research group that includes scientists with training in geography, meteorology, mechanical engineering, applied mathematics, physics and chemistry. Research work at the department covers various aspects of the physical environment. These include solar energy utilization and applied optics, the desert climate, remote sensing and modeling of desertification, and basic aspects of nonlinear dynamics and thermodynamics as related to

243

Temperature compensated photovoltaic array  

DOE Patents (OSTI)

A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

Mosher, Dan Michael (Plano, TX)

1997-11-18T23:59:59.000Z

244

Temperature compensated photovoltaic array  

DOE Patents (OSTI)

A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

Mosher, D.M.

1997-11-18T23:59:59.000Z

245

EROI of crystalline silicon photovoltaics.  

E-Print Network (OSTI)

?? Installed photovoltaic nameplate power have been growing rapidly around the worldin the last few years. But how much energy is returned to society (i.e.… (more)

Lundin, Johan

2013-01-01T23:59:59.000Z

246

Flat-Plate Photovoltaic Modules  

Energy.gov (U.S. Department of Energy (DOE))

Flat-plate photovoltaic (PV) modules are made of several components, including the front surface materials, encapsulant, rear surface, and frame.

247

Solar photovoltaics for development applications  

DOE Green Energy (OSTI)

This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

Shepperd, L.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States)] [Florida Solar Energy Center, Cape Canaveral, FL (United States); Richards, E.H. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States)

1993-08-01T23:59:59.000Z

248

NREL: Photovoltaics Research - Standards Development  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Photovoltaic (PV) Engineering group supports the development of national and international standards for PV engineering. Current standards lack specifics on how to...

249

NREL: Learning - Photovoltaics for Students  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Sprint. The following resources will help students find out more information about solar photovoltaic (PV) systems. If you are unfamiliar with PV systems, see introduction...

250

Compound Photovoltaics - Programmaster.org  

Science Conference Proceedings (OSTI)

Sep 15, 2009 ... The growing prospects of current and coming solar-photovoltaic (PV) technologies are envisioned, arguing this solar-electricity source is ...

251

Energy Basics: Photovoltaic Cell Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Performance Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount of electricity produced depends on the quality of the light...

252

Lab Breakthrough: Microelectronic Photovoltaics | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 7, 2012 - 9:31am Addthis Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon...

253

Southwest Photovoltaic Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Southwest Photovoltaic Systems Inc Jump to: navigation, search Name Southwest Photovoltaic Systems Inc Place Tomball, Texas Zip 77375 Product Distributor of small scale PV systems...

254

British Photovoltaic Association | Open Energy Information  

Open Energy Info (EERE)

Photovoltaic Association Jump to: navigation, search Name British Photovoltaic Association Place Milton Keynes, United Kingdom Zip MK5 8NG Product Trade body for the PV industry in...

255

SunShot Initiative: Photovoltaic Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiative: Photovoltaic Research Facilities on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Systems Integration Balance of...

256

Photovoltaics Value Clearinghouse | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Photovoltaics Value Clearinghouse Jump to: navigation, search The Photovoltaics Value...

257

SunShot Initiative: Photovoltaics Competitive Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies in Solar Next Generation Photovoltaics Foundational Program to Advance Cell Efficiency SunShot Incubator Program Photovoltaic Supply Chain & Cross-Cutting...

258

Photovoltaic cell efficiency at elevated temperatures.  

E-Print Network (OSTI)

??In order to determine what type of photovoltaic solar cell could best be used in a thermoelectric photovoltaic hybrid power generator, we tested the change… (more)

Ray, Katherine Leung

2010-01-01T23:59:59.000Z

259

Alternating Current Photovoltaic Building Block - Energy ...  

This technology provides a fully integrated and self-containing alternating current (AC) photovoltaic (PV) Building Block device and method that allows photovoltaic ...

260

Aternating current photovoltaic building block - Energy ...  

A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct ...

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Photovoltaic Cell Performance Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Cell Performance Basics August 19, 2013 - 4:55pm Addthis Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount...

262

Photovoltaic module reliability workshop  

DOE Green Energy (OSTI)

The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

Mrig, L. (ed.)

1990-01-01T23:59:59.000Z

263

Photovoltaic self-assembly.  

DOE Green Energy (OSTI)

This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

2010-10-01T23:59:59.000Z

264

Photovoltaics and the Environment  

DOE Green Energy (OSTI)

Over the past five years, solar energy usage has grown by about 43 percent a year, giving rise to a billion-dollar industry in photovoltaics (PV) or getting electricity from light. The word photovoltaics combines the Greek phos, or light, with the “volt” of electricity. PV technologies have distinct environmental advantages over conventional power technologies, such as: no noise, no emissions, no need for fuel and power lines. Compared to burning coal, a gigawatt-hour of PV-generated electricity would prevent the release of about 1,000 tons of carbon dioxide, eight of sulfur dioxide, four of nitrogen oxides, and 0.4 tons of particulates. However, manufacturing the solar cells that transform light to electricity requires the use of some toxic and flammable substances. Addressing the environmental, health, and safety concerns of the PV industry to minimize risk while ensuring economic viability and public support is the work of the National Photovoltaic Environmental Health, & Safety Assistance Center at BNL.

Fthenakis, Vasilis (BNL Environmental Sciences)

2005-09-21T23:59:59.000Z

265

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

266

SunShot Initiative: Organic Photovoltaics Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Photovoltaics Research to Organic Photovoltaics Research to someone by E-mail Share SunShot Initiative: Organic Photovoltaics Research on Facebook Tweet about SunShot Initiative: Organic Photovoltaics Research on Twitter Bookmark SunShot Initiative: Organic Photovoltaics Research on Google Bookmark SunShot Initiative: Organic Photovoltaics Research on Delicious Rank SunShot Initiative: Organic Photovoltaics Research on Digg Find More places to share SunShot Initiative: Organic Photovoltaics Research on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Crystalline Silicon Thin Films Multijunctions Organic Photovoltaics Dye-Sensitized Solar Cells Competitive Awards Systems Integration Balance of Systems Organic Photovoltaics Research Graphic showing the seven layers of an organic PV cell: electrode, donor, acceptor, active layer, PEDOT:PSS, transparent conductive oxide, and glass.

267

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study  

E-Print Network (OSTI)

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study Rui Huang development of photovoltaic (PV), wind turbine and battery technologies, hybrid energy system has received of the hybrid energy system that consists of PV arrays, wind turbines and battery storage and use that to define

Low, Steven H.

268

NREL: Learning - Center for Photovoltaics Video (Text Version)  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Photovoltaics Video (Text Version) Center for Photovoltaics Video (Text Version) This is the text version for the Center for Photovoltaics video. The video opens with the NREL logo, surrounded by "Department of Energy's NREL: National Renewable Energy Laboratory." A scene of a city skyline at sunset. The sky is a brilliant red, and the buildings are silhouetted in shadow. The scene shifts to an image of a shadowed field, lit by a bright red sunset. The image changes to the NREL Solar Energy Research Facility (SERF), a building with a long, diagonally sloping front with large windows and solar panels on the roof. (Voiceover) It is our constant source of light and heat and it's essential to a sustainable energy future. The National Renewable Energy Laboratory in Golden, Colorado is a global leader in developing cost-effective, solar

269

Standard Practice for Visual Inspections of Photovoltaic Modules  

E-Print Network (OSTI)

1.1 This practice covers procedures and criteria for visual inspections of photovoltaic modules. 1.2 Visual inspections of photovoltaic modules are normally performed before and after modules have been subjected to environmental, electrical, or mechanical stress testing, such as thermal cycling, humidity-freeze cycling, damp heat exposure, ultraviolet exposure, mechanical loading, hail impact testing, outdoor exposure, or other stress testing that may be part of photovoltaic module testing sequence. 1.3 This practice does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this practice. 1.4 There is no similar or equivalent ISO standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

270

Photovoltaic system in system LABI  

Science Conference Proceedings (OSTI)

There is prepared a new model marked as DE10 to extens the system LABI. It is a photovoltaic system. Utilizing of model is into the field of university studying and as a pilot test system for all extern experts. A special parts of model are measurement ... Keywords: automation, measurement, photovoltaic system, sun energy

Hruska Frantisek

2010-07-01T23:59:59.000Z

271

Solar photovoltaic panels tracking system  

Science Conference Proceedings (OSTI)

This research project concentrates on the design and control of a two-degrees-of-freedom orientation system for the photovoltaic solar panels in sunny regions which are considered very rich in solar energy. A brief background on the sun path and behavior ... Keywords: altitude, azimuth, closed-loop control, open-loop control, orientation, sensor, solar photovoltaic panels, solar tracking

Ahmed Abu Hanieh

2010-05-01T23:59:59.000Z

272

Graphite-based photovoltaic cells  

DOE Patents (OSTI)

The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

Lagally, Max (Madison, WI); Liu, Feng (Salt Lake City, UT)

2010-12-28T23:59:59.000Z

273

Photovoltaic concentrator module improvements study  

DOE Green Energy (OSTI)

This report presents results of a project to design and fabricate an improved photovoltaic concentrator module. Using previous work as a baseline, this study conducted analyses and testing to select major module components and design features. The lens parquet and concentrator solar cell were selected from the highest performing, available components. A single 185X point-focus module was fabricated by the project team and tested at Sandia. Major module characteristics include a 6 by 4 compression-molded acrylic lens parquet (0.737 m{sup 2} area), twenty-four 0.2 ohms-cm, FZ, p-Si solar cells (1.56 cm{sup 2} area) soldered to ceramic substrates and copper heat spreaders, and an aluminized steel housing with corrugated bottom. This project marked the first attempt to use prismatic covers on solar cells in a high-concentration, point-focus application. Cells with 15 percent metallization were obtained, but problems with the fabrication and placement of prismatic covers on these cells lead to the decision not to use covers in the prototype module. Cell assembly fabrication, module fabrication, and module optical design activities are presented here. Test results are also presented for bare cells, cell assemblies, and module. At operating conditions of 981 watts/m{sup 2} DNI and an estimated cell temperature of 65{degrees}C, the module demonstrated an efficiency of 13.9 percent prior to stressed environmental exposure. 12 refs., 56 figs., 7 tabs.

Levy, S.L.; Kerschen, K.A. (Black and Veatch, Kansas City, MO (United States)); Hutchison, G. (Solar Kinetics, Inc., Dallas, TX (United States)); Nowlan, M.J. (Spire Corp., Bedford, MA (United States))

1991-08-01T23:59:59.000Z

274

Planar photovoltaic solar concentrator module  

DOE Patents (OSTI)

A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

Chiang, C.J.

1992-12-01T23:59:59.000Z

275

Planar photovoltaic solar concentrator module  

DOE Patents (OSTI)

A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

Chiang, Clement J. (New Brunswick, NJ)

1992-01-01T23:59:59.000Z

276

Chapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy spectrum  

E-Print Network (OSTI)

;Photovoltaic devices or solar cells convert thePhotovoltaic devices or solar cells convert the incident solar 4 Solar cell plant #12;Cars powered by photovoltaic devices PHYS 5320 Chapter Nine 5 #12;SolarChapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy

Wang, Jianfang

277

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. The Engineering ... section. I. Extreme Winds: ... II. Wind Effects on Buildings. Database ...

2013-01-17T23:59:59.000Z

278

Pierre's Prototype for Wind and Solar - Capitol Lake Plaza | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pierre's Prototype for Wind and Solar - Capitol Lake Plaza Pierre's Prototype for Wind and Solar - Capitol Lake Plaza Pierre's Prototype for Wind and Solar - Capitol Lake Plaza June 3, 2010 - 3:22pm Addthis Lindsay Gsell What are the key facts? 80 photovoltaic (PV) solar energy system and two vertical wind turbines will produce up to 40 percent of the building's total energy usage Capitol Lake Plaza sits centrally on Pierre, S.D.'s government plaza. Originally built in 1974, the building has been undergoing major energy renovations since being purchased by the state two years ago. Two major components of the renovation are about to appear at the building's highest point: solar panels and wind turbines are being installed on the roof. The 80 photovoltaic (PV) solar energy system and two vertical wind turbines will produce up to 40 percent of the building's total energy usage, says

279

Thin film photovoltaic device  

DOE Patents (OSTI)

A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

Catalano, A.W.; Bhushan, M.

1982-08-03T23:59:59.000Z

280

Photovoltaic system reliability  

SciTech Connect

This paper discusses the reliability of several photovoltaic projects including SMUD`s PV Pioneer project, various projects monitored by Ascension Technology, and the Colorado Parks project. System times-to-failure range from 1 to 16 years, and maintenance costs range from 1 to 16 cents per kilowatt-hour. Factors contributing to the reliability of these systems are discussed, and practices are recommended that can be applied to future projects. This paper also discusses the methodology used to collect and analyze PV system reliability data.

