Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions  

E-Print Network [OSTI]

Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions by Carl, Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions KTH Nuclear Reactor power is limited by a phenomenon called critical heat flux (CHF). It appears as a sudden detoriation

Haviland, David

2

Heat transfer in katabatic flow Measurements on the Morteratsch glacier, Switzerland  

E-Print Network [OSTI]

Heat transfer in katabatic flow Measurements on the Morteratsch glacier, Switzerland M. de Graaf #12;Heat transfer in katabatic flow Measurements on the Morteratsch glacier, Switzerland Martin de is used to calculate surface heat fluxes over glaciers. As determination of surface fluxes still

Graaf, Martin de

3

UW -Center for Intelligent Materials and Systems 1 1-D Heat Flow Measurement  

E-Print Network [OSTI]

: Calibrate Seebeck Coefficient for TFTC(Thin Film Thermocouples) x y Heater (70°C) Water (19°C) #12;UW ANSYS Simulation Used Data Water Temp. 2 Measured Temp. (Channel 14, 15) Heater size Assumption. Factor 2.258 #12;UW - Center for Intelligent Materials and Systems 3 2-D Heat Flow Measurement x y Heater

Taya, Minoru

4

PIV flow measurements for heat transfer characterization in two-pass square channels with smooth and 90 ribbed walls  

E-Print Network [OSTI]

PIV flow measurements for heat transfer characterization in two-pass square channels with smooth the correlation between the high- Reynolds number turbulent flow and wall heat transfer characteristics in a two number (Re) of 30,000. The PIV measurement results were compared with the heat transfer experimental data

Kihm, IconKenneth David

5

Inferring temperature uniformity from gas composition measurements in a hydrogen combustion-heated hypersonic flow stream  

SciTech Connect (OSTI)

The application of a method for determining the temperature of an oxygen-replenished air stream heated to 2600 K by a hydrogen burner is reviewed and discussed. The purpose of the measurements is to determine the spatial uniformity of the temperature in the core flow of a ramjet test facility. The technique involves sampling the product gases at the exit of the test section nozzle to infer the makeup of the reactant gases entering the burner. Knowing also the temperature of the inlet gases and assuming the flow is at chemical equilibrium, the adiabatic flame temperature is determined using an industry accepted chemical equilibrium computer code. Local temperature depressions are estimated from heat loss calculations. A description of the method, hardware and procedures is presented, along with local heat loss estimates and uncertainty assessments. The uncertainty of the method is estimated at {+-}31 K, and the spatial uniformity was measured within {+-}35 K.

Olstad, S.J. [Phoenix Solutions Co., Minneapolis, MN (United States)

1995-08-01T23:59:59.000Z

6

Convective heat flow probe  

DOE Patents [OSTI]

A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

Dunn, J.C.; Hardee, H.C.; Striker, R.P.

1984-01-09T23:59:59.000Z

7

A Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow...  

Open Energy Info (EERE)

Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow Measurements And Heat-Flow Estimates From The Uk Geothermal Catalogue Jump to: navigation, search OpenEI Reference...

8

Cooling Flows or Heating Flows?  

E-Print Network [OSTI]

It is now clear that AGN heat cooling flows, largely by driving winds. The winds may contain a relativistic component that generates powerful synchrotron radiation, but it is not clear that all winds do so. The spatial and temporal stability of the AGN/cooling flow interaction are discussed. Collimation of the winds probably provides spatial stability. Temporal stability may be possible only for black holes with masses above a critical value. Both the failure of cooling flows to have adiabatic cores and the existence of X-ray cavities confirm the importance of collimated outflows. I quantify the scale of the convective flow that the AGN Hydra would need to drive if it balanced radiative inward flow by outward flow parallel to the jets. At least in Virgo any such flow must be confined to r<~20 kpc. Hydrodynamical simulations suggest that AGN outbursts cannot last longer than ~25 Myr. Data for four clusters with well studied X-ray cavities suggests that heating associated with cavity formation approximately balances radiative cooling. The role of cosmic infall and the mechanism of filament formation are briefly touched on.

James Binney

2003-10-08T23:59:59.000Z

9

Radial flow heat exchanger  

DOE Patents [OSTI]

A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

Valenzuela, Javier (Hanover, NH)

2001-01-01T23:59:59.000Z

10

An evaluation of heat flow transducers as a means of determining soil heat flow  

E-Print Network [OSTI]

provided to the Micrometeorology Section, Department of Oceanography and Meteorology, ARM College of Texas by the Signal Corps of the United States Army, under Contract No. DA 36-039 AMC-02195 (E). The heat flow plates used in this study were provided... surface soil heat flow. The results show that acceptable performance of the plates in the measurement of heat flow is possible although in general should not be expected without thorough testing, and even then there are restrictive considerations...

King, Barney L. D

2012-06-07T23:59:59.000Z

11

Triaxial thermopile array geo-heat-flow sensor  

DOE Patents [OSTI]

A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings. 6 figs.

Carrigan, C.R.; Hardee, H.C.; Reynolds, G.D.; Steinfort, T.D.

1990-01-01T23:59:59.000Z

12

Triaxial thermopile array geo-heat-flow sensor  

DOE Patents [OSTI]

A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers arranged in a vertical string. The transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings.

Carrigan, Charles R. (Tracy, CA); Hardee, Harry C. (Albuquerque, NM); Reynolds, Gerald D. (Tijeras, NM); Steinfort, Terry D. (Tijeras, NM)

1992-01-01T23:59:59.000Z

13

MODERN DEVELOPMENTS IN MULTIPHASE FLOW & HEAT TRANSFER  

E-Print Network [OSTI]

MODERN DEVELOPMENTS IN MULTIPHASE FLOW & HEAT TRANSFER "ENGINEERING APPLICATIONS OF FRACTAL and multiphase flow & heat transfer will be stressed. This paper will begin by reviewing some important concepts

Lahey, Richard T.

14

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

15

Colorado Heat Flow Data from IHFC  

SciTech Connect (OSTI)

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: The International Heat Flow Commission (IHFC) Publication Date: 2012 Title: Colorado IHFC Data Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: Abstract: This layer contains the heat flow sites and data of the State of Colorado compiled from the International Heat Flow Commission (IHFC) of the International Association of Seismology and Physics of the Earth's Interior (IASPEI) global heat flow database (www.heatflow.und.edu/index2.html). The data include different items: Item number, descriptive code, name of site, latitude and longitude, elevation, depth interval, number of temperature data, temperature gradient, number of conductivity measurement, average conductivity, number of heat generation measurements, average heat production, heat flow, number of individual sites, references, and date of publication. Spatial Domain: Extent: Top: 4522121.800672 m Left: 165356.134075 m Right: 621836.776246 m Bottom: 4097833.419676 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude Of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Zehner, Richard E.

2012-02-01T23:59:59.000Z

16

Experimental measurements in a radio frequency discharge heated supersonic flow: Evaluation of a potential electric propulsion thruster  

SciTech Connect (OSTI)

An operational radio frequency discharge-driven supersonic flow system, which utilizes an inductively and capacitively coupled plasma (ICCP) tube to produce high enthalpy source gas, is described. The ICCP coupled to a properly designed nozzle represents a potential electric propulsion device. The high gas temperatures achieved in the plasma discharge (> 5000 K) and the electrodeless nature of the tube's operation offers potentially high thruster performance coupled and long operational lifetime. A preliminary characterization of the current system was established using emission and probe-based measurements. A nominal peak specific impulse of 155 s was estimated for operation with argon. The calculated thrust based upon the peak velocity and mass flow through the device is 1.1 N. 14 refs., 10 figs.

Wantuck, P.J.; Hull, D.E.

1991-01-01T23:59:59.000Z

17

Evaluation of flow hood measurements for residential register flows  

SciTech Connect (OSTI)

Flow measurement at residential registers using flow hoods is becoming more common. These measurements are used to determine if the HVAC system is providing adequate comfort, appropriate flow over heat exchangers and in estimates of system energy losses. These HVAC system performance metrics are determined by using register measurements to find out if individual rooms are getting the correct airflow, and in estimates of total air handler flow and duct air leakage. The work discussed in this paper shows that commercially available flow hoods are poor at measuring flows in residential systems. There is also evidence in this and other studies that flow hoods can have significant errors even when used on the non-residential systems they were originally developed for. The measurement uncertainties arise from poor calibrations and the sensitivity of exiting flow hoods to non-uniformity of flows entering the device. The errors are usually large--on the order of 20% of measured flow, which is unacceptably high for most applications. Active flow hoods that have flow measurement devices that are insensitive to the entering airflow pattern were found to be clearly superior to commercially available flow hoods. In addition, it is clear that current calibration procedures for flow hoods may not take into account any field application problems and a new flow hood measurement standard should be developed to address this issue.

Walker, I.S.; Wray, C.P.; Dickerhoff, D.J.; Sherman, M.H.

2001-09-01T23:59:59.000Z

18

Heat Transfer Characteristics of a Generalized Divided Flow Heat Exchanger  

E-Print Network [OSTI]

The concept of a "Divided-flow" heat exchanger is generalized by locating the shell inlet (or outlet) nozzle off-center such that the two shell sub-streams are unequal and traverse unequal flow paths. The governing equations for heat transfer...

Singh, K. P.

1979-01-01T23:59:59.000Z

19

Orifice flow measurement uncertainty  

SciTech Connect (OSTI)

A computer program is now available from Union Carbide that evaluates the total flow uncertainty of orifice flowmeter systems. Tolerance values for every component in the system and the sensitivity of the measured flowrate to each component can be established using historical data and published hardware specifications. Knowing the tolerance and sensitivity values, a total measurement uncertainty can be estimated with a 95% confidence level. This computer program provides a powerful design tool to ensure correct component matching and total metering system optimization.

Samples, C.R.

1984-04-01T23:59:59.000Z

20

Structural power flow measurement  

SciTech Connect (OSTI)

Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

Falter, K.J.; Keltie, R.F.

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Measurements of wall heat (mass) transfer for flow through blockages with round and square holes in a wide rectangular channel  

E-Print Network [OSTI]

. . . n1 DEDICATION. ACKNOWLEGDEMENTS . . . V1 TABLE OF CONTENTS . vn LIST OF FIGURES. NOMENCLATURE . . INTRODUCTION. LITERATURE SURVEY. EXPERIMENTAL APPARATUS . Xt EXPERIMENTAL PROCEDURE DATA REDUCTION. PRESENTATION & DISCUSSION OF RESULTS..., kg/(m s) Nun~ local Nusselt number //u pa average Nusselt number Nus reference Nusselt number for fully developed turbulent flow in smooth channel POIIII Pv, w atmospheric pressure, N/m 2 vapor pressure on naphthalene surface, N/m 2 P...

Cervantes, Joel

2012-06-07T23:59:59.000Z

22

Heat Flow Database Expansion for NGDS Data Development, Collection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance (SMU) Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance (SMU)...

23

Heat flow and geothermal studies in the Great Plains  

SciTech Connect (OSTI)

In continental heat flow studies, sedimentary basins are usually avoided because of difficulties in obtaining thermal conductivity measurements and because temperature gradients may contain advective signals caused by moving groundwater. These problems are superimposed in the Denver, Kennedy and Williston Basins where complex geothermal gradients derive both from large contrasts among thermal conductivities of strata and from regional groundwater flow. The occurrence and magnitude of advective heat flow within the Denver, Kennedy and Williston Basins is conceptually consistent with simple models that relate groundwater flow to the piezometric surface and to subsurface structures, i.e., folds and faults. An advective heat flow of +25 mW/m/sup 2/ has been determined for an area in the eastern margin of the Denver Basin, and quantities of +35 mW/m/sup 2/ and +10 MW/m/sup 2/ have been determined respectively for parts of the southeastern and northeastern parts of the Williston Basin. A detailed analysis of bottom hole temperatures obtained from drill holes in the area of the Billings Anticline in the Williston Basin indicates that information on subsurface structures and groundwater flow may be obtained from heat flow studies. Additional information that may be derived from these heat flow studies includes: the occurrence and nature of geothermal resources, oil source rock maturation and secondary migration of petroleum, formation and deposition of strata-bound ores. 43 references.

Gosnold, W.D.; Fischer, D.W.

1985-12-01T23:59:59.000Z

24

Heat flow and geothermal studies in the state of Washington  

SciTech Connect (OSTI)

Existing geothermal gradient and heat flow data for the state of Washington are summarized. In addition, information on mean-annual ground surface temperatures is included. The data consist of accurate, detailed temperature-depth measurements in selected available holes throughout the state of Washington made between 1979 and 1982. Measurements of thermal conductivity on selected rock samples from these drill holes and ancillary information required to assess the significance of the data and calculate heat flow values were obtained as well. Information is presented on the mean-annual ground-surface temperatures throughout the state of Washington. 32 refs., 15 figs., 4 tabs.

Blackwell, D.D.; Steele, J.L.; Kelley, S.A.

1985-08-01T23:59:59.000Z

25

The Impact of Refrigerant Charge, Air Flow and Expansion Devices on the Measured Performance of an Air-Source Heat Pump Part I  

SciTech Connect (OSTI)

This paper describes extensive tests performed on a 3-ton R-22 split heat pump in heating mode. The tests contain 150 steady-state performance tests, 18 cyclic tests and 18 defrost tests. During the testing work, the refrigerant charge level was varied from 70 % to 130% relative to the nominal value; the outdoor temperature was altered by three levels at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C); indoor air flow rates ranged from 60% to 150% of the rated air flow rate; and the expansion device was switched from a fixed-orifice to a thermal expansion value. Detailed performance data from the extensive steady state cyclic and defrost testing performed were presented and compared.

Shen, Bo [ORNL

2011-01-01T23:59:59.000Z

26

Friction and Heat Transfer Characteristics of Silica and CNT Nanofluids in a Tube Flow  

E-Print Network [OSTI]

Friction and Heat Transfer Characteristics of Silica and CNT Nanofluids in a Tube Flow MILIVOJE M@niu.edu * www.kostic.niu.edu Abstract: - An apparatus for exploring friction and heat transfer characteristics flow. Initial turbulent friction and heat transfer measurements for silica and carbon nanotube (CNT

Kostic, Milivoje M.

27

Heat Flow Determinations and Implied Thermal Regime of the Coso...  

Open Energy Info (EERE)

group, greater than 6.5 HFU, are characteristic of regions with considerable convective heat transfer in the shallow subsurface. The high heat flow values are essentially...

28

Heat flow determinations and implied thermal regime of the Coso...  

Open Energy Info (EERE)

group, greater than 6.5 HFU, are characteristic of regions with considerable convective heat transfer in the shallow subsurface. The high heat flow values are essentially...

29

Plume heat flow is much lower than CMB heat flow Eric Mittelstaedt a,*, Paul J. Tackley a,b  

E-Print Network [OSTI]

to follow a power-law size distribution, estimated a plume heat flux as high as 35% of surface heat fluxPlume heat flow is much lower than CMB heat flow Eric Mittelstaedt a,*, Paul J. Tackley a, of the heat conducted across the CMB. Here this assumption is explored using numerical convection models

Tackley, Paul J.

30

Hydrodynamics, heat transfer and flow boiling instabilities in microchannels  

E-Print Network [OSTI]

Boiling in microchannels is a very efficient mode of heat transfer with high heat and mass transfer coefficients achieved. Less pumping power is required for two-phase flows than for single-phase liquid flows to achieve ...

Barber, Jacqueline Claire

2010-01-01T23:59:59.000Z

31

Radio frequency (RF) heated supersonic flow laboratory  

SciTech Connect (OSTI)

A unique supersonic flow apparatus which employs an inductively-coupled, radio frequency (RF) torch to supply high enthalpy source gas to the nozzle inlet is described. The main features of this system are the plasma tube, a cooled nozzle assembly, and a combustion/expansion chamber with a heat exchanger. A description of these components with current test data is presented. In addition, a discussion of anticipated experiments utilizing this system is included.

Wantuck, P.; Watanabe, H.

1990-01-01T23:59:59.000Z

32

Differential probes aid flow measurement  

SciTech Connect (OSTI)

Nonconstricting differential pressure flow probes which help solve the problems of clogging, wear, and pressure loss at the Seawater Filtration Facility in Saudi Arabia are described. Treated seawater is pumped into oil-bearing formations for secondary recovery. Figures showing principle of operation for probes, installation schematic and long-term accuracy results (flow probes vs. orifice meters) are presented. The new diamond-shaped design flow sensor offers accurate flow measurement with low permanent pressure loss, which translates into cost savings for the operator.

Mesnard, D.R.

1982-07-01T23:59:59.000Z

33

FLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS  

E-Print Network [OSTI]

= heat, f = LO-mode, g = LO, h = LA-mode, i = negligible, j = remote heat sink 7/ 70 #12;Heat conductionFLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS Mihir Sen Department · Shallow water analogy · Vorticity dynamics · Linear stability analysis · Numerical simulations of heat

Sen, Mihir

34

Determining heat fluxes from temperature measurements made in massive walls  

SciTech Connect (OSTI)

A technique is described for determining heat fluxes at the surfaces of masonry walls or floors using temperature data measured at two points within the wall, usually near the surfaces. The process consists of solving the heat diffusion equation in one dimension using finite difference techniques given two measured temperatures as input. The method is fast and accurate and also allows for an in-situ measurement of wall thermal diffusivity if a third temperature is measured. The method is documented in sufficient detail so that it can be readily used by the reader. Examples are given for heat flow through walls. Annual results for two cases are presented. The method has also been used to determine heat flow into floors.

Balcomb, J.D.; Hedstrom, J.C.

1980-01-01T23:59:59.000Z

35

MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE  

SciTech Connect (OSTI)

One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were {approx} 55% higher than the previous measurement of specific heat capacity on a reference Saltstone mix in 1997. Values of mixes prepared using Deliquification, Dissolution and Adjustment (DDA), Modular Caustic Side Solvent Extraction Unit (MCU) and Salt Waste Processing Facility (SWPF) simulants and premix at 0.60 w/cm ratio were {approx} 1.95 J/g/{sup o}C and were equivalent within experimental error. The simple law of mixtures was used to predict the heat capacities of the Saltstone and the results were in excellent agreement with experimental data. This simple law of mixtures can therefore be used to predict the heat capacities of Saltstone mixes in those cases where measurements have not been made. The time dependence of the heat capacity is important as an input to the modeling of temperature increase in Saltstone vaults. The heat capacity of a mix of MCU and premix at 0.60 w/cm ratio was measured immediately after initial mixing and then periodically up to times greater than 100 days. Within experimental error, the heat capacity did not change with time. Therefore, the modeling is not complicated by requiring a time dependent function for specific heat capacity. The water to cementitious material (w/cm) ratio plays a key role in determining the value of the heat capacity. Both experimental and predictive values for SWPF mixes as function of the w/cm ratio were obtained and presented in this report. Predictions of the maximum temperatures of the Saltstone mixes were made using the heat of hydration data from previous isothermal measurements and the newly measured heat capacities for DDA, MCU and SWPF mixes. The maximum temperature increase ranged from 37 to 48 C for these mixes. The presence of aluminate at 0.33 M produced a temperature increase of 68 C which is close to the adiabatic temperature rise of 74 C observed by Steimke and Fowler in 1997 for a mix containing 0.35 M aluminate. Aluminum dissolution of the sludge will increase the aluminate in the DSS which in turn will result in a larger temperature increase in the Saltstone vaults during the curing p

Harbour, J; Vickie Williams, V

2008-09-29T23:59:59.000Z

36

Thaw flow control for liquid heat transport systems  

DOE Patents [OSTI]

In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

Kirpich, Aaron S. (Broomall, PA)

1989-01-01T23:59:59.000Z

37

Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel  

E-Print Network [OSTI]

Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel July 2008 Keywords: Boiling Microchannels Visualisation Flow boiling instabilities Heat transfer a b intensification heat removal. Flow boiling heat transfer in microchannel geometry and the associated flow

Aussillous, Pascale

38

Heat Transfer Measurements for a Horizontal Micro-Tube Using Liquid Crystal Thermography  

E-Print Network [OSTI]

62 TC02-007 Heat Transfer Measurements for a Horizontal Micro-Tube Using Liquid Crystal-tube and 1000m micro-tube. In the single-phase heat transfer experiments, the fully-developed flow heat transfer were also measured using thermocouples (TC). The results showed that the heat transfer coefficient

Ghajar, Afshin J.

39

Heat Loss Measurement Using Infrared Imaging  

E-Print Network [OSTI]

in various applications. Examples of two applications are presented. The first describes the development of heat balance data for a solvent refined coal processing unit. The second describes the measurement of heat loss and thermal resistance in a double...

Seeber, S. A.

1983-01-01T23:59:59.000Z

40

MERLOT: a model for flow and heat transfer through porous media for high heat flux applications  

E-Print Network [OSTI]

MERLOT: a model for flow and heat transfer through porous media for high heat flux applications A Abstract Fusion power plant studies have found helium to be an attractive coolant based on its safety tend to provide modest heat transfer performance due to their inherently low heat capacity and heat

Raffray, A. René

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Heat transfer and pressure drop in tape generated swirl flow  

E-Print Network [OSTI]

The heat transfer and pressure drop characteristics of water in tape generated swirl flow were investigated. The test sections were electrically heated small diameter nickel tubes with tight fitting full length Inconel ...

Lopina, Robert F.

1967-01-01T23:59:59.000Z

42

Heat-flow reconnaissance of the Gulf Coastal Plain  

SciTech Connect (OSTI)

Most of the 46 new values of heat flow determined for the Gulf Coastal Plain are in the low to normal range, but heat-flow values averaging 1.8 heat-flow unit (HFU) were obtained in Claiborne, Ouachita, and Union parishes, Louisiana. Moreover, a zone of relatively high heat-flow values and steep thermal gradients (35 to 46/sup 0/C/km) extends from northern Louisiana into southwestern Mississippi. Also near Pensacola, Florida, temperatures of 50/sup 0/C at 1-km depth have been extrapolated from thermal gradients. Future development of low-grade geothermal resources may be warranted in these areas.

Smith, D.L.; Shannon, S.S. Jr.

1982-04-01T23:59:59.000Z

43

Model of critical heat flux in subcooled flow boiling  

E-Print Network [OSTI]

The physical phenomenon occurring before and at the critical heat flux (CHF) for subcooled flow boiling has been investigated. The first phase of this study established the basic nature of the flow structure at CHF. A ...

Fiori, Mario P.

1968-01-01T23:59:59.000Z

44

Applications of the Strong Heat Transformation by Pulse Flow in the Shell and Tube Heat Exchanger  

E-Print Network [OSTI]

This article deals with the heat exchange coefficient varied with pulse frequency in the pulsation tube with different flow forms. The findings show that heat can be exchanged coefficient with the pulse frequency, and it has an optimal frequency...

Chen, Y.; Zhao, J.

2006-01-01T23:59:59.000Z

45

Heat transfer to impacting drops and post critical heat flux dispersed flow  

E-Print Network [OSTI]

Heat transfer to drops impacting on a hot surface is examined in context of dispersions of flowing, boiling fluids. The liquid contribution to heat transfer from a hot tube to a two-phase dispersion is formulated in terms ...

Kendall, Gail E.

1978-01-01T23:59:59.000Z

46

16 Heat Transfer and Air Flow in a Domestic Refrigerator  

E-Print Network [OSTI]

445 16 Heat Transfer and Air Flow in a Domestic Refrigerator Onrawee Laguerre UMR Génie Industriel........................................................................447 16.2.2 Heat Transfer and Airflow Near a Vertical Plate..................................................448 16.2.3 Heat Transfer and Airflow in Empty Closed Cavity

Paris-Sud XI, Université de

47

Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes  

SciTech Connect (OSTI)

This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air-water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (Re{sub L}) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000-10000 and 0.003-0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air-water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent Re{sub L} and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived. (author)

Chang, Shyy Woei [Thermal Fluids Laboratory, National Kaohsiung Marine University, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81143 (China); Yang, Tsun Lirng [Department of Marine Engineering, National Kaohsiung Marine University, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81143 (China)

2009-10-15T23:59:59.000Z

48

Large Deviations in Stochastic Heat-Conduction Processes Provide a Gradient-Flow Structure for Heat Conduction  

E-Print Network [OSTI]

We consider three one-dimensional continuous-time Markov processes on a lattice, each of which models the conduction of heat: the family of Brownian Energy Processes with parameter $m$, a Generalized Brownian Energy Process, and the Kipnis-Marchioro-Presutti process. The hydrodynamic limit of each of these three processes is a parabolic equation, the linear heat equation in the case of the BEP$(m)$ and the KMP, and a nonlinear heat equation for the GBEP($a$). We prove the hydrodynamic limit rigorously for the BEP$(m)$, and give a formal derivation for the GBEP($a$). We then formally derive the pathwise large-deviation rate functional for the empirical measure of the three processes. These rate functionals imply gradient-flow structures for the limiting linear and nonlinear heat equations. We contrast these gradient-flow structures with those for processes describing the diffusion of mass, most importantly the class of Wasserstein gradient-flow systems. The linear and nonlinear heat-equation gradient-flow structures are each driven by entropy terms of the form $-\\log \\rho$; they involve dissipation or mobility terms of order $\\rho^2$ for the linear heat equation, and a nonlinear function of $\\rho$ for the nonlinear heat equation.

Mark A. Peletier; Frank Redig; Kiamars Vafayi

2014-03-19T23:59:59.000Z

49

Temperatures, heat flow, and water chemistry from drill holes...  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

50

Geothermal Resource-Reservoir Investigations Based On Heat Flow...  

Open Energy Info (EERE)

Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

51

ARM - Measurement - Latent heat flux  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Related InformationAciddropletgovMeasurementsIsotope ratio

52

FRACSTIM/I: A Fully Coupled Fluid Flow/Heat Transport and Geomechanica...  

Broader source: Energy.gov (indexed) [DOE]

FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and Geomechanical DeformationFracture Generation Simulator FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and...

53

Enhanced two phase flow in heat transfer systems  

DOE Patents [OSTI]

A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

2013-12-03T23:59:59.000Z

54

Heating Cooling Flows with Weak Shock Waves  

E-Print Network [OSTI]

The discovery of extended, approximately spherical weak shock waves in the hot intercluster gas in Perseus and Virgo has precipitated the notion that these waves may be the primary heating process that explains why so little gas cools to low temperatures. This type of heating has received additional support from recent gasdynamical models. We show here that outward propagating, dissipating waves deposit most of their energy near the center of the cluster atmosphere. Consequently, if the gas is heated by (intermittent) weak shocks for several Gyrs, the gas within 30-50 kpc is heated to temperatures that far exceed observed values. This heating can be avoided if dissipating shocks are sufficiently infrequent or weak so as not to be the primary source of global heating. Local PV and viscous heating associated with newly formed X-ray cavities are likely to be small, which is consistent with the low gas temperatures generally observed near the centers of groups and clusters where the cavities are located.

W. G. Mathews; A. Faltenbacher; F. Brighenti

2005-11-05T23:59:59.000Z

55

Heat transfer and fluid flow characteristics in various micro devices for the development of micro absorption heat pump systems.  

E-Print Network [OSTI]

??This thesis presents a series of studies on heat transfer and fluid flow characteristics in various micro devices for the development of micro absorption heat (more)

Hu, Jinshan

2007-01-01T23:59:59.000Z

56

Theoretical uncertainty of orifice flow measurement  

SciTech Connect (OSTI)

Orifice meters are the most common meters used for fluid flow measurement, especially for measuring hydrocarbons. Meters are rugged, mechanically simple, and well suited for field use under extreme weather conditions. Because of their long history of use and dominance in the fluid flow measurement, their designs, installation requirements, and equations for flow rate calculation have been standardized by different organizations in the United States and internationally. These standards provide the guideline for the users to achieve accurate flow measurement. and minimize measurement uncertainty. This paper discusses different factors that contribute to the measurement inaccuracy and provide an awareness to minimize or eliminate these errors. Many factors which influence the overall measurement uncertainty are associated with the orifice meter application. Major contributors to measurement uncertainty include the predictability of flow profile, fluid properties at flowing condition, precision of empirical equation for discharge coefficient, manufacturing tolerances in meter components, and the uncertainty associated with secondary devices monitoring the static line pressure, differential pressure across the orifice plate, flowing temperature, etc. Major factors contributing to the measurement uncertainty for a thin, concentric, square-edged orifice flowmeter are as follows: (a) Tolerances in prediction of coefficient of discharge, (b) Predictability in defining the physical properties of the flowing fluid, (c) Fluid flow condition, (d) Construction tolerances in meter components, (e) Uncertainty of secondary devices/instrumentation, and (f) Data reduction and computation. Different factors under each of the above areas are discussed with precautionary measures and installation procedures to minimize or eliminate measurement uncertainty.

Husain, Z.D. [Daniel Flow Products, Inc., Houston, TX (United States)

1995-12-01T23:59:59.000Z

57

Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas-  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth Division |Hays,Community CollegeFeatures

58

Brine flow in heated geologic salt.  

SciTech Connect (OSTI)

This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

Kuhlman, Kristopher L.; Malama, Bwalya

2013-03-01T23:59:59.000Z

59

Supersonic combustion of a transverse injected H sub 2 jet in a radio frequency heated flow  

SciTech Connect (OSTI)

The combustion of a single hydrogen jet, normally injected into a radio frequency (RF) heated, oxidant-containing, supersonic flow, has been established to characterize the chemical and fluid dynamic phenomena associated with the reaction process and ultimately validate the predictive capability of computational computer dynamic (CFD) codes. The experimental system employed for this study is unique in that it uses an electrodeless, inductively coupled plasma tube to generate the high temperature oxidant-containing gas for subsequent nozzle expansion. Advantages of an RF heated flow system include reduced free-stream chemical contamination, continuous operation, and relative ease of integration into a typical flow laboratory environment. A description of the system utilized for this study is presented including preliminary results of the reactive flow characterization. In addition, the use of the laser-based diagnostic techniques, such as planar laser-induced fluorescence (PLIF), for measuring flow properties is also discussed. 8 refs., 7 figs.

Wantuck, P.J.; Tennant, R.A.; Watanabe, H.H.

1991-01-01T23:59:59.000Z

60

Numerical Study of Convective Heat Transfer in Flat Tube Heat Exchangers Operating in Self-Sustained Oscillatory Flow Regimes  

E-Print Network [OSTI]

Laminar, two-dimensional, constant-property numerical simulations of flat tube heat exchanger devices operating in flow regimes in which self-sustained oscillations occur were performed. The unsteady flow regimes were transition flow regimes...

Fullerton, Tracy

2012-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Friction-Induced Fluid Heating in Nanoscale Helium Flows  

SciTech Connect (OSTI)

We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.

Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

2010-05-21T23:59:59.000Z

62

On-line measurement of heat of combustion. Final report, period ended 30 April 1988  

SciTech Connect (OSTI)

An experimental method for an on-line measurement of heat of combustion of a gaseous hydrocarbon fuel mixture of unknown composition is developed. It involves combustion of a test gas with a known quantity of air to achieve a predetermined oxygen concentration level in the combustion products. This is accomplished by a feedback controller which maintains the gas volumetric flow rate at a level consistent with the desired oxygen concentration in the products. The heat of combustion is determined from a known correlation with the gas volumetric flow rate. An on-line microcomputer accesses the gas volumetric flow data, and displays the heat of combustion values at desired time intervals.

Chaturvedi, S.K.; Chegini, H.

1988-07-01T23:59:59.000Z

63

PYROLYSIS OF METHANE IN A SUPERSONIC, ARC-HEATED FLOW  

E-Print Network [OSTI]

1 PYROLYSIS OF METHANE IN A SUPERSONIC, ARC-HEATED FLOW F.K. Lu,* C.M. Roseberry, J.M. Meyers and D arc pyrolysis of methane at supersonic conditions, representative of conditions in the reformer- cate the feasibility of arc pyrolysis of methane. Introduction he high specific enthalpy of combustion

Texas at Arlington, University of

64

Heat flow and subsurface temperature distributions in central and western New York. Volume 2  

SciTech Connect (OSTI)

Existing data in western and central New York indicates the possibility of a low-temperature, direct-use geothermal resource. This report evaluates the heat flow and provides a representation of temperatures at depth in this area. This has been done by: (1) analyzing known temperature distributions, (2) measuring the thermal conductivity of sedimentary rock units. Based on this information, areas of higher-than-normal heat flow and temperatures in possible geothermal source reservoirs are described to aid in targeting areas for the exploitation of geothermal energy in New York.

Hodge, D.S.; Fromm, K.A.

1982-08-01T23:59:59.000Z

65

Measurement and analysis of gas turbine blade endwall heat transfer  

E-Print Network [OSTI]

the aerodynamic flow and external heat transfer distribution around the airfoils and end-wall surfaces. A stationary 5 vane linear cascade is designed and developed to investigate gas turbine blade endwall heat transfer and flow. The test cascade is instrumented...

Lee, Joon Ho

2001-01-01T23:59:59.000Z

66

The heating of the cooling flow (The feedback effervescent heating model)  

E-Print Network [OSTI]

The standard cooling flow model has predicted a large amount of cool gas in the clusters of galaxies. The failure of the Chandra and XXM-Newton telescopes to detect cooling gas (below 1-2 keV) in clusters of galaxies has suggested that some heating process must work to suppress the cooling. The most likely heating source is the heating by AGNs. There are many heating mechanisms, but we will adopt the effervescent heating model which is a result of the interaction of the bubbles inflated by AGN with the intra-cluster medium(ICM). Using the FLASH code, we have carried out time dependent simulations to investigate the effect of the heating on the suppression of the cooling in cooling flow clusters. We have found that the effervescent heating model can not balance the radiative cooling and it is an artificial model. Furthermore, the effervescent heating is a function of the ICM pressure gradient but the cooling is proportional to the gas density square and square root of the gas temperature.

Nasser Mohamed Ahmed

2007-10-10T23:59:59.000Z

67

Quantitative tomographic measurements of opaque multiphase flows  

SciTech Connect (OSTI)

An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O'HERN,TIMOTHY J.; CECCIO,STEVEN L.

2000-03-01T23:59:59.000Z

68

Estimates of heat flow from Cenozoic seafloor using global depth and age data  

E-Print Network [OSTI]

-independent estimate of the total heat output of Cenozoic seafloor is 18.6 to 20.5 TW, which leads to a global output: Oceanic heat flow; Global heat budget; Subsidence rate 1. Introduction The total heat output of the EarthEstimates of heat flow from Cenozoic seafloor using global depth and age data Meng Wei , David

Sandwell, David T.

69

Precision electron flow measurements in a disk transmission line.  

SciTech Connect (OSTI)

An analytic model for electron flow in a system driving a fixed inductive load is described and evaluated with particle in cell simulations. The simple model allows determining the impedance profile for a magnetically insulated transmission line given the minimum gap desired, and the lumped inductance inside the transition to the minimum gap. The model allows specifying the relative electron flow along the power flow direction, including cases where the fractional electron flow decreases in the power flow direction. The electrons are able to return to the cathode because they gain energy from the temporally rising magnetic field. The simulations were done with small cell size to reduce numerical heating. An experiment to compare electron flow to the simulations was done. The measured electron flow is {approx}33% of the value from the simulations. The discrepancy is assumed to be due to a reversed electric field at the cathode because of the inductive load and falling electron drift velocity in the power flow direction. The simulations constrain the cathode electric field to zero, which gives the highest possible electron flow.

Clark, Waylon T.; Pelock, Michael D.; Martin, Jeremy Paul; Jackson, Daniel Peter Jr.; Savage, Mark Edward; Stoltzfus, Brian Scott; Mendel, Clifford Will, Jr.; Pointon, Timothy David

2008-01-01T23:59:59.000Z

70

Heat pipe transient measurements incorporating visual methods  

E-Print Network [OSTI]

liftoff on January 28, 1 9B6. These five men and two women gave their lives while att mpting to lead mankind into space and open the door for the future of our race. Their noble sacr ifice should r. ever be . orgotten. ACKNOWLEDGEMENTS I wish...!!CE December 1986 Major Subject: 1'uclear Eng nearing HEAT PIPE TRANSIENT MEASUREMENTS INCORPORATING VISUAL METHODS A Thesis by MARK DAVID DeHART Approved as to style and content by: Frederick R. Best (Chairman of Committee) Carl A. Erdman (Member...

