Powered by Deep Web Technologies
Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Temperature, heat flow maps and temperature gradient holes |...  

Open Energy Info (EERE)

Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Organization Colorado Geological Survey in Cooperation with the U.S. Department of Energy...

2

Temperatures, heat flow, and water chemistry from drill holes...  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

3

Heat Flow From Four New Research Drill Holes In The Western Cascades,  

Open Energy Info (EERE)

From Four New Research Drill Holes In The Western Cascades, From Four New Research Drill Holes In The Western Cascades, Oregon, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa Details Activities (1) Areas (1) Regions (0) Abstract: Conceptual models of the thermal structure of the Oregon Cascade Range propose either (1) a narrow zone of magmatic heat sources, flanked by shallow heat-flow anomalies caused by lateral ground-water flow; or (2) a wide zone of magmatic heat sources, with localized, generally negligible ground-water effects. The proposed narrow heat source coincides with the Quaternary volcanic arc, whereas the wider heat source would extend 10-30 km west of the arc. To test the models, four new heat-flow holes were sited

4

Temperatures, heat flow, and water chemistry from drill holes in the Raft  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River area of Idaho contains a geothermal system of intermediate temperatures (approx. = 150 0C) at depths of about 1.5 km. Outside of the geothermal area, temperature measurements in three intermediate-depth drill holes (200 to 400 m) and one deep well (1500 m) indicate that the regional conductive heat flow is about 2.5 mucal/cm 2 sec or slightly higher and that temperature gradients range from 50 0 to 60

5

Heat Flow From Four New Research Drill Holes In The Western Cascades...  

Open Energy Info (EERE)

Four New Research Drill Holes In The Western Cascades, Oregon, Usa Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Heat Flow From Four New...

6

Measurements of wall heat (mass) transfer for flow through blockages with round and square holes in a wide rectangular channel.  

E-Print Network (OSTI)

??Naphthalene sublimation and pressure measurement experiments were conducted to study heat (mass) transfer enhancement by blockages with staggered round and square holes for turbulent air… (more)

Cervantes, Joel

2012-01-01T23:59:59.000Z

7

A Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow Measurements  

Open Energy Info (EERE)

Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow Measurements Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow Measurements And Heat-Flow Estimates From The Uk Geothermal Catalogue Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow Measurements And Heat-Flow Estimates From The Uk Geothermal Catalogue Details Activities (0) Areas (0) Regions (0) Abstract: A comprehensive database of temperature, heat flow, thermal conductivity and geochemistry is the basis of geothermal modelling. The latest revision (1987) of the UK Geothermal Catalogue (UKGC) contains over 2600 temperatures at over 1150 sites and over 200 observations of heat flow. About 93% of the temperature data are from depths less than 2000 m and about 50% are Bottom Hole Temperatures (BHT). Heat-flow density

8

Measurements of wall heat (mass) transfer for flow through blockages with round and square holes in a wide rectangular channel  

E-Print Network (OSTI)

COMMANDS . . APPENDIX C: UNCERTAINTY ANALYSIS . APPENDIX D: RAW DATA & RESULTS . . 71 . . . . 74 77 VITA. 134 vu1 LIST OF FIGURES Page Figurc 1 Internal and external cooling concepts used in modem gas turbine airfoils (Han et al. ). Figure 2... . . . . . . . . . . . . . . . . . . . . . . . . . 62 xt NOMENCLATURE A, flow cross-sectional area of test channel, m 2 surface area, m 2 D?hydraulic diameter of test channel, m friction factor f, reference friction factor for fully developed turbulent flow in smooth channel heat transfer...

Cervantes, Joel

2012-06-07T23:59:59.000Z

9

Heat flow on the southern Colorado Plateau  

Science Journals Connector (OSTI)

Heat-flow data from the study area in the southern Colorado Plateau indicate a pattern of local anomalies having relatively high heat flow superimposed on a regional, intermediate heat-flow setting. While many of the conventional heat-flow data are relatively shallow and may be perturbed by groundwater circulation, bottom-hole temperature data from two relatively deep petroleum exploration drill holes near the southern plateau periphery yield intermediate heat-flow estimates. The mean heat flow within the volcanically active Jemez zone does not appear to be significantly greater than the mean heat flow for the remainder of the study area. This is due to the presence of high heat-flow values outside the Jemez zone. Sites with relatively high heat flow located towards the plateau interior and away from recent volcanic activity of the Jemez zone may reflect magma intrusion and/or groundwater movement along crustal zones of weakness associated with Laramide deformation (monoclines). The heat-flow data are consistent with coal maturation data, which suggest that any regional post-Cretaceous thermal events that may be associated with the southern Plateau boundary have been initiated relatively recently, or are occurring at relatively great depths, or are occurring south of the Jemez lineament.

Jeffrie Minier; Marshall Reiter

1991-01-01T23:59:59.000Z

10

Ch. VII, Temperature, heat flow maps and temperature gradient...  

Open Energy Info (EERE)

Ch. VII, Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the...

11

Convective heat flow probe  

DOE Patents (OSTI)

A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

Dunn, J.C.; Hardee, H.C.; Striker, R.P.

1984-01-09T23:59:59.000Z

12

Planetary heat flow measurements  

Science Journals Connector (OSTI)

...ESA's Rosetta mission towards comet Churyumov-Gerasimenko. It...Heat flow measurements on comets have a different motivation...penetrator is by no means limited to comets; it has also been tested in...measurement. Currently, a landing on Mercury within the framework...

2005-01-01T23:59:59.000Z

13

Thaw flow control for liquid heat transport systems  

DOE Patents (OSTI)

In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

Kirpich, Aaron S. (Broomall, PA)

1989-01-01T23:59:59.000Z

14

Earth's Crust: Heat Flow Relationships  

Science Journals Connector (OSTI)

... of heat flow through the Earth's surface at any point requires two measurements, the geothermal gradient itself and the thermal conductivity of the adjacent rocks. In the oceanic crust, ... variations in heat flow from point to point are governed essentially by variations in the geothermal gradient. In continents, however, the story is different. Correlation and regression analyses carried ...

Our Geomagnetism Correspondent

1970-07-11T23:59:59.000Z

15

Experimental Study of Heat Transfer and Flow Characteristics for a New Type of Air Heater  

E-Print Network (OSTI)

. It is found that the integrated characteristics of heat transfer and flow friction increase with the hole's diameter at the same hole density (which is equal to the ratio of the hole's total area to the baffle's area), and the heat transfer rate increases...

Zheng, H.; Fan, X.; Li, A.

2006-01-01T23:59:59.000Z

16

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

17

Heat flow and geothermal studies in the Great Plains  

SciTech Connect

In continental heat flow studies, sedimentary basins are usually avoided because of difficulties in obtaining thermal conductivity measurements and because temperature gradients may contain advective signals caused by moving groundwater. These problems are superimposed in the Denver, Kennedy and Williston Basins where complex geothermal gradients derive both from large contrasts among thermal conductivities of strata and from regional groundwater flow. The occurrence and magnitude of advective heat flow within the Denver, Kennedy and Williston Basins is conceptually consistent with simple models that relate groundwater flow to the piezometric surface and to subsurface structures, i.e., folds and faults. An advective heat flow of +25 mW/m/sup 2/ has been determined for an area in the eastern margin of the Denver Basin, and quantities of +35 mW/m/sup 2/ and +10 MW/m/sup 2/ have been determined respectively for parts of the southeastern and northeastern parts of the Williston Basin. A detailed analysis of bottom hole temperatures obtained from drill holes in the area of the Billings Anticline in the Williston Basin indicates that information on subsurface structures and groundwater flow may be obtained from heat flow studies. Additional information that may be derived from these heat flow studies includes: the occurrence and nature of geothermal resources, oil source rock maturation and secondary migration of petroleum, formation and deposition of strata-bound ores. 43 references.

Gosnold, W.D.; Fischer, D.W.

1985-12-01T23:59:59.000Z

18

A Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow...  

Open Energy Info (EERE)

Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow Measurements And Heat-Flow Estimates From The Uk Geothermal Catalogue Jump to: navigation, search OpenEI Reference...

19

Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas-  

Open Energy Info (EERE)

Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Details Activities (5) Areas (5) Regions (0) Abstract: Surface heat flow measurements over active geothermal systems indicate strongly positive thermal anomalies. Whereas in "normal" geothermal settings, the surface heat flow is usually below 100-120 mW m- 2, in active geothermal areas heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on different lateral, depth and time scales. Borehole temperature profiles in active geothermal

20

Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In  

Open Energy Info (EERE)

Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa) Details Activities (4) Areas (2) Regions (0) Abstract: High heat flow in the Zuni Mountains, New Mexico, U.S.A., has been explained by the possible presence of a buried felsic pluton. Alternately, high K, U, Th abundances have been proposed to account for part of the high heat flow. The mean radiogenic heat contribution for 60 samples of Precambrian core rocks is 7.23 μcal/gm-yr, which is slightly

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geothermal Heat Flow and Existing Geothermal Plants | Department...  

Energy Savers (EERE)

Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click...

22

USING CENTER HOLE HEAT TRANSFER TO REDUCE FORMATION TIMES FOR CERAMIC WASTE FORMS FROM PYROPROCESSING  

SciTech Connect

The waste produced from processing spent fuel from the EBR II reactor must be processed into a waste form suitable for long term storage in Yucca Mountain. The method chosen produces zeolite granules mixed with glass frit, which must then be converted into a solid. This is accomplished by loading it into a can and heating to 900 C in a furnace regulated at 915 C. During heatup to 900 C, the zeolite and glass frit react and consolidate to produce a sodalite monolith. The resultant ceramic waste form (CWF) is then cooled. The waste is 52 cm in diameter and initially 300 cm long but consolidates to 150 cm long during the heating process. After cooling it is then inserted in a 5-DHLW/DOE SNF Long Canister. Without intervention, the waste takes 82 hours to heat up to 900 C in a furnace designed to geometrically fit the cylindrical waste form. This paper investigates the reduction in heating times possible with four different methods of additional heating through a center hole. The hole size is kept small to maximize the amount of CWF that is processed in a single run. A hole radius of 1.82 cm was selected which removes only 1% of the CWF. A reference computation was done with a specified inner hole surface temperature of 915 C to provide a benchmark for the amount of improvement which can be made. It showed that the heatup time can potentially be reduced to 43 hours with center hole heating. The first method, simply pouring high temperature liquid aluminum into the hole, did not produce any noticeable effect on reducing heat up times. The second method, flowing liquid aluminum through the hole, works well as long as the velocity is high enough (2.5 cm/sec) to prevent solidification of the aluminum during the initial front movement of the aluminum into the center hole. The velocity can be reduced to 1 cm/sec after the initial front has traversed the ceramic. This procedure reduces the formation time to near that of the reference case. The third method, flowing a gas through the center hole, also works well as long as the heat capacity times the velocity of the gas is equivalent to that of the flowing aluminum, and the velocity is high enough to produce an intermediate size heat transfer coefficient. The fourth method, using an electric heater, works well and heater sizes between 500 to 1000 Watts are adequate. These later three methods all can reduce the heatup time to 44 hours.

Kenneth J. Bateman; Charles W. Solbrig

2006-07-01T23:59:59.000Z

23

Cryogenic Fluid Flow Heat Transfer in a Porous Heat Exchanger  

Science Journals Connector (OSTI)

The recent utilization of porous heat exchangers in various key industries has aroused considerable interest in the heat transfer and fluid dynamics processes in channel flows involving suction...1], suction with...

L. L. Vasiliev; G. I. Bobrova; S. K. Vinokurov…

1978-01-01T23:59:59.000Z

24

Heat flow and microearthquake studies, Coso Geothermal Area, China Lake,  

Open Energy Info (EERE)

and microearthquake studies, Coso Geothermal Area, China Lake, and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Heat flow and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Details Activities (2) Areas (1) Regions (0) Abstract: The present research effort at the Coso Geothermal Area located on the China Lake Naval Weapons Center, China Lake, California, was concerned with: (1) heat flow studies and (2) microearthquake studies associated with the geothermal phenomena in the Coso Hot Springs area. The sites for ten heat flow boreholes were located primarily using the available seismic ground noise and electrical resistivity data. Difficulty was encountered in the drilling of all of the holes due to altered, porous,

25

Heat Transfer Characteristics of a Generalized Divided Flow Heat Exchanger  

E-Print Network (OSTI)

The concept of a "Divided-flow" heat exchanger is generalized by locating the shell inlet (or outlet) nozzle off-center such that the two shell sub-streams are unequal and traverse unequal flow paths. The governing equations for heat transfer...

Singh, K. P.

1979-01-01T23:59:59.000Z

26

An evaluation of heat flow transducers as a means of determining soil heat flow  

E-Print Network (OSTI)

provided to the Micrometeorology Section, Department of Oceanography and Meteorology, ARM College of Texas by the Signal Corps of the United States Army, under Contract No. DA 36-039 AMC-02195 (E). The heat flow plates used in this study were provided... surface soil heat flow. The results show that acceptable performance of the plates in the measurement of heat flow is possible although in general should not be expected without thorough testing, and even then there are restrictive considerations...

King, Barney L. D

2012-06-07T23:59:59.000Z

27

Acoustic white holes in flowing atomic Bose-Einstein condensates  

E-Print Network (OSTI)

We study acoustic white holes in a steadily flowing atomic Bose-Einstein condensate. A white hole configuration is obtained when the flow velocity goes from a super-sonic value in the upstream region to a sub-sonic one in the downstream region. The scattering of phonon wavepackets on a white hole horizon is numerically studied in terms of the Gross-Pitaevskii equation of mean-field theory: dynamical stability of the acoustic white hole is found, as well as a signature of a nonlinear back-action of the incident phonon wavepacket onto the horizon. The correlation pattern of density fluctuations is numerically studied by means of the truncated-Wigner method which includes quantum fluctuations. Signatures of the white hole radiation of correlated phonon pairs by the horizon are characterized; analogies and differences with Hawking radiation from acoustic black holes are discussed. In particular, a short wavelength feature is identified in the density correlation function, whose amplitude steadily grows in time since the formation of the horizon. The numerical observations are quantitatively interpreted by means of an analytical Bogoliubov theory of quantum fluctuations for a white hole configuration within the step-like horizon approximation.

Carlos Mayoral; Alessio Recati; Alessandro Fabbri; Renaud Parentani; Roberto Balbinot; Iacopo Carusotto

2010-09-30T23:59:59.000Z

28

The Effect of Transition Region Heating on the Solar Wind from Coronal Holes  

Science Journals Connector (OSTI)

Using a 16 moment solar wind model extending from the chromosphere to 1 AU, we study how the solar wind is affected by direct deposition of energy in the transition region, in both radially expanding geometries and rapidly expanding coronal holes. Energy is required in the transition region to lift the plasma up to the corona, where additional coronal heating takes place. The amount of energy deposited determines the transition region pressure and the number of particles reaching the corona and, hence, how the solar wind energy flux is divided between gravitational potential and kinetic energy. We find that when only protons are heated perpendicularly to the magnetic field in a rapidly expanding coronal hole, the protons quickly become collisionless and therefore conduct very little energy into the transition region, leading to a wind much faster than what is observed. Only by additional deposition of energy in the transition region can a reasonable mass flux and flow speed at 1 AU be obtained. Radiative loss in the transition region is negligible in these low-mass flux solutions. In a radially expanding geometry the same form of coronal heating results in a downward heat flux to the transition region substantially larger than what is needed to heat the upwelling plasma, resulting in a higher transition region pressure, a slow, massive solar wind, and radiative loss playing a dominant role in the transition region energy budget. No additional energy input is needed in the transition region in this case. In the coronal hole geometry the solar wind response to transition region heating is highly nonlinear, and even a tiny input of energy can have a very large influence on the asymptotic properties of the wind. By contrast, the radially expanding wind is quite insensitive to additional deposition of energy in the transition region.

Øystein Lie-Svendsen; Viggo H. Hansteen; Egil Leer; Thomas E. Holzer

2002-01-01T23:59:59.000Z

29

Cryogenic heat exchanger with turbulent flows  

Science Journals Connector (OSTI)

An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid–solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N2 and He gases from room temperatures. We present first the experimental results of various parameters which characterize the heat exchanger (efficiency, number of transfer units, heat exchange coefficient, etc) as a function of the mass flow rate of the gas to be cooled. An analysis of the Nu–Re diagram is also presented. All experiments were conducted with N2 gas. The scope of this tool is readily extended to research purposes.

Jay Amrit; Christelle Douay; Francis Dubois; Gérard Defresne

2012-01-01T23:59:59.000Z

30

Triaxial thermopile array geo-heat-flow sensor  

DOE Patents (OSTI)

A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings. 6 figs.

Carrigan, C.R.; Hardee, H.C.; Reynolds, G.D.; Steinfort, T.D.

1990-01-01T23:59:59.000Z

31

Triaxial thermopile array geo-heat-flow sensor  

DOE Patents (OSTI)

A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers arranged in a vertical string. The transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings.

Carrigan, Charles R. (Tracy, CA); Hardee, Harry C. (Albuquerque, NM); Reynolds, Gerald D. (Tijeras, NM); Steinfort, Terry D. (Tijeras, NM)

1992-01-01T23:59:59.000Z

32

Plume heat flow is much lower than CMB heat flow Eric Mittelstaedt a,*, Paul J. Tackley a,b  

E-Print Network (OSTI)

to follow a power-law size distribution, estimated a plume heat flux as high as 35% of surface heat fluxPlume heat flow is much lower than CMB heat flow Eric Mittelstaedt a,*, Paul J. Tackley a, of the heat conducted across the CMB. Here this assumption is explored using numerical convection models

Tackley, Paul J.

33

Hydrodynamics, heat transfer and flow boiling instabilities in microchannels   

E-Print Network (OSTI)

Boiling in microchannels is a very efficient mode of heat transfer with high heat and mass transfer coefficients achieved. Less pumping power is required for two-phase flows than for single-phase liquid flows to achieve ...

Barber, Jacqueline Claire

2010-01-01T23:59:59.000Z

34

Interpretive geothermal heat flow map of Colorado | Open Energy...  

Open Energy Info (EERE)

Interpretive geothermal heat flow map of Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Map: Interpretive geothermal heat flow map of ColoradoInfo...

35

Heat Flow in the Hungarian Basin  

Science Journals Connector (OSTI)

... the basin is deep and the gradient is between 40 and 45 C/km. This geothermal low may be characterized by 1-4-1-6 [jical/cm2 sec except if ... is about 1*5 sec can bo considered as the Western boundary of the Hungarian geothermal anomaly, since heat flow diminishes from that line in the north-west direction to ...

T. BOLDIZSÁR

1964-06-27T23:59:59.000Z

36

Radio frequency (RF) heated supersonic flow laboratory  

SciTech Connect

A unique supersonic flow apparatus which employs an inductively-coupled, radio frequency (RF) torch to supply high enthalpy source gas to the nozzle inlet is described. The main features of this system are the plasma tube, a cooled nozzle assembly, and a combustion/expansion chamber with a heat exchanger. A description of these components with current test data is presented. In addition, a discussion of anticipated experiments utilizing this system is included.

Wantuck, P.; Watanabe, H.

1990-01-01T23:59:59.000Z

37

Measurement of flow field and local heat transfer distribution on a scraped heat exchanger crystalliser surface  

E-Print Network (OSTI)

Measurement of flow field and local heat transfer distribution on a scraped heat exchanger geometry the flow field influence on the local heat transfer distribution on an evenly cooled scraped heat loss heat loss to the surroundings stst stainless steel plate lc thermo-chromic liquid crystal

Boyer, Edmond

38

Kinematics of geodesic flows in stringy black hole backgrounds  

E-Print Network (OSTI)

We study the kinematics of timelike geodesic congruences in two and four dimensions in spacetime geometries representing stringy black holes. The Raychaudhuri equations for the kinematical quantities (namely, expansion, shear and rotation) characterising such geodesic flows are written down and subsequently solved analytically (in two dimensions) and numerically (in four dimensions) for specific geodesics flows. We compare between geodesic flows in dual (electric and magnetic) stringy black hole backgrounds in four dimensions, by showing the differences that arise in the corresponding evolutions of the kinematic variables. The crucial role of initial conditions and the spacetime curvature on the evolution of the kinematical variables is illustrated. Some novel general conclusions on geodesic focusing are obtained from the analytical and numerical findings. We also propose new quantifiers in terms of (a) the time (affine parameter) of approach to a singularity and (b) the location of extrema in the functional evolution of the kinematic variables, which may be used to distinguish between flows in different geometries. In summary, our quantitative findings bring out hitherto unknown features of the kinematics of geodesic flows, which, otherwise, would have remained overlooked, if we confined ourselves to only a qualitative analysis.

Anirvan Dasgupta; Hemwati Nandan; Sayan Kar

2009-06-12T23:59:59.000Z

39

FLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS  

E-Print Network (OSTI)

= heat, f = LO-mode, g = LO, h = LA-mode, i = negligible, j = remote heat sink 7/ 70 #12;Heat conductionFLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS Mihir Sen Department · Shallow water analogy · Vorticity dynamics · Linear stability analysis · Numerical simulations of heat

Sen, Mihir

40

Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel  

E-Print Network (OSTI)

Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel July 2008 Keywords: Boiling Microchannels Visualisation Flow boiling instabilities Heat transfer a b intensification heat removal. Flow boiling heat transfer in microchannel geometry and the associated flow

Aussillous, Pascale

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The 1983 Temperature Gradient and Heat Flow Drilling Project for the State of Washington  

SciTech Connect

During the Summer of 1983, the Washington Division of Geology and Earth Resources carried out a three-hole drilling program to collect temperature gradient and heat flow information near potential geothermal resource target areas. The project was part of the state-coupled US Department of Energy Geothermal Program. Richardson Well Drilling of Tacoma, Washington was subcontracted through the State to perform the work. The general locations of the project areas are shown in figure 1. The first hole, DNR 83-1, was located within the Green River valley northwest of Mount St. Helens. This site is near the Green River Soda Springs and along the projection of the Mount St. Helens--Elk Lake seismic zone. The other two holes were drilled near Mount Baker. Hole DNR 83-3 was sited about 1/4 km west of the Baker Hot Springs, 10.5 km east of Mount Baker, while hole DNR 83-5 was located along Rocky Creek in the Sulphur Creek Valley. The Rocky Creek hole is about 10 km south-southwest of the peak. Two other holes, DNR 83-2 and DNR 83-4, were located on the north side of the Sulphur Creek Valley. Both holes were abandoned at early stages of drilling because of deep overburden and severe caving problems. The sites were apparently located atop old landslide deposits.

Korosec, Michael A.

1983-11-01T23:59:59.000Z

42

1983 temperature gradient and heat flow drilling project for the State of Washington  

SciTech Connect

During the Summer of 1983, a three-hole drilling program was carried out to collect temperature gradient and heat flow information near potential geothermal resource target areas. The general locations of the project areas are shown. The first hole, DNR 83-1, was located within the Green River valley northwest of Mount St. Helens. This site is near the Green River Soda Springs and along the projection of the Mount St. Helens - Elk Lake seismic zone. The other two holes were drilled near Mount Baker. Hole DNR 83-3 was sited about 1/4 km west of the Baker Hot Springs, 10.5 km east of Mount Baker, while hole DNR 83-5 was located along Rocky Creek in the Sulphur Creek Valley. The Rocky Creek hole is about 10 km south-southwest of the peak. Two other holes, DNR 83-2 and DNR 83-4, were located on the north side of the Sulphur Creek Valley. Both holes were abandoned at early stages of drilling because of deep overburden and severe caving problems. The sites were apparently located atop old landslide deposits.

Korosec, M.A.

1983-11-01T23:59:59.000Z

43

MERLOT: a model for flow and heat transfer through porous media for high heat flux applications  

E-Print Network (OSTI)

MERLOT: a model for flow and heat transfer through porous media for high heat flux applications A Abstract Fusion power plant studies have found helium to be an attractive coolant based on its safety tend to provide modest heat transfer performance due to their inherently low heat capacity and heat

Raffray, A. René

44

Heat flow in the postquasistatic approximation  

SciTech Connect

We apply the postquasistatic approximation to study the evolution of spherically symmetric fluid distributions undergoing dissipation in the form of radial heat flow. For a model that corresponds to an incompressible fluid departing from the static equilibrium, it is not possible to go far from the initial state after the emission of a small amount of energy. Initially collapsing distributions of matter are not permitted. Emission of energy can be considered as a mechanism to avoid the collapse. If the distribution collapses initially and emits one hundredth of the initial mass only the outermost layers evolve. For a model that corresponds to a highly compressed Fermi gas, only the outermost shell can evolve with a shorter hydrodynamic time scale.

Rodriguez-Mueller, B. [Computational Science Research Center, College of Sciences, San Diego State University, San Diego, California (United States); Peralta, C. [Deutscher Wetterdienst, Frankfurter Strasse 135, 63067 Offenbach (Germany); School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia); Barreto, W. [Centro de Fisica Fundamental, Facultad de Ciencias, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Rosales, L. [Laboratorio de Fisica Computacional, Universidad Experimental Politecnica, 'Antonio Jose de Sucre', Puerto Ordaz (Venezuela, Bolivarian Republic of)

2010-08-15T23:59:59.000Z

45

Heat flow in the postquasistatic approximation  

E-Print Network (OSTI)

We apply the postquasistatic approximation to study the evolution of spherically symmetric fluid distributions undergoing dissipation in the form of radial heat flow. For a model which corresponds to an incompressible fluid departing from the static equilibrium, it is not possible to go far from the initial state after the emission of a small amount of energy. Initially collapsing distributions of matter are not permitted. Emission of energy can be considered as a mechanism to avoid the collapse. If the distribution collapses initially and emits one hundredth of the initial mass only the outermost layers evolve. For a model which corresponds to a highly compressed Fermi gas, only the outermost shell can evolve with a shorter hydrodynamic time scale.

B. Rodríguez-Mueller; C. Peralta; W. Barreto; L. Rosales

2010-05-10T23:59:59.000Z

46

The International Heat Flow Commission | Open Energy Information  

Open Energy Info (EERE)

The International Heat Flow Commission The International Heat Flow Commission Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The International Heat Flow Commission Details Activities (1) Areas (1) Regions (0) Abstract: Unavailable Author(s): A. E. Beck, V. Cermak Published: Geothermics, 1989 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Data Acquisition-Manipulation (Beck & Cermak, 1989) Unspecified Retrieved from "http://en.openei.org/w/index.php?title=The_International_Heat_Flow_Commission&oldid=387748" Category: Reference Materials What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863774514

47

Radiative heat transfer in a flow of rheologically complex fluid  

Science Journals Connector (OSTI)

The problem of complex radiative and convective heat transfer in steady-state generalized Couette flow of a nonlinear viscoplastic fluid is examined.

V. F. Volchenok; Z. P. Shul'man

1980-09-01T23:59:59.000Z

48

Heat Flow Database Expansion for NGDS Data Development, Collection...  

Open Energy Info (EERE)

Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance Project...

49

Heat transfer in channel flow of a micropolar fluid  

Science Journals Connector (OSTI)

The study of heat transfer in channel flow has been done by previous authors for Newtonian and elastico-viscous fluids. It is the aim of the present ... the temperature profile for flow of a micropolar fluid in a...

Renuka Rajagopalan; K. S. Bhatnagar

1969-10-01T23:59:59.000Z

50

Heat transfer research on supercritical water flow upward in tube  

SciTech Connect

The experimental research of heat transfer on supercritical water has been carried out on the supercritical water multipurpose test loop with a 7.6 mm upright tube. The experimental data of heat transfer is obtained. The experimental results of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: Heat transfer enhancement occurs when the fluid temperature reaches pseudo-critical point with low mass flow velocity, and peters out when the mass flow velocity increases. The heat transfer coefficient and Nusselt number decrease with the heat flux or system pressure increases, and increase with the increasing of mass flow velocity. The wall temperature increases when the mass flow velocity decreases or the system pressure increases. (authors)

Li, H. B.; Yang, J. [China Nuclear Power Technology Research Inst., Shenzhen, Guangdong (China); Gu, H. Y.; Zhao, M. [Shanghai Jiao Tong Univ., Shanghai (China); Lu, D. H.; Zhang, J. M.; Wang, F.; Zhang, Y. [China Nuclear Power Technology Research Inst., Shenzhen, Guangdong (China)

2012-07-01T23:59:59.000Z

51

Binary Black Hole Accretion Flows From a Misaligned Circumbinary Disk  

Science Journals Connector (OSTI)

......mass-accretion-rate variation per binary...because each black hole passes across the circumbinary...mass-accretion-rate variation per binary...holes|black hole physics|Galaxies: nuclei...because each black hole passes across the circumbinary...the mass accretion rates is also independent......

Kimitake Hayasaki; Hideki Saito; Shin Mineshige

2013-08-25T23:59:59.000Z

52

Temperature, Energy, and Heat Capacity of Asymptotically Anti-De Sitter Black Holes  

E-Print Network (OSTI)

We investigate the thermodynamical properties of black holes in (3+1) and (2+1) dimensional Einstein gravity with a negative cosmological constant. In each case, the thermodynamic internal energy is computed for a finite spatial region that contains the black hole. The temperature at the boundary of this region is defined by differentiating the energy with respect to entropy, and is equal to the product of the surface gravity (divided by~$2\\pi$) and the Tolman redshift factor for temperature in a stationary gravitational field. We also compute the thermodynamic surface pressure and, in the case of the (2+1) black hole, show that the chemical potential conjugate to angular momentum is equal to the proper angular velocity of the black hole with respect to observers who are at rest in the stationary time slices. In (3+1) dimensions, a calculation of the heat capacity reveals the existence of a thermodynamically stable black hole solution and a negative heat capacity instanton. This result holds in the limit that the spatial boundary tends to infinity only if the comological constant is negative; if the cosmological constant vanishes, the stable black hole solution is lost. In (2+1) dimensions, a calculation of the heat capacity reveals the existence of a thermodynamically stable black hole solution, but no negative heat capacity instanton.

J. D. Brown; J. Creighton; R. B. Mann

1994-05-03T23:59:59.000Z

53

Heat transfer to impacting drops and post critical heat flux dispersed flow  

E-Print Network (OSTI)

Heat transfer to drops impacting on a hot surface is examined in context of dispersions of flowing, boiling fluids. The liquid contribution to heat transfer from a hot tube to a two-phase dispersion is formulated in terms ...

Kendall, Gail E.

1978-01-01T23:59:59.000Z

54

Heat transfer during laminar fluid flow in a pipe with radiative heat removal  

Science Journals Connector (OSTI)

The heat-transfer problem is analyzed for laminar fluid flow in the initial section of a ... pipe having a parabolic entry velocity distribution and heat removal by radiation from the surface of...

Ya. S. Kadaner; Yu. P. Rassadkin; É. L. Spektor

1971-01-01T23:59:59.000Z

55

The developing heat transfer and fluid flow in micro-channel heat sink with viscous heating effect  

Science Journals Connector (OSTI)

The numerical modeling of the conjugate heat transfer and fluid flow through the micro-heat sink was presented in the paper, considering the viscous dissipation effect. Three different fluids with temperature dep...

Dorin Lelea; Adrian Eugen Cioabla

2011-07-01T23:59:59.000Z

56

Reply To The Comment By D D Blackwell And G R Priest On Heat Flow From Four  

Open Energy Info (EERE)

Reply To The Comment By D D Blackwell And G R Priest On Heat Flow From Four Reply To The Comment By D D Blackwell And G R Priest On Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa By S E Ingebritsen, M A Scholl And D R Sherrod Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reply To The Comment By D D Blackwell And G R Priest On Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa By S E Ingebritsen, M A Scholl And D R Sherrod Details Activities (1) Areas (1) Regions (0) Abstract: Unavailable Author(s): S. E. Ingebritsen, M. A. Scholl, D. R. Sherrod Published: Geothermics, 1996 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geothermal Literature Review At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1996)

57

16 Heat Transfer and Air Flow in a Domestic Refrigerator  

E-Print Network (OSTI)

445 16 Heat Transfer and Air Flow in a Domestic Refrigerator Onrawee Laguerre UMR Génie Industriel........................................................................447 16.2.2 Heat Transfer and Airflow Near a Vertical Plate..................................................448 16.2.3 Heat Transfer and Airflow in Empty Closed Cavity

Paris-Sud XI, Université de

58

Flow from a Tank Consider water flowing from a tank with water through a hole in its bottom. Denote  

E-Print Network (OSTI)

Flow from a Tank Consider water flowing from a tank with water through a hole in its bottom. Denote by h(t) the height of water in the tank at time t, v(t) the speed of the water leaving through the hole at time t, A(h) the cross-sectional area of the tank at height h and a the cross- sectional area

Feldman, Joel

59

Numerical Evaluation of Flow and Heat Transfer in Plate-Pin Fin Heat Sinks with Various Pin Cross-Sections  

E-Print Network (OSTI)

Liu, Research on the Heat Transfer and Flow Performance of aCompound Heat Sink, Numer. Heat Transfer A, vol. 55, no. 5,Hand- book of Numerical Heat Transfer, 2nd ed. , chap. 6,

Zhou, Feng; Catton, Ivan

2011-01-01T23:59:59.000Z

60

Heat Flow At Standard Depth | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Heat Flow At Standard Depth Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow At Standard Depth Details Activities (2) Areas (1) Regions (0) Abstract: Secular and long-term periodic changes in surface temperature cause perturbations to the geothermal gradient which may be significant to depths of at least 1000 m, and major corrections are required to determine absolute values of heat flow from the Earth's interior. However, detailed climatic models remain contentious and estimates of error in geothermal gradients differ widely. Consequently, regions of anomalous heat flow which

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Flow Dynamics and Plasma Heating of Spheromaks in SSX  

Science Journals Connector (OSTI)

We report several new experimental results related to flow dynamics and heating from single dipole-trapped spheromaks and spheromak merging studies at SSX. Single spheromaks (...Phys. Plasmas 13 1...

M. R. Brown; C. D. Cothran; D. H. Cohen; J. Horwitz; V. Chaplin

2008-06-01T23:59:59.000Z

62

FRACSTIM/I: A Fully Coupled Fluid Flow/Heat Transport and Geomechanica...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and Geomechanical DeformationFracture Generation Simulator FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and...

63

Heating Cooling Flows with Weak Shock Waves  

E-Print Network (OSTI)

The discovery of extended, approximately spherical weak shock waves in the hot intercluster gas in Perseus and Virgo has precipitated the notion that these waves may be the primary heating process that explains why so little gas cools to low temperatures. This type of heating has received additional support from recent gasdynamical models. We show here that outward propagating, dissipating waves deposit most of their energy near the center of the cluster atmosphere. Consequently, if the gas is heated by (intermittent) weak shocks for several Gyrs, the gas within 30-50 kpc is heated to temperatures that far exceed observed values. This heating can be avoided if dissipating shocks are sufficiently infrequent or weak so as not to be the primary source of global heating. Local PV and viscous heating associated with newly formed X-ray cavities are likely to be small, which is consistent with the low gas temperatures generally observed near the centers of groups and clusters where the cavities are located.

W. G. Mathews; A. Faltenbacher; F. Brighenti

2005-11-05T23:59:59.000Z

64

Binary Black Hole Accretion Flows in Merged Galactic Nuclei  

Science Journals Connector (OSTI)

......for Theoretical Physics, Oiwake-cho...when the gas can pass across the maximum...mass-capture rates are eventually...holes|black hole physics|galaxies: nuclei...when the gas can pass across the maximum...mass-capture rates exhibit little...for Theoretical Physics (YITP) of Kyoto......

Kimitake Hayasaki; Shin Mineshige; Hiroshi Sudou

2007-04-25T23:59:59.000Z

65

Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...  

Open Energy Info (EERE)

(1993) Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalGr...

66

Oscillating flow in a stirling engine heat exchanger  

Science Journals Connector (OSTI)

Three heat exchangers exist in modern Stirling engines: a heater, a cooler, and a regenerator. Here a study that deals principally with tubular heaters and coolers is carried out. The calculation procedure for the oscillating flow heat transfer is presented. Literature sources are studied to find the most suitable correlations by comparing them to each other and to the classical turbulent flow correlations encountered in the literature. The enhancement of heat transfer by means of a few circumferential slots inside the tubes and the pressure losses of oscillatory flow are discussed. Non-circular cross-section conduits with rectangular and triangular cross-sections are investigated and compared to the smooth circular tubes. The increment of the performance of an idealised Stirling engine with slotted heat exchanger tubes is compared to the case with smooth ones. The ratio of the gain in the shaft power and pumping losses is 2.22. The Carnot efficiency increment is 2.7%.

M. Kuosa; K. Saari; A. Kankkunen; T.-M. Tveit

2012-01-01T23:59:59.000Z

67

The effect of injection hole orientation on flat-plate film cooling and heat transfer using a transient liquid crystal technique  

E-Print Network (OSTI)

-UP. . . . . EXPERIMENTAL PROCEDURE THEORY OF OPERATION. . . RESULTS AND DISCUSSION. . Heat transfer. . Local Spanwise Variations. . Effect of Density Ratio and Compound Angle. . . . Momentuin Flux Ratio. Film Effectiveness. . . . . . Local Spanwise Variations... cavity for mixing and ejecta through the holes onto the test plate. Temperature controllers for the mainstream and coolant flows allow for desired temperature levels to be reached and inaintained. The coolant temperature is monitored at an injection...

Zapata, Dyrk Oliver

2012-06-07T23:59:59.000Z

68

Heat flow in nonlinear molecular junctions  

E-Print Network (OSTI)

We investigate the heat conduction properties of molecular junctions comprising anharmonic interactions. We find that nonlinear interactions can lead to novel phenomena: it negative differential thermal conductance and heat rectification. Based on analytically solvable models we derive an expression for the heat current that clearly reflects the interplay between anharmonic interactions, strengths of coupling to the thermal reservoirs, and junction asymmetry. This expression indicates that negative differential thermal conductance shows up when the molecule is strongly coupled to the thermal baths, even in the absence of internal molecular nonlinearities. In contrast, diode like behavior is expected for a highly anharmonic molecule with an inherent structural asymmetry. Anharmonic interactions are also necessary for manifesting Fourier type transport. We briefly present an extension of our model system that can lead to this behavior.

Dvira Segal

2005-12-22T23:59:59.000Z

69

Applications of the Strong Heat Transformation by Pulse Flow in the Shell and Tube Heat Exchanger  

E-Print Network (OSTI)

when it was located in the downstream, which also weakened heat exchange[5-8], (4)pulse flow might enhance or weaken heat exchange that lied on flow parameter[9-11]. This article made use of FLUENT software to numerical Simulate round... exchange[12]. When adapted FLUENT software, we considered the model was slender tube which had a large gap between length and scale, so we could use double precision solver; In the numerical simulation, the pressure interpolation selected standard...

Chen, Y.; Zhao, J.

2006-01-01T23:59:59.000Z

70

Hot springs, geochemistry, and regional heat flow of northcentral Mexico  

SciTech Connect

To date we have found, sampled and performed chemical analyses on 21 hot springs (T > 30/sup 0/C), 4 hot wells (T > 30/sup 0/C) and 15 warm springs (T = 25 to 30/sup 0/C) from the states of Chihuahua, Coahuila and Sonora, Mexico. Also in order to establish background chemistry, an additional 250 cold wells and springs (T = 12 to 25/sup 0/C) were sampled and analyzed and several hundred water analyses from the several thousand provided by various Mexican agencies were included. The technique of silica geothermometry was used to estimate the regional heat flow of northcentral Mexico. Both the traditional heat flow and the silica heat flow values are generally high and show considerable scatter as is typical of areas having Tertiary and Quaternary volcanic and tectonic activity. Specific areas of high heat flow (> 2.5 HFU) include the Presidio and Los Muertos Bolsons, the Cuidad Chihuahua-Chuatemoc area, the Delicias area, and the area south of the San Bernardino Bolson of southeast Arizona. Areas of lower heat flow (2.0 to 2.5 HFU) include the Jimenez-Camargo region and the area between the Los Muertos and Presidio Bolsons.