Maish, A.B.; Atcitty, C. [Sandia National Labs., NM (United States); Greenberg, D. [Ascension Technology, Inc., Lincoln Center, MA (United States)] [and others

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Characterization of Photovoltaic Concentrators  

DOE Green Energy (OSTI)

This paper will describe the resources at the National Renewable Energy Laboratory (NREL) for performing characterization of photovoltaic (PV) materials designed for operation under concentrated light. NREL has the capability to measure devices ranging from very small, unencapsulated research cells to reasonably sized, environmentally protected modules. Data gathering and interpretation are also ongoing areas of revision and improvement. The main goal of the current research is to reduce the measurement uncertainty to the lowest practical value. At present, the state of the art is limited at a ?5% level in measuring efficiency accurately.

Kiehl, J.; Emery, E.

2005-01-01T23:59:59.000Z

282

Photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. (Solarex Corp., Frederick, MD (United States))

1991-12-01T23:59:59.000Z

283

Photovoltaic Degradation Risk: Preprint  

SciTech Connect

The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

Jordan, D. C.; Kurtz, S. R.

2012-04-01T23:59:59.000Z

284

Photovoltaic panel clamp  

SciTech Connect

A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

Mittan, Margaret Birmingham (Oakland, CA); Miros, Robert H. J. (Fairfax, CA); Brown, Malcolm P. (San Francisco, CA); Stancel, Robert (Loss Altos Hills, CA)

2012-06-05T23:59:59.000Z

285

Photovoltaic panel clamp  

DOE Patents (OSTI)

A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

2013-03-19T23:59:59.000Z

286

Thin film photovoltaic device  

DOE Patents (OSTI)

A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

1982-01-01T23:59:59.000Z

287

Photovoltaic olar nergy Development on Landfills  

E-Print Network (OSTI)

Sustainable Energy Science and Engineering Center Photovoltaic Systems Engineering Photovoltaic.g. battery storage #12;Sustainable Energy Science and Engineering Center Photovoltaic Module Typical 10 cm x and the load. #12;Sustainable Energy Science and Engineering Center Sizing Sizing the photovoltaic systems: 1

288

Solar Photovoltaic SPECIFICATION, CHECKLIST AND GUIDE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Photovoltaic SPECIFICATION, CHECKLIST AND GUIDE Renewable Energy Ready Home Renewable Energy Ready Home SOLAR PHOTOVOLTAIC SPECIFICATION, CHECKLIST AND GUIDE i Table of Contents About the Renewable Energy Ready Home Specifications Assumptions of the RERH Solar Photovoltaic Specification .............................................................................. 1 Builder and Specification Limitations ............................................................................................................. 2

289

Multiferroics for Photovoltaics and Multiferroics Switching and ...  

Science Conference Proceedings (OSTI)

Nanostructured Magnetoelectrics & Multiferroics: Multiferroics for Photovoltaics and Multiferroics Switching and Domain Walls Program Organizers: Alain ...

290

Characterization and Modeling of 3D Photovoltaics  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Energy Conversion – Photovoltaic, Concentrating Solar Power, and ...

291

Energy Conversion – Photovoltaic, Concentrating Solar Power, and ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2012. Symposium, Energy Conversion – Photovoltaic, Concentrating Solar Power, and  ...

292

Terrestrial applications of bifacial photovoltaic solar panels  

Science Conference Proceedings (OSTI)

Bifacial Photovoltaic solar cells (so-called transparent bifacial photovoltaic solar cells) offer additional absorption by rear side, which is a significant advantage over ordinary Photovoltaic solar cells. A range of experiments have been done on bifacial ... Keywords: absorption, panels, photovoltaic, solar cells, terrestrial

P. Ooshaksaraei; R. Zulkifli; S. H. Zaidi; M. Alghoul; A. Zaharim; K. Sopian

2011-10-01T23:59:59.000Z

293

Ballasted photovoltaic module and module arrays  

DOE Patents (OSTI)

A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA)

2011-11-29T23:59:59.000Z

294

Photovoltaic Product Directory and Buyers Guide  

DOE Green Energy (OSTI)

The directory guide explains photovoltaic systems briefly and shows what products are available off-the-shelf. Information is given to assist in designing a photovoltaic system and on financial incentives. Help is given for determining if photovoltaic products can meet a particular buyer's needs, and information is provided on actual photovoltaic user's experiences. Detailed information is appended on various financial incentives available from state and federal governments, sources of additional information on photovoltaics, sources of various photovoltaic products, and a listing of addresses of photovoltaic products suppliers. (LEW)

Watts, R.L.; Smith, S.A.; Dirks, J.A.; Mazzucchi, R.P.; Lee, V.E.

1984-04-01T23:59:59.000Z

295

Crop Wind Energy Experiment (CWEX): Observations of Surface-Layer, Boundary Layer, and Mesoscale Interactions with a Wind Farm  

Science Conference Proceedings (OSTI)

Perturbations of mean and turbulent wind characteristics by large wind turbines modify fluxes between the vegetated surface and the lower boundary layer. While simulations have suggested that wind farms could significantly change surface fluxes of heat, ...

Daniel A. Rajewski; Eugene S. Takle; Julie K. Lundquist; Steven Oncley; John H. Prueger; Thomas W. Horst; Michael E. Rhodes; Richard Pfeiffer; Jerry L. Hatfield; Kristopher K. Spoth; Russell K. Doorenbos

2013-05-01T23:59:59.000Z

296

SunShot Initiative: Reducing Photovoltaic Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Photovoltaic Costs to Reducing Photovoltaic Costs to someone by E-mail Share SunShot Initiative: Reducing Photovoltaic Costs on Facebook Tweet about SunShot Initiative: Reducing Photovoltaic Costs on Twitter Bookmark SunShot Initiative: Reducing Photovoltaic Costs on Google Bookmark SunShot Initiative: Reducing Photovoltaic Costs on Delicious Rank SunShot Initiative: Reducing Photovoltaic Costs on Digg Find More places to share SunShot Initiative: Reducing Photovoltaic Costs on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Systems Integration Balance of Systems Reducing Photovoltaic Costs Photo of gloved hands pouring liquid from a glass bottle to glass beaker. Past Incubator awardee, Innovalight, is creating high-efficiency, low-cost

297

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

World Conference on Photovoltaic Energy Conversion, Volumeof Solar Photovoltaic Cells”, Center for the Study of EnergyPhotovoltaic Subsidies? ” Center for the Study of Energy

Borenstein, Severin

2008-01-01T23:59:59.000Z

298

Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics  

E-Print Network (OSTI)

Photovoltaic Cell .the materials, all photovoltaic cells operate on the basicEquation 1.2) For photovoltaic cells of all kinds and from

Kavulak, David Fredric Joel

2010-01-01T23:59:59.000Z

299

Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing  

E-Print Network (OSTI)

modeling method for photovoltaic cells. ” in Proc. IEEE 35thlosses in solar photovoltaic cell networks. ” Energy 32:Cell Variability Photovoltaic (PV) cells manufactured with

Zeng, Dekong

2012-01-01T23:59:59.000Z

300

Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices  

E-Print Network (OSTI)

processable polymer photovoltaic cells by self-organizationand their influence on photovoltaic cells, Solar EnergyPhotodiodes, and Photovoltaic Cells, Applied Physics Letters

Guvenc, Ali Bilge

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

Production of Solar Photovoltaic Cells”, Center for theconcerns is solar photovoltaic cells (PVs), which captureProduction of Solar Photovoltaic Cells Solar PV cells

Borenstein, Severin

2008-01-01T23:59:59.000Z

302

Photovoltaic systems concept study. Final report  

DOE Green Energy (OSTI)

The following appendices are included: economic theory, electric utilities, and peak load pricing; evaluating the total cost of an on-site solar energy system; derivation of PEPS cost model; PEPS economic analysis model; scenarios; the effect of governmental ''subsidies'' on the nuclear power industry; discussion of energy industry subsidies; extension of the Hottel-Whillier-Bliss model to the analysis of combined photovoltaic/thermal flat plate collectors; analysis of solar-augmented rock-bed/heat pump system; TRNSYS results for Washington, D.C. residence with air collectors, rock-bed storage, and parallel Airesearch heat pump; tabulation of electrical loads for Phoenix, Riverside, and Cleveland using a simplified hourly method; evaporative air coolers; cooling efficiency and electrical consumption; and Hoover Dam operation. (MHR)

Not Available

1977-04-01T23:59:59.000Z

303

64 kW concentrator Photovoltaics Application Test Center. Volume. Final report  

DOE Green Energy (OSTI)

Kaman Sciences Corporation has designed a 64 kW Concentrating Photovoltaic Applications Test Center (APTEC). The APTEC employs a combined concentrating photovoltaic array in a total energy system application for load sharing the electric and thermal demands of a large computer center with the interfaced electric and natural gas utility. The photovoltaic array is composed of two-axis tracking heliostats of Fresnel lens concentrating, silicon solar cell modules. The modules are cooled with a fluid which transfers heat to a ground coupled heat sink/storage unit for subsequent use in meeting the computer center's thermal load demand. The combined photovoltaic power system shares basic components - a power conditioning unit, batteries and thermal conditioning equipment - with the electric and natural gas utility service, improving the computer center's operating availability time and displacing a portion of the fossil fuel required to power the computer center with solar energy. The detailed system design is reported.

Jardine, D.M.; Jones, D.W.

1980-06-01T23:59:59.000Z

304

High Performance Photovoltaic Project Overview  

DOE Green Energy (OSTI)

The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and environment in the 21st century. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. In this paper, we describe the recent research accomplishments in the in-house directed efforts and the research efforts under way in the subcontracted area.

Symko-Davies, M.; McConnell, R.

2005-01-01T23:59:59.000Z

305

Photovoltaic module with adhesion promoter  

SciTech Connect

Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

2013-10-08T23:59:59.000Z

306

... .,-9 .-F ' : .C,.-DIMENSIONING OF THE HEAT BALANCE AND THE SOLAR  

E-Print Network (OSTI)

resources not only for heating of buildings, but also for cooling. Solar fractions therefore need. INTRODUCTION The number of buildings simultaneously equipped with air heat pumps and photovoltaic collectors as an air source for the heat pump. Other authors, as for instance [2], studied photovoltaic solar assisted

Mosegaard, Klaus

307

Solar/Wind Contractor Licensing | Open Energy Information  

Open Energy Info (EERE)

Solar/Wind Contractor Licensing Solar/Wind Contractor Licensing < Solar Jump to: navigation, search Some states have established a licensing process for solar-energy contractors and/or wind-energy contractors. These requirements are designed to ensure that contractors have the necessary knowledge and experience to install systems properly. Solar licenses typically take the form of either a separate, specialized solar contractor's license, or a specialty classification under a general electrical or plumbing license. [1] Solar/Wind Contractor Licensing Incentives CSV (rows 1 - 24) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy System Contracting (Virginia) Solar/Wind Contractor Licensing Virginia Installer/Contractor Photovoltaics No

308

Heat Pipe Performance Enhancement with Binary Mixture Fluids that Exhibit Strong Concentration Marangoni Effects  

E-Print Network (OSTI)

Heat pipe thermal absorbers in solar PV systems have severaland multijunction solar photovoltaic (PV) power generationproduction of the respective PV solar cells. Performance

Armijo, Kenneth Miguel

2011-01-01T23:59:59.000Z

309

List of Solar Water Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heat Incentives Solar Water Heat Incentives Jump to: navigation, search The following contains the list of 920 Solar Water Heat Incentives. CSV (rows 1-500) CSV (rows 501-920) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - GEOSmart Financing Program (Arizona) Utility Loan Program Arizona Residential Solar Water Heat Photovoltaics No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas

310

Phase-one experiment test plan solar photovoltaic/thermal residential experiment  

DOE Green Energy (OSTI)

Objectives, rationale, and method of a one-year experiment using a residential photovoltaic/thermal power system are presented. Data will be both archived and processed to investigate: (1) series heat pump system performance, and (2) electric utility impacts. A parallel heat pump system will be investigated in a subsequent experiment.

Kern, E.C. Jr.

1979-03-15T23:59:59.000Z

311

Song of the Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Song of the Wind Song of the Wind Nature Bulletin No. 318-A October 26, 1968 Forest Preserve District of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation SONG OF THE WIND The wind is simply air in motion. Air has substance like wood or water, it has pressure, it can acquire heat and hold a temperature, and it can travel from place to place.... The air which affects our lives is a layer seven or eight miles thick, called the troposphere, which is next to the earth. This air has pressure (14.7 pounds per square inch at sea level) and when various factors, one of which is temperature, cause changes in this pressure, the air starts moving. We cannot see it. We can hear it. The song of the wind is the most wonderful music on earth, and at times the most terrifying in its angry moments.

312

Photovoltaic module mounting system  

SciTech Connect

A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

Miros, Robert H. J. (Fairfax, CA); Mittan, Margaret Birmingham (Oakland, CA); Seery, Martin N. (San Rafael, CA); Holland, Rodney H. (Novato, CA)

2012-04-17T23:59:59.000Z

313

Photovoltaic module mounting system  

SciTech Connect

A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

2012-09-18T23:59:59.000Z

314

Photovoltaic solar concentrator  

SciTech Connect

A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

2012-12-11T23:59:59.000Z

315

Photovoltaic Operation and Maintenance Evaluation  

Science Conference Proceedings (OSTI)

Results from this study confirm that photovoltaic power plants require low operating and maintenance costs per kilowatthour. Projections based on these results suggest that in the future costs will fall below 0.5 cent per kilowatthour.