DeHart, Mark David

1986-01-01T23:59:59.000Z

71

Microcomputer analysis of regenerative heat exchangers for oscillating flow  

SciTech Connect (OSTI)

Regenerative heat exchangers for use in oscillating flows such as those occurring in Stirling engines present considerable analytical problems to the thermal engineer. A simplified finite element analysis has been implemented in a spreadsheet, providing improved access to analytical assumptions and allowing parametric analysis of current heat transfer data. In addition, an irreversibility analysis has been implemented using the thermal and friction results in the spreadsheet. It is suited for evaluation and insights into loss tradeoffs inside operating regenerators, to suggest new regenerator design concepts, and to focus experimental work. 22 refs., 13 figs.

Hutchinson, R.A.; Lyke, S.E.

1987-03-01T23:59:59.000Z

72

Device for measuring the flow of a gas containing particulates  

SciTech Connect (OSTI)

This patent describes an apparatus for continuously measuring the flow of a gas containing entrained particulates. It comprises: a flow channel, through which the gas flows; an orifice disposed within the flow channel, including at least a first surface and a second surface; means for causing the first surface and second surface independently to move in directions perpendicular to lines normal to the surfaces; scraping means, for intimately contacting at least a portion of the first surface and of the second surface, at all times while the surfaces are moving, whereby particulates which adhere to the first and second surfaces are removed by the movement of the surfaces past the scraping means; pressure taps, positioned so as to communicate with the flow channel upstream and downstream from the orifice, the pressure taps additionally in communication with pressure-measuring means, for measuring the pressure differential in the flow channel resulting from the passage of the gas through the orifice; and thermophoretic heaters, positioned so as to heat the gas within the pressure taps, and thereby excluding particulates therefrom.

Gordon, R.G.; Hofer, P.H.

1991-01-08T23:59:59.000Z

73

The regional geothermal heat flow regime of the north-central Gulf of Mexico continental slope.  

E-Print Network [OSTI]

??Eighty-eight oil and gas wells located in the Texas-Louisiana continental slope were analyzed to obtain heat flow and geothermal gradient values. Present-day geothermal heat flow (more)

Jones, Michael S

2003-01-01T23:59:59.000Z

74

A visualization comparison of convective flow boiling heat transfer augmentation devices  

E-Print Network [OSTI]

The qualitative effects of inset-table heat transfer phics. augmentation devices on vertical in-tube convective flow boiling flow regimes, transition mechanisms, and heat transfer are presented in this study. Three twisted tapes with twist ratios...

Lundy, Brian Franklin

1998-01-01T23:59:59.000Z

75

Heat transfer to a fluid flowing in an annulus  

E-Print Network [OSTI]

. ii I ~ DIMENSIONS AND SYMBOLS o ~ ~ ~ . ~ ~ ~ ~ I II e INTRODUCTION AND THEORY ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 3 IXI e APPARATUS AND PROCEDURES ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ 7 XV o RESULTS ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ 17 V, DXSCUSSION OF RESULTS... of times 0 Prandtl nnnber~ e~& dimensionless initial temperature oi' surfaoe and fluids% D equivalent diameter& Di g~ L Q - volume flow rate~ L3/T V~ mass velooity, FT/L3 6 mass floe rate~ FT/L IMTRODUCTIOR AND THEORY This thesis comprises heat tz...

Logan, Earl

2012-06-07T23:59:59.000Z

76

Numeric Simulation of Heat Transfer and Electrokinetic Flow in an Electroosmosis-Based  

E-Print Network [OSTI]

Numeric Simulation of Heat Transfer and Electrokinetic Flow in an Electroosmosis-Based Continuous is dedicated to under- standing the fluid flow and heat transfer mechanisms occurring in continuous flow PCR are discussed in detail. The importance of each heat transfer mechanism for different situations is also

Le Roy, Robert J.

77

FliHy experimental facilities for studying open channel turbulent flows and heat transfer  

E-Print Network [OSTI]

FliHy experimental facilities for studying open channel turbulent flows and heat transfer B. Freeze) facility was constructed at UCLA to study open channel turbulent flow and heat transfer of low supercritical flow regimes (Fr /1), in which the surface waves are amplified and heat transfer is enhanced due

Abdou, Mohamed

78

FLIHY EXPERIMENTAL FACILITIES FOR STUDYING OPEN CHANNEL TURBULENT FLOWS AND HEAT TRANSFER  

E-Print Network [OSTI]

1 FLIHY EXPERIMENTAL FACILITIES FOR STUDYING OPEN CHANNEL TURBULENT FLOWS AND HEAT TRANSFER B was constructed at UCLA to study open channel turbulent flow and heat transfer of low-thermal and low supercritical flow regimes (Fr>1), in which the surface waves are amplified and heat transfer is enhanced due

California at Los Angeles, University of

79

Numerical simulations of heat transfer in plane channel flow Najla EL GHARBI 1, 3, a  

E-Print Network [OSTI]

Numerical simulations of heat transfer in plane channel flow Najla EL GHARBI 1, 3, a , Rafik ABSI 2 abenzaoui@gmail.com Keywords: turbulent flows, heat transfer, forced convection, low Reynolds number model data for Re = 150. Introduction Turbulent flow with heat transfer mechanism is of great importance from

Paris-Sud XI, Université de

80

Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with  

E-Print Network [OSTI]

Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with partial-Newtonian boundary layer flow and heat transfer over an exponentially stretch- ing sheet with partial slip boundary. The heat transfer analysis has been carried out for two heating processes, namely (i) with prescribed sur

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Verifying a Simplified Fuel Oil Flow Field Measurement Protocol  

SciTech Connect (OSTI)

The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

Henderson, H.; Dentz, J.; Doty, C.

2013-07-01T23:59:59.000Z

82

Geothermal Well and Heat Flow Data for the United States (Southern Methodist University (SMU) Geothermal Laboratory)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Southern Methodist University makes two databases and several detailed maps available. The Regional Heat Flow Database for the United States contains information on primarily regional or background wells that determine the heat flow for the United States; temperature gradients and conductivity are used to generate heat flow measurements. Information on geology of the location, porosity, thermal conductivity, water table depth, etc. are also included when known. There are usually three data files for each state or region. The first files were generated in 1989 for the data base creating the Decade of North America Geology (DNAG) Geothermal Map. The second set is from 1996 when the data base was officially updated for the Department of Energy. The third set is from 1999 when the Western U.S. High Temperature Geothermal data base was completed. As new data is received, the files continue to be updated. The second major resource is the Western Geothermal Areas Database, a database of over 5000 wells in primarily high temperature geothermal areas from the Rockies to the Pacific Ocean. The majority of the data are from company documents, well logs, and publications with drilling dates ranging from 1960 to 2000. Many of the wells were not previously accessible to the public. Users will need to register, but will then have free, open access to the databases. The contents of each database can be viewed and downloaded as Excel spreadsheets. See also the heat flow maps at http://www.smu.edu/geothermal/heatflow/heatflow.htm

Blackwell, D.D. and others

83

Internal flow patterns on heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves using ethanol and a silver nano-ethanol mixture  

SciTech Connect (OSTI)

The aim of this research was to investigate the internal flow patterns and heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves (CLOHP/CV). The ratio of number of check valves to meandering turns was 0.2. Ethanol and a silver nano-ethanol mixture were used as working fluids with a filling ratio of 50% by total volume of tube. The CLOHP/CV was made of a glass tube with an inside diameter of 2.4 mm. The evaporator section was 50 mm and 100 mm in length and there were 10 meandering turns. An inclination angle of 90 from horizontal axis was established. The evaporator section was heated by an electric heater and the condenser section was cooled by distilled water. Temperature at the evaporator section was controlled at 85 C, 105 C and 125 C. The inlet and outlet temperatures were measured. A digital camera and video camera were used to observe the flow patterns at the evaporator. The silver nano-ethanol mixture gave higher heat flux than ethanol. When the temperature at the evaporator section was increased from 85 C to 105 C and 125 C. It was found that, the flow patterns occurred as annular flow + slug flow, slug flow + bubble flow and dispersed bubble flow + bubble flow respectively. The main regime of each flow pattern can be determined from the flow pattern map ethanol and a silver nano-ethanol mixture. Each of the two working fluids gave corresponding flow patterns. (author)

Bhuwakietkumjohn, N.; Rittidech, S. [Heat Pipe and Thermal Tools Design Research Laboratory (HTDR), Faculty of Engineering, Mahasarakham University, Mahasarakham 44150 (Thailand)

2010-11-15T23:59:59.000Z

84

Review of air flow measurement techniques  

SciTech Connect (OSTI)

Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

McWilliams, Jennifer

2002-12-01T23:59:59.000Z

85

Geothermal Heat Flow and Existing Geothermal Plants | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.FinancialofFuelDepartmentGeothermal Heat Flow

86

Couette flow regimes with heat transfer in rarefied gas  

SciTech Connect (OSTI)

Based on numerical solution of the Boltzmann equation by direct statistic simulation, the Couette flow with heat transfer is studied in a broad range of ratios of plate temperatures and Mach numbers of a moving plate. Flow regime classification by the form of the dependences of the energy flux and friction stress on the Knudsen number Kn is proposed. These dependences can be simultaneously monotonic and nonmonotonic and have maxima. Situations are possible in which the dependence of the energy flux transferred to a plate on Kn has a minimum, while the dependence of the friction stress is monotonic or even has a maximum. Also, regimes exist in which the dependence of the energy flux on Kn has a maximum, while the dependence of the friction stress is monotonic, and vice versa.

Abramov, A. A., E-mail: alabr54@mail.ru; Butkovskii, A. V., E-mail: albutkov@mail.ru [Zhukovski Central Aerohydrodynamics Institute (Russian Federation)

2013-06-15T23:59:59.000Z

87

Numerical heat conduction in hydrodynamical models of colliding hypersonic flows  

E-Print Network [OSTI]

Hydrodynamical models of colliding hypersonic flows are presented which explore the dependence of the resulting dynamics and the characteristics of the derived X-ray emission on numerical conduction and viscosity. For the purpose of our investigation we present models of colliding flow with plane-parallel and cylindrical divergence. Numerical conduction causes erroneous heating of gas across the contact discontinuity which has implications for the rate at which the gas cools. We find that the dynamics of the shocked gas and the resulting X-ray emission are strongly dependent on the contrast in the density and temperature either side of the contact discontinuity, these effects being strongest where the postshock gas of one flow behaves quasi-adiabatically while the postshock gas of the other flow is strongly radiative. Introducing additional numerical viscosity into the simulations has the effect of damping the growth of instabilities, which in some cases act to increase the volume of shocked gas and can re-he...

Parkin, E R

2010-01-01T23:59:59.000Z

88

Method of measuring heat influx of a cryogenic transfer system. [Patent application  

DOE Patents [OSTI]

A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.

Niemann, R.C.; Zelipsky, S.A.; Rezmer, R.R.; Smelser, P.

1980-10-29T23:59:59.000Z

89

Solids flow rate measurement in dense slurries  

SciTech Connect (OSTI)

Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

Porges, K.G.; Doss, E.D.

1993-09-01T23:59:59.000Z

90

Measuring and interpreting charge dependent anisotropic flow  

E-Print Network [OSTI]

The Chiral Magnetic Wave (CMW) [1] predicts a dependence of the positive and negative particle elliptic flow on the event charge asymmetry. Such a dependence has been observed by the STAR Collaboration [2]. However, it is rather difficult to interpret the results of this measurement, as well as to perform cross-experiment comparisons, due to the dependence of the observable on experimental inefficiencies and the kinematic acceptance used to determine the net asymmetry. We propose another observable that is free from these deficiencies. It also provides possibilities for differential measurements clarifying the interpretation of the results. We use this new observable to study the effect of the local charge conservation that can mimic the effect of the CMW in charge dependent flow measurements.

Sergei A. Voloshin; Ronald Belmont

2014-08-04T23:59:59.000Z

91

Numerical method for fluid flow and heat transfer in magnetohydrodynamic flow  

SciTech Connect (OSTI)

A new numerical algorithm was developed to provide a fully detailed flow field in liquid metal MHD flow with a relatively large Hartmann number and interaction parameter. The algorithm includes the effects of advection and diffusion, and is capable of predicting momentum and heat transfer in MHD flows. Using this algorithm, an incompressible, viscous, three-dimensional MHD flow in a square duct is investigated at a low magnetic Reynolds number by means of the finite volume method. The velocity and temperature profiles are obtained in the developing region for constant wall temperature. The result shows that large velocities are obtained near the insulating walls parallel to the magnetic field. Also, near the perfectly conducting walls perpendicular to the field, a velocity profile like a Hartmann layer is obtained. In association with the velocity profiles, Nusselt number at the insulating walls (with side layer) is seen to be larger than that at the perfectly conducting walls (with Hartmann layer).

Kim, C.N.; Abdou, M.A.

1989-03-01T23:59:59.000Z

92

STEADY STATE LIQUID CRYSTAL THERMOGRAPHY AND HEAT TRANSFER MEASUREMENTS ON  

E-Print Network [OSTI]

Chapter V STEADY STATE LIQUID CRYSTAL THERMOGRAPHY AND HEAT TRANSFER MEASUREMENTS ON SURFACES Composite Heat Transfer Surface Liquid Crystal Image Processing Technique V . 4 Experimental Results and Discussion Test Conditions and Data Analysis Application to Endwall Heat Transfer Problem Further Application

Camci, Cengiz

93

On the calculation of flow and heat transfer characteristics for CANDU-type 19-rod fuel bundles  

SciTech Connect (OSTI)

A numerical study is reported of flow and heat transfer in a CANDU-type 19 rod fuel bundle. The flow domain of interest includes combinations of trangular, square, and peripheral subchannels. The basic equations of momentum and energy are solved with the standard k--epsilon model of turbulence. Isotropic turbulent viscosity is assumed and no secondary flow is considered for this steady-state, fully developed flow. Detailed velocity and temperature distributions with wall shear stress and Nusselt number distributions are obtained for turbulent flow of Re = 4.35 x 10/sup 4/, 10/sup 5/, 2 x 10/sup 5/, and for laminar flow of Re--2400. Friction factor and heat transfer ceofficients of various subchannels inside the full bundle are compared with those of infinite rod arrays of triangular or square arrangements. The calculated velocity contours of peripheral subchannel agreed reasonably with measured data.

Yuh-Shan Yueh; Ching-Chang Chieng

1987-08-01T23:59:59.000Z

94

On the calculation of flow and heat transfer characteristics for CANDU-type 19-rod fuel bundles  

SciTech Connect (OSTI)

A numerical study is reported of flow and heat transfer in a CANDU-type 19 rod fuel bundle. The flow domain of interest includes combinations of triangular, square, and peripheral subchannels. The basic equations of momentum and energy are solved with the standard k-{epsilon} model of turbulence. Isotropic turbulent viscosity is assumed and no secondary flow is considered for this steady-state, fully developed flow. Detailed velocity and temperature distributions with wall shear stress and Nusselt number distributions are obtained for turbulent flow of Re = 4.35 {times} 10{sup 4}, 10{sup 5}, 2 {times} 10{sup 5}, and for laminar flow of Re {approximately} 2,400. Friction factor and heat transfer coefficients of various subchannels inside the full bundle are compared with those of infinite rod arrays of triangular or square arrangements. The calculated velocity contours of peripheral subchannel agreed reasonably with measured data.

Yueh, Yuhshan; Chieng, Chingchang (National Tsing Hua Univ., Hsinchu (Taiwan))

1987-08-01T23:59:59.000Z

95

Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow  

E-Print Network [OSTI]

Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S the dynamical effects from the heat transfer process. The fluid flow in an enclosed disk system with axial with heat transfer along the stator, which corresponds to the experiment of Djaoui et al. [2]. Our results

Boyer, Edmond

96

Finite element solutions of heat transfer in molten polymer flow in tubes with viscous dissipation  

E-Print Network [OSTI]

Finite element solutions of heat transfer in molten polymer flow in tubes with viscous dissipation the results of finite element analysis of a heat transfer problem of flowing polymer melts in a tube­Nusselt problem 1. Introduction Heat transfer to incompressible viscous non-Newto- nian fluids is a problem

Wei, Dongming

97

Flow Boiling Heat Transfer Coefficient In Minichannels Correlation and Trends Satish G. Kandlikar  

E-Print Network [OSTI]

Flow Boiling Heat Transfer Coefficient In Minichannels ­ Correlation and Trends Satish G. Kandlikar York 14623, USA The flow boiling heat transfer in small diameter passages is being applied in many boiling heat transfer coefficient with the correlations developed for conventional channels. It is found

Kandlikar, Satish

98

Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law  

E-Print Network [OSTI]

Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law F transfer in a magnetic fluid flow under the action of an applied magnetic field. Instead of the usual heat-Cattaneo law, heat transfer, magnetic field, magnetization AMS subject classifications: 76N10, 35Q35. 1

Boyer, Edmond

99

The effects of topology upon fluid-flow and heat-transfer within cellular copper structures  

E-Print Network [OSTI]

and packed beds, but also a function of orientation (open area ratio). The overall heat transfer dependsThe effects of topology upon fluid-flow and heat-transfer within cellular copper structures J. Tian February 2004 Available online 20 March 2004 Abstract The fluid-flow and heat-transfer features of cellular

Wadley, Haydn

100

Advanced Turbulence Measurements and Signal Processing for Hydropower Flow Characterization  

E-Print Network [OSTI]

Advanced Turbulence Measurements and Signal Processing for Hydropower Flow Characterization and flow characterization within full scale conventional hydropower systems, at marine and hydrokinetic

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Using and Measuring the Combined Heat and Power Advantage  

E-Print Network [OSTI]

Combined Heat and Power (CHP), also known as cogeneration, refers to the integration of thermal energy with power generation. CHP is a powerful energy conservation measure that has been identified as an important greenhouse gas reduction measure...

John, T.

2011-01-01T23:59:59.000Z

102

Measuring the Costs & Benefits of Nationwide Geothermal Heat  

E-Print Network [OSTI]

Measuring the Costs & Benefits of Nationwide Geothermal Heat Pump (GHP) Deployment ­ A Progress to measure the costs and benefits of nationwide geothermal heat pump (GHP) deployment. · First market study to quantify the entire GHP chain ­ Manufacturing ­ Design ­ Installation · GHPsRUS is short for "geothermal

103

Using a cold radiometer to measure heat loads and survey heat leaks  

SciTech Connect (OSTI)

We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.

DiPirro, M.; Tuttle, J.; Hait, T.; Shirron, P. [Cryogenics and Fluids Branch, NASA/Goddard Space Flight Center, Greenbelt MD 20771 (United States)

2014-01-29T23:59:59.000Z

104

An experimental investigation of critical heat flux in subcooled internal flow  

E-Print Network [OSTI]

An experimental investigation has been conducted to determine the critical heat flux for subcooled refrigerant-11 and refrigerant-113 flowing upward in a vertical cylindrical tube. Critical heat flux (CHF) values are determined for a range of tube...

Shatto, Donald Patrick

1997-01-01T23:59:59.000Z

105

FLOW AND HEAT TRANSFER IN MICROFLUIDIC DEVICES WITH APPLICATION TO OPTOTHERMAL  

E-Print Network [OSTI]

FLOW AND HEAT TRANSFER IN MICROFLUIDIC DEVICES WITH APPLICATION TO OPTOTHERMAL ANALYTE transfer in microfluidic devices with applica- tion to optothermal analyte preconcentration and manipula the local fluid temperature in microfluidics. Thermal characteristics of the heating system have been

Bahrami, Majid

106

A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus  

SciTech Connect (OSTI)

This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.

Raustad, Richard A. [Florida Solar Energy Center

2013-01-01T23:59:59.000Z

107

Photometric studies of heat flow at the photosphere  

SciTech Connect (OSTI)

Continuum photometry is carried out and the results of comparing these observations with models of photospheric heat flow are described. The main results are: (1) a possible detection of weak bright rings around some spot penumbrae (2) no evidence is found for large scale photospheric brightness inhomogeneities exceeding 2-3 K which places tighter constraints on models of global scale convection (3) supergranular scale continuum structures observed across the photosphere appear mainly due to random clumping of granules (4) the one case observed of a sunspot emergence shows no thermal shadow exceeding 1.5 K rms one day prior to umbra appearance (5) network and faculae are found to show a small excess brightness even at mu 1, so detection of faculae at mu 1 by differential photometry indicates a gentler temperature gradient near tau 1 in the facular (relative to cell) atmosphere (6) the limb darkening study shows no significant global variations to within 0.1% rms.

Foukal, P.

1984-05-01T23:59:59.000Z

108

Ad hoc continuum-atomistic thermostat for modeling heat flow in molecular dynamics simulations  

E-Print Network [OSTI]

Ad hoc continuum-atomistic thermostat for modeling heat flow in molecular dynamics simulations J 2004) An ad hoc thermostating procedure that couples a molecular dynamics (MD) simulation

Brenner, Donald W.

109

FRACSTIM/I: A Fully Coupled Fluid Flow/Heat Transport and Geomechanica...  

Broader source: Energy.gov (indexed) [DOE]

FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and Geomechanical DeformationFracture Generation Simulator aka FALCON: Fracturing and Liquid CONservation Robert K....

110

Heat Exchanger Fouling- Prediction, Measurement and Mitigation  

E-Print Network [OSTI]

wall. The fouling probe has been successfully tested in the laboratory at flue gas temperatures up to 2200F and a local heat flux up to 41,000 BTU/hr-ft2. The probe has been field tested at a coal-fired boiler plant. Future tests at a municipal waste...

Peterson, G. R.

111

Heat extracted from the long term flow test in the Fenton Hill HDR reservoir  

SciTech Connect (OSTI)

A long-term flow test was carried out in the Fenton Hill HDR Phase-2 reservoir for 14 months during 1992-1993 to examine the potential for supplying thermal energy at a sustained rate as a commercial demonstration of HDR technology. The test was accomplished in several segments with changes in mean flowrate due to pumping conditions. Re-test estimates of the extractable heat content above a minimum useful temperature were based on physical evidence of the size of the Fenton Hill reservoir. A numerical model was used to estimate the extent of heat extracted during the individual flow segments from the database of measured production data during the test. For a reservoir volume of 6.5x10{sup 6}m{sup 3}, the total heat content above a minimum temperature of 150{degree} C was 1.5x10{sup 15}J. For the total test period at the three sustained mean flowrates, the integrated heat extracted was 0.088x10{sup 15}J, with no discernable temperature decline of the produced fluid. The fraction of energy extracted above the abandonment temperature was 5.9%. On the basis of a constant thermal energy extraction rate, the lifetime of the reservoir (without reservoir growth) to the abandonment temperature would be 13.3 years, in good agreement with the pre-test estimate of 15.0 years for the given reservoir volume.

Kruger, Paul; Robinson, Bruce

1994-01-20T23:59:59.000Z

112

Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus  

SciTech Connect (OSTI)

The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method where relevant air-side parameters were controlled while collecting output performance data at discreet points of steady-state operation. The primary metrics include system power consumption and zonal heating and cooling capacity. Using this test method, the measured total cooling capacity was somewhat lower than reported by the manufacturer. The measured power was found to be equal to or greater than the manufacturers indicated power. Heating capacity measurements produced similar results. The air-side performance metric was total cooling and heating energy since the computer model uses those same metrics as input to the model. Although the sensible and latent components of total cooling were measured, they are not described in this report. The test methodology set the thermostat set point temperature very low for cooling and very high for heating to measure full-load performance and was originally thought to provide the maximum available capacity. Manufacturers stated that this test method would not accurately measure performance of VRF systems which is now believed to be a true statement. Near the end of the project, an alternate test method was developed to better represent VRF system performance as if field installed. This method of test is preliminarily called the Load Based Method of Test where the load is fixed and the indoor conditions and unit operation are allowed to fluctuate. This test method was only briefly attempted in a laboratory setting but does show promise for future lab testing. Since variable-speed air-conditioners and heat pumps include an on-board control algorithm to modulate capacity, these systems are difficult to test. Manufacturers do have the ability to override internal components to accommodate certification procedures, however, it is unknown if the resulting operation is replicated in the field, or if so, how often. Other studies have shown that variable-speed air-conditioners and heat pumps do out perform their single-speed counterparts though these field studies leave as many questions as they do provide answers. The measure

Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

2013-09-30T23:59:59.000Z

113

1.12.2014bo Akademi Univ -Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/24 8. Heat pumps, heat pipes,  

E-Print Network [OSTI]

pumps, heat pipes, cold thermal energy storage Ron Zevenhoven ?bo Akademi University Thermal and Flow for heating is referred to as a heat pump (mostly based on a vapour-compression cycle) Heat pumps make use electricity!) for heating and air conditioning purposes Heat pumps became popular in the 1970s

Zevenhoven, Ron

114

2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 Molecular dynamics methods in  

E-Print Network [OSTI]

2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 2.13.7 Molecular dynamics methods in microscale heat transfer Shigeo Maruyama A. Introduction In normal heat transfer and fluid flow calculations of molecules. This situation is approached in microscale heat transfer and fluid flow. Molecular level

Maruyama, Shigeo

115

Generic measures for geodesic flows on nonpositively curved manifolds  

E-Print Network [OSTI]

Generic measures for geodesic flows on nonpositively curved manifolds Yves Coud`ene, Barbara the generic invariant probability measures for the geodesic flow on connected complete nonpositively curved subset of the set of all probability measures invariant by the geodesic flow. The proof of K. Sigmund

Paris-Sud XI, Université de

116

NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER OVER A SERIES OF IN-LINE NONCIRCULAR  

E-Print Network [OSTI]

NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER OVER A SERIES OF IN-LINE NONCIRCULAR TUBES CONFINED, Texas A&M University, College Station, Texas, USA Two-dimensional steady developing fluid flow and heat-volume technique. Grid independence study was carried out by running the developed code for several different grid

Bahaidarah, Haitham M.

117

Taylor bubble-train flows and heat transfer in the context of Pulsating Balkrishna Mehta, Sameer Khandekar  

E-Print Network [OSTI]

Taylor bubble-train flows and heat transfer in the context of Pulsating Heat Pipes Balkrishna Mehta Nusselt number Heat transfer enhancement a b s t r a c t Understanding the performance of Pulsating Heat Pipes (PHPs) requires spatio-temporally coupled, flow and heat transfer information during the self

Khandekar, Sameer

118

Flow-Induced Deformation of a Flexible Thin Structure as Manifestation of Heat Transfer Enhancement  

E-Print Network [OSTI]

Flow-induced deformation of thin structures coupled with convective heat transfer has potential applications in energy harvesting and is important for understanding functioning of several biological systems. We numerically demonstrate large-scale flow-induced deformation as an effective passive heat transfer enhancement technique. An in-house, strongly-coupled fluid-structure interaction (FSI) solver is employed in which flow and structure solvers are based on sharp-interface immersed boundary and finite element method, respectively. In the present work, we validate convective heat transfer module of the in-house FSI solver against several benchmark examples of conduction and convective heat transfer including moving structure boundaries. The thermal augmentation is investigated as well as quantified for the flow-induced deformation of an elastic thin plate attached to lee side of a rigid cylinder in a heated channel laminar flow. We show that the wake vortices past the plate sweep higher sources of vorticity...

Soti, Atul Kumar; Sheridan, John

2015-01-01T23:59:59.000Z

119

Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow  

E-Print Network [OSTI]

Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S in a rotor-stator cavity subjected to a superimposed throughflow with heat transfer. Nu- merical predictions field from the heat transfer process. The turbulent flux is approximated by a gradient hypothesis

Boyer, Edmond

120

Heat transfer and friction characteristics of air flow in microtubes Chien-Yuh Yang a,  

E-Print Network [OSTI]

Heat transfer and friction characteristics of air flow in microtubes Chien-Yuh Yang a, , Chia September 2011 Keywords: Microtube Heat transfer Liquid Crystal Thermography a b s t r a c t Several researches dealing with the single-phase forced convection heat transfer inside microchannels have been

Kandlikar, Satish

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Vector Field Smoothing Via Heat Flow Antonio Robles-Kelly and Edwin R. Hancock  

E-Print Network [OSTI]

Vector Field Smoothing Via Heat Flow Antonio Robles-Kelly and Edwin R. Hancock Department into that of solving the steady state heat equation for a scalar potential. According to this picture, the smoothed field of surface nor- mals is found by taking the gradient of the scalar field. The heat equation

Robles-Kelly, Antonio

122

Ultrasonic fluid flow measurement method and apparatus  

DOE Patents [OSTI]

An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1993-01-01T23:59:59.000Z

123

Ultrasonic fluid flow measurement method and apparatus  

DOE Patents [OSTI]

An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.

Kronberg, J.W.

1993-10-12T23:59:59.000Z

124

ARC-HEATED GAS FLOW EXPERIMENTS FOR HYPERSONIC PROPULSION  

E-Print Network [OSTI]

was extensively developed for the purpose of eventually performing experiments simulating scramjet engine flow

Texas at Arlington, University of

125

Air flow in a high aspect ratio heat sink  

E-Print Network [OSTI]

The increasing heat output of modern electronics requires concomitant advances in heat sinking technology: reductions in thermal resistance and required pumping power are necessary. This research covers the development of ...

Allison, Jonathan Michael

2010-01-01T23:59:59.000Z

126

Original article Influence of heating conditions in continuous-flow  

E-Print Network [OSTI]

, holding and cooling phases. When milk was heated in a continuous microwave heating system, at 90 C and cooling times. vitamin B1 / vitamin B2 / milk / microwave heating Rsum -- tude de l'effet des exchange systems on the vitamin B1 and B2 content of milk Isabel SIERRA, Concepcin VIDAL

Paris-Sud XI, Universit de

127

OSCILLATORY FLOW FORCED CONVECTION IN MICRO HEAT SPREADERS  

E-Print Network [OSTI]

transfer devices, micro heat pipes, based on capillary pumping of a multiphase uid in microchannels, have-phase forced convection heat transfer and ow characteristics of water in microchannels, both in the laminar) concept for ef cient transport of large, concentrated heat loads is introduced. The MHS is a single

Beskok, Ali

128

INTERNAL FORCED iquid or gas flow through pipes or ducts is commonly used in heating and  

E-Print Network [OSTI]

to flow by a fan or pump through a flow section that is sufficiently long to accomplish the desired heat. Then the logarithmic mean temperature difference and the rate of heat loss from the air become Tln 15.2°C Q · hAs Tln (13.5 W/m2 °C)(6.4 m2 )( 15.2°C) 1313 W Therefore, air will lose heat at a rate of 1313 W as it flows

Ghajar, Afshin J.

129

Transient Heat and Material Flow Modeling of Friction Stir Processing of Magnesium Alloy using Threaded Tool  

SciTech Connect (OSTI)

A three-dimensional transient computational fluid dynamics (CFD) model was developed to investigate the material flow and heat transfer during friction stir processing (FSP) in an AZ31B magnesium alloy. The material was assumed to be a non-Newtonian viscoplastic fluid, and the Zener-Hollomon parameter was used to describe the dependence of material viscosity on temperature and strain rate. The material constants used in the constitutive equation were determined experimentally from compression tests of the AZ31B Mg alloy under a wide range of strain rates and temperatures. A dynamic mesh method, combining both Lagrangian and Eulerian formulations, was used to capture the material flow induced by the movement of the threaded tool pin. Massless inert particles were embedded in the simulation domain to track the detailed history of material flow. The actual FSP was also carried out on a wrought Mg plate where temperature profiles were recorded by embedding thermocouples. The predicted transient temperature history was found to be consistent with that measured during FSP. Finally, the influence of the thread on the simulated results of thermal history and material flow was studied by comparing two models: one with threaded pin and the other with smooth pin surface.

Yu, Zhenzhen [ORNL; Zhang, Wei [ORNL; Choo, Hahn [ORNL; Feng, Zhili [ORNL

2012-01-01T23:59:59.000Z

130

Fusion Engineering and Design 81 (2006) 549553 Numerical analysis of MHD flow and heat transfer in a  

E-Print Network [OSTI]

Fusion Engineering and Design 81 (2006) 549­553 Numerical analysis of MHD flow and heat transfer January 2006 Abstract MHD flow and heat transfer have been analyzed for a front poloidal channel blanket; Magnetohydrodynamics; Heat transfer 1. Introduction Using flow channel inserts (FCIs) made

Abdou, Mohamed

131

Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems  

DOE Patents [OSTI]

Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

Meisner, Gregory P

2013-10-08T23:59:59.000Z

132

System for measuring multiphase flow using multiple pressure differentials  

DOE Patents [OSTI]

An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

Fincke, James R. (Idaho Falls, ID)

2003-01-01T23:59:59.000Z

133

C-III flow measurements with a coherence imaging spectrometer  

SciTech Connect (OSTI)

This work describes a coherence imaging spectrometer capable of making spatially resolved CIII flow measurements in the DIII-D lower divertor. The spectrometer exploits a periscope view of the plasma to produce line-of-sight averaged velocity measurements of CIII. From these chord averaged flow measurements, a 2D poloidal cross section of the CIII flow is tomographically reconstructed. Details of the diagnostic setup, acquired data, and data analysis will be presented, along with prospects for future applications.

Weber, T. R.; Allen, S. L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Howard, J. [Australian National University, Canberra, ACT 0200 (Australia)

2012-10-15T23:59:59.000Z

134

Heat flow and microearthquake studies, Coso Geothermal Area,...  

Open Energy Info (EERE)

subsurface associated with the Coso Geothermal Area, is being transferred by a conductive heat transfer mechanism with a value of approximately 15 mucalcm2-sec. This is typical...

135

Measurement of thermodynamics using gradient flow  

E-Print Network [OSTI]

We analyze bulk thermodynamics and correlation functions of the energy-momentum tensor in pure Yang-Mills gauge theory using the energy-momentum tensor defined by the gradient flow and small flow time expansion. Our results on thermodynamic observables are consistent with those obtained by the conventional integral method. The analysis of the correlation function of total energy supports the energy conservation. It is also addressed that these analyses with gradient flow require less statistics compared with the previous methods. All these results suggest that the energy-momentum tensor can be successfully defined and observed on the lattice with moderate numerical costs with the gradient flow.

Masakiyo Kitazawa; Masayuki Asakawa; Tetsuo Hatsuda; Takumi Iritani; Etsuko Itou; Hiroshi Suzuki

2014-12-15T23:59:59.000Z

136

Numerical modeling of deep groundwater flow and heat transport in the Williston Basin  

SciTech Connect (OSTI)

A numerical modeling approach has been used to evaluate quantitatively the effects of fluid flow on contemporary heat flow in an intracratonic basin. The authors have selected the Williston basin for this hydrodynamic study because of the opportunity it presents to assess the relation of deep groundwater flow to basin geothermics and the associated features of diagenesis and petroleum accumulation. The finite element method is used to solve the coupled equations of fluid flow and heat transport in two-dimensional sections of the basin. Both the fluid- and heat-flow regime are assumed to be at steady state, and the fluid flow is driven primarily by the water-table relief which is taken to be a subdued replica of land-surface topography. Buoyancy forces may also affect flow through fluid density gradients created by temperature and salinity effects. Three southwest-northwest oriented sections across the basin were modeled using available and estimated parameter data. The predicted flow patterns are most strongly affected by the topography, but the Devonian salt unit and Cretaceous shale unit exert some control. Cross-formational flow is especially important near the downdip, solution edge of the salt beds. Flow rates rarely exceed 0.5 m/year in the deep-central part of the basin, yet there does exist a marked effect on heat flow, albeit subdued by the blanket effect of the low-permeability Cretaceous shales. The regional effect of the topography-driven flow system is reflected in present-day salinity patterns and heat-flow data.

Garven, G.; Vigrass, L.

1985-01-01T23:59:59.000Z

137

Simplified motional heating rate measurements of trapped ions  

E-Print Network [OSTI]

We have measured motional heating rates of trapped atomic ions, a factor that can influence multi-ion quantum logic gate fidelities. Two simplified techniques were developed for this purpose: one relies on Raman sideband detection implemented with a single laser source, while the second is even simpler and is based on time-resolved fluorescence detection during Doppler recooling. We applied these methods to determine heating rates in a microfrabricated surface-electrode trap made of gold on fused quartz, which traps ions 40 microns above its surface. Heating rates obtained from the two techniques were found to be in reasonable agreement. In addition, the trap gives rise to a heating rate of 300 plus or minus 30 per second for a motional frequency of 5.25 MHz, substantially below the trend observed in other traps.