Swanberg, C.A.; Marvin, P.R.; Salazar S., L.; Gutierrez, C.G.

1981-10-01T23:59:59.000Z

71

Heat Transfer at Low Temperatures between Tube Walls and Gases in Turbulent Flow  

Science Journals Connector (OSTI)

...September 1947 research-article Heat Transfer at Low Temperatures between Tube...counter-flow system to study heat transfer between tube walls and gases at...Determinations on friction accompanying heat transfer with gases in turbulent flow at...

1947-01-01T23:59:59.000Z

72

Brine flow in heated geologic salt.  

SciTech Connect

This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

Kuhlman, Kristopher L.; Malama, Bwalya

2013-03-01T23:59:59.000Z

73

Heat flow studies, Coso Geothermal Area, China Lake, California. Technical  

Open Energy Info (EERE)

studies, Coso Geothermal Area, China Lake, California. Technical studies, Coso Geothermal Area, China Lake, California. Technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Heat flow studies, Coso Geothermal Area, China Lake, California. Technical report Details Activities (1) Areas (1) Regions (0) Abstract: Heat flow studies in the Coso Geothermal Area were conducted at China Lake, California. Temperature measurements were completed in nine of the heat flow boreholes. Temperatures were measured at five meter intervals from the ground surface to the deepest five meter interval. Subsequently, temperatures were remeasured two or three times in each borehole in order to demonstrate that equilibrium thermal conditions existed. The maximum difference in temperature, at any of the five meter intervals, was 0.03 deg

74

Numerical Study of Convective Heat Transfer in Flat Tube Heat Exchangers Operating in Self-Sustained Oscillatory Flow Regimes  

E-Print Network (OSTI)

Laminar, two-dimensional, constant-property numerical simulations of flat tube heat exchanger devices operating in flow regimes in which self-sustained oscillations occur were performed. The unsteady flow regimes were transition flow regimes...

Fullerton, Tracy

2012-02-14T23:59:59.000Z

75

Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model  

Science Journals Connector (OSTI)

Abstract This letter presents a research for coupled flow and heat transfer of an upper-convected Maxwell fluid above a stretching plate with velocity slip boundary. Unlike most classical works, the new heat flux model, which is recently proposed by Christov, is employed. Analytical solutions are obtained by using the homotopy analysis method (HAM). The effects of elasticity number, slip coefficient, the relaxation time of the heat flux and the Prandtl number on velocity and temperature fields are analyzed. A comparison of Fourier’s Law and the Cattaneo–Christov heat flux model is also presented.

Shihao Han; Liancun Zheng; Chunrui Li; Xinxin Zhang

2014-01-01T23:59:59.000Z

76

Friction-Induced Fluid Heating in Nanoscale Helium Flows  

SciTech Connect

We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.

Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

2010-05-21T23:59:59.000Z

77

The flow and heat transfer characteristics of multi-thermal fluid in horizontal wellbore coupled with flow in heavy oil reservoirs  

Science Journals Connector (OSTI)

Abstract As a new improved oil-recovery technique, multi-thermal fluid injection technology through a horizontal well has been widely used in the development process of heavy oil reservoirs. The flow and heat transfer characteristic of multi-thermal fluid in horizontal wellbore is significantly important for the productivity evaluation and parameters design of the horizontal well. Considering the specific physical properties of multi-thermal fluid, fluid absorption in perforation holes and pressure drop characteristics along the horizontal wellbore, this paper developed the flow and heat transfer model of multi-thermal fluid in perforated horizontal wellbore. In order to evaluate the heating effect of the multi-thermal fluid, a concept of effective heating length of a horizontal well is proposed. Then, a sensitivity analysis process is performed to study the influence of reservoir/fluid parameters and operating parameters on the flowing process of multi-thermal fluid in horizontal wellbore. Simultaneously, using the method of orthogonal numerical test, differential analysis and variance analysis are also conducted. Results show that the flowing process of multi-thermal fluid in horizontal wellbore includes a single-phase flowing process and a gas–liquid two-phase flowing process. The influence of oil viscosity on the flow and heat transfer characteristics of multi-thermal fluid in horizontal wellbore is most significant. Thereafter, the solution of our semi-analytical model is compared against the test results of an actual horizontal well from an oilfield in China. It is shown that the model results are in good agreement with the real test results. This model could be used to calculate and predict the flow and heat transfer characteristics of multi-thermal fluid (or saturated steam) in a perforated horizontal wellbore.

Xiaohu Dong; Huiqing Liu; Zhaoxiang Zhang; Changjiu Wang

2014-01-01T23:59:59.000Z

78

Flow-induced vibration of component cooling water heat exchangers  

SciTech Connect

This paper presents an evaluation of flow-induced vibration problems of component cooling water heat exchangers in one of Taipower's nuclear power stations. Specifically, it describes flow-induced vibration phenomena, tests to identify the excitation mechanisms, measurement of response characteristics, analyses to predict tube response and wear, various design alterations, and modifications of the original design. Several unique features associated with the heat exchangers are demonstrated, including energy-trapping modes, existence of tube-support-plate (TSP)-inactive modes, and fluidelastic instability of TSP-active and -inactive modes. On the basis of this evaluation, the difficulties and future research needs for the evaluation of heat exchangers are identified. 11 refs., 19 figs., 3 tabs.

Yeh, Y.S.; Chen, S.S. (Taiwan Power Co., Taipei (Taiwan). Nuclear Engineering Dept.; Argonne National Lab., IL (USA))

1990-01-01T23:59:59.000Z

79

On flow and supply temperature control in district heating systems  

Science Journals Connector (OSTI)

This paper discusses how the control of the flow and the supply temperature in district heating systems can be optimized, utilizing stochastic modelling, prediction and control methods. The main objective is to reduce heat production costs and heat losses in the transmission and distribution net by minimizing the supply temperature at the district heating plant. This control strategy is reasonable, in particular, if the heat production takes place at a combined heat and power (CHP) plant. The control strategy is subject to some restrictions, e.g. that the total heat requirement for all consumers is supplied at any time, and each individual consumer is guaranteed some minimum supply temperature at any time. Another important restriction is that the variation in time of the supply temperature is kept as small as possible. This concept has been incorporated in the program package, PRESS, developed at the Technical University of Denmark. PRESS has been applied and tested, e.g. at Vestkraft in Esbjerg, Denmark, and significant saving potentials have been documented. PRESS is now distributed by the Danish District Heating Association.

Henrik Madsen; Ken Sejling; Henning T. Søgaard; Olafur P. Palsson

1994-01-01T23:59:59.000Z

80

The heating of the cooling flow (The feedback effervescent heating model)  

E-Print Network (OSTI)

The standard cooling flow model has predicted a large amount of cool gas in the clusters of galaxies. The failure of the Chandra and XXM-Newton telescopes to detect cooling gas (below 1-2 keV) in clusters of galaxies has suggested that some heating process must work to suppress the cooling. The most likely heating source is the heating by AGNs. There are many heating mechanisms, but we will adopt the effervescent heating model which is a result of the interaction of the bubbles inflated by AGN with the intra-cluster medium(ICM). Using the FLASH code, we have carried out time dependent simulations to investigate the effect of the heating on the suppression of the cooling in cooling flow clusters. We have found that the effervescent heating model can not balance the radiative cooling and it is an artificial model. Furthermore, the effervescent heating is a function of the ICM pressure gradient but the cooling is proportional to the gas density square and square root of the gas temperature.

Nasser Mohamed Ahmed

2007-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Estimates of heat flow from Cenozoic seafloor using global depth and age data  

E-Print Network (OSTI)

-independent estimate of the total heat output of Cenozoic seafloor is 18.6 to 20.5 TW, which leads to a global output: Oceanic heat flow; Global heat budget; Subsidence rate 1. Introduction The total heat output of the EarthEstimates of heat flow from Cenozoic seafloor using global depth and age data Meng Wei , David

Sandwell, David T.

82

Experimental study of fluid flow and heat transfer in tortuous microchannels.  

E-Print Network (OSTI)

??Tortuous microchannels have attracted increasing interest due to great potential to enhance fluid mixing and heat transfer. While the fluid flow and heat transfer in… (more)

Dai, Zhenhui

2014-01-01T23:59:59.000Z

83

Particle Heating by Alfvenic Turbulence in Hot Accretion Flows  

E-Print Network (OSTI)

Recent work on Alfvenic turbulence by Goldreich & Sridhar (1995; GS) suggests that the energy cascades almost entirely perpendicular to the local magnetic field. As a result, the cyclotron resonance is unimportant in dissipating the turbulent energy. Motivated by the GS cascade, we calculate the linear collisionless dissipation of Alfven waves with frequencies much less than the proton cyclotron frequency, but with perpendicular wavelengths of order the Larmor radius of thermal protons. In plasmas appropriate to hot accretion flows (proton temperature much greater than electron temperature) the dissipated Alfven wave energy primarily heats the protons. For a plasma with $\\beta \\lsim 5$, however, where $\\beta$ is the ratio of the gas pressure to the magnetic pressure, the MHD assumptions utilized in the GS analysis break down before most of the energy in Alfven waves is dissipated; how the cascade then proceeds is unclear. Hot accretion flows, such as advection dominated accretion flows (ADAFs), are expected to contain significant levels of MHD turbulence. This work suggests that, for $\\beta \\gsim 5$, the Alfvenic component of such turbulence primarily heats the protons. Significant proton heating is required for the viability of ADAF models. We contrast our results on particle heating in ADAFs with recent work by Bisnovatyi-Kogan & Lovelace (1997).

Eliot Quataert

1997-10-13T23:59:59.000Z

84

3D SPH Simulations of Shocks in Accretion Flows around black holes  

E-Print Network (OSTI)

We present the simulation of 3D time dependent flow of rotating ideal gas falling into a Schwarzschild black hole. It is shown that also in the 3D case steady shocks are formed in a wide range of parameters (initial angular momentum and thermal energy). We therefore highlight the stability of the phenomenon of shock formation in sub keplerian flows onto black holes, and reenforce the role of the shocks in the high luminosity emission from black hole candidates. The simulations have been performed using a parallelized code based on the Smoothed Particles Hydrodynamics method (SPH). We also discuss some properties of the shock problem that allow its use as a quantitative test of the accuracy of the used numerical method. This shows that the accuracy of SPH is acceptable although not excellent.

G. Gerardi; D. Molteni; V. Teresi

2005-01-25T23:59:59.000Z

85

Vacuum energy and the latent heat of AdS-Kerr black holes  

E-Print Network (OSTI)

Phase transitions for rotating asymptotically anti-de Sitter black holes in four dimensions are described in the $P-T$ plane, in terms of the Hawking temperature and the pressure provided by the cosmological constant. The difference between constant angular momentum and constant angular velocity is highlighted, the former has a second order phase transition while the latter does not. If the angular momentum is fixed there a line of first order phase transitions terminating at a critical point with a second order phase transition and vanishing latent heat, while if the angular velocity is fixed there is a line of first order phase transitions terminating at a critical point with infinite latent heat. For constant angular velocity the analytic form of the phase boundary is determined, latent heats derived and the Clapeyron equation verified.

Brian P. Dolan

2014-07-15T23:59:59.000Z

86

Three-dimensional radiative properties of hot accretion flows on to the Galactic Centre black hole  

Science Journals Connector (OSTI)

......discs|black hole physics|MHD|plasmas|radiative transfer...inefficient accretion flows modelled by MHD simulations. The synthetic images...baseline-correlated flux density diagram of the recent very-long-baseline...the first time that our 3-D MHD model with differing density......

Y. Kato; M. Umemura; K. Ohsuga

2009-12-21T23:59:59.000Z

87

Flow and heat transfer around a linear array of spheres  

SciTech Connect

Laminar fluid flow and forced convection heat transfer over equally space linear arrays of spheres are analyzed using the finite element package FIDAP. For the arrays, sphere spacings of 1.5, 2, and 3 diameters are examined at Reynolds numbers of 40, 80, and 120 and Prandtl numbers ranging from 0.73 to 7.3. Average Nusselt numbers and drag coefficient data for a linear array of eight spheres (as an approximation to the developing region) and a single sphere with periodic boundary conditions (as an approximation to fully developed flow) are presented and correlated.

Lloyd, B. (Marathon Oil Co., Shreveport, LA (United States)); Boehn, R. (Univ. of Nevada, Las Vegas, NV (United States). Mechanical Engineering Dept.)

1994-08-01T23:59:59.000Z

88

The regional geothermal heat flow regime of the north-central Gulf of Mexico continental slope.  

E-Print Network (OSTI)

??Eighty-eight oil and gas wells located in the Texas-Louisiana continental slope were analyzed to obtain heat flow and geothermal gradient values. Present-day geothermal heat flow… (more)

Jones, Michael S

2003-01-01T23:59:59.000Z

89

A visualization comparison of convective flow boiling heat transfer augmentation devices  

E-Print Network (OSTI)

The qualitative effects of inset-table heat transfer phics. augmentation devices on vertical in-tube convective flow boiling flow regimes, transition mechanisms, and heat transfer are presented in this study. Three twisted tapes with twist ratios...

Lundy, Brian Franklin

2012-06-07T23:59:59.000Z

90

A numerica1 study of fluid flow and heat transfer in different microchannel heat sinks for electronic chip cooling  

Science Journals Connector (OSTI)

Four different microchannel heat sinks are designed to study the effects of structures in microchannel heat sinks for electronic chips cooling. Based on the theoretic analysis and numerical computation of flow...

Shanglong Xu; Guangxin Hu; Jie Qin…

2012-04-01T23:59:59.000Z

91

Melting heat transfer effects on stagnation point flow of micropolar fluid saturated in porous medium with internal heat generation (absorption)  

Science Journals Connector (OSTI)

The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is i...

M. A. A. Mahmoud; S. E. Waheed

2014-08-01T23:59:59.000Z

92

3D Numerical heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with electrohydrodynamic enhancement  

Science Journals Connector (OSTI)

Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes...V E...=0–16 kV) are investigated in detail...

Chia-Wen Lin; Jiin-Yuh Jang

2005-05-01T23:59:59.000Z

93

Heat transfer to a fluid flowing in an annulus  

E-Print Network (OSTI)

. ii I ~ DIMENSIONS AND SYMBOLS o ~ ~ ~ . ~ ~ ~ ~ I II e INTRODUCTION AND THEORY ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 3 IXI e APPARATUS AND PROCEDURES ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ 7 XV o RESULTS ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ 17 V, DXSCUSSION OF RESULTS... of times 0 Prandtl nnnber~ e~& dimensionless initial temperature oi' surfaoe and fluids% D equivalent diameter& Di g~ L Q - volume flow rate~ L3/T V~ mass velooity, FT/L3 6 mass floe rate~ FT/L IMTRODUCTIOR AND THEORY This thesis comprises heat tz...

Logan, Earl

2012-06-07T23:59:59.000Z

94

Heat transport by laminar boundary layer flow with polymers  

E-Print Network (OSTI)

Motivated by recent experimental observations, we consider a steady-state Prandtl-Blasius boundary layer flow with polymers above a slightly heated horizontal plate and study how the heat transport might be affected by the polymers. We discuss how a set of equations can be derived for the problem and how these equations can be solved numerically by an iterative scheme. By carrying out such a scheme, we find that the effect of the polymers is equivalent to producing a space-dependent effective viscosity that first increases from the zero-shear value at the plate then decreases rapidly back to the zero-shear value far from the plate. We further show that such an effective viscosity leads to an enhancement in the drag, which in turn leads to a reduction in heat transport.

Roberto Benzi; Emily S. C. Ching.; Vivien W. S. Chu

2011-04-23T23:59:59.000Z

95

NUMERICAL SIMULATIONS OF HEAT TRANSFER AND FLUID FLOW PROBLEMS USING AN  

E-Print Network (OSTI)

NUMERICAL SIMULATIONS OF HEAT TRANSFER AND FLUID FLOW PROBLEMS USING AN IMMERSED-BOUNDARY FINITE of the immersed boundary technique for simulating fluid flow and heat transfer problems over or inside complex. Several phenomenologically different fluid flow and heat transfer problems are simulated using

Pacheco, Jose Rafael

96

Numeric Simulation of Heat Transfer and Electrokinetic Flow in an Electroosmosis-Based  

E-Print Network (OSTI)

Numeric Simulation of Heat Transfer and Electrokinetic Flow in an Electroosmosis-Based Continuous is dedicated to under- standing the fluid flow and heat transfer mechanisms occurring in continuous flow PCR are discussed in detail. The importance of each heat transfer mechanism for different situations is also

Le Roy, Robert J.

97

FliHy experimental facilities for studying open channel turbulent flows and heat transfer  

E-Print Network (OSTI)

FliHy experimental facilities for studying open channel turbulent flows and heat transfer B. Freeze) facility was constructed at UCLA to study open channel turbulent flow and heat transfer of low supercritical flow regimes (Fr /1), in which the surface waves are amplified and heat transfer is enhanced due

Abdou, Mohamed

98

FLIHY EXPERIMENTAL FACILITIES FOR STUDYING OPEN CHANNEL TURBULENT FLOWS AND HEAT TRANSFER  

E-Print Network (OSTI)

1 FLIHY EXPERIMENTAL FACILITIES FOR STUDYING OPEN CHANNEL TURBULENT FLOWS AND HEAT TRANSFER B was constructed at UCLA to study open channel turbulent flow and heat transfer of low-thermal and low supercritical flow regimes (Fr>1), in which the surface waves are amplified and heat transfer is enhanced due

California at Los Angeles, University of

99

Numerical simulations of heat transfer in plane channel flow Najla EL GHARBI 1, 3, a  

E-Print Network (OSTI)

Numerical simulations of heat transfer in plane channel flow Najla EL GHARBI 1, 3, a , Rafik ABSI 2 abenzaoui@gmail.com Keywords: turbulent flows, heat transfer, forced convection, low Reynolds number model data for Re = 150. Introduction Turbulent flow with heat transfer mechanism is of great importance from

Paris-Sud XI, Université de

100

Heat transfer in the flow of a viscoelastic fluid over a stretching sheet  

Science Journals Connector (OSTI)

The problem of heat transfer in the viscoelastic fluid flow over a stretching sheet is examined. ... such as the skin-friction coefficient and the heat transfer coefficient, are determined. It is found that the heat

P. Sam Lawrence; Dr. B. Nageswara Rao

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network (OSTI)

for Simulating Fluid Flow and Heat Transfer in Unsaturatedcomplex multiphase fluid flow and heat-transfer processes.of the coupled fluid-flow and heat-transfer processes has

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

102

Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with  

E-Print Network (OSTI)

Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with partial-Newtonian boundary layer flow and heat transfer over an exponentially stretch- ing sheet with partial slip boundary. The heat transfer analysis has been carried out for two heating processes, namely (i) with prescribed sur

Paris-Sud XI, Université de

103

A general heat transfer correlation for non-boiling gasliquid flow with different flow patterns  

E-Print Network (OSTI)

, such as oil wells and pipelines, solar collectors, chemical reactors, and nuclear reactors, and its in horizontal pipes Jae-yong Kim, Afshin J. Ghajar * School of Mechanical and Aerospace Engineering, Oklahoma patterns in horizontal pipes is proposed. In order to overcome the effect of flow pattern on heat transfer

Ghajar, Afshin J.

104

Convective flow and heat transfer of a viscous heat generating fluid in the presence of a moving, infinite, vertical, porous plate  

Science Journals Connector (OSTI)

The analysis of convective flow and heat transfer of a viscous heat generating fluid past a uniformly moving, infinite, vertical, ... of the plate-motion and the presence of heat generation/absorption on the flow...

K. Vajravelu

1978-09-01T23:59:59.000Z

105

Lattice Boltzmann method for rarefied channel flows with heat transfer  

Science Journals Connector (OSTI)

Abstract A thermal lattice Boltzmann method (TLBM) is presented for the analysis of fluid flow and heat transfer in two-dimensional channels with non-continuum effects. The relaxation times ( ? f , ? g ) are linked to the Knudsen number which accounts for the rarefaction that can be present at micro geometries or at low density conditions. The TLBM used here employs inlet/outlet boundary conditions to generate a forced convection problem where the calculation of equilibrium distributions at the wall surfaces are modified to incorporate the velocity slip and temperature jump conditions. Numerical simulations are obtained for thermal micro-Couette and thermal micro-Poiseuille channel flows and the effect of the Knudsen number on the velocity and temperature profile is investigated.

Seckin Gokaltun; George S. Dulikravich

2014-01-01T23:59:59.000Z

106

Numerical heat conduction in hydrodynamical models of colliding hypersonic flows  

E-Print Network (OSTI)

Hydrodynamical models of colliding hypersonic flows are presented which explore the dependence of the resulting dynamics and the characteristics of the derived X-ray emission on numerical conduction and viscosity. For the purpose of our investigation we present models of colliding flow with plane-parallel and cylindrical divergence. Numerical conduction causes erroneous heating of gas across the contact discontinuity which has implications for the rate at which the gas cools. We find that the dynamics of the shocked gas and the resulting X-ray emission are strongly dependent on the contrast in the density and temperature either side of the contact discontinuity, these effects being strongest where the postshock gas of one flow behaves quasi-adiabatically while the postshock gas of the other flow is strongly radiative. Introducing additional numerical viscosity into the simulations has the effect of damping the growth of instabilities, which in some cases act to increase the volume of shocked gas and can re-he...

Parkin, E R

2010-01-01T23:59:59.000Z

107

Review of fluid flow and convective heat transfer within rotating disk cavities  

E-Print Network (OSTI)

Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet * Corresponding author : souad.harmand@univ-valenciennes.fr Abstract Fluid flow and convective heat transfer, are treated in details in this review. The review focuses on convective heat transfer in predominantly outward

Boyer, Edmond

108

Review of fluid flow and convective heat transfer within rotating disk cavities  

E-Print Network (OSTI)

1 Review of fluid flow and convective heat transfer within rotating disk cavities with impinging axial direction #12;5 Introduction Fluid flow and convective heat transfer in rotor-stator configuration heat transfer in rotor-stator configurations, which are of great importance in different engineering

Paris-Sud XI, Université de

109

Numerical modeling of fluid flow and heat transfer in a narrow Taylor-Couette-Poiseuille system  

E-Print Network (OSTI)

Numerical modeling of fluid flow and heat transfer in a narrow Taylor-Couette-Poiseuille system S [1, 2] widely validated in various rotor-stator cavities with throughflow [3­5] and heat transfer [6: RANS modeling, Reynolds Stress Model, Taylor-Couette-Poiseuille flow, turbulence, heat transfer. hal

Paris-Sud XI, Université de

110

The effects of topology upon fluid-flow and heat-transfer within cellular copper structures  

E-Print Network (OSTI)

The effects of topology upon fluid-flow and heat-transfer within cellular copper structures J. Tian February 2004 Available online 20 March 2004 Abstract The fluid-flow and heat-transfer features of cellular and packed beds, but also a function of orientation (open area ratio). The overall heat transfer depends

Wadley, Haydn

111

The effects of topology upon fluid-flow and heat-transfer within cellular copper structures  

E-Print Network (OSTI)

1 The effects of topology upon fluid-flow and heat-transfer within cellular copper structures J The fluid-flow and heat-transfer features of copper cellular metal structures made by the transient liquid media. The experimental results for pressure drop and heat transfer were expressed on the basis

Wadley, Haydn

112

Finite element solutions of heat transfer in molten polymer flow in tubes with viscous dissipation  

E-Print Network (OSTI)

Finite element solutions of heat transfer in molten polymer flow in tubes with viscous dissipation the results of finite element analysis of a heat transfer problem of flowing polymer melts in a tube­Nusselt problem 1. Introduction Heat transfer to incompressible viscous non-Newto- nian fluids is a problem

Wei, Dongming

113

Friction and Heat Transfer Characteristics of Silica and CNT Nanofluids in a Tube Flow  

E-Print Network (OSTI)

Friction and Heat Transfer Characteristics of Silica and CNT Nanofluids in a Tube Flow MILIVOJE M@niu.edu * www.kostic.niu.edu Abstract: - An apparatus for exploring friction and heat transfer characteristics flow. Initial turbulent friction and heat transfer measurements for silica and carbon nanotube (CNT

Kostic, Milivoje M.

114

Flow Boiling Heat Transfer Coefficient In Minichannels Correlation and Trends Satish G. Kandlikar  

E-Print Network (OSTI)

Flow Boiling Heat Transfer Coefficient In Minichannels ­ Correlation and Trends Satish G. Kandlikar York 14623, USA The flow boiling heat transfer in small diameter passages is being applied in many boiling heat transfer coefficient with the correlations developed for conventional channels. It is found

Kandlikar, Satish

115

Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law  

E-Print Network (OSTI)

Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law F transfer in a magnetic fluid flow under the action of an applied magnetic field. Instead of the usual heat-Cattaneo law, heat transfer, magnetic field, magnetization AMS subject classifications: 76N10, 35Q35. 1

Boyer, Edmond

116

Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions  

E-Print Network (OSTI)

Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions by Carl, Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions KTH Nuclear Reactor power is limited by a phenomenon called critical heat flux (CHF). It appears as a sudden detoriation

Haviland, David

117

Heat transfer characteristics of circular impinging jet arrays in an annular section with cross flow effects  

E-Print Network (OSTI)

. . Heat transfer and Flutd flow results ? Counter flow . 32 64 CONCLUSIONS . 101 REFERENCES . 104 APPENDIX A. APPENDIX B APPENDIX C LIST OF FIGURES FIGURE 1 Detailed Schematic of the Test Section with the Flow Loop for 81. 27cm Inner pipe... with Parallel Flow. . 2 Schematic Diagram showing the arrangement of the mner pipes with different diameters with the copper segments. 3 Schematic of the test section showmg the two different flow arrangements (Parallel Flow and Counter Flow) . Page 12 14...

Mhetras, Shantanu Prakash

2012-06-07T23:59:59.000Z

118

The Influence of Proposed Repository Thermal Load on Multiphase Flow and Heat Transfer in the Unsaturated Zone of Yucca Mountain  

E-Print Network (OSTI)

development of fluid flow and heat transfer models at otherTOUGH2 code [22]. Fluid flow and heat-transfer processes inand heat transfer through fractured rock is based on the DKM method. This approach considers global fluid and

Wu, Y.-S.; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G.S.

2006-01-01T23:59:59.000Z

119

A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus  

SciTech Connect

This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.

Raustad, Richard A. [Florida Solar Energy Center

2013-01-01T23:59:59.000Z

120

Heat Flow Database Expansion for NGDS Data Development, Collection and  

Open Energy Info (EERE)

Database Expansion for NGDS Data Development, Collection and Database Expansion for NGDS Data Development, Collection and Maintenance Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Data Development, Collection, and Maintenance Project Description In particular the efforts on document and core digitization, the recovery of the BEG geopressure data developed during the approximately $200 million project by DOE in the 1970-1980, the EGS data from the Fenton Hill experiments, and meta-data associated with US thermal mapping are crucial to be performed at this point because they are otherwise in danger of deterioration or complete loss.

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Partnered with NETZSCH, the National Renewable Energy Laboratory (NREL) developed an Isothermal Battery Calorimeter (IBC) used to quantify heat flow in battery cells and modules.

122

Ad hoc continuum-atomistic thermostat for modeling heat flow in molecular dynamics simulations  

E-Print Network (OSTI)

Ad hoc continuum-atomistic thermostat for modeling heat flow in molecular dynamics simulations J 2004) An ad hoc thermostating procedure that couples a molecular dynamics (MD) simulation

Brenner, Donald W.

123

Flow fields and heat transfer of liquid falling film on horizontal cylinders.  

E-Print Network (OSTI)

??A liquid film flowing over horizontal cylinders is of great importance as a high rate of heat transfer exists between the falling liquid film and… (more)

Jafar, Farial A

2011-01-01T23:59:59.000Z

124

The Development of a Non-Equilibrium Dispersed Flow Film Boiling Heat Transfer Modeling Package.  

E-Print Network (OSTI)

??The dispersed flow film boiling (DFFB) heat transfer regime is important to several applications including cryogenics, rocket engines, steam generators, and in the safety analysis… (more)

Meholic, Michael

2011-01-01T23:59:59.000Z

125

Heat transfer in the nonisothermal flow of an anomalously viscous fluid in a helical duct  

Science Journals Connector (OSTI)

The problem of heat transfer in the initial section of a helical ... with a steady flow of an anomalously viscous fluid is solved numerically.

A. I. Mumladze; Yu. G. Nazmeev; O. V. Maminov

1982-08-01T23:59:59.000Z

126

Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance (SMU)  

Energy.gov (U.S. Department of Energy (DOE))

Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance (SMU) presentation at the April 2013 peer review meeting held in Denver, Colorado.

127

FRACSTIM/I: A Fully Coupled Fluid Flow/Heat Transport and Geomechanica...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and Geomechanical DeformationFracture Generation Simulator aka FALCON: Fracturing and Liquid CONservation Robert K....

128

Heat and mass transfer on MHD heat generating flow through a porous medium in a rotating fluid  

Science Journals Connector (OSTI)

The problem of the free-convection flow of a viscous heat generating fluid through porous media in a rotating frame of reference is considered for the case when a strong magnetic field is imposed in a directio...

P. C. Ram

129

Experimental Study on Heat Transfer of Single-Phase Flow and Boiling Two-Phase Flow in Vertical Narrow Annuli  

SciTech Connect

Water single-phase and nucleate boiling heat transfer were experimentally investigated in vertical annuli with narrow gaps. The experimental data about water single-phase flow and boiling two-phase flow heat transfer in narrow annular channel were accumulated by two test sections with the narrow gaps of 1.0 mm and 1.5 mm. Empirical correlations to predict the heat transfer of the single-phase flow and boiling two-phase flow in the narrow annular channel were obtained, which were arranged in the forms of the Dittus-Boelter for heat transfer coefficients in a single-phase flow and the Jens-Lottes formula for a boiling two-phase flow in normal tubes, respectively. The mechanism of the difference between the normal channel and narrow annular channel were also explored. From experimental results, it was found that the turbulent heat transfer coefficients in narrow gaps are nearly the same to the normal channel in the experimental range, and the transition Reynolds number from a laminar flow to a turbulent flow in narrow annuli was much lower than that in normal channel, whereas the boiling heat transfer in narrow annular gap was greatly enhanced compared with the normal channel. (authors)

Suizheng Qiu; Guanghui Su; Dounan Jia [Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049 (China); Minoru Takahashi [Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152 (Japan)

2002-07-01T23:59:59.000Z

130

Heat and Mass Transfer in the MHD Flow of a Visco-elastic Fluid in a Rotating Porous Channel with Radiative Heat  

Science Journals Connector (OSTI)

This paper deals with heat and mass transfer in the magnetohydrodynamic flow of a visco-elastic fluid in a rotating porous channel with radiative heat. The flow phenomenon has been characterized by the fluid para...

M. Jena; M. Goswami; S. Biswal

2014-12-01T23:59:59.000Z

131

Flow and heat transfer in porous micro heat sink for thermal management of high power LEDs  

Science Journals Connector (OSTI)

A novel porous micro heat sink system is presented for thermal management of high power LEDs, which has high heat transport capability. The operational principle and heat transfer characteristics of porous micro heat sink are analyzed. Numerical model ... Keywords: Heat dissipation, High heat flux, High power LEDs, Porous media, Porous micro heat sink

Z. M. Wan; J. Liu; K. L. Su; X. H. Hu; S. S. M

2011-05-01T23:59:59.000Z

132

1.12.2014bo Akademi Univ -Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/24 8. Heat pumps, heat pipes,  

E-Print Network (OSTI)

pumps, heat pipes, cold thermal energy storage Ron Zevenhoven Ã?bo Akademi University Thermal and Flow for heating is referred to as a heat pump (mostly based on a vapour-compression cycle) Heat pumps make use electricity!) for heating and air conditioning purposes Heat pumps became popular in the 1970s

Zevenhoven, Ron

133

Characteristics of Fluid flow and heat transfer in Shellside of Heat Exchangers with Longitudinal Flow of Shellside Fluid with Different Supporting structures  

Science Journals Connector (OSTI)

In the paper, a simplified numerical model-the periodic unit duct model was presented for the numerical simulation of shellside characteristics in heat exchanger with longitudinal flow of shellside fluid, and its...

Yongqing Wang; Qiwu Dong; Minshan Liu

2007-01-01T23:59:59.000Z

134

Implications of Heat Flow Studies for Geothermal Energy Prospects  

Science Journals Connector (OSTI)

There is a close interrelation between the phenomena of heat generation, storage of heat, transport of heat and the temperature field in the crust. For evaluating the geothermal energy potential of a given area t...

O. Kappelmeyer

1979-01-01T23:59:59.000Z

135

2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 Molecular dynamics methods in  

E-Print Network (OSTI)

2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 2.13.7 Molecular dynamics methods in microscale heat transfer Shigeo Maruyama A. Introduction In normal heat transfer and fluid flow calculations of molecules. This situation is approached in microscale heat transfer and fluid flow. Molecular level

Maruyama, Shigeo

136

Mathematical circulation model for the blood-flow-heat-loss relationship in the rat tail  

Science Journals Connector (OSTI)

A mathematical model for the heat-loss-blood-flow relationship is developed for the rat tail. When supplied with experimental values of heat loss and blood flow, the model allows one to compute the distribution of flow in deep and cutaneous vessels as a function of body core and tail temperature and to determine the savings in heat loss that result from alterations in the pattern of circulation and from counter-current heat transfer. Blood flow in the cutaneous and deep lying veins of the tail is controlled by both central and local temperatures and increases fairly linearly with deep body temperature. However, the distribution of blood flow in the tail is controlled only by local tail temperature and is independent of deep body temperature. The change in venous distribution of flow has a great impact on the conservation of heat and can reduce the heat loss from the circulating blood by more than 50% when venous return is directed to deep lying veins. On the other hand, counter-current heat transfer is of only minor importance in the control of heat loss from the tail, resulting at most in a 10% saving of heat loss, and that only at the smallest rate of blood flow.

E R Raman; V J Vanhuyse; M F Roberts

1987-01-01T23:59:59.000Z

137

Regional variations of heat flow differences with depth in Alberta, Canada  

Science Journals Connector (OSTI)

......occupies the vast area between the Rocky Mountain Foothills in the SW...increases toward the west from the flat plains area to the foothills and the Rocky Mountains beyond. 3 Heat flow...features, and so the heat flow in ROCKY ' MOUNTAINS INTERIOR PLAINS......

J. A. Majorowicz; F. W. Jones; H.-L. Lam; A. M. Jessop

1985-05-01T23:59:59.000Z

138

NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER OVER A SERIES OF IN-LINE NONCIRCULAR  

E-Print Network (OSTI)

NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER OVER A SERIES OF IN-LINE NONCIRCULAR TUBES CONFINED, Texas A&M University, College Station, Texas, USA Two-dimensional steady developing fluid flow and heat-volume technique. Grid independence study was carried out by running the developed code for several different grid

Bahaidarah, Haitham M.

139

Taylor bubble-train flows and heat transfer in the context of Pulsating Balkrishna Mehta, Sameer Khandekar  

E-Print Network (OSTI)

Taylor bubble-train flows and heat transfer in the context of Pulsating Heat Pipes Balkrishna Mehta Nusselt number Heat transfer enhancement a b s t r a c t Understanding the performance of Pulsating Heat Pipes (PHPs) requires spatio-temporally coupled, flow and heat transfer information during the self

Khandekar, Sameer

140

Large Deviations in Stochastic Heat-Conduction Processes Provide a Gradient-Flow Structure for Heat Conduction  

E-Print Network (OSTI)

We consider three one-dimensional continuous-time Markov processes on a lattice, each of which models the conduction of heat: the family of Brownian Energy Processes with parameter $m$, a Generalized Brownian Energy Process, and the Kipnis-Marchioro-Presutti process. The hydrodynamic limit of each of these three processes is a parabolic equation, the linear heat equation in the case of the BEP$(m)$ and the KMP, and a nonlinear heat equation for the GBEP($a$). We prove the hydrodynamic limit rigorously for the BEP$(m)$, and give a formal derivation for the GBEP($a$). We then formally derive the pathwise large-deviation rate functional for the empirical measure of the three processes. These rate functionals imply gradient-flow structures for the limiting linear and nonlinear heat equations. We contrast these gradient-flow structures with those for processes describing the diffusion of mass, most importantly the class of Wasserstein gradient-flow systems. The linear and nonlinear heat-equation gradient-flow structures are each driven by entropy terms of the form $-\\log \\rho$; they involve dissipation or mobility terms of order $\\rho^2$ for the linear heat equation, and a nonlinear function of $\\rho$ for the nonlinear heat equation.

Mark A. Peletier; Frank Redig; Kiamars Vafayi

2014-03-19T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal  

Open Energy Info (EERE)

Resource-Reservoir Investigations Based On Heat Flow And Thermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Details Activities (2) Areas (2) Regions (0) Abstract: Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of

142

Heat flow in the northern Basin and Range province | Open Energy  

Open Energy Info (EERE)

in the northern Basin and Range province in the northern Basin and Range province Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Heat flow in the northern Basin and Range province Abstract The heat flow in the Basin and Range province of northern Nevada is extremely complex. It is a product of superposition of the regional effects of extension and volcanism /intrusion modified by the local conductive effects of thermal refraction (complicated structural settings),variations in radioactive heat production, erosion and sedimentation. In addition to these conductive effects,groundwater flow, both on a local and a regional basis,affects heat-flow measurements. Typical heat -flow values for the Basin and Range province average 85 +/- 10 mWm-2. The higher estimates are

143

Flow-Induced Deformation of a Flexible Thin Structure as Manifestation of Heat Transfer Enhancement  

E-Print Network (OSTI)

Flow-induced deformation of thin structures coupled with convective heat transfer has potential applications in energy harvesting and is important for understanding functioning of several biological systems. We numerically demonstrate large-scale flow-induced deformation as an effective passive heat transfer enhancement technique. An in-house, strongly-coupled fluid-structure interaction (FSI) solver is employed in which flow and structure solvers are based on sharp-interface immersed boundary and finite element method, respectively. In the present work, we validate convective heat transfer module of the in-house FSI solver against several benchmark examples of conduction and convective heat transfer including moving structure boundaries. The thermal augmentation is investigated as well as quantified for the flow-induced deformation of an elastic thin plate attached to lee side of a rigid cylinder in a heated channel laminar flow. We show that the wake vortices past the plate sweep higher sources of vorticity...

Soti, Atul Kumar; Sheridan, John

2015-01-01T23:59:59.000Z

144

A Site-Scale Model For Fluid And Heat Flow In The Unsaturated Zone Of Yucca  

Open Energy Info (EERE)

Site-Scale Model For Fluid And Heat Flow In The Unsaturated Zone Of Yucca Site-Scale Model For Fluid And Heat Flow In The Unsaturated Zone Of Yucca Mountain, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Site-Scale Model For Fluid And Heat Flow In The Unsaturated Zone Of Yucca Mountain, Nevada Details Activities (0) Areas (0) Regions (0) Abstract: A three-dimensional unsaturated-zone numerical model has been developed to simulate flow and distribution of moisture, gas and heat at Yucca Mountain, Nevada, a potential repository site for high-level radioactive waste. The model takes into account the simultaneous flow dynamics of liquid water, vapor, air and heat in the highly heterogeneous, fractured porous rock in the unsaturated zone (UZ). This model is intended for use in the prediction of the current and future conditions in the UZ so

145

Numerical investigation of flow structure and mixed convection heat transfer of impinging radial and axial jets  

SciTech Connect

Mixed convection flow fields and heat transfer of partially enclosed axial and radial laminar jets impinging on a heated flat plate have been investigated from the numerical solution of incompressible unsteady Navier-Stokes and energy equations with a Boussinesq approximation. For mixed convection flow at Re = 200, steady flow has not been observed for either the radial or the axial jet. For the smallest Grashof number (Gr = 10,000), periodic solutions have been obtained. With Gr = 40,000 nonsteady nonperiodic (chaotic) flow appears. Free convection may increase that heat transfer by more than 200%.