1990-01-11T23:59:59.000Z

316

SunShot Initiative: Photovoltaics  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaics Photovoltaics The U.S. Department of Energy (DOE) aggressively supports development of low-cost, high-efficiency photovoltaic (PV) technologies through the SunShot Initiative, which seeks to make solar electricity cost-competitive with other sources of energy by 2020. Get the Adobe Flash Player to see this video. Text Alternative The DOE SunShot Program advances PV efforts by: Funding research and development in multiple photovoltaic technologies Awarding funds to PV projects with industry partners like solar companies, universities, and national laboratories through a competitive process. Learn more about ways DOE is advancing concentrating solar power R&D, reducing grid integration costs and technology risks, and reducing soft costs associated with solar installations.

317

Ameren Missouri- Photovoltaic Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Ameren Missouri offers rebates to its customers for the installation of net metered photovoltaic (PV) systems on their properties. The rebate is set at $2.00 per DC watt with a maximum rebate of ...

318

Photovoltaics II - Programmaster.org  

Science Conference Proceedings (OSTI)

Mar 13, 2012 ... Energy Nanomaterials: Photovoltaics II ... and Their Application in Dye-Sensitized Solar Cells: Ziqi Sun1; Jung Ho Kim1; Yue Zhao1; ... the electron lifetime (?n) are examined by electrochemical impedance spectroscopy (EIS).

319

OTEC- Residential Photovoltaic Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Customers of Oregon Trail Electric Consumers Cooperative (OTEC) who install photovoltaic systems are eligible for a rebate of $500 for the first kilowatt (kW) of installed capacity per year. ...

320

Salem Electric- Photovoltaic Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Salem Electric offers a rebate to residential customers who install solar photovoltaic (PV) systems. Customers have the option of receiving a rebate or a [http://dsireusa.org/incentives/incentive...

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Rooftop Photovoltaics Market Penetration Scenarios  

DOE Green Energy (OSTI)

The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.

Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

2008-02-01T23:59:59.000Z

322

Reducing recombination in organic photovoltaics  

E-Print Network (OSTI)

In this thesis, I consider two methods to improve organic photovoltaic efficiency: energy level cascades and promotion of triplet state excitons. The former relies on a thin layer of material placed between the active ...

Sussman, Jason M. (Jason Michael)

2011-01-01T23:59:59.000Z

323

Energy 101: Solar Photovoltaics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

101: Solar Photovoltaics 101: Solar Photovoltaics Energy 101: Solar Photovoltaics February 10, 2011 - 5:29pm Addthis Learn more about photovoltaic systems that convert light energy into electricity. Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What are the key facts? The literal translation of the word photovoltaic is light-electricity. Photovoltaic systems generate power without pollution - and recent advancements have greatly increased their efficiency. Enough energy from the sun hits the earth every hour to power the planet for an entire year-and solar photovoltaic (PV) systems are a clean, cost-effective way to harness that power for homes and businesses. The literal translation of the word photovoltaic is light-electricity-and this is exactly what photovoltaic materials and devices do-they convert

324

EERE: Wind  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Buildings The U.S. Department of Energy funds R&D to develop wind energy. Learn about the DOE Wind Program, how to use wind energy and get financial incentives, and access...

325

WIND ENERGY Wind Energ. (2012)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2012) Published online in Wiley Online Library (wileyonlinelibrary since energy production depends non-linearly on wind speed (U ), and wind speed observa- tions for the assessment of future long-term wind supply A. M. R. Bakker1 , B. J. J. M. Van den Hurk1 and J. P. Coelingh2 1

Haak, Hein

326

Overview of photovoltaic market studies  

DOE Green Energy (OSTI)

A summary of the results of recent studies sponsored by DOE and dealing with potential photovoltaic terrestrial solar energy systems markets is presented. Quantitative data developed by these studies are summarized to assist in planning test and applications programs and in estimating the level of photovoltaic system production capacity required to meet future market needs. Near-term (1976-1985) and mid-term (1986-2000) markets are discussed.

Rattin, E. J.

1978-05-01T23:59:59.000Z

327

Solid State Photovoltaic Research Branch  

DOE Green Energy (OSTI)

This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

Not Available

1990-09-01T23:59:59.000Z

328

Visualisation of photovoltaic clad buildings  

Science Conference Proceedings (OSTI)

Architectural composition in the electronic design studio: conceptual design using CAD visualisation and virtual reality modelling - Dobson, A. Comput. Aided Archit. Design Unit, Luton Univ., UKThe paper describes a study carried out to investigate the ... Keywords: PV integrated buildings, aesthetic implications, architectural CAD, building material, computer aided design software, computer visualisationIEEE Conference on Information Visualisation (IV '97), facade architecture, photovoltaic cells, photovoltaic clad buildings, refurbished buildings, visualisation

M. Horne; R. Hill; C. Underwood

1997-08-01T23:59:59.000Z

329

Mandatory Photovoltaic System Cost Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Photovoltaic System Cost Analysis Mandatory Photovoltaic System Cost Analysis Eligibility Utility Savings For Solar Buying & Making Electricity Program Information...

330

Puerto Rico - Solar and Wind Contractor Certification | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puerto Rico - Solar and Wind Contractor Certification Puerto Rico - Solar and Wind Contractor Certification Puerto Rico - Solar and Wind Contractor Certification < Back Eligibility Installer/Contractor Savings Category Solar Buying & Making Electricity Wind Program Info Program Type Solar/Wind Contractor Licensing Provider Energy Affairs Administration In October 2008, the Energy Affairs Administration (EAA) of Puerto Rico adopted regulations for the certification of photovoltaic (PV) systems and installers in response to the passing of Act No. 248, which required that PV systems be certified and installed by certified installers in order to be eligible for the newly established tax credits (that have since been repealed). With the passing of this regulation, only certified installers may install photovoltaic (PV) systems in Puerto Rico. In January 2010,

331

Photovoltaic Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Photovoltaic Energy Technology Module Photovoltaic Energy Technology Module Jump to: navigation, search Tool Summary Name: Photovoltaic Energy Technology Module Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy, Solar Topics: Technology characterizations Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: Photovoltaic Energy Technology Module[1] Resources Portable Solar Photovoltaic Lanterns: Performance and Certification Specification, and Type Approval, ESMAP TECHNICAL PAPER 078 Testing of Storage Batteries used in Stand Alone Photovoltaic Power Systems, Test procedures and examples of test results Technical Specifications for Solar Home Systems (SHS), Rural Electrification and Renewable Energy Development (PV Component) Project

332

Solar and Wind Rights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Wind Rights and Wind Rights Solar and Wind Rights < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Wisconsin Program Type Solar/Wind Access Policy Provider Public Service Commission of Wisconsin Wisconsin has several laws that protect a resident's right to install and operate a solar or wind energy system. These laws cover zoning restrictions by local governments, private land use restrictions, and system owner rights to unobstructed access to resources. Wisconsin permitting rules and model policy for small wind can be found [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WI16R&re=1&ee=1

333

Development and evaluation of sealing technologies for photovoltaic panels  

DOE Green Energy (OSTI)

This report summarizes the results of a study to develop and evaluate low temperature glass sealing technologies for photovoltaic applications. This work was done as part of Cooperative Research and Development Agreement (CRADA) No. SC95/01408. The sealing technologies evaluated included low melting temperature glass frits and solders. Because the glass frit joining required a material with a melting temperature that exceeded the allowable temperature for the active elements on the photovoltaic panels a localized heating scheme was required for sealing the perimeter of the glass panels. Thermal and stress modeling were conducted to identify the feasibility of this approach and to test strategies designed to minimize heating of the glass panel away from its perimeter. Hardware to locally heat the glass panels during glass frit joining was designed, fabricated, and successfully tested. The same hardware could be used to seal the glass panels using the low temperature solders. Solder adhesion to the glass required metal coating of the glass. The adhesion strength of the solder was dependent on the surface finish of the glass. Strategies for improving the polyisobutylene (PIB) adhesive currently being used to seal the panels and the use of Parylene coatings as a protective sealant deposited on the photovoltaic elements were also investigated. Starting points for further work are included.

Glass, S.J.; Hosking, F.M.; Baca, P.M. [and others

1998-07-01T23:59:59.000Z

334

The Effects of Non-Uniform Electronic Properties on Thin Film Photovoltaics  

E-Print Network (OSTI)

World  Conf.  Photovoltaic   Energy  Conversion  (2003),  Conference  on  Photovoltaic  Energy  Conversion,  May  17 th  European  Photovoltaic  Solar  Energy  Conference,  

Brown, Gregory Ferguson

2011-01-01T23:59:59.000Z

335

Solar Power: Using Photovoltaics to Preserve California's Electricity Capacity Reserves  

DOE Green Energy (OSTI)

The California Power Authority (CPA) is committed to increasing the use of renewable energy supplies--such as photovoltaics and wind--as a hedge against price fluctuations of electricity and natural gas. The CPA wants to own and operate an adequate supply of reserve generation that: - Can be deployed quickly in response to severe summer peak loads, unexpected loss of base and intermediate generation units, and failure of critical transmission facilities; - Will minimize the reliance on spot market purchases during periods when the State is most vulnerable to price gouging from private generators.

Herig, C..

2001-09-01T23:59:59.000Z

336

Analysis of the Benefits of Photovoltaic in High Rise Commercial Buildings  

E-Print Network (OSTI)

Energy efficient glazing is necessary to reduce heat gains or losses that contribute to the high-energy use of buildings. However, high-rise commercial buildings that use energy efficient glazing are still consumptive. To reduce their energy use further, recent studies have integrated photovoltaic glazed window systems into the building shell. To understand the relationship between photovoltaic windows, energy use and human satisfaction, this paper presents a study of the effects of photovoltaic glazed windows on the energy use of large commercial buildings and includes an assessment of the overall human satisfaction of the workers within photovoltaic glazed office spaces. A prototypical building was used to develop the base case simulations for the DOE-2 energy simulation program and the PV F-Chart photovoltaic analysis program. By substituting the appropriate variables in the base case simulation for each site, the building was simulated to evaluate the impact of the PV glazing on the building's heat loss/gain as well as the amount of electricity that could be expected from the PV. To test for human satisfaction, a survey was performed to assess the overall preference of the subjects to the office spaces using the photovoltaic glazed windows. Finally, an overall assessment of the economic and non-economic impacts is also discussed.

Sylvester, K. E.; Haberl, J. S.

2000-01-01T23:59:59.000Z

337

Photovoltaic Cell Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Photovoltaic Cell Materials August 19, 2013 - 4:43pm Addthis Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made...

338

Mounting support for a photovoltaic module  

DOE Patents (OSTI)

A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

2013-03-26T23:59:59.000Z

339

Thin film photovoltaic panel and method  

DOE Patents (OSTI)

A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

1991-06-11T23:59:59.000Z

340

Photovoltaic product directory and buyers guide  

DOE Green Energy (OSTI)

Basic information on photovoltaic conversion technology is provided for those unfamiliar with the field. Various types of photovoltaic products and systems currently available off-the-shelf are described. These include products without batteries, battery chargers, power packages, home electric systems, and partial systems. Procedures are given for designing a photovoltaic system from scratch. A few custom photovoltaic systems are described, and a list is compiled of photovoltaic firms which can provide custom systems. Guidance is offered for deciding whether or not to use photovoltaic products. A variety of installations are described and their performance is appraised by the owners. Information is given on various financial incentives available from state and federal governments. Sources of additional information on photovoltaics are listed. A matrix is provided indicating the sources of various types of photovoltaic products. The addresses of suppliers are listed. (LEW)

Watts, R.L.; Smith, S.A.; Mazzucchi, R.P.

1981-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Photovoltaic Cell Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV...

342

Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices  

E-Print Network (OSTI)

way to do better. A photovoltaic cell, or solar cell, is aFor this thesis, I made photovoltaic cells using a Schottkyphotovoltaic processes oc- cur in a Schottky barrier solar cell. . . . . . . . . . . . . . . . . .

Schriver, Maria Christine

2012-01-01T23:59:59.000Z

343

Photovoltaic cell efficiency at elevated temperatures  

E-Print Network (OSTI)

In order to determine what type of photovoltaic solar cell could best be used in a thermoelectric photovoltaic hybrid power generator, we tested the change in efficiency due to higher temperatures of three types of solar ...

Ray, Katherine Leung

2010-01-01T23:59:59.000Z

344

Photovoltaic technology development at Sandia National Laboratories  

SciTech Connect

This report describes the following investigations being pursued under photovoltaic technology development at Sandia National Laboratories: photovoltaic systems technology; concentrator technology; concentrator arrays and tracking structures; concentrator solar cell development; system engineering; subsystem development; and test and applications.

1981-12-31T23:59:59.000Z

345

Photovoltaic Reliability and Engineering (Revised) (Fact Sheet)  

DOE Green Energy (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Photovoltaic Reliability and Engineering. One-sided sheet that includes Scope, Core Competencies and Capabilities, and Contact/Web information.