Epstein, R J; Leibfried, D; Wesenberg, J H; Bollinger, J J; Amini, J M; Blakestad, R B; Britton, J; Home, J P; Itano, W M; Jost, J D; Knill, E; Langer, C; Ozeri, R; Shiga, N; Wineland, D J

2007-01-01T23:59:59.000Z

138

Heat Flow of Biharmonic Maps in Dimensions Four and Its Application  

E-Print Network [OSTI]

the heat flow of extrinsic biharmonic maps from M to N, which is smooth away from finitely ..... Now we need to have the uniform control of. ?. M. |ut|2. For this...

2007-06-07T23:59:59.000Z

139

Visualization of flow boiling in an annular heat exchanger under reduced gravity conditions  

E-Print Network [OSTI]

This work examines the effects of gravitational acceleration on the flow boiling process. A test facility focusing on an annular heat exchanger was designed, built out of borosilicate glass, and flown on NASA's KC-135 reduced gravity airplane...

Westheimer, David Thomas

2000-01-01T23:59:59.000Z

140

Film boiling of saturated liquid flowing upward through a heated tube : high vapor quality range  

E-Print Network [OSTI]

Film boiling of saturated liquid flowing upward through a uniformly heated tube has been studied for the case in which pure saturated liquid enters the tube and nearly saturated vapor is discharged. Since a previous study ...

Laverty, W. F.

1964-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Numerical study of flow and heat transfer in 3D serpentine channels using colocated grids  

E-Print Network [OSTI]

and average Nusselt number. The numerical code developed was validated by solving for fully developed flow and heat transfer in a square straight channel. Grid-independent solution was established for a reference case of serpentine channel with the highest...

Chintada, Sailesh Raju

1998-01-01T23:59:59.000Z

142

Heat Flow From Four New Research Drill Holes In The Western Cascades...  

Open Energy Info (EERE)

Usa Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa Abstract...

143

NIST Measurement Services: Natural Gas Flow Calibration Service (NGFCS)  

E-Print Network [OSTI]

NIST Measurement Services: Natural Gas Flow Calibration Service (NGFCS) NIST Special Publication of Standards and Technology #12;i Table of Contents for the Natural Gas Flowmeter Calibration Service (NGFCS;1 Abstract This document describes NIST's high pressure natural gas flow calibration service (NGFCS). Flow

144

Review of air flow measurement techniques  

E-Print Network [OSTI]

static pressure distributions were measured in the duct and HVACstatic pressure distributions were measured in the duct and HVACstatic pressure distributions were measured in the duct and HVAC

McWilliams, Jennifer

2002-01-01T23:59:59.000Z

145

Influence of surface heating on the boundary layer stability of flows with favorable pressure gradients  

E-Print Network [OSTI]

INFLUENCE OF SURFACE HEATING ON THE BOUNDARY LAYER STABILITY OF FLOWS WITH FAVORABI E PRESSURE GRADIENTS A Thesis by DAVID BRIAN LANDRUM Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1986 Major Subject: Aerospace Engineering INFLUENCE OF SURFACE HEATING ON THE BOUNDARY LAYER STABILITY OF FLOWS WITH FAVORABLE PRESSURE GRADIENTS A Thesis by DAVID BRIAN LANDRUM Approved as to style and content...

Landrum, David Brian

2012-06-07T23:59:59.000Z

146

Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus  

SciTech Connect (OSTI)

This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

Johnston, B.S.; May, C.P.

1992-10-01T23:59:59.000Z

147

Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus  

SciTech Connect (OSTI)

This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

Johnston, B.S.; May, C.P.

1992-01-01T23:59:59.000Z

148

Measurements and Predictions of the Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Exchangers  

E-Print Network [OSTI]

Measurements and Predictions of the Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Exchangers Abstract The dominant thermal resistance used to increase heat transfer by initiating new boundary layer growth and increasing surface area

Thole, Karen A.

149

Evaporation heat transfer and friction characteristics of R-134a flowing downward in a vertical corrugated tube  

SciTech Connect (OSTI)

Differently from most previous studies, the heat transfer and friction characteristics of the pure refrigerant HFC-134a during evaporation inside a vertical corrugated tube are experimentally investigated. The double tube test sections are 0.5 m long with refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tubes are one smooth tube and two corrugated tubes, which are constructed from smooth copper tube of 8.7 mm inner diameter. The test runs are performed at evaporating temperatures of 10, 15, and 20 C, heat fluxes of 20, 25, and 30 kW/m{sup 2}, and mass fluxes of 200, 300, and 400 kg/m{sup 2} s. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section is measured directly by a differential pressure transducer. The effects of heat flux, mass flux, and evaporation temperature on the heat transfer coefficient and two-phase friction factor are also discussed. It is found that the percentage increases of the heat transfer coefficient and the two-phase friction factor of the corrugated tubes compared with those of the smooth tube are approximately 0-10% and 70-140%, respectively. (author)

Aroonrat, Kanit; Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

2011-01-15T23:59:59.000Z

150

On Heating of Cluster Cooling Flows by Sound Waves  

E-Print Network [OSTI]

We investigate heating of the cool core of a galaxy cluster through the dissipation of sound waves excited by the activities of the central active galactic nucleus (AGN). Using a weak shock theory, we show that this heating mechanism alone cannot reproduce observed temperature and density profiles of a cluster, because the dissipation length of the waves is much smaller than the size of the core and thus the wave energy is not distributed to the whole core. However, we find that if it is combined with thermal conduction from the hot outer layer of the cluster, the wave heating can reproduce the observational results.

Yutaka Fujita; Takeru Ken Suzuki

2005-08-10T23:59:59.000Z

151

Experimental Study of Heat Transfer and Flow Characteristics for a New Type of Air Heater  

E-Print Network [OSTI]

. It is found that the integrated characteristics of heat transfer and flow friction increase with the hole's diameter at the same hole density (which is equal to the ratio of the hole's total area to the baffle's area), and the heat transfer rate increases...

Zheng, H.; Fan, X.; Li, A.

2006-01-01T23:59:59.000Z

152

LIQUID-FLUIDIZED-BED HEAT' EXCHANGER FLOW DISTRIBUTION MODELS  

Office of Scientific and Technical Information (OSTI)

rods, and shell-side heat transfer coefficients were calculated u s i n g "Newton's Law o f Cooling": a c The horizontal tubes showed a definite angular dependence of the...

153

Heat transport measurements in turbulent rotating Rayleigh-Benard convection  

SciTech Connect (OSTI)

We present experimental heat transport measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number ({sigma}) about 6, was confined in a cell which had a square cross section of 7.3 cm x 7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10{sup 5} < Ra < 5 x 10{sup 8} and Taylor numbers 0 < Ta < 5 x 10{sup 9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate {Omega}{sub D}, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10{sup 7} to about 10{sup 9} is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra{sup 1/5} + b Ra{sup 1/3} . The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.

Ecke, Robert E [Los Alamos National Laboratory; Liu, Yuanming [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

154

Control of reactor coolant flow path during reactor decay heat removal  

DOE Patents [OSTI]

An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

Hunsbedt, Anstein N. (Los Gatos, CA)

1988-01-01T23:59:59.000Z

155

ENERGY CONCENTRATION FOR 2-DIMENSIONAL RADIALLY SYMMETRIC EQUIVARIANT HARMONIC MAP HEAT FLOWS  

E-Print Network [OSTI]

flows. Adapting Struwe's energy method we first establish a finite bubble tree result with a discrete, energy method, energy quanta, bubble tree, bubbling off, single bubble, intersection-comparison. AMSENERGY CONCENTRATION FOR 2-DIMENSIONAL RADIALLY SYMMETRIC EQUIVARIANT HARMONIC MAP HEAT FLOWS

Hulshof, Joost

156

ORIGINAL PAPER Flow Dynamics and Plasma Heating of Spheromaks in SSX  

E-Print Network [OSTI]

ORIGINAL PAPER Flow Dynamics and Plasma Heating of Spheromaks in SSX M. R. Brown ? C. D. Cothran ? from single dipole- trapped spheromaks and spheromak merging studies at SSX. Single spheromaks) copper flux conserver. Local spheromak flow is studied with two Mach probes (r1 £ qi, r2 qi) calibrated

Brown, Michael R.

157

A Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow Measurements  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive(Sichuan,Financial

158

Evaluation of flow capture techniques for measuring HVAC grilleairflows  

SciTech Connect (OSTI)

This paper discusses the accuracy of commercially available flow hoods for residential applications. Results of laboratory and field tests indicate these hoods can be inadequate to measure airflows in residential systems, and there can be large measurement discrepancies between different flow hoods. The errors are due to poor calibrations, sensitivity of the hoods to grille airflow non-uniformities, and flow changes from added flow resistance. It is possible to obtain reasonable results using some flow hoods if the field tests are carefully done, the grilles are appropriate, and grille location does not restrict flow hood placement. We also evaluated several simple flow capture techniques for measuring grille airflows that could be adopted by the HVAC industry and homeowners as simple diagnostics. These simple techniques can be as accurate as commercially available devices. Our test results also show that current calibration procedures for flow hoods do not account for field application problems. As a result, agencies such as ASHRAE or ASTM need to develop a new standard for flow hood calibration, along with a new measurement standard to address field use of flow capture techniques.

Walker, Iain S.; Wray, Craig P.

2002-11-01T23:59:59.000Z

159

RATIONALE FOR MEASURING DUCT LEAKAGE FLOWS IN LARGE COMMERCIAL BUILDINGS  

E-Print Network [OSTI]

. Some duct sections operate at high static pressures (e.g., 100 to 2,500 Pa), but other sections leakage flows is to assume that an average duct static pressure applies to every leak. A third important2 ), central HVAC systems continuously supply heated or cooled air to conditioned spaces through

Diamond, Richard

160

Temperature measurements using multicolor pyrometry in thermal radiation heating environments  

SciTech Connect (OSTI)

Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 11002400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 7001700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

Fu, Tairan, E-mail: trfu@mail.tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China) [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Beijing 100084 (China); Liu, Jiangfan; Duan, Minghao; Zong, Anzhou [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)] [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

2014-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Time-resolved fluorescence decay measurements for flowing particles  

DOE Patents [OSTI]

Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.

Deka, Chiranjit (Miami, FL); Steinkamp, John A. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

162

Time-resolved fluorescence decay measurements for flowing particles  

DOE Patents [OSTI]

Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.

Deka, C.; Steinkamp, J.A.

1999-06-01T23:59:59.000Z

163

Numerical analysis of vapor flow in a micro heat pipe  

E-Print Network [OSTI]

be modeled as a classical blowing and suction problem, i. e. ?(00) = v(00) = o ?(I, p) = v(L0) = 0 ?(x, 0) = ?(x, H) = 0 i(x, 0) = v(x), v(x, H) = -i'(x) 0&x&I. , (2. 6) v(x, 0) = 0, v(x, H) = 0 I. , &x&(L, +L, ) i(x, 0) = -v(x), v(x, H) = v(x) (L, +L... are considerably smoother and appear more reasonable Figure 5. 6 presents the velocity vector which is under q=40W/cm2, H=0. 003m uniform heat flux linear heat flux 0 00 0 O'I 0 02 0. 03 0. 04 0. 05 0 06 x(m) Fig. 5. 2 Heat flux distribution influence...

Liu, Xiaoqin

2012-06-07T23:59:59.000Z

164

DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY  

SciTech Connect (OSTI)

Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

2007-12-19T23:59:59.000Z

165

Statistical mechanical theory for steady-state systems. III. Heat flow in a Lennard-Jones fluid  

E-Print Network [OSTI]

Statistical mechanical theory for steady-state systems. III. Heat flow in a Lennard-Jones fluid March 2005; accepted 4 May 2005; published online 28 June 2005 A statistical mechanical theory for heat distribution for heat flow down an imposed thermal gradient is tested with simulations of a Lennard-Jones fluid

Attard, Phil

166

Two-Layer Baroclinic Eddy Heat Fluxes: Zonal Flows and Energy Balance ANDREW F. THOMPSON AND WILLIAM R. YOUNG  

E-Print Network [OSTI]

Two-Layer Baroclinic Eddy Heat Fluxes: Zonal Flows and Energy Balance ANDREW F. THOMPSON of these drag- less heat-flux parameterizations relies on the ability of to direct energy into zonal flows, California (Manuscript received 27 September 2006, in final form 13 December 2006) ABSTRACT The eddy heat

Young, William R.

167

High temperature thermographic measurements of laser heated silica  

SciTech Connect (OSTI)

In situ spatial and temporal surface temperature profiles of CO{sub 2} laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

Elhadj, S; Yang, S T; Matthews, M J; Cooke, D J; Bude, J D; Johnson, M; Feit, M; Draggoo, V; Bisson, S E

2009-11-02T23:59:59.000Z

168

Spherical collapse with heat flow and without horizon  

E-Print Network [OSTI]

We present a class of solutions for a heat conducting fluid sphere, which radiates energy during collapse without the appearance of horizon at the boundary at any stage of the collapse. A simple model shows that there is no accumulation of energy due to collapse since it radiates out at the same rate as it is being generated.

A. Banerjee; S. Chatterjee; N. Dadhich

2002-09-10T23:59:59.000Z

169

Emissivity corrected infrared method for imaging anomalous structural heat flows  

DOE Patents [OSTI]

A method for detecting flaws in structures using dual band infrared radiation. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features.

Del Grande, Nancy K. (San Leandro, CA); Durbin, Philip F. (Livermore, CA); Dolan, Kenneth W. (Livermore, CA); Perkins, Dwight E. (Livermore, CA)

1995-01-01T23:59:59.000Z

170

Modeling of ion heating from viscous damping of reconnection flows in the reversed field pinch  

SciTech Connect (OSTI)

Strong self-heating of ions is observed in the reversed field pinch (RFP). During a sawtooth crash in the Madison Symmetric Torus RFP, the ion temperature can spontaneously double in {approx}100 {mu}s. It is also observed that high Z impurities are heated more strongly than bulk ions. The possibility of ion heating due to tearing instabilities at sawtooth crash is examined. Heating scenarios due to viscous damping of strongly localized perpendicular and parallel flows driven in the vicinity of resonant surface in tearing mode are considered. Flow amplitudes and spatial scales are estimated from linear and nonlinear resistive magnetohydrodynamic modeling. The heating rates are found from kinetic models with different levels of approximation, up to solving kinetic equation with a Landau collision operator. Results show reasonable agreement of the modeled impurity heating rate with the experiment, while the estimated bulk ions heating is somewhat weaker than in the experiment. Further theoretical and experimental study are required for a more definite conclusion as to whether it is the main ion heating mechanism or if there is some other important ion heating scenario.

Svidzinski, V. A.; Fiksel, G.; Mirnov, V. V.; Prager, S. C. [Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas and University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

2008-06-15T23:59:59.000Z

171

Changes in Hepatic Blood Flow During Transcatheter Arterial Infusion with Heated Saline in Hepatic VX2 Tumor  

SciTech Connect (OSTI)

Purpose. This study evaluates the influence of transcatheter arterial infusion with heated saline on hepatic arterial and portal venous blood flows to tumor and normal hepatic tissues in a rabbit VX2 tumor model. Methods. All animal experiments were approved by the institutional animal care and use committee. Twenty rabbits with VX2 liver tumors were divided into the following two groups: (a) the treated group (n = 10), which received a 60 mL transarterial injection of 60 Degree-Sign C saline via the hepatic artery; (b) the control group (n = 10), which received a 60 mL injection of 37 Degree-Sign C saline via the hepatic artery. Using ultrasonography, the blood flows in both the portal vein and hepatic artery were measured, and the changes in the hemodynamic indices were recorded before and immediately after the injection. The changes in the tumor and normal liver tissues of the two groups were histopathologically examined by hematoxylin and eosin staining after the injection. Results. After the transcatheter arterial heated infusion, there was a decrease in the hepatic arterial blood flow to the tumor tissue, a significant decrease in the hepatic artery mean velocity (P < 0.05), and a significant increase in the resistance index (P < 0.05). On hematoxylin and eosin staining, there were no obvious signs of tissue destruction in the normal liver tissue or the tumor tissue after heated perfusion, and coagulated blood plasma was observed in the cavities of intratumoral blood vessels in the treated group. Conclusions. The changes in tumor blood flow in the rabbit VX2 tumor model were presumably caused by microthrombi in the tumor vessels, and the portal vein likely mediated the heat loss in normal liver tissue during the transarterial heated infusion.

Cao Wei, E-mail: cawe-001@163.com [Tangdu Hospital, The Fourth Military Medical University, Department of Interventional Radiology (China); Li Jing, E-mail: lijing02@fmmu.edu.cn [Tangdu Hospital, The Fourth Military Medical University, Department of Burn and Plastic Surgery (China); Wu Zhiqun, E-mail: zhiqunwu@fmmu.edu.cn [Tangdu Hospital, The Fourth Military Medical University, Department of Interventional Radiology (China); Zhou Changxi, E-mail: changxizhou@163.com [Chinese PLA General Hospital, Department of Respiratory Disease (China); Liu Xi, E-mail: xiliu@fmmu.edu.cn [Tangdu Hospital, The Fourth Military Medical University, Department of Ultrasound Diagnostics (China); Wan Yi, E-mail: yiwan@163.com [The Fourth Military Medical University, Department of Health Statistics, Institute for Health Informatics (China); Duan Yunyou, E-mail: yunyouduan@fmmu.edu.cn [Tangdu Hospital, The Fourth Military Medical University, Department of Ultrasound Diagnostics (China)

2013-06-15T23:59:59.000Z

172

Emissivity corrected infrared method for imaging anomalous structural heat flows  

DOE Patents [OSTI]

A method for detecting flaws in structures using dual band infrared radiation is disclosed. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features. 1 fig.

Del Grande, N.K.; Durbin, P.F.; Dolan, K.W.; Perkins, D.E.

1995-08-22T23:59:59.000Z

173

Heat Flow Database Expansion for NGDS Data Development, Collection and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii Clean

174

Counter flow cooling drier with integrated heat recovery  

DOE Patents [OSTI]

A drier apparatus for removing water or other liquids from various materials includes a mixer, drying chamber, separator and regenerator and a method for use of the apparatus. The material to be dried is mixed with a heated media to form a mixture which then passes through the chamber. While passing through the chamber, a comparatively cool fluid is passed counter current through the mixture so that the mixture becomes cooler and drier and the fluid becomes hotter and more saturated with moisture. The mixture is then separated into drier material and media. The media is transferred to the regenerator and heated therein by the hot fluid from the chamber and supplemental heat is supplied to bring the media to a preselected temperature for mixing with the incoming material to be dried. In a closed loop embodiment of the apparatus, the fluid is also recycled from the regenerator to the chamber and a chiller is utilized to reduce the temperature of the fluid to a preselected temperature and dew point temperature.

Shivvers, Steve D. (Prole, IA)

2009-08-18T23:59:59.000Z

175

A laser Doppler method for noninvasive measurement of flow velocity  

SciTech Connect (OSTI)

Laser Doppler velocimetry is a powerful optical technique for noninvasively obtaining experimental flow-velocity data. This paper describes the principle of operation and various optical configurations of the laser Doppler velocimeter. As a sample application, we describe an experimental apparatus for measuring the velocity flow field around a cylinder, and give our experimental results.

Biggs, G.L.

1986-11-25T23:59:59.000Z

176

Electromagnetic measurements of duodenal digesta flow in cannulated sheep  

E-Print Network [OSTI]

Electromagnetic measurements of duodenal digesta flow in cannulated sheep C. PONCET, M. IVAN M of duodenal digesta flow were made in sheep implanted with an electromagnetic flowmeter probe on the ascending to frequent oscillation of the digesta. It was concluded that accurate quantitative electromagnetic

Paris-Sud XI, Université de

177

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan ON SIDE REFRIGERANT MEASUREMENT OF HEAT PUMP  

E-Print Network [OSTI]

- 1 - 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan ON SIDE REFRIGERANT MEASUREMENT OF HEAT PUMP SEASONAL PERFORMANCES C. T. Tran, PhD student, Centre for Energy and Processes, MINES, Research Engineer, ENERBAT, Electricity of France R&D, Moret/Loing, France Abstract Heat pump systems have

Paris-Sud XI, Université de

178

Collective flow measured with the Plastic Ball  

SciTech Connect (OSTI)

The experimental results from the Plastic Ball detector have contributed vastly to the understanding of the reaction mechanism of nuclear collisions at several hundred MeV per nucleon. The discovery of the collective flow phenomena (bounce-off of spectator fragments, side-splash in the reaction plane, and squeeze-out out of the reaction plane), as they were predicted by hydrodynamical models, has led to the experimental observation of compressed nuclear matter, which is a necessary condition before one can study the equation of state in detail and search for phase transitions at higher energies. 39 refs., 9 figs., 1 tab.

Ritter, H.G.; Gutbrod, H.H.; Kampert, K.H.; Kolb, B.; Poskanzer, A.M.; Schicker, R.; Schmidt, H.R.; Siemiarczuk, T.

1989-08-01T23:59:59.000Z

179

A slotted orifice plate used as a flow measurement device  

E-Print Network [OSTI]

The standard orifice plate is used extensively by the natural gas industry for the metering of fuel. Because of the costs associated with errors in flow measurement inherent with the use of a standard orifice plate, any improvements upon...

Macek, Michael Lee

2012-06-07T23:59:59.000Z

180

Friedmann-like collapsing model of a radiating sphere with heat flow  

SciTech Connect (OSTI)

This paper considers a spherical body consisting of a fluid with heat flow which radiates in its exterior a null fluid described by the outgoing Vaidya's metric. A Friedmann-like exact solution of the interior Einstein field equations is given. It is proved that this solution, matched with the outgoing Vaidya matric, represents a physically reasonble collapsing model which, when the heat flow is switched off, reduces to the well-known collapsing model with dust. The proposed model has the remarkable property that even if the heat flow is small, the horizon will never be formed because, before this happens, the collapsing body will be destroyed by opposite gradients of pressure. 6 references.

Kolassis, C.A.; Santos, N.O.; Tsoubelis, D.

1988-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Experimental study on corrugated cross-flow air-cooled plate heat exchangers  

SciTech Connect (OSTI)

Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang [Solar Thermal and Geothermal Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea); Lim, Hyug [Research and Development Center, LHE Co., Ltd., Gimhae 621-874 (Korea)

2010-11-15T23:59:59.000Z

182

In-Situ Calibration for Feedwater Flow Measurement  

SciTech Connect (OSTI)

With the approval by the Nuclear Regulatory Commission (NRC), of the Appendix K power up-rates, it has become important to provide an accurate measurement of the feedwater flow. Failure to meet documented requirements can now more easily lead to plant operations above their analyzed safety limits. Thus, the objective of flow instrumentation used in Appendix K up-rates, becomes one of providing precise measurements of the feedwater mass flow that will not allow the plant to be overpowered, but will still assure that maximum licensed thermal output is achieved. The NRC has licensed two technologies that meet these standards. Both are based on ultrasonic measurements of the flow. The first of these technologies, which is referred to as transit-time, relies on the measurement of differences in time for multiple ultrasonic beams to pass up and downstream in the fluid stream. These measurements are then coupled with a numerical integration scheme to compensate for distortions in the velocity profile due to upstream flow disturbances. This technology is implemented using a spool piece that is inserted into the feedwater pipe. The second technology relies on the measurement of the velocity of eddies within the fluid using a numerical process called cross-correlation. This technology is implemented by attaching the ultrasonic flow meter to the external surface of the pipe. Because of the ease in installation, for atypical situations, distortions in the velocity profile can be accounted for by attaching a second ultrasonic flow meter to the same pipe or multiple meters to a similar piping configuration, where the flow is fully developed. The additional meter readings are then used for the calibration of the initial set-up. Thus, it becomes possible to provide an in-situ calibration under actual operating conditions that requires no extrapolation of laboratory calibrations to compensate for distortions in the velocity profile. This paper will focus on the cross-correlation method of flow measurement, starting with the theoretical bases for the velocity profile correction factor and its reliance on only the Reynolds number to produce an accurate measurement of the flow, when the flow is fully developed. The method of laboratory calibration and the verification of these calibrations under actual plant operating conditions will be discussed. This will be followed by a discussion of how this technology is being used today to support the Appendix K up-rates. Various examples will be presented of piping configurations, where in-situ calibrations have or will be used to provide an accurate measurement of the feedwater flow at a specific location. (authors)

Peyvan, David [Entergy Nuclear Generating Company (United States); Gurevich, Yuri [Advanced Measurement and Analysis Group, Mississauga, ON (Canada); French, Charles T. [Westinghouse Electric Company (United States)

2002-07-01T23:59:59.000Z

183

Flight test measurements and theoretical lift prediction for flow energizers  

E-Print Network [OSTI]

OF SCIENCE May 1986 Major Subject: Aerospace Engineering FLIGHT TEST MEASUREMENTS AND THEORETICAL LIFT PREDICTION FOR FLOW ENERGIZERS A Thesis by AHIT ARAVIND PRADHAN Approved as to style and content by: Donald T. Mard (Chairman of Committee...) Howard L. Chevalier (Member) Garng H. Huang (Member) gg~j(EC( C, Clogs' Malter E. Haisler (Head of Department) Hay 1986 ABSTRACT Flight Test Measurements and Theoretical Lift prediction for Flow Energizers. (May 1986) Amit Aravind Pradhan, B...

Pradhan, Amit Aravind

1986-01-01T23:59:59.000Z

184

Heat flow and microearthquake studies, Coso Geothermal Area, China Lake,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth Division |Hays,Community

185

Heat flow studies, Coso Geothermal Area, China Lake, California. Technical  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth Division |Hays,Communityarea,

186

Isothermal heat measurements of TBP-nitric acid solutions  

SciTech Connect (OSTI)

Net heats of reaction were measured in an isothermal calorimeter for TBP/HNO{sub 3} solutions at ambient pressure and temperatures above 100{degrees}C. Carbon and nitrogen balances were performed giving the reaction stoichiometry. Rate expressions were derived and rate constants determined for both the single and two phase systems which included mass lost from the reacting system by evaporation. This mathematical model was fit to the experimental data (including the measured net heat and off-gas rate) gathered over a wide range of conditions. The oxidation rate constant was determined to be 5.4E-4 min{sup -1} at 110{degrees}C for an open {open_quotes}vented{close_quotes} system as compared to >1E-3min{sup -1} in a closed system. The heat released per unit material oxidized was also reduced due to a decrease in dissolved oxidants and an inefficient reduction of HNO{sub 3}. Oxidation in the organic phase was found to be first order in nitric acid and pseudo-zero order in butylnitrate and water.

Smith, J.R.; Cavin, W.S. [Westinghouse Savannah River Company, Aiken, SC (United States)

1995-12-31T23:59:59.000Z

187

RESEARCH ARTICLE An optical flow MTV based technique for measuring microfluidic  

E-Print Network [OSTI]

RESEARCH ARTICLE An optical flow MTV based technique for measuring microfluidic flow for accurately measuring flow fields in microfluidic flows from molecular tagging velocimetry (MTV). Limited optical access is frequently encountered in microfluidic systems. Therefore, in this contribution we

Garbe, Christoph S.

188

Device and method for measuring the coefficient of performance of a heat pump  

DOE Patents [OSTI]

A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistane heaters. Temperature-sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive-heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct tempertures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional-frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electrons is required to operate the instrument.

Brantley, V.R.; Miller, D.R.

1982-05-18T23:59:59.000Z

189

Device and method for measuring the coefficient of performance of a heat pump  

DOE Patents [OSTI]

A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistance heaters. Temperature sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct temperatures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electronics is required to operate the instrument.

Brantley, Vanston R. (Knoxville, TN); Miller, Donald R. (Kingston, TN)

1984-01-01T23:59:59.000Z

190

Compare Energy Use in Variable Refrigerant Flow Heat Pumps Field Demonstration and Computer Model  

SciTech Connect (OSTI)

Variable Refrigerant Flow (VRF) heat pumps are often regarded as energy efficient air-conditioning systems which offer electricity savings as well as reduction in peak electric demand while providing improved individual zone setpoint control. One of the key advantages of VRF systems is minimal duct losses which provide significant reduction in energy use and duct space. However, there is limited data available to show their actual performance in the field. Since VRF systems are increasingly gaining market share in the US, it is highly desirable to have more actual field performance data of these systems. An effort was made in this direction to monitor VRF system performance over an extended period of time in a US national lab test facility. Due to increasing demand by the energy modeling community, an empirical model to simulate VRF systems was implemented in the building simulation program EnergyPlus. This paper presents the comparison of energy consumption as measured in the national lab and as predicted by the program. For increased accuracy in the comparison, a customized weather file was created by using measured outdoor temperature and relative humidity at the test facility. Other inputs to the model included building construction, VRF system model based on lab measured performance, occupancy of the building, lighting/plug loads, and thermostat set-points etc. Infiltration model inputs were adjusted in the beginning to tune the computer model and then subsequent field measurements were compared to the simulation results. Differences between the computer model results and actual field measurements are discussed. The computer generated VRF performance closely resembled the field measurements.

Sharma, Chandan; Raustad, Richard

2013-06-01T23:59:59.000Z

191

DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 2  

SciTech Connect (OSTI)

The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

Not Available

1992-06-01T23:59:59.000Z

192

DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 1  

SciTech Connect (OSTI)

The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

Not Available

1992-06-01T23:59:59.000Z

193

DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3  

SciTech Connect (OSTI)

The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

Not Available

1992-06-01T23:59:59.000Z

194

TOUGH Simulations of the Updegraff's Set of Fluid and Heat Flow Problems  

SciTech Connect (OSTI)

The TOUGH code [Pruess, 1987] for two-phase flow of water, air, and heat in penneable media has been exercised on a suite of test problems originally selected and simulated by C. D. Updegraff [1989]. These include five 'verification' problems for which analytical or numerical solutions are available, and three 'validation' problems that model laboratory fluid and heat flow experiments. All problems could be run without any code modifications (*). Good and efficient numerical performance, as well as accurate results were obtained throughout. Additional code verification and validation problems from the literature are briefly summarized, and suggestions are given for proper applications of TOUGH and related codes.

Moridis, G.J.; Pruess (editor), K.

1992-11-01T23:59:59.000Z

195

Dealing with big circulation flow, small temperature difference based on verified dynamic model simulations of a hot water district heating system  

E-Print Network [OSTI]

DEALING WITH BIG CIRCULATION FLOW RATE, SMALL TEMPERATURE DIFFERENCE BASED ON VERIFIED DYNAMIC MODEL SIMULATIONS OF A HOT WATER DISTRICT HEATING SYSTEM Li Lian Zhong, Senior Sales Consultant, Danfoss Automatic Controls Management (Shanghai...) Co.,Ltd, Anshan, China ABSTRACT Dynamic models of an indirect hot water district heating system were developed based on the first principle of thermodynamics. The ideal model was verified by using measured operational data. The ideal...

Zhong, L.

2014-01-01T23:59:59.000Z

196

Interpreting Velocities from Heat-Based Flow Sensors by NumericalSimulation  

SciTech Connect (OSTI)

We have carried out numerical simulations of three-dimensional non-isothermal flow around an in situ heat-based flow sensor to investigate how formation heterogeneities can affect the interpretation of ground water flow velocities from this instrument. The flow sensor operates by constant heating of a 0.75 m long, 5 cm diameter cylindrical probe, which contains 30 thermistors in contact with the formation. The temperature evolution at each thermistor can be inverted to obtain an estimate of the ground water flow velocity vector using the standard interpretive method, which assumes that the formation is homogeneous. Analysis of data from heat-based flow sensors installed in a sand aquifer at the Former Fort Ord Army Base near Monterey, California suggested an unexpected component of downward flow. The magnitudes of the vertical velocities were expected to be much less than the horizontal velocities at this site because the sensors were installed just above a clay aquitard. Numerical simulations were conducted to examine how differences in thermal conductivities may lead to spurious indications of vertical flow velocities. We found that a decrease in the thermal conductivity near the bottom of the sensor can perturb the temperature profiles along the instrument in such a manner that analyses assuming homogeneous thermal conductivity could indicate a vertical flow component even though flow is actually horizontal. This work demonstrates how modeling can be used to simulate instrument response to formation heterogeneity, and shows that caution must be used in interpreting data from such devices using overly simplistic assumptions.

Su, Grace W.; Freifeld, Barry M.; Oldenburg, Curtis M.; Jordan,Preston D.; Daley, Paul F.

2005-06-13T23:59:59.000Z

197

Enhanced Oil Recovery: Aqueous Flow Tracer Measurement  

SciTech Connect (OSTI)

A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

Joseph Rovani; John Schabron

2009-02-01T23:59:59.000Z

198

November 28, 2006 Seismologists get handle on heat flow deep in earth  

E-Print Network [OSTI]

November 28, 2006 Seismologists get handle on heat flow deep in earth Earth's interior placid inner Earth as a dynamic environment filled with exotic materials and substances roiling under that has an impact on what happens on our planet's surface. The latest evidence of this dynamic inner Earth

Garnero, Ed

199

Flow and Heat-Transfer Apparatus, Instrumentation and Data Acquisition Method  

E-Print Network [OSTI]

friction and convective heat transfer characteristics of nanofluids. Instead of a usual closed-loop system where pumps and after-cooling units are required, the developed apparatus utilizes nitrogen pressure-driven flow to test a single batch of fluid. This reduces the complexity of the system while improving its

Kostic, Milivoje M.

200

INFLUENCE OF OHMIC HEATING ON ADVECTION-DOMINATED ACCRETION FLOWS G. S. BISNOVATYI-KOGAN  

E-Print Network [OSTI]

is advected inward, and the fraction 1 f is locally radiated. The further assumption that the energy exchange that the dissipation of turbulent energy of the flow heats the ions and that the dissipated energy is advected inward. It is suggested that the efficiency of conversion of accretion energy to radiation can be very much smaller than

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Experimental shellside flow visualization in a shell and tube heat exchanger  

E-Print Network [OSTI]

information in the shellside flow. A scale-model shell and tube heat exchanger with an outer diameter of 30.5 cm and a length of 61 cm was designed and constructed out of acrylic. Water was utilized as the working fluid and flowrates ranging from 0.32 to 2...

Fischer, Matthew Winslow

1998-01-01T23:59:59.000Z

202

Convective heat transfer on leeward building walls in an urban environment: Measurements in an outdoor scale model  

E-Print Network [OSTI]

surface, Proc. 5 th Int. Heat Transfer Conf. 3 (1974) 129-a vertical plate, J. Heat Transfer 109(1) [13] K. Patel,Experimental study of heat transfer in turbulent flows over

Nottrott, A.; Onomura, S.; Inagaki, A.; Kanda, M.; Kleissl, J.

2011-01-01T23:59:59.000Z

203

Comparison of strongly heat-driven flow codes for unsaturated media  

SciTech Connect (OSTI)

Under the sponsorship of the US Nuclear Regulatory Commission, Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal of high-level radioactive waste (HLW) in unsaturated welded tuff. As part of this effort, SNL evaluated existing strongly heat-driven flow computer codes for simulating ground-water flow in unsaturated media. The three codes tested, NORIA, PETROS, and TOUGH, were compared against a suite of problems for which analytical and numerical solutions or experimental results exist. The problems were selected to test the abilities of the codes to simulate situations ranging from simple, uncoupled processes, such as two-phase flow or heat transfer, to fully coupled processes, such as vaporization caused by high temperatures. In general, all three codes were found to be difficult to use because of (1) built-in time stepping criteria, (2) the treatment of boundary conditions, and (3) handling of evaporation/condensation problems. A drawback of the study was that adequate problems related to expected repository conditions were not available in the literature. Nevertheless, the results of this study suggest the need for thorough investigations of the impact of heat on the flow field in the vicinity of an unsaturated HLW repository. Recommendations are to develop a new flow code combining the best features of these three codes and eliminating the worst ones. 19 refs., 49 figs.

Updegraff, C.D.

1989-08-01T23:59:59.000Z

204

System and method measuring fluid flow in a conduit  

DOE Patents [OSTI]

A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.