Potthast, F.; Laschefski, H.; Mitra, N.K. (Ruhr-Univ. Bochum (Germany). Inst. fuer Thermo- und Fluiddynamik); Biswas, G. (Indian Inst. of Tech., Kanpur (India). Dept. of Mechanical Engineering)

1994-08-01T23:59:59.000Z

146

EXPERIMENTAL INVESTIGATION OF TURBULENT HEAT TRANSFER OF HIGH PRANDTL NUMBER FLUID FLOW UNDER STRONG MAGNETIC FIELD  

E-Print Network (OSTI)

EXPERIMENTAL INVESTIGATION OF TURBULENT HEAT TRANSFER OF HIGH PRANDTL NUMBER FLUID FLOW UNDER to the heat transfer characteristic: Flibe is a high Prandtl number fluid. For high Prandtl number fluid, there is a severe limitation of temperature window due to its high melting point. The turbulent heat transfer is

Abdou, Mohamed

147

Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow  

E-Print Network (OSTI)

Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S in a rotor-stator cavity subjected to a superimposed throughflow with heat transfer. Nu- merical predictions field from the heat transfer process. The turbulent flux is approximated by a gradient hypothesis

Boyer, Edmond

148

Heat transfer and friction characteristics of air flow in microtubes Chien-Yuh Yang a,  

E-Print Network (OSTI)

Heat transfer and friction characteristics of air flow in microtubes Chien-Yuh Yang a, , Chia September 2011 Keywords: Microtube Heat transfer Liquid Crystal Thermography a b s t r a c t Several researches dealing with the single-phase forced convection heat transfer inside microchannels have been

Kandlikar, Satish

149

ARC-HEATED GAS FLOW EXPERIMENTS FOR HYPERSONIC PROPULSION  

E-Print Network (OSTI)

was extensively developed for the purpose of eventually performing experiments simulating scramjet engine flow

Texas at Arlington, University of

150

Analysis of cross-flow mixed convection with applications to building heat transfer  

SciTech Connect

A numerical simulation model has been developed for partial enclosure with restricted inlet and outlet simulating the building fluid flow and heat transfer scenario. Computed results are presented for a number of geometric configurations over a wide range of Reynolds and Rayleigh numbers and validated with available experimental data. The physical processes were modeled by solving equations for the conservation of mass, momentum, and energy with appropriate boundary conditions. The properties of the fluid were assumed to remain approximately constant over the range of operation and the buoyancy was incorporated using the Boussinesq approximation. The k-{var_epsilon} model was used for the simulation of turbulence. The computed results included the local velocity and temperature and the variation of local heat transfer coefficient along the heated side wall. Computed results showed excellent agreement with experimental data. The flow pattern within the enclosure was found to be quite complex in nature and consisted of a core flow due to forced convection near the central region of the enclosure and strong buoyancy induced flow near the heated side walls. It was found that as the flow rate through the enclosure increased, the enhancement of heat transfer above that for natural convection alone, also increased. The variation of the local heat transfer coefficient over the heated surface was found to be strongly affected by the recirculation of portions of the forced flow within the enclosure as well as the impingement to or separation of flow from the side walls in some regions.

Gao, S.; Rahman, M.M.

1999-07-01T23:59:59.000Z

151

ECI International Conference on Heat Transfer and Fluid Flow in Microscale Whistler, 21-26 September 2008  

E-Print Network (OSTI)

ECI International Conference on Heat Transfer and Fluid Flow in Microscale Whistler, 21] studied convective heat transfer of slug flows in a macro-sized tube by using viscoelastic fluids-26 September 2008 NUMERICAL STUDY ON CONVECTIVE HEAT TRANSFER OF GAS-LIQUID SLUG FLOW IN A MICRO TUBE Qunwu He

Kasagi, Nobuhide

152

PHYSICAL REVIEW E 84, 048302 (2011) Reply to "Comment on `Heat transfer and fluid flow in microchannels and nanochannels  

E-Print Network (OSTI)

PHYSICAL REVIEW E 84, 048302 (2011) Reply to "Comment on `Heat transfer and fluid flow) model for high-Knudsen-number (Kn) flow and heat transfer, in the range of Kn 1. We present various studies employing the LBGK model for high-Kn flow and heat transfer simulations. It is concluded that

Luo, Li-Shi

153

Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems  

DOE Patents (OSTI)

Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

Meisner, Gregory P

2013-10-08T23:59:59.000Z

154

Mapping Geothermal Heat Flow and Existing Plants | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

resources make up most of the current geothermal operating plants in the United States. Power generation comes from drawing heat from the fluid found naturally deep below the...

155

Numerical modeling of deep groundwater flow and heat transport in the Williston Basin  

SciTech Connect

A numerical modeling approach has been used to evaluate quantitatively the effects of fluid flow on contemporary heat flow in an intracratonic basin. The authors have selected the Williston basin for this hydrodynamic study because of the opportunity it presents to assess the relation of deep groundwater flow to basin geothermics and the associated features of diagenesis and petroleum accumulation. The finite element method is used to solve the coupled equations of fluid flow and heat transport in two-dimensional sections of the basin. Both the fluid- and heat-flow regime are assumed to be at steady state, and the fluid flow is driven primarily by the water-table relief which is taken to be a subdued replica of land-surface topography. Buoyancy forces may also affect flow through fluid density gradients created by temperature and salinity effects. Three southwest-northwest oriented sections across the basin were modeled using available and estimated parameter data. The predicted flow patterns are most strongly affected by the topography, but the Devonian salt unit and Cretaceous shale unit exert some control. Cross-formational flow is especially important near the downdip, solution edge of the salt beds. Flow rates rarely exceed 0.5 m/year in the deep-central part of the basin, yet there does exist a marked effect on heat flow, albeit subdued by the blanket effect of the low-permeability Cretaceous shales. The regional effect of the topography-driven flow system is reflected in present-day salinity patterns and heat-flow data.

Garven, G.; Vigrass, L.

1985-01-01T23:59:59.000Z

156

Heat Flow And Geothermal Potential In The South-Central United States |  

Open Energy Info (EERE)

And Geothermal Potential In The South-Central United States And Geothermal Potential In The South-Central United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow And Geothermal Potential In The South-Central United States Details Activities (1) Areas (1) Regions (0) Abstract: Geothermal exploration is typically limited to high-grade hydrothermal reservoirs that are usually found in the western United States, yet large areas with subsurface temperatures above 150 deg. C at economic drilling depths can be found east of the Rocky Mountains. The object of this paper is to present new heat flow data and to evaluate the geothermal potential of Texas and adjacent areas. The new data show that, west of the Ouachita Thrust Belt, the heat flow values are lower than east of the fault zone. Basement heat flow values for the Palo Duro and Fort

157

Local heat and mass transfer for gas-solid two phase flow in CFB  

Science Journals Connector (OSTI)

An experimental investigation on the flow characteristics and the local heat and mass transfer between coarse wet particles and hot gas in the circulating fluidized bed (CFB) has been performed. A two-thermocoupl...

Feng Lu; Ming-Heng Shi

1994-09-01T23:59:59.000Z

158

Heat transfer due to stagnation point flow of a non-Newtonian fluid  

Science Journals Connector (OSTI)

Heat transfer analysis for steady, laminar flow of an incompressible, homogeneous, non-Newtonian fluid of second grade at a stagnation point...K, of the fluid. The energy equation is discretized using central ......

V. K. Garg

1994-01-01T23:59:59.000Z

159

Heat-transfer mechanism in turbulent flow of fluid at supercritical pressures  

Science Journals Connector (OSTI)

A hypothetical physical model of the heat-transfer process accompanying a forced flow of liquid at supercritical pressures is proposed. This model accounts for the anomalous improvements and deteriorations in ...

Sh. G. Kaplan

1971-09-01T23:59:59.000Z

160

Second-order fluid flow past a stretching sheet with heat transfer  

Science Journals Connector (OSTI)

The heat transfer in the flow of a second-order fluid, obeying Coleman and Noll's constitutive equation...KC/v. The thermal boundary layer thickness decreases and the Nusselt numberNu x increases ...

N. M. Bujurke; S. N. Biradar; P. S. Hiremath

1987-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Unsteady hydromagnetic free-convection flow with radiative heat transfer in a rotating fluid  

Science Journals Connector (OSTI)

We consider the buoyancy-induced flow of an electrically-conducting fluid with radiative heat transfer past a vertical flat plate of infinite ... vary with temperature, that is a compressible fluid. If the temper...

A. R. Bestman; S. K. Adjepong

162

Heat transfer in a radiating fluid with slug flow in a parallel-plate channel  

Science Journals Connector (OSTI)

As a step towards a better understanding of combined conduction, convection, and radiation, fully developed heat transfer in slug flow in a flat duct ... , nonblack, isothermal surfaces. The gray radiating fluid ...

R. Viskanta

1964-01-01T23:59:59.000Z

163

Heat transfer in an MHD channel flow with boundary conditions of the third kind  

Science Journals Connector (OSTI)

The heat transfer equation for a two-dimensional magnetohydrodynamic channel flow has been solved using boundary conditions of the third kind considering a discontinuity in the “ambient” temperature. The bound...

Sergio Cuevas; Eduardo Ramos

1991-01-01T23:59:59.000Z

164

Visualization of flow boiling in an annular heat exchanger under reduced gravity conditions  

E-Print Network (OSTI)

creating unique visual and quantitative data. These data were then analyzed using a resistance type heat transfer model and five different zero gravity flow regime maps. Results from this analysis included: (i) presenting zero gravity data that correlated...

Westheimer, David Thomas

2012-06-07T23:59:59.000Z

165

Numerical study of flow and heat transfer in 3D serpentine channels using colocated grids  

E-Print Network (OSTI)

and average Nusselt number. The numerical code developed was validated by solving for fully developed flow and heat transfer in a square straight channel. Grid-independent solution was established for a reference case of serpentine channel with the highest...

Chintada, Sailesh Raju

1998-01-01T23:59:59.000Z

166

Influence of surface heating on the boundary layer stability of flows with favorable pressure gradients  

E-Print Network (OSTI)

INFLUENCE OF SURFACE HEATING ON THE BOUNDARY LAYER STABILITY OF FLOWS WITH FAVORABI E PRESSURE GRADIENTS A Thesis by DAVID BRIAN LANDRUM Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1986 Major Subject: Aerospace Engineering INFLUENCE OF SURFACE HEATING ON THE BOUNDARY LAYER STABILITY OF FLOWS WITH FAVORABLE PRESSURE GRADIENTS A Thesis by DAVID BRIAN LANDRUM Approved as to style and content...

Landrum, David Brian

2012-06-07T23:59:59.000Z

167

Finite element analysis of conjugate heat transfer in axisymmetric pipe flows  

E-Print Network (OSTI)

FINITE ELEMENT ANALYSIS OF CONJUGATE HEAT TRANSFER IN AXISYMMETRIC PIPE FLOWS A Thesis by ROBERT MILLER FITHEN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MA STER... OF S CI EN CE August 1987 Major Subject: Mechanical Engineering FINITE ELEMENT ANALYSIS OF CONJUGATE HEAT TRANSFER IN AXISYMMETRIC PIPE FLOWS A Thesis by ROBERT MILLER FITHEN Approved ss to style and content by: N. K. Anand (Chairman of Committee...

Fithen, Robert Miller

2012-06-07T23:59:59.000Z

168

Characteristics of fluid flow and heat transfer in a fluidized heat exchanger with circulating solid particles  

Science Journals Connector (OSTI)

The commercial viability of heat exchanger is mainly dependent on its long- ... loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristic...

Soo Whan Ahn; ByungChang Lee; WonCheol Kim; Myung- Whan Bae…

2002-09-01T23:59:59.000Z

169

Numerical Analysis of Fluid Flow and Heat Transfer within Grooved Flat Mini Heat Pipes  

Science Journals Connector (OSTI)

A Theoretical study is carried out in order to verify the Mini Heat Pipe (MHP) concept for cooling high ... as an integrated part of a Flat Mini Heat Pipe (FMHP). Hence, a detailed ... with axial microchannels is...

Jed Mansouri; Samah Maalej; Mohamed Sassi…

2013-01-01T23:59:59.000Z

170

Saturated critical heat flux in a multi-microchannel heat sink fed by a split flow system  

SciTech Connect

An extensive experimental campaign has been carried out for the measurement of saturated critical heat flux in a multi-microchannel copper heat sink. The heat sink was formed by 29 parallel channels that were 199 {mu}m wide and 756 {mu}m deep. In order to increase the critical heat flux and reduce the two-phase pressure drop, a split flow system was implemented with one central inlet at the middle of the channels and two outlets at either end. The base critical heat flux was measured using three HFC Refrigerants (R134a, R236fa and R245fa) for mass fluxes ranging from 250 to 1500 kg/m{sup 2} s, inlet subcoolings from -25 to -5 K and saturation temperatures from 20 to 50 C. The parametric effects of mass velocity, saturation temperature and inlet subcooling were investigated. The analysis showed that significantly higher CHF was obtainable with the split flow system (one inlet-two outlets) compared to the single inlet-single outlet system, providing also a much lower pressure drop. Notably several existing predictive methods matched the experimental data quite well and quantitatively predicted the benefit of higher CHF of the split flow. (author)

Mauro, A.W.; Toto, D. [Department of Energetics, Applied Thermofluidynamics and Air Conditioning Systems, FEDERICO II University, p.le Tecchio 80, 80125 Napoli (Italy); Thome, J.R. [Laboratory of Heat and Mass Transfer (LTCM), Faculty of Engineering (STI), Ecole Polytechnique Federale de Lausanne (EPFL), Station 9, Lausanne CH-1015 (Switzerland); Vanoli, G.P. [Engineering Department, Sannio University, Corso Garibaldi 107, Palazzo dell'Aquila Bosco Lucarelli, 82100 Benevento (Italy)

2010-01-15T23:59:59.000Z

171

Terrestrial Heat Flow and Heat Generation in South-west England  

Science Journals Connector (OSTI)

......g cm-3 and a heat generation contrast of 3.35 pW...batholith, assuming heat generation from the country rocks...that radioactive heat generation is not constant throughout...University of London Reactor Centre for providing...from radioactivity, Nuclear Geology, ed. H. Faul......

H. Y. Tammemagi; J. Wheildon

1974-07-01T23:59:59.000Z

172

Heat transfer and pressure drop for air flow through enhanced passages  

SciTech Connect

An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

Obot, N.T.; Esen, E.B.

1992-06-01T23:59:59.000Z

173

Heat transfer and pressure drop for air flow through enhanced passages. Final report  

SciTech Connect

An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

Obot, N.T.; Esen, E.B.

1992-06-01T23:59:59.000Z

174

A Refined Model of Stationary Heat Transfer in Composite Bodies Reinforced with Pipes Containing a Heat-Transfer Fluid Moving in Laminar Flow Conditions  

Science Journals Connector (OSTI)

Equations describing the stationary heat conduction of composite bodies spatially reinforced with ... of smooth pipes, through which an incompressible heat-transfer fluid is pumped in laminar flow conditions, are...

A. P. Yankovskii

2014-03-01T23:59:59.000Z

175

Three-dimensional analysis of fluid flow and heat transfer in single- and two-layered micro-channel heat sinks  

Science Journals Connector (OSTI)

A three-dimensional numerical analysis of laminar fluid flow and conjugate heat transfer has been conducted for single- and two-layered micro-channel heat sinks. The validity of the numerical model ... power, the...

M. L.-J. Levac; H. M. Soliman; S. J. Ormiston

2011-11-01T23:59:59.000Z

176

Heat and mass transfer in a visco–elastic fluid flow over an accelerating surface with heat source/sink and viscous dissipation  

Science Journals Connector (OSTI)

...?In this paper we present a mathematical analysis of heat and mass transfer phenomena in a visco–elastic fluid flow over an accelerating stretching sheet in the presence of heat source/sink, viscous dissipatio...

R. M. Sonth; S. K. Khan; M. S. Abel; K. V. Prasad

2002-02-01T23:59:59.000Z

177

CONSTRAINTS ON THE VISCOSITY AND MAGNETIC FIELD IN HOT ACCRETION FLOWS AROUND BLACK HOLES  

SciTech Connect

The magnitude of the viscosity and magnetic field parameters in hot accretion flows is investigated in low luminosity active galactic nuclei (LLAGNs). Theoretical studies show that a geometrically thin, optically thick disk is truncated at mass accretion rates less than a critical value by mass evaporated vertically from the disk to the corona, with the truncated region replaced by an advection dominated accretion flow (ADAF). The critical accretion rate for such a truncation is a function of the viscosity and magnetic field. Observations of X-ray photon indices and spectral fits of a number of LLAGNs published in the literature provide an estimate of the critical rate of mass accretion and the truncation radius, respectively. By comparing the observational results with theoretical predictions, the viscosity and magnetic field parameters in the hot accretion flow region are estimated. Specifically, the mass accretion rates inferred in different sources constrain the viscosity parameter, whereas the truncation radii of the disk, as inferred from spectral fits, further constrain the magnetic field parameter. It is found that the value of the viscosity parameter in the corona/ADAF ranges from 0.17 to 0.5, with values clustered about 0.2-0.3. Magnetic pressure is required by the relatively small truncation radii for some LLAGNs and is found to be as high as its equipartition value with the gas pressure. The inferred values of the viscosity parameter are in agreement with those obtained from the observations of non-stationary accretion in stellar mass black hole X-ray transients. This consistency provides support for the paradigm that a geometrically thin disk is truncated by means of a mass evaporation process from the disk to the corona at low mass accretion rates.

Liu, B. F. [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Taam, Ronald E., E-mail: bfliu@nao.cas.cn, E-mail: r-taam@northwestern.edu [Academia Sinica Institute of Astronomy and Astrophysics-TIARA, P.O. Box 23-141, Taipei 10617, Taiwan (China)

2013-07-15T23:59:59.000Z

178

On Heating of Cluster Cooling Flows by Sound Waves  

E-Print Network (OSTI)

We investigate heating of the cool core of a galaxy cluster through the dissipation of sound waves excited by the activities of the central active galactic nucleus (AGN). Using a weak shock theory, we show that this heating mechanism alone cannot reproduce observed temperature and density profiles of a cluster, because the dissipation length of the waves is much smaller than the size of the core and thus the wave energy is not distributed to the whole core. However, we find that if it is combined with thermal conduction from the hot outer layer of the cluster, the wave heating can reproduce the observational results.

Yutaka Fujita; Takeru Ken Suzuki

2005-08-10T23:59:59.000Z

179

BUBBLE CHARACTERISTICS AND CONVECTIVE EFFECTS IN THE FLOW BOILING HEAT TRANSFER OF BINARY MIXTURES  

E-Print Network (OSTI)

BUBBLE CHARACTERISTICS AND CONVECTIVE EFFECTS IN THE FLOW BOILING HEAT TRANSFER OF BINARY MIXTURES on the bubble growth and associated heat transfer phenomena. The present work focuses on obtaining the bubble. The bubble growth is observed using a high speed camera (1000 fps) under a magnification of 290X. The bubble

Kandlikar, Satish

180

A method to visualise near wall fluid flow patterns using locally resolved heat transfer experiments  

Science Journals Connector (OSTI)

Abstract The present study demonstrates an alternative approach for describing fluid flow characteristics very close to the wall, using locally resolved convective heat transfer experiments. Heat transfer coefficients on the base surface and around a surface mounted vortex generator of delta-wing shape design, are evaluated with the transient liquid crystal measurement technique and over a range of freestream velocities. Therefore, the local values of exponent m in the equation Nu x ? Re x m , which is directly linked to the structure of the boundary layer, can be determined over the complete heat transfer area. The local distributions of exponent m are then directly compared to the footprint of the flow obtained with typical oil and dye surface flow visualisation. The results indicate that a more appropriate interpretation of the flow structures very close to the wall is possible by analysing the spatial variation of exponent m, which approximates better the flow pattern compared to the heat transfer coefficients. As a result, fluid flow topologies can be directly evaluated from the heat transfer experiments since the distributions of oil-flow visualisation and exponent m are qualitatively similar.

Alexandros Terzis; Jens von Wolfersdorf; Bernhard Weigand; Peter Ott

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

An analog analysis of transient heat flow in solids with temperature-dependent thermal properties  

E-Print Network (OSTI)

) used a nonlinear material known as Metrosil to simulate the nonlinear variations of thermal properties for combined conductive and radiant heat transfer. Since that time, Friedmann (8) has used nonlinear resistances in conjunction with an electronic... at end of this thesis. K = thermal conductivity of heat conducting media, and K and S are functions of the temperature t. Since the formation of these equations, solutions of transient heat flow problems involving materials in which the thermal...

Lee, Dwain Edward

2012-06-07T23:59:59.000Z

182

Heat source/sink effects on non-Newtonian MHD fluid flow and heat transfer over a permeable stretching surface: Lie group analysis  

Science Journals Connector (OSTI)

An analysis is performed for flow and heat transfer of a non-Newtonian fluid known as Casson fluid over a permeable stretching surface through a...

M. N. Tufail; A. S. Butt; A. Ali

2014-01-01T23:59:59.000Z

183

Control of reactor coolant flow path during reactor decay heat removal  

DOE Patents (OSTI)

An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

Hunsbedt, Anstein N. (Los Gatos, CA)

1988-01-01T23:59:59.000Z

184

Numerical Analysis of Heat Transfer and Fluid Characteristics of Flowing Liquid Nitrogen in HTS Cable  

Science Journals Connector (OSTI)

Abstract High-temperature superconducting (HTS) cable has heat intrusion from the termination including joule heat generation at the terminal joint and from the room temperature cable through the Cu current lead. According to the length of the HTS cable, this heat loss may become a considerable amount which cannot be ignored in the HTS cable system. In this study, referring to a high-voltage cable (HV cable) which was developed in M-PACC project, the effect of heat transfer at the interface between the terminal joint and LN2 in the terminal vessel (ho) on the temperature of the HTS cable were calculated and evaluated. The condition of flow in the terminal vessel was assumed to be natural convection, forced flow or static condition for evaluating this effect with various heat transfer condition. As a result, in the case of the natural convection, most of heats flow into the LN2 in the terminal vessel where the volumetric flow of the LN2 is large since ho becomes high. Accordingly, the temperature rise of the LN2 in the inner pipe of Cu former and the terminal vessel can be restricted. However, in the cases of the forced flow and the static condition, most of heats flow into the LN2 in the inner pipe where the volumetric flow of the LN2 is small since ho becomes small. Accordingly, the temperature rise of the LN2 in the inner pipe becomes high. This temperature rise of the LN2 in the inner pipe makes the temperature of the HTS conductor large resulting in remarkable increase of AC losses. Consequently, on the HV cable design, for restriction of the AC loss increase, it is expected that designing the HTS cable termination such as extending outer surface of the terminal joint for increasing of the heat inflow from the terminal joint to the LN2 in the vessel is effective.

O. Maruyama; T. Ohkuma; T. Izumi; Y. Shiohara

2014-01-01T23:59:59.000Z

185

ORIGINAL PAPER Flow Dynamics and Plasma Heating of Spheromaks in SSX  

E-Print Network (OSTI)

ORIGINAL PAPER Flow Dynamics and Plasma Heating of Spheromaks in SSX M. R. Brown � C. D. Cothran � from single dipole- trapped spheromaks and spheromak merging studies at SSX. Single spheromaks) copper flux conserver. Local spheromak flow is studied with two Mach probes (r1 £ qi, r2 qi) calibrated

Brown, Michael R.

186

ENERGY CONCENTRATION FOR 2-DIMENSIONAL RADIALLY SYMMETRIC EQUIVARIANT HARMONIC MAP HEAT FLOWS  

E-Print Network (OSTI)

flows. Adapting Struwe's energy method we first establish a finite bubble tree result with a discrete, energy method, energy quanta, bubble tree, bubbling off, single bubble, intersection-comparison. AMSENERGY CONCENTRATION FOR 2-DIMENSIONAL RADIALLY SYMMETRIC EQUIVARIANT HARMONIC MAP HEAT FLOWS

Hulshof, Joost

187

Scale effects on flow boiling heat transfer in microchannels: A fundamental perspective  

E-Print Network (OSTI)

pattern transitions and stability for flow boiling of water and FC-77 are evaluated. From the insight between heat transfer around a nucleating bubble in pool boiling and in the elongated bubble/slug flow on the high-speed visualization and localized thermal measurements made at the base of a nucleating bubble

Kandlikar, Satish

188

Oscillating flow loss test results in Stirling engine heat exchangers. Final Report  

SciTech Connect

The results are presented for a test program designed to generate a database of oscillating flow loss information that is applicable to Stirling engine heat exchangers. The tests were performed on heater/cooler tubes of various lengths and entrance/exit configurations, on stacked and sintered screen regenerators of various wire diameters and on Brunswick and Metex random fiber regenerators. The test results were performed over a range of oscillating flow parameters consistent with Stirling engine heat exchanger experience. The tests were performed on the Sunpower oscillating flow loss rig which is based on a variable stroke and variable frequency linear drive motor. In general, the results are presented by comparing the measured oscillating flow losses to the calculated flow losses. The calculated losses are based on the cycle integration of steady flow friction factors and entrance/exit loss coefficients.

Koester, G.; Howell, S.; Wood, G.; Miller, E.; Gedeon, D.

1990-05-01T23:59:59.000Z

189

Methods for forming wellbores in heated formations  

DOE Patents (OSTI)

A method for forming a wellbore in a heated formation includes flowing liquid cooling fluid to a bottom hole assembly in a wellbore in a heated formation. At least a portion of the liquid cooling fluid is vaporized at or near a region to be cooled. Vaporizing the liquid cooling fluid absorbs heat from the region to be cooled.

Guimerans, Rosalvina Ramona; Mansure, Arthur James

2012-09-25T23:59:59.000Z

190

Experimental study on heat transfer to supercritical water flowing through tubes  

SciTech Connect

A test facility named SWAMUP (Supercritical Water Multi-Purpose Loop) has been constructed in Shanghai Jiao Tong Univ. to investigate heat transfer and pressure drop through tubes and rod bundles. SWAMUP is a closed loop with operating pressure up to 30 MPa, outlet-water temperature up to 550 deg. C, and mass flow rate up to 5 t/h. In this paper, experimental study has been carried out on heat transfer of supercritical water flowing vertically through tubes (ID=7.6 and 10 mm). A large number of test points in tubes has been obtained with a wide range of heat flux (200-1500 kw/m{sup 2}) and mass flux (450-2000 kg/m{sup 2}s). Test results showed that heat transfer deterioration (HTD) caused by buoyancy effect only appears in upward flow and HTD caused by acceleration effect appears both in upward flow and downward flow. The heat transfer coefficients (HTC) produced in tube tests were compared with existing heat transfer correlations. (authors)

Zhao, M.; Gu, H.; Cheng, X. [School of Nuclear Science and Engineering, Shanghai Jiao Tong Univ. SJTU, 800 Dongchuan Road, Shanghai (China)

2012-07-01T23:59:59.000Z

191

Heat Transfer in Wedge Flow of a Micropolar Fluid  

Science Journals Connector (OSTI)

The theory of fluids with microstructures was first given by Eringen ... , 1965), and they are called micropolar fluids. These fluids exhibit microrotational effects and microrotational inertia. The flow of such

V. M. Soundalgekar; H. S. Takhar

1980-01-01T23:59:59.000Z

192

Utility of Bromide and Heat Tracers for Aquifer Characterization Affected by Highly Transient Flow Conditions  

SciTech Connect

A tracer test using both bromide and heat tracers conducted at the Integrated Field Research Challenge site in Hanford 300 Area (300A), Washington, provided an instrument for evaluating the utility of bromide and heat tracers for aquifer characterization. The bromide tracer data were critical to improving the calibration of the flow model complicated by the highly dynamic nature of the flow field. However, most bromide concentrations were obtained from fully screened observation wells, lacking depth-specific resolution for vertical characterization. On the other hand, depth-specific temperature data were relatively simple and inexpensive to acquire. However, temperature-driven fluid density effects influenced heat plume movement. Moreover, the temperature data contained “noise” caused by heating during fluid injection and sampling events. Using the hydraulic conductivity distribution obtained from the calibration of the bromide transport model, the temperature depth profiles and arrival times of temperature peaks simulated by the heat transport model were in reasonable agreement with observations. This suggested that heat can be used as a cost-effective proxy for solute tracers for calibration of the hydraulic conductivity distribution, especially in the vertical direction. However, a heat tracer test must be carefully designed and executed to minimize fluid density effects and sources of noise in temperature data. A sensitivity analysis also revealed that heat transport was most sensitive to hydraulic conductivity and porosity, less sensitive to thermal distribution factor, and least sensitive to thermal dispersion and heat conduction. This indicated that the hydraulic conductivity remains the primary calibration parameter for heat transport.

Ma, Rui; Zheng, Chunmiao; Zachara, John M.; Tonkin, Matthew J.

2012-08-29T23:59:59.000Z

193

Heat transfer and pressure drop of supercritical carbon dioxide flowing in several printed circuit heat exchanger channel patterns  

SciTech Connect

Closed-loop Brayton cycles using supercritical carbon dioxide (SCO{sub 2}) show potential for use in high-temperature power generation applications including High Temperature Gas Reactors (HTGR) and Sodium-Cooled Fast Reactors (SFR). Compared to Rankine cycles SCO{sub 2} Brayton cycles offer similar or improved efficiency and the potential for decreased capital costs due to a reduction in equipment size and complexity. Compact printed-circuit heat exchangers (PCHE) are being considered as part of several SCO{sub 2} Brayton designs to further reduce equipment size with increased energy density. Several designs plan to use a gas cooler operating near the pseudo-critical point of carbon dioxide to benefit from large variations in thermophysical properties, but further work is needed to validate correlations for heat transfer and pressure-drop characteristics of SCO{sub 2} flows in candidate PCHE channel designs for a variety of operating conditions. This paper presents work on experimental measurements of the heat transfer and pressure drop behavior of miniature channels using carbon dioxide at supercritical pressure. Results from several plate geometries tested in horizontal cooling-mode flow are presented, including a straight semi-circular channel, zigzag channel with a bend angle of 80 degrees, and a channel with a staggered array of extruded airfoil pillars modeled after a NACA 0020 airfoil with an 8.1 mm chord length facing into the flow. Heat transfer coefficients and bulk temperatures are calculated from measured local wall temperatures and local heat fluxes. The experimental results are compared to several methods for estimating the friction factor and Nusselt number of cooling-mode flows at supercritical pressures in millimeter-scale channels. (authors)

Carlson, M. [Univ. of Wisconsin - Madison, 839 Engineering Research Building, 1500 Engineering Drive, Madison, WI 53706 (United States); Kruizenga, A. [Sandia National Laboratory (United States); Anderson, M.; Corradini, M. [Univ. of Wisconsin - Madison, 839 Engineering Research Building, 1500 Engineering Drive, Madison, WI 53706 (United States)

2012-07-01T23:59:59.000Z

194

Numerical analysis of vapor flow in a micro heat pipe  

E-Print Network (OSTI)

be modeled as a classical blowing and suction problem, i. e. ?(00) = v(00) = o ?(I, p) = v(L0) = 0 ?(x, 0) = ?(x, H) = 0 i(x, 0) = v(x), v(x, H) = -i'(x) 0&x&I. , (2. 6) v(x, 0) = 0, v(x, H) = 0 I. , &x&(L, +L, ) i(x, 0) = -v(x), v(x, H) = v(x) (L, +L... are considerably smoother and appear more reasonable Figure 5. 6 presents the velocity vector which is under q=40W/cm2, H=0. 003m uniform heat flux linear heat flux 0 00 0 O'I 0 02 0. 03 0. 04 0. 05 0 06 x(m) Fig. 5. 2 Heat flux distribution influence...

Liu, Xiaoqin

2012-06-07T23:59:59.000Z

195

Energy efficiency improvements utilising mass flow control and a ring topology in a district heating network  

Science Journals Connector (OSTI)

Abstract Heating and cooling have a major role in the energy sector, covering 46% of total final energy use worldwide. District heating (DH) is a significant technology for improving the energy efficiency of heating systems in communities, because it enables waste heat sources to be utilised economically and therefore significantly reduces the environmental impacts of power generation. As a result of new and more stringent construction regulations for buildings, the heat demands of individual buildings are decreasing and more energy-efficient heating systems have to be developed. In this study, the energy efficiency of a new DH system which includes both a new control system called mass flow control and a new network design called a ring network is examined. A topology in the Helsinki region is studied by using a commercial DH network modelling tool, Grades Heating. The district heating network is attached to a wood-burning heat station which has a heat recovery system in use. Examination is performed by means of both technical and economic analysis. The new non-linear temperature programme that is required is adopted for supply and return temperatures, which allows greater temperature cooling and smaller flow rates. Lower district heating water temperatures are essential when reducing the heat losses in the network and heat production. Mass flow control allows smaller pressure drops in the network and thus reduces the pumping power. The aim of this study was to determine the most energy-efficient DH water supply temperatures in the case network. If the ring network design is utilised, the district heating system is easier to control. As a result the total heat consumption within the heating season is reduced compared to traditional DH systems. On the basis of the results, the new DH system is significantly more energy-efficient in the case network that was examined than the traditional design. For example, average energy losses within the constraints (which consist of heat losses, pumping energy, and surplus energy from the heat recovery system) are reduced from 4.4% to 3.1%.

Tatu Laajalehto; Maunu Kuosa; Tapio Mäkilä; Markku Lampinen; Risto Lahdelma

2014-01-01T23:59:59.000Z

196

A numerical study on the effects of 2d structured sinusoidal elements on fluid flow and heat transfer at microscale  

E-Print Network (OSTI)

Computational fluid dynamics Microchannel Minichannel Surface roughness Roughness elements Heat transfer Fluid to achieve enhancement in heat transfer with relatively low cooling fluid flow rate [1]. In spite of havingA numerical study on the effects of 2d structured sinusoidal elements on fluid flow and heat

Kandlikar, Satish

197

PIV flow measurements for heat transfer characterization in two-pass square channels with smooth and 90 ribbed walls  

E-Print Network (OSTI)

PIV flow measurements for heat transfer characterization in two-pass square channels with smooth the correlation between the high- Reynolds number turbulent flow and wall heat transfer characteristics in a two number (Re) of 30,000. The PIV measurement results were compared with the heat transfer experimental data

Kihm, IconKenneth David

198

Two-Layer Baroclinic Eddy Heat Fluxes: Zonal Flows and Energy Balance ANDREW F. THOMPSON AND WILLIAM R. YOUNG  

E-Print Network (OSTI)

Two-Layer Baroclinic Eddy Heat Fluxes: Zonal Flows and Energy Balance ANDREW F. THOMPSON of these drag- less heat-flux parameterizations relies on the ability of to direct energy into zonal flows, California (Manuscript received 27 September 2006, in final form 13 December 2006) ABSTRACT The eddy heat

Young, William R.

199

Causal heat flow in Bianchi type-V universe  

E-Print Network (OSTI)

In this paper we investigate the role of causal heat transport in a spatially homogeneous, locally-rotationally symmetric Bianchi type-V cosmological model. In particular, the causal temperature profile of the cosmological fluid is obtained within the framework of extended irreversible thermodynamics. We demonstrate that relaxational effects can alter the temperature profile when the cosmological fluid is out of hydrostatic equilibrium.

M. Govender; S. Thirukkanesh

2014-04-11T23:59:59.000Z

200

Supersonic combustion of a transverse injected H sub 2 jet in a radio frequency heated flow  

SciTech Connect

The combustion of a single hydrogen jet, normally injected into a radio frequency (RF) heated, oxidant-containing, supersonic flow, has been established to characterize the chemical and fluid dynamic phenomena associated with the reaction process and ultimately validate the predictive capability of computational computer dynamic (CFD) codes. The experimental system employed for this study is unique in that it uses an electrodeless, inductively coupled plasma tube to generate the high temperature oxidant-containing gas for subsequent nozzle expansion. Advantages of an RF heated flow system include reduced free-stream chemical contamination, continuous operation, and relative ease of integration into a typical flow laboratory environment. A description of the system utilized for this study is presented including preliminary results of the reactive flow characterization. In addition, the use of the laser-based diagnostic techniques, such as planar laser-induced fluorescence (PLIF), for measuring flow properties is also discussed. 8 refs., 7 figs.

Wantuck, P.J.; Tennant, R.A.; Watanabe, H.H.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Relationship Between Heat Flows and Geological Structures in the Sichuan Basin, P.R. China  

SciTech Connect

Based on an extensive data collection and analysis, this research has provided reliable representations of the features of the geothermal fields, their heat flow, and relationships with geological structures in the Sichuan Basin. The isotherms below a depth of 1,000 m show high values in the Central Uplift and the Southwest Uplift, and low values in the Northwest and Southeast Depressions. These features probably indicate undulation of crystalline basement and structural depression. At depths greater than 3,000 m, the isotherms tend to become simpler and regionalized. The mean heat flow in the basin is 69.1 mW/m{sup 2}. In the Central Uplift, the Northwest Depression and the East of the basin, heat-flow values range from 58.6 to 71.2 mW/m{sup 2}, with a mean value of 66.1 mWE/m{sup 2}. In the south and southwest, it varies from 76.6 to 100.5 mW/m{sup 2}, with a mean value of 86.2 mW/m{sup 2}. High heat-flow values occur within the uplift of the crystalline basement in the southwest Sichuan, and the heat flow decreases from the south, through the central area, to the northwest.

Zeng, Y.; Yu, H.; Wang, X.

1995-01-01T23:59:59.000Z

202

Numerical Studies of Fluid Leakage from a Geologic Disposal Reservoir for CO2 Show Self-Limiting Feedback between Fluid Flow and Heat Transfer  

E-Print Network (OSTI)

Feedback between Fluid Flow and Heat Transfer Karsten Pruessfeedback between fluid flow and heat transfer tends to limitfluid mobility (viscosity and relative permeability effects), are countered by effects arising from limitations in the rate of conductive heat transfer.

Pruess, Karsten

2005-01-01T23:59:59.000Z

203

Heat transfer during the flow of an incompressible fluid in a circular tube, allowing for axial heat flow, with boundary conditions of the first and second kind at the tube surface  

Science Journals Connector (OSTI)

An examination is made of heat transfer in a hydraulically stabilized laminar stream and in a two-layer dynamic flow model.

V. V. Shapovalov

1966-09-01T23:59:59.000Z

204

The effect of injection hole geometry on flat plate film cooling and heat transfer  

E-Print Network (OSTI)

to thermal ly protect a gas turb ine blade f r om the hot gases w i th in a gas turbine engine by inject ion of a coo l ing f lu id th rough discrete holes i n the surface of the blade. Tests were conducted on a flat p late us ing the f i lm cool ing... surface w i th coo l ing a ir c i rculated w i th in the hol low core of the turb ine b lade. External cool ing employs co ld a ir inject ion th rough holes on the outer surface of the turb ine blade produc ing a f i lm of a i r that protects...