Not Available

2011-06-01T23:59:59.000Z

346

A Lagrangian Description of the Western Equatorial Pacific Response to the Wind Burst of December 1992: Heat Advection in the Warm Pool  

Science Conference Proceedings (OSTI)

During the Tropical Oceans Global Atmosphere (TOGA) Coupled Ocean–Atmosphere Response Experiment (COARE) intensive observing period (IOP), sustained westerly winds were observed between 20 December 1992 and 10 January 1993 in the area between 155°...

Elise A. Ralph; Kenong Bi; Pearn P. Niiler; Yves du Penhoat

1997-07-01T23:59:59.000Z

347

Building-integrated photovoltaics: A case study  

SciTech Connect

In 1992, Kiss Cathcart Anders Architects performed a study for NREL on Building-Integrated Photovoltaics (BIPV) issues as seen from the perspective of the building community. In general, the purpose of the study was to list major issues and potential applications; by it`s nature it asked more questions than it answered. This second phase study was to produce quantitative data on the performance of specific BIPV systems. Only roof systems are evaluated. The energy performance, construction cost and simple payback for five different BIPV roof options are evaluated in six different locations: Oakland, New York, Miami, Phoenix, Chicago, and Cincinnati. The roof options evaluated include the following: single-glazed PV roof using glass-substrate PVs; double-glazed PV roof with insulating PV modules; ballasted roof-mounted system; sawtooth light monitor roof with indirect north daylighting; sawtooth roof with north light and active heat recovery.

Kiss, G.; Kinkead, J.; Raman, M.

1995-03-01T23:59:59.000Z

348

Design of a 20-kWp photovoltaic concentrator experiment at Fauquier High School, Warrenton, VA  

DOE Green Energy (OSTI)

The design and systems analysis of the photovoltaic concentrator system for Fauquier High School in Warrenton, Virginia, are presented. The system provides both electrical energy from the photovoltaic modules and thermal energy from the cooling of those modules. The dc electrical energy from the photovoltaic modules will be first converted to ac and then used to provide power for lighting in the vocational/technical building and the system control building. The thermal energy collected is stored in a 6500-gallon tank for use in the wintertime to provide heat for a greenhouse located adjacent to the array. The photovoltaic system supplies 20 kWp of electrical power by means of 40 6' wide by 10' long parabolic-cylinder collectors mounted in a polar mode. (WHK)

None

1979-10-18T23:59:59.000Z

349

NREL: Photovoltaics Research - Thin Film Photovoltaic Partnership Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed the United States to attain world leadership in this area of solar technology. Three national R&D teams focused on thin-film semiconductor materials: amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS) and its alloys. The Module Reliability Team and Environmental Health and Safety Team were crosscutting. The teams comprised researchers from the solar industry, academia, and NREL who focused their efforts on improving materials, devices, and manufacturing processes-all

350

Photovoltaic Incentive Design Handbook  

DOE Green Energy (OSTI)

Investments in customer-owned grid-connected photovoltaic (PV) energy systems are growing at a steady pace. This is due, in part, to the availability of attractive economic incentives offered by public state agencies and utilities. In the United States, these incentives have largely been upfront lump payments tied to the system capacity rating. While capacity-based ''buydowns'' have stimulated the domestic PV market, they have been criticized for subsidizing systems with potentially poor energy performance. As a result, the industry has been forced to consider alternative incentive structures, particularly ones that pay based on long-term measured performance. The industry, however, lacks consensus in the debate over the tradeoffs between upfront incentive payments versus longer-term payments for energy delivery. This handbook is designed for agencies and utilities that offer or intend to offer incentive programs for customer-owned PV systems. Its purpose is to help select, design, and implement incentive programs that best meet programmatic goals. The handbook begins with a discussion of the various available incentive structures and then provides qualitative and quantitative tools necessary to design the most appropriate incentive structure. It concludes with program administration considerations.

Hoff, T. E.

2006-12-01T23:59:59.000Z

351

Photovoltaics for municipal planners  

DOE Green Energy (OSTI)

This booklet is intended for city and county government personnel, as well as community organizations, who deal with supplying, regulating, or recommending electric power resources. Specifically, this document deals with photovoltaic (PV) power, or power from solar cells, which is currently the most cost-effective energy source for electricity requirements that are relatively small, located in isolated areas, or difficult to serve with conventional technology. Recently, PV has been documented to be more cost-effective than conventional alternatives (such as line extensions or engine generators) in dozens of applications within the service territories of electric, gas, and communications utilities. Here, we document numerous cost-effective urban applications, chosen by planners and utilities because they were the most cost-effective option or because they were appropriate for environmental or logistical reasons. These applications occur within various municipal departments, including utility, parks and recreation, traffic engineering, transportation, and planning, and they include lighting applications, communications equipment, corrosion protection, irrigation control equipment, remote monitoring, and even portable power supplies for emergency situations.

Not Available

1993-04-01T23:59:59.000Z

352

Energy Basics: Flat-Plate Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

353

Energy Basics: Photovoltaic Cell Quantum Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

354

Energy Basics: Crystalline Silicon Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

355

Energy Basics: Photovoltaic Cell Conversion Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

356

Energy Basics: Flat-Plate Photovoltaic Modules  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

357

Hybrids for Photovoltaics - Programmaster.org  

Science Conference Proceedings (OSTI)

Hybrid Organic: Inorganic Materials for Alternative Energy: Hybrids for Photovoltaics Program Organizers: Andrei Jitianu, Lehman College, City University of ...

358

NREL: Photovoltaics Research - Emerging Technologies Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

and the potential benefit of increasing system efficiency. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

359

ENHANCEMENT OF ORGANIC PHOTOVOLTAIC CELL OPEN CIRCUIT ...  

enhancement of organic photovoltaic cell open circuit voltage using electron/hole blocking exciton blocking layers united states patent application

360

Solar Photovoltaic Technologies Available for Licensing ...  

Site Map; Printable Version; Share this resource. Send a link to Solar Photovoltaic Technologies Available for Licensing - Energy Innovation Portalto ...

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Development of a commercial photovoltaic concentrator module  

DOE Green Energy (OSTI)

The ojective of this work was to develop the design and prototype of a commercial high-concentration photovoltaic (PV) module. The design is for a 282-sun point-focus concentrating module. Most of the components, subassemblies, and design features incorporate simplifications and ease of manufacturing. The Solar Kinetics, Inc. (SKI) module is designed to incorporate high-efficiency, single-crystal silicon PV cells. The housing is made with aluminum laminated for voltage stand-off and simultaneously providing high thermal conductivity. The Fresnel lens injection molded by American Optical (AO) as singles. The cell assembly consists of a copper heat spreader, a photovoltaic cell soldered, a top and bottom contact, and a reflective secondary optical element (SOE). The cell assemblies passed all of the initial electrical characterization and high-potential tests. Under environmental cycling, the only bond that failed was the PV cell-to-heat spreader interface. The other components (top contact, bottom contact, SOE) passed all the environmental cycling tests. The cell assemblies were designed to be mounted onto the receiver section with a thermally conductive RTV. This geometry was subjected to environmental testing. There was no delamination of this bond nor was there electrical breakdown when the assemblies were subjected to the hi-pot test. A mock module was fabricated for environmental evaluation. This module was subjected to the humidity/freeze cycling to assess the performance of the lens mounting design. This module was also subjected to the rain test after the humidity/freeze cycling and checked for water leaks. The lens showed small displacement from its original position after the environmental cycling. One tablespoon of water did collect inside the module.

Saifee, S.T.; Hutchison, G. [Solar Kinetics, Inc., Dallas, TX (United States)

1992-09-01T23:59:59.000Z

362

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

363

Commercial Application of a Photovoltaic Concentrator system. Phase I. Final report, 1 June 1978-28 February 1979  

DOE Green Energy (OSTI)

This report documents the design and analysis of the BDM CAPVC (Commercial Application of a Photovoltaic Concentrator) system. The preliminary design, prototype test and evaluation, system analysis, and final design of a large-scale concentrating photovoltaic system are described. The application is on an attractive new office building which represents a large potential market. The photovoltaic concentrating array is a roof-mounted, single-axis linear parabolic trough, using single crystalline silicon photovoltaic cells. A total of 6720 square feet of aperture is focussed on 13,944 PV cells. The photovoltaic system operates in parallel with the local utility in an augmentary loadsharing operating mode. The array is actively cooled and the thermal energy utilized for building heat during winter months. (WHK)

Anderson, D.J.; Anderson, E.R.; Bardwell, K.M.

1980-04-01T23:59:59.000Z

364

PV Testing Group Photovoltaic Cell Data Compilation  

E-Print Network (OSTI)

PV Testing Group Photovoltaic Cell Data Compilation National Renewable Energy Laboratory 4/2/2010 ______________________________________ Page 1 *NREL Photovoltaic Cell Data Compilation Calibration Conducted For: Kaitlyn VanSant (for Solasta Contact: Paul Ciszek (303) 384-6647 Paul.Ciszek@nrel.gov #12;PV Testing Group Photovoltaic Cell Data

Burns, Michael J.

365

ROBOTIC DEVICE FOR CLEANING PHOTOVOLTAIC PANEL ARRAYS  

E-Print Network (OSTI)

output from a photovoltaic cell installed at Northeastern University., Boston, MA, USA. The graph shows to human crews and current hardware alternatives. A photovoltaic cell is an electronic device that converts1 ROBOTIC DEVICE FOR CLEANING PHOTOVOLTAIC PANEL ARRAYS MARK ANDERSON, ASHTON GRANDY, JEREMY HASTIE

Mavroidis, Constantinos

366

International photovoltaic products and manufacturers directory, 1995  

DOE Green Energy (OSTI)

This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)] [ed.; Florida Solar Energy Center, Cocoa, FL (United States)

1995-11-01T23:59:59.000Z

367

Generating Hydrogen through Water Electrolysis using Concentrator Photovoltaics  

Science Conference Proceedings (OSTI)

Hydrogen can be an important element in reducing global climate change if the feedstock and process to produce the hydrogen are carbon free. Using nuclear energy to power a high temperature water electrolysis process meets these constraints while another uses heat and electricity from solar electric concentrators. Nuclear researchers have estimated the cost of hydrogen generated in this fashion and we will compare their estimates with those we have made for generating hydrogen using electricity and waste heat from a dish concentrator photovoltaic system. The conclusion is that the costs are comparable and low enough to compete with gasoline costs in the not too distant future.

McConnell, R.; Thompson, J.

2005-01-01T23:59:59.000Z

368

NREL: Photovoltaics Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo of Photovoltaic Solar Panels. Photo of Photovoltaic Solar Panels. Solar Installer Surveys DOE needs your input to reduce the "soft costs" of solar PV installations that impact your business. Complete the residential survey and commercial survey today! Photovoltaic (PV) research at the National Renewable Energy Laboratory (NREL) focuses on boosting solar cell conversion efficiencies, lowering the cost of solar cells, modules, and systems, and improving the reliability of PV components and systems. NREL's PV effort contributes to these goals through fundamental research, advanced materials and devices, and technology development. Our scientists are pursuing critical activities that will help to accomplish the goal of the U.S. Department of Energy's SunShot Initiative-to make large-scale solar energy systems cost-competitive with

369

American Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

American Photovoltaics American Photovoltaics Name American Photovoltaics Place Houston, Texas Zip 77002 Sector Solar Product Will manufacture thin-film solar modules Website http://apv-us.com/ Coordinates 29.752554°, -95.3704009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.752554,"lon":-95.3704009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

NREL: Learning - Photovoltaics for Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Homes Homes Photo of solar panels on the roof of a traditional looking home in Colorado. Photovoltaic solar panels installed on the roof of a home in Boulder, Colorado. The following resources will help you install a photovoltaic (PV) system on your home. If you are unfamiliar with PV systems, see the introduction to PV. Resources American Solar Energy Society Provides consumers with information about solar energy and resources. Database of State Incentives for Renewables and Efficiency Provides information on state, local, utility, and selected federal incentives that promote renewable energy. Florida Solar Energy Center Provides basic information on photovoltaics for consumers. Own Your Power! A Consumer Guide to Solar Electricity The U.S. Department of Energy (DOE) answers consumer questions about PV and

371

Cadmium telluride photovoltaic radiation detector  

DOE Patents (OSTI)

A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semiconductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

Agouridis, Dimitrios C. (Oak Ridge, TN); Fox, Richard J. (Oak Ridge, TN)

1981-01-01T23:59:59.000Z

372

Photovoltaic Subcontract Program, FY 1991  

DOE Green Energy (OSTI)

This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

Not Available

1992-03-01T23:59:59.000Z

373

Photovoltaic cell and production thereof  

DOE Patents (OSTI)

An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.

Narayanan, Srinivasamohan (Gaithersburg, MD); Kumar, Bikash (Bangalore, IN)

2008-07-22T23:59:59.000Z

374

Battery testing for photovoltaic applications  

SciTech Connect

Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

Hund, T.

