Sample records for healthy homes indoor

  1. Enjoy Living Healthy Hearts, Healthy Homes

    E-Print Network [OSTI]

    Bandettini, Peter A.

    smoke free. #12;2 Healthy Hearts, Healthy Homes Why quit smoking? To improve your family's well, Healthy Homes series: Are You at Risk for Heart Disease? Do You Need To Lose Weight? Do You Know Your Cholesterol Levels? Keep the Beat: Control Your High Blood Pressure Protect Your Heart Against Diabetes Web

  2. Participant Assisted Data Collection Methods in the California Healthy Homes Indoor Air Quality Study of 2011-13

    E-Print Network [OSTI]

    Mullen, Nasim A.

    2014-01-01T23:59:59.000Z

    of gas heaters or water heaters within the home (indicatingfor gas storage water heater per number of residents (3-4 people 5+ people Vented water heater in living space b

  3. Heart Healthy Home Cooking African American Style

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Heart Healthy Home Cooking African American Style With Every Heartbeat Is Life #12;#12;Heart Recipe Substitutions for Heart Healthy Cooking at the heart of African American family life and special celebrations. This recipe book brings together many

  4. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    E-Print Network [OSTI]

    have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus of Mixing on Acceptable Indoor Air Quality in Homes ABSTRACT Ventilation reduces occupant exposure to indoor different dilution rates and contaminant source strengths. The total ventilation rate is the most important

  5. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    E-Print Network [OSTI]

    , and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi. The total ventilation rate is the most important factor in determining occupant exposure to given

  6. DOE Zero Energy Ready Home Case Study 2014: Healthy Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the attic. The home's HVAC system consists of a mini-split heat pump with one outside unit and three indoor air handlers that are hidden: one above a closet on the main floor,...

  7. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain I.

    2010-01-01T23:59:59.000Z

    Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing already, but that new, high-performance homes may require additional mixing. Also our results suggest that some differentiation should be made in policies and standards for systems that provide continuous exhaust, thereby reducing relative dose for occupants overall.

  8. Indoor Air Quality Factors in Designing a Healthy Building John D. Spengler

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    , building materials and systems, ventilation models, design tools Shortened title: IAQ in Designing and regulations, rapid introduction of new building materials and commercial products, as well as the prevailing indoor air quality (IAQ) is an important determinant of healthy design, it is not the sole determinant

  9. DOE Zero Energy Ready Home: Healthy Efficient Homes - Spirit...

    Energy Savers [EERE]

    basement walls are ICF plus two 2-inch layers of EPS. The house also has a mini-split heat pump, fresh air fan intake, and a solar hot water heater. DOE Zero Energy Ready Home:...

  10. Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes

    SciTech Connect (OSTI)

    Engelmann, P.; Roth, K.; Tiefenbeck, V.

    2013-01-01T23:59:59.000Z

    This report documents the results of an in-depth evaluation of energy consumption and thermal comfort for two potential net zero-energy homes (NZEHs) in Massachusetts, as well as an indoor air quality (IAQ) evaluation performed in conjunction with Lawrence Berkeley National Laboratory (LBNL).

  11. Proceedings of Healthy Buildings 2009 Paper 535 HVAC filters as "passive" samplers: fate analysis of indoor particles

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Proceedings of Healthy Buildings 2009 Paper 535 HVAC filters as "passive" samplers: fate analysis: fedenoris@mail.utexas.edu SUMMARY To assess the potential use of HVAC filters as passive indoor samplers, exfiltration, and capture in the HVAC filter. The results suggest that large particles are likely to deposit

  12. Addressing Kitchen Contaminants for Healthy, Low-Energy Homes

    SciTech Connect (OSTI)

    Stratton, J. Chris; Singer, Brett C.

    2014-01-01T23:59:59.000Z

    Cooking and cooking burners emit pollutants that can adversely affect indoor air quality in residences and significantly impact occupant health. Effective kitchen exhaust ventilation can reduce exposure to cooking-related air pollutants as an enabling step to healthier, low-energy homes. This report identifies barriers to the widespread adoption of kitchen exhaust ventilation technologies and practice and proposes a suite of strategies to overcome these barriers. The recommendations have been vetted by a group of industry, regulatory, health, and research experts and stakeholders who convened for two web-based meetings and provided input and feedback to early drafts of this document. The most fundamental barriers are (1) the common misconception, based on a sensory perception of risk, that kitchen exhaust when cooking is unnecessary and (2) the lack of a code requirement for kitchen ventilation in most US locations. Highest priority objectives include the following: (1) Raise awareness among the public and the building industry of the need to install and routinely use kitchen ventilation; (2) Incorporate kitchen exhaust ventilation as a requirement of building codes and improve the mechanisms for code enforcement; (3) Provide best practice product and use-behavior guidance to ventilation equipment purchasers and installers, and; (4) Develop test methods and performance targets to advance development of high performance products. A specific, urgent need is the development of an over-the-range microwave that meets the airflow and sound requirements of ASHRAE Standard 62.2.