Madsen, Eric Perry

2012-06-07T23:59:59.000Z

205

Flow patterns and heat transfer around six in-line circular cylinders at low Reynolds number  

E-Print Network (OSTI)

The flow field and the heat transfer around six in-line iso-thermal circular cylinders has been studied by mean of numerical simulations. Two values of the center to center spacing ($s=3.6d$ and $4d$, where $d$ is the cylinder diameter) at Reynolds number of $100$ and Prandtl number of $0.7$ has been investigated. Similarly to the in-line two cylinder configuration, in this range a transition in the flow and in the heat transfer occurs. Two different flow patterns have been identified: the stable shear layer (SSL) mode and the shear layer secondary vortices (SLSV) mode, at $3.6$ and $4$ spacing ratio ($s/d$), respectively. At $s/d=3.6$ the flow pattern causes the entrainment of cold fluid on the downstream cylinders enhancing the heat transfer. On the other hand at $s/d=4$ two stable opposite shear layer prevent the cold fluid entrainment over the downstream cylinders reducing their heat exchange. The overall time average heat transfer of the array is enhanced up to 25% decreasing the spacing ratio from $4$ t...

Fornarelli, Francesco; Lippolis, Antonio

2014-01-01T23:59:59.000Z

206

Effects of lithospheric rigidity on ocean floor bathymetry and heat flow  

SciTech Connect

The observed quasi-rigid behaviour of surface plates in the course of their relative motion is a consequence of the high viscosity which obtains in the cold near surface region. By assigning a particular constant velocity as the upper boundary condition in a numerical model of mantle convection, we have investigated the effect of lithospheric rigidity on the variation of oceanic bathymetry and heat flow as a function of ocean floor age. Predicted variations of both bathymetry and heat flow at the surface of mantle wide convection cells which are partially heated from within, exhibit the same qualitative behaviour as data compiled for the major ocean basins. The bathymetry varies with distance x from the spreading centre initially as x/sup 1/2/ but subsequently flattens with respect to an x/sup 1/2/ reference curve whereas the heat flow closely follows an x-/sup 1/2/ decay over most of the convection cell. Consequently the viability of the mechanism for sea floor flattening proposed by Jarvis and Peltier (1980) is increased when a constant surface velocity, characteristic of rigid plates, is incorporated in the model. This model successfully predicts both that the bathymetry should flatten and that the heat flow should not.

Jarvis, G.T.; Peltier, W.R.

1981-08-01T23:59:59.000Z

207

Experimental study of heat flows in the walls of a high-enthalpy mhd channel  

SciTech Connect

This article reports results of experimental studies of local heat flows in the walls of an MHD channel during different regimes of its operation. Special attention was given to aspects of the reliability of measurement of heat flow to B-walls. Tests were conducted on a unit consisting of a Faraday MHD channel with sectional electrodes operating in the accelerator regime. A basic diagram of the unit is shown. Tests were conducted with the primary nozzle and power was supplied along zones 160 and 280 mm long. The data obtained were analyzed using the electrogasdynamic flow pattern established for each regime from numerical solution of a system of quasiunidimensional magnetogasdynamic equations. Results are presented of measurement and analysis of gasdynamic and electrodynamic characteristics of flow in the MHD channel.

Alferov, V.I.; Rudakova, A.P.; Shcherbakov, G.I.; Sukhobokov, A.D.; Vitskoskaya, O.N.

1986-01-01T23:59:59.000Z

208

Effect of heat transfer on the plane-channel poiseuille flow of a thermo-viscous fluid  

Science Journals Connector (OSTI)

A steady-state plane channel flow of viscous incompressible fluid with no-slip and heat transfer boundary conditions is considered. The flow is ... induced by a fixed pressure difference and the fluid viscosity d...

S. N. Aristov; V. G. Zelenina

209

Electrically heated particulate filter with zoned exhaust flow control  

DOE Patents (OSTI)

A system includes a particulate matter (PM) filter that includes X zones. An electrical heater includes Y heater segments that are associated with respective ones of the X zones. The electrical heater is arranged upstream from and proximate with the PM filter. A valve assembly includes Z sections that are associated with respective ones of the X zones. A control module adjusts flow through each of the Z sections during regeneration of the PM filter via control of the valve assembly. X, Y and Z are integers.

Gonze, Eugene V [Pinckney, MI

2012-06-26T23:59:59.000Z

210

Interpreting Velocities from Heat-Based Flow Sensors by NumericalSimulation  

SciTech Connect

We have carried out numerical simulations of three-dimensional non-isothermal flow around an in situ heat-based flow sensor to investigate how formation heterogeneities can affect the interpretation of ground water flow velocities from this instrument. The flow sensor operates by constant heating of a 0.75 m long, 5 cm diameter cylindrical probe, which contains 30 thermistors in contact with the formation. The temperature evolution at each thermistor can be inverted to obtain an estimate of the ground water flow velocity vector using the standard interpretive method, which assumes that the formation is homogeneous. Analysis of data from heat-based flow sensors installed in a sand aquifer at the Former Fort Ord Army Base near Monterey, California suggested an unexpected component of downward flow. The magnitudes of the vertical velocities were expected to be much less than the horizontal velocities at this site because the sensors were installed just above a clay aquitard. Numerical simulations were conducted to examine how differences in thermal conductivities may lead to spurious indications of vertical flow velocities. We found that a decrease in the thermal conductivity near the bottom of the sensor can perturb the temperature profiles along the instrument in such a manner that analyses assuming homogeneous thermal conductivity could indicate a vertical flow component even though flow is actually horizontal. This work demonstrates how modeling can be used to simulate instrument response to formation heterogeneity, and shows that caution must be used in interpreting data from such devices using overly simplistic assumptions.

Su, Grace W.; Freifeld, Barry M.; Oldenburg, Curtis M.; Jordan,Preston D.; Daley, Paul F.

2005-06-13T23:59:59.000Z

211

Heating of Coronal Holes and Generation of the Solar Wind by Ion-Cyclotron Resonance  

Science Journals Connector (OSTI)

We discuss a new model to describe the heating of the magnetically open solar corona and ... acceleration of the fast solar wind by the cyclotron resonant interaction of coronal ions with ion-cyclotron waves. Thi...

Philip A. Isenberg

2001-01-01T23:59:59.000Z

212

Terrestrial Heat Flow and Heat Generation in South-west England  

Science Journals Connector (OSTI)

......the Wilsey Down borehole, and of heat...located over the large underlying batholith...the Wilsey Down borehole lies just beyond...the effects of drilling had subsided and...length of the borehole, I6 months after drilling ceased. At Geevor......

H. Y. Tammemagi; J. Wheildon

1974-07-01T23:59:59.000Z

213

Buoyancy driven flow in a hot water tank due to standby heat loss  

Science Journals Connector (OSTI)

Results of experimental and numerical investigations of thermal behavior in a vertical cylindrical hot water tank due to standby heat loss of the tank are presented. The effect of standby heat loss on temperature distribution in the tank is investigated experimentally on a slim 150 l tank with a height to diameter ratio of 5. A tank with uniform temperatures and with thermal stratification is studied. A detailed computational fluid dynamics (CFD) model of the tank is developed to calculate the natural convection flow in the tank. The distribution of the heat loss coefficient for the different parts of the tank is measured by experiments and used as input to the CFD model. Water temperatures at different levels of the tank are measured and compared to CFD calculated temperatures. The investigations focus on validation of the CFD model and on understanding of the CFD calculations. The results show that the CFD model predicts satisfactorily water temperatures at different levels of the tank during cooling by standby heat loss. It is elucidated how the downward buoyancy driven flow along the tank wall is established by the heat loss from the tank sides and how the natural convection flow is influenced by water temperatures in the tank. When the temperature gradient in the tank is smaller than 2 K/m, there is a downward fluid velocity of 0.003–0.015 m/s. With the presence of thermal stratification the buoyancy driven flow is significantly reduced. The dependence of the velocity magnitude of the downward flow on temperature gradient is not influenced by the tank volume and is only slightly influenced by the tank height to tank diameter ratio. Based on results of the CFD calculations, an equation is determined to calculate the magnitude of the buoyancy driven flow along the tank wall for a given temperature gradient in the tank.

Jianhua Fan; Simon Furbo

2012-01-01T23:59:59.000Z

214

Primordial Black Holes as Heat Sources for Living Systems with Longest Possible Lifetimes  

E-Print Network (OSTI)

Just forty years ago, Hawking wrote his famous paper on primordial black holes (PBH). There have been since innumerable discussions on the consequences of the existence of such exotic objects and ramifications of their properties. Here we suggest that PBH's in an ever expanding universe (as implied by dark energy domination, especially of a cosmological constant) could be the ultimate repository for long lived living systems. PBH's having solar surface temperatures would last 10^32 years as a steady power source and should be considered in any discussion on exobiological life.

C Sivaram; Kenath Arun; Kiren O V

2014-02-14T23:59:59.000Z

215

Primordial Black Holes as Heat Sources for Living Systems with Longest Possible Lifetimes  

E-Print Network (OSTI)

Just forty years ago, Hawking wrote his famous paper on primordial black holes (PBH). There have been since innumerable discussions on the consequences of the existence of such exotic objects and ramifications of their properties. Here we suggest that PBH's in an ever expanding universe (as implied by dark energy domination, especially of a cosmological constant) could be the ultimate repository for long lived living systems. PBH's having solar surface temperatures would last 10^32 years as a steady power source and should be considered in any discussion on exobiological life.

Sivaram, C; O, Kiren

2014-01-01T23:59:59.000Z

216

Solutions of turbulent backward-facing step flow with heat transfer using the finite volume method  

SciTech Connect

The heated turbulent flow over a backward-facing step is numerically solved using the commercial computational fluid dynamics program FLUENT. The methods used here consist of the default power-law upwinding scheme, default multigrid equation solution method and a standard k-{var_epsilon} turbulence model with wall functions. A total of four separate cases are reported. The four cases consist of combinations of partially and fully developed flow at the inlet with uniform or developed temperature profiles. Three mesh refinements are reported for each flow.

Horstman, R.H. [Boeing Commercial Airplane, Seattle, WA (United States). Environmental Control Systems R& D; Cochran, R.J. [Sandia National Labs., Albuquerque, NM (United States); Emergy, A.F. [Univ. of Washington, Seattle, WA (United States). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

217

Flow and Heat-Transfer Apparatus, Instrumentation and Data Acquisition Method  

E-Print Network (OSTI)

friction and convective heat transfer characteristics of nanofluids. Instead of a usual closed-loop system where pumps and after-cooling units are required, the developed apparatus utilizes nitrogen pressure-driven flow to test a single batch of fluid. This reduces the complexity of the system while improving its

Kostic, Milivoje M.

218

November 28, 2006 Seismologists get handle on heat flow deep in earth  

E-Print Network (OSTI)

November 28, 2006 Seismologists get handle on heat flow deep in earth Earth's interior placid inner Earth as a dynamic environment filled with exotic materials and substances roiling under that has an impact on what happens on our planet's surface. The latest evidence of this dynamic inner Earth

Garnero, Ed

219

Turbulent models of ice giant internal dynamics: Dynamos, heat transfer, and zonal flows  

E-Print Network (OSTI)

Turbulent models of ice giant internal dynamics: Dynamos, heat transfer, and zonal flows K Magnetic fields a b s t r a c t The ice giant planets, Uranus and Neptune, have magnetic fields to yield small-scale and disorganized turbulence. In agreement with ice giant observations, both

220

INFLUENCE OF OHMIC HEATING ON ADVECTION-DOMINATED ACCRETION FLOWS G. S. BISNOVATYI-KOGAN  

E-Print Network (OSTI)

is advected inward, and the fraction 1 f is locally radiated. The further assumption that the energy exchange that the dissipation of turbulent energy of the flow heats the ions and that the dissipated energy is advected inward. It is suggested that the efficiency of conversion of accretion energy to radiation can be very much smaller than

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Experimental shellside flow visualization in a shell and tube heat exchanger  

E-Print Network (OSTI)

information in the shellside flow. A scale-model shell and tube heat exchanger with an outer diameter of 30.5 cm and a length of 61 cm was designed and constructed out of acrylic. Water was utilized as the working fluid and flowrates ranging from 0.32 to 2...

Fischer, Matthew Winslow

1998-01-01T23:59:59.000Z

222

Numerical simulation of fluid flow and heat transfer in a passage with moving boundary  

Science Journals Connector (OSTI)

In this paper, a method is presented in detail that can be used to solve the fluid flow and heat transfer in domains with moving boundaries. The primitive variables formulation is adopted and a non-staggered grid, with Cartesian velocity components used as the primary unkowns in the momentum equations, is utilised. Discretisation is carried out using a control-volume method, the simplified QUICK scheme combined with a deferred correction approach is adopted for the convective fluxes and implicit time stepping is used for temporal differencing. The well-known SIMPLE algorithm is employed for handling the velocityâ??pressure coupling. The computational method is applied for the prediction of fluid flow and heat transfer in a channel with a boundary moving in a prescribed manner. Results show that both the amplitude and Strouhal number have great influences on the characteristics of fluid flow and heat transfer, and in the range studied, the heat transfer rate increases monotonously with the amplitude, whereas the Strouhal number only has a small effect on heat transfer.

D. S. Zhang; Q. W. Wang; W. Q. Tao

2002-01-01T23:59:59.000Z

223

Inferring temperature uniformity from gas composition measurements in a hydrogen combustion-heated hypersonic flow stream  

SciTech Connect

The application of a method for determining the temperature of an oxygen-replenished air stream heated to 2600 K by a hydrogen burner is reviewed and discussed. The purpose of the measurements is to determine the spatial uniformity of the temperature in the core flow of a ramjet test facility. The technique involves sampling the product gases at the exit of the test section nozzle to infer the makeup of the reactant gases entering the burner. Knowing also the temperature of the inlet gases and assuming the flow is at chemical equilibrium, the adiabatic flame temperature is determined using an industry accepted chemical equilibrium computer code. Local temperature depressions are estimated from heat loss calculations. A description of the method, hardware and procedures is presented, along with local heat loss estimates and uncertainty assessments. The uncertainty of the method is estimated at {+-}31 K, and the spatial uniformity was measured within {+-}35 K.

Olstad, S.J. [Phoenix Solutions Co., Minneapolis, MN (United States)

1995-08-01T23:59:59.000Z

224

Turbulent heat transfer in a channel flow at transitional Reynolds numbers  

E-Print Network (OSTI)

Direct numerical simulation of a turbulent channel flow with heat transfer was performed at very low Reynolds numbers. Two different thermal boundary conditions were studied, and temperature was considered as a passive scalar. The computations were carried out with huge computational boxes (up to 327.7 x 2 x 128 in the streamwise, wall-normal, and spanwise directions, respectively). The emphases of this paper are to investigate the large-scale structure (puff) in the intermittent-turbulent flow including the scalar fields and to provide the values of the transitional and critical Reynolds numbers, below which the turbulent flow becomes intermittent and laminar, respectively. The statistics, such as the skin friction and the Stanton number, were also examined: they suggest that the puff should be effective in sustaining turbulence and in heat transfer enhancement.

Tsukahara, Takahiro

2014-01-01T23:59:59.000Z

225

Group solution for unsteady free-convection flow from a vertical moving plate subjected to constant heat flux  

Science Journals Connector (OSTI)

The problem of heat and mass transfer in an unsteady free-convection flow over a continuous moving vertical sheet in an ambient fluid is investigated for constant heat flux using the group theoretical method. The nonlinear coupled partial differential ... Keywords: 22E05, 35Q53, 54H15, Free convective flow, Group theoretic method, Prandtl number, Thermal boundary layer

M. Kassem

2006-03-01T23:59:59.000Z

226

Study of junction flows in louvered fin round tube heat exchangers using the dye injection technique  

SciTech Connect

Detailed studies of junction flows in heat exchangers with an interrupted fin design are rare. However, understanding these flow structures is important for design and optimization purposes, because the thermal hydraulic performance of heat exchangers is strongly related to the flow behaviour. In this study flow visualization experiments were performed in six scaled-up models of a louvered fin round tube heat exchanger. The models have three tube rows in a staggered layout and differ only in their fin spacing and louver angle. A water tunnel was designed and built and the flow visualizations were carried out using dye injection. At low Reynolds numbers the streakline follows the tube contours, while at higher Reynolds numbers a horseshoe vortex is developed ahead of the tubes. The two resulting streamwise vortex legs are destroyed by the downstream louvers (i.e. downstream the turnaround louver), especially at higher Reynolds numbers, smaller fin pitches and larger louver angles. Increasing the fin spacing results in a larger and stronger horseshoe vortex. This illustrates that a reduction of the fin spacing results in a dissipation of vortical motion by mechanical blockage and skin friction. Furthermore it was observed that the vortex strength and number of vortices in the second tube row is larger than in the first tube row. This is due to the thicker boundary layer in the second tube row, and the flow deflection, which is typical for louvered fin heat exchangers. Visualizations at the tube-louver junction showed that in the transition part between the angled louver and the flat landing a vortex is present underneath the louver surface which propagates towards the angled louver. (author)

Huisseune, H.; Willockx, A.; De Paepe, M. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); T'Joen, C. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); Department Radiation, Radionuclides and Reactors, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); De Jaeger, P. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); NV Bekaert SA, Bekaertstraat 2, 8550 Zwevegem (Belgium)

2010-11-15T23:59:59.000Z

227

EUROTHERM Seminar 74 Proceedings Heat transfer in unsteady and transitional flows March 23-26, 2003 Eindhoven (The Netherlands)  

E-Print Network (OSTI)

EUROTHERM Seminar 74 Proceedings Heat transfer in unsteady and transitional flows March 23-26, 2003 to be governed by heat transfer and time microscales of turbulence through the inner sublayer. Physical interpreta- tions are given to relate the observed heat transfer correlation and these turbulence transition

Paris-Sud XI, Université de

228

Boiling heat transfer in a vertical microchannel: Local estimation during flow boiling with a non intrusive method  

E-Print Network (OSTI)

Boiling heat transfer in a vertical microchannel: Local estimation during flow boiling with a non the results of experimental and numerical studies concerning boiling heat transfer inside vertical in minichannels for several gravity levels (µg, 1g, 2g). To fully understand the high heat transfer potential

229

Exergy analysis of second-generation micro heat sinks under single-phase and flow boiling conditions  

Science Journals Connector (OSTI)

A parametric study of exergy efficiency was conducted for five micro pin fin heat sinks of different spacing and shapes. Of the four micro pin fin heat sinks tested under single-phase flow conditions, those with better heat transfer performance yielded superior exergy efficiencies. The use of R-123 in place of water as working fluid was found to enhance exergetic performance at the expense of reduced heat transfer performance. The exergy analysis was also extended to the flow boiling of R-123 in an additional hydrofoil-based micro pin fin heat sink. It was found that exergy efficiencies decreased with mass velocity.

Ali Kosar

2010-01-01T23:59:59.000Z

230

Heat transfer deterioration in tubes caused by bulk flow acceleration due to thermal and frictional influences  

SciTech Connect

Severe deterioration of forced convection heat transfer can be encountered with compressible fluids flowing through strongly heated tubes of relatively small bore as the flow accelerates and turbulence is reduced because of the fluid density falling (as the temperature rises and the pressure falls due to thermal and frictional influence). The model presented here throws new light on how the dependence of density on both temperature and pressure can affect turbulence and heat transfer and it explains why the empirical equations currently available for calculating effectiveness of forced convection heat transfer under conditions of strong non-uniformity of fluid properties sometimes fail to reproduce observed behaviour. It provides a criterion for establishing the conditions under which such deterioration of heat transfer might be encountered and enables heat transfer coefficients to be determined when such deterioration occurs. The analysis presented here is for a gaseous fluid at normal pressure subjected strong non-uniformity of fluid properties by the application of large temperature differences. Thus the model leads to equations which describe deterioration of heat transfer in terms of familiar parameters such as Mach number, Reynolds number and Prandtl number. It is applicable to thermal power plant systems such as rocket engines, gas turbines and high temperature gas-cooled nuclear reactors. However, the ideas involved apply equally well to fluids at supercritical pressure. Impairment of heat transfer under such conditions has become a matter of growing interest with the active consideration now being given to advanced water-cooled nuclear reactors designed to operate at pressures above the critical value. (authors)

Jackson, J. D. [Univ. of Manchester, Manchester (United Kingdom)

2012-07-01T23:59:59.000Z

231

The influence of convective heat transfer on flow stability in rotating disk chemical vapor deposition reactors  

SciTech Connect

Flow and heat transfer of NH{sub 3} and He were studied in a rotating disk system with applications to chemical vapor deposition reactors. Flow field and disk heat flux were obtained over a range of operating conditions. Comparisons of disk convective heat transfer were made to infinite rotating disk results to appraise uniformity of transport to the disk. Important operating variables include disk spin rate, disk and enclosure temperatures, flow rate, composition, pressure, and gas mixture temperature at the reactor inlet. These variables were studied over ranges of the spin Reynolds number, Re{omega}; disk mixed convection parameter, MCP{sub w}; and wall mixed convection parameter, MCP{sub w}. Results obtained for NH{sub 3} show that increasing Re{omega} from 314.5 to 3145 increases the uniformity of rotating disk heat flux and results in thinner thermal boundary layers at the disk surface. At Re{omega}=314.5, increasing MCP{sub d} to 15 leads to significant departure from the infinite disk result with nonuniform disk heat fluxes and recirculating flow patterns; flow becomes increasingly complex at larger values of MCP{sub d}. At Re{omega} of 3145, results are closer to the infinite disk for MCP{sub d} up to 15. For large negative (hot walls) and positive (cold walls) values of MCP{sub w}, flow recirculates and there is significant deviation from the infinite disk result; nonuniformities occur at both values of Re{omega}. The influence of MCP{sub w} on flow stability is increased at larger MCP{sub d} and lower Re{omega}. To determine the influence of viscosity and thermal conductivity variation with temperature, calculations were made with He and NH{sub 3}; He transport property variation is low relative to NH{sub 3}. Results show that the flow of NH{sub 3} is less stable than that of He as MCP{sub d} is increased for MCP{sub w}=0 and Re{omega}=314.5. 16 refs., 15 figs., 1 tab.

Winters, W.S.; Evans, G.H. [Sandia National Labs., Livermore, CA (United States); Grief, R. [Univ. of California, Berkeley, CA (United States). Mechanical Engineering Dept.

1997-06-01T23:59:59.000Z

232

Heat loss model for flow assurance in a deep water riser  

Science Journals Connector (OSTI)

The study is intended to investigate the heat loss phenomenon of oil flow in a riser. This heat loss happens due to the difference between the oil temperature in a riser and the surrounding sea water temperature. It causes the formation of wax that may disturb the flow. Heat loss can be reduced by setting up an insulator in a riser or by selecting appropriate pipeline specifications. It is necessary to determine the possible locations and specifications of insulator and pipeline. A mathematical model is formulated by considering the oil temperature and its flow velocity. Assuming that the density variation is small the fluid behaves as an incompressible fluid. Furthermore numerical solutions with finite difference methods are presented with some hypothetical data to give an overview of how the system works. Two surrounding conditions are taken into account i.e. with and without sea current. From the simulation the location of wax formation can be predicted. At a certain depth region of sea where the sea current is present a greater heat loss take place in which wax may be formed immediately. To overcome the formation of wax we can control the parameters such as conductivity and wall thickness of pipe.

Pudjo Sukarno

2014-01-01T23:59:59.000Z

233

A numerical study of local heat transfer and velocity distributions between blockages with holes in a rectangular channel  

E-Print Network (OSTI)

University, Korea Chair of Advisory Committee: Dr. S. C. Lau A numerical study has been conducted to understand the distributions of the local heat transfer coefficient and the local velocity for turbulent air flow past two or three blockages in a... chairman, Dr. S. C. Lau, for his abounding patience and relentless effort towards guiding me through my research. I greatly thank Dr. N. K. Anand for his suggestions and, especially, his help to get financial assistance. I also thank Dr. Y. A. Hasssn...

Lee, Sang Won

2012-06-07T23:59:59.000Z

234

Numerical investigation of electric heating impacts on solid/liquid glass flow patterns.  

SciTech Connect

A typical glass furnace consists of a combustion space and a melter. Intense heat is generated from the combustion of fuel and air/oxygen in the combustion space. This heat is transferred mainly by radiation to the melter in order to melt sand and cullet (scrap glass) eventually creating glass products. Many furnaces use electric boosters to enhance glass melting and increase productivity. The coupled electric/combustion heat transfer patterns are key to the glass making processes. The understanding of the processes can lead to the improvement of glass quality and furnace efficiency. The effects of electrical boosting on the flow patterns and heat transfer in a glass melter are investigated using a multiphase Computational Fluid Dynamics (CFD) code with addition of an electrical boosting model. The results indicate that the locations and spacing of the electrodes have large impacts on the velocity and temperature distributions in the glass melter. With the same total heat input, the batch shape (which is determined by the overall heat transfer and the batch melting rate) is kept almost the same. This indicates that electric boosting can be used to replace part of heat by combustion. Therefore, temperature is lower in the combustion space and the life of the furnace can be prolonged. The electric booster can also be used to increase productivity without increasing the furnace size.

Chang, S. L.; Zhou, C. Q.; Golchert, B.

2002-07-02T23:59:59.000Z

235

Influence of variable property effects on natural convection flows in asymmetrically-heated vertical channels  

SciTech Connect

The influence of variable property effects on the laminar air flow induced by natural convection in a vertical, asymmetrically-heated channel is investigated. A full-elliptic model that accounts for variations of viscosity and thermal conductivity with temperature and determines the density from the state equation, has been solved numerically for cases for which variable property effects are important, particularly for conditions for which flow reversals may appear. The corresponding numerical results are compared with those obtained from an alternative model in which all thermophysical properties are assumed to be constant and the Boussinesq approximation is used. It has been found that variable property effects have a strong influence, not reported in previous works, on the recirculation patterns, and may produce, for certain ranges of parameters that roughly coincide with those for which flow reversals exist, an increase in the mass flow rate induced in the channel.

Zamora, B. [Univ. de Murcia (Spain)] [Univ. de Murcia (Spain); Hernandez, J. [Ciudad Universitaria, Madrid (Spain)] [Ciudad Universitaria, Madrid (Spain)

1997-12-01T23:59:59.000Z

236

Micro-canonical thermodynamics: Why does heat flow from hot to cold  

E-Print Network (OSTI)

We consider two weakly coupled Hamiltonian dynamical systems in the micro-canonical ensemble. We describe a stochastic model for the energy-transfer between two systems initially at different micro-canonical temperatures. Fluctuations in energy observables are shown to be the underlying source of heat-transfer (dissipation). As a result, on average, heat flows from hot to cold. Like in Evans et al. (Phys.\\ Rev.\\ Lett.) [71], 2401 (1993), we obtain a universal law of violation of the 2nd law of thermodynamics.

Rugh, Hans Henrik

2012-01-01T23:59:59.000Z

237

Heat flow patterns of the North American continent: A discussion of the DNAG Geothermal Map of North America  

SciTech Connect

The large and small-scale geothermal features of the North American continent and surrounding ocean areas illustrated on the new 1:5,000,000 DNAG Geothermal Map of North America are summarized. Sources for the data included on the map are given. The types of data included are heat flow sites coded by value, contours of heat flow with a color fill, areas of major groundwater effects on regional heat flow, the top-of-geopressure in the Gulf Coast region, temperature on the Dakota aquifer in the midcontinent, location of major hot springs and geothermal systems, and major center of Quaternary and Holocene volcanism. The large scale heat flow pattern that is well known for the conterminous United States and Canada of normal heat flow east of the Cordillera and generally high heat flow west of the front of the Cordillera dominates the continental portion of the map. However, details of the heat flow variations are also seen and are discussed briefly in this and the accompanying papers.

Blackwell, David D.; Steele, John L.; Carter, Larry C.

1990-01-01T23:59:59.000Z

238

Heat flow in the Coso geothermal area, Inyo County, California | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Heat flow in the Coso geothermal area, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat flow in the Coso geothermal area, Inyo County, California Details Activities (2) Areas (1) Regions (0) Abstract: Obvious surface manifestations of an anomalous concentration of geothermal resources at the Coso geothermal area, Inyo County, California, include fumarolic activity and associated hydrothermally altered rocks. Pleistocene volcanic rocks associated with the geothermal activity include 38 rhyolite domes occupying a north trending structural and topographic

239

Heat transfer enhancement on thin wires in superfluid helium forced flows  

E-Print Network (OSTI)

In this paper, we report the first evidence of an enhancement of the heat transfer from a heated wire by an external turbulent flow of superfluid helium. We used a standard Pt-Rh hot-wire anemometer and overheat it up to 21 K in a pressurized liquid helium turbulent round jet at temperatures between 1.9 K and 2.12 K. The null-velocity response of the sensor can be satisfactorily modeled by the counter flow mechanism while the extra cooling produced by the forced convection is found to scale similarly as the corresponding extra cooling in classical fluids. We propose a preliminary analysis of the response of the sensor and show that -contrary to a common assumption- such sensor can be used to probe local velocity in turbulent superfluid helium.

Duri, Davide; Moro, Jean-Paul; Roche, Philippe-Emmanuel; Diribarne, Pantxo

2014-01-01T23:59:59.000Z

240

Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet  

E-Print Network (OSTI)

Fluid flow and convective heat transfer in rotor-stator configurations, which are of great importance in different engineering applications, are treated in details in this review. The review focuses on convective heat transfer in predominantly outward air flow in the rotor-stator geometries with and without impinging jets and incorporates two main parts, namely, experimental/theoretical methodologies and geometries/results. Experimental methodologies include naphthalene sublimation techniques, steady state (thin layer) and transient (thermochromic liquid crystals) thermal measurements, thermocouples and infra-red cameras, hot-wire anemometry, laser Doppler and particle image velocimetry, laser plane and smoke generator. Theoretical approaches incorporate modern CFD computational tools (DNS, LES, RANS etc). Geometries and results part being mentioned starting from simple to complex elucidates cases of a free rotating disk, a single disk in the crossflow, single jets impinging onto stationary and rotating disk,...

Harmand, Souad; Poncet, Sébastien; Shevchuk, Igor V; 10.1016/j.ijthermalsci.2012.11.009

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Boundary layer flow and heat transfer analysis of a second-grade fluid  

SciTech Connect

Boundary layer flow and heat transfer analysis of a homogeneous, incompressible, non-Newtonian fluid of grade two at a stagnation point is presented. The flow is assumed to be steady and laminar. A power-law representation is assumed for the velocity distribution and wall temperature variation. The governing equations are solved using an iterative central difference approximation method in a non-uniform grid domain. This analysis show the effect of non-Newtonian nature of the fluid and the effect of suction/injection on the velocity profile. The effect of non-Newtonian nature of the fluid on the heat transfer coefficient at the wall for different values of Prandtl number and wall-temperature variation is also presented. (VC)

Massoudi, M. [USDOE Pittsburgh Energy Technology Center, PA (United States); Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1992-04-01T23:59:59.000Z

242

Heat extracted from the long term flow test in the Fenton Hill HDR reservoir  

SciTech Connect

A long-term flow test was carried out in the Fenton Hill HDR Phase-2 reservoir for 14 months during 1992-1993 to examine the potential for supplying thermal energy at a sustained rate as a commercial demonstration of HDR technology. The test was accomplished in several segments with changes in mean flowrate due to pumping conditions. Re-test estimates of the extractable heat content above a minimum useful temperature were based on physical evidence of the size of the Fenton Hill reservoir. A numerical model was used to estimate the extent of heat extracted during the individual flow segments from the database of measured production data during the test. For a reservoir volume of 6.5x10{sup 6}m{sup 3}, the total heat content above a minimum temperature of 150{degree} C was 1.5x10{sup 15}J. For the total test period at the three sustained mean flowrates, the integrated heat extracted was 0.088x10{sup 15}J, with no discernable temperature decline of the produced fluid. The fraction of energy extracted above the abandonment temperature was 5.9%. On the basis of a constant thermal energy extraction rate, the lifetime of the reservoir (without reservoir growth) to the abandonment temperature would be 13.3 years, in good agreement with the pre-test estimate of 15.0 years for the given reservoir volume.

Kruger, Paul; Robinson, Bruce

1994-01-20T23:59:59.000Z

243

Effect of the flow composition on outflow rates from accretion discs around black holes  

Science Journals Connector (OSTI)

......dependence of outflow rates on flow composition...incorporate more complicated physics in pseudo-Newtonian...define entropy accretion rate ( ) as here is also constant...sense, the flow actually passes through them) X type...if the mass outflow rate is , then the relative......

Rajiv Kumar; Chandra B. Singh; Indranil Chattopadhyay; Sandip K. Chakrabarti

2013-01-01T23:59:59.000Z

244

Reply To The Comment By D D Blackwell And G R Priest On Heat...  

Open Energy Info (EERE)

Priest On Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa By S E Ingebritsen, M A Scholl And D R Sherrod Jump to: navigation, search OpenEI...

245

Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus  

SciTech Connect

The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method where relevant air-side parameters were controlled while collecting output performance data at discreet points of steady-state operation. The primary metrics include system power consumption and zonal heating and cooling capacity. Using this test method, the measured total cooling capacity was somewhat lower than reported by the manufacturer. The measured power was found to be equal to or greater than the manufacturers indicated power. Heating capacity measurements produced similar results. The air-side performance metric was total cooling and heating energy since the computer model uses those same metrics as input to the model. Although the sensible and latent components of total cooling were measured, they are not described in this report. The test methodology set the thermostat set point temperature very low for cooling and very high for heating to measure full-load performance and was originally thought to provide the maximum available capacity. Manufacturers stated that this test method would not accurately measure performance of VRF systems which is now believed to be a true statement. Near the end of the project, an alternate test method was developed to better represent VRF system performance as if field installed. This method of test is preliminarily called the Load Based Method of Test where the load is fixed and the indoor conditions and unit operation are allowed to fluctuate. This test method was only briefly attempted in a laboratory setting but does show promise for future lab testing. Since variable-speed air-conditioners and heat pumps include an on-board control algorithm to modulate capacity, these systems are difficult to test. Manufacturers do have the ability to override internal components to accommodate certification procedures, however, it is unknown if the resulting operation is replicated in the field, or if so, how often. Other studies have shown that variable-speed air-conditioners and heat pumps do out perform their single-speed counterparts though these field studies leave as many questions as they do provide answers. The measure

Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

2013-09-30T23:59:59.000Z

246

Flow and heat transfer from a continuous surface in a parallel free stream of viscoelastic second-order fluid  

Science Journals Connector (OSTI)

Boundary layer solutions are presented to investigate the steady flow and heat transfer characteristics from a continuous flat surface moving in a parallel free stream of viscoelastic fluid. Numerical results are...

I. A. Hassanien

1992-10-01T23:59:59.000Z

247

FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow and Heat Transport Simulator(aka FALCON)  

Energy.gov (U.S. Department of Energy (DOE))

FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow and Heat Transport Simulator(aka FALCON) presentation at the April 2013 peer review meeting held in Denver, Colorado.

248

Electron Heating by the Ion Cyclotron Instability in Collisionless Accretion Flows. II. Electron Heating Efficiency as a Function of Flow Conditions  

E-Print Network (OSTI)

In the innermost regions of low-luminosity accretion flows, including Sgr A* at the center of our Galaxy, the frequency of Coulomb collisions is so low that the plasma is two-temperature, with the ions substantially hotter than the electrons. This paradigm assumes that Coulomb collisions are the only channel for transferring the ion energy to the electrons. In this work, the second of a series, we assess the efficiency of electron heating by ion velocity-space instabilities in collisionless accretion flows. The instabilities are seeded by the pressure anisotropy induced by magnetic field amplification, coupled to the adiabatic invariance of the particle magnetic moments. Using two-dimensional (2D) particle-in-cell (PIC) simulations, we showed in Paper I that if the electron-to-ion temperature ratio is cyclotron instability is the dominant mode for values of ion beta_i ~ 5-30 (here, beta_i is the ratio of ion thermal pressure to magnetic pressure), as appropriate for the midplane of low-lumin...

Sironi, Lorenzo

2014-01-01T23:59:59.000Z

249

Convective heat transfer enhancement of laminar flow of latent functionally thermal fluid in a circular tube with constant heat flux: internal heat source model and its application  

Science Journals Connector (OSTI)

This paper analyzes the convective heat transfer enhancement mechanism of latent heat functionally thermal fluid. By using the proposed internal heat source model, the influence of each factor affecting the heat

Yinping Zhang; Xianxu Hu; Qing Hao; Xin Wang

2003-04-01T23:59:59.000Z

250

A parametric study of shock jump chemistry, electron temperature, and radiative heat transfer models in hypersonic flows  

E-Print Network (OSTI)

A PARAMETRIC STUDY OF SHOCK JUMP CHEMISTRY, ELECTRON TEMPERATURE, AND RADIATIVE HEAT TRANSFER MODELS IN HYPERSONIC FLOWS A Thesis by ROBERT BRIAN GREENDYKE Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1988 Major Subject: Aerospace Engineering A PARAMETRIC STUDY OF SHOCK JUMP CHEMISTRY, ELECTRON TEMPERATURE, AND RADIATIVE HEAT TRANSFER MODELS IN HYPERSONIC FLOWS A Thesis by ROBERT BRIAN...

Greendyke, Robert Brian

2012-06-07T23:59:59.000Z

251

Numerical Evaluation of Flow and Heat Transfer in Plate-Pin Fin Heat Sinks with Various Pin Cross-Sections  

E-Print Network (OSTI)

in Table 3. The grid systems for all heat sink models areregion. The grid system for one of the heat sinks is shown

Zhou, Feng; Catton, Ivan

2011-01-01T23:59:59.000Z

252

P~!ETRIC STUDY OF HEAT FLOW DURING RESISTANCE SPOT WELDING Euiwhan Kim and Thomas W. Eagar  

E-Print Network (OSTI)

pieces , electrical contact resistance, material properties, phase changes and heat dissipationi ...) P~!ETRIC STUDY OF HEAT FLOW DURING RESISTANCE SPOT WELDING Euiwhan Kim and Thomas W. Eagar Department of Materials Science and Engineering Hassachusetts Institute of Technology Cambridge, MA 02139

Eagar, Thomas W.

253

Micro-canonical thermodynamics: Why does heat flow from hot to cold  

E-Print Network (OSTI)

We show how to use a central limit approximation for additive co-cycles to describe non-equilibrium and far from equilibrium thermodynamic behavior. We consider first two weakly coupled Hamiltonian dynamical systems initially at different micro-canonical temperatures. We describe a stochastic model where the energy-transfer between the two systems is considered as a random variable satisfying a central limit approximation. We show that fluctuations in energy observables are linearly related to the heat-transfer (dissipation). As a result, on average, heat flows from hot to cold. We also consider the far from equilibrium situation of a non-Hamiltonian thermostatted system as in Evans et al. {\\em Phys.\\ Rev.\\ Lett.} {\\bf 71}, 2401 (1993). Applying the same central limit approximation we re-derive their relation for the violation of the 2nd law of thermodynamics. We note that time-reversal symmetry is not used in our derivation.

Hans Henrik Rugh

2012-04-10T23:59:59.000Z

254

Numerical Simulations of Optically Thick Accretion onto a Black Hole - II. Rotating Flow  

E-Print Network (OSTI)

In this paper we report on recent upgrades to our general relativistic radiation magnetohydrodynamics code, Cosmos++, including the development of a new primitive inversion scheme and a hybrid implicit-explicit solver with a more general closure relation for the radiation equations. The new hybrid solver helps stabilize the treatment of the radiation source terms, while the new closure allows for a much broader range of optical depths to be considered. These changes allow us to expand by orders of magnitude the range of temperatures, opacities, and mass accretion rates, and move a step closer toward our goal of performing global simulations of radiation-pressure-dominated black hole accretion disks. In this work we test and validate the new method against an array of problems. We also demonstrate its ability to handle super-Eddington, quasi-spherical accretion. Even with just a single proof-of-principle simulation, we already see tantalizing hints of the interesting phenomenology associated with the coupling ...