1996-11-01T23:59:59.000Z

375

Recycling Of Cis Photovoltaic Waste  

DOE Patents (OSTI)

A method for extracting and reclaiming metals from scrap CIS photovoltaic cells and associated photovoltaic manufacturing waste by leaching the waste with dilute nitric acid, skimming any plastic material from the top of the leaching solution, separating glass substrate from the leachate, electrolyzing the leachate to plate a copper and selenium metal mixture onto a first cathode, replacing the cathode with a second cathode, re-electrolyzing the leachate to plate cadmium onto the second cathode, separating the copper from selenium, and evaporating the depleted leachate to yield a zinc and indium containing solid.

Drinkard, Jr., William F. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Goozner; Robert E. (Charlotte, NC)

1998-07-14T23:59:59.000Z

376

Basic photovoltaic principles and methods  

DOE Green Energy (OSTI)

This book presents a nonmathematical explanation of the theory and design of photovoltaic (PV) solar cells and systems. The basic elements of PV are introduced: the photovoltaic effect, physical aspects of solar cell efficiency, the typical single-crystal silicon solar cell, advances in single-crystal silicon solar cells. This is followed by the designs of systems constructed from individual cells, including possible constructions for putting cells together and the equipment needed for a practical producer of electrical energy. The future of PV is then discussed. (LEW)

Hersch, P.; Zweibel, K.

1982-02-01T23:59:59.000Z

377

Photovoltaic Geographical Information System | Open Energy Information  

Open Energy Info (EERE)

Photovoltaic Geographical Information System Photovoltaic Geographical Information System Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaic Geographical Information System Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: re.jrc.ec.europa.eu/pvgis/ Equivalent URI: cleanenergysolutions.org/content/photovoltaic-geographical-information Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This tool provides a geographical inventory of solar energy resources and an assessment of the electricity generation from photovoltaic systems in Europe, Africa, and southwest Asia. The tools allows for analysis of the technical, environmental, and socio-economic factors of solar electricity generation. Users may access maps and posters generated using the tool, as

378

System tests and applications photovoltaic program  

DOE Green Energy (OSTI)

A summary of all the photovoltaic system tests and application experiments that have been initiated since the start of the US DOE Photovoltaics Program in 1975 is presented. They are organized in the following manner for ease of reference: (1) application experiments: these are independently designed and constructed projects which are funded by DOE; (2) system field tests: projects designed and monitored by the national laboratories involved in the photovoltaic program; (3) exhibits: designed to acquaint the general public to photovoltaics; (4) component field tests: real time endurance testing conducted to monitor module reliability under actual environmental conditions; and (5) test facilities: descriptions of the four national laboratories involved in the photovoltaic program.

Not Available

1979-05-01T23:59:59.000Z

379

City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Jose - Solar Hot Water Heaters and Photovoltaic Systems San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements < Back Eligibility Commercial Construction Industrial Installer/Contractor Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Program Info State California Program Type Solar/Wind Permitting Standards Provider City of San Jose Building, Planning and Electrical Permits are required for Photovoltiac (PV) systems installed in San Jose. In most cases, PV systems must also undergo a Building Plan Review and an Electrical Plan Review. Building Plan Reviews are not required for installations that meet all of the following criteria: 1. Total panel weight (including frame) is not greater than 5 lbs. per

380

NREL: Learning - Renewable Energy for Homeowners  

NLE Websites -- All DOE Office Websites (Extended Search)

use Geothermal heat pumps Passive solar heating and daylighting Photovoltaic (solar cell) systems Solar hot water systems Wind energy Wood heating (biomass energy heating)...

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Renewable Energy Evaluation Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Technologies Photovoltaics Daylighting Biomass HeatPower Concentrating Solar HeatPower Solar Vent Air Preheat Solar Water Heating Wind Power Ground Source Heat...

382

Photovoltaic Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Resources and Technologies Photovoltaic Resources and Technologies Photovoltaic Resources and Technologies October 7, 2013 - 9:22am Addthis Graphic of the eTraining logo Training Available Selecting, Implementing, and Funding Photovoltaic Systems in Federal Facilities: Learn how to select, implement, and fund a photovoltaic system by taking this FEMP eTraining course. This page provides a brief overview of photovoltaic (PV) technologies supplemented by specific information to apply PV within the Federal sector. Overview Photovoltaic cells convert sunlight into electricity. Systems typically include a PV module or array made of individual PV cells installed on or near a building or other structure. A power inverter converts the direct current (DC) electricity produced by the PV cells to alternative current

383

Canrom Photovoltaics Inc | Open Energy Information  

Open Energy Info (EERE)

Canrom Photovoltaics Inc Canrom Photovoltaics Inc Jump to: navigation, search Name Canrom Photovoltaics Inc Place Niagara Falls, New York Zip 14305 Sector Solar Product Developer of a thin-film CdTe based solar electric module. References Canrom Photovoltaics Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Canrom Photovoltaics Inc is a company located in Niagara Falls, New York . References ↑ "Canrom Photovoltaics Inc" Retrieved from "http://en.openei.org/w/index.php?title=Canrom_Photovoltaics_Inc&oldid=343203" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

384

Photovoltaic Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Technology Basics Photovoltaic Technology Basics Photovoltaic Technology Basics August 16, 2013 - 4:47pm Addthis Text Version Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity. First used in about 1890, "photovoltaic" has two parts: photo, derived from the Greek word for light, and volt, relating to electricity pioneer Alessandro Volta. And this is what photovoltaic materials and devices do-they convert light energy into electrical energy, as French physicist Edmond Becquerel discovered as early as 1839. Becquerel discovered the process of using sunlight to produce an electric current in a solid material. But it took more than another century to truly

385

Hybrid Wind and Solar Electric Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems July 2, 2012 - 8:21pm Addthis Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. How does it work? A small "hybrid" electric system that combines wind and solar technologies can offer several advantages over either single system. According to many renewable energy experts, a small "hybrid" electric system that combines home wind electric and home solar electric (photovoltaic or PV) technologies offers several advantages over either

386

Next-Generation Photovoltaic Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Photovoltaic Next-Generation Photovoltaic Technologies Next-Generation Photovoltaic Technologies Print Monday, 06 February 2012 15:48 Organic solar cells based on the polymer/fullerene bulk heterojunction (BHJ) model represent one of the most promising technologies for next-generation solar energy conversion due to their low cost and scalability. Traditional organic photovoltaics (OPVs) are thought to have interpenetrating networks of pure polymer and fullerene layers with discrete interfaces. Researchers at Argonne National Laboratory, working with collaborators from the University of Chicago, LBNL, and NIST, used ALS Beamline 11.0.1.2 to perform resonant soft x-ray scattering (RSoXS) on PTB7/fullerene BHJ solar cells to probe performance-related structures at different length scales. These solar cells set a historic record of conversion efficiency (7.4%). The RSoXS demonstrated that the superior performance of PTB7/fullerene solar cells is attributed to surprising hierarchical nanomorphologies ranging from several nanometers of crystallites to tens of nanometers of nanocrystallite aggregates in intermixed PTB7-rich and fullerene-rich domains, themselves hundreds of nanometers in size. This work will lead the research community to rethink ideal OPV morphologies, reconsider which structures should be targeted in OPVs, and enable the rational design of even higher-performance organic solar cells.

387

Improved photovoltaic cells and electrodes  

DOE Patents (OSTI)

Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

Skotheim, T.A.

1983-06-29T23:59:59.000Z

388

Electrochemical photovoltaic cells and electrodes  

DOE Patents (OSTI)

Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

Skotheim, Terje A. (East Patchogue, NY)

1984-01-01T23:59:59.000Z

389

Photovoltaic cells employing zinc phosphide  

DOE Patents (OSTI)

A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

Barnett, Allen M. (Newark, DE); Catalano, Anthony W. (Wilmington, DE); Dalal, Vikram L. (Newark, DE); Masi, James V. (Wilbraham, MA); Meakin, John D. (Newark, DE); Hall, Robert B. (Newark, DE)

1984-01-01T23:59:59.000Z

390

NREL Photovoltaic Program FY 1993  

DOE Green Energy (OSTI)

This report reviews the in-house and subcontracted research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) Program from October 1, 1992, through September 30, 1993 (fiscal year [FY] 1993). The NREL PV Program is part of the U.S. Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The FY 1993 budget authority (BA) for carrying out the NREL PV Program was $40.1 million in operating funds and $0.9 million in capital equipment funds. An additional $4.8 million in capital equipment funds were made available for the new Solar Energy Research Facility (SERF) that will house the in-house PV laboratories beginning in FY 1994. Subcontract activities represent a major part of the NREL PV Program, with more than $23.7 million (nearly 59%) of the FY 1993 operating funds going to 70 subcontractors. In FY 1993, DOE assigned certain other PV subcontracting efforts to the DOE Golden Field Office (DOE/GO), and assigned responsibility for their technical support to the NREL PV Program. An example is the PV:BONUS (Building Opportunities in the U.S. for Photovoltaics) Project. These DOE/GO efforts are also reported in this document.

Not Available

1994-08-01T23:59:59.000Z

391

Photovoltaic Subcontract Program, FY 1990  

SciTech Connect

This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

Summers, K.A. (ed.)

1991-03-01T23:59:59.000Z

392

Photovoltaic Subcontract Program, FY 1990  

DOE Green Energy (OSTI)

This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

Summers, K.A. (ed.)

1991-03-01T23:59:59.000Z

393

Advanced Concepts for Photovoltaic Cells  

DOE Green Energy (OSTI)

Novel approaches to high efficiency photovoltaic cells are discussed that are based on the use of semiconductor quantum dots to slow hot electron cooling and thus produce either enhanced photocurrents through impact ionization or enhanced photovoltages through hot electron transport and collection.

Nozik, A. J.

2003-05-01T23:59:59.000Z

394

EIA: Wind  

U.S. Energy Information Administration (EIA)

Technical information and data on the wind energy industry from the U.S. Energy Information Administration (EIA).

395

SunShot Initiative: National Laboratory Photovoltaics Research  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory Photovoltaics National Laboratory Photovoltaics Research to someone by E-mail Share SunShot Initiative: National Laboratory Photovoltaics Research on Facebook Tweet about SunShot Initiative: National Laboratory Photovoltaics Research on Twitter Bookmark SunShot Initiative: National Laboratory Photovoltaics Research on Google Bookmark SunShot Initiative: National Laboratory Photovoltaics Research on Delicious Rank SunShot Initiative: National Laboratory Photovoltaics Research on Digg Find More places to share SunShot Initiative: National Laboratory Photovoltaics Research on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy in Solar Grid Engineering for Accelerated Renewable Energy Deployment

396

Photovoltaics effective capacity: Interim final report 2  

DOE Green Energy (OSTI)

The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

Perez, R.; Seals, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

1997-11-01T23:59:59.000Z

397

Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices  

E-Print Network (OSTI)

Residential Photovoltaic Energy Systems in California: Themarginal impacts of photovoltaic (PV) energy systems on home

Hoen, Ben

2013-01-01T23:59:59.000Z

398

Wind Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

399

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Weekly heating oil and propane prices are only collected during the heating season, ...

400

Most homes have central thermostats on heating and cooling ...  

U.S. Energy Information Administration (EIA)

... solar, wind , geothermal ... Quarterly Coal Report › Monthly Energy Review › Residential Energy ... main heating equipment is a portable heater, ...

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solar and Wind Equipment Certification | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Equipment Certification Solar and Wind Equipment Certification Solar and Wind Equipment Certification < Back Eligibility Commercial Construction Industrial Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Water Heating Wind Program Info State Arizona Program Type Equipment Certification Provider Arizona Solar Energy Industries Association Collectors, heat exchangers and storage units of solar energy systems -- and the installation of these systems -- sold or installed in Arizona must have a warranty of at least two years. The remaining components of the system and their installation must have a warranty of at least one year.

402

A pilot study of the building integrated photovoltaic thermal (BIPVT) collector for commercial applications in Malaysia  

Science Conference Proceedings (OSTI)

Building integrated photovoltaic thermal solar collector (BIPVT) has been designed to produce both electricity and hot water and later integrated to building. The hot water is produced at the useful temperatures for the applications in Malaysia such ... Keywords: BIPVT collector, hot water heating system, thermal and electrical efficiency

A. Ibrahim; M. Y. Othman; M. H. Ruslan; S. Mat; A. Zaharim; K. Sopian

2011-07-01T23:59:59.000Z

403

Model for Thermal Behavior of Shaded Photovoltaic Cells under Hot-Spot Condition  

Science Conference Proceedings (OSTI)

We address the problem of modeling the thermal behavior of photovoltaic (PV) cells that, due to their being exposed to shading, may experience a dramatic temperature increase (a phenomenon referred to as hot-spot) with consequent reduction of the provided ... Keywords: solar cell, hot-spot heating, energy efficiency, reliability

Daniele Giaffreda; Martin Omana; Daniele Rossi; Cecilia Metra

2011-10-01T23:59:59.000Z

404

Evaluation of a Single-Phase Photovoltaic Inverter with Grid Support Functionality  

Science Conference Proceedings (OSTI)

Previous EPRI work has shown that photovoltaic (PV) generation employing grid support functionality can enable a utility distribution feeder to host higher penetration of PV without operating problems. In Europe medium and low voltage grid codes define grid support functions and are often required for specific installations particularly in Germany. Similar to transmission grid codes, devised for integration of wind power, we expect these distribution grid codes to begin seeing application in North Americ...