Ortiz, Marcos German (Idaho Falls, ID); Kidd, Terrel G. (Blackfoot, ID)

1999-01-01T23:59:59.000Z

205

Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

Not Available

2010-08-01T23:59:59.000Z

206

Convective Heat Transfer and Reference Free-stream Temperature Determination near the Casing of an Axial Flow  

E-Print Network [OSTI]

of an Axial Flow Turbine B. Gumusel 2 and C. Camci 1 Turbomachinery Aero-Heat Transfer Laboratory Department on the casing of an axial flow turbine. The goal is to develop an accurate steady-state heat transfer method for the comparison of various casing surface and tip designs used for turbine performance improvements. The free

Camci, Cengiz

207

Study of junction flows in louvered fin round tube heat exchangers using the dye injection technique  

SciTech Connect (OSTI)

Detailed studies of junction flows in heat exchangers with an interrupted fin design are rare. However, understanding these flow structures is important for design and optimization purposes, because the thermal hydraulic performance of heat exchangers is strongly related to the flow behaviour. In this study flow visualization experiments were performed in six scaled-up models of a louvered fin round tube heat exchanger. The models have three tube rows in a staggered layout and differ only in their fin spacing and louver angle. A water tunnel was designed and built and the flow visualizations were carried out using dye injection. At low Reynolds numbers the streakline follows the tube contours, while at higher Reynolds numbers a horseshoe vortex is developed ahead of the tubes. The two resulting streamwise vortex legs are destroyed by the downstream louvers (i.e. downstream the turnaround louver), especially at higher Reynolds numbers, smaller fin pitches and larger louver angles. Increasing the fin spacing results in a larger and stronger horseshoe vortex. This illustrates that a reduction of the fin spacing results in a dissipation of vortical motion by mechanical blockage and skin friction. Furthermore it was observed that the vortex strength and number of vortices in the second tube row is larger than in the first tube row. This is due to the thicker boundary layer in the second tube row, and the flow deflection, which is typical for louvered fin heat exchangers. Visualizations at the tube-louver junction showed that in the transition part between the angled louver and the flat landing a vortex is present underneath the louver surface which propagates towards the angled louver. (author)

Huisseune, H.; Willockx, A.; De Paepe, M. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); T'Joen, C. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); Department Radiation, Radionuclides and Reactors, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); De Jaeger, P. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); NV Bekaert SA, Bekaertstraat 2, 8550 Zwevegem (Belgium)

2010-11-15T23:59:59.000Z

208

EUROTHERM Seminar 74 Proceedings Heat transfer in unsteady and transitional flows March 23-26, 2003 Eindhoven (The Netherlands)  

E-Print Network [OSTI]

EUROTHERM Seminar 74 Proceedings Heat transfer in unsteady and transitional flows March 23-26, 2003 to be governed by heat transfer and time microscales of turbulence through the inner sublayer. Physical interpreta- tions are given to relate the observed heat transfer correlation and these turbulence transition

Paris-Sud XI, Université de

209

Boiling heat transfer in a vertical microchannel: Local estimation during flow boiling with a non intrusive method  

E-Print Network [OSTI]

Boiling heat transfer in a vertical microchannel: Local estimation during flow boiling with a non the results of experimental and numerical studies concerning boiling heat transfer inside vertical in minichannels for several gravity levels (µg, 1g, 2g). To fully understand the high heat transfer potential

210

The influence of convective heat transfer on flow stability in rotating disk chemical vapor deposition reactors  

SciTech Connect (OSTI)

Flow and heat transfer of NH{sub 3} and He were studied in a rotating disk system with applications to chemical vapor deposition reactors. Flow field and disk heat flux were obtained over a range of operating conditions. Comparisons of disk convective heat transfer were made to infinite rotating disk results to appraise uniformity of transport to the disk. Important operating variables include disk spin rate, disk and enclosure temperatures, flow rate, composition, pressure, and gas mixture temperature at the reactor inlet. These variables were studied over ranges of the spin Reynolds number, Re{omega}; disk mixed convection parameter, MCP{sub w}; and wall mixed convection parameter, MCP{sub w}. Results obtained for NH{sub 3} show that increasing Re{omega} from 314.5 to 3145 increases the uniformity of rotating disk heat flux and results in thinner thermal boundary layers at the disk surface. At Re{omega}=314.5, increasing MCP{sub d} to 15 leads to significant departure from the infinite disk result with nonuniform disk heat fluxes and recirculating flow patterns; flow becomes increasingly complex at larger values of MCP{sub d}. At Re{omega} of 3145, results are closer to the infinite disk for MCP{sub d} up to 15. For large negative (hot walls) and positive (cold walls) values of MCP{sub w}, flow recirculates and there is significant deviation from the infinite disk result; nonuniformities occur at both values of Re{omega}. The influence of MCP{sub w} on flow stability is increased at larger MCP{sub d} and lower Re{omega}. To determine the influence of viscosity and thermal conductivity variation with temperature, calculations were made with He and NH{sub 3}; He transport property variation is low relative to NH{sub 3}. Results show that the flow of NH{sub 3} is less stable than that of He as MCP{sub d} is increased for MCP{sub w}=0 and Re{omega}=314.5. 16 refs., 15 figs., 1 tab.

Winters, W.S.; Evans, G.H. [Sandia National Labs., Livermore, CA (United States); Grief, R. [Univ. of California, Berkeley, CA (United States). Mechanical Engineering Dept.

1997-06-01T23:59:59.000Z

211

Remote Measurement of Heat Flux from Power Plant Cooling Lakes  

SciTech Connect (OSTI)

Laboratory experiments have demonstrated a correlation between the rate of heat loss q? from an experimental fluid to the air above and the standard deviation ? of the thermal variability in images of the fluid surface. These experimental results imply that q? can be derived directly from thermal imagery by computing ?. This paper analyses thermal imagery collected over two power plant cooling lakes to determine if the same relationship exists. Turbulent boundary layer theory predicts a linear relationship between q? and ? when both forced (wind driven) and free (buoyancy driven) convection are present. Datasets derived from ground- and helicopter-based imagery collections had correlation coefficients between ? and q? of 0.45 and 0.76, respectively. Values of q? computed from a function of ? and friction velocity u* derived from turbulent boundary layer theory had higher correlations with measured values of q? (0.84 and 0.89). This research may be applicable to the problem of calculating losses of heat from the ocean to the atmosphere during high-latitude cold-air outbreaks because it does not require the information typically needed to compute sensible, evaporative, and thermal radiation energy losses to the atmosphere.

Garrett, A.; Kurzeja, R.; Villa-Aleman, E.; Bollinger, J.

2013-01-01T23:59:59.000Z

212

Numerical investigation of electric heating impacts on solid/liquid glass flow patterns.  

SciTech Connect (OSTI)

A typical glass furnace consists of a combustion space and a melter. Intense heat is generated from the combustion of fuel and air/oxygen in the combustion space. This heat is transferred mainly by radiation to the melter in order to melt sand and cullet (scrap glass) eventually creating glass products. Many furnaces use electric boosters to enhance glass melting and increase productivity. The coupled electric/combustion heat transfer patterns are key to the glass making processes. The understanding of the processes can lead to the improvement of glass quality and furnace efficiency. The effects of electrical boosting on the flow patterns and heat transfer in a glass melter are investigated using a multiphase Computational Fluid Dynamics (CFD) code with addition of an electrical boosting model. The results indicate that the locations and spacing of the electrodes have large impacts on the velocity and temperature distributions in the glass melter. With the same total heat input, the batch shape (which is determined by the overall heat transfer and the batch melting rate) is kept almost the same. This indicates that electric boosting can be used to replace part of heat by combustion. Therefore, temperature is lower in the combustion space and the life of the furnace can be prolonged. The electric booster can also be used to increase productivity without increasing the furnace size.

Chang, S. L.; Zhou, C. Q.; Golchert, B.

2002-07-02T23:59:59.000Z

213

Turbulent heat transfer in parallel flow boundary layers with streamwise step changes in surface conditions  

SciTech Connect (OSTI)

This paper examines the convective heat/mass transfer behavior of a turbulent boundary layer with parallel streamlines. The most notable example of such flow is an atmospheric boundary layer with a steady mean wind in the absence of topography. The classic, two-dimensional problem involves the surface boundary condition of a finite-length step change in temperature/concentration in the streamwise direction of an atmospheric flow. In the literature on geophysical evapotranspiration, this problem is known as Sutton's problem (cf. Sutton, 1934, and Brutsaert, 1984). This flow situation is equally applicable to heat/mass transfer in solar ponds, ground solar collectors, and heated roadways, as examples. The present note revisits the Sutton problem, with the can Driest eddy diffusivity model, and expands the types of boundary conditions that are examined to include surface changes in temperature/concentration and fluxes. The parallel streamline condition allows for Graetz-type solutions, with boundary conditions at the surface and in the far flow field. The predicted results are presented as a series of power law correlations of the relevant nondimensional parameters.

Lindberg, W.R.; Lee, R.C.; Smathers, L.B. (Univ. of Wyoming, Laramie (United States))

1989-11-01T23:59:59.000Z

214

Determination of thermal accommodation coefficients from heat transfer measurements between parallel plates.  

SciTech Connect (OSTI)

Thermal accommodation coefficients have been derived for a variety of gas-surface combinations using an experimental apparatus developed to measure the pressure dependence of the conductive heat flux between parallel plates at unequal temperature separated by a gas-filled gap. The heat flux is inferred from temperature-difference measurements across the plates in a configuration where the plate temperatures are set with two carefully controlled thermal baths. Temperature-controlled shrouds provide for environmental isolation of the opposing test plates. Since the measured temperature differences in these experiments are very small (typically 0.3 C or less over the entire pressure range), high-precision thermistors are used to acquire the requisite temperature data. High-precision components have also been utilized on the other control and measurement subsystems in this apparatus, including system pressure, gas flow rate, plate alignment, and plate positions. The apparatus also includes the capability for in situ plasma cleaning of the installed test plates. Measured heat-flux results are used in a formula based on Direct Simulation Monte Carlo (DSMC) code calculations to determine the thermal accommodation coefficients. Thermal accommodation coefficients have been determined for three different gases (argon, nitrogen, helium) in contact with various surfaces. Materials include metals and alloys such as aluminum, gold, platinum, and 304 stainless steel. A number of materials important to fabrication of Micro Electro Mechanical Systems (MEMS) devices have also been examined. For most surfaces, coefficient values are near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Only slight differences in accommodation as a function of surface roughness have been seen. Surface contamination appears to have a more significant effect: argon plasma treatment has been observed to reduce thermal accommodation by as much as 0.10 for helium. Mixtures of argon and helium have also been examined, and the results have been compared to DSMC simulations incorporating thermal-accommodation values from single-species experiments.

Gallis, Michail A.; Castaneda, Jaime N.; Rader, Daniel John; Torczynski, John Robert; Trott, Wayne Merle

2010-10-01T23:59:59.000Z

215

Nanosecond Range Heating and Temperature Measurement on Thin Layers Experiment and Simulation  

E-Print Network [OSTI]

Nanosecond Range Heating and Temperature Measurement on Thin Layers Experiment and Simulation W for sensitivity measurements, heating resistance and temperature sensor. Taking advantage of using the gate electrode for heating only the sensitive two layer system LaF3/Pt (thickness only 300 nm) has to be at high

Moritz, Werner

216

Fusion Engineering and Design 42 (1998) 289297 Nuclear heating measurements for SS-316, copper, graphite,  

E-Print Network [OSTI]

Fusion Engineering and Design 42 (1998) 289­297 Nuclear heating measurements for SS-316, copper Engineering and Design 42 (1998) 289­297290 of the technique for precise measurements of nuclear heat/EDA R&D Task T-218, an experiment on nuclear heating was conducted at the Fusion Neutronics Source

Abdou, Mohamed

217

Micro-canonical thermodynamics: Why does heat flow from hot to cold  

E-Print Network [OSTI]

We consider two weakly coupled Hamiltonian dynamical systems in the micro-canonical ensemble. We describe a stochastic model for the energy-transfer between two systems initially at different micro-canonical temperatures. Fluctuations in energy observables are shown to be the underlying source of heat-transfer (dissipation). As a result, on average, heat flows from hot to cold. Like in Evans et al. (Phys.\\ Rev.\\ Lett.) [71], 2401 (1993), we obtain a universal law of violation of the 2nd law of thermodynamics.

Rugh, Hans Henrik

2012-01-01T23:59:59.000Z

218

Color Key 1/25/2012 4.1.1 PTCS and Heat Pump Measures  

E-Print Network [OSTI]

Color Key 1/25/2012 4.1.1 PTCS and Heat Pump Measures Staff Summary of Ecotope Recommendation: Staff Response and Recommended Action: 4.1.3 Ductless Heat Pumps Staff Summary of Ecotope Recommendation

219

Micro- and Nanoscale Measurement Methods for Phase Change Heat Transfer on Planar and Structured Surfaces  

E-Print Network [OSTI]

In this opinion piece, we discuss recent advances in experimental methods for characterizing phase change heat transfer. We begin with a survey of techniques for high-resolution measurements of temperature and heat flux ...

Buongiorno, Jacopo

220

Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions  

DOE Patents [OSTI]

The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

McGrail, Bernard P. (Pasco, WA); Martin, Paul F. (Richland, WA); Lindenmeier, Clark W. (Richland, WA)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Heat flow patterns of the North American continent: A discussion of the DNAG Geothermal Map of North America  

SciTech Connect (OSTI)

The large and small-scale geothermal features of the North American continent and surrounding ocean areas illustrated on the new 1:5,000,000 DNAG Geothermal Map of North America are summarized. Sources for the data included on the map are given. The types of data included are heat flow sites coded by value, contours of heat flow with a color fill, areas of major groundwater effects on regional heat flow, the top-of-geopressure in the Gulf Coast region, temperature on the Dakota aquifer in the midcontinent, location of major hot springs and geothermal systems, and major center of Quaternary and Holocene volcanism. The large scale heat flow pattern that is well known for the conterminous United States and Canada of normal heat flow east of the Cordillera and generally high heat flow west of the front of the Cordillera dominates the continental portion of the map. However, details of the heat flow variations are also seen and are discussed briefly in this and the accompanying papers.

Blackwell, David D.; Steele, John L.; Carter, Larry C.

1990-01-01T23:59:59.000Z

222

Real-time planar flow velocity measurements using an optical flow algorithm implemented on GPU  

E-Print Network [OSTI]

This paper presents a high speed implementation of an optical flow algorithm which computes planar velocity fields in an experimental flow. Real-time computation of the flow velocity field allows the experimentalist to have instantaneous access to quantitative features of the flow. This can be very useful in many situations: fast evaluation of the performances and characteristics of a new setup, design optimization, easier and faster parametric studies, etc. It can also be a valuable measurement tool for closed-loop flow control experiments where fast estimation of the state of the flow is needed. The algorithm is implemented on a Graphics Processing Unit (GPU). The accuracy of the computation is shown. Computation speed and scalability are highlighted along with guidelines for further improvements. The system architecture is flexible, scalable and can be adapted on the fly in order to process higher resolutions or achieve higher precision. The set-up is applied on a Backward-Facing Step (BFS) flow in a hydro...

Gautier, N

2013-01-01T23:59:59.000Z

223

Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury  

SciTech Connect (OSTI)

ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into an actual SNS target.

Wendel, Mark W [ORNL; Riemer, Bernie [ORNL; Abdou, Ashraf A [ORNL

2012-01-01T23:59:59.000Z

224

Isothermal heat measurements of TBP-nitric acid solutions  

SciTech Connect (OSTI)

Net heats of reaction were measured in an isothermal calorimeter for both single phase (organic) and two phase (organic and aqueous) TBP/HNO{sub 3} reacting solutions at temperatures above 100 C. The oxidation rate constant was determined to be 5.4E-4 min{sup {minus}1} at 110 C for an open ``vented`` system as compared to 1.33 E-3 min{sup {minus}1} in the closed system. The heat released per unit material oxidized was also reduced. The oxidation in both phases was found to be first order in nitric acid and pseudo-zero order in butylnitrate and water. The hydrolysis (esterification) rate constant determined by Nichols` (1.33E-3 min{sup {minus}1}) fit the experimental data from this work well. Forced evaporation of the volatile components by the product gases from oxidation resulted in a cooling mechanism which more than balanced the heat from the oxidation reaction in the two-phased systems. Rate expressions were derived and rate constants determined for both the single and two phase systems. An approximating mathematical model was developed to fit the experimental data and to extrapolate beyond the experimental conditions. This model shows that one foot of ``reacting`` 14.3M HNO{sub 3} aqueous phase solution at 121 C will transport sufficient water to the organic phase to replace evaporative losses, maintaining endothermicity, for organic layers up to 12.2 + 6.0 feet deep. If the pressure in a reacting system is allowed to increase due to insufficient venting the temperature of the organic phase would increase in temperature to reach a new equilibrium. The rate of oxidation would increase not only due to the increase in temperature but also from the increased concentration of dissolved HNO{sub 3} reduction products. Another important factor is that the cooling system described in this work becomes less effective as the total pressure increases. These factors probably contributed to the explosion at Tomsk.

Smith, J.R.; Cavin, W.S.

1994-12-16T23:59:59.000Z

225

High-heat-flux removal by phase-change fluid and particulate flow  

SciTech Connect (OSTI)

A new concept based on particulate flow in which either or both the particulates and the fluid could undergo phase changes is proposed. The presence of particulates provides not only a mechanism for additional heat removal through phase change but also the potential for increasing the rate of heat transfer by enhancing convection through surface region/bulk [open quotes]mixing[close quotes], by enhancing radiation, particularly for high-temperature cases; and for the case of multiphase fluid, by enhancing the boiling process. One particularly interesting coolant system based on this concept is [open quotes]subcooled boiling water-ice particulate[close quotes] flow. A preliminary analysis of this coolant system is presented, the results of which indicate that such a coolant system is better applied for cooling of relatively small surface areas with high local heat fluxes, where a conventional cooling system would come short of providing the required heat removal at acceptable coolant pressure levels. 14 refs., 8 figs.

Gorbis, Z.R.; Raffray, A.R.; Abdou, M.A. (Univ. of California, Los Angeles (United States))

1993-07-01T23:59:59.000Z

226

Gas temperature profiles at different flow rates and heating rates suffice to estimate kinetic parameters for fluidised bed combustion  

SciTech Connect (OSTI)

Experimental work on estimation kinetic parameters for combustion was conducted in a bench-scale fluidised bed (FB: 105x200mm). Combustion medium was obtained by using an electrical heater immersed into the bed. The ratio of heating rate (kJ/s) to molar flow rate of air (mol/s) regulated by a rheostat so that the heat of combustion (kJ/mol) can be synthetically obtained by an electrical power supply for relevant O{sub 2}-feedstock concentration (C{sub 0}). O{sub 2}-restriction ratio ({beta}) was defined by the ratio of O{sub 2}-feedstock concentration to O{sub 2}-air concentration (C{sub O{sub 2}-AIR}) at prevailing heating rates. Compressed air at further atmospheric pressure ({approx_equal}102.7kPa) entered the bed that was alumina particles (250{mu}m). Experiments were carried out at different gas flow rates and heating rates. FB was operated with a single charge of (1300g) particles for obtaining the T/T{sub 0} curves, and than C/C{sub 0} curves. The mathematical relationships between temperature (T) and conversion ratio (X) were expressed by combining total energy balance and mass balance in FB. Observed surface reaction rate constants (k{sub S}) was obtained from the combined balances and proposed model was also tested for these kinetic parameters (frequency factor: k{sub 0}, activation energy: E{sub A}, and reaction order: n) obtained from air temperature measurements. It was found that the model curves allow a good description of the experimental data. Thus, reaction rate for combustion was sufficiently expressed. (author)

Suyadal, Y. [Faculty of Engineering, Department of Chemical Engineering, Ankara University, 06100-Tandogan, Ankara (Turkey)

2006-07-15T23:59:59.000Z

227

Thermophoretic transport of particles that act as volumetric heat sources in natural convection flow  

SciTech Connect (OSTI)

The natural convection boundary layer with suspended heat generating aerosol particles adjacent to a cooled, isothermal, vertical wall was investigated for the following circumstances: laminar and turbulent flow, large temperature differences between the wall and the fluid, stable thermal stratification far from the wall, and fluid participation in thermal radiation heat transfer. The deposition of aerosol particles by thermophoresis was investigated. A scaling analysis showed the negligible effect inside the boundary layer of the particulate heat source strengths of practical interest. Only the temperature of the fluid far from the wall is affected appreciably by the heat sources. The scaled boundary layer differential equations are transformed to a nonsimilarity form for numerical solution using two different methods. An expression for the ratio of mass transfer to heat transfer coefficients was developed to simplify the computation of thermophoretic particle deposition at the wall for the case of constant temperature conditions far from the wall. Variable thermophysical property effect for the three gases of steam, air, and hydrogen were investigated. A dimensionless ratio of transfer coefficients for large temperature differences and turbulent flow was computed as a product of the laminar constant property results and a ratio of the known thermophysical properties at the wall and far from the wall. An approximation of the laminar constant property results for all three gases is developed in terms of the known wall and fluid temperatures, Prandtl number, and a thermophoretic constant. This allows particle deposition to be computed from a known heat transfer coefficient without explicitly solving the particle conservation equation. 120 refs., 29 figs., 21 tabs.

Conklin, J.C.; Krane, R.J. (Oak Ridge National Lab., TN (USA); Tennessee Univ., Knoxville, TN (USA). Dept. of Mechanical and Aerospace Engineering)

1989-01-01T23:59:59.000Z

228

Interfacial characteristic measurements in horizontal bubbly two- phase flow  

SciTech Connect (OSTI)

Advances in the study of two-phase flow increasingly require detailed internal structure information upon which theoretical models can be formulated. The void fraction and interfacial area are two fundamental parameters characterizing the internal structure of two-phase flow. However, little information is currently available on these parameters, and its mostly limited to vertical flow configurations. Particularly, there is virtually no data base for the local interfacial area concentration in spite of its necessary in multi-dimensional two-fluid model analysis. In view of the above, the internal phase distribution of cocurrent, air-water bubbly flow in a 50.3 mm diameter transparent pipeline has been experimentally investigated by using a double-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 3.74 to 5.60 m/s and 0.25 to 1.59 m/s, respectively, and average void fractions ranged from 2.12 to 22.5%. The local local values of void fractions, interfacial area concentration, mean bubble diameter, bubble interface velocity, bubble chord-length and bubble frequency distributions were measured. The experimental results indicate that the void fraction, interfacial area concentration and bubble frequency have local maxima near the upper pipe well, and the profiles tend to flatten with increasing void fraction. The observed peak void fraction can reach 0.65, the peak interfacial area can to up to 1000 m{sup 2}/m{sup 3}, and the bubble frequency can reach a value of 2200/s. These ranges of values have never been reported for vertical bubbly flow. It is found that either decreasing the liquid flow rate or increasing the gas flow would increase the local void fraction, the interfacial area concentration and the bubble frequency.

Wang, Z.; Kocamustafaogullari, G.

1990-10-01T23:59:59.000Z

229

Interfacial characteristic measurements in horizontal bubbly two-phase flow  

SciTech Connect (OSTI)

Advances in the study of two-phase flow increasingly require detailed internal structure information upon which theoretical models can be formulated. The void fraction and interfacial area are two fundamental parameters characterizing the internal structure of two-phase flow. However, little information is currently available on these parameters, and it is mostly limited to vertical flow configurations. In view of the above, the internal phase distribution of cocurrent, air-water bubbly flow in a 50.3 mm diameter transparent pipeline has been experimentally investigated by using a double-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 3.74 to 5.60 m/s and 0.25 to 1.59 m/s, respectively, and average void fractions ranged from 2.12 to 22.5%. The local values of void fractions, interfacial area concentration, mean bubble diameter, bubble interface velocity, bubble chord-length and bubble frequency distributions were measured. The experimental results indicate that the void faction, interfacial area concentration and bubble frequency have local maxima near the upper pipe wall, and the profiles tend to flatten with increasing void fraction. The observed peak void fraction can reach 0.65, the peak interfacial area can go up to 900 {approx} 1000 m{sup 2}/m{sup 3}, and the bubble frequency can reach a value of 2200/s. These ranges of values have never been reported for vertical bubbly flow. It is found that either decreasing the liquid flow rate or increasing the gas flow would increase the local void fraction, the interfacial area concentration and the bubble frequency. 85 refs., 124 figs., 2 tabs.

Wang, Z.; Huang, W.D.; Srinivasmurthy, S.; Kocamustafaogullari, G.

1990-10-01T23:59:59.000Z

230

Flow cytometric measurement of total DNA and incorporated halodeoxyuridine  

DOE Patents [OSTI]

A method for the simultaneous flow cylometric measurement of total cellular DNA content and of the uptake of DNA precursors as a measure of DNA synthesis during various phases of the cell cycle in normal and malignant cells in vitro and in vivo is described. The method comprises reacting cells with labelled halodeoxyuridine (HdU), partially denaturing cellular DNA, adding to the reaction medium monoclonal antibodies (mabs) reactive with HdU, reacting the bound mabs with a second labelled antibody, incubating the mixture with a DNA stain, and measuring simultaneously the intensity of the DNA stain as a measure of the total cellular DNA and the HdU incorporated as a measure of DNA synthesis. (ACR)

Dolbeare, F.A.; Gray, J.W.

1983-10-18T23:59:59.000Z

231

Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry  

SciTech Connect (OSTI)

A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''.

Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

2001-12-31T23:59:59.000Z

232

MEASUREMENTS OF HEAT TRANSFER TO HELIUM II AT ATMOSPHERIC PRESSURE IN A CONFINED GEOMETRY  

E-Print Network [OSTI]

groove and a thermometer (Lake Shore Cryotronics "carbonis measured with a thermometer (of the same type as on thethe heated surface. Thermometer read out and heater control

Warren, R.P.

2011-01-01T23:59:59.000Z

233

A parametric study of shock jump chemistry, electron temperature, and radiative heat transfer models in hypersonic flows  

E-Print Network [OSTI]

A PARAMETRIC STUDY OF SHOCK JUMP CHEMISTRY, ELECTRON TEMPERATURE, AND RADIATIVE HEAT TRANSFER MODELS IN HYPERSONIC FLOWS A Thesis by ROBERT BRIAN GREENDYKE Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1988 Major Subject: Aerospace Engineering A PARAMETRIC STUDY OF SHOCK JUMP CHEMISTRY, ELECTRON TEMPERATURE, AND RADIATIVE HEAT TRANSFER MODELS IN HYPERSONIC FLOWS A Thesis by ROBERT BRIAN...

Greendyke, Robert Brian

2012-06-07T23:59:59.000Z

234

Transient PVT measurements and model predictions for vessel heat transfer. Part II.  

SciTech Connect (OSTI)

Part I of this report focused on the acquisition and presentation of transient PVT data sets that can be used to validate gas transfer models. Here in Part II we focus primarily on describing models and validating these models using the data sets. Our models are intended to describe the high speed transport of compressible gases in arbitrary arrangements of vessels, tubing, valving and flow branches. Our models fall into three categories: (1) network flow models in which flow paths are modeled as one-dimensional flow and vessels are modeled as single control volumes, (2) CFD (Computational Fluid Dynamics) models in which flow in and between vessels is modeled in three dimensions and (3) coupled network/CFD models in which vessels are modeled using CFD and flows between vessels are modeled using a network flow code. In our work we utilized NETFLOW as our network flow code and FUEGO for our CFD code. Since network flow models lack three-dimensional resolution, correlations for heat transfer and tube frictional pressure drop are required to resolve important physics not being captured by the model. Here we describe how vessel heat transfer correlations were improved using the data and present direct model-data comparisons for all tests documented in Part I. Our results show that our network flow models have been substantially improved. The CFD modeling presented here describes the complex nature of vessel heat transfer and for the first time demonstrates that flow and heat transfer in vessels can be modeled directly without the need for correlations.

Felver, Todd G.; Paradiso, Nicholas Joseph; Winters, William S., Jr.; Evans, Gregory Herbert; Rice, Steven F.

2010-07-01T23:59:59.000Z

235

Numerical Evaluation of Flow and Heat Transfer in Plate-Pin Fin Heat Sinks with Various Pin Cross-Sections  

E-Print Network [OSTI]

in Table 3. The grid systems for all heat sink models areregion. The grid system for one of the heat sinks is shown

Zhou, Feng; Catton, Ivan

2011-01-01T23:59:59.000Z

236

Spatially resolved temperature and heat flux measurements for slow evaporating droplets heated by a microfabricated heater array  

E-Print Network [OSTI]

flux datum per one droplet. No spatial or temporal heat flux information was given. Klassen et al. [12] and di Marzo et al. [13] were the first to use an infrared thermography technique to attempt to measure the spatially and temporally resolved... infrared thermography. Because of the aforementioned limitation of the IR thermography, measurements were only possible outside of the droplets. Michiyoshi and Makino [15] used a dual beam synchroscope to measure the variation of the heater supply...

Paik, Sokwon

2006-08-16T23:59:59.000Z

237

THERMAL PERFORMANCE MEASUREMENTS ON ULTIMATE HEAT SINKS - COOLING...  

Office of Scientific and Technical Information (OSTI)

(and-eventually, spray ponds) that are proposed to be used as ultimate heat sinks in nuclear power plant emergency core cooling systems. The need is derived from the concern...

238

Surface pressure measurements for CFD code validation in hypersonic flow  

SciTech Connect (OSTI)

Extensive surface pressure measurements were obtained on a hypersonic vehicle configuration at Mach 8. All of the experimental results were obtained in the Sandia National Laboratories Mach 8 hypersonic wind tunnel for laminar boundary layer conditions. The basic vehicle configuration is a spherically blunted 10{degrees} half-angle cone with a slice parallel with the axis of the vehicle. The bluntness ratio of the geometry is 10% and the slice begins at 70% of the length of the vehicle. Surface pressure measurements were obtained for angles of attack from {minus}10 to + 18{degrees}, for various roll angles, at 96 locations on the body surface. A new and innovative uncertainty analysis was devised to estimate the contributors to surface pressure measurement uncertainty. Quantitative estimates were computed for the uncertainty contributions due to the complete instrumentation system, nonuniformity of flow in the test section of the wind tunnel, and variations in the wind tunnel model. This extensive set of high-quality surface pressure measurements is recommended for use in the calibration and validation of computational fluid dynamics codes for hypersonic flow conditions.

Oberkampf, W.L.; Aeschliman, D.P.; Henfling, J.F.; Larson, D.E.

1995-07-01T23:59:59.000Z

239

A review and development of correlations for base pressure and base heating in supersonic flow  

SciTech Connect (OSTI)

A comprehensive review of experimental base pressure and base heating data related to supersonic and hypersonic flight vehicles has been completed. Particular attention was paid to free-flight data as well as wind tunnel data for models without rear sting support. Using theoretically based correlation parameters, a series of internally consistent, empirical prediction equations has been developed for planar and axisymmetric geometries (wedges, cones, and cylinders). These equations encompass the speed range from low supersonic to hypersonic flow and laminar and turbulent forebody boundary layers. A wide range of cone and wedge angles and cone bluntness ratios was included in the data base used to develop the correlations. The present investigation also included preliminary studies of the effect of angle of attack and specific-heat ratio of the gas.

Lamb, J.P. [Texas Univ., Austin, TX (United States). Dept. of Mechanical Engineering; Oberkampf, W.L. [Sandia National Labs., Albuquerque, NM (United States)

1993-11-01T23:59:59.000Z

240

Micro-canonical thermodynamics: Why does heat flow from hot to cold  

E-Print Network [OSTI]

We show how to use a central limit approximation for additive co-cycles to describe non-equilibrium and far from equilibrium thermodynamic behavior. We consider first two weakly coupled Hamiltonian dynamical systems initially at different micro-canonical temperatures. We describe a stochastic model where the energy-transfer between the two systems is considered as a random variable satisfying a central limit approximation. We show that fluctuations in energy observables are linearly related to the heat-transfer (dissipation). As a result, on average, heat flows from hot to cold. We also consider the far from equilibrium situation of a non-Hamiltonian thermostatted system as in Evans et al. {\\em Phys.\\ Rev.\\ Lett.} {\\bf 71}, 2401 (1993). Applying the same central limit approximation we re-derive their relation for the violation of the 2nd law of thermodynamics. We note that time-reversal symmetry is not used in our derivation.

Hans Henrik Rugh

2012-04-10T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Three-dimensional instabilities in a discretely heated annular flow: Onset of spatio-temporal complexity via defect dynamics  

E-Print Network [OSTI]

. INTRODUCTION Interest in natural convection in enclosures has a long history,1 motivated by both relevanceThree-dimensional instabilities in a discretely heated annular flow: Onset of spatio- temporal of the flow in an annular rotor-stator cavity Phys. Fluids 21, 064106 (2009); 10.1063/1.3156859 Stability

Marques, Francisco

242

Reduced heat flow in light water (H2O) due to heavy water (D2O)  

E-Print Network [OSTI]

The flow of heat, from top to bottom, in a column of light water can be decreased by over 1000% with the addition of heavy water. A column of light water cools from 25 C to 0 C in 11 hours, however, with the addition of heavy water it takes more than 100 hours. There is a concentration dependence where the cooling time increases as the concentration of added (D2O) increases, with a near maximum being reached with as little as 2% of (D2O) added. This phenomenon will not occur if the water is mixed after the heavy water is added.

William R. Gorman; James D. Brownridge

2008-09-04T23:59:59.000Z

243

On numerical simulation of flow, heat transfer and combustion processes in tangentially-fired furnace  

SciTech Connect (OSTI)

In this work, an Eulerian/Lagrangian approach has been employed to investigate numerically flow characteristics, heat transfer and combustion processes inside corner-fired power plant boiler furnace. To avoid pseudo-diffusion that is significant in modeling tangentially-fired furnaces, some attempts have been made at improving the finite-difference scheme. Comparisons have been made between standard {kappa}-{epsilon} model and RNG {kappa}-{epsilon} model. Some new developments on turbulent diffusion of particles are taken into account in an attempt to improve computational accuracy. Finally, temperature deviation is studied numerically so as to gain deeper insight into tangentially fired furnace.

Sun, P.; Fan, J.; Cen, K.

1999-07-01T23:59:59.000Z

244

Parallel heat flux and flow acceleration in open field line plasmas with magnetic trapping  

SciTech Connect (OSTI)

The magnetic field strength modulation in a tokamak scrape-off layer (SOL) provides both flux expansion next to the divertor plates and magnetic trapping in a large portion of the SOL. Previously, we have focused on a flux expander with long mean-free-path, motivated by the high temperature and low density edge anticipated for an absorbing boundary enabled by liquid lithium surfaces. Here, the effects of magnetic trapping and a marginal collisionality on parallel heat flux and parallel flow acceleration are examined. The various transport mechanisms are captured by kinetic simulations in a simple but representative mirror-expander geometry. The observed parallel flow acceleration is interpreted and elucidated with a modified Chew-Goldberger-Low model that retains temperature anisotropy and finite collisionality.

Guo, Zehua; Tang, Xian-Zhu; McDevitt, Chris [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2014-10-15T23:59:59.000Z

245

Insights into Cold Water Injection Stimulation Effects through Analytical Solutions to Flow and Heat Transport  

SciTech Connect (OSTI)

Wells in traditional hydrothermal reservoirs are used to extract heat and to dispose of cooled water. In the first case, high productivity (the ratio of production flow rate to the pressure differential required to produce that rate) to is preferred in order to maximize power generation, while minimizing the parasitic energy loss of pumping. In the second case, high injectivity (the ratio of injection flow rate to the pressure differential required to produce that rate) is preferred, in order to reduce pumping costs. In order to improve productivity or injectivity, cold water is sometimes injected into the reservoir in an attempt to cool and contract the surrounding rock matrix and thereby induce dilation and/or extension of existing fractures or to generate new fractures. Though the increases in permeability associated with these changes are likely localized, by improving connectivity to more extensive high-permeability fractures they can at least temporarily provide substantially improved productivity or injectivity.

M.A. Plummer

2013-09-01T23:59:59.000Z

246

Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter  

DOE Patents [OSTI]

A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

Ortiz, Marcos G. (Idaho Falls, ID); Boucher, Timothy J. (Helena, MT)

1997-01-01T23:59:59.000Z

247

Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter  

DOE Patents [OSTI]

A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

Ortiz, M.G.; Boucher, T.J.