Fragile, P Chris; Anninos, Peter

2014-01-01T23:59:59.000Z

255

On the calculation of flow and heat transfer characteristics for CANDU-type 19-rod fuel bundles  

SciTech Connect

A numerical study is reported of flow and heat transfer in a CANDU-type 19 rod fuel bundle. The flow domain of interest includes combinations of trangular, square, and peripheral subchannels. The basic equations of momentum and energy are solved with the standard k--epsilon model of turbulence. Isotropic turbulent viscosity is assumed and no secondary flow is considered for this steady-state, fully developed flow. Detailed velocity and temperature distributions with wall shear stress and Nusselt number distributions are obtained for turbulent flow of Re = 4.35 x 10/sup 4/, 10/sup 5/, 2 x 10/sup 5/, and for laminar flow of Re--2400. Friction factor and heat transfer ceofficients of various subchannels inside the full bundle are compared with those of infinite rod arrays of triangular or square arrangements. The calculated velocity contours of peripheral subchannel agreed reasonably with measured data.

Yuh-Shan Yueh; Ching-Chang Chieng

1987-08-01T23:59:59.000Z

256

On the calculation of flow and heat transfer characteristics for CANDU-type 19-rod fuel bundles  

SciTech Connect

A numerical study is reported of flow and heat transfer in a CANDU-type 19 rod fuel bundle. The flow domain of interest includes combinations of triangular, square, and peripheral subchannels. The basic equations of momentum and energy are solved with the standard k-{epsilon} model of turbulence. Isotropic turbulent viscosity is assumed and no secondary flow is considered for this steady-state, fully developed flow. Detailed velocity and temperature distributions with wall shear stress and Nusselt number distributions are obtained for turbulent flow of Re = 4.35 {times} 10{sup 4}, 10{sup 5}, 2 {times} 10{sup 5}, and for laminar flow of Re {approximately} 2,400. Friction factor and heat transfer coefficients of various subchannels inside the full bundle are compared with those of infinite rod arrays of triangular or square arrangements. The calculated velocity contours of peripheral subchannel agreed reasonably with measured data.

Yueh, Yuhshan; Chieng, Chingchang (National Tsing Hua Univ., Hsinchu (Taiwan))

1987-08-01T23:59:59.000Z

257

On numerical simulation of flow, heat transfer and combustion processes in tangentially-fired furnace  

SciTech Connect

In this work, an Eulerian/Lagrangian approach has been employed to investigate numerically flow characteristics, heat transfer and combustion processes inside corner-fired power plant boiler furnace. To avoid pseudo-diffusion that is significant in modeling tangentially-fired furnaces, some attempts have been made at improving the finite-difference scheme. Comparisons have been made between standard {kappa}-{epsilon} model and RNG {kappa}-{epsilon} model. Some new developments on turbulent diffusion of particles are taken into account in an attempt to improve computational accuracy. Finally, temperature deviation is studied numerically so as to gain deeper insight into tangentially fired furnace.

Sun, P.; Fan, J.; Cen, K.

1999-07-01T23:59:59.000Z

258

Heat transfer in the flow of a cold, axisymmetric jet over a hot sphere  

E-Print Network (OSTI)

The heat transfer characteristics of thin film flow over a hot sphere resulting from a cold vertical jet of liquid falling onto the surface has been investigated. The underlying physical features have been illustrated by numerical solutions of high accuracy based on the modified Keller box method. The solutions for film thickness distribution are good agreement with those obtained approximately by using the Pohlhausen integral momentum technique and observed experimentally by using water as working fluid, thus providing a basic confirmation of the validity of the results presented.

Shu, Jian-Jun

2014-01-01T23:59:59.000Z

259

Parallel heat flux and flow acceleration in open field line plasmas with magnetic trapping  

SciTech Connect

The magnetic field strength modulation in a tokamak scrape-off layer (SOL) provides both flux expansion next to the divertor plates and magnetic trapping in a large portion of the SOL. Previously, we have focused on a flux expander with long mean-free-path, motivated by the high temperature and low density edge anticipated for an absorbing boundary enabled by liquid lithium surfaces. Here, the effects of magnetic trapping and a marginal collisionality on parallel heat flux and parallel flow acceleration are examined. The various transport mechanisms are captured by kinetic simulations in a simple but representative mirror-expander geometry. The observed parallel flow acceleration is interpreted and elucidated with a modified Chew-Goldberger-Low model that retains temperature anisotropy and finite collisionality.

Guo, Zehua; Tang, Xian-Zhu; McDevitt, Chris [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2014-10-15T23:59:59.000Z

260

Transient Heat and Material Flow Modeling of Friction Stir Processing of Magnesium Alloy using Threaded Tool  

SciTech Connect

A three-dimensional transient computational fluid dynamics (CFD) model was developed to investigate the material flow and heat transfer during friction stir processing (FSP) in an AZ31B magnesium alloy. The material was assumed to be a non-Newtonian viscoplastic fluid, and the Zener-Hollomon parameter was used to describe the dependence of material viscosity on temperature and strain rate. The material constants used in the constitutive equation were determined experimentally from compression tests of the AZ31B Mg alloy under a wide range of strain rates and temperatures. A dynamic mesh method, combining both Lagrangian and Eulerian formulations, was used to capture the material flow induced by the movement of the threaded tool pin. Massless inert particles were embedded in the simulation domain to track the detailed history of material flow. The actual FSP was also carried out on a wrought Mg plate where temperature profiles were recorded by embedding thermocouples. The predicted transient temperature history was found to be consistent with that measured during FSP. Finally, the influence of the thread on the simulated results of thermal history and material flow was studied by comparing two models: one with threaded pin and the other with smooth pin surface.

Yu, Zhenzhen [ORNL; Zhang, Wei [ORNL; Choo, Hahn [ORNL; Feng, Zhili [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Continued development of a semianalytical solution for two-phase fluid and heat flow in a porous medium  

SciTech Connect

Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.

Doughty, C.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)

1991-06-01T23:59:59.000Z

262

Heat transfer enhancement in single-phase forced convection with blockages and in two-phase pool boiling with nano-structured surfaces  

E-Print Network (OSTI)

the average heat (mass) transfer by up to 8.5 and 7.0 times that for fully developed turbulent flow through a smooth channel at the same mass flow rate, respectively, in the smaller and larger hole-to-blockage area ratio (or smaller and larger hole diameter...

Ahn, Hee Seok

2007-09-17T23:59:59.000Z

263

Thermal Gradient Holes At Coso Geothermal Area (1974) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (1974) Coso Geothermal Area (1974) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1974 Usefulness useful DOE-funding Unknown Exploration Basis Use heat flow studies for the first time at Coso to indicate the presence or absence of abnormal heat Notes Located 10 sites for heat flow boreholes using available seismic ground noise and electrical resistivity data; data collected from 9 of 10; thermal conductivity measurements were completed using both the needle probe technique and the divided bar apparatus with a cell arrangement. In the upper few hundred meters of the subsurface heat is being transferred by a conductive heat transfer mechanism with a value of ~ 15 µcal/cm2sec; the background heat flow is ~ 3.5 HFU.

264

On the dynamical Rayleigh-Taylor instability in compressible viscous flows without heat conductivity  

E-Print Network (OSTI)

We investigate the instability of a smooth Rayleigh-Taylor steady-state solution to compressible viscous flows without heat conductivity in the presence of a uniform gravitational field in a bounded domain $\\Omega\\subset{\\mathbb R}^3$ with smooth boundary $\\partial\\Omega$. We show that the steady-state is linearly unstable by constructing a suitable energy functional and exploiting arguments of the modified variational method. Then, based on the constructed linearly unstable solutions and a local well-posedness result of classical solutions to the original nonlinear problem, we further reconstruct the initial data of linearly unstable solutions to be the one of the original nonlinear problem and establish an appropriate energy estimate of Gronwall-type. With the help of the established energy estimate, we show that the steady-state is nonlinearly unstable in the sense of Hadamard by a careful bootstrap argument. As a byproduct of our analysis, we find that the compressibility has no stabilizing effect in the linearized problem for compressible viscous flows without heat conductivity.

Fei Jiang; Song Jiang

2014-03-20T23:59:59.000Z

265

3D numerical simulation on fluid flow and heat transfer characteristics in multistage heat exchanger with slit fins  

Science Journals Connector (OSTI)

In this paper, a numerical investigation is performed for three-stage heat exchangers with plain plate fins and slit ... are arranged in a staggered way, and heat conduction in fins is considered. In order ... av...

W. Q. Tao; Y. P. Cheng; T. S. Lee

2007-11-01T23:59:59.000Z

266

Numerical studies for flow and heat transfer of the Powell-Eyring fluid thin film over an unsteady stretching sheet with internal heat generation using the chebyshev finite difference method  

Science Journals Connector (OSTI)

An analysis is carried out to study the unsteady two-dimensional Powell-Eyring flow and heat transfer to a laminar liquid film from a ... horizontal stretching surface in the presence of internal heat generation....

M. M. Khader; A. M. Megahed

2013-05-01T23:59:59.000Z

267

DEVELOPING FLOW AND HEAT TRANSFER IN STRONGLY CURVED DUCTS OF RECTANGULAR CROSS-SECTION  

E-Print Network (OSTI)

Forced Convection Heat Transfer in Curved RectangularInfluence of Curvature on Heat Transfer to IncompressibleT. , "Forced Convective Heat Transfer in a Curved Channel

Yee, G.

2010-01-01T23:59:59.000Z

268

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network (OSTI)

as other types of air source heat pumps, VRF systems needconventional packaged air source heat pumps. Typical GSHPis basically an air source heat pump), especially when the

Hong, Tainzhen

2010-01-01T23:59:59.000Z

269

Heat transfer and fluid flow in microchannels and nanochannels at high Knudsen number using thermal lattice-Boltzmann method  

Science Journals Connector (OSTI)

The present paper deals with the two-dimensional numerical simulation of gaseous flow and heat transfer in planar microchannel and nanochannel with different wall temperatures in transitional regime 0.1?Kn?1. An atomistic molecular simulation method is used known as thermal lattice-Boltzmann method. The results of simulation are presented in four cases corresponding to the Fourier flow, shear-driven flow (Couette flow), pressure-driven flow (Poiseuille flow), and mixed shear–pressure-driven flow in the developing and fully developed regions. The mixed shear–pressure-driven flow is divided into two subcases with shear stress and pressure gradient acting in the same and the opposite directions. Normalized temperature and velocity profiles across the channel, distribution of local wall Nusselt number, and friction coefficient are illustrated. Using this method, nonlinear pressure distribution in the streamwise direction, reduction in mass flow rate, Cf?Re, and Nu by increasing the Knudsen number are studied. It is seen that for Couette flow, Nu over the hotter plate is greater than the cooler plate, but for the pressure-driven flow with stationary wall temperature dependency of viscosity and thermal conductivity causes this trend to be reversed. The reversed flow appearance in the velocity profile is captured in the case of opposite shear–pressure-driven flow.

J. Ghazanfarian and A. Abbassi

2010-08-13T23:59:59.000Z

270

Countercurrent flow limited (CCFL) heat flux in the high flux isotope reactor (HFIR) fuel element  

SciTech Connect

The countercurrent flow (CCF) performance in the fuel element region of the HFIR is examined experimentally and theoretically. The fuel element consists of two concentric annuli filled with aluminum clad fuel plates of 1.27 mm thickness separated by 1.27 mm flow channels. The plates are curved as they go radially outward to accomplish constant flow channel width and constant metal-to-coolant ratio. A full-scale HFIR fuel element mock-up is studied in an adiabatic air-water CCF experiment. A review of CCF models for narrow channels is presented along with the treatment of CCFs in system of parallel channels. The experimental results are related to the existing models and a mechanistic model for the annular'' CCF in a narrow channel is developed that captures the data trends well. The results of the experiment are used to calculate the CCFL heat flux of the HFIR fuel assembly. It was determined that the HFIR fuel assembly can reject 0.62 Mw of thermal power in the CCFL situation. 31 refs., 17 figs.

Ruggles, A.E.

1990-10-12T23:59:59.000Z

271

Effect of rolling motion on critical heat flux for subcooled flow boiling in vertical tube  

SciTech Connect

This paper presents defining characteristics of the critical heat flux (CHF) for the boiling of R-134a in vertical tube operation under rolling motion in marine reactor. It is important to predict CHF of marine reactor having the rolling motion in order to increase the safety of the reactor. Marine Reactor Moving Simulator (MARMS) tests are conducted to measure the critical heat flux using R-134a flowing upward in a uniformly heated vertical tube under rolling motion. MARMS was rotated by motor and mechanical power transmission gear. The CHF tests were performed in a 9.5 mm I.D. test section with heated length of 1 m. Mass fluxes range from 285 to 1300 kg m{sup -2}s{sup -1}, inlet subcooling from 3 to 38 deg. C and outlet pressures from 13 to 24 bar. Amplitudes of rolling range from 15 to 40 degrees and periods from 6 to 12 sec. To convert the test conditions of CHF test using R-134a in water, Katto's fluid-to-fluid modeling was used in present investigation. A CHF correlation is presented which accounts for the effects of pressure, mass flux, inlet subcooling and rolling angle over all conditions tested. Unlike existing transient CHF experiments, CHF ratio of certain mass flux and pressure are different in rolling motion. For the mass fluxes below 500 kg m{sup -2}s{sup -1} at 13, 16 (region of relative low mass flux), CHF ratio was decreased but was increased above that mass flux (region of relative high mass flux). Moreover, CHF tend to enhance in entire mass flux at 24 bar. (authors)

Hwang, J. S.; Park, I. U.; Park, M. Y.; Park, G. C. [Dept. of Energy Systems Engineering, Seoul National Univ., 599 Gwanak-Ro, Gwanak-Gu, Seoul, 151-744 (Korea, Republic of)

2012-07-01T23:59:59.000Z

272

Numerical study of fluid flow and heat transfer characteristics in an intermittent turbulent impinging round jet  

Science Journals Connector (OSTI)

Abstract The flow structure and heat transfer of the air pulsed turbulent impinging jet are studied numerically. The gas turbulence is modelled with the Reynolds stress model. The effects of pulse frequency, ratio of on time to total cycle time, distance between pipe outlet and impinging flat plate and Reynolds number on heat transfer are numerically studied. The impingement heat transfer increases with distance from the pipe edge and target surface. The heat transfer decreases at high distance from the pipe edge and target surface. An increase in the Reynolds number causes reduction of heat transfer enhancement. Reduced heat transfer in comparison with the steady-state impinging jet is typical in the range of low frequencies of the pulse impinging jet.

M.A. Pakhomov; V.I. Terekhov

2015-01-01T23:59:59.000Z

273

DOE-HDBK-1012/3-92; DOE Fundamentals Handbook Thermodynamics, Heat Transfer, and Fluid Flow Volume 3 of 3  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-92 3-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 3 of 3 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information. P. O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576- 8401. FTS 626-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE92019791 THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Rev. 0 HT ABSTRACT The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was

274

DOE-HDBK-1012/2-92; DOE Fundamentals Handbook Thermodynamics, Heat Transfer, and Fluid Flow Volume 2 of 3  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-92 2-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 2 of 3 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information. P. O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576- 8401. FTS 626-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE92019790 THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Rev. 0 HT ABSTRACT The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was

275

DOE-HDBK-1012/1-92; DOE Fundamentals Handbook Thermodynamics, Heat Transfer, and Fluid Flow Volume 1 of 3  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-92 1-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 1 of 3 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information. P. O. Box 62, Oak Ridge, TN 37831; (615) 576-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE92019789 THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Rev. 0 HT ABSTRACT The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance

276

Heat flow determinations and implied thermal regime of the Coso geothermal  

Open Energy Info (EERE)

determinations and implied thermal regime of the Coso geothermal determinations and implied thermal regime of the Coso geothermal area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Heat flow determinations and implied thermal regime of the Coso geothermal area, California Details Activities (1) Areas (1) Regions (0) Abstract: Obvious surface manifestations of an anomalous concentration of geothermal energy at the Coso Geothermal Area, California, include fumarolic activity, active hot springs, and associated hydrothermally altered rocks. Abundant Pleistocene volcanic rocks, including a cluster of thirty-seven rhyolite domes, occupy a north-trending structural and topographic ridge near the center of an oval-shaped zone of late Cenozoic ring faulting. In an investigation of the thermal regime of the geothermal

277

LATERAL HEAT FLOW INFRARED THERMOGRAPHY FOR THICKNESS INDEPENDENT DETERMINATION OF THERMAL DIFFUSIVITY IN CFRP  

SciTech Connect

In conventional infrared thermography, determination of thermal diffusivity requires thickness information. Recently GE has been experimenting with the use of lateral heat flow to determine thermal diffusivity without thickness information. This work builds on previous work at NASA Langley and Wayne State University but we incorporate thermal time of flight (tof) analysis rather than curve fitting to obtain quantitative information. We have developed appropriate theoretical models and a tof based data analysis framework to experimentally determine all components of thermal diffusivity from the time-temperature measurements. Initial validation was carried out using finite difference simulations. Experimental validation was done using anisotropic carbon fiber reinforced polymer (CFRP) composites. We found that in the CFRP samples used, the in-plane component of diffusivity is about eight times larger than the through-thickness component.

Tralshawala, Nilesh; Howard, Don; Knight, Bryon; Plotnikov, Yuri; Ringermacher, Harry [Nondestructive Technologies Laboratory, GE--Global Research Center, Niskayuna, NY 12309 (United States)

2008-02-28T23:59:59.000Z

278

Heat flow of the Earth and resonant capture of solar 57-Fe axions  

E-Print Network (OSTI)

In a very conservative approach, supposing that total heat flow of the Earth is exclusively due to resonant capture inside the Earth of axions, emitted by 57-Fe nuclei on Sun, we obtain limit on mass of hadronic axion: m_aheat from decays of 40-K, 232-Th, 238-U inside the Earth, this estimation could be improved to the value: m_a<1.6 keV. Both the values are less restrictive than limits set in devoted experiments to search for 57-Fe axions (m_a<216-745 eV), but are much better than limits obtained in experiments with 83-Kr (m_a<5.5 keV) and 7-Li (m_a<13.9-32 keV).

F. A. Danevich; A. V. Ivanov; V. V. Kobychev; V. I. Tretyak

2008-11-24T23:59:59.000Z

279

Thermal Gradient Holes At Coso Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

Thermal Gradient Holes At Coso Geothermal Area (1976) Thermal Gradient Holes At Coso Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Coso Geothermal Area (1976) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1976 Usefulness useful DOE-funding Unknown Notes Temperatures have been obtained to depths up to 133 m in 22 boreholes with measurements being made at least four times in each borehole. Geothermal gradients ranged from 240C/km to 450 0C/km. References Combs, J. (1 December 1976) Heat flow determinations and implied thermal regime of the Coso geothermal area, California Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Coso_Geothermal_Area_(1976)&oldid=511217"

280

Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett,  

Open Energy Info (EERE)

Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Holographic Heat Engines  

E-Print Network (OSTI)

It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.

Clifford V. Johnson

2014-09-04T23:59:59.000Z

282

Numerical analysis of convective heat transfer characteristics of supercritical hydrocarbon fuel in cooling panel with local flow blockage structure  

Science Journals Connector (OSTI)

Abstract The convection heat transfer of hydrocarbon fuel at supercritical pressure has a great influence on the regenerative cooling technology of a scramjet engine. A three-dimensional numerical simulation was conducted for the convection transfer of hydrocarbon fuel in the cooling panel of a combustion chamber wall. And the flow field around the local flow blockage structure and the outlet flow rate distribution characteristics of fuel in the cooling channels were analyzed in detail. The results of analyses indicate that with the optimized local flow blockage structure, the outlet flow rate distribution of fuel among the cooling channels become more uniform, as the area of local flow dead zone decreases. However, as the fuel temperature increases, the dramatic variation of thermodynamic physical properties of fuel has a strong influence on the flow field around the local flow blockage structure. Especially, a local flow dead zone can be easily formed in the supercritical temperature region. Meanwhile, transverse pressure gradient around the throat region of blockage structure and additional loss, which is caused by turbulence fluctuation and energy exchange of fluid in the downstream area, affect the outlet flow rate distribution of fuel among the coolant passages seriously. It can therefore be concluded that the local flow blockage structure is more suitably designed in the subcritical temperature region by taking above-mentioned factors into consideration.

Yu Feng; Jiang Qin; Wen Bao; Qinchun Yang; Hongyan Huang; Zhongqi Wang

2014-01-01T23:59:59.000Z

283

Double layer created by electron cyclotron resonance heating in an inhomogeneously magnetized plasma with high-speed ion flow  

SciTech Connect

A potential jump, i.e., an electric double layer (DL) is formed near an electron cyclotron resonance (ECR) point when an electron cyclotron wave is injected into an inhomogeneously magnetized plasma with high-speed ion flow. A charge separation is caused by an electron reflection due to -{mu}{nabla}B{sub z} force enhanced by ECR heating and ion inertia. It is clearly demonstrated in the experiment that the potential height of the DL is almost proportional to the field-aligned ion flow energy; the DL is found to be self-consistently formed for maintaining charge neutrality by reflecting a part of the flowing ions.

Takahashi, K.; Kaneko, T.; Hatakeyama, R. [Department of Electronic Engineering, Tohoku University, Sendai, 980-8579 (Japan)

2008-07-15T23:59:59.000Z

284

Heat transfer in channels with porous inserts during forced fluid flow  

Science Journals Connector (OSTI)

General analytic expressions are obtained to calculate heat transfer and temperature fields in a plane channel ... allowance for the effective thermal conductivity of the heat carrier and the distribution of heat

A. A. Plakseev; V. V. Kharitonov

1989-01-01T23:59:59.000Z

285

DEVELOPING FLOW AND HEAT TRANSFER IN STRONGLY CURVED DUCTS OF RECTANGULAR CROSS-SECTION  

E-Print Network (OSTI)

necessary fluid mechanical and heat transfer data forCurvature on Heat Transfer to Incompressible Fluids," Trans.may transfer as much or more heat (to a moving fluid in

Yee, G.

2010-01-01T23:59:59.000Z

286

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network (OSTI)

tool for geothermal water loop heat pump systems, 9thInternational IEA Heat Pump Conference, Zürich, Switzerland,Performance of ground source heat pump system in a near-zero

Hong, Tainzhen

2010-01-01T23:59:59.000Z

287

Heat transfer and temperature distribution in a turbulent flow over a flat plate with an unheated starting length  

SciTech Connect

The present study is a numerical investigation of heat transfer and temperature distribution in a boundary layer formed by a flow with nonzero free stream turbulence over a flat plate with an unheated starting length. The numerical method is based on the Reynolds-averaged equations of motion and energy. As a closure for the Reynolds- averaged equations the Hinze relations for turbulent shear stresses and for turbulent heat flux are used. The Hinze equations are used instead of the usually employed Boussinesq eddy-viscosity hypothesis, because the latter does not work properly for flows with high free stream turbulence. It is shown in the present study that the influence of an unheated starting length on a temperature profile has manifested itself similarly to the influence of the free stream turbulence and resulted in a temperature profile with negative profile parameter. Unlike the flow with zero free stream turbulence, a heat transfer coefficient for the part of the plate with an unheated starting length can be less than for the fully heated plate. This difference increases with increasing level of the free stream turbulence. The family of functions that describe the influence of an unheated starting length for flows with nonzero free stream turbulence is presented.

Fridman, E.

1997-07-01T23:59:59.000Z

288

Electron heat flow in the solar corona: Implications of non-Maxwellian velocity distributions, the solar gravitational  

E-Print Network (OSTI)

Electron heat flow in the solar corona: Implications of non-Maxwellian velocity distributions, the solar gravitational field, and Coulomb collisions John C. Dorelli Space and Atmospheric Science Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA Jack D. Scudder Department of Physics

Scudder, Jack

289

Numerical Investigation on the Heat Transfer Enhancement Using Micro/Nano Phase-Change Particulate Flow.  

E-Print Network (OSTI)

??The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because… (more)

Xing, Keqiang

2007-01-01T23:59:59.000Z

290

Heat transfer and fluid flow characteristics of microchannels with internal longitudinal fins.  

E-Print Network (OSTI)

??Electronic components generate large amount of heat during their operation, which requires to be dissipated. Over the past decade, internal heat generation levels have exponentially… (more)

Foong, Andrew Jun Li

2009-01-01T23:59:59.000Z

291

Flow and Heat Transfer of a MHD Viscoelastic Fluid in a Channel with Stretching Walls: Some Applications to Haemodynamics  

E-Print Network (OSTI)

Of concern in the paper is a study of steady incompressible viscoelastic and electrically conducting fluid flow and heat transfer in a parallel plate channel with stretching walls in the presence of a magnetic field applied externally. The flow is considered to be governed by Walter's liquid B fluid. The problem is solved by developing a suitable numerical method. The results are found to be in good agrement with those of earlier investigations reported in existing scientific literatures. The study reveals that a back flow occurs near the central line of the channel due to the stretching walls and further that this flow reversal can be stopped by applying a strong external magnetic field. The study also shows that with the increase in the strength of the magnetic field, the fluid velocity decreases but the temperature increases. Thus the study bears potential applications in the study of the haemodynamic flow of blood in the cardiovascular system when subjected to an external magnetic field.

Misra, J C; Rath, H J

2010-01-01T23:59:59.000Z

292

Momentum flow in black-hole binaries. II. Numerical simulations of equal-mass, head-on mergers with antiparallel spins  

SciTech Connect

Research on extracting science from binary-black-hole (BBH) simulations has often adopted a 'scattering matrix' perspective: given the binary's initial parameters, what are the final hole's parameters and the emitted gravitational waveform? In contrast, we are using BBH simulations to explore the nonlinear dynamics of curved spacetime. Focusing on the head-on plunge, merger, and ringdown of a BBH with transverse, antiparallel spins, we explore numerically the momentum flow between the holes and the surrounding spacetime. We use the Landau-Lifshitz field-theory-in-flat-spacetime formulation of general relativity to define and compute the density of field energy and field momentum outside horizons and the energy and momentum contained within horizons, and we define the effective velocity of each apparent and event horizon as the ratio of its enclosed momentum to its enclosed mass-energy. We find surprisingly good agreement between the horizons' effective and coordinate velocities. During the plunge, the holes experience a frame-dragging-induced acceleration orthogonal to the plane of their spins and their infall ('downward'), and they reach downward speeds of order 1000 km/s. When the common apparent horizon forms (and when the event horizons merge and their merged neck expands), the horizon swallows upward field momentum that resided between the holes, causing the merged hole to accelerate in the opposite ('upward') direction. As the merged hole and the field energy and momentum settle down, a pulsational burst of gravitational waves is emitted, and the merged hole has a final effective velocity of about 20 km/s upward, which agrees with the recoil velocity obtained by measuring the linear momentum carried to infinity by the emitted gravitational radiation. To investigate the gauge dependence of our results, we compare generalized harmonic and Baumgarte-Shapiro-Shibata-Nakamura-moving-puncture evolutions of physically similar initial data; although the generalized harmonic and Baumgarte-Shapiro-Shibata-Nakamura-moving-puncture simulations use different gauge conditions, we find remarkably good agreement for our results in these two cases. We also compare our simulations with the post-Newtonian trajectories and near-field energy-momentum.

Lovelace, Geoffrey [Center for Radiophysics and Space Research, Cornell University, Ithaca, New York, 14853 (United States); Chen Yanbei; Cohen, Michael; Kaplan, Jeffrey D.; Keppel, Drew; Matthews, Keith D.; Nichols, David A.; Scheel, Mark A.; Sperhake, Ulrich [Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California 91125 (United States)

2010-09-15T23:59:59.000Z

293

On the heat flux vector for flowing granular materials--Part I: effective thermal conductivity and background  

SciTech Connect

Heat transfer plays a major role in the processing of many particulate materials. The heat flux vector is commonly modelled by the Fourier’s law of heat conduction and for complex materials such as nonlinear fluids, porous media, or granular materials, the coeffcient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematical parameters such as temperature, shear rate, porosity or concentration, etc. In Part I, we will give a brief review of the basic equations of thermodynamics and heat transfer to indicate the importance of the modelling of the heat flux vector. We will also discuss the concept of effective thermal conductivity (ETC) in granular and porous media. In Part II, we propose and subsequently derive a properly frame-invariant constitutive relationship for the heat flux vector for a (single phase) flowing granular medium. Standard methods in continuum mechanics such as representation theorems and homogenization techniques are used. It is shown that the heat flux vector in addition to being proportional to the temperature gradient (the Fourier’s law), could also depend on the gradient of density (or volume fraction), and D (the symmetric part of the velocity gradient) in an appropriate manner. The emphasis in this paper is on the idea that for complex non-linear materials it is the heat flux vector which should be studied; obtaining or proposing generalized form of the thermal conductivity is not always appropriate or suffcient.

Massoudi, Mehrdad

2006-09-10T23:59:59.000Z

294

Evaporation heat transfer and friction characteristics of R-134a flowing downward in a vertical corrugated tube  

SciTech Connect

Differently from most previous studies, the heat transfer and friction characteristics of the pure refrigerant HFC-134a during evaporation inside a vertical corrugated tube are experimentally investigated. The double tube test sections are 0.5 m long with refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tubes are one smooth tube and two corrugated tubes, which are constructed from smooth copper tube of 8.7 mm inner diameter. The test runs are performed at evaporating temperatures of 10, 15, and 20 C, heat fluxes of 20, 25, and 30 kW/m{sup 2}, and mass fluxes of 200, 300, and 400 kg/m{sup 2} s. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section is measured directly by a differential pressure transducer. The effects of heat flux, mass flux, and evaporation temperature on the heat transfer coefficient and two-phase friction factor are also discussed. It is found that the percentage increases of the heat transfer coefficient and the two-phase friction factor of the corrugated tubes compared with those of the smooth tube are approximately 0-10% and 70-140%, respectively. (author)

Aroonrat, Kanit; Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

2011-01-15T23:59:59.000Z

295

Mixed convection flow and heat transfer in entrance region of rectangular ducts rotating about a parallel axis  

SciTech Connect

The objective of the present work is to investigate the laminar mixed convection flow and heat transfer in the entrance region of heated rectangular ducts rotating about a parallel axis. Heating conditions of isothermal and iso-flux are both considered. Boussinesq approximation is invoked to take into account buoyancy effect induced by centrifugal force. Navier-Stokes/Boussinesq system can be cast into a dimensionless form, in which five governing parameters, the Prandtl number Pr, rotational Reynolds number J, rotational Grashof number Gr{sub {Omega}}, aspect ratio {gamma} and the eccentricity E, are involved. Mechanisms of secondary vortex development in the ducts are explored by a theoretical analysis on vorticity transport equation. The values of Pr and E are fixed as 0.7 and 10, respectively. For various combinations of the other thee parameters, a vorticity-velocity method implemented with a marching technique is employed to solve the resultant three-dimensional system for simultaneously developing flow and temperature fields. The emphasis is placed on the rotational effects, including both coriolis force and centrifugal buoyancy; on the non-isothermal flow and the related heat transfer. The results reveal that the friction factors and heat transfer rates can be enhanced by Coriolis and rotation-induced buoyancy effects; and the variations of the local values are closely related to the evolution of the secondary vortices in ducts. The differences in flow behaviors and thermal characteristics for UWT and UHF are also investigated by the present theoretical analysis on secondary flow mechanism as well as the computational results.

Soong, C.Y. [Chung Cheng Inst. of Tech., Taoyuan (Taiwan, Province of China). Dept. of Aeronautical Engineering; Yan, W.M. [Hua Fan Coll. of Humanities and Technology, Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

296

Heat transfer process under a film-cooled surface with presence of weak swirling flow in the mainstream  

SciTech Connect

Experiments have been performed in a relatively large circular pipe to study and obtain the heat transfer data over a film-cooled surface, with the presence of weak swirling flow in the mainstream. The swirling flow is generated by a flat-vaned swirler situated upstream. A cooling film is injected from an annular slot formed by the pipe wall and the circular cover plate. The radial temperature distribution measurements at several axial locations were used to infer the film jet structure and the rate of mixing of the film jet with the swirling flow. The nondimensional parameters governing the heat transfer process under the film are derived from the system of governing equations. Experiments demonstrate that the swirl number, increasing with turbulence intensity and swirl velocity in the mainstream, can rapidly destroy the film jet structure and enhance the heat transfer process. During the course of the experiments, the blowing parameter ranged from 0.5 to 2 and the swirl number ranged from 0 to 0.6. Correlations for the Nusselt number which account for the effect of swirling flow are presented. (author)

Yang, C.S. [Department of Computer Science and Information Engineering, Far East University, Tainan (China); Kung, T.L.; Gau, C. [Institute of Aeronautics and Astronautics, Center for Micro/Nano Science and Technology, National Cheng Kung University (China)

2007-11-15T23:59:59.000Z

297

Changes in Hepatic Blood Flow During Transcatheter Arterial Infusion with Heated Saline in Hepatic VX2 Tumor  

SciTech Connect

Purpose. This study evaluates the influence of transcatheter arterial infusion with heated saline on hepatic arterial and portal venous blood flows to tumor and normal hepatic tissues in a rabbit VX2 tumor model. Methods. All animal experiments were approved by the institutional animal care and use committee. Twenty rabbits with VX2 liver tumors were divided into the following two groups: (a) the treated group (n = 10), which received a 60 mL transarterial injection of 60 Degree-Sign C saline via the hepatic artery; (b) the control group (n = 10), which received a 60 mL injection of 37 Degree-Sign C saline via the hepatic artery. Using ultrasonography, the blood flows in both the portal vein and hepatic artery were measured, and the changes in the hemodynamic indices were recorded before and immediately after the injection. The changes in the tumor and normal liver tissues of the two groups were histopathologically examined by hematoxylin and eosin staining after the injection. Results. After the transcatheter arterial heated infusion, there was a decrease in the hepatic arterial blood flow to the tumor tissue, a significant decrease in the hepatic artery mean velocity (P < 0.05), and a significant increase in the resistance index (P < 0.05). On hematoxylin and eosin staining, there were no obvious signs of tissue destruction in the normal liver tissue or the tumor tissue after heated perfusion, and coagulated blood plasma was observed in the cavities of intratumoral blood vessels in the treated group. Conclusions. The changes in tumor blood flow in the rabbit VX2 tumor model were presumably caused by microthrombi in the tumor vessels, and the portal vein likely mediated the heat loss in normal liver tissue during the transarterial heated infusion.

Cao Wei, E-mail: cawe-001@163.com [Tangdu Hospital, The Fourth Military Medical University, Department of Interventional Radiology (China); Li Jing, E-mail: lijing02@fmmu.edu.cn [Tangdu Hospital, The Fourth Military Medical University, Department of Burn and Plastic Surgery (China); Wu Zhiqun, E-mail: zhiqunwu@fmmu.edu.cn [Tangdu Hospital, The Fourth Military Medical University, Department of Interventional Radiology (China); Zhou Changxi, E-mail: changxizhou@163.com [Chinese PLA General Hospital, Department of Respiratory Disease (China); Liu Xi, E-mail: xiliu@fmmu.edu.cn [Tangdu Hospital, The Fourth Military Medical University, Department of Ultrasound Diagnostics (China); Wan Yi, E-mail: yiwan@163.com [The Fourth Military Medical University, Department of Health Statistics, Institute for Health Informatics (China); Duan Yunyou, E-mail: yunyouduan@fmmu.edu.cn [Tangdu Hospital, The Fourth Military Medical University, Department of Ultrasound Diagnostics (China)

2013-06-15T23:59:59.000Z

298

DNS on turbulent heat transfer of viscoelastic fluid flow in a plane channel with transverse rectangular orifices  

Science Journals Connector (OSTI)

Heat-transfer characteristics of a viscoelastic turbulence past rectangular orifices were investigated in the context of the reduction effects of fluid elasticity on drag and heat transfer. To simulate the fully-developed channel flow through transverse orifices located periodically at intervals of 6.4 times channel height, we imposed periodic conditions at the upstream and downstream boundaries. To discuss the dissimilarity between the velocity and thermal fields, the molecular Prandtl number was set to be 1.0 and any temperature dependence of the fluid and rheological properties was not considered. In the present condition, the ratio of the reduction rates in drag and heat transfer was found to be 2.8:1.0, revealing that the present flow configuration is better than a smooth channel for avoiding the heat-transfer reduction. This phenomenon was attributed to the sustainment of the quasi-streamwise vortex downstream of the reattachment point despite the absence of strong spanwise vortices emanating from the orifice edge in the viscoelastic fluid. The longitudinal vortices behind the reattachment point caused a high turbulent heat flux and increased the local Nusselt number.

Takahiro Tsukahara; Tomohiro Kawase; Yasuo Kawaguchi

2013-01-01T23:59:59.000Z

299

Black holes and thermodynamics  

Science Journals Connector (OSTI)

A black hole of given mass, angular momentum, and charge can have a large number of different unobservable internal configurations which reflect the possible different initial configurations of the matter which collapsed to produce the hole. The logarithm of this number can be regarded as the entropy of the black hole and is a measure of the amount of information about the initial state which was lost in the formation of the black hole. If one makes the hypothesis that the entropy is finite, one can deduce that the black holes must emit thermal radiation at some nonzero temperature. Conversely, the recently derived quantum-mechanical result that black holes do emit thermal radiation at temperature ??2? k c, where ? is the surface gravity, enables one to prove that the entropy is finite and is equal to c3A4 G?, where A is the surface area of the event horizon or boundary of the black hole. Because black holes have negative specific heat, they cannot be in stable thermal equilibrium except when the additional energy available is less than 1/4 the mass of the black hole. This means that the standard statistical-mechanical canonical ensemble cannot be applied when gravitational interactions are important. Black holes behave in a completely random and time-symmetric way and are indistinguishable, for an external observer, from white holes. The irreversibility that appears in the classical limit is merely a statistical effect.

S. W. Hawking

1976-01-15T23:59:59.000Z

300

Downward two-phase flow effects in heat-loss and pressure-drop modeling of steam injection wells  

SciTech Connect

Modelling of the pressure drop and heat loss in steam injection wells has undergone a gradual evolution since the heavy interest in enhanced oil recovery by steam injection in the mid-60's. After briefly reviewing the evolution of steam models this paper presents a model which advances the state-of-the-art of steam modelling. The main advance presented in this paper is modelling the effects of the various flow regimens that occur during steam injection. The paper describes the formulation of a two-phase downward vertical flow pressure drop model which is not limited by the ''no-slip'' homogeneous flow assumptions in most previously published models. By using different correlations for mist, bubble, and slug flow, improved pressure drop calculations result, which in turn improve temperature predictions. The paper describes how the model handles temperature predictions differently in the single and two-phase steam flow situations. The paper also describes special features in the model to account for layered soil properties, soil dry out, cyclic injection, coupling heat losses, and reflux boiling in wet annuli. Two examples problems are presented which illustrate some of these features.

Galate, J.W.; Mitchell, R.F.

1985-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

302

Analytical and Numerical Study of Joule Heating Effects on Electrokinetically Pumped Continuous Flow PCR Chips  

E-Print Network (OSTI)

Analytical and Numerical Study of Joule Heating Effects on Electrokinetically Pumped Continuous, and the potential for integration.1-3 Joule heating is inevitable when electrokinetic pumping is used Form: December 8, 2007 Joule heating is an inevitable phenomenon for microfluidic chips involving

Le Roy, Robert J.

303

Gravitational collapse of a spherical star with heat flow as a possible energy mechanism of gamma-ray bursts  

E-Print Network (OSTI)

We investigate the gravitational collapse of a spherically symmetric, inhomogeneous star, which is described by a perfect fluid with heat flow and satisfies the equation of state $p=\\rho/3$ at its center. In the process of the gravitational collapsing, the energy of the whole star is emitted into space. And the remaining spacetime is a Minkowski one without a remnant at the end of the process. For a star with a solar mass and solar radius, the total energy emitted is at the order of $10^{54}$ {\\rm erg}, and the time-scale of the process is about $8s$. These are in the typical values for a gamma-ray burst. Thus, we suggest the gravitational collapse of a spherical star with heat flow as a possible energy mechanism of gamma-ray bursts.