2011-12-30T23:59:59.000Z

405

Flat-Plate Photovoltaic Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flat-Plate Photovoltaic Systems Flat-Plate Photovoltaic Systems August 20, 2013 - 4:03pm Addthis The most common photovoltaic (PV) array design uses flat-plate PV modules or...

406

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.e?ciency for photovoltaic solar energy collections, reviewedenergy sources, the manufacturing of solar cells and photovoltaic

Wang, Chunhua

2011-01-01T23:59:59.000Z

407

Synthesis and photovoltaic application of coper (I) sulfide nanocrystals  

E-Print Network (OSTI)

polymer hybrid photovoltaic cells. Appl. Phys. Lett. 88,S-CdS heterojunction photovoltaic cells. J. Appl. Phys. 45,photovoltaic devices, such as dye-sensitized solar cells 1-

Wu, Yue

2008-01-01T23:59:59.000Z

408

EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students  

E-Print Network (OSTI)

EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students By Dick Erickson ­ Pleasant Activity ­ Testing Photovoltaic Cells ..........................5 Expected Observations: ........................................................................................................8 II. LAB ACTIVITY - TESTING PHOTOVOLTAIC CELLS ..................................9 BEFORE YOU START

Oregon, University of

409

Photovoltaic nanocrystal scintillators hybridized on Si solar cells  

E-Print Network (OSTI)

Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit@bilkent.edu.tr Abstract: We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated

Demir, Hilmi Volkan

410

Charge transport in hybrid nanorod-polymer composite photovoltaic cells  

E-Print Network (OSTI)

circuit diagram for a photovoltaic cell under illumination.Within a simple model a photovoltaic cell is a diode with ananocrystal-polymer photovoltaic cell with electron and hole

Huynh, Wendy U.; Dittmer, Janke J.; Teclemariam, Nerayo; Milliron, Delia; Alivisatos, A. Paul; Barnham, Keith W.J.

2002-01-01T23:59:59.000Z

411

Global ocean wind power sensitivity to surface layer stability  

E-Print Network (OSTI)

power distribution over the ocean, Geophys. Res. Lett. , 35,of wind speed over the ocean, J. Appl. Meteorol. , 25,and heat flux over the open ocean in gale force winds, J.

Capps, Scott B; Zender, Charles S

2009-01-01T23:59:59.000Z

412

The Steadman Wind Chill: An Improvement over Present Scales  

Science Conference Proceedings (OSTI)

Because of shortcomings in the current wind chill formulation, which did not consider the metabolic heat generation of the human body, a new formula is proposed for operational implementation. This formula, referred to as the Steadman wind chill, ...

Robert G. Quayle; Robert G. Steadman

1998-12-01T23:59:59.000Z

413

Excise Tax Exemption for Solar- or Wind-Powered Systems  

Energy.gov (U.S. Department of Energy (DOE))

Massachusetts law exempts any "solar or wind powered climatic control unit and any solar or wind powered water heating unit or any other type unit or system powered thereby," that qualifies for the...

414

NREL: Learning - Photovoltaics for Small Business  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaics for Small Business Photovoltaics for Small Business Photo of a factory with a photovoltaic system. This furniture factory in Massachusetts uses a photovoltaic system to generate its own electricity. The following resources will help your small business install a photovoltaic (PV) system. If you are unfamiliar with PV systems, see the introduction to PV. Resources American Solar Energy Society Provides consumers with information about solar energy and resources. Database of State Incentives for Renewables and Efficiency Provides information on state, local, utility, and selected federal incentives that promote renewable energy. Florida Solar Energy Center The Florida Solar Energy Center provides basic information on photovoltaics for consumers. Own Your Power! A Consumer Guide to Solar Electricity

415

Photovoltaic mission analysis: some recent results  

SciTech Connect

Brief accounts of recent short investigations of three different aspects of the interface between photovoltaic solar energy conversion systems and the utility grid are presented. An account is given of some results of a recent investigation of the effect on photovoltaic system economics of the sale of excess photovoltaic electricity to the utility company. A recently developed economic dispatch model was used to study the changes that can be expected to take place in the dispatching of power from conventional plants in a utility system when a photovoltaic power plant is added to the generation mix. Also, a report is given on a set of structured interviews with high management personnel of eight different utility companies, located in various parts of the U.S. -- interviews in which utility attitudes toward photovoltaic power generation, in general, and toward utility-related photovoltaic experiments, in particular, were explored.

Bogen, A. H.; Leonard, S. L.; Siegel, B.

1977-10-18T23:59:59.000Z

416

NREL: Learning - Photovoltaics for Electricity Providers  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaics for Electricity Providers Photovoltaics for Electricity Providers Photo of a photovoltaic system in Virginia. This 15-kilowatt photovoltaic system in Virginia feeds clean energy into the utility grid that supplies the Pentagon with electricity. Utility companies can use the resources on this page to find out more about how utilities are using solar photovoltaics (PV) as well as information about designing solar energy programs. Research, Development and Deployment Utility Technical Engagement A central resource for utilities interested in designing solar energy programs and networking with other utilities with existing solar programs from the U.S. Department of Energy (DOE) Solar Program. NREL Photovoltaics Research A central resource for our nation's capabilities in PV, uniting diverse R&D

417

US photovoltaic patents: 1991--1993  

DOE Green Energy (OSTI)

This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

Pohle, L

1995-03-01T23:59:59.000Z

418

Photovoltaic Energy Program Overview Fiscal Year 1996  

DOE Green Energy (OSTI)

Significant activities in the National Photovoltaic Program are reported for each of the three main program elements. In Research and Development, advances in thin-film materials and crystalline silicon materials are described. The Technology Development report describes activities in photovoltaic manufacturing technology, industrial expansion, module and array development, and testing photovoltaic system components. Systems Engineering and Applications projects described include projects with government agencies, projects with utilities, documentation of performance for international applications, and product certification.

NONE

1997-05-01T23:59:59.000Z

419

Photovoltaics: Program overview, fiscal year 1992  

DOE Green Energy (OSTI)

The US DOE`s Photovoltaics program has helped photovoltaic technologies evolve from materials and concepts in the laboratories to competitive products rolling off automated assembly lines. This document is divided into the following sections: 1992 PV program accomplishments, expanding markets for photovoltaic systems, developing today`s systems with utilities and industry, working with industry to advance the technology, cooperative research to improve materials and devices, selected achievements in cooperative R and D, and PV program services. Figs, tabs.

Not Available

1993-03-01T23:59:59.000Z

420

25 Year Lifetime for Flexible Buildings Integrated Photovoltaics  

SciTech Connect

Although preliminary proof-of-principle of the efficacy of barrier materials and processes, first developed by Battelle at PNNL and commercialized by Vitex, has been demonstrated at the laboratory scale, there are several challenges to the practical commercial implementation of these developments in the Buildings Integrated Photovoltaics (BIPV) market. Two important issues that are addressed in this project are identifying a low cost substrate material that can survive in the outside environment (rain, heat, dust, hail, etc.) for 25 years and developing an encapsulation method for the photovoltaic (PV) cells that can meet the required barrier performance without driving the cost of the total barrier package out of range (remaining below $3.00/Wp). Without these solutions, current encapsulation technologies will limit the use of PV for BIPV applications. Flexible, light-weight packaging that can withstand 25 years in the field is required for a totally flexible integrated PV package. The benefit of this research is to make substantial progress in the development of a cost-effective, viable thin film barrier package which will be a critical enabling technology to meet the Solar America Initiative cost and device reliability goals, and to make photovoltaics (PV) more cost-competitive with electricity generated using fossil fuels. Increased PV installations will enable increased US electrical capacity and reduce dependence on imported oil through increased utilization of a widely abundant source of renewable energy (sunlight).

Gross, Mark E.

2010-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NREL: Photovoltaics Research - Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Staff Research Staff Our silicon group members have backgrounds in physics, chemistry, mathematics, materials science, and electrical engineering. Russell Bauer Howard Branz Sachit Grover Vincenzo LaSalvia Benjamin Lee William Nemeth Matt Page Lorenzo Roybal Pauls Stradins, (Acting Group Manager) Charles Teplin Qi Wang David Young Hao-Chih Yuan Photo of 21 people standing in front of a building with a silver, cylinder-shaped structure on one side. Photo of Pauls Stradins Pauls Stradins Senior Scientist II Group Manager Primary Research Interests High-efficiency silicon photovoltaics: advanced passivation techniques and industrially-relevant processes Interfacing Si cell with other materials for high-efficiency tandem Nanostructured semiconductor materials for photovoltaics: Si quantum

422

Integrated Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

Name Integrated Photovoltaics Name Integrated Photovoltaics Place Sunnyvale, California Product California-based stealth mode PV startup. Coordinates 32.780338°, -96.547405° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.780338,"lon":-96.547405,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Photovoltaic performance and reliability workshop  

DOE Green Energy (OSTI)

This workshop was the sixth in a series of workshops sponsored by NREL/DOE under the general subject of photovoltaic testing and reliability during the period 1986--1993. PV performance and PV reliability are at least as important as PV cost, if not more. In the US, PV manufacturers, DOE laboratories, electric utilities, and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in the field were brought together to exchange the technical knowledge and field experience as related to current information in this evolving field of PV reliability. The papers presented here reflect this effort since the last workshop held in September, 1992. The topics covered include: cell and module characterization, module and system testing, durability and reliability, system field experience, and standards and codes.

Mrig, L. [ed.

1993-12-01T23:59:59.000Z

424

High voltage photovoltaic power converter  

DOE Patents (OSTI)

An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

Haigh, Ronald E. (Arvada, CO); Wojtczuk, Steve (Cambridge, MA); Jacobson, Gerard F. (Livermore, CA); Hagans, Karla G. (Livermore, CA)

2001-01-01T23:59:59.000Z

425

Photovoltaic research opportunities. Final report  

DOE Green Energy (OSTI)

The purpose of this study is to identify opportunities for photovoltaic (PV) research projects to capitalize on related but non-PV research. The study is performed under the assumption that a considerable body of ongoing semiconductor research in non-PV areas could be of value to its PV Program and the PV community in general. Research related to III-V compounds, thin films, and crystalline silicon materials is included. Research that is known to be PV-related or sponsored by DOE was excluded from consideration. The study resulted in 11 recommendations (research areas) and a subset of 58 specific research projects. In addition, over 75 non-PV research managers in the semiconductor field are identified as potential sources of ideas which could benefit photovoltaics.

Macaleer, B.; Bowers, J.; Hurlburt, B.

1985-11-19T23:59:59.000Z

426

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

427

Standards for Municipal Small Wind Regulations and Small Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Eligibility...

428

Solar Photovoltaic Technology Update - 2005  

Science Conference Proceedings (OSTI)

This report surveys the state of the solar photovoltaic (PV) industry in the United States and worldwide in 2005. The installed capacity of PV has continued recent trends and has increased dramatically in 20058212particularly in Germany and Japan, where government policies encourage its deployment, and to a lesser extent in the United States8212while at the same time manufacturers and vendors continued to make incremental performance improvements. In some markets, shortages of silicon feedstock or finish...

2006-03-28T23:59:59.000Z

429

Photovoltaics performance and reliability workshop  

DOE Green Energy (OSTI)

This document consists of papers and viewgraphs compiled from the proceedings of a workshop held in September 1992. This workshop was the fifth in a series sponsored by NREL/DOE under the general subject areas of photovoltaic module testing and reliability. PV manufacturers, DOE laboratories, electric utilities and others exchanged technical knowledge and field experience. The topics of cell and module characterization, module and system performance, materials and module durability/reliability research, solar radiation, and applications are discussed.

Mrig, L. [ed.] [ed.

1992-11-01T23:59:59.000Z

430

Photovoltaics performance and reliability workshop  

DOE Green Energy (OSTI)

This document consists of papers and viewgraphs compiled from the proceedings of a workshop held in September 1992. This workshop was the fifth in a series sponsored by NREL/DOE under the general subject areas of photovoltaic module testing and reliability. PV manufacturers, DOE laboratories, electric utilities and others exchanged technical knowledge and field experience. The topics of cell and module characterization, module and system performance, materials and module durability/reliability research, solar radiation, and applications are discussed.

Mrig, L. (ed.) [ed.

1992-01-01T23:59:59.000Z

431

Novel Materials for Photovoltaic Technologies: Preprint  

DOE Green Energy (OSTI)

While existing photovoltaic technologies continue to advance, there are still many exciting opportunities in the area of novel materials. These opportunities arise because there is a substantial need for reducing the costs associated with the preparation and processing of photovoltaics, and because the theoretically possible photovoltaic efficiencies have yet to be achieved in practical devices. Thus it remains reasonable to continue photovoltaic research activity aimed at entirely new approaches to processing and at entirely new materials as the active media. This group identified three areas for further consideration: (a) Nano/molecular composites and hierarchical structures; (b) Organic semiconductors; and (c) Hot carrier devices.