1997-06-24T23:59:59.000Z

248

In situ heat exchanger tube fouling thickness measurements using ultrasonics. Final report on a laboratory feasibility study  

SciTech Connect (OSTI)

The growth of fouling layers on heat exchanger surfaces and the corrosion of heat exchanger materials exposed to seawater have been recognized since the beginning of OTEC research as basic problems which could render the concept uneconomical. Consequently, a significant effort has been directed toward predicting, measuring, identifying, explaining and solving potential biofouling and corrosion phenomena. To address this problem, the feasibility of establishing a practical microacoustic technique to measure fouling film thickness in situ on typical OTEC heat exchanger tasks was studied. Seven techniques were studied for this application, including velocity measurements, acoustic diffraction, acoustic interferometer, Doppler flow velocity, pulse echo, critical angle, and surface (shear) wave effects. Of these, the latter five were laboratory tested using conventional microacoustic system components in various configuratons. Only the pulse echo technique yielded promising results. On fouled aluminum plates, thin film layers of 40 ..mu..m and greater were measured using a focused 30 MHz ceramic transducer operated at 25 MHz; this represents a resolution of about 2/3 wavelength. Measurements made on the inside of fouled 1'' aluminum pipes yielded film thicknesses of 75 to 125 ..mu..m. The thinnest layer resolved was approximately 1-1/4 wavelength. The resolution of slime layer thicknesses in the magnitudes of OTEC interest (5 to 30 ..mu..m) using pulse echo microacoustics will require transducer development. In particular, a higher operating frequency (150 to 200 MHz) and advanced material construction is recommended for further research.

Hirshman, J; Munier, R S.C.

1980-09-01T23:59:59.000Z

249

Continued development of a semianalytical solution for two-phase fluid and heat flow in a porous medium  

SciTech Connect (OSTI)

Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.

Doughty, C.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)

1991-06-01T23:59:59.000Z

250

Measurements of sideward flow around the balance energy  

E-Print Network [OSTI]

Sideward flow values have been determined with the INDRA multidetector for Ar+Ni, Ni+Ni and Xe+Sn systems studied at GANIL in the 30 to 100 A.MeV incident energy range. The balance energies found for Ar+Ni and Ni+Ni systems are in agreement with previous experimental results and theoretical calculations. Negative sideward flow values have been measured. The possible origins of such negative values are discussed. They could result from a more important contribution of evaporated particles with respect to the contribution of promptly emitted particles at mid-rapidity. But effects induced by the methods used to reconstruct the reaction plane cannot be totally excluded. Complete tests of these methods are presented and the origins of the ``auto-correlation'' effect have been traced back. For heavy fragments, the observed negative flow values seem to be mainly due to the reaction plane reconstruction methods. For light charged particles, these negative values could result from the dynamics of the collisions and from the reaction plane reconstruction methods as well. These effects have to be taken into account when comparisons with theoretical calculations are done.

INDRA collaboration; D. Cussol; T. Lefort; J. Pter

2001-11-13T23:59:59.000Z

251

On the dynamical Rayleigh-Taylor instability in compressible viscous flows without heat conductivity  

E-Print Network [OSTI]

We investigate the instability of a smooth Rayleigh-Taylor steady-state solution to compressible viscous flows without heat conductivity in the presence of a uniform gravitational field in a bounded domain $\\Omega\\subset{\\mathbb R}^3$ with smooth boundary $\\partial\\Omega$. We show that the steady-state is linearly unstable by constructing a suitable energy functional and exploiting arguments of the modified variational method. Then, based on the constructed linearly unstable solutions and a local well-posedness result of classical solutions to the original nonlinear problem, we further reconstruct the initial data of linearly unstable solutions to be the one of the original nonlinear problem and establish an appropriate energy estimate of Gronwall-type. With the help of the established energy estimate, we show that the steady-state is nonlinearly unstable in the sense of Hadamard by a careful bootstrap argument. As a byproduct of our analysis, we find that the compressibility has no stabilizing effect in the linearized problem for compressible viscous flows without heat conductivity.

Fei Jiang; Song Jiang

2014-03-20T23:59:59.000Z

252

STOCHASTIC HEATING, DIFFERENTIAL FLOW, AND THE ALPHA-TO-PROTON TEMPERATURE RATIO IN THE SOLAR WIND  

SciTech Connect (OSTI)

We extend previous theories of stochastic ion heating to account for the motion of ions along the magnetic field B . We derive an analytic expression for the temperature ratio T{sub i}/T{sub p} in the solar wind assuming that stochastic heating is the dominant ion heating mechanism, where T{sub i} is the perpendicular temperature of species i and T{sub p} is the perpendicular proton temperature. This expression describes how T{sub i}/T{sub p} depends upon U{sub i} and ?{sub ?p}, where U{sub i} is the average velocity along B of species i in the proton frame and ?{sub ?p} is the ratio of the parallel proton pressure to the magnetic pressure, which we take to be ?< 1. We compare our model with previously published measurements of alpha particles and protons from the Wind spacecraft. We find that stochastic heating offers a promising explanation for the dependence of T{sub ?}/T{sub p} on U{sub ?} and ?{sub ?p} when the fractional cross helicity and Alfvn ratio at the proton-gyroradius scale have values that are broadly consistent with solar-wind measurements. We also predict how the temperatures of other ion species depend on their drift speeds.

Chandran, B. D. G.; Verscharen, D.; Isenberg, P. A.; Bourouaine, S. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Quataert, E. [Astronomy Department and Theoretical Astrophysics Center, 601 Campbell Hall, The University of California, Berkeley, CA 94720 (United States); Kasper, J. C., E-mail: benjamin.chandran@unh.edu, E-mail: s.bourouaine@unh.edu, E-mail: phil.isenberg@unh.edu, E-mail: daniel.verscharen@unh.edu, E-mail: eliot@astro.berkeley.edu, E-mail: jkasper@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

2013-10-10T23:59:59.000Z

253

Field Measurement of Heating System in a Hotel Building in Harbin  

E-Print Network [OSTI]

is adopted with a 1:1 distribution of heating condensate flow and living hot water supply condensate. Considering test concurrence, high efficiency and rational personal placement, three groups are categorized which is in charge of flow test... with fan coil distributing in function area and guest rooms in low zone and radiator distributing in office rooms in high zone. All condensation water afflux in the condensate tank located at 2th underground. A simplified schematic of water system...

Zhao, T.; Zhang, J.; Li, Y.

2006-01-01T23:59:59.000Z

254

Quantitative method for measuring heat flux emitted from a cryogenic object  

DOE Patents [OSTI]

The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infra-red sensing devices.

Duncan, Robert V. (Tijeras, NM)

1993-01-01T23:59:59.000Z

255

Quantitative method for measuring heat flux emitted from a cryogenic object  

DOE Patents [OSTI]

The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.

Duncan, R.V.

1993-03-16T23:59:59.000Z

256

Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01  

SciTech Connect (OSTI)

The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m{sup 2}). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that {approx}50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a 'toe-thrust' ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those {approx}70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the K-G basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m{sup 2}. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basi

Anne Trehu; Peter Kannberg

2011-06-30T23:59:59.000Z

257

Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01  

SciTech Connect (OSTI)

The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m2). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that ~50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a "toe-thrust" ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those ~70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the KG basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m2. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basin is at the low end of glob

Trehu, Anne; Kannberg, Peter

2011-06-30T23:59:59.000Z

258

DEVELOPING FLOW AND HEAT TRANSFER IN STRONGLY CURVED DUCTS OF RECTANGULAR CROSS-SECTION  

E-Print Network [OSTI]

Forced Convection Heat Transfer in Curved RectangularInfluence of Curvature on Heat Transfer to IncompressibleT. , "Forced Convective Heat Transfer in a Curved Channel

Yee, G.

2010-01-01T23:59:59.000Z

259

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

as other types of air source heat pumps, VRF systems needconventional packaged air source heat pumps. Typical GSHPis basically an air source heat pump), especially when the

Hong, Tainzhen

2010-01-01T23:59:59.000Z

260

Countercurrent flow limited (CCFL) heat flux in the high flux isotope reactor (HFIR) fuel element  

SciTech Connect (OSTI)

The countercurrent flow (CCF) performance in the fuel element region of the HFIR is examined experimentally and theoretically. The fuel element consists of two concentric annuli filled with aluminum clad fuel plates of 1.27 mm thickness separated by 1.27 mm flow channels. The plates are curved as they go radially outward to accomplish constant flow channel width and constant metal-to-coolant ratio. A full-scale HFIR fuel element mock-up is studied in an adiabatic air-water CCF experiment. A review of CCF models for narrow channels is presented along with the treatment of CCFs in system of parallel channels. The experimental results are related to the existing models and a mechanistic model for the annular'' CCF in a narrow channel is developed that captures the data trends well. The results of the experiment are used to calculate the CCFL heat flux of the HFIR fuel assembly. It was determined that the HFIR fuel assembly can reject 0.62 Mw of thermal power in the CCFL situation. 31 refs., 17 figs.

Ruggles, A.E.

1990-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Guarded capacitance probes for measuring particle concentration and flow  

DOE Patents [OSTI]

Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.

Louge, M.Y.

1995-10-17T23:59:59.000Z

262

AERIAL MEASUREMENTS OF CONVECTION CELL ELEMENTS IN HEATED LAKES  

SciTech Connect (OSTI)

Power plant-heated lakes are characterized by a temperature gradient in the thermal plume originating at the discharge of the power plant and terminating at the water intake. The maximum water temperature discharged by the power plant into the lake depends on the power generated at the facility and environmental regulations on the temperature of the lake. Besides the observed thermal plume, cloud-like thermal cells (convection cell elements) are also observed on the water surface. The size, shape and temperature of the convection cell elements depends on several parameters such as the lake water temperature, wind speed, surfactants and the depth of the thermocline. The Savannah River National Laboratory (SRNL) and Clemson University are collaborating to determine the applicability of laboratory empirical correlations between surface heat flux and thermal convection intensity. Laboratory experiments at Clemson University have demonstrated a simple relationship between the surface heat flux and the standard deviation of temperature fluctuations. Similar results were observed in the aerial thermal imagery SRNL collected at different locations along the thermal plume and at different elevations. SRNL will present evidence that the results at Clemson University are applicable to cooling lakes.

Villa-Aleman, E; Saleem Salaymeh, S; Timothy Brown, T; Alfred Garrett, A; Malcolm Pendergast, M; Linda Nichols, L

2007-12-19T23:59:59.000Z

263

Local Measurement of NonClassical Ion Heating During Magnetic Reconnection  

E-Print Network [OSTI]

??enic flows [9]. In SSX (Swarthmore Spheromak Experiment), Alfv??enic ion jets correlated with reconnection, reconnection occurs when two spheromaks collide at a substantial fraction of the Alfv??en speed. Thus, e#ects such as compressional heating or conversion of the translational energy of the spheromaks could complicate

264

Local Measurement of Non-Classical Ion Heating During Magnetic Reconnection  

E-Print Network [OSTI]

´enic flows [9]. In SSX (Swarthmore Spheromak Experiment), Alfv´enic ion jets correlated with reconnection, reconnection occurs when two spheromaks collide at a substantial fraction of the Alfv´en speed. Thus, effects such as compressional heating or conversion of the translational energy of the spheromaks could complicate

265

Contem porary M athem atics Heat Kernels measures and Infinite dimensional analysis.  

E-Print Network [OSTI]

Contem porary M athem atics Heat Kernels measures and Infinite dimensional analysis. Bruce K 0202939. c°0000 (copyright holder) 1 2 BRUCE K. DRIVER Section 3 is devoted to a description, random walks and analysis to manifolds and graphs" held at IHP in Paris. 2. Finite Dimensional Heat

Driver, Bruce

266

Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature  

E-Print Network [OSTI]

Measurement of the electronic thermal conductance channels and heat capacity of graphene at low, Gwf , test the Wiedemann-Franz (wf) law, and infer the electronic heat capacity, with a minimum value of a Coulomb-interacting electron-hole plasma may result in deviations from the Fermi-liquid values of the Mott

267

A COMPARISON OF LABORATORY AND FIELD-TEST MEASUREMENTS OF HEAT PUMP WATER HEATERS  

E-Print Network [OSTI]

#12;A COMPARISON OF LABORATORY AND FIELD-TEST MEASUREMENTS OF HEAT PUMP WATER HEATERS William P a heat pump water heater (HPWH). After developing the HPWH, a field-test plan was implemented whereby 20 evaluate this effect. #12;INTRODUCTION Domestic water heaters account for approximately 2.5 EJ (2.4 x 1015

Oak Ridge National Laboratory

268

Heating of solid earthen material, measuring moisture and resistivity  

DOE Patents [OSTI]

The present invention includes a method of treating solid earthen material having volatile, semi-volatile, and non-volatile contaminants that utilizes electrical energy. A plurality of electrodes are inserted into a region of earthen material to be treated in a selected geometric pattern. Varying phase and voltages configurations are applied to corresponding electrodes to achieve heating, physical phase changes, and the placement of substances within the treatment region. Additionally, treatment mediums can be added to either treat the contamination within the soil or to restrict their mobility.

Heath, William O. (Richland, WA); Gauglitz, Phillip A. (Richland, WA); Pillay, Gautam (Richland, WA); Bergsman, Theresa M. (Richland, WA); Eschbach, Eugene A. (Richland, WA); Goheen, Steven C. (Richland, WA); Richardson, Richard L. (West Richland, WA); Roberts, Janet S. (Pasco, WA); Schalla, Ronald (Kennewick, WA)

1996-01-01T23:59:59.000Z

269

Heating of solid earthen material, measuring moisture and resistivity  

DOE Patents [OSTI]

The present invention includes a method of treating solid earthen material having volatile, semi-volatile, and non-volatile contaminants that utilizes electrical energy. A plurality of electrodes are inserted into a region of earthen material to be treated in a selected geometric pattern. Varying phase and voltages configurations are applied to corresponding electrodes to achieve heating, physical phase changes, and the placement of substances within the treatment region. Additionally, treatment mediums can be added to either treat the contamination within the soil or to restrict their mobility. 29 figs.

Heath, W.O.; Gauglitz, P.A.; Pillay, G.; Bergsman, T.M.; Eschbach, E.A.; Goheen, S.C.; Richardson, R.L.; Roberts, J.S.; Schalla, R.

1996-08-13T23:59:59.000Z

270

Heat flow of the Earth and resonant capture of solar 57-Fe axions  

E-Print Network [OSTI]

In a very conservative approach, supposing that total heat flow of the Earth is exclusively due to resonant capture inside the Earth of axions, emitted by 57-Fe nuclei on Sun, we obtain limit on mass of hadronic axion: m_aEarth, this estimation could be improved to the value: m_a<1.6 keV. Both the values are less restrictive than limits set in devoted experiments to search for 57-Fe axions (m_a<216-745 eV), but are much better than limits obtained in experiments with 83-Kr (m_a<5.5 keV) and 7-Li (m_a<13.9-32 keV).

F. A. Danevich; A. V. Ivanov; V. V. Kobychev; V. I. Tretyak

2009-05-07T23:59:59.000Z

271

Energy Saving Measures of Heating Network - Computerized Real-time Control System  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, ChinaHVAC Technologies for Energy Efficiency, Vol. IV-12-9 Energy Saving Measures of Heating Network ?Computerized Real-time Control System Jieyan Zhang Service Bureau, Deputy-director, State...

Zhang, J.

2006-01-01T23:59:59.000Z

272

An Investigation of Alternative Methods for Measuring Static Pressure of Unitary Air Conditioners and Heat Pumps  

E-Print Network [OSTI]

This project was created to address an important issue currently faced by test facilities measuring static pressure for air-conditioning and heat pumps. Specifically, ASHRAE Standard 37, the industry standard for test setup, requires an outlet duct...

Wheeler, Grant Benson

2013-08-12T23:59:59.000Z

273

Fuel Ion Ratio Measurements in NBI Heated Deuterium Tritium Fusion Plasmas at JET using Neutron Emission Spectrometry  

E-Print Network [OSTI]

Fuel Ion Ratio Measurements in NBI Heated Deuterium Tritium Fusion Plasmas at JET using Neutron Emission Spectrometry

274

The effects of orientation angle, subcooling, heat flux, mass flux, and pressure on bubble growth and detachment in subcooled flow boiling  

E-Print Network [OSTI]

The effects of orientation angle, subcooling, heat flux, mass flux, and pressure on bubble growth and detachment in subcooled flow boiling were studied using a high-speed video camera in conjunction with a two-phase flow ...

Sugrue, Rosemary M

2012-01-01T23:59:59.000Z

275

Measurement Of The Fluid Flow Load On A Globe Valve Stem Under Various Cavitation  

E-Print Network [OSTI]

Measurement Of The Fluid Flow Load On A Globe Valve Stem Under Various Cavitation Conditions)" #12;Measurement Of The Fluid Flow Load On A Globe Valve Stem Under Various Cavitation Conditions, cavitation, fluid flow load, CFD. Abstract: The evaluation of fluid forces on the stem is important for wear

Paris-Sud XI, Université de

276

Community-Scale Environmental Measures and Urban Heat Island  

E-Print Network [OSTI]

, such as photovoltaic arrays, solar thermal collectors, and passive solar designs, as well as measures to mitigate, are not well quantified. Community-scale environmental measures include solar collection technologies of solar radiation, planting trees and other vegetation for shading and evapotranspirative cooling

277

MEASUREMENT OF HEAT TRANSFER DURING DROP-WISE CONDENSATION OF WATER ON POLYETHYLENE  

E-Print Network [OSTI]

MEASUREMENT OF HEAT TRANSFER DURING DROP-WISE CONDENSATION OF WATER ON POLYETHYLENE Gagan Deep distribution of temperature during drop-wise condensation over a polyethylene substrate was measured using on the substrate was simultaneously visualized. Static contact angles of water on polyethylene are measured

Khandekar, Sameer

278

Enhanced Algorithm for Traceability Measurements in UF6 Flow Pipe  

SciTech Connect (OSTI)

The Blend Down Monitoring System (BDMS) is used to continually assess the mixing and downblending of highly enriched uranium (HEU) with low-enriched uranium (LEU). This is accomplished by measuring the enrichment and the fissile mass flow rate of the UF{sub 6} gas located in each process pipe of the system by inducing the fission of the {sup 235}U contained in the gas. Measurements are taken along this process route to trace the HEU content all the way to the product stream, ensuring that HEU was down blended. A problem associated with the current traceability measuring algorithm is that it does not account for the time-varying background that is introduced to the system by the movement of the shutter located at the HEU leg of the process. The current way of dealing with that problem is to discard the data for periods when the HEU shutter is open (50% of overall data) because it correlates with the same timeframe in which the direct contribution to background from the HEU shutter was seen. The advanced algorithm presented in this paper allows for continuous measurement of traceability (100%) by accurately accounting for the varying background during the shutter-movement cycle. This algorithm utilizes advanced processing techniques that identify and discriminate the different sources of background radiation, instead of grouping them into one background group for the whole measurement cycle. By using this additional information, the traceability measurement statistics can achieve a greater number of values, thus improving the overall usefulness of these measurements in the BDMS. The effectiveness of the new algorithm was determined by modeling it in a simulation and ensuring that it retained its integrity through a large number of runs, including various shutter-failure conditions. Each run was performed with varying amounts of background radiation from each individual source and with varying traceability counts. The simulations documented in this paper prove that the algorithm can stand up to various transients introduced into the system, such as failure of shutter movement.

Copinger, Thomas E [ORNL; March-Leuba, Jose A [ORNL; Upadhyaya, Belle R [ORNL

2007-01-01T23:59:59.000Z

279

UNSAT-H Version 2. 0: Unsaturated soil water and heat flow model  

SciTech Connect (OSTI)

This report documents UNSAT-H Version 2.0, a model for calculating water and heat flow in unsaturated media. The documentation includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plant transpiration, and the code listing. Waste management practices at the Hanford Site have included disposal of low-level wastes by near-surface burial. Predicting the future long-term performance of any such burial site in terms of migration of contaminants requires a model capable of simulating water flow in the unsaturated soils above the buried waste. The model currently used to meet this need is UNSAT-H. This model was developed at Pacific Northwest Laboratory to assess water dynamics of near-surface, waste-disposal sites at the Hanford Site. The code is primarily used to predict deep drainage as a function of such environmental conditions as climate, soil type, and vegetation. UNSAT-H is also used to simulate the effects of various practices to enhance isolation of wastes. 66 refs., 29 figs., 7 tabs.

Fayer, M.J.; Jones, T.L.

1990-04-01T23:59:59.000Z

280

Flow visualization and leakage measurements of labyrinth seals  

E-Print Network [OSTI]

A large scale test rig is used to conduct an experimental investigation into the leakage resistance properties and flow characteristics of labyrinth seals. A novel test facility with multiple cavities that provides 2D, planar flow at a scale...

Johnson, James Wayne

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Flow visualization and leakage measurements of worn labyrinth seals  

E-Print Network [OSTI]

A large-scale flow visualization test facility is used to conduct an experimental investigation into the leakage resistance and flow characteristics of worn labyrinth seals. Wear in labyrinth seals is a consequence of contact between the rotating...

Allen, Brian Frank

1997-01-01T23:59:59.000Z

282

Virtual Measurement in Pipes, Part 1: Flowing Bottom Hole Pressure Under Multi-Phase Flow and Inclined Wellbore Conditions  

E-Print Network [OSTI]

SPE 30975 Virtual Measurement in Pipes, Part 1: Flowing Bottom Hole Pressure Under Multi-Phase Flow, 163245 SPEUT. Abstract Pressure drop prediction in pipes is an old petroleum engineering problem. There is a long history of attempts to develop empirical correlations to predict the pressure drop in pipes. Some

Mohaghegh, Shahab

283

New sensor for measurement of low air flow velocity. Phase I final report  

SciTech Connect (OSTI)

The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

1995-08-01T23:59:59.000Z

284

Deceleration of Alpha Particles in the Solar Wind by Instabilities and the Rotational Force: Implications for Heating, Azimuthal Flow, and the Parker Spiral Magnetic Field  

E-Print Network [OSTI]

Protons and alpha particles in the fast solar wind are only weakly collisional and exhibit a number of non-equilibrium features, including relative drifts between particle species. Two non-collisional mechanisms have been proposed for limiting differential flow between alpha particles and protons: plasma instabilities and the rotational force. Both mechanisms decelerate the alpha particles. In this paper, we derive an analytic expression for the rate $Q_{\\mathrm{flow}}$ at which energy is released by alpha-particle deceleration, accounting for azimuthal flow and conservation of total momentum. We find that $Q_{\\mathrm{flow}} > 0 $ at $r r_{\\mathrm{crit}}$. We compare the value of $Q_{\\mathrm{flow}}$ at $r< r_{\\mathrm{crit}}$ with empirical heating rates for protons and alpha particles, denoted $Q_{\\mathrm{p}}$ and $Q_{\\alpha}$, deduced from in-situ measurements of fast-wind streams from the Helios and Ulysses spacecraft. We find that $Q_{\\mathrm{flow}}$ exceeds $Q_{\\alpha}$ at $r < 1\\,\\mathrm{AU}$, $Q_{...

Verscharen, Daniel; Bourouaine, Sofiane; Hollweg, Joseph V

2014-01-01T23:59:59.000Z

285

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

tool for geothermal water loop heat pump systems, 9thInternational IEA Heat Pump Conference, Zrich, Switzerland,Performance of ground source heat pump system in a near-zero

Hong, Tainzhen

2010-01-01T23:59:59.000Z

286

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

multiple water-to-air heat pump units, which are connectedeach of the water-to-air heat pump units can run in eitheras other types of air source heat pumps, VRF systems need

Hong, Tainzhen

2010-01-01T23:59:59.000Z

287

Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow  

DOE Patents [OSTI]

A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

Armstrong, William D. (Laramie, WY); Naughton, Jonathan (Laramie, WY); Lindberg, William R. (Laramie, WY)

2008-09-02T23:59:59.000Z

288

Subcooled flow boiling heat transfer and critical heat flux in water-based nanofluids at low pressure  

E-Print Network [OSTI]

A nanofluid is a colloidal suspension of nano-scale particles in water, or other base fluids. Previous pool boiling studies have shown that nanofluids can improve the critical heat flux (CHF) by as much as 200%. In this ...

Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

289

5th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xian, China, 36 July 2005  

E-Print Network [OSTI]

5th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xian, such as hemangiomas and port wine stain (PWS) birthmarks, are congenital and pro- gressive vascular malformations of the dermis. To remove them, laser energy is irradiated at appropriate wavelengths inducing permanent thermal

Aguilar, Guillermo

290

P~!ETRIC STUDY OF HEAT FLOW DURING RESISTANCE SPOT WELDING Euiwhan Kim and Thomas W. Eagar  

E-Print Network [OSTI]

i ...) P~!ETRIC STUDY OF HEAT FLOW DURING RESISTANCE SPOT WELDING Euiwhan Kim and Thomas W. Eagar case of resistance welding to see the effects of each parameter on the lobe shape. The parameters include material proper- ties, geometry of electrodes and work piece, weld time and current

Eagar, Thomas W.

291

Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."  

SciTech Connect (OSTI)

Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

Yu, W.; France, D. M.; Routbort, J. L. (Energy Systems)

2011-01-19T23:59:59.000Z

292

Film Cooling, Heat Transfer and Aerodynamic Measurements in a Three Stage Research Gas Turbine  

E-Print Network [OSTI]

turbine rotational speeds namely, 2400rpm, 2550rpm and 3000rpm. Interstage aerodynamic measurements with miniature five hole probes are also acquired at these speeds. The aerodynamic data characterizes the flow along the first stage rotor exit, second...

Suryanarayanan, Arun

2010-07-14T23:59:59.000Z

293

Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States  

SciTech Connect (OSTI)

Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships between structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.

D. D. Blackwell; K. W. Wisian; M. C. Richards; J. L. Steele

2000-04-01T23:59:59.000Z

294

Direct nuclear heating measurements and analyses for plasma-facing materials  

SciTech Connect (OSTI)

Experimental measurement of nuclear heating rates was carried out in a simulated D-T fusion neutron environment from 1989 through 1992 under the U.S. DOE/JAERI collaborative program at the Fusion Neutronics Source Facility. Small probes of materials were irradiated in close vicinity of a rotating target. A sophisticated microcalorimetric technique was developed for on-line measurements of local nuclear heating in a mixed neutron plus photon field. Measurements with probes of graphite, titanium, copper, zirconium, niobium, molybdenum, tin, tungsten, and lead are presented. These measurements have been analyzed using the three-dimensional Monte Carlo code MCNP and various heating number/kerma factor libraries. The ratio of calculated to experimental (C/E) heating rates shows a large deviation from 1 for all the materials except tungsten. For example, C/E`s for graphite range from 1.14 ({delta} = 10%) to 1.36 (10%) for various kerma factor libraries. Uncertainty estimates on total nuclear heating using a sensitivity approach are presented. Interestingly, C/E data for all libraries and materials can be consolidated to obtain a probability density distribution of C/E`s that very much resembles a Gaussian distribution centered at 1.04. The concept of `quality factor` is defined and elaborated so as to take cognizance of observed uncertainties on prediction of nuclear heating for all the nine materials. 45 refs., 69 figs., 9 tabs.

Kumar, A.; Abdou, M.A.; Youssef, M.Z. [Univ. of California, Los Angeles, CA (United States); Ikeda, Y.; Konno, C.; Kosako, K.; Oyama, Y.; Nakamura, T.; Maekawa, H. [Japan Atomic Energy Research Inst., Ibaraki (Japan)

1995-08-01T23:59:59.000Z

295

Direct nuclear heating measurements and analyses for structural materials induced by deuterium-tritium neutrons  

SciTech Connect (OSTI)

Nuclear heat deposition rates in the structural components of a fusion reactor have been measured directly with a microcalorimeter incorporated with an intense deuterium-tritium (D- T) neutron source, the Fusion Neutronics Source (FNS) at the Japan Atomic Energy Research Institute (JAERI), under the framework of the JAERI/U.S. Department of Energy (U.S. DOE) collaborative program on fusion neutronics. Heat deposition rates at positions up to 200 mm of depth in a Type 304 stainless steel assembly bombarded with D-T neutrons were measured along with single probe experiments. The measured heating rates were compared with comprehensive calculations in order to verify the adequacy of the currently available database relevant to the nuclear heating. In general, calculations with data of JENDL-3 and ENDL-85 libraries gave good agreement with experiments for all single probe materials, whereas RMCCS, based on ENDF/B-V, suffered from unreasonable overestimation in the heating number. It was demonstrated that the nuclear/thermal coupled calculation is a powerful tool to analyze the time-dependent temperature change due to the heat transfer in the probe materials. The analysis for the Type 304 stainless steel assembly, based on JENDL-3, demonstrated that the calculation, in general, was in good agreement with the measurement up to 200 mm of depth along the central axis of the assembly. 31 refs., 16 figs., 4 tabs.

Ikeda, Y.; Konno, C.; Kosako, K.; Oyama, Y.; Maekawa, F.; Maekawa, H. [Japan Atomic Energy Research Inst., Ibaraki (Japan); Kumar, A.; Youssef, M.Z.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

1995-08-01T23:59:59.000Z

296

Dynamic measurement of heat loss coefficients through Trombe wall glazing systems  

SciTech Connect (OSTI)

A Trombe wall presents a unique opportunity to measure the heat-loss coefficient through the glazing system because the wall itself can be used as a heat meter. Since the instantaneous heat flux through the outer wall surface can be determined, the heat loss coefficient at night can be calculated by dividing by the wall surface-to-ambient temperature difference. This technique has been used to determine heat-loss coefficients for Los Alamos test rooms during the winter of 1980-1981. Glazing systems studied include single and double glazing both with and without night insulation used in conjunction with a flat black paint, and both single and double glazing used in conjunction with a selective surface.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

297

Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating  

SciTech Connect (OSTI)

The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850????????C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys???¢???????? weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in t

Kumar Sridharan; Mark Anderson; Todd Allen; Michael Corradini

2012-01-30T23:59:59.000Z

298

Measurement of steam quality in two-phase critical flow  

E-Print Network [OSTI]

through a venturi for subczitical flow of steam-water 45 13 Steam quality as a function of vapor-phase Reynolds number for subczitical flow of steam-water 46 14 Steam quality as a function of Collins and Gacesa parameter for subcritical flow of steam... high degree of accuracy. He suggested that the following correlation may be used to calculate two-phase flow rates through orifices to within an error of 1. 5 percent 339 K 3 9 9' J 9 v v a v w f + [ 1. 26 (1-f ) K Y /K ] ~p p where V and L...

Sinclair, John William

2012-06-07T23:59:59.000Z

299

Measurements of SCRF cavity dynamic heat load in horizontal test system  

SciTech Connect (OSTI)

The Horizontal Test System (HTS) at Fermilab is currently testing fully assembled, dressed superconducting radio frequency (SCRF) cavities. These cavities are cooled in a bath of superfluid helium at 1.8K. Dissipated RF power from the cavities is a dynamic heat load on the cryogenic system. The magnitude of heat flux from these cavities into the helium is also an important variable for understanding cavity performance. Methods and hardware used to measure this dynamic heat load are presented. Results are presented from several cavity tests and testing accuracy is discussed.

DeGraff, B.D.; Bossert, R.J.; Pei, L.; Soyars, W.M.; /Fermilab

2009-11-01T23:59:59.000Z

300

Method and system for measuring multiphase flow using multiple pressure differentials  

DOE Patents [OSTI]

An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

Fincke, James R. (Idaho Falls, ID)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts  

SciTech Connect (OSTI)

Particle deposition in ventilation ducts influences particle exposures of building occupants and may lead to a variety of indoor air quality concerns. Experiments have been performed in a laboratory to study the effects of particle size and air speed on deposition rates of particles from turbulent air flows in galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. The duct systems were constructed of materials typically found in commercial heating, ventilating and air conditioning (HVAC) systems. In the steel duct system, experiments with nominal particle sizes of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition rates of particles with nominal sizes of 1, 3, 5, 8 and 13 {micro}m were measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces (floor, wall and ceiling) at two straight duct sections where the turbulent flow profile was fully developed. In steel ducts, deposition rates were higher to the duct floor than to the wall, which were, in turn, greater than to the ceiling. In insulated ducts, deposition was nearly the same to the duct floor, wall and ceiling for a given particle size and air speed. Deposition to duct walls and ceilings was greatly enhanced in insulated ducts compared to steel ducts. Deposition velocities to each of the three duct surface orientations in both systems were found to increase with increasing particle size or air velocity over the ranges studied. Deposition rates measured in the current experiments were in general agreement with the limited observations of similar systems by previous researchers.

Sippola, Mark R.; Nazaroff, William W.

2003-08-01T23:59:59.000Z

302

RESEARCH ARTICLE Time resolved measurements of the flow generated  

E-Print Network [OSTI]

relevance, the generated flow field is interesting fluid mechanically as it incorporates high velocities. The flow is interesting from a fluid mechanical perspective as it includes high spatial gradients-structure interactions. Forces are a function of the biomechanical forces within the fish and the fluid mechanical

Wainwright, Peter C.

303

DIAGNOSING THE TIME DEPENDENCE OF ACTIVE REGION CORE HEATING FROM THE EMISSION MEASURE. II. NANOFLARE TRAINS  

SciTech Connect (OSTI)

The time dependence of heating in solar active regions can be studied by analyzing the slope of the emission measure distribution coolward of the peak. In a previous study we showed that low-frequency heating can account for 0% to 77% of active region core emission measures. We now turn our attention to heating by a finite succession of impulsive events for which the timescale between events on a single magnetic strand is shorter than the cooling timescale. We refer to this scenario as a 'nanoflare train' and explore a parameter space of heating and coronal loop properties with a hydrodynamic model. Our conclusions are (1) nanoflare trains are consistent with 86% to 100% of observed active region cores when uncertainties in the atomic data are properly accounted for; (2) steeper slopes are found for larger values of the ratio of the train duration {Delta} {sub H} to the post-train cooling and draining timescale {Delta} {sub C}, where {Delta} {sub H} depends on the number of heating events, the event duration and the time interval between successive events ({tau} {sub C}); (3) {tau} {sub C} may be diagnosed from the width of the hot component of the emission measure provided that the temperature bins are much smaller than 0.1 dex; (4) the slope of the emission measure alone is not sufficient to provide information about any timescale associated with heating-the length and density of the heated structure must be measured for {Delta} {sub H} to be uniquely extracted from the ratio {Delta} {sub H}/{Delta} {sub C}.

Reep, J. W.; Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)] [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Klimchuk, J. A., E-mail: jeffrey.reep@rice.edu, E-mail: stephen.bradshaw@rice.edu, E-mail: james.a.klimchuk@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Lab., Code 671, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

2013-02-20T23:59:59.000Z

304

Analysis of reactor material experiments investigating oxide fuel crust stability and heat transfer in jet impingement flow  

SciTech Connect (OSTI)

An analysis is presented of the crust stability and heat transfer behavior in the CSTI-1, CSTI-3, and CWTI-11 reactor material experiments in which a jet of molten oxide fuel at approx. 160/sup 0/K above its freezing temperature was impinged normally upon stainless steel plates initially at 300 and 385 K. The major issue is the existence of nonexistence of a stable solidified layer of fuel, or crust, interstitial to the flowing hot fuel and the steel substrate, tending to insulate the steel from the hot molten fuel. A computer model was developed to predict the heatup of thermocouples imbedded immediately beneath the surface of the plate for both of the cases in which a stable crust is assumed to be either present or absent during the impingement phase. Comparison of the model calculations with the measured thermocouple temperatures indicates that a protective crust was present over nearly all of the plate surface area throughout the impingement process precluding major melting of the plate steel. However, the experiments also show evidence for very localized and isolated steel melting as revealed by localized and isolated pitting of the steel surface and the response of thermocouples located within the pitted region.

Sienicki, J.J.; Spencer, B.W.