Zhe Chang; Cheng-Bo Guan; Chao-Guang Huang; Xin Li

2008-03-26T23:59:59.000Z

304

CFD analysis of the effects of the flow distribution and heat losses on the steam reforming of methanol in catalytic (Pd/ZnO) microreactors  

Science Journals Connector (OSTI)

Abstract A three-dimensional computational fluid dynamics (CFD) simulation study of the effects of the flow distribution and the heat losses on the performance of microchannels and microslits reactors for the steam reforming of methanol (SRM) over Pd/ZnO is presented. Several flow distributing headers covering a wide range of the flow diffuser expansion angle (?) have been considered. Large values of ? lead to flow maldistribution characterized by jet flow resulting in negative effects on the SRM conversion and hydrogen yield, especially for the microslits at high reaction temperatures and space velocities. Simulations have also evidenced that heat losses constitute a critical issue for microreactors operation, particularly at low space velocities. Heat losses may reach very high values, above 80–90% of the energy supplied to the microreactor, with the consequence that it may be necessary to provide up to 9 times the heat of the SRM reaction to achieve high methanol conversions.

I. Uriz; G. Arzamendi; P.M. Diéguez; F.J. Echave; O. Sanz; M. Montes; L.M. Gandía

2014-01-01T23:59:59.000Z

305

Compare Energy Use in Variable Refrigerant Flow Heat Pumps Field Demonstration and Computer Model  

SciTech Connect

Variable Refrigerant Flow (VRF) heat pumps are often regarded as energy efficient air-conditioning systems which offer electricity savings as well as reduction in peak electric demand while providing improved individual zone setpoint control. One of the key advantages of VRF systems is minimal duct losses which provide significant reduction in energy use and duct space. However, there is limited data available to show their actual performance in the field. Since VRF systems are increasingly gaining market share in the US, it is highly desirable to have more actual field performance data of these systems. An effort was made in this direction to monitor VRF system performance over an extended period of time in a US national lab test facility. Due to increasing demand by the energy modeling community, an empirical model to simulate VRF systems was implemented in the building simulation program EnergyPlus. This paper presents the comparison of energy consumption as measured in the national lab and as predicted by the program. For increased accuracy in the comparison, a customized weather file was created by using measured outdoor temperature and relative humidity at the test facility. Other inputs to the model included building construction, VRF system model based on lab measured performance, occupancy of the building, lighting/plug loads, and thermostat set-points etc. Infiltration model inputs were adjusted in the beginning to tune the computer model and then subsequent field measurements were compared to the simulation results. Differences between the computer model results and actual field measurements are discussed. The computer generated VRF performance closely resembled the field measurements.

Sharma, Chandan; Raustad, Richard

2013-06-01T23:59:59.000Z

306

Effects of the ship motion on gas–solid flow and heat transfer in a circulating fluidized bed  

Science Journals Connector (OSTI)

A series of experiments on a circulating fluidized bed (CFB) was performed to investigate the effects of ship motion on gas–solid flow and heat transfer in the CFB. Rolling period, rolling amplitude, inclination angle, superficial velocity, particle diameter range, and solid circulation flux were varied in the experiments. The following results were obtained: (1) When the CFB undergoes rolling motion, the downflow of particles changes periodically and the solid volume fraction increases at the riser bottom. As a result, the time-averaged total pressure drop of the CFB in rolling motion becomes larger than that at the upright attitude. Similarly, the total pressure drop of the CFB at an inclined attitude is larger than that at the upright attitude. (2) The total pressure drop of the CFB in rolling motion is hardly affected by rolling period. As rolling amplitude increases, on the other hand, the effects of rolling motion become more remarkable. From these results, it is concluded that gravity dominantly affects gas–solid flow in the system. (3) At an inclined attitude, the symmetry of the flow field with respect to the riser center plane breaks, and heat transfer at the lower wall of the riser is promoted. As inclination angle increases, heat transfer augmentation becomes more remarkable. Similarly, the heat transfer coefficient in rolling motion is larger than that at the upright attitude. (4) Heat transfer augmentation by ship motion is concluded to be caused by the direct contact between solid particles and the heater surface owing to the vertical component of gravity to the surface.

Hiroyuki Murata; Hideyuki Oka; Masaki Adachi; Kazuyoshi Harumi

2012-01-01T23:59:59.000Z

307

Effects of turbulence model on convective heat transfer of coolant flow in a prismatic very high temperature reactor core  

SciTech Connect

The existing study of Spall et al. shows that only {nu}{sup 2}-f turbulence model well matches with the experimental data of Shehata and McEligot which were obtained under strongly heated gas flows. Significant over-predictions in those literatures were observed in the convective heat transfer with the other famous turbulence models such as the k-{epsilon} and k-{omega} models. In spite of such good evidence about the performance of the{nu}{sup 2}-f model, the application of the {nu}{sup 2}-f model to the thermo-fluid analysis of a prismatic core is very rare. In this paper, therefore, the convective heat transfer of the coolant flow in a prismatic core has been investigated using the {nu}{sup 2}-f model. Computational fluid dynamics (CFD) calculations have been carried out for the typical unit cell geometry of a prismatic fuel column with typical operating conditions of prismatic designs. The tested Reynolds numbers of the coolant flow are 10,000, 20,000, 30,000 and 50,000. The predicted Nusselt numbers with the {nu}{sup 2}-f model are compared with the results by the other turbulence models (k-{epsilon} and SST) as well as the empirical correlations. (authors)

Lee, S. N.; Tak, N. I.; Kim, M. H.; Noh, J. M. [Korea Atomic Energy Research Inst., Daedeok-daero 989-11, Yuseong-gu, Daejeon (Korea, Republic of)

2012-07-01T23:59:59.000Z

308

A Mountain-Scale Thermal Hydrologic Model for Simulating FluidFlow and Heat Transfer in Unsaturated Fractured Rock  

SciTech Connect

A multidimensional, mountain-scale, thermal-hydrologic (TH) numerical model is presented for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository in the Yucca Mountain unsaturated zone (UZ), Nevada. The model, consisting of both two-dimensional (2-D) and three-dimensional (3-D) representations of the UZ repository system, is based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climate conditions. This mountain-scale TH model evaluates the coupled TH processes related to mountain-scale UZ flow. It also simulates the impact of radioactive waste heat release on the natural hydrogeological system, including heat-driven processes occurring near and far away from the emplacement tunnels or drifts. The model simulations predict thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. These simulations provide mountain-scale thermally perturbed flow fields for assessing the repository performance under thermal loading conditions.

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson,Gudmundur S.

2005-05-25T23:59:59.000Z

309

Fluid flow and heat transfer across an elliptical hollow fiber membrane tube bank with randomly distributed features  

Science Journals Connector (OSTI)

Abstract An elliptical hollow fiber membrane tube bank (EHFMTB) has better performances while being employed for air humidification. The EHFMTB is populated in a plastic shell to form a shell-and-tube heat exchanger like membrane contactor. The tube bank is always randomly populated in practical applications because of convenience and randomness in the manufacturing process. The fluid flow and heat transfer across a randomly distributed elliptical hollow fiber membrane tube bank (REHFMTB) are investigated. To disclose the influences of the fiber arrangements on the performances, three unit cells containing 20 fibers with different randomly distributions are selected as the calculating domains. A renormalization group k–? (RNG KE) turbulence model with enhanced wall treatment is used for solving the equations governing the momentum and heat transports. The friction factor and Nusselt number across the REHFMTB under various fiber distributions, Reynolds numbers (Re), packing fractions (?) and elliptical semiaxis ratios (b/a) are numerically obtained and experimentally validated. It is found that the comprehensive heat transfer performance is deteriorated for the fluid flow across the REHFMTB.

Runhua Jiang; Minlin Yang; Sheng Chen; Si-Min Huang; Xiaoxi Yang

2014-01-01T23:59:59.000Z

310

Cross-Roll Flow Forming of ODS Alloy Heat Exchanger Tubes for Hoop Creep Enhancement  

SciTech Connect

Mechanically alloyed oxide dispersion strengthened (ODS) Fe-Cr-Al alloy thin walled tubes and sheets, produced via powder processing and consolidation methodologies, are promising materials for eventual use at temperatures up to 1200 C in the power generation industry, far above the temperature capabilities of conventional alloys. Target end-uses range from gas turbine combustor liners to high aspect ratio (L/D) heat exchanger tubes. Grain boundary creep processes at service temperatures, particularly those acting in the hoop direction, are the dominant failure mechanisms for such components. The processed microstructure of ODS alloys consists of high aspect ratio grains aligned parallel to the tube axis, a result of dominant axial metal flow which aligns the dispersoid particles and other impurities in the longitudinal direction. The dispersion distribution is unaltered on a micro scale by recrystallization thermal treatments, but the high aspect ratio grain shape typically obtained limits transverse grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloy components will require understanding and manipulating the factors that control the recrystallization behavior, and represents a critical materials design and development challenge that must be overcome in order to fully exploit the potential of ODS alloys. The objectives of this program are to (1) increase creep-strength at temperature in ODS-alloy tube and liner components by 100% via, (2) preferential cross-roll flow forming and grain/particle fibering in the critical hoop direction. The research program outlined here is iterative in nature and is intended to systematically (1) examine and identify post-extrusion forming methodologies to create hoop strengthened tubes, which will be (2) evaluated at ''in-service'' loads at service temperatures and environments. This research program is being conducted in collaboration with the DOE's Oak Ridge National Laboratory and the vested industrial partner Special Metals Corporation. In this ninth quarter of performance, program activities are continued for Tasks 2, 3 and 4 and are reported herein. Two sets of MA956 tube material samples rotary crossrolled at rolling angles of {beta} = 2{sup o} and 8{sup o} are processed in Task 3 and available for mechanical property testing in the remainder of this project. These samples are at various stages of creep testing and evaluation in Task 4. The creep rigs are being upgraded to handle long term testing at 1000 C and above. Reduced test times at accelerated temperatures will allow for additional testes to be conducted resulting in overall robust creep data statistics. The creep performance enhancement in cross-rolled MA956 material samples versus the base creep property is elucidated. Additional creep enhancements are derived when flow formed tubes are flattened at 900 C and recrystallized. The Larsen-Miller parameter for the improvised thermo-mechanical processing now approaches 52. At least 2-3 orders of magnitude of improvement in creep rates/day are demonstrated for the cross-rolled samples versus the base reference tests.

Bimal K. Kad

2006-04-10T23:59:59.000Z

311

Use of a Heat Flow Meter to Determine Active PCM Content in an Insulation  

SciTech Connect

Residential and commercial roofs and walls are currently designed and tested using steady-state criteria. The resulting R-values, based on the apparent thermal conductivity, are used by building standards as an important measure of energy performance. Building envelope components, however, are subject to dynamic environmental conditions. This mismatch between the steady-state principles used in design and code requirements and their dynamic operation results in relatively low thermal efficiencies. Although several research centers have developed experimental methods for transient analysis of building envelopes, there are no standardized testing procedures available for screening materials and systems for which performance depends on dynamic response. For example, a full-scale dynamic evaluation of phase change materials (PCMs) is needed to assess their energy saving benefits. A nationally accepted small-scale (one to two foot size specimens) testing procedure is not available for the analysis of dynamic thermal characteristics of conventional thermal mass systems or PCM-enhanced materials. At the same time, data on these characteristics are necessary for whole-building simulations, energy analysis, and energy code work. The transient characteristics of PCM-enhanced products depend on the PCM content and quality. The only readily available method of thermal evaluation uses the differential scanning calorimeter. Unfortunately, this method requires small, relatively uniform test specimens. This requirement is unrealistic in the case of PCM-enhanced building envelope products such as PCM-cellulose, PCM-glass fiber, or PCM-gypsum blends. Small specimens are not representative of PCM-based blends, since these materials are not homogeneous. Jan Kosny and David Yarbrough, Oak Ridge National Laboratory, P.O. Box 2008, MS 6070, Oak Ridge, TN 37831-6070. Elizabeth Kossecka, Polish Academy of Sciences, Institute of Fundamental Technological Research, Pawinskiego 5 B, 02-106, Warsaw, Poland. A procedure for making dynamic heat-flow measurements using existing instrumentation has been developed to analyze the benefits of thermal storage. This small-scale testing method is useful for thermal analysis and as a potential quality control method for producers of PCM-enhanced building materials. The research may provide the basis for consensus standard development. This paper uses as an example a dynamic testing process for PCM-enhanced cellulose insulation.

Kosny, Jan [ORNL] [ORNL; Kossecka, Elizabeth [Institute of Fundamental Technological Research, Polish Academy of Sciences] [Institute of Fundamental Technological Research, Polish Academy of Sciences; Yarbrough, David W [ORNL] [ORNL

2010-01-01T23:59:59.000Z

312

Study of Heat Transfer in Non-boiling Two-phase Gas-liquid Flow in Pipes for Horizontal, Slightly Inclined, and Vertical Orientations.  

E-Print Network (OSTI)

??The main objective of this research is to establish a fundamental understanding of heat transfer in non-boiling two-phase pipe flow. The key processes that govern… (more)

Tang, Clement Chih-Wei

2011-01-01T23:59:59.000Z

313

Finite difference analysis of mass transfer effects on flow past an impulsively started infinite vertical plate in dissipative fluid and constant heat flux  

Science Journals Connector (OSTI)

A finite-difference solution to the flow past an impulsively started infinite vertical plate is derived by assuming 1) presence of species concentration like water vapour, CO2 etc. and 2) constant heat flux at th...

J. N. Das; S. N. Ray; Prof. Dr. V. M. Soundalgekar

1995-02-01T23:59:59.000Z

314

Convective heat transfer in the vertical channel flow of a clear fluid adjacent to a nanofluid layer: a two-fluid model  

Science Journals Connector (OSTI)

A two-fluid vertical channel flow and convective heat transfer model in which one of the two fluids is a nanofluid demonstrates that the nanofluid can modify the fluid velocity at the interface of the two fluids,...

Robert A. Van Gorder; K. V. Prasad; K. Vajravelu

2012-07-01T23:59:59.000Z

315

Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field  

SciTech Connect

Experimental investigation is conducted to get insight into convective heat transfer features of the aqueous magnetic fluid flow over a fine wire under the influence of an external magnetic field. The convective heat transfer coefficient of the aqueous magnetic fluid flow around the heated wire is measured in both the uniform magnetic field and the magnetic field gradient. The effects of the external magnetic field strength and its orientation on the thermal behaviors of the magnetic fluids are analyzed. The experimental results show that the external magnetic field is a vital factor that affects the convective heat transfer performances of the magnetic fluids and the control of heat transfer processes of a magnetic fluid flow can be possible by applying an external magnetic field. (author)

Li, Qiang; Xuan, Yimin [School of Power Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094 (China)

2009-04-15T23:59:59.000Z

316

Numerical analysis of laminar fluid flow and heat transfer in a parallel plate channel with normally in-line positioned plates  

E-Print Network (OSTI)

NUMERICAL ANALYSIS OF LAMINAR FLUID FLOW AND HEAT TRANSFER IN A PARALLEL PLATE CHANNEL WITH NORMALLY IN-LINE POSITIONED PLATES A Thesis by JOHN GRADY iVICMATH Submitted to the Office of Graduate Studies of Texas AkM University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1991 Major Subject: Mechanical Engineering NUMERICAL ANALYSIS OF LAMINAR FLUID FLOW AND HEAT TRANSFER IN A PARALLEL PLATE CHANNEI WITH NORMALLY IN-LINE POSITIONED PLATES A...

McMath, John Grady

2012-06-07T23:59:59.000Z

317

Numerical simulation of fluid flow and heat transfer inside a rotating disk-cylinder configuration by a lattice Boltzmann model  

Science Journals Connector (OSTI)

A simple lattice Boltzmann model for numerical simulation of fluid flow and heat transfer inside a rotating disk-cylinder configuration, which is of fundamental interest and practical importance in science as well as in engineering, is proposed in this paper. Unlike existing lattice Boltzmann models for such flows, which were based on “primitive-variable” Navier-Stokes equations, the target macroscopic equations of the present model for the flow field are vorticity–stream function equations, inspired by our recent work designed for nonrotating flows [S. Chen, J. Tölke, and M. Krafczyk, Phys. Rev. E 79, 016704 (2009); S. Chen, J. Tölke, S. Geller, and M. Krafczyk, Phys. Rev. E 78, 046703 (2008)]. The flow field and the temperature field both are solved by the D2Q5 model. Compared with the previous models, the present model is more efficient, more stable, and much simpler. It was found that, even though with a relatively low grid resolution, the present model can still work well when the Grashof number is very high. The advantages of the present model are validated by numerical experiments.

Sheng Chen; Jonas Tölke; Manfred Krafczyk

2009-07-14T23:59:59.000Z

318

Effervescent heating: constraints from nearby cooling flow clusters observed with XMM-Newton  

E-Print Network (OSTI)

We have used deprojected radial density and temperature profiles of a sample of 16 nearby CF clusters observed with XMM-Newton to test whether the effervescent heating model can satisfactorily explain the dynamics of CF clusters. For each cluster we derived the required extra heating as a function of cluster-centric distance for various values of the unknown parameters $\\dot M$ (mass deposition rate) and $f_c$ (conduction efficiency). We fitted the extra heating curve using the AGN effervescent heating function and derived the AGN parameters $L$ (the time-averaged luminosity) and $r_0$ (the scale radius where the bubbles start rising in the ICM). While we do not find any solution with the effervescent heating model for only one object, we do show that AGN and conduction heating are not cooperating effectively for half of the objects in our sample. For most of the clusters we find that, when a comparison is possible, the derived AGN scale radius $r_0$ and the observed AGN jet extension have the same order of magnitude. The AGN luminosities required to balance radiative losses are substantially lowered if the fact that the AGN deposits energy within a finite volume is taken into account. For the Virgo cluster, we find that the AGN power derived from the effervescent heating model is in good agreement with the observed jet power.

Rocco Piffaretti; Jelle Kaastra

2006-02-16T23:59:59.000Z

319

Experimental and numerical investigation of turbulent flow and heat (mass) transfer in a two-pass trapezoidal channel with turbulence promoters  

E-Print Network (OSTI)

of three-dimensional flow and heat transfer also were performed for the trapezoidal channel with and without 90º ribs tested by Lee et al. (2007). Reynolds stress turbulence model (RSM) in the FLUENT CFD code was used to calculate the heat transfer...

Oh, Sung Hyuk

2009-05-15T23:59:59.000Z

320

Transcritical flow over a hole R. H. J. Grimshaw 1 , D.-H. Zhang 2 and K. W. Chow 2  

E-Print Network (OSTI)

water waves, but the same features arise in many other physical systems. When the flow is not critical lee waves are found downstream for subcritical flow ( U is an appropriate model. For water waves on an undisturbed depth h , the fKdV equation in non-dimensional form

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Numerical Simulation of Heat Transfer and Fluid Flow Characteristics of Server Rack in Datacenter  

Science Journals Connector (OSTI)

This chapter is studying the fluid mechanics and heat transfer of single server rack using the computational fluid dynamics software. The ... effect of the different structure parameters of server rack in datacen...

Jianfei Zhang; Donghao Liu; Xiping Qiao…

2014-01-01T23:59:59.000Z

322

Computational Analysis of Fluid Flow and Heat Transfer Characteristics of Obliquely Impinging Slot Jets  

Science Journals Connector (OSTI)

The skin friction and heat transfer characteristics due to a slot jet impinging obliquely on a flat plate are presented. The boundary layer equations are solved by a finite difference marching technique, detai...

S. Jayaraj; Vijay K. Garg

1988-01-01T23:59:59.000Z

323

Summary of Modern Nodal Integral Methods in Fluid Flow and Heat Transfer  

Science Journals Connector (OSTI)

Modern nodal integral methods are a product of original applications in neutron diffusion and neutron transport calculations. These methods have recently been applied to two-dimensional dynamic heat transfer and

G. L. Wilson; R. A. Rydin

1990-01-01T23:59:59.000Z

324

In-Situ Thermal Conductivity Testing Using a Portable Heat Flow Meter  

E-Print Network (OSTI)

A method has been developed for measuring heat losses from insulated systems in the field. While the measurements are not as precise as those made under laboratory conditions, they are more indicative of actual in service conditions. Extensive field...

Harr, K. S.; Hutto, F. B., Jr.

1979-01-01T23:59:59.000Z

325

The Difficulty of the Heating of Cluster Cooling Flows by Sound Waves and Weak Shocks  

E-Print Network (OSTI)

We investigate heating of the cool core of a galaxy cluster through the dissipation of sound waves and weak shocks excited by the activities of the central active galactic nucleus (AGN). Using a weak shock theory, we show that this heating mechanism alone cannot reproduce observed temperature and density profiles of a cluster, because the dissipation length of the waves is much smaller than the size of the core and thus the wave energy is not distributed to the whole core.

Yutaka Fujita; Takeru Ken Suzuki

2006-10-19T23:59:59.000Z

326

Thermal Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) |  

Open Energy Info (EERE)

Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

327

Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

328

6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xi'an, China, 11-15 July 2009  

E-Print Network (OSTI)

6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xi in pipeline transportation, where it is important to identify and control bottlenecks influence on production be viewed as the hydrodynamic equivalent of the Mach number for gas flows. Simplified hydraulic theories

Al Hanbali, Ahmad

329

Gas temperature profiles at different flow rates and heating rates suffice to estimate kinetic parameters for fluidised bed combustion  

SciTech Connect

Experimental work on estimation kinetic parameters for combustion was conducted in a bench-scale fluidised bed (FB: 105x200mm). Combustion medium was obtained by using an electrical heater immersed into the bed. The ratio of heating rate (kJ/s) to molar flow rate of air (mol/s) regulated by a rheostat so that the heat of combustion (kJ/mol) can be synthetically obtained by an electrical power supply for relevant O{sub 2}-feedstock concentration (C{sub 0}). O{sub 2}-restriction ratio ({beta}) was defined by the ratio of O{sub 2}-feedstock concentration to O{sub 2}-air concentration (C{sub O{sub 2}-AIR}) at prevailing heating rates. Compressed air at further atmospheric pressure ({approx_equal}102.7kPa) entered the bed that was alumina particles (250{mu}m). Experiments were carried out at different gas flow rates and heating rates. FB was operated with a single charge of (1300g) particles for obtaining the T/T{sub 0} curves, and than C/C{sub 0} curves. The mathematical relationships between temperature (T) and conversion ratio (X) were expressed by combining total energy balance and mass balance in FB. Observed surface reaction rate constants (k{sub S}) was obtained from the combined balances and proposed model was also tested for these kinetic parameters (frequency factor: k{sub 0}, activation energy: E{sub A}, and reaction order: n) obtained from air temperature measurements. It was found that the model curves allow a good description of the experimental data. Thus, reaction rate for combustion was sufficiently expressed. (author)

Suyadal, Y. [Faculty of Engineering, Department of Chemical Engineering, Ankara University, 06100-Tandogan, Ankara (Turkey)

2006-07-15T23:59:59.000Z

330

Fluid flow and conjugated heat transfer in arbitrarily shaped channels via single domain formulation and integral transforms  

Science Journals Connector (OSTI)

Abstract The present work advances a recently introduced approach based on combining the Generalized Integral Transform Technique (GITT) and a single domain reformulation strategy, aimed at providing hybrid numerical–analytical solutions to convection–diffusion problems in complex physical configurations and irregular geometries. The methodology has been previously considered in the analysis of conjugated conduction–convection heat transfer problems, simultaneously modeling the heat transfer phenomena at both the fluid streams and the channels walls, by making use of coefficients represented as space variable functions with abrupt transitions occurring at the fluid–wall interfaces. The present work is aimed at extending this methodology to deal with both fluid flow and conjugated heat transfer within arbitrarily shaped channels and complex multichannel configurations, so that the solution of a cumbersome system of coupled partial differential equations defined for each individual sub-domain of the problem is avoided, with the proposition of the single-domain formulation. The reformulated problem is integral transformed through the adoption of eigenvalue problems containing the space variable coefficients, which provide the basis of the eigenfunction expansions and are responsible for recovering the transitional behavior among the different regions in the original formulation. For demonstration purposes, an application is first considered consisting of a microchannel with an irregular cross-section shape, representing a typical channel micro-fabricated through laser ablation, in which heat and fluid flow are investigated, taking into account the conjugation with the polymeric substrate. Then, a complex configuration consisting of multiple irregularly shaped channels is more closely analyzed, in order to illustrate the flexibility and robustness of the advanced hybrid approach. In both cases, the convergence behavior of the proposed expansions is presented and critical comparisons against purely numerical approaches are provided.

Diego C. Knupp; Renato M. Cotta; Carolina P. Naveira-Cotta

2014-01-01T23:59:59.000Z

331

RELAP5/MOD3 code quality assurance plan for ORNL ANS narrow channel flow and heat transfer correlations  

SciTech Connect

Modifications have been made to REIAP5 to account for flow and heat transfer in narrow channels between fuel plates such as found in the cores of the Advanced Neutron Source (ANS) and High Flux Isotope Reactor (HFIR) reactors. These early models were supplied by Art Ruggles of Oak Ridge National Laboratory (ORNL) and Don Fletcher of the Idaho National Engineering Laboratory (INEL) and were adapted to and implemented into RELAP5 by Rich Riemke, Rex Shumway and Ken Katsma. The purpose of this report is to document the current status of these special models in the standard version of RELAP5/MOD3 and describe the quality assurance procedures.

MIller, C.S.; Shumway, R.W.

1992-11-01T23:59:59.000Z

332

Effect of flow topology on the calculation of two-phase frictional multipliers in uniformly heated flow of R-134a in a rectangular duct  

SciTech Connect

The two-phase frictional multipliers for SUVA R-134a flowing in a rectangular duct (with D{sub H} = 4.8 mm) have been measured for three nominal system pressures (0.88, 1.34 and 2.34 MPa) and four nominal mass fluxes (510, 1020 and 1740, 2040 kg/m{sup 2}/s) under uniform heat flux conditions. The data is compared with adiabatic data previously taken at similar flow conditions, as well as with several classical multiplier correlations. The comparisons reveal a strong effect of pressure and mass flux on the flow topology and, by extension, a large effect on the calculation of acceleration and frictional pressure drop components. For this fluid and this geometry, entrainment and fluid separation is enhanced at higher pressures and mass flux such that most of the liquid exists in the test section edges and as dispersed droplets in the core. For these cases, the classical simplified approach to calculate acceleration pressure drop fails to adequately predict the acceleration component and leads to erroneous calculations of frictional pressure drop from the measured total pressure drop. Best estimates of the true acceleration component are given, based on void profiles measured with a gamma densitometer system, comparisons to the adiabatic data, and recasting the data in terms of the total pressure drop multiplier as a function of the Martinelli parameter, X{sub tt}. (author)

Vassallo, Peter; Kevin Cope, W.; Smith, Walter C. [Bechtel Marine Propulsion Corporation, Niskayuna, NY 12309 (United States)

2010-11-15T23:59:59.000Z

333

Electron Heating by the Ion Cyclotron Instability in Collisionless Accretion Flows. I. Compression-Driven Instabilities and the Electron Heating Mechanism  

E-Print Network (OSTI)

In systems accreting well below the Eddington rate, the plasma in the innermost regions of the disk is collisionless and two-temperature, with the ions hotter than the electrons. Yet, whether a collisionless faster-than-Coulomb energy transfer mechanism exists in two-temperature accretion flows is still an open question. We study the physics of electron heating during the growth of ion velocity-space instabilities, by means of multi-dimensional particle-in-cell (PIC) simulations. A large-scale compression - embedded in a novel form of the PIC equations - continuously amplifies the field. This constantly drives a pressure anisotropy P_perp > P_parallel, due to the adiabatic invariance of the particle magnetic moments. We find that, for ion plasma beta values beta_i ~ 5-30 appropriate for the midplane of low-luminosity accretion flows, mirror modes dominate if the electron-to-proton temperature ratio is > 0.2, whereas if it is m_e/m_i - governed by the conservation of the magnetic moment in the growing fields ...

Sironi, Lorenzo

2014-01-01T23:59:59.000Z

334

Development and verification of a numerical simulator to calculate the bottom hole flowing pressures in multiphase systems  

E-Print Network (OSTI)

A vast amount of research has been conducted on the subject of pressure drop in muldphase flow systems. The simulator developed for this research incorporates the Beggs and Brill model for pressure drop prediction with an equation of state...

Rasool, Syed Ahmed

1994-01-01T23:59:59.000Z

335

Unsteady hydromagnetic free-convection flow with radiative heat transfer in a rotating fluid  

Science Journals Connector (OSTI)

We study the unsteady free-convection flow near a moving infinite flat plate in a totating medium by imposing a time-dependent perturbation on a constant plate temperature. The temperatures involved are assume...

A. R. Bestman; S. K. Adjepong

336

Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating  

E-Print Network (OSTI)

Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification ...

Li, Xian-Xiang

337

On the multidimensional modeling of fluid flow and heat transfer in SCWRS  

SciTech Connect

The Supercritical Water Reactor (SCWR) has been proposed as one of the six Generation IV reactor design concepts under consideration. The key feature of the SCWR is that water at supercritical pressures is used as the reactor coolant. Although at such pressures, fluids do not undergo phase change as they are heated, the fluid properties experience dramatic variations throughout what is known as the pseudo-critical region. Highly nonuniform temperature and fluid property distributions are expected in the reactor core, which will have a significant impact on turbulence and heat transfer in future SCWRs. The goal of the present work has been to understand and predict the effects of these fluid property variations on turbulence and heat transfer throughout the reactor core. Spline-type property models have been formulated for water at supercritical pressures in order to include the dependence of properties on both temperature and pressure into a numerical solver. New models of turbulence and heat transfer for variable-property fluids have been developed and implemented into the NPHASE-CMFD software. The results for these models have been compared to experimental data from the Korea Atomic Energy Research Inst. (KAERI) for various heat transfer regimes. It is found that the Low-Reynolds {kappa}-{epsilon} model performs best at predicting the experimental data. (authors)

Gallaway, T.; Antal, S. P.; Podowski, M. Z. [Center for Multiphase Research, Rensselaer Polytechnic Inst., 110 8th St., Troy, NY (United States)

2012-07-01T23:59:59.000Z

338

Uncertainty in unprotected loss-of-heat-sink, loss-of-flow, and transient-overpower accidents.  

SciTech Connect

The sensitivities of various output parameters to selected input parameters in unprotected combined loss of heat-sink and loss-of-flow (ULOHS), loss-of-flow (ULOF), and transient-overpower (UTOP) accidents are explored in this report. This line of investigation was suggested by R. A. Wigeland. For an initial examination of potential sensitivities, the MATWS computer program has been compiled as part of a dynamic link library (DLL) so that uncertain input parameters can be sampled from their probability distributions using the GoldSim simulation software. The MATWS program combines the point-kinetics module from the SAS4A/SASSYS computer code with a simplified representation of the reactor heat removal system. Coupling with the GoldSim software by means of a DLL not only provides a convenient mechanism for sampling the stochastic input parameters but also allows the use of various tools that are available in GoldSim for analyzing the dependence of various MATWS outputs on these parameters. Should a decision be made to continue this investigation, the techniques used to couple MATWS and GoldSim could also be applied to couple the SAS4A/SASSYS computer code with GoldSim. The work described here illustrates the type of results that can be obtained from the stochastic analysis.

Morris, E. E.; Nuclear Engineering Division

2007-10-08T23:59:59.000Z

339

Dynamic Heat Flow Measurements to Study the Distribution of Phase-Change Material in an Insulation Matrix  

SciTech Connect

Phase change materials (PCMs) are used in building envelopes in many forms. The PCMs may be encased in discrete pouches or containers, or they may be distributed within another medium, such as in a board or within a loose fill product. In addition, most PCM products are blends containing fire retardants and chemical stabilizers. However, the current test method to measure the dynamic characteristics of PCMs, the differential scanning calorimeter (DSC), requires specimens that are relatively uniform and very small. Considering the limitations of DSC test results when applied to more complex PCM building envelope applications, we developed a combined experimental analytical protocol to determine the amount of phase-change energy actually available to provide thermal storage. This paper presents this new methodology for performing dynamic heat flow analysis of complex PCM-enhanced building materials. The experimental analytical protocol uses a conventional heat-flow apparatus and three-dimensional (3-D), finite-difference modeling. Based upon results from this methodology, ORNL researchers developed a simplified one-dimensional (1-D) model that can be easily used in whole-building simulations. This paper describes this methodology as applied to an insulation assembly containing a complex array of PCM pouches.

Kosny, Jan [ORNL] [ORNL; Stovall, Therese K [ORNL] [ORNL; Yarbrough, David W [ORNL] [ORNL

2010-01-01T23:59:59.000Z

340

STOCHASTIC HEATING, DIFFERENTIAL FLOW, AND THE ALPHA-TO-PROTON TEMPERATURE RATIO IN THE SOLAR WIND  

SciTech Connect

We extend previous theories of stochastic ion heating to account for the motion of ions along the magnetic field B . We derive an analytic expression for the temperature ratio T{sub i}/T{sub p} in the solar wind assuming that stochastic heating is the dominant ion heating mechanism, where T{sub i} is the perpendicular temperature of species i and T{sub p} is the perpendicular proton temperature. This expression describes how T{sub i}/T{sub p} depends upon U{sub i} and ?{sub ?p}, where U{sub i} is the average velocity along B of species i in the proton frame and ?{sub ?p} is the ratio of the parallel proton pressure to the magnetic pressure, which we take to be ?< 1. We compare our model with previously published measurements of alpha particles and protons from the Wind spacecraft. We find that stochastic heating offers a promising explanation for the dependence of T{sub ?}/T{sub p} on U{sub ?} and ?{sub ?p} when the fractional cross helicity and Alfvén ratio at the proton-gyroradius scale have values that are broadly consistent with solar-wind measurements. We also predict how the temperatures of other ion species depend on their drift speeds.

Chandran, B. D. G.; Verscharen, D.; Isenberg, P. A.; Bourouaine, S. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Quataert, E. [Astronomy Department and Theoretical Astrophysics Center, 601 Campbell Hall, The University of California, Berkeley, CA 94720 (United States); Kasper, J. C., E-mail: benjamin.chandran@unh.edu, E-mail: s.bourouaine@unh.edu, E-mail: phil.isenberg@unh.edu, E-mail: daniel.verscharen@unh.edu, E-mail: eliot@astro.berkeley.edu, E-mail: jkasper@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

2013-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DRAIN-BACK PROTECTED LOW-FLOW SOLAR HEATING SYSTEM WITH DISTRIBUTED ELEVATED THERMALLY STRATIFIED STORAGE  

Science Journals Connector (OSTI)

ABSTRACT Design considerations concerning a drain-back freeze and overheat protection system are given with emphasis on nitrogen management and thermal stratification of an elevated distributed storage. The actual system of GNT in Berg, Federal Republic of Germany is described. KEYWORDS Solar Heating; Freeze Protection; Overheat Protection; Drain-Back System;

W.B. VELTKAMP; J. VAN BERKEL; A.T. KEESMAN

1990-01-01T23:59:59.000Z

342

Analysis of Heat Flow Data—I Detailed Observations in a Single Borehole  

Science Journals Connector (OSTI)

......determination of a single borehole may be considerablygreater...selected30-msection of borehole may yield a useful heat...Resourcesfor financing the drilling of the borehole; to the National Research...for pointing out the large amount of climatic information......

A. E. Beck; A. S. Judge

1969-10-01T23:59:59.000Z

343

Pulsatile flow and heat transfer of a magneto-micropolar fluid through a stenosed artery under the influence of body acceleration  

E-Print Network (OSTI)

With an aim to investigate the effect of externally imposed body acceleration and magnetic field on pulsatile flow of blood through an arterial segment having stenosis is under consideration in this paper. The flow of blood is presented by a unsteady micropolar fluid and the heat transfer characteristics have been taken into account. The non-linear equations that governing the flow are solved numerically using finite difference technique by employing a suitable coordinate transformation. The numerical results have been observed for axial and microrotation component of velocity, fluid acceleration, wall shear stress(WSS), flow resistance, temperature and the volumetric flow rate. It thus turns out that the rate of heat transfer increases with the increase of Hartmann number $H$, while the wall shear stress has a reducing effect on the Hartmann number $H$ and an enhancing effect on microrotation parameter $K$ as well as the constriction height $\\delta$.

Shit, G C

2012-01-01T23:59:59.000Z

344

UNSAT-H Version 3.0: Unsaturated Soil Water and Heat Flow Model Theory, User Manual, and Examples  

SciTech Connect

The UNSAT-H model was developed at Pacific Northwest National Laboratory (PNNL) to assess the water dynamics of arid sites and, in particular, estimate recharge fluxes for scenarios pertinent to waste disposal facilities. During the last 4 years, the UNSAT-H model received support from the Immobilized Waste Program (IWP) of the Hanford Site's River Protection Project. This program is designing and assessing the performance of on-site disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site (LMHC 1999). The IWP is interested in estimates of recharge rates for current conditions and long-term scenarios involving the vadose zone disposal of tank wastes. Simulation modeling with UNSAT-H is one of the methods being used to provide those estimates (e.g., Rockhold et al. 1995; Fayer et al. 1999). To achieve the above goals for assessing water dynamics and estimating recharge rates, the UNSAT-H model addresses soil water infiltration, redistribution, evaporation, plant transpiration, deep drainage, and soil heat flow as one-dimensional processes. The UNSAT-H model simulates liquid water flow using Richards' equation (Richards 1931), water vapor diffusion using Fick's law, and sensible heat flow using the Fourier equation. This report documents UNSAT-H .Version 3.0. The report includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plants, and the code manual. Version 3.0 is an, enhanced-capability update of UNSAT-H Version 2.0 (Fayer and Jones 1990). New features include hysteresis, an iterative solution of head and temperature, an energy balance check, the modified Picard solution technique, additional hydraulic functions, multiple-year simulation capability, and general enhancements.

MJ Fayer

2000-06-12T23:59:59.000Z

345

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network (OSTI)

of Fracture-Matrix Heat Transfer Jens T. Birkholzer andon the magnitude of heat transfer from the matrix, waterthe interface area for heat transfer between the matrix and

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

346

Transient fluid and heat flow modeling in coupled wellbore/reservoir systems  

E-Print Network (OSTI)

showing cleanup period.......................................................... 68 Figure 5.21 Geothermal gradient and sea water temperature profile............................. 68 Figure 5.22 Mimicking oil production rate input... into this category. 5 Miller (1980) developed one of the earliest transient wellbore simulators, which accounts for changes in geothermal-fluid energy while flowing up the wellbore. In this model, mass and momentum equations are combined...

Izgec, Bulent

2009-05-15T23:59:59.000Z

347

Steady and Transient Characteristics of Catalytic Flow Reverse Reactor Integrated with Central Heat Exchanger  

Science Journals Connector (OSTI)

Most projects among them employ thermal flow-reversal oxidizers. ... Methane is oxidized into CO2 and water, and its global warming potential is reduced by 87%. ... The regenerative combustion can achieve theoretically an autothermal run of system, even if methane in air is 0.2% v/v. ...