  13. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    Swainson, M. (2009). Indoor air quality in highly energyClayton, R. (2001). Indoor air quality: Residential cookingSacramento, CA: California Air Resources Board. Fugler, D. ,

  14. Health Hazards in Indoor Air J.M. Logue, M. H. Sherman, B.C. Singer

    E-Print Network [OSTI]

    Health Hazards in Indoor Air J.M. Logue, M. H. Sherman, B.C. Singer.S. Dept. of Housing and Urban Development Office of Healthy Homes and Lead Hazard Control through5250E #12;Logue et al, Health Hazards in Indoor air LBNL5250E Health Hazards in Indoor Air J

  15. Indoor Air Quality in 24 California Residences Designed as High-Performance Homes

    SciTech Connect (OSTI)

    Less, Brennan; Mullen, Nasim; Singer, Brett; Walker, Iain

    2015-01-01T23:59:59.000Z

    Today’s high performance green homes are reaching previously unheard of levels of airtightness and are using new materials, technologies and strategies, whose impacts on Indoor Air Quality (IAQ) cannot be fully anticipated from prior studies. This research study used pollutant measurements, home inspections, diagnostic testing and occupant surveys to assess IAQ in 24 new or deeply retrofitted homes designed to be high performance green buildings in California. Although the mechanically vented homes were six times as airtight as non-mechanically ventilated homes (medians of 1.1 and 6.1 ACH50, n=11 and n=8, respectively), their use of mechanical ventilation systems and possibly window operation meant their median air exchange rates were almost the same (0.30 versus 0.32 hr-1, n=8 and n=8, respectively). Pollutant levels were also similar in vented and unvented homes. These similarities were achieved despite numerous observed faults in complex mechanical ventilation systems. More rigorous commissioning is still recommended. Cooking exhaust systems were used inconsistently and several suffered from design flaws. Failure to follow best practices led to IAQ problems in some cases. Ambient nitrogen dioxide standards were exceeded or nearly so in four homes that either used gas ranges with standing pilots, or in Passive House-style homes that used gas cooking burners without venting range hoods. Homes without active particle filtration had particle count concentrations approximately double those in homes with enhanced filtration. The majority of homes reported using low-emitting materials; consistent with this, formaldehyde levels were approximately half those in conventional, new CA homes built before 2008. Emissions of ultrafine particles (with diameters <100 nm) were dramatically lower on induction electric cooktops, compared with either gas or resistance electric models. These results indicate that high performance homes can achieve acceptable and even exceptional IAQ by providing adequate general mechanical ventilation, using low-emitting materials, providing mechanical particle filtration, incorporating well-designed exhaust ventilation for kitchens and bathrooms, and educating occupants to use the kitchen and bath ventilation.

  16. Essays on Healthy Eating and Away from Home Food Expenditures of Adults and Children 

    E-Print Network [OSTI]

    Campbell, Benjamin Louis

    2011-02-22T23:59:59.000Z

    Healthy eating and food away from home expenditures are gaining increasing notoriety within the U.S. These issues are not only a concern for businesses, but governmental policy makers have also shown interest in both ...

  17. Essays on Healthy Eating and Away from Home Food Expenditures of Adults and Children

    E-Print Network [OSTI]

    Campbell, Benjamin Louis

    2011-02-22T23:59:59.000Z

    ESSAYS ON HEALTHY EATING AND AWAY FROM HOME FOOD EXPENDITURES OF ADULTS AND CHILDREN A Dissertation by BENJAMIN LOUIS CAMPBELL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2009 Major Subject: Agricultural Economics ESSAYS ON HEALTHY EATING AND AWAY FROM HOME FOOD EXPENDITURES OF ADULTS AND CHILDREN A Dissertation by BENJAMIN LOUIS CAMPBELL...

  18. EIS-0127: New Energy-Efficient Homes Programs, Assessing Indoor Air Quality Options

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this EIS to explore whether different building techniques will control indoor air quality and still maintain cost-effective energy savings.

  19. DOE Zero Energy Ready Home: Healthy Efficient Homes - Spirit Lake, Iowa |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustom Home|PV-ReadySoftware

  20. DOE Zero Energy Ready Home Case Study 2014: Healthy Efficient Homes, Spirit Lake, Iowa

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | DepartmentEnergyNewLLCHealthy Efficient

  1. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    into nine of the home heating systems, being paired withElectric cooking and heating homes were also recruited toheating. Very few homes had traditional heating equipment;

  2. Webinar: Ventilation and Filtration Strategies with Indoor airPLUS and Zero Energy Ready Homes

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings,...