Alivisatos, P. (University of California Berkeley); Carter, S. (University of California Santa Barbara); Ginley, D.; Nozik, A. (National Renewable Energy Laboratory); Meyer, G. (Johns Hopkins University); Rosenthal, S. (Vanderbilt University)

1999-04-01T23:59:59.000Z

432

NREL Photovoltaic Program FY 1994 bibliography  

DOE Green Energy (OSTI)

This report lists all published documents of the Photovoltaic Program for FY 1994. Documents include conference papers, journal articles, book chapters, patents, etc.

Not Available

1994-12-01T23:59:59.000Z

433

Nanostructured Photovoltaics: - Home - Energy Innovation Portal  

Atomic Layer Deposition Thin Film Technology ... Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy ...

434

Enhanced Thin Film Organic Photovoltaic Devices  

A novel structure design for thin film organic photovoltaic (OPV) devices provides a system for increasing the optical absorption in the active layer. ...

435

Electricity Bill Savings from Residential Photovoltaic Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis and environmental impacts department, energy markets, photovoltaics, renewable energy: policy, tariff design Attachment Size Report PDF 1.13 MB Presentation PDF 478.3...

436

Economic and Environmental Analysis of Photovoltaic Energy ...  

E-Print Network (OSTI)

Mar 22, 2012 ... Economic and Environmental Analysis of Photovoltaic Energy ... However, their approach is based on a specific net tariff system that was used ...

437

Mesa Top Photovoltaic Array (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet overview of the Mesa Top Photovoltaic Array project implemented by the Department of Energy Golden Office and National Renewable Energy Laboratory.

Not Available

2009-07-01T23:59:59.000Z

438

Photovoltaic cell with thin CS layer  

DOE Patents (OSTI)

An improved photovoltaic panel and method of forming a photovoltaic panel are disclosed for producing a high efficiency CdS/CdTe photovoltaic cell. The photovoltaic panel of the present invention is initially formed with a substantially thick Cds layer, and the effective thickness of the CdS layer is substantially reduced during regrowth to both form larger diameter CdTe crystals and substantially reduce the effective thickness of the C This invention was made with Government support under Subcontract No. ZL-7-06031-3 awarded by the Department of Energy. The Government has certain rights in this invention.

Jordan, John F. (El Paso, TX); Albright, Scot P. (El Paso, TX)

1994-01-18T23:59:59.000Z

439

Photovoltaic Electrical Contacts and Cell Coatings  

Energy.gov (U.S. Department of Energy (DOE))

The outermost layers of photovoltaic (PV) cell, or solar cell, are the electrical contacts and anti-reflective coating. These layers provide essential functions to the cell's operation.

440

NREL: Photovoltaics Research - NCPV Partnering Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry The National Center for Photovoltaics (NCPV) provides several non-proprietary and proprietary partnering opportunities for industry researchers. We are actively pursuing...

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SPUTTERED THIN FILM PHOTOVOLTAICS - Home - Energy ...  

for photovoltaic (PV) applications .These processes result in films with better unif ormity over ... ultimately resulting in a more efficient solar ce ...

442

Synthesis, Properties and Photovoltaic - Photonic Fuels Application ...  

Science Conference Proceedings (OSTI)

Several excitonic photovoltaic devices making use of the 1-D nanotube/wire ... of Gadolinium-Doped Ceria (GDC) for Solid Oxide Fuel Cell Applications.

443

NREL: Photovoltaics Research - Measurements and Characterization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance - Rotating set of three photographs of National Renewable Energy Laboratory Photovoltaic Measurements and Characterization scientists and equipment: one of a...

444

Dazhan Photovoltaic Co | Open Energy Information  

Open Energy Info (EERE)

City, Zhejiang Province, China Sector Solar Product China-based solar energy cell and LED automatic lighting systems manufacturer. References Dazhan Photovoltaic Co1 LinkedIn...

445

NREL Photovoltaic Program FY 1993 bibliography  

DOE Green Energy (OSTI)

This report lists all published documents of the Photovoltaic Program for FY 1993. Documents include conference papers, journal articles, book chapters, etc.

Pohle, L. [ed.

1994-01-01T23:59:59.000Z

446

International Photovoltaic Program Plan. Volume II. Appendices  

SciTech Connect

This second volume of a two-part report on the International Photovoltaic Program Plan contains appendices summarizing the results of analyses conducted in preparation of the plan. These analyses include compilations of relevant statutes and existing Federal programs; strategies designed to expand the use of photovoltaics abroad; information on the domestic photovoltaic plan and its impact on the proposed international plan; perspectives on foreign competition; industry views on the international photovoltaic market and ideas about how US government actions could affect this market; international financing issues; and information on issues affecting foreign policy and developing countries.

Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

1979-12-01T23:59:59.000Z

447

Economic and Environmental Analysis of Photovoltaic Energy ...  

E-Print Network (OSTI)

Mar 22, 2012 ... Production of electricity by the burning of fossil fuels produces a lot of carbon .... as fossil fuel, nuclear, hydroelectric, photovoltaic, and so on.

448

NREL: Photovoltaics Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

gap between photovoltaic (PV) module and cell efficiencies are opening their stainless steel arms to industry, academia, stakeholders , and other entities on Aug. 4 at a...

449

Glitter™ Photovoltaic Technology - Energy Innovation Portal  

Technology Marketing Summary Revolutionary microsolar technology utilizes glitter-sized photovoltaic cells to change how we generate and use solar power.

450

A solar concentrating photovoltaic/thermal collector.  

E-Print Network (OSTI)

??This thesis discusses aspects of a novel solar concentrating photovoltaic / thermal (PV/T) collector that has been designed to produce both electricity and hot water.… (more)

Coventry, Joseph S

2008-01-01T23:59:59.000Z

451

Three dimensional carbon nanotube based photovoltaics .  

E-Print Network (OSTI)

??Photovoltaic (PV) cells with a three dimensional (3D) morphology are an exciting new research thrust with promise to create cheaper, more efficient solar cells by… (more)

Flicker, Jack David

2011-01-01T23:59:59.000Z

452

Sandia National Laboratory Photovoltaic Design Resources | Open Energy  

Open Energy Info (EERE)

Sandia National Laboratory Photovoltaic Design Resources Sandia National Laboratory Photovoltaic Design Resources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaic Design Resources at Sandia National Laboratories Agency/Company /Organization: Sandia National Laboratories Sector: Energy Focus Area: Renewable Energy, Solar Topics: Pathways analysis Website: www.sandia.gov/ References: Sandia's Photovoltaic Research and Development Program [1] Sandia National Laboratories' Photovoltaic Research and Development program works with industry and academia to accelerate development and acceptance of technologies for photovoltaic energy systems. The program has published a series of handbooks and booklets that describe design guidelines for stand-alone photovoltaic system installations, photovoltaic water pumping systems, and evaluating photvoltaic applications

453

Flat-Plate Photovoltaic Balance of System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Balance of System Flat-Plate Photovoltaic Balance of System August 20, 2013 - 4:29pm Addthis Complete photovoltaic (PV) energy systems are composed of three subsystems....

454

Federal Energy Management Program: Photovoltaic Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaic Photovoltaic Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Photovoltaic Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Photovoltaic Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Photovoltaic Resources and Technologies on Google Bookmark Federal Energy Management Program: Photovoltaic Resources and Technologies on Delicious Rank Federal Energy Management Program: Photovoltaic Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Photovoltaic Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

455

Sandia National Laboratory Photovoltaic Design Resources | Open Energy  

Open Energy Info (EERE)

Sandia National Laboratory Photovoltaic Design Resources Sandia National Laboratory Photovoltaic Design Resources (Redirected from Photovoltaic Design Resources at Sandia National Laboratories) Jump to: navigation, search Tool Summary Name: Photovoltaic Design Resources at Sandia National Laboratories Agency/Company /Organization: Sandia National Laboratories Sector: Energy Focus Area: Renewable Energy, Solar Topics: Pathways analysis Website: www.sandia.gov/ References: Sandia's Photovoltaic Research and Development Program [1] Sandia National Laboratories' Photovoltaic Research and Development program works with industry and academia to accelerate development and acceptance of technologies for photovoltaic energy systems. The program has published a series of handbooks and booklets that describe design guidelines for stand-alone photovoltaic system installations,

456

Kansas City Power and Light - Solar Photovoltaic Rebates | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Photovoltaic Rebates Kansas City Power and Light - Solar Photovoltaic Rebates Eligibility Agricultural Commercial Fed. Government Industrial Local Government Multi-Family...

457

Residential Photovoltaic Energy Systems in California: The Effect...  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices Title Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices...

458

Arima Photovoltaic And Optical Corp Arima PV | Open Energy Information  

Open Energy Info (EERE)

Photovoltaic And Optical Corp Arima PV Jump to: navigation, search Name Arima Photovoltaic And Optical Corp (Arima PV) Place Taipei, Taiwan Product Once a maker of computers, the...

459

Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near...  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections Title Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections Publication...

460

Financing Non-Residential Photovoltaic Projects: Options and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing Non-Residential Photovoltaic Projects: Options and Implications Title Financing Non-Residential Photovoltaic Projects: Options and Implications Publication Type Report...

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

New Hampshire Electric Co-Op - Residential Solar Photovoltaic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Solar Photovoltaic Incentive Program New Hampshire Electric Co-Op - Residential Solar Photovoltaic Incentive Program Eligibility Residential Savings For Solar Buying &...

462

New York City - Property Tax Abatement for Photovoltaic (PV)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures New York City - Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures Eligibility Commercial...

463

SunShot Initiative: Multijunction III-V Photovoltaics Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Multijunction III-V Photovoltaics Research on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Crystalline Silicon Thin Films Multijunctions...

464

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

Adjusting for Time-Varying Production SACRAMENTO flat-rateSolar Photovoltaic Electricity Production Severin BorensteinPhotovoltaic Electricity Production Severin Borenstein 1

Borenstein, Severin

2008-01-01T23:59:59.000Z

465

EIA Renewable Energy- Shipments of Photovoltaic Cells and Modules ...  

U.S. Energy Information Administration (EIA)

Renewables and Alternate Fuels > Solar Photovoltaic Cell/Module Annual Report > Annual Shipments of Photovoltaic Cells and Modules by Source: Shipments of ...

466

National Center for Photovoltaics NCPV | Open Energy Information  

Open Energy Info (EERE)

Center for Photovoltaics NCPV Jump to: navigation, search Name National Center for Photovoltaics (NCPV) Product String representation "The National Ce ... ics community.'" is too...

467

SunShot Initiative: Next Generation Photovoltaics II  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Systems Integration Balance of Systems Next Generation Photovoltaics II Twenty-three solar projects are investigating transformational photovoltaic (PV) technologies with the...

468

Immersion Cooling of Photovoltaic Cells in Highly Concentrated Solar Beams.  

E-Print Network (OSTI)

??Concentrated solar radiation can be utilized to generate electrical power from photovoltaic cells, but concentrated solar radiation increases the photovoltaic cell’s temperature. This increase in… (more)

Darwish, Ahmed

2011-01-01T23:59:59.000Z

469

Photovoltaic System Layout for Optimized Self-Consumption.  

E-Print Network (OSTI)

?? Most of the photovoltaic (solar cell) systems in Sweden today are installed on private houses and connected to the public grid. Photovoltaic (PV) power… (more)

Luthander, Rasmus

2013-01-01T23:59:59.000Z

470

Photovoltaic manufacturing technology, Phase 1  

DOE Green Energy (OSTI)

This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

Not Available

1992-10-01T23:59:59.000Z

471

Photovoltaic application for disaster relief  

DOE Green Energy (OSTI)

Hurricanes, floods, tornados, and earthquakes are natural disasters that can happen at any time destroying homes, businesses, and natural surroundings. One such disaster, Hurricane Andrew, devastated South Florida leaving several hundred-thousand people homeless. Many people were without electrical service, functioning water and sewage systems, communications, and medical services for days, even weeks in the aftermath of the storm. Emergency management teams, the military, and countless public and private organizations staged a massive relief effort. Dependency on electrical utility power became a pronounced problem as emergency services were rendered to survivors and the rebuilding process started. Many of the energy needs of emergency management organizations, relief workers, and the general public can be satisfied with solar electric energy systems. Photovoltaic (PV) power generated from solar energy is quiet, safe, inexhaustible and pollution-free. Previously, photovoltaics have supplied emergency power for Hurricanes Hugo and Andrew, and the earthquake at Northridge in Southern California. This document focuses on photovoltaic technology and its application to disaster relief efforts.

Young, W.R. Jr.

1995-11-01T23:59:59.000Z

472

Western Wind and Solar Integration Study (Fact Sheet)  

DOE Green Energy (OSTI)

Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

Not Available

2012-09-01T23:59:59.000Z

473

Wind | OpenEI Community  

Open Energy Info (EERE)

Wind Wind Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

474

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

475

NREL: Wind Research - Large Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Research Search More Search Options Site Map Printable Version Large Wind Turbine Research NREL's utility scale wind system research addresses performance and...