Sheng Wang; Diannan Gao; Shudong Wang

2014-07-28T23:59:59.000Z

348

3-D Numerical Simulation of Heat Transfer and Turbulent Flow in a Receiver Tube of Solar Parabolic Trough Concentrator with Louvered Twisted-tape Inserts  

Science Journals Connector (OSTI)

Abstract High temperature and higher-thermal efficiency for CSP cycles are main goals to improve trough collector's technologies. For a parabolic trough collector the major factor for optimum heat transfer from sun to the heat transfer fluid passing in the absorber tube is to have high convection heat transfer coefficient. Literature shows that absorber tubes with various tape inserts are used and recommended to produce high convection coefficient. Typical twisted-tape (TT) enhances heat exchange between tube surface and working fluid by generating turbulent swirling flow. In this study, enhancement of convection coefficient in the receiver tube of a solar parabolic trough concentrator that the absorber tube is equipped with a new perforated louvered twisted- tape (LTT) is studied numerically. For numerical simulations three different twist ratios (TR), TR=y/W= 2.67, 4, 5.33 (y is the length required for one twist and W is the width of the tape) are used in an experimental laboratory trough collector. Flow is assumed turbulent due to louvered perforated surface and rotational shape of the tape. For thermal boundary condition, non- uniform wall solar heat flux is determined by Soltrace code on the outer surface of the absorber tube. Heat transfer rate and pressure drop are determined for fully developed condition for several Reynolds numbers based on the tube diameter and flow mean velocity. Results show that the heat transfer coefficient and pressure drop increase significantly in comparison with a typical plain twisted-tape in the tube and a plain tube.

Sh. Ghadirijafarbeigloo; A.H. Zamzamian; M. Yaghoubi

2014-01-01T23:59:59.000Z

349

A New Heat Transfer Fluid for Concentrating Solar Systems: Particle Flow in Tubes  

Science Journals Connector (OSTI)

Abstract This paper demonstrates a new concept of heat transfer fluid (HTF) for CSP applications, developed in the frame of both a National and a European project (CSP2 FP7 project). It involves a dense suspension of small solid particles. This innovation is currently. The dense suspension of particles receiver (DSPR) consists in creating the upward circulation of a dense suspension of particles (solid fraction in the range 30%-40%) in vertical absorbing tubes submitted to concentrated solar energy. So the suspension acts as a heat transfer fluid with a heat capacity similar to a liquid HTF but only limited in temperature by the working temperature limit of the receiver tubes. Suspension temperatures up to 750 °C are expected for metallic tubes, thus opening new opportunities for high efficiency thermodynamic cycles such as supercritical steam and carbon dioxide. First experimental results were obtained during on-sun testing with CNRS solar facility of a single tube DSPR for an outlet temperature lower than 300 °C. In this lab-scale experimental setup, the solar absorber is a single opaque metallic tube, containing upward solid circulation, located inside a cylindrical cavity dug in a receiver made of refractory, and submitted to the concentrated solar radiation through a 0.10m x 0.50m slot. The absorber is a 42.4 mm o.d. stainless steel tube. SiC was used because of its thermal properties, availability and rather low cost. The 63.9 ?m particle mean diameter permits a good fluidization with almost no bubbles, for very low air velocities. Solar flux densities in the range 200-250 kW/m2 were tested resulting in solid temperature increase ranging between 50 and 150 °C. The mean wall-to-suspension heat transfer coefficient (h) was calculated from experimental data. It is very sensitive to the solid fraction of the solid suspension, which was varied from 27% to 36%. These latter values are one order of magnitude larger than the solid fraction in circulating fluidized beds operating at much higher air velocity. Heat transfer coefficients ranging from 140 to 500 W/m2.K have been obtained; i.e. 400 W/m2.K mean value for standard operating conditions at low temperature.

G. Flamant; D. Gauthier; H. Benoit; J.-L. Sans; B. Boissière; R. Ansart; M. Hemati

2014-01-01T23:59:59.000Z

350

Connecting the second exhaust-heat boiler to the operating first one under the conditions of flow circuits of combined-cycle plants with two gas-turbine units and one steam turbine  

Science Journals Connector (OSTI)

Problems arising with connecting the second exhaust-heat boiler to the first exhaust-heat boiler under load in the case of flow circuits of combined-cycle plants of type PGU-450 are considered. Similar problem...

Yu. A. Radin; I. A. Grishin; T. S. Kontorovich…

2006-03-01T23:59:59.000Z

351

Momentum and heat fluxes in a turbulent air flow over a wet, smooth boundary  

E-Print Network (OSTI)

are negligible in directions other than those normal to the boundary surface. Such equa? tions were first employed by Boussinesq (5* 6). For turbulent flow, he suggested the equatiisns, ? IS ^7/ (momentum flux)/ - U and ^ =. Kh (beat flux) where KM and c... of a pre? cision potentiometer. Continuous, uniform water supply to the test surface was achieved by a distilled water supply system composed of glass bottles and copper tubing arranged to supply water at any required rate without attention from...

Rice, Warren

2013-10-04T23:59:59.000Z

352

Experimental study of free and mixed convective flow of air in a heated cavity  

SciTech Connect

Free and mixed convection in a strongly-heated rectangular open cavity have been investigated experimentally, to observe the effects of cavity shape and inclination, and of ambient wind, on the velocity and temperature distribution were observed. The long edges of the cavity were horizontal, and parallel to an axis around which the cavity could be rotated. The aperture plane was either vertical (..cap alpha.. = 0/sup 0/), or inclined downward at ..cap alpha.. - 20/sup 0/ or ..cap alpha.. = 45/sup 0/. The height of the aperture, b, was always 0.0947 m, while the depth of the cavity, a, was set so that a/b = 0.5, 1.0, or 1.46. The bottom and back walls were electrically heated - the top wall was indirectly heated by conduction, radiation and convection. The average wall temperature and the ambient temperature were used to define the dimensionless overheat and Grashof numbers. The Prandtl number was that of air. In the studies of mixed convection, the axis of rotation was horizontal and normal to the ambient wind. The Reynolds number was varied from Re = 120 - 1100 to Re = 2000 - 8740. For both free and mixed convection, wall and gas temperature were measured with thermocouples, and shadowgraph pictures were taken. For pure free convection, three time-averaged velocity components, the corresponding normal Reynolds stress components, and one off-diagonal Reynolds stress component were measured with a two-color laser-Doppler velocimeter. A PDP-11/34 minicomputer controlled the sequence of automatic data acquisition, the statistical data reduction and its storage. Statistical results are presented numerically and graphically for two averaging procedures. The principal quantitative result for free convection is that the rate of convective heat loss across the cavity aperture plane is reduced both by increasing a/b and by increasing ..cap alpha... Qualitative observations are recorded and discussed. The most striking observation was the appearance of a periodic oscillation of frequency 2 to 5.5 Hz.

Humphrey, J.A.C.; Sherman, F.S.

1985-04-01T23:59:59.000Z

353

Towards closing the window on strongly interacting dark matter: Far-reaching constraints from Earth's heat flow  

SciTech Connect

We point out a new and largely model-independent constraint on the dark matter scattering cross section with nucleons, which applies when this quantity is larger than for typical weakly interacting dark matter candidates. When the dark matter capture rate in Earth is efficient, the rate of energy deposition by dark matter self-annihilation products would grossly exceed the measured heat flow of Earth. This improves the spin-independent cross section constraints by many orders of magnitude and closes the window between astrophysical constraints (at very large cross sections) and underground detector constraints (at small cross sections). In the applicable mass range, from {approx}1 to {approx}10{sup 10} GeV, the scattering cross section of dark matter with nucleons is then bounded from above by the latter constraints and hence must be truly weak, as usually assumed.

Mack, Gregory D. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210 (United States); Beacom, John F. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210 (United States); Department of Astronomy, Ohio State University, Columbus, Ohio 43210 (United States); Bertone, Gianfranco [Institut d'Astrophysique de Paris, UMR 7095-CNRS, Universite Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris (France)

2007-08-15T23:59:59.000Z

354

Dependence of thermal diffusivity on organic content for Green River oil shales—Extension of the modified Cheng?Vachon model to the parallel heat?flow case  

Science Journals Connector (OSTI)

In an earlier paper [J. Appl. Phys. 50 2776 (1979)] the modified Cheng?Vachon model was found to give good agreement with experimental data on the variation of thermal diffusivity with organic content for Green River oil shales. Calculations using the model were carried out for the case where heat flows in directions perpendicular to the shale stratigraphic planes. In the present paper the above model is modified to account for experimental trends in the parallel heat?flow case. The modified model provides a self?consistent explanation for the lower degree of anisotropy (relative to theory) that has been experimentally observed for the thermal diffusivity of Green River oil shales.

Y. Wang; K. Rajeshwar; J. DuBow

1980-01-01T23:59:59.000Z

355

An Experimental Study of Upward and Downward Flow of Supercritical Carbon Dioxide in a Straight Pipe Heat Exchanger with Constant Wall Heat Flux  

E-Print Network (OSTI)

An experimental analysis was conducted on a single circular tube heat exchanger using supercritical carbon dioxide as the working fluid. The heat exchanger was operated in two different orientations: vertically upward and downward. The experimental...

Umrigar, Eric Dara

2014-05-01T23:59:59.000Z

356

Urban Sewage Delivery Heat Transfer System (1): Flow Resistance and Energy Analysis  

E-Print Network (OSTI)

? Specific Resistance?s 2/m6? Diameter?mm? Specific Resistance?s 2/m6? Diameter?mm? Specific Resistance?s 2/m6? 10 77392033.96 125 118.87 400 0.249907 15 9024280.53 150 45.23 450 0.133866 20 1964433.28 175 19.98 500 0.076587 25 602024... pipe and the old cast iron pipe. It is 0.30 0.021 z d? = (6) (1.2/um> )s Defined the ratio of flow resistance of mediate water and sewage is zHw, the ratio of the flux is wz,and the ratio of velocity is z wUr u u= , supposed the inside...

Zhang, C.; Wu, R.; Li, G.; Li, X.; Huang, L.; Sun, D.

2006-01-01T23:59:59.000Z

357

Phase transitions and Geometrothermodynamics of Regular black holes  

E-Print Network (OSTI)

In this paper we study the thermodynamics and state space geometry of regular black hole solutions such as Bardeen black hole, Ay\\'{o}n-Beato and Garc\\'{i}a black hole, Hayward black hole and Berej-Matyjasek-Trynieki-Wornowicz black hole. We find that all these black holes show second order thermodynamic phase transitions(SOTPT) by observing discontinuities in heat capacity-entropy graphs as well as the cusp type double point in free energy-temperature graph. Using the formulation of geometrothermodynamics we again find the singularities in the heat capacity of the black holes by calculating the curvature scalar of the Legendre invariant metric.

R. Tharanath; Jishnu Suresh; V. C. Kuriakose

2014-06-16T23:59:59.000Z

358

Laser bottom hole assembly  

DOE Patents (OSTI)

There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

2014-01-14T23:59:59.000Z

359

Segmented heat exchanger  

DOE Patents (OSTI)

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

360

A fast method for evaluating a simplified hot dry rock heat flow problem  

SciTech Connect

I present optimizations to the computation of Elsworth's single zone, hot dry rock thermal recovery model. These enhancements lead to as much as a 6-fold increase in computational speed. The greatest time savings derive from an efficient evaluation of the model's thermal response due to a step in heat flux, which is required for solution of the more general problem via Duhamel's Principle. Further enhancements come from taking advantage of the special structure of the model's finite difference equation. Reductions in execution speed were sought in order to facilitate the model's implementation on AT-class microcomputers. The PC-based application requires multiple evaluations of the model. Typical execution times on a 33 MHz 80386 microcomputer for 128 time steps were 7 seconds, as compared with 25-42 seconds for the non-optimized approach, and for 512 time steps were 28 and 100-168 seconds, respectively; the timing of the non-optimized method depended upon particulars of the dimensionless variables.

Adair, R.G.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-B\\'enard convection  

E-Print Network (OSTI)

The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-B\\'enard convection. Combinations of no-slip, stress-free and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between $10^8$ and $10^{11}$ the heat transport is lower for $\\Gamma = 0.33$ than for $\\Gamma = 1$ in case of no-slip sidewalls. This is surprisingly opposite for stress-free sidewalls, where the heat transport increases for lower aspect-ratio. In wider cells the aspect-ratio dependence is observed to disappear for $\\text{Ra} \\ge 10^{10}$. Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and horizontal zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall s...

van der Poel, Erwin P; Verzicco, Roberto; Lohse, Detlef

2015-01-01T23:59:59.000Z

362

6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xi'an, China, 11-15 July 2009  

E-Print Network (OSTI)

6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xi, hydrogen fuel, obtained from ethanol, is a potentially strong contender as an energy carrier based for more secure and cleaner energy carrier (Barreto, Makihira, and Riahi 2003). Hydrogen can be produced

Khandekar, Sameer

363

Two-dimensional model of the air flow and temperature distribution in a cavity-type heat receiver of a solar stirling engine  

SciTech Connect

A theoretical study on the air flow and temperature in the heat receiver, affected by free convection, of a Stirling Engine for a Dish/Stirling Engine Power System is presented. The standard {kappa}-{epsilon} turbulence model for the fluid flow has been used and the boundary conditions employed were obtained using a second level mathematical model of the Stirling Engine working cycle. Physical models for the distribution of the solar insolation from the Concentrator on the bottom and side walls of the cavity-type heat receiver have been taken into account. The numerical results show that most of the heat losses in the receiver are due to re-radiation from the cavity and conduction through the walls of the cavity. It is in the region of the boundary of the input window of the heat receiver where there is a sensible reduction in the temperature in the shell of the heat exchangers and this is due to the free convection of the air. Further, the numerical results show that convective heat losses increase with decreasing tilt angle.

Makhkamov, K.K.; Ingham, D.B.

1999-11-01T23:59:59.000Z

364

Crustal Heat Flow: a guide to measurement and modeling G. R. Beardsmore & J. P. Cull, Cambridge University Press, 2001, ISBN 0-521-79289-4, Hardback, £70, and ISBN 0-521-79703-9, Softback, £24.95  

Science Journals Connector (OSTI)

......since the multi-author Handbook of Terrestrial heat flow...data collection, but does not mention Stein's...examples. As before, it does not draw on recent examples...simple shear models and does not discuss more advanced...Thermal Conductivity, in Handbook of Terrestrial Heat-Flow......

Christoph Clauser

2003-05-01T23:59:59.000Z

365

Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating  

SciTech Connect

The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850��������C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys���¢�������� weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in t

Kumar Sridharan; Mark Anderson; Todd Allen; Michael Corradini

2012-01-30T23:59:59.000Z

366

Update and assessment of geothermal economic models, geothermal fluid flow and heat distribution models, and geothermal data bases  

SciTech Connect

Numerical simulation models and data bases that were developed for DOE as part of a number of geothermal programs have been assessed with respect to their overall stage of development and usefulness. This report combines three separate studies that focus attention upon: (1) economic models related to geothermal energy; (2) physical geothermal system models pertaining to thermal energy and the fluid medium; and (3) geothermal energy data bases. Computerized numerical models pertaining to the economics of extracting and utilizing geothermal energy have been summarized and catalogued with respect to their availability, utility and function. The 19 models that are discussed in detail were developed for use by geothermal operators, public utilities, and lending institutions who require a means to estimate the value of a given resource, total project costs, and the sensitivity of these values to specific variables. A number of the models are capable of economically assessing engineering aspects of geothermal projects. Computerized simulations of heat distribution and fluid flow have been assessed and are presented for ten models. Five of the models are identified as wellbore simulators and five are described as reservoir simulators. Each model is described in terms of its operational characteristics, input, output, and other pertinent attributes. Geothermal energy data bases are reviewed with respect to their current usefulness and availability. Summaries of eight data bases are provided in catalogue format, and an overall comparison of the elements of each data base is included.

Kenkeremath, D. (ed.)

1985-05-01T23:59:59.000Z

367

THE INFLUENCE OF REPOSITORY THERMAL LOAD ON MULTIPHASE FLOW AND HEAT TRANSFER IN THE UNSATURATED ZONE OF YUCCA MOUNTAIN  

SciTech Connect

This paper investigates the impact of proposed repository thermal-loading on mountain-scale flow and heat transfer in the unsaturated fractured rock of Yucca Mountain, Nevada. In this context, a model has been developed to study the coupled thermal-hydrological (TH) processes at the scale of the entire Yucca Mountain. This mountain-scale TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the latest rock thermal and hydrological properties. The TH model consists of a two-dimensional north-south vertical cross section across the entire unsaturated zone model domain and uses refined meshes near and around the proposed repository block, based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climatic conditions. The model simulations provide insights into thermally affected liquid saturation, gas- and liquid-phase fluxes, and elevated water and rock temperature, which in turn allow modelers to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts.

Yu-Shu Wu, Sumit Mukhopadhyay, Keni Zhang, and G. S. Bodvarsson

2006-04-16T23:59:59.000Z

368

Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube  

Science Journals Connector (OSTI)

Abstract The heat transfer coefficient and friction factor of TiO2 and SiO2 water based nanofluids flowing in a circular tube under turbulent flow are investigated experimentally under constant heat flux boundary condition. TiO2 and SiO2 nanofluids with an average particle size of 50 nm and 22 nm respectively are used in the working fluid for volume concentrations up to 3.0%. Experiments are conducted at a bulk temperature of 30 °C in the turbulent Reynolds number range of 5000 to 25,000. The enhancements in viscosity and thermal conductivity of TiO2 are greater than SiO2 nanofluid. However, a maximum enhancement of 26% in heat transfer coefficients is obtained with TiO2 nanofluid at 1.0% concentration, while SiO2 nanofluid gave 33% enhancement at 3.0% concentration. The heat transfer coefficients are lower at all other concentrations. The particle concentration at which the nanofluids give maximum heat transfer has been determined and validated with property enhancement ratio. It is observed that the pressure drop is directly proportional to the density of the nanoparticle.

W.H. Azmi; K.V. Sharma; P.K. Sarma; Rizalman Mamat; G. Najafi

2014-01-01T23:59:59.000Z

369

Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations  

E-Print Network (OSTI)

multiphase fluid flow, heat transfer, and deformation infor multiphase fluid flow, heat transfer and deformation in

Rutqvist, J.

2011-01-01T23:59:59.000Z

370

Numerical modeling of the aerodynamics, heat exchange, and combustion of a polydisperse ensemble of coke-ash particles in ascending axisymmetric two-phase flow  

SciTech Connect

A two-dimensional stationary model of motion, heat and mass exchange, and chemical reaction of polydisperse coke and ash particles in ascending gas-suspension flow has been constructed with allowance for the turbulent and pseudo turbulent mechanisms of transfer in the dispersed phase. The system of equations that describes motion and heat transfer in the solid phase has been closed at the level of the equations for the second moments of velocity and temperature pulsations, whereas the momentum equations of the carrying medium have been closed using the equation for turbulent gas energy, which allows for the influence of the particles and heterogeneous reactions.

B.B. Rokhman [National Academy of Sciences of Ukraine, Kiev (Ukraine). Institute of Coal Power Technologies

2009-07-15T23:59:59.000Z

371

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

Energy; Grid systems; Optimization; Heat flow; Financialof grid power and by utilizing combined heat and power (CHP)

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

372

Geographical Coincidence of High Heat Flow, High Seismicity, and Upwelling, with Hydrocarbon Deposits, Phosphorites, Evaporites, and Uranium Ores  

Science Journals Connector (OSTI)

...sea and seismicity and geothermal heat flux. We suggest...upwelling caused by the geothermal heat (2), which brings...sedimentary rocks. High geothermal heat fluxes correlate...Lawrence River, as well as a fourth line along...Arizona, Montana, New Mexico, and Utah. Lignites...

L. M. Libby; W. F. Libby

1974-01-01T23:59:59.000Z

373

Reply to “Comment on ‘Heat transfer and fluid flow in microchannels and nanochannels at high Knudsen number using thermal lattice-Boltzmann method”’  

Science Journals Connector (OSTI)

In this reply to the Comment by Li-Shi Luo, we discuss the results of the lattice Bhatnagar-Gross-Krook (LBGK) model for high-Knudsen-number (Kn) flow and heat transfer, in the range of Kn?1. We present various studies employing the LBGK model for high-Kn flow and heat transfer simulations. It is concluded that, with the use of the LBGK model in the thermal lattice Boltzmann method for Kn?0.8, some approximations appear in the negative pressure deviation from the linear distribution along the channel. But for Kn<0.8, the velocity and temperature profiles, compressibility effects, Knudsen layer capturing, and Knudsen paradox phenomenon can be predicted by the LBGK model. We also reject Li-Shi Luo’s claim about the nonconvergence of our numerical scheme by presenting a velocity profile across the channel corresponding to three different high-resolution meshes.

J. Ghazanfarian and A. Abbassi

2011-10-25T23:59:59.000Z

374

The Impact of Refrigerant Charge, Air Flow and Expansion Devices on the Measured Performance of an Air-Source Heat Pump Part I  

SciTech Connect

This paper describes extensive tests performed on a 3-ton R-22 split heat pump in heating mode. The tests contain 150 steady-state performance tests, 18 cyclic tests and 18 defrost tests. During the testing work, the refrigerant charge level was varied from 70 % to 130% relative to the nominal value; the outdoor temperature was altered by three levels at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C); indoor air flow rates ranged from 60% to 150% of the rated air flow rate; and the expansion device was switched from a fixed-orifice to a thermal expansion value. Detailed performance data from the extensive steady state cyclic and defrost testing performed were presented and compared.

Shen, Bo [ORNL

2011-01-01T23:59:59.000Z

375

Red Sea heat flow  

Science Journals Connector (OSTI)

......measurements whereas Girdler estimated thermal conductivities from the literature...valuesinclude four for the Sudan coast and three for the Ethiopian...be associated with transient thermal effects such as slumping of...downgoinglimbs of a hydro- thermal convection cells. In general......

R. W. Girdler; T. R. Evans

1977-10-01T23:59:59.000Z

376

Modeling of strongly heat-driven flow processes at a potential high-level nuclear waste repository at Yucca Mountain, Nevada  

SciTech Connect

Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs. fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed.

Pruess, K.; Tsang, Y.

1993-01-01T23:59:59.000Z

377

The RealGas and RealGasH2O options of the TOUGH+ code for the simulation of coupled fluid and heat flow in tight/shale gas systems  

Science Journals Connector (OSTI)

We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas. The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight ... Keywords: Coupled flow and heat flow, Fractured media, Multicomponent flow, Numerical simulation, Real gas mixture, Shale gas

George J. Moridis, Craig M. Freeman

2014-04-01T23:59:59.000Z

378

Deceleration of Alpha Particles in the Solar Wind by Instabilities and the Rotational Force: Implications for Heating, Azimuthal Flow, and the Parker Spiral Magnetic Field  

E-Print Network (OSTI)

Protons and alpha particles in the fast solar wind are only weakly collisional and exhibit a number of non-equilibrium features, including relative drifts between particle species. Two non-collisional mechanisms have been proposed for limiting differential flow between alpha particles and protons: plasma instabilities and the rotational force. Both mechanisms decelerate the alpha particles. In this paper, we derive an analytic expression for the rate $Q_{\\mathrm{flow}}$ at which energy is released by alpha-particle deceleration, accounting for azimuthal flow and conservation of total momentum. We find that $Q_{\\mathrm{flow}} > 0 $ at $r r_{\\mathrm{crit}}$. We compare the value of $Q_{\\mathrm{flow}}$ at $r< r_{\\mathrm{crit}}$ with empirical heating rates for protons and alpha particles, denoted $Q_{\\mathrm{p}}$ and $Q_{\\alpha}$, deduced from in-situ measurements of fast-wind streams from the Helios and Ulysses spacecraft. We find that $Q_{\\mathrm{flow}}$ exceeds $Q_{\\alpha}$ at $r < 1\\,\\mathrm{AU}$, $Q_{...

Verscharen, Daniel; Bourouaine, Sofiane; Hollweg, Joseph V

2014-01-01T23:59:59.000Z

379

Development and adaptation of conduction and radiation heat-transfer computer codes for the CFTL. [Core Flow Test Loop; RODCON; HOTTEL  

SciTech Connect

RODCON and HOTTEL are two computational methods used to calculate thermal and radiation heat transfer for the Core Flow Test Loop (CFTL) analysis efforts. RODCON was developed at ORNL to calculate the internal temperature distribution of the fuel rod simulator (FRS) for the CFTL. RODCON solves the time-dependent heat transfer equation in two-dimensional (R angle) cylindrical coordinates at an axial plane with user-specified radial material zones and time- and position-variant surface conditions at the FRS periphery. Symmetry of the FRS periphery boundary conditions is not necessary. The governing elliptic, partial differential heat equation is cast into a fully implicit, finite-difference form by approximating the derivatives with a forward-differencing scheme with variable mesh spacing. The heat conduction path is circumferentially complete, and the potential mathematical problem at the rod center can be effectively ignored. HOTTEL is a revision of an algorithm developed by C.B. Baxi at the General Atomic Company (GAC) to be used in calculating radiation heat transfer in a rod bundle enclosed in a hexagonal duct. HOTTEL uses geometric view factors, surface emissivities, and surface areas to calculate the gray-body or composite view factors in an enclosure having multiple reflections in a nonparticipating medium.

Conklin, J.C.

1981-08-01T23:59:59.000Z

380

Thermal Gradient Holes At Walker-Lane Transitional Zone Region (Pritchett,  

Open Energy Info (EERE)

Walker-Lane Transitional Zone Region (Pritchett, Walker-Lane Transitional Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Walker-Lane Transitional Zone Region (Pritchett, 2004) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

General solutions for thermopiezoelectrics with various holes under thermal loading  

E-Print Network (OSTI)

induced by thermal loads. The loads may be uniform remote heat ¯ow, point heat source and temperature elastic plate with an hole of various shapes subjected to remote uniform mechanical loading. For plane

Qin, Qinghua

382

On the asymmetric distribution of heat loss from the Earth’s interior  

Science Journals Connector (OSTI)

Mean heat flows and heat Josses of the Northern and Southern hemispheres ... degree 12 spherical harmonic representation of the global heat flow field (Pollacket al., 1993). Mean heat flows and heat losses of 0° ...

Yang Wang; Jiyang Wang; Zongji Ma

1998-09-01T23:59:59.000Z

383

Conjugated heat transfer in the flow of a non-Newtonian fluid with variable properties in a flat duct  

Science Journals Connector (OSTI)

We solve the problem of the flow of a nonlinearly viscoelastic fluid in the presence of large pressure drops and appreciable nonisothermicity.

N. V. Tyabin; O. Kh. Dakhin; A. V. Baranov…

1983-09-01T23:59:59.000Z

384

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network (OSTI)

Flow calculations for Yucca Mountain groundwater travelunsaturated model of Yucca Mountain, Nevada, Journal ofinto drifts at Yucca Mountain, Journal of Contaminant

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

385

White holes and eternal black holes  

E-Print Network (OSTI)

We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi- thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal.

Stephen D. H. Hsu

2011-11-16T23:59:59.000Z

386

Fluidized bed heat treating system  

DOE Patents (OSTI)

Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

Ripley, Edward B; Pfennigwerth, Glenn L

2014-05-06T23:59:59.000Z

387

Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange  

DOE Patents (OSTI)

A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA); Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA)

1986-01-01T23:59:59.000Z

388

Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange  

DOE Patents (OSTI)

A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

1983-09-21T23:59:59.000Z

389

Convective Heat Transfer and Fluid Dynamics in Heat Exchanger Applications  

Science Journals Connector (OSTI)

This article concerns the local structure of flow and temperature fields as well as overall heat transfer coefficients and pressure drops in flow passages of relevance for heat exchangers. Results from investi...

Bengt Sundén

1999-01-01T23:59:59.000Z

390

A Parallel Implementation of the TOUGH2 Software Package for Large Scale Multiphase Fluid and Heat Flow Simulations  

E-Print Network (OSTI)

6 blocks in a Yucca Mountain nuclear waste site study. Keywords. Ground water flow, grid groundwater flow related problems such as nuclear waste isolation, environmental remediation, and geothermal many important areas in today's society, such as nuclear waste isolation, environmental remediation

Elmroth, Erik

391

A Parallel Implementation of the TOUGH2 Software Package for Large Scale Multiphase Fluid and Heat Flow Simulations  

E-Print Network (OSTI)

with ¢¡¤£¦¥§ ¨¡© blocks in a Yucca Mountain nuclear waste site study. Keywords. Ground water flow, grid partitioning groundwater flow related problems such as nuclear waste isolation, environmental remediation, and geothermal important areas in today's society, such as nuclear waste isolation, environmental remediation, geothermal

Elmroth, Erik

392

Influences of peripherally-cut twisted tape insert on heat transfer and thermal performance characteristics in laminar and turbulent tube flows  

SciTech Connect

Effects of peripherally-cut twisted tape insert on heat transfer, friction loss and thermal performance factor characteristics in a round tube were investigated. Nine different peripherally-cut twisted tapes with constant twist ratio (y/W = 3.0) and different three tape depth ratios (DR = d/W = 0.11, 0.22 and 0.33), each with three different tape width ratios (WR = w/W = 0.11, 0.22 and 0.33) were tested. Besides, one typical twisted tape was also tested for comparison. The measurement of heat transfer rate was conducted under uniform heat flux condition while that of friction factor was performed under isothermal condition. Tests were performed with Reynolds number in a range from 1000 to 20,000, using water as a working fluid. The experimental results revealed that both heat transfer rate and friction factor in the tube equipped with the peripherally-cut twisted tapes were significantly higher than those in the tube fitted with the typical twisted tape and plain tube, especially in the laminar flow regime. The higher turbulence intensity of fluid in the vicinity of the tube wall generated by the peripherally-cut twisted tape compared to that induced by the typical twisted tape is referred as the main reason for achieved results. The obtained results also demonstrated that as the depth ratio increased and width ratio decreased, the heat transfer enhancement increased. Over the range investigated, the peripherally-cut twisted tape enhanced heat transfer rates in term of Nusselt numbers up to 2.6 times (turbulent regime) and 12.8 times (laminar regime) of that in the plain tube. These corresponded to the maximum performance factors of 1.29 (turbulent regime) and 4.88 (laminar regime). (author)

Eiamsa-ard, Smith [Department of Mechanical Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand); Seemawute, Panida [Department of Civil Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand); Wongcharee, Khwanchit [Department of Chemical Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand)

2010-09-15T23:59:59.000Z

393

Woven heat exchanger  

DOE Patents (OSTI)

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

394

Measurements of Heats of Adsorption of Organic Vapours on Adsorbents of High Surface Area using a Continuous Flow Calorimeter  

Science Journals Connector (OSTI)

... gel. It has been reported3 that heats of adsorption of this magnitude are obtained on adsorbents of this type when the surface coverage is low. This probably explains the very ...

G. H. BELL; A. J. GROSZEK

1961-09-16T23:59:59.000Z

395

Heat transfer and fluid flow over a single disk in a fluid rotating as a rigid body  

Science Journals Connector (OSTI)

Laminar heat transfer problem is analyzed for a disk rotating ... the angular speed ? in a co-rotating fluid (with the angular speed ?). The fluid is swirled in accordance with a forced- ... self-similar profiles...

Igor V. Shevchuk Ph.D.; Matthias H. Buschmann

2004-08-01T23:59:59.000Z

396

Development of Micro/Nano-Scale Sensors for Investigation of Heat Transfer in Multi-Phase Flows  

E-Print Network (OSTI)

surfaces. Similar experiments were also performed on a pure copper surface. In addition, experiments were performed using compact condensers. Micro-scale patterns fabricated on the refrigerant side of the compact heat exchanger were observed to cause...

Jeon, Sae Il

2012-10-19T23:59:59.000Z

397

OPTIMIZATION AND DESIGN GUIDELINES FOR HIGH FLUX MICRO-CHANNEL HEAT SINKS FOR LIQUID AND GASEOUS SINGLE-PHASE FLOW  

E-Print Network (OSTI)

orders of magnitude, especially for high heat flux devices. Using water and air as coolants, designs with the optimization tool are generalized and optimum configurations are illustrated on design charts. Physical trends

Müller, Norbert

398

Thermodynamics of dilaton-axion black holes  

SciTech Connect

Considering a generalized action for the Einstein-Maxwell theory in four dimensions coupled to scalar and pseudoscalar fields, the thermodynamic properties of asymptotically flat black hole solutions in such a background are investigated. Bekenstein-Hawking area-entropy law is verified for these class of black holes. From the property of specific heat, it is shown that such black holes can be stable for a certain choice of the parameters like charge, mass, and the scalar vacuum expectation value. The possibility of a black hole phase transition is discussed in this context.

Ghosh, Tanwi; SenGupta, Soumitra [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700 032 (India)

2008-12-15T23:59:59.000Z

399

Slim Holes | Open Energy Information  

Open Energy Info (EERE)

Slim Holes Slim Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Slim Holes Details Activities (30) Areas (24) Regions (1) NEPA(6) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: If core is collected Stratigraphic/Structural: If core is collected Hydrological: Fluid flow and water chemistry Thermal: Thermal gradient or bottom hole temperature Cost Information Low-End Estimate (USD): 100.0010,000 centUSD 0.1 kUSD 1.0e-4 MUSD 1.0e-7 TUSD / foot Median Estimate (USD): 169.8916,989 centUSD 0.17 kUSD 1.6989e-4 MUSD 1.6989e-7 TUSD / foot High-End Estimate (USD): 200.0020,000 centUSD

400

Mixed convection in the thermal entrance region of symmetrically and asymmetrically heated vertical flat duct with upward or downward air-flow  

SciTech Connect

A numerical investigation has been conducted on the effect of body force on pure forced convection of the upward or downward air-flow in the thermal entrance region between vertical parallel plates with uniform wall temperature. The governing equations based on the usual Boussinesq approximation are solved for the symmetrically and asymmetrically heated parallel plates. Numerically predicted friction factors C{sub f} and local Nusselt numbers Nu{sub x} are compared with their counterparts, C*{sub f} and Nu*{sub x}, for pure forced convection.

Naito, Etsuro; Nagano, Yasutaka

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Comment on “Heat transfer and fluid flow in microchannels and nanochannels at high Knudsen number using thermal lattice-Boltzmann method”  

Science Journals Connector (OSTI)

In this Comment we reveal the falsehood of the claim that the lattice Bhatnagar-Gross-Krook (BGK) model “is capable of modeling shear-driven, pressure-driven, and mixed shear-pressure-driven rarified [sic] flows and heat transfer up to Kn=1 in the transitional regime” made in a recent paper [Ghazanfarian and Abbassi, Phys. Rev. E 82, 026307 (2010)]. In particular, we demonstrate that the so-called “Knudsen effects” described are merely numerical artifacts of the lattice BGK model and they are unphysical. Specifically, we show that the erroneous results for the pressure-driven flow in a microchannel imply the false and unphysical condition that 6?Kn

Li-Shi Luo

2011-10-25T23:59:59.000Z

402

Atmospheric Flow Development and Associated Changes in Turbulent Sensible Heat Flux over a Patchy Mountain Snow Cover  

Science Journals Connector (OSTI)

In this study we numerically investigated the small-scale boundary layer dynamics and the energy balance over a fractional snow-cover. The atmospheric boundary layer flows over a patchy snow-cover were calculated with an atmospheric model (...

Rebecca Mott; Michael Lehning; Megan Daniels; Michael Lehning

403

Numerical analysis of the scavenge flow and convective heat transfer in large two-stroke marine diesel engines  

Science Journals Connector (OSTI)

Abstract A novel computational fluid dynamics (CFD) model is presented for the study of the scavenging process and convective heat transfer in a large two-stroke low-speed uniflow-scavenged marine diesel engine. The engine is modeled using a fully resolved 12° sector, corresponding to one scavenge port, with cyclic boundaries in the tangential direction. The CFD model is strongly coupled to experiments and effectively provides a high order “interpolation” of the engine processes through the solution of the Reynolds-Averaged Navier–Stokes (RANS) equations subject to boundary conditions obtained through experiments. The imposed experimental data includes time histories of the pressure difference across the engine and the heat release during combustion. The model is validated by a numerical sensitivity analysis and through a comparison of model predictions and experimental data, which shows a good agreement. The results show an effective scavenging and a low convective heat loss in agreement with experimental data for large marine diesel engines.

E. Sigurdsson; K.M. Ingvorsen; M.V. Jensen; S. Mayer; S. Matlok; J.H. Walther

2014-01-01T23:59:59.000Z

404

Numerical predictions on fluid flow and heat transfer in U-shaped channel with the combination of ribs, dimples and protrusions under rotational effects  

Science Journals Connector (OSTI)

Abstract Recently, dimple and protrusion structure has been proved as an effective heat transfer augmentation approach on coolant channel due to its advantage on pressure penalty. A compound heat transfer enhancement technique, the combination of ribs, dimples or protrusions, is applied to a U-shaped square channel similar with the gas turbine blade internal passage. Considering the rotational condition of gas turbine blade on operation, the effect of rotation is also investigated for the coolant channel in order to approximate more to the real operation condition. Thus, the objective of this study is to discuss the effect of rotation on fluid flow and heat transfer performance of turbine blade similar U-shaped channel with the combination structure of ribs, dimples or protrusions. The investigated Reynolds number is 1.25 million and considered rotational number includes 0, 0.4 and 0.6. From the results, the fluid patterns of two-pass channel with compound heat transfer enhancement structure are presented for none-rotating and rotating cases. Meanwhile, spatially Nusselt distributions of roughened walls are obtained to reveal the heat transfer rates. Finally, the area averaged Nusselt number ratio and channel friction penalty are evaluated. The results indicate that rib-protrusion structure seems to be the most effective structure while rib-dimple structure has only slight advantage than ribbed channel. Furthermore, the additional friction penalty by dimple and protrusion structure is tiny. It can also be expected that, the thermal performance of this compound structure can be even improved after a denser arrangement of dimple/protrusion structure and optimal shape design.

Zhongyang Shen; Yonghui Xie; Di Zhang

2015-01-01T23:59:59.000Z

405

Microjet array single-phase and flow boiling heat transfer with R134a Eric A. Browne a  

E-Print Network (OSTI)

of a submerged microjet array was conducted with R134a. The staggered array of seventeen 112-lm diameter orifices blades and quench metals. Many of these practical uses of jets employ an array of jets rather than circular microjets of diameter 112 lm on a 1 Ã? 1 mm heater to investigate single-phase and boiling heat

Peles, Yoav

406

Turbine vanes experience high convective surface heat transfer as a consequence of the turbulent flow exiting the combustor. Before im-  

E-Print Network (OSTI)

1 Abstract Turbine vanes experience high convective surface heat transfer as a consequence region of the passage reacts as it passes between two adjacent turbine vanes. In this study, a scaled-up turbine vane geometry was used in a low-speed wind tunnel simulation. The test section included a cen

Thole, Karen A.

407

Heat transfer research on gas turbine airfoils at NASA GRC  

Science Journals Connector (OSTI)

The turbine gas path is a very complex flow field due to a variety of flow and heat transfer phenomena encountered in turbine passages. This manuscript provides an overview of the current work in this field at the NASA Glenn Research Center (GRC). Based on the author's preference, however, more emphasis is on the computational work. There is much more experimental work in progress at GRC than that reported here. Specifically, the external flow and heat transfer characteristics are described over smooth and rough turbine blades for a range of parameter values. For smooth blades, the effect of film-cooling holes as well as internal cooling channels with ribs and bleed holes is considered. Studies on the blade tip region, susceptible to burnout and oxidation due to high thermal loading, are also described. Wherever possible, predictions of heat transfer coefficient on the real blade surface, obtained using in-house-developed codes, are compared with the available experimental data. Suggestions for further work are outlined.