  3. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    sealed natural gas combustion in all climate zones, withinside the home. Other gas combustion appliances will tendcooking found that gas combustion, frying and cooking of

  4. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    Solar water heating system (may be combined with storage water heater)Solar energy was incorporated into nine of the home heating systems, being paired with tankless water heaters,

  5. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    Cook top ventilation in passive House/LEED home. (2010).Berkeley National Lab. Passive House Institute U.S. (2011).What is a passive house? Retrieved 11/23, 2012, from http://

  6. Pilot Implementation of a Field Study Design to Evaluate the Impact of Source Control Measures on Indoor Air Quality in High Performance Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Chamness, Michele A.; Petersen, Joseph M.; Singer, Brett C.; Maddalena, Randy L.; Destaillats, Hugo

    2014-10-20T23:59:59.000Z

    To improve the indoor air quality in new, high performance homes, a variety of standards and rating programs have been introduced to identify building materials that are designed to have lower emission rates of key contaminants of concern and a number of building materials are being introduced that are certified to these standards. For example, the U.S. Department of Energy (DOE) Zero Energy Ready Home program requires certification under the U.S. Environmental Protection Agency (EPA) Indoor airPLUS (IaP) label, which requires the use of PS1 or PS2 certified plywood and OSB; low-formaldehyde emitting wood products; low- or no-VOC paints and coatings as certified by Green Seal Standard GS-11, GreenGuard, SCS Indoor Advantage Gold Standard, MPI Green Performance Standard, or another third party rating program; and Green Label-certified carpet and carpet cushions. However, little is known regarding the efficacy of the IAP requirements in measurably reducing contaminant exposures in homes. The goal of this project is to develop a robust experimental approach and collect preliminary data to support the evaluation of indoor air quality (IAQ) measures linked to IAP-approved low-emitting materials and finishes in new residential homes. To this end, the research team of Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) developed a detailed experimental plan to measure IAQ constituents and other parameters, over time, in new homes constructed with materials compliant with IAP’s low-emitting material and ventilation requirements (i.e., section 6.1, 6.2, 6.3, and 7.2) and similar homes constructed to the state building code with conventional materials. The IAQ in IAP and conventional homes of similar age, location, and construction style is quantified as the differences in the speciated VOC and aldehyde concentrations, normalized to dilution rates. The experimental plan consists of methods to evaluate the difference between low-emitting and “conventional” materials as installed in newly constructed residential homes using both (1) highly controlled, short-term active samples to precisely characterize the building-related chemical emissions and building contents and (2) a week-long passive sample designed to capture the impact of occupant behavior and related activities on measured IAQ contaminant levels indoors. The combination of detailed short-term measurements with the home under controlled/consistent conditions during pre- and post-occupancy and the week-long passive sampling data provide the opportunity to begin to separate the different emission sources and help isolate and quantify variability in the monitored homes. Between April and August 2014, the research team performed pre-occupancy and post-occupancy sampling in one conventional home and two homes built with low-emitting materials that were generally consistent with EPA’s Indoor airPLUS guidelines. However, for a number of reasons, the full experimental plan was not implemented. The project was intended to continue for up to three years to asses long-term changes in IAQ but the project was limited to one calendar year. As a result, several of the primary research questions related to seasonal impacts and the long-term trends in IAQ could not be addressed. In addition, there were several unexpected issues related to recruiting, availability of home types, and difficulty coordinating with builders/realtors/homeowners. Several field monitoring issues also came up that provide “lessons learned” that led to improvements to the original monitoring plan. The project produced a good experimental plan that is expected to be be useful for future efforts collecting data to support answering these same or similar research questions.

  7. Healthy Hearth brings the coziness of home to patients, their family and guests of the

    E-Print Network [OSTI]

    Oklahoma, University of

    Family 4-pack Menu Let Healthy Hearth cook for you! Order any item, Monday-Friday Call 271-1685 by 3 p, grilled chicken or veggie crumbles, black beans, tomatoes, green chilis, shredded cheddar jack, served with salsa, sour cream and guacamole Beverages Fountain Drinks, 149 Bottled Water, 249 Starbucks

  8. Healthy buildings

    SciTech Connect (OSTI)

    Geshwiler, M.; Montgomery, L.; Moran, M. (eds.)