476

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines July 30, 2010 - 10:47am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs On Tuesday, the Department announced a $117 million loan guarantee through for the Kahuku Wind Power Project in Hawaii. That's a major step forward for clean energy in the region, as it's expected to supply clean electricity to roughly 7,700 households per year, and it also invites a deceptively simple question: how exactly do wind turbines generate electricity? One thing you might not realize is that wind is actually a form of solar energy. This is because wind is produced by the sun heating Earth's atmosphere, the rotation of the earth, and the earth's surface irregularities. Wind turbines are the rotary devices that convert the

477

ELECTRONIC BIVANE WIND DIRECTION INDICATOR  

DOE Patents (OSTI)

An apparatus is described for determining and recording three dimensional wind vectors. The apparatus comprises a rotatably mounted azimuthal wind component sensing head and an elevational wind component sensing head mounted to the azimuthal head and adapted to rotate therewith in the azimuthal plane and independently in the elevational plane. A heat source and thermocouples disposed thereabout are mounted within each of the sensing heads, the thermocouples providing electrical signals responsive to the temperature differential created by the passage of air through the sensing tuhes. The thermocouple signals are applied to drive mechanisms which position the sensing heads to a null wind position. Recording means are provided responsive to positional data from the drive mechanisms which are a measurement of the three dimensional wind vectors.

Moses, H.

1961-05-01T23:59:59.000Z

478

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

479

SunShot Initiative: Thin Film Photovoltaics Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Film Photovoltaics Research Thin Film Photovoltaics Research to someone by E-mail Share SunShot Initiative: Thin Film Photovoltaics Research on Facebook Tweet about SunShot Initiative: Thin Film Photovoltaics Research on Twitter Bookmark SunShot Initiative: Thin Film Photovoltaics Research on Google Bookmark SunShot Initiative: Thin Film Photovoltaics Research on Delicious Rank SunShot Initiative: Thin Film Photovoltaics Research on Digg Find More places to share SunShot Initiative: Thin Film Photovoltaics Research on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Crystalline Silicon Thin Films Multijunctions Organic Photovoltaics Dye-Sensitized Solar Cells Competitive Awards Systems Integration Balance of Systems Thin Film Photovoltaics Research The U.S. Department of Energy (DOE) supports research and development of

480

A Study of the Severity of the Midwestern Winters of 1977 and 1978 Using Heating Degree Days Determined from Both Measured and Wind Chill Temperatures  

Science Conference Proceedings (OSTI)

The winters of 1976–77 and 1977–78 were severe by virtually any standard. In this study, heating degree day (NDD) accumulations for these two winters as well as for the 1941–70 normals are examined at 31 National Weather Service stations in ...

Patricia M. Dare

1981-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat photovoltaics wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Analysis of photovoltaic total energy systems for single family residential applications  

DOE Green Energy (OSTI)

The performance and cost-effectiveness of three photovoltaic total energy system concepts designed to meet the thermal and electrical demands of a typical single family house are compared. The three photovoltaic total energy system concepts considered are: (1) All-photovoltaic systems. Passively air-cooled photovoltaic panels provide electricity to meet both electrical and thermal demands. (2) Separate-panel systems. Solar thermal panels provide thermal energy, while passively air-cooled photovoltaic panels serve the purely electric demand. (3) Combined thermal/electric panel systems. Water-cooled photovoltaic panels provide both thermal energy (transported by cooling water) and electrical energy to meet the separate thermal and electrical demands. Additional passively air-cooled photovoltaic panels are added, as required, to meet the electrical demand. The thermal demand is assumed to consist of the energy required for domestic hot water and space heating, while the electrical demand includes the energy required for baseload power (lights, appliances, etc.) plus air conditioning. An analysis procedure has been developed that permits definition of the panel area, electrical and/or thermal storage capacity, and utility backup energy level that, in combination, provide the lowest annual energy cost to the homeowner for each system concept for specified assumptions about costs and system operations. The procedure appears capable of being used to approximately any size system using solar collectors, as well as in any application where the thermal and/or electrical demand is being provided by solar energy, with utility or other conventional backup. This procedure has been used to provide results for homes located in Phoenix, Arizona, and Madison, Wisconsin, and to evaluate the effects of array and backup power costs and the desirability of selling excess electrical energy back to the utility. (WHK)

Chobotov, V.; Siegel, B.

1978-08-01T23:59:59.000Z

482

Low-Cost Installation of Concentrating Photovoltaic  

E-Print Network (OSTI)

Low-Cost Installation of Concentrating Photovoltaic Renewable Energy Research Renewable Energy Research http://www.energy.ca.gov/research/renewabl e/index.html August 2011 The Issue Several factors inhibit the potential growth of the California photovoltaic market: high installation costs, expenses

483

Photovoltaic Energy Program overview, fiscal year 1997  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) Photovoltaic Energy Program fosters the widespread acceptance of photovoltaic (PV) technology and accelerates commercial use of US PV products. The Program is founded on a collaborative strategy involving industry, the research and development community, potential users, utilities, and state and federal agencies. There are three main Program elements: Systems Engineering and Applications, Technology Development, and Research and Development.

NONE

1998-02-01T23:59:59.000Z

484

Solar Photovoltaics development -Status and perspectives  

E-Print Network (OSTI)

Solar Photovoltaics development - Status and perspectives Jørgen Fenhann Risø National Laboratory for the development of solar photovoltaics, contributing to the Macro Task E1 on production cost for fusion.S. with 53 MWp followed by Japan and EU. Until now off-grid installation have dominated the solar PV market

485

Photovoltaic system planning tool with internet access  

Science Conference Proceedings (OSTI)

This paper presents advanced planning models integrated into a GIS-computational tool, based on a Geographic Information System, for evaluating solar energy resources, selecting the most suitable photovoltaic technology, and calculating the cost associated ... Keywords: distributed generation planning, internet GIS services, photovoltaic systems

I. J. Ramírez-Rosado; P. J. Zorzano-Santamaría; L. A. Fernández-Jiménez; E. García-Garrido

2007-01-01T23:59:59.000Z

486

Photovoltaic energetic system: design and implementation  

Science Conference Proceedings (OSTI)

The increasing cost of the grid electric energy and the decreasing costs of the photovoltaic panels and accessories make the reason for many individuals and businesses to seriously take into consideration the solar power solution. In this paper we present ... Keywords: automatic, control, efficiency, energy, exposure, off-grid, optimization, photovoltaic, tracking

Lucian Milea; Orest Oltu; Claudius Teodorescu; Verona Muntean; Marius Stoian

2008-07-01T23:59:59.000Z

487

Comprehensive Energy Savings Plan for State Facilities (Minnesota...  

Open Energy Info (EERE)

Pumps, Passive Solar Space Heat, Photovoltaics, Solar Space Heat, Solar Water Heat, Wind, Building and Systems Commissioning Active Incentive Yes Implementing Sector State...

488

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. Description/Summary: The Building and Fire Research Laboratory has an ...

2010-10-04T23:59:59.000Z

489

Photovoltaic Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Basics Technology Basics Photovoltaic Technology Basics August 16, 2013 - 4:47pm Addthis Text Version Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity. First used in about 1890, "photovoltaic" has two parts: photo, derived from the Greek word for light, and volt, relating to electricity pioneer Alessandro Volta. And this is what photovoltaic materials and devices do-they convert light energy into electrical energy, as French physicist Edmond Becquerel discovered as early as 1839. Becquerel discovered the process of using sunlight to produce an electric current in a solid material. But it took more than another century to truly

490

Operation o Solar Photovoltaic-Thermal (PVT) Hybrid System in KIER  

E-Print Network (OSTI)

The details of the Photovoltaic Thermal (PVT) hybrid air heating system, UTC air heating system and its effect on the performance of photovoltaic (PV) module and room temperature in KIER are explained in this paper. Two identical test rooms were constructed such that one had unglazed transpired collector on its south facing wall while other had no solar wall. The temperature inside the room with UTC was 10-20oC higher than the temperature inside the room without UTC on a typical winter day. In second set of experiments, 75W PV modules were installed on the south facing walls of each test rooms. The temperature of the PV module with UTC was 5-9?lower than the PV module without UTC resulting in a 6% recovery of output electrical power under the forced ventilation. PVT hybrid system may alleviate burden on conventional energy consumption in Korea for heating the buildings and electricity generation.

Naveed, A.T.; Lee, E. J.; Kang, E. C.

2006-01-01T23:59:59.000Z

491

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

492

Advanced photovoltaic-trough development  

DOE Green Energy (OSTI)

The scope of the work on photvoltaic troughs includes analytical studies, hardware development, and component testing. Various aspects of the system have been optimized and improvements have been realized, particularly in the receiver and reflecting surface designs. An empirical system performance model has been developed that closely agrees with measured system performance. This in-depth study of single-axis reflecting linear focus photovoltaic concentrators will be very beneficial in the development of improved models for similar systems as well as other phtovoltaic concentrator designs.

Spencer, R.; Yasuda, K.; Merson, B.

1982-04-01T23:59:59.000Z

493

Flat-Plate Photovoltaic Systems  

Energy.gov (U.S. Department of Energy (DOE))

The most common photovoltaic (PV) array design uses flat-plate PV modules or panels. These panels can be fixed in place or allowed to track the movement of the sun. They respond to sunlight that is direct or diffuse. Even in clear skies, the diffuse component of sunlight accounts for between 10% and 20% of the total solar radiation on a horizontal surface. On partly sunny days, up to 50% of that radiation is diffuse, and on cloudy days, 100% of the radiation is diffuse.

494

Thin-Film Photovoltaic Industry  

Science Conference Proceedings (OSTI)

This report presents an overview of the thin-film (TF) photovoltaic (PV) industry as of the third quarter of 2012, a time in the midst of very rapid changes.  The TFPV industry has seen significantly greater investment in the past 5 to 10 years than in any previous time and up until recently it seemed that this investment was on track to make TFPV a much larger player in the overall PV market.  However, market dynamics have conspired to dim TFPV’s near-term prospects and ...

2012-11-30T23:59:59.000Z

495

Photovoltaics Overview: Fiscal Year 2001  

DOE Green Energy (OSTI)

In Fiscal Year 2001, for the third year in a row, the solar electric market grew at more than 30%. Fueling this growth is the U.S. photovoltaic industry - the companies that design, manufacture, install, operate, and maintain all components of solar generating systems. The messages of the U.S. PV industry roadmap are taken very seriously by the U.S. Department of Energy's Office of Solar Energy Technologies. Achieving industry's goals will demand aggressive work in fundamental and exploratory research, manufacturing, and system applications to reduce the cost of solar electric systems. This is an annual report of the DOE PV Program, FY2001.

Not Available

2002-02-01T23:59:59.000Z

496

Photovoltaic Cz Silicon Module Improvements  

DOE Green Energy (OSTI)

Work focused on reducing the cost per watt of Cz silicon photovoltaic modules under Phase II of Siemens Solar Industries' DOE/NREL PVMaT 4A subcontract is described in this report. New module designs were deployed in this phase of the contract, improvements in yield of over 10% were realized, and further implementation of Statistical Process Control was achieved during this phase. Module configurations representing a 12% cost reduction per watt were implemented in small scale production under Phase II of this contract. Yield improvements are described in detail, yield sensitivity to wafer thickness is quantified, and the deployment of SPC in critical process steps is reported here.

Jester, T. L.

1998-09-01T23:59:59.000Z

497

Photovoltaic systems and applications perspective  

DOE Green Energy (OSTI)

The National Photovoltaic Program is currently in the process of increasing emphasis on full-scale system experiments in the potential user environment, a natural coccurrence in the evolution of system design and development. At this point large amounts of design information are available and need to be brought together in usable form to support this effort. The state of understanding in the system definition area for the major applications is reviewed, and the remaining issues, especially as they impact the field test activities, are indicated.

Jones, G.J.

1980-01-01T23:59:59.000Z

498

U.S. Army Fort Carson Photovoltaics Project Lease  

Energy.gov (U.S. Department of Energy (DOE))

Document describes the project lease issued for the Fort Carson photovoltaic (PV) power purchase agreement (PPA).

499

Apparatus for mounting photovoltaic power generating systems on buildings  

DOE Patents (OSTI)

Rectangular photovoltaic (PV) modules are mounted on a building roof by mounting stands that are distributed in rows and columns. Each stand comprises a base plate and first and second different height brackets attached to opposite ends of the base plate. Each first and second bracket comprises two module-support members. One end of each module is pivotally attached to and supported by a first module-support member of a first bracket and a second module-support member of another first bracket. At its other end each module rests on but is connected by flexible tethers to module-support members of two different second brackets. The tethers are sized to allow the modules to pivot up away from the module-support members on which they rest to a substantially horizontal position in response to wind uplift forces.

Russell, Miles C. (Lincoln, MA)

2009-08-18T23:59:59.000Z

500

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.