Vijay K. Garg

2002-01-01T23:59:59.000Z

408

The microcanonical thermodynamics of finite systems: The microscopic origin of condensation and phase separations, and the conditions for heat flow from lower to higher temperatures  

Science Journals Connector (OSTI)

Microcanonical thermodynamics [D. H. E. Gross Microcanonical Thermodynamics Phase Transitions in “Small” Systems (World Scientific Singapore 2001)] allows the application of statistical mechanics both to finite and even small systems and also to the largest self-gravitating ones. However one must reconsider the fundamental principles of statistical mechanics especially its key quantity entropy. Whereas in conventional thermostatistics the homogeneity and extensivity of the system and the concavity of its entropy are central conditions these fail for the systems considered here. For example at phase separation the entropy S ( E ) is necessarily convex to make e S ( E ) ? E ? T bimodal in E . Particularly as inhomogeneities and surface effects cannot be scaled away one must be careful with the standard arguments of splitting a system into two subsystems or bringing two systems into thermal contact with energy or particle exchange. Not only the volume part of the entropy must be considered; the addition of any other external constraint [A. Wehrl Rev. Mod. Phys.50 221 (1978)] such as a dividing surface or the enforcement of gradients of the energy or particle profile reduce the entropy. As will be shown here when removing such constraints in regions of a negative heat capacity the system may even relax under a flow of heat (energy) against a temperature slope. Thus the Clausius formulation of the second law: “Heat always flows from hot to cold ” can be violated. Temperature is not a necessary or fundamental control parameter of thermostatistics. However the second law is still satisfied and the total Boltzmannentropy increases. In the final sections of this paper the general microscopic mechanism leading to condensation and to the convexity of the microcanonical entropy at phase separation is sketched. Also the microscopic conditions for the existence (or nonexistence) of a critical end point of the phase separation are discussed. This is explained for the liquid-gas and the solid-liquidtransition.

D. H. E. Gross; J. F. Kenney

2005-01-01T23:59:59.000Z

409

Transient Thermal, Hydraulic, and Mechanical Analysis of a Counter Flow Offset Strip Fin Intermediate Heat Exchanger using an Effective Porous Media Approach  

E-Print Network (OSTI)

Computational Fluid Mechanics and Heat Transfer. New York,the two fluids and enhance heat transfer between them. Most1]. This EPM fluid dynamics and heat transfer computational

Urquiza, Eugenio

2009-01-01T23:59:59.000Z

410

Microchannel heat sink assembly  

DOE Patents (OSTI)

The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

Bonde, W.L.; Contolini, R.J.

1992-03-24T23:59:59.000Z

411

Heat Transfer in Smooth and Ribbed Rectangular Two-Pass Channels with a Developing Flow Entrance at High Rotation Numbers  

E-Print Network (OSTI)

Cooling channels with a developing flow entrance condition and aspect ratios of 1:4 and 2:1 were studied. The range of the rotation number and buoyancy parameter for the selected AR channels was extended. The maximum Ro and Bo for the 1:4 channel...

Huh, Michael

2010-01-16T23:59:59.000Z

412

ECI International Conference on Heat Transfer and Fluid Flow in Microscale Whistler, 21-26 September 2008  

E-Print Network (OSTI)

, a measure of the flow conductance of the solid matrix, depends on several factors including: porosity, particles shape and size distribution and particles arrangement. The permeability is calculated either dates back to experimental works of Carman [5] and Sullivan [6] in 1940s and theoretical analyses

Bahrami, Majid

413

Numerical Simulation of Flow and Heat Transfer in Internal Multi-Pass Cooling Channel within Gas Turbine Blade  

E-Print Network (OSTI)

four-pass channel with two different inlet settings. The main flowing channel was rectangular channel (AR=2:1) with hydraulic diameter (Dh ) equals to 2/3 inch (16.9 mm). The first and fourth channel were set as different aspect ratio (AR=2:1; AR=1...

Chu, Hung-Chieh 1979-

2012-11-16T23:59:59.000Z

414

An attempt to minimize the temperature gradient along a plug-flow methane/steam reforming reactor by adopting locally controlled heating zones  

Science Journals Connector (OSTI)

Plug flow reactors are very common in the chemical process industry, including methane/steam reforming applications. Their operation presents many challenges, such as a strong dependence of temperature and composition distribution on the inlet conditions. The strongly endothermic methane/steam reforming reaction might result in a temperature drop at the inlet of the reactor and consequently the occurrence of large temperature gradients. The strongly non-uniform temperature distribution due to endothermic chemical reaction can have tremendous consequences on the operation of the reactor, such as catalyst degradation, undesired side reactions and thermal stresses. To avoid such unfavorable conditions, thermal management of the reactor becomes an important issue. To carry out thermal management properly, detailed modeling and corresponding numerical analyses of the phenomena occurring inside the reforming system is required. This paper presents experimental and numerical studies on the methane/steam reforming process inside a plug-flow reactor. To optimize the reforming reactors, detailed data about the entire reforming process is required. In this study the kinetics of methane/steam reforming on the Ni/YSZ catalyst was experimentally investigated. Measurements including different thermal boundary conditions, the fuel flow rate and the steam- to-methane ratios were performed. The reforming rate equation derived from experimental data was used in the numerical model to predict gas composition and temperature distribution along the steam-reforming reactor. Finally, an attempt was made to control the temperature distribution by adopting locally controlled heating zones.

M Mozdzierz; G Brus; A Sciazko; Y Komatsu; S Kimijima; J S Szmyd

2014-01-01T23:59:59.000Z

415

Thermodynamic Investigation of Electrolytes of the Vanadium Redox Flow Battery (II): A Study on Low-Temperature Heat Capacities and Thermodynamic Properties of VOSO4·2.63H2O(s)  

Science Journals Connector (OSTI)

Thermodynamic Investigation of Electrolytes of the Vanadium Redox Flow Battery (II): A Study on Low-Temperature Heat Capacities and Thermodynamic Properties of VOSO4·2.63H2O(s) ... The low-temperature heat capacities of VOSO4·2.63H2O(s) which is a key component in the electrolyte of the vanadium redox flow battery were measured by adiabatic calorimetry in the temperature range of (78 to 388) K, and the experimental values of the molar heat capacities in the temperature regions of (78 to 372) K were fitted to a polynomial equation. ... The vanadium redox flow battery (VRB) was first proposed and investigated by Skyllas-Kazacos et al.,(1, 2) in which the V(II)/V(III) and V(IV)/V(V) redox couples were successfully employed as the negative and positive half-cell electrolytes. ...

Ye Qin; Jian-Guo Liu; You-Ying Di; Chuan-Wei Yan; Chao-Liu Zeng; Jia-Zhen Yang

2009-12-17T23:59:59.000Z

416

An experimental study of endwall heat transfer enhancement for flow past staggered non-conducting pin fin arrays  

E-Print Network (OSTI)

: : : : : : : : : : : : : : : : : : : : : : : : 15 VI RESULTS AND DISCUSSION : : : : : : : : : : : : : : : : : : : 17 A. Effect of Reynolds Number ReDh . . . . . . . . . . . . . . 17 B. Effect of Height of Pins, H=D . . . . . . . . . . . . . . . . 21 C. Effect of Stream Wise Spacing of Pins, SL=D... Pressure Drop for D = 2:54cm : 23 9 Effect of H=D on Thermal Performance for D = 2:54cm : : : : : : : 24 10 Effect of SL=D on Heat Transfer Enhancement for D=1.27cm : : : : 25 11 Effect of SL=D on Increase of Overall Pressure Drop for D = 1:27cm 26 12...

Achanta, Vamsee Satish

2004-09-30T23:59:59.000Z

417

Heat flow in anharmonic crystals with internal and external stochastic baths: A convergent polymer expansion for a model with discrete time and long range interparticle interaction  

E-Print Network (OSTI)

We investigate a chain of oscillators with anharmonic on-site potentials, with long range interparticle interactions, and coupled both to external and internal stochastic thermal reservoirs of Ornstein-Uhlenbeck type. We develop an integral representation, a la Feynman-Kac, for the correlations and the heat current. We assume the approximation of discrete times in the integral formalism (together with a simplification in a subdominant part of the harmonic interaction) in order to develop a suitable polymer expansion for the model. In the regime of strong anharmonicity, strong harmonic pinning, and for the interparticle interaction with integrable polynomial decay, we prove the convergence of the polymer expansion uniformly in volume (number of sites and time). We also show that the two-point correlation decays in space such as the interparticle interaction. The existence of a convergent polymer expansion is of practical interest: it establishes a rigorous support for a perturbative analysis of the heat flow problem and for the computation of the thermal conductivity in related anharmonic crystals, including those with inhomogeneous potentials and long range interparticle interactions.

Emmanuel Pereira; Mateus S. Mendonça; Humberto C. F. Lemos

2014-11-23T23:59:59.000Z

418

An experimental study of heat transfer in reciprocating square duct fitted with ribs skewed to the flow  

SciTech Connect

The fuel economy plays the most important requirement for a marine propulsion plant as it has the decisive influence on the operating cost of a ship. In general the improvements of the propulsive and engine efficiencies could reduce the fuel consumption. Therefore, for a marine main diesel engine, the substantial increase of stroke/bore ratio, so that the engine speed can be significantly reduced in order to increase the propulsive efficiency, is observed as a common trend of development in the industry of marine engineering. Along with the efforts in reducing the speed of a propulsive engine, the continuous increases of maximum cycle pressure and temperature of the engine in order to increase the engine efficiency has proceeded in the last decade. As a result, one of the main assemblies of a combustion chamber, the piston, experiences a more difficult working environment. To compensate for the increasing thermal and mechanical loads experienced by a piston, the designs of the piston crown and its cooling system have to be modified. However, due to the reciprocating nature of the piston, the coolant flow circulating within these cooling passages is subjected to an additional time-varied periodical body force induced by reciprocation. Therefore the influences of reciprocating force on the flow field and its cooling performance cannot be ignored if the optimum design of such a cooling system is to be achieved. This study investigated the cooling performance of skewed ribs in the reciprocating duct.

Chang, S.W.; Su, L.M. [National Kaosiung Inst. of Marine Technology (Taiwan, Province of China). Dept. of Marine Engineering; Yang, T.L.; Hwang, C.C. [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Naval Architecture and Marine Engineering

1999-02-01T23:59:59.000Z

419

Internal Heat Transfer Coefficient Determination in a Packed Bed From the Transient Response Due to Solid Phase Induction Heating  

E-Print Network (OSTI)

equations governing fluid flow and heat transfer in porousParticle-to-Fluid Heat and Mass Transfer in Packed Beds,”Systems,” Experimental Heat Transfer, Fluid Mechanics and

Geb, David; Zhou, Feng; Catton, Ivan

2012-01-01T23:59:59.000Z

420

5. Heat transfer Ron Zevenhoven  

E-Print Network (OSTI)

1/120 5. Heat transfer Ron Zevenhoven �bo Akademi University Thermal and Flow Engineering / Värme Three heat transfer mechanisms Conduction Convection Radiation 2/120 Pic: B�88 �bo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/120 5.1 Conductive heat transfer �bo Akademi

Zevenhoven, Ron

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Thulium-170 heat source  

SciTech Connect

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

1990-09-06T23:59:59.000Z

422

Thulium-170 heat source  

DOE Patents (OSTI)

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

423

Heat Treating Apparatus  

DOE Patents (OSTI)

Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

2002-09-10T23:59:59.000Z

424

Solar Heating with Annual Heat Storage — Modelling and Practice  

Science Journals Connector (OSTI)

Central solar heating systems with seasonal heat storage are recognized as one of the most potential forms of solar energy utilization at northern latitudes. Because of ... and energy flows of a full-scale distri...

P. D. Lund; S. S. Peltola

1984-01-01T23:59:59.000Z

425

Boiling heat transfer in a hydrofoil-based micro pin fin heat sink  

E-Print Network (OSTI)

Boiling heat transfer in a hydrofoil-based micro pin fin heat sink Ali KosÃ?ar, Yoav Peles-based micro pin fin heat sink was investigated. Average two-phase heat transfer coefficients were obtained intermittent and spray-annular flows. Heat transfer coefficient trends and flow morphologies were used to infer

Peles, Yoav

426

Characteristics of multimode heat transfer in a differentially-heated horizontal rectangular duct.  

E-Print Network (OSTI)

??This study presents the numerical analysis of steady laminar flow heat transfer in a horizontal rectangular duct with differential heating on the vertical walls. Three… (more)

Wangdhamkoom, Panitan

2007-01-01T23:59:59.000Z

427

Internal Heat Transfer Coefficient Determination in a Packed Bed From the Transient Response Due to Solid Phase Induction Heating  

E-Print Network (OSTI)

the Hydraulic Drag and Heat Transfer Coefficients in PorousT. E. W. , 1929, “Heat Transfer: A Liquid Flowing Through a5] Locke, G. L. , 1950, “Heat Transfer and Flow Friction

Geb, David; Zhou, Feng; Catton, Ivan

2012-01-01T23:59:59.000Z

428

THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS  

E-Print Network (OSTI)

communications). Heat transfer fluid is 60% o-o1vco1 bycharacteristics, heat transfer fluids, flow resistances,of a non- freezing heat transfer fluid circulating in a loop

Mertol, Atila

2012-01-01T23:59:59.000Z

429

Black Hole Horizons and Black Hole Thermodynamics.  

E-Print Network (OSTI)

??This work investigates how black holes can be described in terms of different definitions of horizons. Global definitions in terms of event horizons and Killing… (more)

Nielsen, Alex

2007-01-01T23:59:59.000Z

430

Phenomenological Description of the Interior of the Schwarzschild Black Hole  

E-Print Network (OSTI)

We discuss a sufficiently large 4-dimensional Schwarzschild black hole which is in equilibrium with a heat bath. In other words, we consider a black hole which has grown up from a small one in the heat bath adiabatically. We express the metric of the interior of the black hole in terms of two functions: One is the intensity of the Hawking radiation, and the other is the ratio between the radiation energy and the pressure in the radial direction. Especially in the case of conformal matters we check that it is a self-consistent solution of the semi-classical Einstein equation, $G_{\\mu\

Hikaru Kawai; Yuki Yokokura

2014-09-19T23:59:59.000Z

431

Volume Averaging Theory (VAT) based modeling and closure evaluation for fin-and-tube heat exchangers  

E-Print Network (OSTI)

made to simulate the heat transfer and fluid flow across theanalysis of heat transfer and fluid flow in a three-lent flow and heat transfer in a porous layer. J Fluids Eng

Zhou, Feng; Catton, Ivan

2012-01-01T23:59:59.000Z

432

Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates  

E-Print Network (OSTI)

4.5.1 Fluid Flow and Heat Transfer Characteristics . . 4.5.2v ? T i = 5 K. Fluid Flow and Heat Transfer Characteristicsmodeling of heat transfer and fluid flow phenomena at the

Dhillon, Navdeep Singh

2012-01-01T23:59:59.000Z

433

Development of Closure for Heat Exchangers Based on Volume Averaging Theory  

E-Print Network (OSTI)

Analysis of Fluid Flow and Heat Transfer Characteristics inFigure 4.16: Fluid flow and heat transfer over a backwardof modeling the fluid flow and heat transfer within such

Zhou, Feng

2014-01-01T23:59:59.000Z

434

Quasilinear Carbon Transport In An Impurity Hole Plasma In LHD  

SciTech Connect

Comprehensive electrostatic gyrokinetic linear stability calculations for ion-scale microinstabilities in an LHD plasma with an ion-ITB and carbon "impurity hole" are used to make quasilinear estimates of particle flux to explore whether microturbulence can explain the observed outward carbon fluxes that flow "up" the impurity density gradient. The ion temperature is not stationary in the ion-ITB phase of the simulated discharge, during which the core carbon density decreases continuously. To fully sample these varying conditions the calculations are carried out at three radial locations and four times. The plasma parameter inputs are based on experimentally measured profiles of electron and ion temperature, as well as electron and carbon density. The spectroscopic line-average ratio of hydrogen and helium densities is used to set the density of these species. Three ion species (H,He,C) and the electrons are treated kinetically, including collisions. Electron instability drive does enhance the growth rate significantly, but the most unstable modes have characteristics of ion temperature gradient (ITG) modes in all cases. As the carbon density gradient is scanned between the measured value and zero, the quasilinear carbon flux is invariably inward when the carbon density profile is hollow, so turbulent transport due to the instabilities considered here does not explain the observed outward flux of impurities in impurity hole plasmas. The stiffness of the quasilinear ion heat flux is found to be 1.7-2.3, which is lower than several estimates in tokamaks.

Mikkelsen, David R. [PPPL; Tanaka, K. [NIFS; Nunami, M. [NIFS; Watanabe, T-H. [Nagoya University; Sugama, H. [NIFS; Yoshinuma, M. [NIFS; Suzuki, Y. [NIFS; Goto, M. [NIFS; Morita, S. [NIFS; Wieland, B. [NIFS; Yamada, I. [NIFS; Yashura, R. [NIFS; Akiyama, T. [NIFS; Pablant, Novimir A. [PPPL

2014-04-01T23:59:59.000Z

435

Definition: Heat | Open Energy Information  

Open Energy Info (EERE)

Heat Heat Jump to: navigation, search Dictionary.png Heat Heat is the form of energy that is transferred between systems or objects with different temperatures (flowing from the high-temperature system to the low-temperature system). Also referred to as heat energy or thermal energy. Heat is typically measured in Btu, calories or joules. Heat flow, or the rate at which heat is transferred between systems, has the same units as power: energy per unit time (J/s).[1][2][3][4] View on Wikipedia Wikipedia Definition In physics and chemistry, heat is energy in transfer between a system and its surroundings other than by work or transfer of matter. The transfer can occur in two simple ways, conduction, and radiation, and in a more complicated way called convective circulation. Heat is not a property

436

Heat and mass transfer of a viscous heat generating fluid with Hall currents  

Science Journals Connector (OSTI)

A study of natural convection in hydrodynamic flows of a viscous heat generating fluid in the presence of Hall currents and ... out. The governing equations for the magnetohydrodynamic fluid flow and heat transfer

P. C. Ram; S. S. Singh; R. K. Jain

437

Radial Flow Bearing Heat Exchanger  

Energy.gov (U.S. Department of Energy (DOE))

Lead Performer: Sandia National Laboratories - Albuquerque, NM Partners: -- Tribologix - Golden, CO -- United Technologies Research Center - East Hartford, CT -- University of Maryland - College Park, MD -- Oak Ridge National Laboratory - Oak Ridge, TN -- Whirlpool - Benton Harbor, MI -- Optimized Thermal Systems - College Park, MD

438

Convective Heating of the LIFE Engine Target During Injection  

SciTech Connect

Target survival in the hostile, high temperature xenon environment of the proposed Laser Inertial Fusion Energy (LIFE) engine is critical. This work focuses on the flow properties and convective heat load imposed upon the surface of the indirect drive target while traveling through the xenon gas. While this rarefied flow is traditionally characterized as being within the continuum regime, it is approaching transition where conventional CFD codes reach their bounds of operation. Thus ANSYS, specifically the Navier-Stokes module CFX, will be used in parallel with direct simulation Monte Carlo code DS2V and analytically and empirically derived expressions for heat transfer to the hohlraum for validation. Comparison of the viscous and thermal boundary layers of ANSYS and DS2V were shown to be nearly identical, with the surface heat flux varying less than 8% on average. From the results herein, external baffles have been shown to reduce this heat transfer to the sensitive laser entrance hole (LEH) windows and optimize target survival independent of other reactor parameters.

Holdener, D S; Tillack, M S; Wang, X R

2011-10-24T23:59:59.000Z

439

Black Holes in 4 Nearby Radio Galaxies  

E-Print Network (OSTI)

We study the velocity dispersion profiles of the nuclei of NGC 1326, 2685, 5273 and 5838 in the CO first overtone band. There is evidence for a black hole (BH) in NGC 1326 and 5838. Gas is seen flowing out of the nuclear region of NGC 5273. We put upper limits on the nuclear BHs responsible for its activity and that of NGC 2685.

Mould, Jeremy; Cotter, Garret; Batt, David; Durre', Mark

2014-01-01T23:59:59.000Z

440

Urban Sewage Delivery Heat Transfer System (2): Heat Transfer  

E-Print Network (OSTI)

The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Black Hole Chemistry  

E-Print Network (OSTI)

The mass of a black hole has traditionally been identified with its energy. We describe a new perspective on black hole thermodynamics, one that identifies the mass of a black hole with chemical enthalpy, and the cosmological constant as thermodynamic pressure. This leads to an understanding of black holes from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. Both charged and rotating black holes exhibit novel chemical-type phase behaviour, hitherto unseen.

David Kubiznak; Robert B. Mann

2014-04-08T23:59:59.000Z

442

Heat transfer effectiveness of three-fluid separated heat pipe exchanger  

Science Journals Connector (OSTI)

A heat transfer model for three-fluid separated heat pipe exchanger was analyzed, and the temperature transfer matrix for general three-fluid separated heat exchanger working in parallel-flow or counter- ... It w...

Chengming Shi; Yang Wang; Ying Yang; Quan Liao

2011-02-01T23:59:59.000Z

443

Heat treatment furnace  

DOE Patents (OSTI)

A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

2014-10-21T23:59:59.000Z

444

Molecular heat pump  

E-Print Network (OSTI)

We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

Dvira Segal; Abraham Nitzan

2005-10-11T23:59:59.000Z

445

Entanglement entropy of black holes  

E-Print Network (OSTI)

The entanglement entropy is a fundamental quantity which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff which regulates the short-distance correlations. The geometrical nature of the entanglement entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in 4 and 6 dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's brick wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields which non-minimally couple to gravity is emphasized. The holographic description of the entanglement entropy of the black hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

Sergey N. Solodukhin

2011-04-19T23:59:59.000Z

446

RHIC | Black Holes?  

NLE Websites -- All DOE Office Websites (Extended Search)

Black Holes at RHIC? Black Holes at RHIC? Further discussion by Physicist Dmitri Kharzeev on why RHIC cannot produce a real gravitational black hole Black holes are among the most mysterious objects in the universe. The gravitational field of a black hole is so strong that Einstein's general relativity tells us that nothing, not even light, can escape from the black hole's interior. However, in 1974 physicist Stephen Hawking demonstrated that black holes must emit radiation once the quantum effects are included. According to quantum mechanics, the physical vacuum is bubbling with short-lived virtual particle-antiparticle pairs. Creation of a particle-antiparticle pair from the vacuum conflicts with energy conservation, but energy need not be conserved at short times in quantum mechanics, according to Heisenberg's

447

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

448

Dealing with big circulation flow, small temperature difference based on verified dynamic model simulations of a hot water district heating system  

E-Print Network (OSTI)

,?C Gcoal,T/Day Ts1v,?C Tr1v,?C Tw2argv,?C Gcoalv,T/Day Figure 4. Verified Model Responses With Operational Data 2.4 Properties Analysis From The Verified Model Simulations Based on the verified model, the factors ]1,25.1,1.1[],,[ ?enhex fff.../s HV heating value, J/Kg kp proportional gain ki integral gain KF heat transfer coefficient, W/? q heat per unit area, W/m2 Q heat, W t time, s T temperature, ? TD temperature difference, ? u control signal 30 ?? ? factors Subscripts 1, 2...

Zhong, L.

2014-01-01T23:59:59.000Z

449

E-Print Network 3.0 - advanced industrial heat Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Management and Air Flow) - Waste Heat Recovery in Industrial Processes... on roads - District heating systems - Various industrial processes Geothermal Heat Pumps -...

450

TURBULENT HEAT TRANSPORT IN TWO-AND THREE-DIMENSIONAL TEMPERATURE FIELDS  

E-Print Network (OSTI)

tJ ,.I and the fluid heat transfer characteristics. As [13]Introduction Most fluid flows and heat transfer processes ofproportion of fluid dynamic and heat transfer researchers

Samaraweera, D.S.A.

2011-01-01T23:59:59.000Z

451

Definition: Heat pump | Open Energy Information  

Open Energy Info (EERE)

pump pump Jump to: navigation, search Dictionary.png Heat pump Heating and/or cooling equipment that, during the heating season, draws heat into a building from outside and, during the cooling season, ejects heat from the building to the outside[1] View on Wikipedia Wikipedia Definition A heat pump is a device that transfers heat energy from a heat source to a heat sink against a temperature gradient. Heat pumps are designed to move thermal energy opposite the direction of spontaneous heat flow. A heat pump uses some amount of external high-grade energy to accomplish the desired transfer of thermal energy from heat source to heat sink. While compressor-driven air conditioners and freezers are familiar examples of heat pumps, the term "heat pump" is more general and applies to

452

Cyclotron Heating of the Solar Corona  

Science Journals Connector (OSTI)

A physical model of the solar transition region and corona is presented, in which plasma flows in rapidly-diverging coronal funnels and holes are described within the framework of a two-fluid model including wave...

Eckart Marsch

1999-01-01T23:59:59.000Z

453

Cyclotron Heating of the Solar Corona  

Science Journals Connector (OSTI)

A physical model of the solar transition region and corona is presented, in which plasma flows in rapidly-diverging coronal funnels and holes are described within the framework of a two-fluid model including wave...

Eckart Marsch

454

Accretion disks around binary black holes of unequal mass: GRMHD simulations near decoupling  

E-Print Network (OSTI)

We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary-disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective $\\alpha$-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is $\\sim 10^5 (M/10^8 M_\\odot)^{-1/4} (L/L_{\\rm edd})^{1/4} {\\rm K}$ yielding characteristic thermal frequencies $\\sim 10^{15} (M/10^8 M_\\odot)^{-1/4} (L/L_{\\rm edd})^{1/4}(1+z)^{-1}{\\rm Hz} $. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

Roman Gold; Vasileios Paschalidis; Zachariah B. Etienne; Stuart L. Shapiro; Harald P. Pfeiffer

2013-12-02T23:59:59.000Z

455

Numerical Investigation of Flow and Heat Transfer Characteristics in Rectangular Channels (AR=4:1) with Circular and Elliptical Pin Fin Arrays  

E-Print Network (OSTI)

with six rows of pin ns : 19 viii LIST OF FIGURES FIGURE Page 1 Cooling techniques used in a modern turbine blade (Han et al. [1]) : 3 2 Pin n shapes and their relative dimensions : : : : : : : : : : : : : : 16 3 Schematic of the test section... into two categories, external cooling and internal cooling. External cooling is also known as lm cooling. It is achieved by discharging the internal coolant air through discrete holes in the turbine walls to provide an insulating coolant lm which...

Velichala, Abhishek

2012-07-16T23:59:59.000Z

456

Uniformly accelerated black holes  

Science Journals Connector (OSTI)

The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

Patricio S. Letelier and Samuel R. Oliveira

2001-08-24T23:59:59.000Z

457

Accreting Black Holes  

E-Print Network (OSTI)

I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these interactions. Larger global magnetohydrodynamic simulations as well as simulations incorporating plasma microphysics and full radiation hydrodynamics will be needed to unravel some of the current mysteries of black hole accretion.

Begelman, Mitchell C

2014-01-01T23:59:59.000Z

458

Analysis of three-dimensional heat transfer in micro-channel heat sinks  

E-Print Network (OSTI)

, the three-dimensional fluid flow and heat transfer in a rectangular micro-channel heat sink are ana- lyzedAnalysis of three-dimensional heat transfer in micro-channel heat sinks Weilin Qu, Issam Mudawar numerically using water as the cooling fluid. The heat sink consists of a 1-cm2 silicon wafer. The micro

Qu, Weilin

459

CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER  

E-Print Network (OSTI)

1 CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER for evaporation heat transfer coefficient of refrigerant R-134a flowing in a plate heat exchanger. Correlation schemes proposed by Yan and Lin (1999b) for modeling the heat transfer coefficient in both a single- phase

Kandlikar, Satish

460

Thermal Gradient Holes | Open Energy Information  

Open Energy Info (EERE)

Thermal Gradient Holes Thermal Gradient Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Gradient Holes Details Activities (50) Areas (39) Regions (4) NEPA(29) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Field wide fluid flow characteristics if an array of wells are drilled Thermal: Mapping and projecting thermal anomalies Cost Information Low-End Estimate (USD): 5.00500 centUSD 0.005 kUSD 5.0e-6 MUSD 5.0e-9 TUSD / foot Median Estimate (USD): 16.501,650 centUSD 0.0165 kUSD 1.65e-5 MUSD 1.65e-8 TUSD / foot High-End Estimate (USD): 50.005,000 centUSD

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Estimation of Biomass Heat Storage Using Thermal Infrared Imagery: Application to a Walnut Orchard  

E-Print Network (OSTI)

remote areas and the holes drilled for the in situ tempera- ture sensors may affect the measurement through local changes in heat

Garai, Anirban; Kleissl, Jan; Llewellyn Smith, Stefan G.

2010-01-01T23:59:59.000Z

462

"Hybrid" Black Holes  

E-Print Network (OSTI)

We discuss a solution of the Einstein equations, obtained by gluing the external Kerr metric and the internal Weyl metric, describing an axisymmetric static vacuum distorted black hole. These metrics are glued at the null surfaces representing their horizons. For this purpose we use the formalism of massive thin null shells. The corresponding solution is called a "hybrid" black hole. The massive null shell has an angular momentum which is the origin of the rotation of the external Kerr spacetime. At the same time, the shell distorts the geometry inside the horizon. The inner geometry of the "hybrid" black hole coincides with the geometry of the interior of a non-rotating Weyl-distorted black hole. Properties of the "hybrid" black holes are briefly discussed.

Valeri P. Frolov; Andrei V. Frolov

2014-12-30T23:59:59.000Z

463

Black hole evaporation within a momentum-dependent metric  

SciTech Connect

We investigate the black hole thermodynamics in a 'deformed' relativity framework where the energy-momentum dispersion law is Lorentz-violating and the Schwarzchild-like metric is momentum-dependent with a Planckian cutoff. We obtain net deviations of the basic thermodynamical quantities from the Hawking-Bekenstein predictions: actually, the black hole evaporation is expected to quit at a nonzero critical mass value (of the order of the Planck mass), leaving a zero temperature remnant, and avoiding a spacetime singularity. Quite surprisingly, the present semiclassical corrections to black hole temperature, entropy, and heat capacity turn out to be identical to the ones obtained within some quantum approaches.

Salesi, G.; Di Grezia, E. [Universita Statale di Bergamo, Facolta di Ingegneria, viale Marconi 5, I-24044 Dalmine (Italy) and Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, I-20133 Milan (Italy)

2009-05-15T23:59:59.000Z

464

Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)  

SciTech Connect

Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

Not Available

2010-08-01T23:59:59.000Z

465

Effect of flow and physical parameters on the wax deposition of Middle East crude oil under subsea condition: heat transfer viewpoint  

Science Journals Connector (OSTI)

Change in pressure, temperature, flow rate and concentration of oil causes precipitation and deposition of wax particles in the pipelines which has become a major problem for ... reserves increases. Change in tem...

Reza Gooya; Mehdy Gooya; Bahram Dabir

2013-08-01T23:59:59.000Z

466

Heat exchanger with ceramic elements  

DOE Patents (OSTI)

An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

Corey, John A. (North Troy, NY)

1986-01-01T23:59:59.000Z

467

turbulent heat International Journal of Numerical  

E-Print Network (OSTI)

Enhanced turbulent heat transfer 47 International Journal of Numerical Methods for Heat & Fluid, Hsinchu,Taiwan Keywords Heat transfer, Fluids, Flow, Turbulence, Numerical methods Abstract This study evaluates low Reynolds number models of turbulence for numerical computations on the heat transfer and fluid

Lin, Wen-Wei

468

Heating and cooling in the Perseus cluster core  

E-Print Network (OSTI)

It is well known that the radiative cooling time of the hot X-ray emitting gas in the cores of most clusters of galaxies is less than 10^10 yr. In many clusters the gas temperature also drops towards the centre. If we draw a causal connection between these two properties then we infer the presence of a cooling flow onto the central galaxy. High spectral resolution XMM-Newton data and high spatial resolution Chandra data, show however a lack of X-ray emitting gas below about one third of the cluster virial temperature. The explanation is that some form of heating balances cooling. The smoothness and similarity of the cooling time profiles and the flatness of the required heating profiles all indicate that we must seek a relatively gentle, quasi-continuous (on timescales heat source. The likely such source is the central black hole and its powerful jets which create bubble-like cavities in the inner hot gas. We briefly review the general heating and cooling statistics in an X-ray bright sample of cluster before we discuss the detailed situation in the Perseus cluster, the X-ray brightest cluster in the Sky.

A. C. Fabian; J. S. Sanders

2006-12-15T23:59:59.000Z

469

Unified first law of black-hole dynamics and relativistic thermodynamics  

E-Print Network (OSTI)

A unified first law of black-hole dynamics and relativistic thermodynamics is derived in spherically symmetric general relativity. This equation expresses the gradient of the active gravitational energy E according to the Einstein equation, divided into energy-supply and work terms. Projecting the equation along the flow of thermodynamic matter and along the trapping horizon of a blackhole yield, respectively, first laws of relativistic thermodynamics and black-hole dynamics. In the black-hole case, this first law has the same form as the first law of black-hole statics, with static perturbations replaced by the derivative along the horizon. There is the expected term involving the area and surface gravity, where the dynamic surface gravity is defined as in the static case but using the Kodama vector and trapping horizon. This surface gravity vanishes for degenerate trapping horizons and satisfies certain expected inequalities involving the area and energy. In the thermodynamic case, the quasi-local first law has the same form, apart from a relativistic factor, as the classical first law of thermodynamics, involving heat supply and hydrodynamic work, but with E replacing the internal energy. Expanding E in the Newtonian limit shows that it incorporates the Newtonian mass, kinetic energy, gravitational potential energy and thermal energy. There is also a weak type of unified zeroth law: a Gibbs-like definition of thermal equilibrium requires constancy of an effective temperature, generalising the Tolman condition and the particular case of Hawking radiation, while gravithermal equilibrium further requires constancy of surface gravity. Finally, it is suggested that the energy operator of spherically symmetric quantum gravity is determined by the Kodama vector, which encodes a dynamic time related to E.

Sean A. Hayward

1997-10-20T23:59:59.000Z

470

Entropy of quasiblack holes  

SciTech Connect

We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.

Lemos, Jose P. S.; Zaslavskii, Oleg B. [Centro Multidisciplinar de Astrofisica-CENTRA, Departamento de Fisica, Instituto Superior Tecnico-IST, Universidade Tecnica de Lisboa-UTL, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Astronomical Institute of Kharkov, V. N. Karazin National University, 35 Sumskaya Street, Kharkov, 61022 (Ukraine)

2010-03-15T23:59:59.000Z

471

6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion ISMF2009, Xi'an, China, 11-15 July 2009  

E-Print Network (OSTI)

the case with materials of high thermal conductivity subjected to natural convection. To increase the heat is low. It is possible to appreciably enhance the performance of low thermal conductivity material. It also predicts based on computational simulation that the decrease in internal thermal resistance

Khandekar, Sameer

472

The resolution of past heat flow in sedimentary basins from non-linear inversion of geochemical data: the smoothest model approach, with synthetic examples  

Science Journals Connector (OSTI)

......correspond to the oil generation window...1982; Castano 1985; Price & Barker 1985...reflectance will increase on heating. The other factor...experienced by the sample (Price 1983, 1985; Barker...ranges relevant to oil generation (-50 -150...D. L., 1983. Oil generation in overthrust......

Kerry Gallagher; Malcolm Sambridge

1992-04-01T23:59:59.000Z

473

3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL  

SciTech Connect

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

Grant L. Hawkes; James E. O'Brien; Greg Tao

2011-11-01T23:59:59.000Z

474

Experimental study on heat transfer characteristics of internal heat exchangers for CO2 system under cooling condition  

Science Journals Connector (OSTI)

This paper presents the heat transfer characteristics of the internal heat exchanger (IHX) for CO2 heat pump system. The influence on the IHX length, the mass flow rate, the shape of IHX, the operating condition,...

Young Chul Kwon; Dae Hoon Kim; Jae Heon Lee…

2009-03-01T23:59:59.000Z

475

RHIC | Black Holes?  

NLE Websites -- All DOE Office Websites (Extended Search)

Black Holes at RHIC? Black Holes at RHIC? Before RHIC began operations in 2000, some were concerned that it would produce black holes that would threaten the earth. Here's why those concerns were unfounded. Committee Review of Speculative "Disaster Scenarios" at RHIC In July 1999, Brookhaven Lab Director John Marburger convened a committee of distinguished physicists to write a comprehensive report on the arguments that address the safety of speculative disaster scenarios at RHIC. The scenarios are: Creation of a black hole that would "eat" ordinary matter. Initiation of a transition to a new, more stable universe. Formation of a "strangelet" that would convert ordinary matter to a new form. jaffee "We conclude that there are no credible mechanisms for catastrophic

476

Charged Schrodinger black holes  

E-Print Network (OSTI)

We construct charged and rotating asymptotically Schrödinger black hole solutions of type IIB supergravity. We begin by obtaining a closed-form expression for the null Melvin twist of a broad class of type IIB backgrounds, ...

Adams, Allan

477

Holes in Spectral Lines  

E-Print Network (OSTI)

The decay of an atom in the presence of a static perturbation is investigated. The perturbation couples a decaying state with a nondecaying state. A "hole" appears in the emission line at a frequency equal to the frequency ...

Fontana, Peter R.; Srivastava, Rajendra P.

1973-06-01T23:59:59.000Z

478

Some remarks on black hole temperature and the second law of thermodynamics  

E-Print Network (OSTI)

I present a formulation of the second law of thermodynamics in the presence of black holes which makes use of the efficiency of an ideal machine extracting heat cyclically from a black hole. The Carnot coefficient is found and it is shown to be a simple function of the mass.

M. Scandurra

2001-05-24T23:59:59.000Z

479

Permanent Bubble Arrays from a Cross-Linked Poly(para-phenyleneethynylene): Picoliter Holes without Microfabrication  

E-Print Network (OSTI)

Permanent Bubble Arrays from a Cross-Linked Poly(para-phenyleneethynylene): Picoliter Holes without). The holes are formed by heating self-assembled bubble arrays (from 4) to 300 °C. They will be useful evaporating solvents generate hexagonally ordered bubble arrays when moist air is used to evaporate

Srinivasarao, Mohan

480

On Black Hole Entropy  

E-Print Network (OSTI)

Two techniques for computing black hole entropy in generally covariant gravity theories including arbitrary higher derivative interactions are studied. The techniques are Wald's Noether charge approach introduced recently, and a field redefinition method developed in this paper. Wald's results are extended by establishing that his local geometric expression for the black hole entropy gives the same result when evaluated on an arbitrary cross-section of a Killing horizon (rather than just the bifurcation surface). Further, we show that his expression for the entropy is not affected by ambiguities which arise in the Noether construction. Using the Noether charge expression, the entropy is evaluated explicitly for black holes in a wide class of generally covariant theories. Further, it is shown that the Killing horizon and surface gravity of a stationary black hole metric are invariant under field redefinitions of the metric of the form $\\bar{g}_{ab}\\equiv g_{ab} + \\Delta_{ab}$, where $\\Delta_{ab}$ is a tensor field constructed out of stationary fields. Using this result, a technique is developed for evaluating the black hole entropy in a given theory in terms of that of another theory related by field redefinitions. Remarkably, it is established that certain perturbative, first order, results obtained with this method are in fact {\\it exact}. The possible significance of these results for the problem of finding the statistical origin of black hole entropy is discussed.}

Ted Jacobson; Gungwon Kang; Robert C. Myers

1994-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "heat flow holes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Determination of the Number of Tube Rows to Obtain Closure for Volume Averaging Theory Based Model of Fin-and-Tube Heat Exchangers  

E-Print Network (OSTI)

out f ¼ Fig. 4 Fluid flow and heat transfer over a backwardtaking the fluid flow and heat transfer over a backward1980, Numerical Heat Transfer and Fluid Flow, Hemisphere

Zhou, Feng; Hansen, Nicholas E; Geb, David J; Catton, Ivan

2011-01-01T23:59:59.000Z

482