1985-01-01T23:59:59.000Z

305

The 1983 Temperature Gradient and Heat Flow Drilling Project for the State of Washington  

SciTech Connect (OSTI)

During the Summer of 1983, the Washington Division of Geology and Earth Resources carried out a three-hole drilling program to collect temperature gradient and heat flow information near potential geothermal resource target areas. The project was part of the state-coupled US Department of Energy Geothermal Program. Richardson Well Drilling of Tacoma, Washington was subcontracted through the State to perform the work. The general locations of the project areas are shown in figure 1. The first hole, DNR 83-1, was located within the Green River valley northwest of Mount St. Helens. This site is near the Green River Soda Springs and along the projection of the Mount St. Helens--Elk Lake seismic zone. The other two holes were drilled near Mount Baker. Hole DNR 83-3 was sited about 1/4 km west of the Baker Hot Springs, 10.5 km east of Mount Baker, while hole DNR 83-5 was located along Rocky Creek in the Sulphur Creek Valley. The Rocky Creek hole is about 10 km south-southwest of the peak. Two other holes, DNR 83-2 and DNR 83-4, were located on the north side of the Sulphur Creek Valley. Both holes were abandoned at early stages of drilling because of deep overburden and severe caving problems. The sites were apparently located atop old landslide deposits.

Korosec, Michael A.

1983-11-01T23:59:59.000Z

306

Interlaboratory comparison of four heat flow meter apparatuses on planed polyisocyanurate boards foamed with CFC-11  

SciTech Connect (OSTI)

This report describes an interlaboratory comparison of apparent thermal conductivity (k) results on planed polyisocyanurate (PIR) boards foamed with chlorofluorocarbon-11 (CFC-11). Sequential tests were conducted at 75{degrees}F (24{degrees}C) at four facilities on two rigid (PIR) boards, individually and as a pair, using four comparative heat flow meter apparatuses. The specimens were shipped from lab to lab, and testing yielded 15 k-values that have two standard deviation (2 {alpha}) value of 2.2% when described by: k(Btu{center dot}in./h{center dot}ft{sup 2}{center dot}F) = 0/1365 + 1.15 {times} 10{sup {minus}4} t k(W/m{center dot}K) = 0.0197 + 1.66 {times} 10{sup {minus}5} t, where t is the elapsed time in days after planing of the boards. An increased 2 {sigma} value for board 2 may be associated with a larger variation in thickness. The 15 thermal conductance (C) values have a 2 {sigma} value of 3.2% when described by: C(Btu/H{center dot}h{center dot}{sup 2}{center dot}{degrees}F) = 0.1069 + 1.20 {times} 10{sup {minus}4} t. Thus, the 2 {sigma} (k-values) of the interlaboratory comparison is not reduced by comparing C values. 5 refs., 1 fig., 8 tabs.

Graves, R.S.; McElroy, D.L. (Oak Ridge National Lab., TN (USA)); Miller, R.G. (Walter (Jim) Research Corp., St. Petersburg, FL (USA)); Yarbrough, D.W. (Tennessee Technological Univ., Cookeville, TN (USA)); Zarr, R.R. (National Inst. of Standards and Technology, Gaithersburg, MD (USA))

1991-06-01T23:59:59.000Z

307

On the role of the Knudsen number with respect to heat transfer in micro-scale flows  

SciTech Connect (OSTI)

Advances in microelectronics and in microelectromechanical systems have resulted in devices with characteristic lengths approaching that of the molecular mean free path of gases. In certain applications, it has been proposed that gaseous flows be used to cool such devices. Prior research has revealed a fundamental lack of knowledge regarding the behavior of such micro-flows. The primary dimensionless parameter associated with gaseous micro-scale transport is the Knudsen number. A critical examination of the effects of an increasing Knudsen number on heat and momentum transfer characteristics of gaseous micro-flows is presented. The importance of thermal radiation, accurate thermophysical property models, and the introduction of higher order constitutive relations, i.e., the Burnett relations, are also discussed in relation to micro-flows. Conclusions are drawn regarding the relative importance of each of the above topics.

Baker, J.; Calvert, M.E.; Power, D.J.; Chen, E.T. [Univ. of Alabama, Birmingham, AL (United States). Dept. of Materials and Mechanical Engineering; Ramalingam, M.L. [Universal Energy Systems, Inc., Dayton, OH (United States); Lamp, T.R. [Wright Lab., Wright-Patterson AFB, OH (United States)

1996-12-31T23:59:59.000Z

308

Full-Scale Boiler Measurements Demonstrating Striated Flows during Biomass Co-Firing  

E-Print Network [OSTI]

ACERC-2008 Full-Scale Boiler Measurements Demonstrating Striated Flows during Biomass Co based measurements methods #12;Objective Minor impact of biomass cofiring with coal on boiler operation) · Experimentally demonstrate the existence of stratified flows in boilers Indication: SO2, ash composition, straw

309

The interaction of flow, heat transfer, and free interfaces in an electron-beam vaporization system for metals  

SciTech Connect (OSTI)

A numerical analysis is made of the liquid flow and energy transport in a system to vaporize metals. The energy from an electron beam heats metal confined in a water-cooled crucible. Metal vaporizes from a hot pool of circulating liquid which is surrounded by a shell of its own solid. Flow in the pool is strongly driven by temperature-induced buoyancy and capillary forces and is located in the transition region between laminar and turbulent flow. At high vaporization rates, the thrust of the departing vapor forms a trench at the beam impact site. A modified finite element method is used to calculate the flow and temperature fields coupled with the interface locations. The mesh is structured with spines that stretch and pivot as the interfaces move. The discretized equations are arranged in an {open_quotes}arrow{close_quotes} matrix and solved using the Newton-Raphson method. The electron-beam power and width are varied for cases involving the high-rate vaporization of aluminum. Attention is focused on the interaction of vaporization, liquid flow, and heat transport in the trench area.

Westerberg, K.W. [Aspen Technology, Inc., Cambridge, MA (United States); McClelland, M.A. [Lawrence Livermore National Lab., CA (United States); Finlayson, B.A. [Univ. of Washington, Seattle, WA (United States)

1994-11-01T23:59:59.000Z

310

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

311

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

Kirol, Lance D. (Shelly, ID)

1988-01-01T23:59:59.000Z

312

Analytical and Numerical Study of Joule Heating Effects on Electrokinetically Pumped Continuous Flow PCR Chips  

E-Print Network [OSTI]

Analytical and Numerical Study of Joule Heating Effects on Electrokinetically Pumped Continuous, and the potential for integration.1-3 Joule heating is inevitable when electrokinetic pumping is used Form: December 8, 2007 Joule heating is an inevitable phenomenon for microfluidic chips involving

Le Roy, Robert J.

313

Gravitational collapse of a spherical star with heat flow as a possible energy mechanism of gamma-ray bursts  

E-Print Network [OSTI]

We investigate the gravitational collapse of a spherically symmetric, inhomogeneous star, which is described by a perfect fluid with heat flow and satisfies the equation of state $p=\\rho/3$ at its center. In the process of the gravitational collapsing, the energy of the whole star is emitted into space. And the remaining spacetime is a Minkowski one without a remnant at the end of the process. For a star with a solar mass and solar radius, the total energy emitted is at the order of $10^{54}$ {\\rm erg}, and the time-scale of the process is about $8s$. These are in the typical values for a gamma-ray burst. Thus, we suggest the gravitational collapse of a spherical star with heat flow as a possible energy mechanism of gamma-ray bursts.

Zhe Chang; Cheng-Bo Guan; Chao-Guang Huang; Xin Li

2008-03-26T23:59:59.000Z

314

Two-phase air-water stratified flow measurement using ultrasonic techniques  

SciTech Connect (OSTI)

In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200?s. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

Fan, Shiwei; Yan, Tinghu; Yeung, Hoi [School of Engineering, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom)

2014-04-11T23:59:59.000Z

315

Reduced heat flow in light water (H2O) due to heavy water (D2O) William R. Gormana)  

E-Print Network [OSTI]

Reduced heat flow in light water (H2O) due to heavy water (D2O) William R. Gormana) and James D by over 1000% with the addition of heavy water. A column of light water cools from 25°C to 0°C in 11 hours, however, with the addition of heavy water it takes more than 100 hours. There is a concentration

Suzuki, Masatsugu

316

Apparatus for passive removal of subsurface contaminants and mass flow measurement  

DOE Patents [OSTI]

A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining mass flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the mass flow rate to be determined through the retrofitted Baroball valve.

Jackson, Dennis G. (Augusta, GA); Rossabi, Joseph (Aiken, SC); Riha, Brian D. (Augusta, GA)

2003-07-15T23:59:59.000Z

317

Apparatus for passive removal of subsurface contaminants and volume flow measurement  

DOE Patents [OSTI]

A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining volume flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the volume flow rate to be determined through the retrofitted Baroball valve.

Jackson, Dennis G. (Augusta, GA); Rossabi, Joseph (Aiken, SC); Riha, Brian D. (Augusta, GA)

2002-01-01T23:59:59.000Z

318

National Radio Astronomy Observatory Measurements of Copper Heat Straps Near 4 K  

E-Print Network [OSTI]

as OFHC. When annealed, these materials have very high thermal conductivity, with a maximum measurements of the thermal resistance of heat straps used in the ALMA Band 6 cartridges. The results suggest the contact area is large (~ 10 cm2 ) but that grease actually increases the thermal resistance when

Groppi, Christopher

319

CALMOS: Innovative device for the measurement of nuclear heating in material testing reactors  

SciTech Connect (OSTI)

An R and D program has been carried out since 2002 in order to improve gamma heating measurements in the 70 MWth OSIRIS Material Testing Reactor operated by CEA's Nuclear Energy Div. at the Saclay research center. Throughout this program an innovative calorimetric probe associated to a specific handling system has been designed in order to make measurements both along the fissile height and on the upper part of the core, where nuclear heating rates still remain high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for the process validation, while a displacement system has been especially designed to move the probe axially. A final probe has been designed thanks to modeling results and to preliminary measurements obtained with mock-ups irradiated to a heating level of 2W/g, This paper gives an overview of the development, describes the calorimetric probe, and expected advantages such as the possibility to use complementary methods to get the nuclear heating measurement. Results obtained with mock-ups irradiated in ex-core area of the reactor are presented and discussed. (authors)

Carcreff, H. [Alternative Energies and Atomic Energy Commission CEA, Saclay Center, DEN/DANS/DRSN/SIREN, Gif Sur Yvette, 91191 (France)

2011-07-01T23:59:59.000Z

320

Calorimetric measurements of nuclear heating in small probes of plasma-facing materials  

SciTech Connect (OSTI)

Direct measurements of nuclear heating in small probes of materials subjected to D-T neutrons from an accelerator based source were initiated during 1989 under USDOE/JAERI collaborative program. A calorimetric technique was utilized to make these measurements. The probes of plasma facing materials, among others, were kept very close, {approximately}3 to {approximately}7 cm, to the neutron source inside an evacuated vacuum chamber. A typical probe measured 20 mm in diameter by 20 mm in length. Typical source intensity was {approximately}2 x 10{sup 12} n/s. The temperature changes in the probe medium were detected by thermal sensors spatially distributed in the probe. The thermal sensors included bead-thermistors, and platinum RTD`s. The change in resistance of a thermal sensor due to onset of nuclear heating was picked up by an automated data acquisition and control system that included a highly sensitive digital voltmeter that had a resolution of 100 nV in voltage range of 300 mV or less. Usually, an individual probe was subjected to spaced neutron pulses of time duration 3 m to 10 m. Two consecutive source neutron pulses were separated by a cooling interval of almost the same duration as that of a source pulse. This approach made it possible to clearly distinguish between the heating and drift phases of the probe medium, on one hand, and to ascertain and verify the reproducibility of measured heating rates from one neutron pulse to another, on the other hand.

Kumar, A.; Abdou, M.A.; Youssef, M.Z. [Univ. of California, Los Angeles, CA (United States)] [and others

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fusion Engineering and Design 42 (1998) 307318 Experimental measurement of nuclear heating in a  

E-Print Network [OSTI]

Fusion Engineering and Design 42 (1998) 307­318 Experimental measurement of nuclear heating , Yoshimi Kasugai b a School of Engineering and Applied Science, Uni6ersity of California (UCLA), Los Angeles, CA 90095-159710, USA b Department of Reactor Engineering, Japan Atomic Energy Research Institute

Abdou, Mohamed

322

Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes for Hoop Creep Enhancement  

SciTech Connect (OSTI)

Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined here is iterative in nature and is intended to systematically (1) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, which will be (2) evaluated at ''in-service'' loads at service temperatures and environments. This research program is being conducted in collaboration with the DOE's Oak Ridge National Laboratory and the vested industrial partner Special Metals Corporation. In this ninth quarter of performance, program activities are continued for Tasks 2, 3 and 4 and are reported herein. Two sets of MA956 tube material samples rotary crossrolled at rolling angles of {beta} = 2{sup o} and 8{sup o} are processed in Task 3 and available for mechanical property testing in the remainder of this project. These samples are at various stages of creep testing and evaluation in Task 4. The creep rigs are being upgraded to handle long term testing at 1000 C and above. Reduced test times at accelerated temperatures will allow for additional testes to be conducted resulting in overall robust creep data statistics. The creep performance enhancement in cross-rolled MA956 material samples versus the base creep property is elucidated. Additional creep enhancements are derived when flow formed tubes are flattened at 900 C and recrystallized. The Larsen-Miller parameter for the improvised thermo-mechanical processing now approaches 52. At least 2-3 orders of magnitude of improvement in creep rates/day are demonstrated for the cross-rolled samples versus the base reference tests.

Bimal K. Kad

2006-04-10T23:59:59.000Z

323

An examination of interference in waste solidification through measurement of heat signature  

SciTech Connect (OSTI)

The hydration of cementing materials is accompanied by heat evolution which is closely related to their structure development. The presence of wastes usually interferes with the hydration of cementing materials. This study examined their interference in waste stabilization/solidification processes through the measurement of adiabatic heat evolution using a computerized Quadrel{trademark} system. Two cementitious materials, an alkali-activated blast furnace slag binder and an ASTM Type 1 Portland cement were used to solidify an electric arc furnace (EAF) dust, which has high concentrations of B, Cr, Hg, Pb, Ni and Zn. The EAF dust contents were 0, 30 and 60% by mass. Different mixing conditions were also examined. The interference of EAF dust with the hydration of cementing materials was described using several parameters derived from the heat evolution curves: equivalent initial time of setting (equivalent time at 20 C); total heat evolution at initial time of setting; equivalent final time of setting, total heat evolution at final time of setting and total heat evolution at equivalent time of 28 and 90 days. Experimental results indicated that the Quadrel{trademark} system was a useful tool to examine the interference in waste stabilization/solidification and to assist with the selection of cementing materials.

Shi, C.; Stegemann, J.; Caldwell, R. [Water Technology International Corp., Burlington, Ontario (Canada)] [Water Technology International Corp., Burlington, Ontario (Canada)

1998-07-01T23:59:59.000Z

324

An evaluation of pressure and flow measurement in the Molten Salt Test Loop (MSTL) system.  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL allows customers and researchers to test components in flowing, molten nitrate salt at plant-like conditions for pressure, flow, and temperature. An important need in thermal storage systems that utilize molten salts is for accurate flow and pressure measurement at temperatures above 535%C2%B0C. Currently available flow and pressure instrumentation for molten salt is limited to 535%C2%B0C and even at this temperature the pressure measurement appears to have significant variability. It is the design practice in current Concentrating Solar Power plants to measure flow and pressure on the cold side of the process or in dead-legs where the salt can cool, but this practice won't be possible for high temperature salt systems. For this effort, a set of tests was conducted to evaluate the use of the pressure sensors for flow measurement across a device of known flow coefficient Cv. To perform this task, the pressure sensors performance was evaluated and was found to be lacking. The pressure indicators are severely affected by ambient conditions and were indicating pressure changes of nearly 200psi when there was no flow or pressure in the system. Several iterations of performance improvement were undertaken and the pressure changes were reduced to less than 15psi. The results of these pressure improvements were then tested for use as flow measurement. It was found that even with improved pressure sensors, this is not a reliable method of flow measurement. The need for improved flow and pressure measurement at high temperatures remains and will need to be solved before it will be possible to move to high temperature thermal storage systems with molten salts.

Gill, David Dennis; Kolb, William J.; Briggs, Ronald J.

2013-07-01T23:59:59.000Z

325

Energy Efficient Process Heating: Managing Air Flow Kevin Carpenter and Kelly Kissock  

E-Print Network [OSTI]

temperature and decreased combustion gas mass flow rate. The method for calculating savings from preheating flow include minimizing combustion air, preheating combustion air, minimizing ventilation air from minimizing combustion air accounts for improvement in efficiency from increased combustion

Kissock, Kelly

326

RESEARCH ARTICLE Optical plume velocimetry: a new flow measurement technique  

E-Print Network [OSTI]

hydrothermal systems Timothy J. Crone ? Russell E. McDuff ? William S. D. Wilcock Received: 5 November 2007 that fluid flow rates in mid- ocean ridge hydrothermal systems may be strongly influ- enced by mechanical that are transitioning between jet-like and plume-like behavior. List of symbols A area of jet nozzle, m2 B initial

Wilcock, William

327

Why Insertion Turbine Meters are Replacing Orifice Plates for Steam Flow Measurement  

E-Print Network [OSTI]

WHY INSERTION TURBINE MBTBRS A E REPLACING ORIFICE PLATES FOR STEAM FLOW MEASURE ENT J. J. Rusnak Engineering Measurements Company Longmont, Colorado ABSTRACT Flow measurement is a complex and application related discipline. It borders... to be instrumented quickly, economically and without dis rupting production; and further, these meters had to be accurate in order to be useful in making energy saving decisions. Thus, the entry of the insertion turbine meter for steam in 1975. Since then it has...

Rusnak, J. J.

1983-01-01T23:59:59.000Z

328

Development Of An Experiment For Measuring Flow Phenomena Occurring In A Lower Plenum For VHTR CFD Assessment  

SciTech Connect (OSTI)

The objective of the present report is to document the design of our first experiment to measure generic flow phenomena expected to occur in the lower plenum of a typical prismatic VHTR (Very High Temperature Reactor) concept. In the process, fabrication sketches are provided for the use of CFD (computational fluid dynamics) analysts wishing to employ the data for assessment of their proposed codes. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. One aspect of the complex flow in a prismatic VHTR is being addressed: flow and thermal mixing in the lower plenum ("hot streaking" issue). Current prismatic VHTR concepts were examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses were applied to determine key non-dimensional parameters and their magnitudes over this operating range. The flow in the lower plenum can locally be considered to be a situation of multiple jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentum-dominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other.

D. M. McEligot; K.G. Condie; G. E. Mc Creery; H. M. Mc Ilroy

2005-09-01T23:59:59.000Z

329

Indriect Measurement Of Nitrogen In A Mult-Component Natural Gas By Heating The Gas  

DOE Patents [OSTI]

Methods of indirectly measuring the nitrogen concentration in a natural gas by heating the gas. In two embodiments, the heating energy is correlated to the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the diluent concentrations other than nitrogen (typically carbon dioxide) are known, the model equation can be solved for the nitrogen concentration.

Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

2004-06-22T23:59:59.000Z

330

Heat transfer and flow characteristics of cooling channels in turbine blades  

E-Print Network [OSTI]

/mass transfer distributions were determined for straight flow' through a pin fin channel (H/D = 1, S/D = X/D = 2. 5) and a flow through the pin fin channel with trailing edge flow ejection. The overall friction factor and local pressure drop results were... obtained for various configurations and lengths (L/d = 2 and 20) of the trailing edge ejection holes, From the pressure drop data, the radial mass flow rate and the mass flow rates through trailing edge ejection holes were calculated. The results show...

Saxena, Amit

1988-01-01T23:59:59.000Z

331

Development, calibration and experimental results obtained with an innovative calorimeter (CALMOS) for nuclear heating measurements  

SciTech Connect (OSTI)

Nuclear heating inside an MTR reactor has to be known in order to be able to control samples temperature during irradiation experiments. An R and D program has been carried out at CEA to design a new type of in-core calorimetric system. This new development, started in 2002, has for main objective to manufacture a calorimeter suitable to monitoring nuclear heating inside the 70 MWth OSIRIS material testing reactor operated by CEA's Nuclear Energy Div. at the Saclay research center. An innovative calorimetric probe, associated to a specific handling system, has been designed to provide access to measurements both along the fissile height and on the upper part of the core, where nuclear heating still remains high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for process validation, while a displacement system has been especially studied to move the probe along a given axial measurement range. This paper deals with the development, tests on preliminary mock-ups and the finalization of the probe. Main modeling and experimental results are presented. Moreover, alternative methods to calibration for nuclear heating rate measurements which are now possible with this new calorimeter are presented and discussed. (authors)

Carcreff, H.; Cloute-Cazalaa, V.; Salmon, L. [CEA/DEN/DRSN/SIREN/LASPI (Saclay), F-91191 Gif sur Yvette Cedex (France)

2011-07-01T23:59:59.000Z

332

Development, calibration, and experimental results obtained with an innovative calorimeter (CALMOS) for nuclear heating measurements  

SciTech Connect (OSTI)

Nuclear heating inside an MTR reactor has to be known in order to be able to control samples temperature during irradiation experiments. An R and D program has been carried out at CEA to design a new type of in-core calorimetric system. This new development, started in 2002, has for main objective to manufacture a calorimeter suitable to monitoring nuclear heating inside the 70 MWth OSIRIS material testing reactor operated by CEA's Nuclear Energy Division at the Saclay research center. An innovative calorimetric probe, associated to a specific handling system, has been designed to provide access to measurements both along the fissile height and on the upper part of the core, where nuclear heating still remains high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for process validation, while a displacement system has been especially studied to move the probe along a given axial measurement range. This paper deals with the development, tests on preliminary mock-ups and the finalization of the probe. Main modeling and experimental results are presented. Moreover, alternative methods to calibration for nuclear heating rate measurements which are now possible with this new calorimeter are presented and discussed. (authors)

Carcreff, Hubert; Cloute-Cazalaa, Veronique; Salmon, Laurent [CEA, DEN, DRSN, SIREN, LASPI Saclay, F-91191 Gif Sur Yvette, (France)

2012-08-15T23:59:59.000Z

333

MEASUREMENT OF THE SHOCK-HEATED MELT CURVE OF LEAD USING PYROMETRY AND REFLECTOMETRY  

SciTech Connect (OSTI)

Data on the high-pressure melting temperatures of metals is of great interest in several fields of physics including geophysics. Measuring melt curves is difficult but can be performed in static experiments (with laser-heated diamond-anvil cells for instance) or dynamically (i.e., using shock experiments). However, at the present time, both experimental and theoretical results for the melt curve of lead are at too much variance to be considered definitive. As a result, we decided to perform a series of shock experiments designed to provide a measurement of the melt curve of lead up to about 50 GPa in pressure. At the same time, we developed and fielded a new reflectivity diagnostic, using it to make measurements on tin. The results show that the melt curve of lead is somewhat higher than the one previously obtained with static compression and heating techniques.

D. Partouche-Sebban and J. L. Pelissier, Commissariat a` l'Energie Atomique,; F. G. Abeyta, Los Alamos National Laboratory; W. W. Anderson, Los Alamos National Laboratory; M. E. Byers, Los Alamos National Laboratory; D. Dennis-Koller, Los Alamos National Laboratory; J. S. Esparza, Los Alamos National Laboratory; S. D. Borror, Bechtel Nevada; C. A. Kruschwitz, Bechtel Nevada

2004-01-01T23:59:59.000Z

334

Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated by Joule effect  

E-Print Network [OSTI]

)" #12;1. Introduction Brazed aluminium heat exchangers are composed of flat tubes on the refrigerant exchangers with round tube, such as charge reduction and higher heat transfer coefficient. But, according are thus not suitable to small-channel heat exchangers. As a consequence, the refrigerant distribution

Boyer, Edmond

335

Measurement of laser heating in spin exchange optical pumping by NMR diffusion sensitization gradients  

SciTech Connect (OSTI)

This paper details pulsed gradient NMR measurements of the {sup 3}He diffusion coefficient in sealed cells during spin exchange optical pumping. The potential of ultra low field magnetic resonance imgaing (MRI) and NMR for noninvasive measurement of cell pressure is demonstrated. Diffusion sensitization gradients allow measurement of the {sup 3}He diffusion coefficient from which the pressure and/or temperature of the gas can be determined during optical pumping. The pressure measurements were compared with neutron time of flight transmission measurements. Good agreement was observed between the temperature/pressure measurements and predictions based on Chapman-Enskog theory. The technique had sufficient sensitivity to observe the diffusion coefficient increasing with temperature in a sealed cell. With this method, evidence for laser heating of the {sup 3}He during optical pumping was found. The results show that NMR diffusion measurements allow noninvasive measurement of the cell temperature and/or pressure in an optical pumping setup. The method can be expanded using MRI to probe the spatial distribution of the diffusion coefficient. These techniques can be applied to the further investigation of polarization limiting effects such as laser heating.

Parnell, Steven R.; Deppe, Martin H.; Ajraoui, Salma; Parra-Robles, Juan; Wild, Jim M. [Unit of Academic Radiology, University of Sheffield, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF (United Kingdom); Boag, Stephen [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

2010-05-15T23:59:59.000Z

336

Method and apparatus for measuring the mass flow rate of a fluid  

DOE Patents [OSTI]

A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

Evans, Robert P. (Idaho Falls, ID); Wilkins, S. Curtis (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Blotter, Jonathan D. (Pocatello, ID)

2002-01-01T23:59:59.000Z

337

USING TIME-LAPSE SEISMIC MEASUREMENTS TO IMPROVE FLOW MODELING OF CO2 INJECTION  

E-Print Network [OSTI]

Marly. The EOR process in the RCP section of the Weyburn Field uses CO2 and water injection to displaceUSING TIME-LAPSE SEISMIC MEASUREMENTS TO IMPROVE FLOW MODELING OF CO2 INJECTION IN THE WEYBURN, particularly CO2. Time lapse seismic monitoring has motivated changes to the reservoir description in a flow

338

Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from  

E-Print Network [OSTI]

Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume, Massachusetts 02129 E-mail: themelis@nmr.mgh.harvard.edu Abstract. We describe a near-infrared spectroscopy NIRS-Optical Instrumentation Engineers. DOI: 10.1117/1.2710250 Keywords: cerebral blood flow; cerebral blood volume; near-infrared

339

Numerical analysis of laminar fluid flow and heat transfer in a parallel plate channel with normally in-line positioned plates  

E-Print Network [OSTI]

NUMERICAL ANALYSIS OF LAMINAR FLUID FLOW AND HEAT TRANSFER IN A PARALLEL PLATE CHANNEL WITH NORMALLY IN-LINE POSITIONED PLATES A Thesis by JOHN GRADY iVICMATH Submitted to the Office of Graduate Studies of Texas AkM University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1991 Major Subject: Mechanical Engineering NUMERICAL ANALYSIS OF LAMINAR FLUID FLOW AND HEAT TRANSFER IN A PARALLEL PLATE CHANNEI WITH NORMALLY IN-LINE POSITIONED PLATES A...

McMath, John Grady

2012-06-07T23:59:59.000Z

340

Quantitative blood flow measurements in the small animal cardiopulmonary system using digital subtraction angiography  

SciTech Connect (OSTI)

Purpose: The use of preclinical rodent models of disease continues to grow because these models help elucidate pathogenic mechanisms and provide robust test beds for drug development. Among the major anatomic and physiologic indicators of disease progression and genetic or drug modification of responses are measurements of blood vessel caliber and flow. Moreover, cardiopulmonary blood flow is a critical indicator of gas exchange. Current methods of measuring cardiopulmonary blood flow suffer from some or all of the following limitations--they produce relative values, are limited to global measurements, do not provide vasculature visualization, are not able to measure acute changes, are invasive, or require euthanasia. Methods: In this study, high-spatial and high-temporal resolution x-ray digital subtraction angiography (DSA) was used to obtain vasculature visualization, quantitative blood flow in absolute metrics (ml/min instead of arbitrary units or velocity), and relative blood volume dynamics from discrete regions of interest on a pixel-by-pixel basis (100x100 {mu}m{sup 2}). Results: A series of calibrations linked the DSA flow measurements to standard physiological measurement using thermodilution and Fick's method for cardiac output (CO), which in eight anesthetized Fischer-344 rats was found to be 37.0{+-}5.1 ml/min. Phantom experiments were conducted to calibrate the radiographic density to vessel thickness, allowing a link of DSA cardiac output measurements to cardiopulmonary blood flow measurements in discrete regions of interest. The scaling factor linking relative DSA cardiac output measurements to the Fick's absolute measurements was found to be 18.90xCO{sub DSA}=CO{sub Fick}. Conclusions: This calibrated DSA approach allows repeated simultaneous visualization of vasculature and measurement of blood flow dynamics on a regional level in the living rat.

Lin Mingde; Marshall, Craig T.; Qi, Yi; Johnston, Samuel M.; Badea, Cristian T.; Piantadosi, Claude A.; Johnson, G. Allan [Department of Radiology, Center for In Vivo Microscopy and Department of Biomedical Engineering, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States); Division of Pulmonary and Critical Care Medicine and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Box 3823, Durham, North Carolina 27710 (United States); Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States); Department of Radiology, Center for In Vivo Microscopy and Department of Biomedical Engineering, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States); Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States); Division of Pulmonary and Critical Care Medicine and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Box 3823, Durham, North Carolina 27710 (United States); Department of Radiology, Center for In Vivo Microscopy and Department of Biomedical Engineering, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States)

2009-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sandia National Laboratories: measure 3-D wind flow  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime is the cumulative timemaximize energy3-D wind flow

342

Continuous Flow Diffusion Chamber Measurements of IN Concentration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O"Program and BookFlow Diffusion

343

Effervescent heating: constraints from nearby cooling flow clusters observed with XMM-Newton  

E-Print Network [OSTI]

We have used deprojected radial density and temperature profiles of a sample of 16 nearby CF clusters observed with XMM-Newton to test whether the effervescent heating model can satisfactorily explain the dynamics of CF clusters. For each cluster we derived the required extra heating as a function of cluster-centric distance for various values of the unknown parameters $\\dot M$ (mass deposition rate) and $f_c$ (conduction efficiency). We fitted the extra heating curve using the AGN effervescent heating function and derived the AGN parameters $L$ (the time-averaged luminosity) and $r_0$ (the scale radius where the bubbles start rising in the ICM). While we do not find any solution with the effervescent heating model for only one object, we do show that AGN and conduction heating are not cooperating effectively for half of the objects in our sample. For most of the clusters we find that, when a comparison is possible, the derived AGN scale radius $r_0$ and the observed AGN jet extension have the same order of magnitude. The AGN luminosities required to balance radiative losses are substantially lowered if the fact that the AGN deposits energy within a finite volume is taken into account. For the Virgo cluster, we find that the AGN power derived from the effervescent heating model is in good agreement with the observed jet power.

Rocco Piffaretti; Jelle Kaastra

2006-02-16T23:59:59.000Z

344

Statistical Relationships of the Tropical Rainfall Measurement Mission (TRMM) Precipitation and Large-scale Flow  

E-Print Network [OSTI]

The relationship between precipitation and large-flow is important to understand and characterize in the climate system. We examine statistical relationships between the Tropical Rainfall Measurement Mission (TRMM) 3B42 gridded precipitation...

Borg, Kyle

2010-07-14T23:59:59.000Z

345

Acoustic measurement of the Deepwater Horizon Macondo well flow rate  

E-Print Network [OSTI]

On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and ...

Camilli, Richard

346

Heat Transfer Engineering, 28(6):525540, 2007 Copyright C Taylor and Francis Group, LLC  

E-Print Network [OSTI]

Heat Transfer Engineering, 28(6):525­540, 2007 Copyright C Taylor and Francis Group, LLC ISSN: 0145-7632 print / 1521-0537 online DOI: 10.1080/01457630701193906 Heat Transfer Measurements, Flow Pattern Maps, Stillwater, Oklahoma, USA Local heat transfer coefficients and flow parameters were measured for air

Ghajar, Afshin J.

347

A FULL SCALE ROOM FOR THE EXPERIMENTAL STUDY OF INTERIOR BUILDING CONVECTIVE HEAT TRANSFER  

E-Print Network [OSTI]

air flow measurement. A water source heat pump provided chilled water to a fan-coil unit which in turn on volumetric air flow measurement and an overall room heat balance. Analysis was directed at results fromA FULL SCALE ROOM FOR THE EXPERIMENTAL STUDY OF INTERIOR BUILDING CONVECTIVE HEAT TRANSFER: DESIGN

348

Urban Sewage Delivery Heat Transfer System (1): Flow Resistance and Energy Analysis  

E-Print Network [OSTI]

The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Given the schematic diagram of TDHT system, introducing the definition of equivalent fouling roughness height, and using the Niklaus...

Zhang, C.; Wu, R.; Li, G.; Li, X.; Huang, L.; Sun, D.

2006-01-01T23:59:59.000Z

349

Finite element analysis of conjugate heat transfer in axisymmetric pipe flows  

E-Print Network [OSTI]

Temperature Page 43 se NOMENCLATURE specific heat of fluid at constant pressure variational operator test function dimensionless pipe thickness (t/R) non ? dimensional axial coordinate surface traction matrix Ky M?. nr Pe Sue!i wall...

Fithen, Robert Miller

1987-01-01T23:59:59.000Z

350

TURBULENT HEATING OF THE DISTANT SOLAR WIND BY INTERSTELLAR PICKUP PROTONS IN A DECELERATING FLOW  

E-Print Network [OSTI]

Previous models of solar wind heating by interstellar pickup proton-driven turbulence have assumed that the wind speed is a constant in heliocentric radial position. However, the same pickup process, which is taken to ...

Isenberg, Philip A.

351

Alumina Nanoparticle Pre-coated Tubing Ehancing Subcooled Flow Boiling Cricital Heat Flux  

E-Print Network [OSTI]

Nanofluids are engineered colloidal dispersions of nano-sized particle in common base fluids. Previous pool boiling studies have shown that nanofluids can improve critical heat flux (CHF) up to 200% for pool boiling and ...

Truong, Bao H.

352

The flow structure under mixed convection in a uniformly heated vertical pipe  

E-Print Network [OSTI]

For decay heat removal systems in the conceptual Gas-cooled Fast Reactor (GFR) currently under development, passive emergency cooling using natural circulation of a gas at an elevated pressure is being considered. Since ...

Lee, Jeongik

2005-01-01T23:59:59.000Z

353

Heating dynamics of CO{sub 2}-laser irradiated silica particles with evaporative shrinking: Measurements and modeling  

SciTech Connect (OSTI)

The heating dynamics of CO{sub 2}-laser heated micron-sized particles were determined for temperatures <3500 K measured using infrared imaging. A coupled mass and energy conservation model is derived to predict single particle temperatures and sizes, which were compared with data from particles deposited on non-absorbing substrates to assess the relevant heat transfer processes. Analysis reveals substrate conduction dominates all other heat losses, while laser absorption determined from Mie theory is strongly modulated by particle evaporative shrinking. This study provides insights into the light coupling and heating of particle arrays where the material optical properties are temperature-dependent and particle size changes are significant.

Elhadj, S.; Qiu, S. R.; Stolz, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Monterrosa, A. M. [Department of Nuclear Engineering and Department of Materials Science and Engineering, University of California, Berkeley, California 94704 (United States)

2012-05-01T23:59:59.000Z

354

The Difficulty of the Heating of Cluster Cooling Flows by Sound Waves and Weak Shocks  

E-Print Network [OSTI]

We investigate heating of the cool core of a galaxy cluster through the dissipation of sound waves and weak shocks excited by the activities of the central active galactic nucleus (AGN). Using a weak shock theory, we show that this heating mechanism alone cannot reproduce observed temperature and density profiles of a cluster, because the dissipation length of the waves is much smaller than the size of the core and thus the wave energy is not distributed to the whole core.

Yutaka Fujita; Takeru Ken Suzuki

2006-10-19T23:59:59.000Z

355

1992 Columbia River Salmon Flow Measures Options Analysis/EIS.  

SciTech Connect (OSTI)

This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

Not Available

1992-01-01T23:59:59.000Z

356

Measurement of two-phase flow at the core upper plenum interface under simulated reflood conditions  

SciTech Connect (OSTI)

Objectives of the Instrument Development Loop program were to simulate flows at the core/upper plenum interface during the reflood phase of a LOCA and to develop instruments for measuring mass-flows at this interface. A tie plate drag body was developed and tested successfully, and the data obtained were shown to be equivalent to pressure drops. The tie-plate drag body gave useful measurements in pure downflow, and the drag/turbine combination correlates with mass flow for high upflow. (DLC)

Thomas, D.G.; Combs, S.K.; Bagwell, M.E.

1980-01-01T23:59:59.000Z

357

Measure Guideline: Heat Pump Water Heaters in New and Existing Homes  

SciTech Connect (OSTI)

This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH products) installed in existing homes in the northeast region of the United States.

Shapiro, C.; Puttagunta, S.; Owens, D.

2012-02-01T23:59:59.000Z

358

6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xi'an, China, 11-15 July 2009  

E-Print Network [OSTI]

6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xi in pipeline transportation, where it is important to identify and control bottlenecks influence on production be viewed as the hydrodynamic equivalent of the Mach number for gas flows. Simplified hydraulic theories

Al Hanbali, Ahmad

359

Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (12) Evaluations of Spatial Distributions of Flow and Heat Transfer in Steam Injector  

SciTech Connect (OSTI)

Next-generation nuclear reactor systems have been under development aiming at simplified system and improvement of safety and credibility. One of the innovative technologies is the supersonic steam injector, which has been investigated as one of the most important component of the next-generation nuclear reactor. The steam injector has functions of a passive pump without large motor or turbo-machinery and a high efficiency heat exchanger. The performances of the supersonic steam injector as a pump and a heat exchanger are dependent on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. In previous studies of the steam injector, there are studies about the operating characteristics of steam injector and about the direct contact condensation between static water pool and steam in atmosphere. However, there is a little study about the turbulent heat transfer and flow behavior under the great shear stress. In order to examine the heat transfer and flow behavior in supersonic steam injector, it is necessary to measure the spatial temperature distribution and velocity in detail. The present study, visible transparent supersonic steam injector is used to obtain the axial pressure distributions in the supersonic steam injector, as well as high speed visual observation of water jet and steam interface. The experiments are conducted with and without non-condensable gas. The experimental results of the interfacial flow behavior between steam and water jet are obtained. It is experimentally clarified that an entrainment exists on the water jet surface. It is also clarified that discharge pressure is depended on the steam supply pressure, the inlet water flow rate, the throat diameter and non-condensable flow rate. Finally a heat flux is estimated about 19 MW/m{sup 2} without non-condensable gas condition in steam. (authors)

Yutaka Abe; Yujiro Kawamoto [University of Tsukuba, Tsukuba, Ibaraki (Japan); Chikako Iwaki [Toshiba Corporation (Japan); Tadashi Narabayashi [Hokkaido University, Kita-ku, Sapporo (Japan); Michitsugu Mori; Shuichi Ohmori [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

360

RELAP5/MOD3 code quality assurance plan for ORNL ANS narrow channel flow and heat transfer correlations  

SciTech Connect (OSTI)

Modifications have been made to REIAP5 to account for flow and heat transfer in narrow channels between fuel plates such as found in the cores of the Advanced Neutron Source (ANS) and High Flux Isotope Reactor (HFIR) reactors. These early models were supplied by Art Ruggles of Oak Ridge National Laboratory (ORNL) and Don Fletcher of the Idaho National Engineering Laboratory (INEL) and were adapted to and implemented into RELAP5 by Rich Riemke, Rex Shumway and Ken Katsma. The purpose of this report is to document the current status of these special models in the standard version of RELAP5/MOD3 and describe the quality assurance procedures.

MIller, C.S.; Shumway, R.W.

1992-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Solids flow control and measurement in the PEATGAS pilot-plant program  

SciTech Connect (OSTI)

In a pilot plant gasification program, the measurement and control of major process variables such as flow, temperature, pressure, density and level are essential to develop accurate material balance and reliable scale-up data. Of these, solids mass flow metering and control usually present the most difficult application. Problems are encountered because of (a) solids characteristics, which can cause erosion and plugging; (b) measurement requirements, which are often at elevated pressures and temperatures; and (c) changes in stream characteristics, such as density, viscosity and solids concentration. This paper reviews the approaches used to measure and control solid-liquid and solid-gas mixtures and elaborates on the design, installation and operating experiences of a lockhopper dry feed system commissioned to control solids feed to the gasifier. Accurate and reliable solids flow measurement and control was achieved during the operation of the PEATGAS pilot plant. Standard instrumentation, modified to meet process requirements, was used to measure multi-component flows of solid-gas and solid-liquid mixtures. In addition, a lockhopper feed system using an innovative solids rate control and measurement technique was installed, commissioned and operated. IGT as a process developer will continue to look for new or improved instrumentation that might be better suited to measure important process variables such as the solids mass flow applications discussed herein.

Wohadlo, S.J.; Biljetina, R.; Laurens, R.M.; Bachta, R.

1982-01-01T23:59:59.000Z

362

A primary high-pressure air flow measurement standard in Taiwan  

SciTech Connect (OSTI)

A high-pressure air-flow national measurement standard is constructed in Taiwan with a capacity of 8400 Nm{sup 3}/h and a projected measurement uncertainty of {plus_minus}0.2% in the pressure range of 1 {approximately} 84 bars. it is a blow-down type facility, and its main purpose is to serve as the primary standard of a larger-flowrate natural gas flow measurement facility to be built in the future by Chinese Petroleum Company (CPC). The system has a gyroscopic weighing platform suitable for high precision gravimetric measurements and several sonic nozzles with different throat diameters situated in a chamber to be the reference flow meters. A set of two turbine meters, 50mm and 100mm, are sued as the transfer standard. The facility has two test sections separated by the nozzle chamber and four different calibration modes could be arranged. To make calibration, the storage tank, the temperature control loop, and two sets of pressure regulating valve establish a pressurized air flow with stable temperature and pressure in the test section. The control of the air-flow diversion, connect-disconnect mechanism, sonic nozzle array is made through a hydraulic power unit operating at 200 bars. Real time measurements of temperature, pressure, flow signal, and time are collected through a Honeywell 9000-series PLC and a FIX DMAC data acquisition/control software. This paper describes the key components of the test facility and presents the preliminary results of performance assessment.

Jiunn-Haur Shaw; Fong-Ruey Yang; Yao-Fu Chen [Industrial Technology Research Inst., Hsinchu (Taiwan, Province of China)

1995-12-31T23:59:59.000Z

363

Comparative Analysis of Natural Convection Flows Simulated by both the Conservation and Incompressible Forms of the Navier-Stokes Equations in a Differentially-Heated Square Cavity  

SciTech Connect (OSTI)

This report illustrates a comparative study to analyze the physical differences between numerical simulations obtained with both the conservation and incompressible forms of the Navier-Stokes equations for natural convection flows in simple geometries. The purpose of this study is to quantify how the incompressible flow assumption (which is based upon constant density advection, divergence-free flow, and the Boussinesq gravitational body force approximation) differs from the conservation form (which only assumes that the fluid is a continuum) when solving flows driven by gravity acting upon density variations resulting from local temperature gradients. Driving this study is the common use of the incompressible flow assumption in fluid flow simulations for nuclear power applications in natural convection flows subjected to a high heat flux (large temperature differences). A series of simulations were conducted on two-dimensional, differentially-heated rectangular geometries and modeled with both hydrodynamic formulations. From these simulations, the selected characterization parameters of maximum Nusselt number, average Nusselt number, and normalized pressure reduction were calculated. Comparisons of these parameters were made with available benchmark solutions for air with the ideal gas assumption at both low and high heat fluxes. Additionally, we generated body force, velocity, and divergence of velocity distributions to provide a basis for further analysis. The simulations and analysis were then extended to include helium at the Very High Temperature gas-cooled Reactor (VHTR) normal operating conditions. Our results show that the consequences of incorporating the incompressible flow assumption in high heat flux situations may lead to unrepresentative results. The results question the use of the incompressible flow assumption for simulating fluid flow in an operating nuclear reactor, where large temperature variations are present. The results show that the use of the incompressible flow assumption with the Boussinesq gravitational body force approximation should be restricted to flows where the density change of a fluid particle along a pathline is negligible.

Richard C. Martineau; Ray A. Berry; Aurlia Esteve; Kurt D. Hamman; Dana A. Knoll; Ryosuke Park; William Taitano

2009-01-01T23:59:59.000Z

364

Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating  

E-Print Network [OSTI]

Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification ...

Li, Xian-Xiang

365

Review of fluid flow and convective heat transfer within rotating disk cavities  

E-Print Network [OSTI]

-00975626,version1-8Apr2014 Author manuscript, published in "International Journal of Thermal Sciences 67 based on and r. Rej Jet Reynolds number based on W and D. ReU Cross-flow Reynolds number Ro Rossby

Boyer, Edmond

366

ECI International Conference on Heat Transfer and Fluid Flow in Microscale Whistler, 21-26 September 2008  

E-Print Network [OSTI]

, a measure of the flow conductance of the solid matrix, depends on several factors including: porosity, particles shape and size distribution and particles arrangement. The permeability is calculated either dates back to experimental works of Carman [5] and Sullivan [6] in 1940s and theoretical analyses

Bahrami, Majid

367

Higher harmonic anisotropic flow measurements of charged particles at 2.76 TeV with the ALICE detector  

E-Print Network [OSTI]

We report the measurements of elliptic flow $v_{2}$, as well as higher harmonics triangular flow $v_{3}$ and quadrangular flow $v_{4}$, in $\\sqrt{s_{_{NN}}} =$ 2.76 TeV Pb--Pb collisions, measured with the ALICE detector. We show that the measured elliptic and triangular flow can be understood from the initial spatial anisotropy and its event--by--event fluctuations. The resulting fluctuations of $v_{2}$ and $v_{3}$ are also discussed.

You Zhou; for the ALICE Collaboration

2011-12-06T23:59:59.000Z

368

Experimental Measurement of the Interface Heat Conductance Between Nonconforming Beryllium and Type 316 Stainless Steel Surfaces Subjected to Nonuniform Thermal Deformations  

SciTech Connect (OSTI)

In fusion blanket designs that employ beryllium as a neutron multiplier, the interface conductance h plays a key role in evaluating the blanket's thermal profile. Therefore, an extensive experimental program was conducted to measure the magnitude of h between nonconforming beryllium and Type 316 stainless steel surfaces subjected to nonuniform thermal deformations. The magnitude of h was measured as a function of relevant environmental, surface, and geometric parameters, including surface roughness, contact pressure, gas pressure, gas type, and magnitude and direction of heat flow. The results indicate the following: (a) Decreasing the interfacial surface roughness from 6.28 to 0.28 {mu}m, in 760 Torr of helium, increased the magnitude of h by up to 100%; however, increasing the surface roughness reduced the dependence of h on the magnitude of the contact pressure. (b) The interface conductance was significantly higher for measurements made in helium gas as opposed to air. Additionally, the sensitivity of h to the gas pressure was significantly greater for runs conducted in helium and/or with smoother surfaces. This sensitivity was reduced in air and/or with roughened surfaces, and it was essentially nonexistent for the 6.25-{mu}m specimen for air pressures exceeding 76 Torr. (c) For runs conducted in vacuum, the interface conductance was more sensitive to heat flux than when runs were conducted in 760 Torr of helium. (d) The interface conductance was found to be dependent on the direction of heat flux. When the specimens were arranged so that heat flowed from the steel to the beryllium disk, the magnitude of h was generally greater than in the opposite direction.

Abelson, Robert Dean; Abdou, Mohamed A. [University of California, Los Angeles (United States)

2001-03-15T23:59:59.000Z

369

Heat of Dissolution Measurements for CO2 in Mixed Alkanolamine Solvents  

SciTech Connect (OSTI)

The main objective of this project is to measure heat of dissolution of CO{sub 2} in carefully selected mixed alkanolamine solvent systems, and provide such directly measured data that might be used for efficient design of CO{sub 2} capture processes, or for better understanding of thermodynamics of CO{sub 2}-alkanolamine systems. Carbon dioxide is one of the major greenhouse gases, and the need for stabilization of its composition in earth's atmosphere is vital for the future of mankind. Although technologies are available for capture and storage of CO{sub 2}, these technologies are far too expensive for economical commercialization. Reduction of cost would require research for refinement of the technology. For more economical CO{sub 2} capture and regeneration, there is a need for development of more efficient solvent systems. In this project we will extend the thermodynamic database by measuring heat of solution data of CO{sub 2} in mixed solvents made of MEA (monoethanolamine), MDEA (methyldiethanolamine), piperazine, and water. Mixed solvents of different compositions will be selected and in each case data will be measured at temperatures 40 and 80C and various partial pressures of CO{sub 2}. At the end of the project, observations, conclusions, and recommendations will be derived for the choice of mixed solvents for efficient CO{sub 2} capture with potential for commercialization.

Vinayak N. Kabadi

2006-05-29T23:59:59.000Z

370

HEAT OF DISSOLUTION MEASUREMENTS FOR CO2 IN MIXED ALKANOLAMINE SOLVENTS  

SciTech Connect (OSTI)

The main objective of this project is to measure heat of dissolution of CO{sub 2} in carefully selected mixed alkanolamine solvent systems, and provide such directly measured data that might be used for efficient design of CO{sub 2} capture processes, or for better understanding of thermodynamics of CO{sub 2}-alkanolamine systems. Carbon dioxide is one of the major greenhouse gases, and the need for stabilization of its composition in earth's atmosphere is vital for the future of mankind. Although technologies are available for capture and storage of CO{sub 2}, these technologies are far too expensive for economical commercialization. Reduction of cost would require research for refinement of the technology. For more economical CO{sub 2} capture and regeneration, there is a need for development of more efficient solvent systems. In this project we will extend the thermodynamic database by measuring heat of solution data of CO{sub 2} in mixed solvents made of MEA (monoethanolamine), MDEA (methyldiethanolamine), piperazine, and water. Mixed solvents of different compositions will be selected and in each case data will be measured at temperatures 40 and 80C and various partial pressures of CO{sub 2}. At the end of the project, observations, conclusions, and recommendations will be derived for the choice of mixed solvents for efficient CO{sub 2} capture with potential for commercialization.

Vinayak N. Kabadi

2005-05-23T23:59:59.000Z

371

Singularity of projections of 2-dimensional measures invariant under the geodesic flow  

E-Print Network [OSTI]

We show that on any compact Riemann surface with variable negative curvature there exists a measure which is invariant and ergodic under the geodesic flow and whose projection to the base manifold is 2-dimensional and singular with respect to the 2-dimensional Lebesgue measure.

Risto Hovila; Esa Jrvenp; Maarit Jrvenp; Franois Ledrappier

2011-04-14T23:59:59.000Z

372

A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools  

SciTech Connect (OSTI)

MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.

McHugh, P.R.; Ramshaw, J.D.

1991-11-01T23:59:59.000Z

373

Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain  

SciTech Connect (OSTI)

Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

2010-05-14T23:59:59.000Z

374

Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application  

SciTech Connect (OSTI)

In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

375

Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG  

E-Print Network [OSTI]

Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb and heat sink grease respectively). The dynamics of thermal effects is also presented. PACS 42.55.Xi (Diode-pumped in a diode-end-pumped Yb:YAG crystal, using a calibrated infrared camera, with a 60-µm spatial resolution

Paris-Sud XI, Université de

376

Heat transfer measurements in a two-pass square duct via a transient liquid crystal image method  

E-Print Network [OSTI]

to obtain heat transfer coefficients. Heat transfer measurement distributions at 3 Reynolds numbers (10,000, 25,000, and 50,000) were studied. There were two geometric surface rib patterns attached to the channel. First was a 90 continuous rib...

Luna, Jesus Arturo

2000-01-01T23:59:59.000Z

377

Columbia University Flow Instability Experimental Program, Volume 10: Critical Heat Flux Test Program data tables  

SciTech Connect (OSTI)

This report is one of a series of reports which document the flow instability testing conducted by Columbia University during 1989 through 1992. This report volume provides a hardcopy version of the twenty-six electronic media data files: CO515(A-D).DAT, CO525(A-G). DAT, CO530(A-K).DAT, CO718(A-E).DAT.

Coutts, D.A.

1993-09-01T23:59:59.000Z

378

Transient fluid and heat flow modeling in coupled wellbore/reservoir systems  

E-Print Network [OSTI]

....................................................... 66 5.3.1 Modeling Field Data ..................................................................... 68 5.3.2 Optimal Location of Permanent Downhole Gauge....................... 71 5.4 Effect of Gauge Location on Pressure-Transient Analysis... at the midpoint of the flow string................................. 70 Figure 5.26 Downhole gauge placement configurations .............................................. 71 Figure 5.27 Temperature and density profiles in the wellbore...

Izgec, Bulent

2009-05-15T23:59:59.000Z

379

Spring temperatures in the Sagehen Basin, Sierra Nevada, CA: implications for heat flow and groundwater circulation  

E-Print Network [OSTI]

on groundwater flow depths within the basin. An analytical model based on these constraints indicates@berkeley.edu. Tel: +1 510 642 2288. Fax: +1 510 643 9980. Geofluids (2009) 9, 195­207 INTRODUCTION Groundwater and groundwater circulation MARIA BRUMM, CHI-YUEN WANG AND MICHAEL MANGA Earth and Planetary Science, University

Manga, Michael

380

Experimental Measurement of the Flow Field of Heavy Trucks  

SciTech Connect (OSTI)

Flat flaps that enclose the trailer base on the sides and top are known to reduce truck drag and reduce fuel consumption. Such flapped-truck geometries have been studied in laboratory wind tunnels and in field tests. A recent review of wind tunnel data for a variety of truck geometries and flow Reynolds numbers show roughly similar values of peak drag reduction, but differ in the determination of the optimum flap angle. Optimum angles lie in the range 12 degrees-20 degrees, and may be sensitive to Reynolds number and truck geometry. The present field test is undertaken to provide additional estimates of the magnitude of the savings to be expected on a typical truck for five flap angles 10, 13, 16, 19, and 22 degrees. The flaps are constructed from a fiberglass-epoxy-matrix material and are one-quarter of the base width in length (about 61 cm, or 2 feet). They are attached along the rear door hinge lines on either side of the trailer, so that no gap appears at the joint between the flap and the side of the trailer The flap angle is adjusted by means of two aluminum supports. The present test is performed on the NASA Crows Landing Flight Facility at the northern end of the San Joaquin valley in California. The main runway is approximately 2400 meters in length, and is aligned approximately in a north-south direction The test procedure is to make a series of runs starting at either end of the runway. All runs are initiated under computer control to accelerate the truck to a target speed of 60 mph (96 6 km/hr), to proceed at the target speed for a fixed distance, and to decelerate at the far end of the runway. During a run, the broadcast fuel rate, the engine rpm, forward speed, elapsed time--as well as several other parameters (10 in all)--are digitized at a rate of 100 digitizations per second. Various flapped-conditions are interspersed with the ''no flaps'' control, and are sequenced in a different order on different days. Approximately 310 runs are accumulated over the 5-day test period, May 17-21, 2004. The runway slopes rather uniformly upward from north-to-south. Over the distance of 2424 meters between our two ''start'' markers at either end of the runway, the net change in elevation is a little over ten meters. Test results clearly show the greater fuel consumption required to lift the truck against gravity in the southbound direction For this reason, it is important that the tests be averaged over a round trip circuit--that is, a run in both directions over the identical portion of the roadway. Northbound-southbound averages require an overlap segment of the runway (near the middle of the runway) where the truck--starting from either end--has achieved its target speed. For the target truck speed of 60 mph, this overlap region is approximately 700 meters in length. Typically a run and the return run are accomplished within a time interval of 6 minutes. Analysis of the data show fuel consumption savings at all flap angle settings tested, when compared to the ''no flaps'' condition. The most beneficial flap angle appears to be 13 degrees, for which the fuel consumption is 0.3778 {+-} 0.0025 liters/km compared to the ''no flaps'' control of 0.3941 {+-} 0.0034 liters/km. The error bounds expressed above mark the 99% confidence interval in the mean values given. That is, additional estimates of the mean fuel consumption would be expected to lie within the bounds given, approximately 99% of the time. The fuel consumption saving is--to reasonable accuracy--about 1.63 liters/100 kilometers. These savings represent the increment associated only with the change in drag due to the presence or absence of flaps. The result will hold for any truck of similar size and shape and engine performance regardless of the loading of the truck or the rolling resistance. The economy achieved by use of base flaps can be compared to the economy resulting from driving two trucks in a tandem configuration. In December 2003, such fuel consumption tests were performed at the same Crows Landing testsite. In the tests, two identical trucks are ope

Fred Browand; Charles Radovich

2005-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Measurements of continuous mix evolution in a high energy density shear flow  

SciTech Connect (OSTI)

We report on the novel integration of streaked radiography into a counter-flowing High Energy Density (HED) shear environment that continually measures a growing mix layer of Al separating two low-density CH foams. Measurements of the mix width allow us to validate compressible turbulence models and with streaked imaging, make this possible with a minimal number of experiments on large laser facilities. In this paper, we describe how the HED counter-flowing shear layer is created and diagnosed with streaked radiography. We then compare the streaked data to previous two-dimensional, single frame radiography and radiation hydrodynamic simulations of the experiment with inline compressible turbulent mix models.

Loomis, E., E-mail: loomis@lanl.gov; Doss, F.; Flippo, K.; Fincke, J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2014-04-15T23:59:59.000Z

382

A system for the real time, direct measurement of natural gas flow  

SciTech Connect (OSTI)

PMI/Badger Meter, Inc. with partial sponsorship from the Gas Research Institute, has designed and developed direct measurement total energy flow metering instrumentation. As industry demands for improved accuracy and speed of measurement have increased so has the complexity of the overall hardware and software systems. Considering traditional system approaches, few companies have the in house capability of maintaining a complete system. This paper addresses efforts to implement a direct, total gas energy flow metering system which is simple to use and cost effective.

Sowell, T. [PMI, Badger Meter, Inc., Tulsa, OK (United States)

1995-12-31T23:59:59.000Z

383

Rotor bore and turbine rotor wheel/spacer heat exchange flow circuit  

DOE Patents [OSTI]

In a turbine having closed-circuit steam-cooling passages about the rim of the rotor during steady-state operation, compressor discharge air is supplied to the rotor bore for passage radially outwardly into the wheel space cavities between the wheels and spacers. Communicating slots and channels in the spacers and wheels at circumferentially spaced positions enable egress of the compressor discharge air into the hot gas flow path. At turbine startup, cooling air flows through the closed-circuit steam passages to cool the outer rim of the rotor while compressor discharge air pre-warms the wheels and spacers. At steady-state, cooling steam is supplied in the closed-circuit steam-cooling passages and compressor discharge air is supplied through the bore and into the wheel space cavities to cool the rotor.

Caruso, Philip M. (Selkirk, NY); Eldrid, Sacheverel Quentin (Saratoga Springs, NY); Ladhani, Azad A. (Niskayuna, NY); DeMania, Alan Richard (Niskayuna, NY); Palmer, Gene David (Clifton Park, NY); Wilson, Ian David (Clifton Park, NY); Rathbun, Lisa Shirley (Scotia, NY); Akin, Robert Craig (Schenectady, NY)

2002-01-01T23:59:59.000Z

384

Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings  

SciTech Connect (OSTI)

Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

2009-07-15T23:59:59.000Z

385

Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films  

SciTech Connect (OSTI)

Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of /sup 4/He adsorbed on metallic films. In contrast to measurements of /sup 4/He adsorbed on all other insulating substrates, we have shown that /sup 4/He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, /sup 4/He adsorbed on sapphire and on Ag films and H/sub 2/ adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs.

Kenny, T.W.

1989-05-01T23:59:59.000Z

386

FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow and Heat  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstruction Management14,2 - In theJulyDepartment of-Transport

387

Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to: navigation, search OpenEIOpenInformation ExplorationGradient

388

Heat Flow And Geothermal Potential In The South-Central United States |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth Division |Hays,Community College Jump

389

Heat Flow Determinations and Implied Thermal Regime of the Coso Geothermal  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth Division |Hays,Community College JumpArea

390

Heat Flow From Four New Research Drill Holes In The Western Cascades,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth Division |Hays,Community College

391

Heat flow determinations and implied thermal regime of the Coso geothermal  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth Division |Hays,Communityarea, California |

392

Heat flow in the northern Basin and Range province | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth Division |Hays,Communityarea, California

393

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network [OSTI]

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

Ruch, M. A.

1981-01-01T23:59:59.000Z

394

DIAGNOSING THE TIME-DEPENDENCE OF ACTIVE REGION CORE HEATING FROM THE EMISSION MEASURE. I. LOW-FREQUENCY NANOFLARES  

SciTech Connect (OSTI)

Observational measurements of active region emission measures contain clues to the time dependence of the underlying heating mechanism. A strongly nonlinear scaling of the emission measure with temperature indicates a large amount of hot plasma relative to warm plasma. A weakly nonlinear (or linear) scaling of the emission measure indicates a relatively large amount of warm plasma, suggesting that the hot active region plasma is allowed to cool and so the heating is impulsive with a long repeat time. This case is called low-frequency nanoflare heating, and we investigate its feasibility as an active region heating scenario here. We explore a parameter space of heating and coronal loop properties with a hydrodynamic model. For each model run, we calculate the slope {alpha} of the emission measure distribution EM(T){proportional_to}T {sup {alpha}}. Our conclusions are: (1) low-frequency nanoflare heating is consistent with about 36% of observed active region cores when uncertainties in the atomic data are not accounted for; (2) proper consideration of uncertainties yields a range in which as many as 77% of observed active regions are consistent with low-frequency nanoflare heating and as few as zero; (3) low-frequency nanoflare heating cannot explain observed slopes greater than 3; (4) the upper limit to the volumetric energy release is in the region of 50 erg cm{sup -3} to avoid unphysical magnetic field strengths; (5) the heating timescale may be short for loops of total length less than 40 Mm to be consistent with the observed range of slopes; (6) predicted slopes are consistently steeper for longer loops.

Bradshaw, S. J.; Reep, J. W. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Klimchuk, J. A., E-mail: stephen.bradshaw@rice.edu, E-mail: jeffrey.reep@rice.edu, E-mail: james.a.klimchuk@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Lab., Code 671, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

2012-10-10T23:59:59.000Z

395

Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows  

SciTech Connect (OSTI)

Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi [Department of Offshore Process and Energy Systems Engineering, Cranfield University, Cranfield (United Kingdom)

2014-04-11T23:59:59.000Z

396

An Experimental Study of Upward and Downward Flow of Supercritical Carbon Dioxide in a Straight Pipe Heat Exchanger with Constant Wall Heat Flux  

E-Print Network [OSTI]

An experimental analysis was conducted on a single circular tube heat exchanger using supercritical carbon dioxide as the working fluid. The heat exchanger was operated in two different orientations: vertically upward and downward. The experimental...

Umrigar, Eric Dara

2014-05-01T23:59:59.000Z

397

The Measurement, interpretation and use of unsteady momentum fluxes in two-phase flow.  

E-Print Network [OSTI]

The steady and unsteady components of the momentum flux in a two-phase flow have been measured at the exit of a vertical pipe by means of an impulse technique using a turning tee and beam. Different electrical filters have ...

Yih, Tien Sieh

1967-01-01T23:59:59.000Z

398

Measurements of ship-induced flow and its effect on bank erosion  

E-Print Network [OSTI]

for prediction of drawdown and return velocity. The ship induced waves model is verified with field measurements. The method of energy computation for ship induced flow is developed in order to determine its relative contribution to bank erosion. In this study...

Yu, Hongbin

2012-06-07T23:59:59.000Z

399

Aerodynamic pressure and flow-visualization measurement from a rotating wind turbine blade  

SciTech Connect (OSTI)

Aerodynamic, load, flow-visualization, and inflow measurements have been made on a 10-m, three-bladed, downwind, horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor was used to record nighttime and daytime video images of tufts attached to the low-pressure side of a constant-chord, zero-twist blade. Load measurements were made using strain gages mounted at every 10% of the blade's span. Pressure measurements were made at 80% of the blade's span. Pressure taps were located at 32 chordwise positions, revealing pressure distributions comparable with wind tunnel data. Inflow was measured using a vertical-plane array of eight propvane and five triaxial (U-V-W) prop-type anemometers located 10 m upwind in the predominant wind direction. One objective of this comprehensive research program was to study the effects of blade rotation on aerodynamic behavior below, near, and beyond stall. To this end, flow patterns are presented here that reveal the dynamic and steady behavior of flow conditions on the blade. Pressure distributions are compared to flow patterns and two-dimensional wind tunnel data. Separation boundary locations are shown that change as a function of spanwise location, pitch angle, and wind speed. 6 refs., 23 figs., 1 tab.

Butterfield, C.P.

1988-11-01T23:59:59.000Z

400

An analysis of the flow of heat from tubes buried in a concrete slab  

E-Print Network [OSTI]

T &vhoro dg i. tho amount oi' heat Ilovving in tho ti?e d&v& t!&rou, ", h on area A; n! . &;iotance vlL& owin!. to a to!r&&or?t&no dii'Torence d ~ t. !o . &star:. . I:. a~ing a thor&x~1 conductivity K. . & ncc i'cr con &?ct&& n in tho steady state, t... 12 2 ~ 000 10 1, 5 6, 0 4600 1. 19 4400 1o19 32 3 ~ OPO 1Q 1, 5 4 ~ 0 4200 lo307 3950 lo326 12 4 500 10 lo5 2 67 3300 lo442 3500 1 490 2I 0 TEST III 9 1. 0 36. 0 6450 O. 700 6900 0. 702 0, 312 9 1. 0 20. 0 6250 0, 723 6750 0, 710 o. 437 9 1. 0...

Holdredge, Ernest C

1951-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Mitigation Measures Following a Loss-of-Residual-Heat-Removal Event During Shutdown  

SciTech Connect (OSTI)

The transient following a loss-of-residual-heat-removal event during shutdown was analyzed to determine the containment closure time (CCT) to prevent uncontrolled release of fission products and the gravity-injection path and rate (GIPR) for effective core cooling using the RELAP5/MOD3.2 code. The plant conditions of Yonggwang Units 3 and 4, a pressurized water reactor (PWR) of 2815-MW(thermal) power in Korea, were reviewed, and possible event sequences were identified. From the CCT analysis for the five cases of typical plant configurations, it was estimated for the earliest CCT to be 40 min after the event in a case with a large cold-leg opening and emptied steam generators (SGs). However, the case with water-filled SGs significantly delayed the CCT through the heat removal to the secondary side. From the GIPR analysis for the six possible gravity-injection paths from the refueling water storage tank (RWST), the case with the injection point and opening on the other leg side was estimated to be the most suitable path to avoid core boiling. In addition, from the sensitivity study, it was evaluated for the plant to be capable of providing the core cooling for the long-term transient if nominal RWST water is available. As a result, these analysis methods and results will provide useful information in understanding the plant behavior and preparing the mitigation measures after the event, especially for Combustion Engineering-type PWR plants. However, to directly apply the analysis results to the emergency procedure for such an event, additional case studies are needed for a wide range of operating conditions such as reactor coolant inventory, RWST water temperature, and core decay heat rate.

Seul, Kwang Won; Bang, Young Seok; Kim, Hho Jung [Korea Institute of Nuclear Safety (Korea, Republic of)

2000-10-15T23:59:59.000Z

402

Simulation of three-dimensional laminar flow and heat transfer in an array of parallel microchannels  

E-Print Network [OSTI]

and incorrect reporting of experimental uncertainty. Agostini et al. [16] detailed the importance of obtaining a very low uncertainty when measuring the dimensions of mini and microchannels. An example illustrated that a 3% uncertainty on channel width...

Mlcak, Justin Dale

2009-05-15T23:59:59.000Z

403

TOUGH2: A general-purpose numerical simulator for multiphase fluid and heat flow  

SciTech Connect (OSTI)

TOUGH2 is a numerical simulation program for nonisothermal flows of multicomponent, multiphase fluids in porous and fractured media. The chief applications for which TOUGH2 is designed are in geothermal reservoir engineering, nuclear waste disposal, and unsaturated zone hydrology. A successor to the TOUGH program, TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures, facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. This report includes a detailed description of governing equations, program architecture, and user features. Enhancements in data inputs relative to TOUGH are described, and a number of sample problems are given to illustrate code applications. 46 refs., 29 figs., 12 tabs.

Pruess, K.

1991-05-01T23:59:59.000Z

404

Two-dimensional flow of foam around an obstacle: force measurements  

E-Print Network [OSTI]

A Stokes experiment for foams is proposed. It consists in a two-dimensional flow of a foam, confined between a water subphase and a top plate, around a fixed circular obstacle. We present systematic measurements of the drag exerted by the flowing foam on the obstacle, \\emph{versus} various separately controlled parameters: flow rate, bubble volume, bulk viscosity, obstacle size, shape and boundary conditions. We separate the drag into two contributions, an elastic one (yield drag) at vanishing flow rate, and a fluid one (viscous coefficient) increasing with flow rate. We quantify the influence of each control parameter on the drag. The results exhibit in particular a power-law dependence of the drag as a function of the bulk viscosity and the flow rate with two different exponents. Moreover, we show that the drag decreases with bubble size, and increases proportionally to the obstacle size. We quantify the effect of shape through a dimensioned drag coefficient, and we show that the effect of boundary conditions is small.

Benjamin Dollet; Florence Elias; Catherine Quilliet; Christophe Raufaste; Miguel Aubouy; Francois Graner

2004-10-13T23:59:59.000Z

405

Segmented heat exchanger  

DOE Patents [OSTI]

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

406

Neutron field parameter measurements on the JET tokamak by means of super-heated fluid detectors  

SciTech Connect (OSTI)

The neutron field parameters (fluence and energy distribution) at a specific location outside the JET Torus Hall have been measured by means of super-heated fluid detectors (or 'bubble detectors') in combination with an independent, time-of-flight, technique. The bubble detector assemblies were placed at the end of a vertical line of sight at about 16 m from the tokamak mid plane. Spatial distributions of the neutron fluence along the radial and toroidal directions have been obtained using two-dimensional arrays of bubble detectors. Using a set of three bubble detector spectrometers the neutron energy distribution was determined over a broad energy range, from about 10 keV to above 10 MeV, with an energy resolution of about 30% at 2.5 MeV. The very broad energy response allowed for the identification of energy features far from the main fusion component (around 2.45 MeV for deuterium discharges).

Gherendi, M.; Craciunescu, T.; Pantea, A. [Association EURATOM-MEdC, National Institute for Laser, Plasma and Radiation Physics, Magurele (Romania); Zoita, V. L. [Association EURATOM-MEdC, National Institute for Laser, Plasma and Radiation Physics, Magurele (Romania); EFDA-JET CSU Culham, Culham Science Centre, Abingdon (United Kingdom); Johnson, M. Gatu; Hellesen, C.; Conroy, S. [Association EURATOM-VR, Uppsala University, Uppsala (Sweden); Baltog, I. [Association EURATOM-MEdC, National Institute for Material Physics, Magurele (Romania); Edlington, T.; Kiptily, V.; Popovichev, S. [Association EURATOM-CCFE, Culham Science Centre, Abingdon (United Kingdom); Murari, A. [EFDA-JET CSU Culham, Culham Science Centre, Abingdon (United Kingdom); Association EURATOM-ENEA, RFX, Padova (Italy); Collaboration: JET EFDA Contributors

2012-10-15T23:59:59.000Z

407

Analysis of reactor material experiments investigating corium crust stability and heat transfer in jet impingement flow  

SciTech Connect (OSTI)

Presented is an analysis of the results of the CSTI-1, CSTI-3, and CWTI-11 reactor material experiments in which a jet of molten corium initially at 3080/sup 0/K was directed downward upon a stainless steel plate. The experiments are a continuation of a program of reactor material tests investigating LWR severe accident phenomena. Objective of the present analysis is to determine the existence or nonexistence of a corium crust during impingement from comparison of the measured heatup of the plate (as measured by thermocouples imbedded immediately beneath the steel surface) with model calculations assuming alternately the presence and absence of a stable crust during impingement.

Sienicki, J.J.; Spencer, B.W.

1985-01-01T23:59:59.000Z

408

Infrared Spectroscope for Electron Bunch-length Measurement: Heat Sensor Parameters Analysis  

SciTech Connect (OSTI)

The Linac Coherent Light Source (LCLS) is used for many experiments. Taking advantage of the free electron laser (FEL) process, scientists of various fields perform experiments of all kind. Some for example study protein folding; other experiments are more interested in the way electrons interact with the molecules before they are destroyed. These experiments among many others have very little information about the electrons x-ray produced by the FEL, except that the FEL is using bunches less than 10 femtoseconds long. To be able to interpret the data collected from those experiments, more accurate information is needed about the electron's bunch-length. Existing bunch length measurement techniques are not suitable for the measurement of such small time scales. Hence the need to design a device that will provide more precise information about the electron bunch length. This paper investigates the use of a pyreoelectric heat sensor that has a sensitivity of about 1.34 micro amps per watt for the single cell detector. Such sensitivity, added to the fact that the detector is an array sensor, makes the detector studied the primary candidate to be integrated to an infrared spectrometer designed to better measure the LCLS electron bunch length.

Domgmo-Momo, Gilles; /Towson U. /SLAC

2012-09-05T23:59:59.000Z

409

Thermal Energy Measurement with Tangential Paddlewheel Flow Meters: Summary of Experimental Results and in-situ Diagnostics  

E-Print Network [OSTI]

paddlewheel flow meters, and several new methods for in-situ diagnostic measures for ascertaining whether or not a flow meter is experiencing fluctuating flow conditions or if a flow meter is suffering a degraded signal due to shaft wear. INTRODUCTION Flow... section where it passes across the candidate sensor that is placed in the inter-changeable test section, through the orifice plate and finally into the is combined with Btu meter the threshold can be much higher than the published threshold of the flow...

Haberl, J. S.; Watt, J. B.

1994-01-01T23:59:59.000Z

410

The effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-B\\'enard convection  

E-Print Network [OSTI]

The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-B\\'enard convection. Combinations of no-slip, stress-free and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between $10^8$ and $10^{11}$ the heat transport is lower for $\\Gamma = 0.33$ than for $\\Gamma = 1$ in case of no-slip sidewalls. This is surprisingly opposite for stress-free sidewalls, where the heat transport increases for lower aspect-ratio. In wider cells the aspect-ratio dependence is observed to disappear for $\\text{Ra} \\ge 10^{10}$. Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and horizontal zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall s...

van der Poel, Erwin P; Verzicco, Roberto; Lohse, Detlef

2015-01-01T23:59:59.000Z

411

Measurement and Model Validation of Nanofluid Specific Heat Capacity with Differential Scanning Calorimetry  

E-Print Network [OSTI]

Nanofluids are being considered for heat transfer applications; therefore it is important to know their thermophysical properties accurately. In this paper we focused on nanofluid specific heat capacity. Currently, there ...

O'Hanley, Harrison F.

412

Quantifying microbubble clustering in turbulent flow from single-point measurements  

E-Print Network [OSTI]

Single-point hot-wire measurements in the bulk of a turbulent channel have been performed in order to detect and quantify the phenomenon of preferential bubble accumulation. We show that statistical analysis of the bubble-probe colliding-times series can give a robust method for investigation of clustering in the bulk regions of a turbulent flow where, due to the opacity of the flow, no imaging technique can be employed. We demonstrate that micro-bubbles (radius R_0 ~ 0.1 mm) in a developed turbulent flow, where the Kolmogorov length-scale is, eta ~ R_0, display preferential concentration in small scale structures with a typical statistical signature ranging from the dissipative range, O(eta), up to the low inertial range, O(100 eta). A comparison with Eulerian-Lagrangian numeri- cal simulations is also presented to further support our proposed way to characterize clustering from temporal time series at a fixed position.

Enrico Calzavarini; Thomas H. van den Berg; Federico Toschi; Detlef Lohse

2008-01-26T23:59:59.000Z

413

Interim Columbia and Snake rivers flow improvement measures for salmon: Final Supplemental Environmental Impact Statement (SEIS)  

SciTech Connect (OSTI)

Public comments are sought on this final SEIS, which supplements the 1992 Columbia River Salmon Flow Measures Options Analysis (OA)/Environmental Impact Statement (EIS). The Corps of Engineers, in cooperation with the Bonneville Power Administration and the Bureau of Reclamation proposes five alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. These are: (1) Without Project (no action) Alternative, (2) the 1992 Operation, (3) the 1992 Operation with Libby/Hungry Horse Sensitivity, (4) a Modified 1992 Operation with Improvements to Salmon Flows from Dworshak, and (5) a Modified 1992 Operation with Upper Snake Sensitivity. Alternative 4, Modified 1992 Operations, has been identified as the preferred alternative.

Not Available

1993-03-01T23:59:59.000Z

414

Estimation of Rate of Heat Release by Means of Oxygen Consumption Measurements  

E-Print Network [OSTI]

the heat release of combustible wall linings during full-scale room fire tests, William Parker, Huggett to the release of heat, the combustion process consumes oxygen. As part of his work on the ASTM E 84 tunnel test released per unit mass of material consumed (i.e., the specific heat of combustion), varied greatly

Womeldorf, Carole

415

Results of temperature gradient and heat flow in Santiam Pass Area, Oregon, Volume 1  

SciTech Connect (OSTI)

The conclusions of this report are: (1) There is a weakly defined thermal anomaly within the area examined by temperature-gradient holes in the Santiam Pass area. This is a relict anomaly showing differences in permeability between the High Cascades and Western Cascades areas, more than a fundamental difference in shallow crustal temperatures. (2) The anomaly as defined by the 60 F isotherms at 400 feet follows a north-south trend immediately westward of the Cascade axis in the boundary region. It is clear that all holes spudded into High Cascades rocks result in isothermal and reversal gradients. Holes spudded in Western Cascades rocks result in positive gradients. (3) Cold groundwater flow influences and masks temperature gradients in the High Cascades to a depth of at least 700 feet, especially eastward from the major north-south trending faults. Pleistocene and Holocene rocks are very permeable aquifers. (4) Shallow gradient drilling in the lowlands westward of the faults provides more interpretable information than shallow drilling in the cold-water recharge zones. Topographic and climatological effects can be filtered out of the temperature gradient results. (5) The thermal anomaly seems to have 2 centers: one in the Belknap-Foley area, and one northward in the Sand Mountain area. The anomalies may or may not be connected along a north-south trend. (6) A geothermal effect is seen in holes downslope of the Western-High Cascade boundary. Mixing with cold waters is a powerful influence on temperature gradient data. (7) The temperature-gradient program has not yet examined and defined the geothermal resources potential of the area eastward of the Western Cascades-High Cascades boundary. Holes to 1500-2000 feet in depth are required to penetrate the high permeability-cold groundwater regime. (8) Drilling conditions are unfavorable. There are very few accessible level drill sites. Seasonal access problems and environmental restrictions together with frequent lost circulation results in very high costs per foot drilled.

Cox, B.L.; Gardner, M.C.; Koenig, J.B.

1981-08-01T23:59:59.000Z

416

Convective flow measurements in a heated cavity using pulsed laser velocimetry with digital image processing  

E-Print Network [OSTI]

. This is essentially the trapezoidal sheet shown in figure 4. The thickness of the beam remains on the order of 1-1. 5 13 x-v plane z-y plane First Lens Focal Point Second Lens Third Lens Fig. 4. Laser light passing through a trio of piano-convex cylindrical...2 U3 v1 v2 3 u4 u5 u7 u8 u6 u9 v4 v 5 v7 v8 Figure 24. Pixel positions in relation to vector components. Expressing equation (15) spatially, where uij and vij are gray level values ranging from 0 to 255 at position i and j of each region...

Chavez, Hector Luis

2012-06-07T23:59:59.000Z

417

New heat flow measurements in Oman and the thermal state of the Arabian Shield and Platform  

E-Print Network [OSTI]

, Canada d Applied Geophysics and Geothermal Energy, E.ON Energy Research Center, RWTH Aachen, Germany e

Beaudoin, Georges

418

The measurement of heat transfer rates in contaminated, high enthalpy flows  

E-Print Network [OSTI]

&' platinum "as suspe:;idedi conic. o:=id I&', c. &. ni, & & le;v'n;, a film of plati&&um m ta . . The fi &. i&s t1&, , t &'iere obta$ n?cd us! ]&g thc a&cove m. . -: t 1'&on wn re f au?d to bc stron&g'I y bnn, "cd to the pyt'cv. ba c&1il...

Muniz, Edelmiro

2012-06-07T23:59:59.000Z

419

Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems  

SciTech Connect (OSTI)

This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

Rudd, A.

2012-08-01T23:59:59.000Z

420

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

SciTech Connect (OSTI)

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

OPTIMIZATION AND DESIGN GUIDELINES FOR HIGH FLUX MICRO-CHANNEL HEAT SINKS FOR LIQUID AND GASEOUS SINGLE-PHASE FLOW  

E-Print Network [OSTI]

forced convection micro-channel heat sinks for minimum pump power at high heat fluxes. Results gained orders of magnitude, especially for high heat flux devices. Using water and air as coolants, designs for heat fluxes of >10 kW/cm2 and >100 W/cm2 respectively with pump/fan power expenses less than 1

Müller, Norbert

422

Update and assessment of geothermal economic models, geothermal fluid flow and heat distribution models, and geothermal data bases  

SciTech Connect (OSTI)

Numerical simulation models and data bases that were developed for DOE as part of a number of geothermal programs have been assessed with respect to their overall stage of development and usefulness. This report combines three separate studies that focus attention upon: (1) economic models related to geothermal energy; (2) physical geothermal system models pertaining to thermal energy and the fluid medium; and (3) geothermal energy data bases. Computerized numerical models pertaining to the economics of extracting and utilizing geothermal energy have been summarized and catalogued with respect to their availability, utility and function. The 19 models that are discussed in detail were developed for use by geothermal operators, public utilities, and lending institutions who require a means to estimate the value of a given resource, total project costs, and the sensitivity of these values to specific variables. A number of the models are capable of economically assessing engineering aspects of geothermal projects. Computerized simulations of heat distribution and fluid flow have been assessed and are presented for ten models. Five of the models are identified as wellbore simulators and five are described as reservoir simulators. Each model is described in terms of its operational characteristics, input, output, and other pertinent attributes. Geothermal energy data bases are reviewed with respect to their current usefulness and availability. Summaries of eight data bases are provided in catalogue format, and an overall comparison of the elements of each data base is included.

Kenkeremath, D. (ed.)

1985-05-01T23:59:59.000Z

423

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1982-01-01T23:59:59.000Z

424

Lift, drag and flow-field measurements around a small ornithopter  

SciTech Connect (OSTI)

The aerodynamics of a flight-worthy, radio controlled ornithopter is investigated using a combination of Particle-Image Velocimetry (PIV), load cell measurements, and high-speed photography of smoke visualizations. The lift and thrust forces of the ornithopter are measured at various flow speeds, flapping frequencies and angles of attack to characterize the flight performance. These direct force measurements are then compared with forces estimated using control volume analysis on PIV data. High-speed photography of smoke streaks is used to visualize the evolution of leading edge vortices, and to qualitatively infer the effect of wing deformation on the net downwash. Vortical structures in the wake are compared to previous studies on root flapping, and direct measurements of flapping efficiency are used to argue that the current ornithopter operates sub-optimally in converting the input energy into propulsive work.

Balakumar, B J [Los Alamos National Laboratory; Chavez - Alarcon, Ramiro [NMSU; Shu, Fangjun [NMSU

2011-01-12T23:59:59.000Z

425

Prediction and measurement of pitting damage functions for condensing heat exchangers  

SciTech Connect (OSTI)

Pitting corrosion is a form of localized attack resulting in rapid penetration into a metal substrate. It is one of the most destructive and insidious forms of corrosion that occurs in industrial systems. Traditionally, the damage function (i.e., the number of pits vs the pit depth) is measured experimentally, and the development of damage has been described using empirical models. In general, the empirical models are successful because the distribution functions employed display great mathematical flexibility, but they require a significant database to achieve reliability. In fact, they really are successful only when the answer is known in advance. In this study, a deterministic method was developed to predict localized corrosion damage functions for condensing heat exchangers. The method incorporated calculations for the composition of the condensed environment and the electrochemical corrosion potential (E[sub corr]) of the alloy and included mechanistic treatments of pit nucleation and growth. The roles of important environmental parameters such as chloride concentration ([Cl[sup [minus

Macdonald, D.D.; Liu, C.; Urquidi-Macdonald, M. (Pennsylvania State Univ., University Park, PA (United States). Center for Advanced Materials); Stickford, G.H.; Hindin, B.; Agrawal, A.K. (Battelle Columbus Labs., Columbus, OH (United States)); Krist, K. (Gas Research Inst., Chicago, IL (United States))

1994-10-01T23:59:59.000Z

426

1558 IEEE TRANSACTIONS ON MAGNETICS,VOL. 29, NO. 2, MARCH 1993 Control of an Induction Heat Treatment by the Measure of Power  

E-Print Network [OSTI]

heated. The heating stage is controlled by regulatingboth the power supplied to the coil and the linear1558 IEEE TRANSACTIONS ON MAGNETICS,VOL. 29, NO. 2, MARCH 1993 Control of an Induction Heat Treatment by the Measure of Power D. Melaab, 0.Longeot ENSAM, LAMMAR, 33405 Bordeaux, France L. Krahenbiihl

Paris-Sud XI, Université de

427

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

Energy; Grid systems; Optimization; Heat flow; Financialof grid power and by utilizing combined heat and power (CHP)

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

428

Measurement of turbulent flow upstream and downstream of a circular pipe bend  

SciTech Connect (OSTI)

We measured velocity distribution in cross sections of a fully developed turbulent pipe flow upstream and downstream of a 90 degree sign bend by synchronizing two sets of a particle image velocimetry (PIV) system. Unsteady undulation of Dean vortices formed downstream from the bend was characterized by the azimuthal position of the stagnation point found on the inner and outer sides of the bend. Linear stochastic estimation was applied to capture the upstream flow field conditioned by the azimuthal location of the stagnation point downstream from the bend. When the inner-side stagnation point stayed below (above) the symmetry plane, the conditional streamwise velocity upstream from the bend exhibited high-speed streaks extended in a quasi-streamwise direction on the outer side of the curvature above (below) the symmetry plane.

Sakakibara, Jun; Machida, Nobuteru [Department of Engineering Mechanics and Energy, University of Tsukuba, Tsukuba 305-8573 (Japan)

2012-04-15T23:59:59.000Z

429

EIS-0163-S: Supplemental EIS/1993 Interim Columbia and Snake Rivers Flow Improvement Measures for Salmon  

Broader source: Energy.gov [DOE]

The U.S. Army Corps of Engineers Walla Walla District has prepared this statement to assess alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. The U.S. Department of Energys Bonneville Power Administration served as a cooperating agency in developing this supplement due to its key role in direct operation of the integrated and coordinated Columbia-Snake River System, and adopted this statement in March of 1993. This statement supplements the 1992 Columbia River Salmon Flow Measures Options Analysis Environmental Impact Statement, which evaluated ways to alter water management operations in 1992 on the lower Columbia and Snake rivers to enhance the survival of wild Snake River salmon.

430

CT measurements of two-phase flow in fractured porous media  

SciTech Connect (OSTI)

The simulation of flow in naturally fractured reservoirs commonly divides the reservoir into two continua - the matrix system and the fracture system. Flow equations are written presuming that the primary flow between grid blocks occurs through the fracture system and that the primary fluid storage is in the matrix system. The dual porosity formulation of the equations assumes that there is no flow between matrix blocks while the dual permeability formulation allows fluid movement between matrix blocks. Since most of the fluid storage is contained in the matrix, recovery is dominated by the transfer of fluid from the matrix to the high conductivity fractures. The physical mechanisms influencing this transfer have been evaluated primarily through numerical studies. Relatively few experimental studies have investigated the transfer mechanisms. Early studies focused on the prediction of reservoir recoveries from the results of scaled experiments on single reservoir blocks. Recent experiments have investigated some of the mechanisms that are dominant in gravity drainage situations and in small block imbibition displacements. The mechanisms active in multiphase flow in fractured media need to be further illuminated, since some of the experimental results appear to be contradictory. This report describes the design, construction, and preliminary results of an experiment that studies imbibition displacement in two fracture blocks. Multiphase (oil/water) displacements will be conducted at the same rate on three core configurations. The configurations are a compact core, a two-block system with a 1 mm spacer between the blocks, and a two-block system with no spacer. The blocks are sealed in epoxy so that saturation measurements can be made throughout the displacement experiments using a Computed Tomography (CT) scanner.

Hughes, R.G.; Brigham, W.E.; Castanier, L.M.

1997-06-01T23:59:59.000Z

431

A Comprehensive Statistically-Based Method to Interpret Real-Time Flowing Measurements  

SciTech Connect (OSTI)

With the recent development of temperature measurement systems, continuous temperature profiles can be obtained with high precision. Small temperature changes can be detected by modern temperature measuring instruments such as fiber optic distributed temperature sensor (DTS) in intelligent completions and will potentially aid the diagnosis of downhole flow conditions. In vertical wells, since elevational geothermal changes make the wellbore temperature sensitive to the amount and the type of fluids produced, temperature logs can be used successfully to diagnose the downhole flow conditions. However, geothermal temperature changes along the wellbore being small for horizontal wells, interpretations of a temperature log become difficult. The primary temperature differences for each phase (oil, water, and gas) are caused by frictional effects. Therefore, in developing a thermal model for horizontal wellbore, subtle temperature changes must be accounted for. In this project, we have rigorously derived governing equations for a producing horizontal wellbore and developed a prediction model of the temperature and pressure by coupling the wellbore and reservoir equations. Also, we applied Ramey's model (1962) to the build section and used an energy balance to infer the temperature profile at the junction. The multilateral wellbore temperature model was applied to a wide range of cases at varying fluid thermal properties, absolute values of temperature and pressure, geothermal gradients, flow rates from each lateral, and the trajectories of each build section. With the prediction models developed, we present inversion studies of synthetic and field examples. These results are essential to identify water or gas entry, to guide flow control devices in intelligent completions, and to decide if reservoir stimulation is needed in particular horizontal sections. This study will complete and validate these inversion studies.

Keita Yoshioka; Pinan Dawkrajai; Analis A. Romero; Ding Zhu; A. D. Hill; Larry W. Lake

2007-01-15T23:59:59.000Z

432

Heat engine regenerators: Research status and needs  

SciTech Connect (OSTI)

The rapidly oscillating, variable density flows of regenerative heat engines provide a class of poorly understood unsteady flow and heat transfer problems. These problems are not currently amenable to direct experimental resolution. Experiences in engine development and test programs and efforts to develop analysis tools point to the regenerator as a key area of insufficient understanding. Focusing on flow and heat transfer in regenerators, this report discusses similarity parameters for the flows and reviews the experimental data currently available for Stirling analysis. Then a number of experimental results are presented from recent fundamental fluid mechanical and thermal investigations that shed additional light on the functioning of heat engine regenerators. Suggestions are made for approaches for further measurement and analysis efforts.

Hutchinson, R.A.

1987-08-01T23:59:59.000Z

433

Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool  

SciTech Connect (OSTI)

Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first cost of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger (FHX) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of excavation, 50% of which was construction excavation. There are six pipes in all excavations (three par

Hughes, Patrick [ORNL; Im, Piljae [ORNL

2012-01-01T23:59:59.000Z

434

Measurements on tones generated in a corrugated flow pipe with special attention to the influence of a low frequency  

E-Print Network [OSTI]

Measurements on tones generated in a corrugated flow pipe with special attention to the influence 2011. ISBN 978-82-8123-004-0., 2011. Summary It is well known that an air flow in a corrugated pipe might excite the longitudinal acoustic modes of the pipe. In this letter is reported experiments where

Paris-Sud XI, Université de

435

Regional measurements of /sup 14/Cmisonidazole distribution and blood flow in subcutaneous RT-9 experimental tumors  

SciTech Connect (OSTI)

Regional (/sup 14/C)misonidazole-derived radioactivity (MISO*) was measured by quantitative autoradiography in s.c. RT-9 experimental tumors 0.5, 2, and 4 h after an i.v. bolus (25 mg) and constant infusion (10 mg/h) in rats. Misonidazole (MISO) concentration in plasma, tumor, and other tissues was also measured by high-pressure liquid chromatography. The distribution of MISO* in the tumors always resulted in a characteristic pattern with high peripheral and low central values. The high-activity regions in the tumor rim achieved tissue: plasma MISO* activity ratios of 0.97 and 2.2 by 0.5 and 4 h, respectively; for central tumor regions, this ratio was 0.20 and 0.32 for the same periods, respectively. The limited distribution of MISO* to central tumor regions could be correlated to low values of blood flow (measured with (/sup 131/I)iodoantipyrine) and to diffusion from peripheral tumor regions. Low blood flow in the central regions of these tumors will significantly limit the distribution of MISO and other drugs to viable-appearing cells in these areas and could account in part for the failures of chemotherapy in certain solid tumors. Pharmacokinetic modeling indicates that 1 to 9 h may be necessary for MISO concentrations in some tumor regions to reach 50% of that in plasma.

Blasberg, R.; Horowitz, M.; Strong, J.; Molnar, P.; Patlak, C.; Owens, E.; Fenstermacher, J.

1985-04-01T23:59:59.000Z

436

Parametric analysis of radiative-convective heat transfer around a circular cylinder in a cross flow using the finite volume radiation solution method  

SciTech Connect (OSTI)

In the outside vapor deposition (OVD) process, silica particles are deposited by thermophoretic force on the surface of a cylinder. This process is associated with complex physical phenomena such as heat transfer between a torch and a cylinder, chemical reaction for silica particle formation, and particle deposition. Since the OVD process is carried out in a very high temperature environment, radiative heat transfer should be taken into consideration. Here, the radiative-convective heat transfer around a circular cylinder in a cross flow of a radiating gas has been numerically analyzed using the finite volume radiation solution method in a nonorthogonal coordinate system. The cross-flow Reynolds number based on the cylinder diameter is 40, and the fluid Prandtl number is assumed to be 0.7. The radiative heat transfer coupled with convection is reasonably predicted by the finite volume radiation solution method. Distributions of the local Nusselt number are investigated according to the variation of radiation parameters such as conduction-to-radiation parameter, optical thickness, scattering albedo, and cylinder wall emissivity.

Lee, K.H.; Lee, J.S.; Choi, M. [Seoul National Univ. (Korea, Republic of). Dept. of Mechanical Engineering

1996-02-09T23:59:59.000Z

437

Application of a ratiometric laser induced fluorescence (LIF) thermometry for micro-scale temperature measurement for natural convection flows  

E-Print Network [OSTI]

A ratiometric laser induced fluorescence (LIF) thermometry applied to micro-scale temperature measurement for natural convection flows. To eliminate incident light non-uniformity and imperfection of recording device, two fluorescence dyes are used...

Lee, Heon Ju

2004-11-15T23:59:59.000Z

438

Hot-film anemometer measurements in adiabatic two-phase flow through a vertical duct  

SciTech Connect (OSTI)

A hot-film anemometer (HFA) probe was used to obtain local measurements of void fraction and bubble frequency in a vertically oriented, high aspect ratio duct containing R-134a under selected adiabatic two-phase flow conditions. Data were obtained along a narrow dimension scan over the range 0.03 {le} {bar Z} {le} 0.80, where {bar Z} is the distance from the wall normalized with the duct spacing dimension. The void fraction profiles displayed large gradients in the near-wall regions and broad maxima near the duct centerline. The trends in the bubble frequency data generally follow those for the local void fraction data. However, the relatively large number of bubbles at higher pressure implies a larger magnitude of the interfacial area concentration, for the same cross-sectional average void fraction. For the two annular flow conditions tested, analysis of the HFA output voltage signal enabled identification of three distinct regions of the flow field; liquid film with dispersed bubbles, interfacial waves, and continuous vapor with dispersed droplets.

Trabold, T.A.; Moore, W.E.; Morris, W.O. [Lockheed Martin Corp., Schenectady, NY (United States)

1997-06-01T23:59:59.000Z

439

Rapid e-beam heating for measuring thermodynamics of metastable materials. [Al-Re  

SciTech Connect (OSTI)

A line-source electron-beam system has been used to heat thin surface layers of metastable phases at a rate which precludes solid-state transformation to stable phases, thus permitting the observation of melting transitions normally missed with slow heating. A detailed examples of a new approach to this method is shown for metastable icosahedral Al-Re and crystalline Al/sub 6/Re. 8 refs., 4 figs.

Knapp, J.A.; Follstaedt, D.M.

1987-01-01T23:59:59.000Z

440

A COMPREHENSIVE STATISTICALLY-BASED METHOD TO INTERPRET REAL-TIME FLOWING MEASUREMENTS  

SciTech Connect (OSTI)

In this project, we are developing new methods for interpreting measurements in complex wells (horizontal, multilateral and multi-branching wells) to determine the profiles of oil, gas, and water entry. These methods are needed to take full advantage of ''smart'' well instrumentation, a technology that is rapidly evolving to provide the ability to continuously and permanently monitor downhole temperature, pressure, volumetric flow rate, and perhaps other fluid flow properties at many locations along a wellbore; and hence, to control and optimize well performance. In this first year, we have made considerable progress in the development of the forward model of temperature and pressure behavior in complex wells. In this period, we have progressed on three major parts of the forward problem of predicting the temperature and pressure behavior in complex wells. These three parts are the temperature and pressure behaviors in the reservoir near the wellbore, in the wellbore or laterals in the producing intervals, and in the build sections connecting the laterals, respectively. Many models exist to predict pressure behavior in reservoirs and wells, but these are almost always isothermal models. To predict temperature behavior we derived general mass, momentum, and energy balance equations for these parts of the complex well system. Analytical solutions for the reservoir and wellbore parts for certain special conditions show the magnitude of thermal effects that could occur. Our preliminary sensitivity analyses show that thermal effects caused by near-wellbore reservoir flow can cause temperature changes that are measurable with smart well technology. This is encouraging for the further development of the inverse model.

Pinan Dawkrajai; Analis A. Romero; Keita Yoshioka; Ding Zhu; A.D. Hill; Larry W. Lake

2004-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Determination of the permeability of carbon aerogels by gas flow measurements  

SciTech Connect (OSTI)

Carbon aerogels are synthesized via the polycondensation of resorcinol and formaldehyde, followed by supercritical drying and pyrolysis at 1050{degree}C in nitrogen. Because of their interconnected porosity, ultrafine cell structure and high surface area, carbon aerogels have many potential applications, such as in supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, we calculated the permeability of carbon aerogels from equations based upon Darcy`s law. Our measurements show that carbon aerogels have apparent permeabilities on the order of 10{sup {minus}12}to 10{sup {minus}10} cm{sup 2} for densities ranging from 0.44 to 0.05 g/cm{sup 3}. Like their mechanical properties, the permeability of carbon aerogels follows a power law relationship with density and average pore size. Such findings help us to estimate the average pore sizes of carbon aerogels once their densities are known. This paper reveals the relationships among permeability, pore size and density in carbon aerogels.

Kong, F.M.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W.

1992-04-01T23:59:59.000Z

442

Determination of the permeability of carbon aerogels by gas flow measurements  

SciTech Connect (OSTI)

Carbon aerogels are synthesized via the polycondensation of resorcinol and formaldehyde, followed by supercritical drying and pyrolysis at 1050{degree}C in nitrogen. Because of their interconnected porosity, ultrafine cell structure and high surface area, carbon aerogels have many potential applications, such as in supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, we calculated the permeability of carbon aerogels from equations based upon Darcy's law. Our measurements show that carbon aerogels have apparent permeabilities on the order of 10{sup {minus}12}to 10{sup {minus}10} cm{sup 2} for densities ranging from 0.44 to 0.05 g/cm{sup 3}. Like their mechanical properties, the permeability of carbon aerogels follows a power law relationship with density and average pore size. Such findings help us to estimate the average pore sizes of carbon aerogels once their densities are known. This paper reveals the relationships among permeability, pore size and density in carbon aerogels.

Kong, F.M.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W.

1992-04-01T23:59:59.000Z

443

Interpretation of Array Production Logging Measurements in Horizontal Wells for Flow Profile  

E-Print Network [OSTI]

and possible back flow of denser phases result in misinterpretation of the inflow distribution. To assess the downhole flow conditions more accurately, logging tools have been developed to overcome the flow regime related issues. Multiple-sensor array tools...

Liao, Lulu

2013-12-12T23:59:59.000Z

444

Development and adaptation of conduction and radiation heat-transfer computer codes for the CFTL. [Core Flow Test Loop; RODCON; HOTTEL  

SciTech Connect (OSTI)

RODCON and HOTTEL are two computational methods used to calculate thermal and radiation heat transfer for the Core Flow Test Loop (CFTL) analysis efforts. RODCON was developed at ORNL to calculate the internal temperature distribution of the fuel rod simulator (FRS) for the CFTL. RODCON solves the time-dependent heat transfer equation in two-dimensional (R angle) cylindrical coordinates at an axial plane with user-specified radial material zones and time- and position-variant surface conditions at the FRS periphery. Symmetry of the FRS periphery boundary conditions is not necessary. The governing elliptic, partial differential heat equation is cast into a fully implicit, finite-difference form by approximating the derivatives with a forward-differencing scheme with variable mesh spacing. The heat conduction path is circumferentially complete, and the potential mathematical problem at the rod center can be effectively ignored. HOTTEL is a revision of an algorithm developed by C.B. Baxi at the General Atomic Company (GAC) to be used in calculating radiation heat transfer in a rod bundle enclosed in a hexagonal duct. HOTTEL uses geometric view factors, surface emissivities, and surface areas to calculate the gray-body or composite view factors in an enclosure having multiple reflections in a nonparticipating medium.

Conklin, J.C.

1981-08-01T23:59:59.000Z

445

Impingement cooling and heat transfer measurement using transient liquid crystal technique  

E-Print Network [OSTI]

impinge on a smooth impingement target surface, and orthogonal impinging jets impinge on a target surface with coolant extraction holes. Each configuration is based on four Reynolds numbers between 4000 and 20000 and three flow exit orientations, namely...

Huang, Yizhe

1996-01-01T23:59:59.000Z

446

Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend  

DOE Patents [OSTI]

A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

Ortiz, M.G.

1998-02-10T23:59:59.000Z

447

Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV  

E-Print Network [OSTI]

We report on the first measurement of the triangular v3, quadrangular v4, and pentagonal v5 charged particle flow in Pb-Pb collisions at 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow v2 and v3 have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients.

ALICE Collaboration

2011-06-15T23:59:59.000Z

448

Measurement of limiter heating due to fusion product losses during high fusion power deuterium-tritium operation of TFTR  

SciTech Connect (OSTI)

Preliminary analysis has been completed on measurements of limiter heating during high fusion power deuterium-tritium (D-T) operation of TFTR, in an attempt to identify heating from alpha particle losses. Recent operation of TFTR with a 50-50 mix of D-T has resulted in fusion power output ({approx} 6.2 MW) orders of magnitude above what was previously achieved on TFTR. A significantly larger absolute number of particles and energy from fusion products compared to D-D operation is expected to be lost to the limiters. Measurements were made in the vicinity of the midplane ({plus_minus} 30{degree}) with thermocouples mounted on the tiles of an outboard limiter. Comparisons were made -between discharges which were similar except for the mix of deuterium and tritium beam sources. Power and energy estimates of predicted alpha losses were as high as 0.13 MW and 64 kJ. Depending on what portion of the limiters absorbed this energy, temperature rises of up to 42 {degrees}C could be expected, corresponding to a heat load of 0.69 MJ/m{sup 2} over a 0.5 sec period, or a power load of 1.4 MW/m{sup 2}. There was a measurable increase in the limiter tile temperature as the fusion power yield increased with a more reactive mixture of D and T at constant beam power during high power D-T operation. Analysis of the data is being conducted to see if the alpha heating component can be extracted. Measured temperature increases were no greater than 1 {degree}C, indicating that there was probably neither an unexpectedly large fraction of lost particles nor unexpected localization of the losses. Limits on the stochastic ripple loss contribution from alphas can be deduced.

Janos, A.; Owens, D.K.; Darrow, D.; Redi, M.; Zarnstorff, M.; Zweben, S.

1995-03-01T23:59:59.000Z

449

Chaotic flow in a 2D natural convection loop with heat flux boundaries William F. Louisos a,b,  

E-Print Network [OSTI]

the nonlinear dynamics of unstable convection in a 2D thermal convection loop (i.e., thermosyphon) with heat behavior and residence time in a cir- culatory direction are explored and described for the various thermal-storms depicted as a classic `bow echo' on radar [3]; land and sea breezes as a result of differential heating

Danforth, Chris

450

Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica  

E-Print Network [OSTI]

-flow measurements are rare or entirely absent. This will result in a smooth global heat-flow map that may proveInferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica Nikolai M. Shapiro*, Michael H. Ritzwoller Department of Physics, Center for Imaging the Earth

Shapiro, Nikolai

451

Dual source heat pump  

DOE Patents [OSTI]

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

452

Long-term corrosion measurements in condensing heat exchangers. Topical report, September 1989-January 1993  

SciTech Connect (OSTI)

Corrosion of metals used in condensing heat exchangers for gas appliances has been correlated most strongly with the chloride content of the condensate. This study presents results of an experimental examination of the long-term corrosion in metals used in condensing heat exchangers. The objective of this work is to develop a rationale for predicting the performance and expected service life of metals in condensing heat exchangers. Long-term exposure tests were conducted using finned-tube condensing heat exchangers containing tubes of 304L, 3161L, 3171L, Sea-Cure, and 29-4C steel, and aluminum. The natural gas was spiked with R-11 to generate chloride ion levels in the condensate of 3 ppm, 26 ppm, and 225 ppm. The aluminum tubes experienced through-the-wall pitting after 1.5 months at 225 ppm chloride, and after 6 months at 26 ppm chloride. At 3 ppm, most of the tubes exhibited no corrosion. At 225 ppm and 26 ppm, the 300-series stainless steels experienced through-the-wall corrosion within 3 months, but at 3 ppm virtually no corrosion was found. Sea-Cure and 29-4C exhibited the best corrosion resistance with some pitting at 225 ppm but none at 26 ppm and 3 ppm.

Stickford, G.H.; Hindin, B.

1993-01-31T23:59:59.000Z

453

Fluidized bed heat treating system  

DOE Patents [OSTI]

Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

Ripley, Edward B; Pfennigwerth, Glenn L

2014-05-06T23:59:59.000Z

454

Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange  

DOE Patents [OSTI]

A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA); Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA)

1986-01-01T23:59:59.000Z

455

Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange  

DOE Patents [OSTI]

A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

1983-09-21T23:59:59.000Z

456

Measurement of flow maldistribution in parallel channels and its application to ex-situ and in-situ experiments in PEMFC water management studies  

E-Print Network [OSTI]

to sig- nificant reduction in effectiveness for high NTU heat exchangers [1], about 7% for condensers in the effective operation of a proton exchange membrane fuel cell (PEMFC). Presently there are a few theoretically effects, two-phase separation and resultant flow non-uniformity. (b) Uneven flow resistances

Kandlikar, Satish

457

A Parallel Implementation of the TOUGH2 Software Package for Large Scale Multiphase Fluid and Heat Flow Simulations  

E-Print Network [OSTI]

with ¢¡¤£¦¥§ ¨¡© blocks in a Yucca Mountain nuclear waste site study. Keywords. Ground water flow, grid partitioning management for the evaluation of the Yucca Mountain site as a repository for nuclear wastes. In this context of developing a 3D flow model of the Yucca Mountain site, involving computational grids of to blocks

Elmroth, Erik

458

A Parallel Implementation of the TOUGH2 Software Package for Large Scale Multiphase Fluid and Heat Flow Simulations  

E-Print Network [OSTI]

6 blocks in a Yucca Mountain nuclear waste site study. Keywords. Ground water flow, grid of Energy's civilian nuclear waste management for the evaluation of the Yucca Mountain site as a repository is currently in charge of developing a 3D flow model of the Yucca Mountain site, involving computational grids

Elmroth, Erik

459

Woven heat exchanger  

DOE Patents [OSTI]

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

460

Development of Micro/Nano-Scale Sensors for Investigation of Heat Transfer in Multi-Phase Flows  

E-Print Network [OSTI]

surfaces. Similar experiments were also performed on a pure copper surface. In addition, experiments were performed using compact condensers. Micro-scale patterns fabricated on the refrigerant side of the compact heat exchanger were observed to cause...

Jeon, Sae Il

2012-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow measurements" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.