    1991-01-01T23:59:59.000Z

    This proceedings is of the Indoor Air Quality (IAQ) Conference held September 4--8, 1991 in Washington, D.C. Entitled the IAQ 91, Healthy Buildings,'' the major topics of discussion included: healthy building strategies/productivity; energy and design issues; ventilation; contaminants; thermal, airflow, and humidity issues; school-related issues; sources and sinks; filtering; and operation and maintenance. For these conference proceedings, individual papers are processed separately for input into the Energy Data Base. (BN)

  9. DOE Tour of Zero: The Ridgeview Farms by Healthy Efficient Homes |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics workDepartment of13Homes

  10. DOE Zero Energy Ready Home Case Study: Green Extreme Homes &...

    Broader source: Energy.gov (indexed) [DOE]

    and lighting. A minisplit heat pump with 5 indoor heads heats and cools the home. Green Extreme Homes & Carl Franklin Homes - Garland, TX More Documents & Publications DOE...

  11. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Computing and Visualization INL Logo Home Applied Computing and Visualization Mission Statement Enable advanced modeling and simulation at the Idaho National Laboratory...

  12. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of great science AsPublic

  13. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of great science

  14. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of great sciencedefault

  15. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energy

  16. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign In About |

  17. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign In About

  18. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign In

  19. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign Indefault Sign

  20. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign Indefault

  1. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign

  2. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Signdefault Sign In

  3. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Signdefault Sign

  4. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Signdefault

  5. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Signdefaultdefault

  6. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault

  7. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault *** The next NSSAB

  8. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy Storage

  9. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy Storagedefault Sign In

  10. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy Storagedefault Sign

  11. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy Storagedefault

  12. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy Storagedefaultdefault

  13. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy

  14. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Sign In About |

  15. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Sign In About

  16. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Sign In

  17. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Sign Indefault

  18. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Sign

  19. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Signdefault

  20. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault

  1. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefaultAll Events Sign

  2. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefaultAll Events

  3. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefaultAll

  4. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefaultAlldefault Sign

  5. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefaultAlldefault

  6. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High

  7. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers | Contact |

  8. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers | Contact |default

  9. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers | Contact

  10. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers | ContactPages

  11. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |

  12. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |default Sign In

  13. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |default Sign

  14. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |default

  15. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |defaultdefault

  16. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |defaultdefaultATC

  17. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers

  18. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | CareersInterconnection

  19. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About |

  20. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About |Pages default Sign In About

  1. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRST CenterAboutHigh

  2. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRST CenterAboutHighMSA

  3. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRST

  4. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRSTApplied Computing and

  5. DRAFT 11/09/2010 PLEASE DO NOT CITE OR QUOTE Indoor Air Quality (IAQ)

    E-Print Network [OSTI]

    )......................................................................................................... 2 gARAgE AIR POLLUTANTSDRAFT 11/09/2010 PLEASE DO NOT CITE OR QUOTE Indoor Air Quality (IAQ) HeAlTHy InDooR env

  6. Climate change and health: Indoor heat exposure in vulnerable populations

    SciTech Connect (OSTI)

    White-Newsome, Jalonne L., E-mail: jalonne@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 109 S. Observatory, SPH II, Rm. M6314, Ann Arbor, MI 48109 (United States); Sanchez, Brisa N., E-mail: brisa@umich.edu [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Jolliet, Olivier, E-mail: ojolliet@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 6622 SPH tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)] [University of Michigan School of Public Health, Environmental Health Sciences Department, 6622 SPH tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Zhang, Zhenzhen, E-mail: zhzh@umich.edu [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)] [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Parker, Edith A., E-mail: Edith-Parker@uiowa.edu [University of Michigan School of Public Health, Health Behavior and Health Education Department, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Timothy Dvonch, J., E-mail: dvonch@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 1415 Washington Heights, 6642 SPH Tower, Ann Arbor, MI 48109 (United States); O'Neill, Marie S., E-mail: marieo@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 6631 SPH Tower, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)

    2012-01-15T23:59:59.000Z

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 Degree-Sign C, 13.8 Degree-Sign C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.

  7. Maintenance of Water Quality for Healthy Fish As with any aquarium (small home aquarium or large public aquarium) or pond (indoor or

    E-Print Network [OSTI]

    by calcium and magnesium. It is expressed in terms of calcium carbonate (CaCO3). One degree of hardness equals 17ppm CaCO3. Soft water refers to water with 0-75ppm CaCO3 and has the lowest buffering capacity. Moderately hard water has 75-150ppm CaCO3. Hard water has 150-300ppm CaCO3 and very hard water had

  8. DOE ZERH Webinar: Ventilation and Filtration Strategies with Indoor airPLUS

    Broader source: Energy.gov [DOE]

    The Indoor airPLUS qualification, a prerequisite for Zero Energy Ready Homes, offers an important platform to improve the indoor air quality (IAQ) in high-performance homes.  A critical aspect of...

  9. SUMMER TO SUMMER VARIATIONS IN INDOOR RADON

    E-Print Network [OSTI]

    Paul Dibenenetto; Douglas G. Mose; George W. Mushrush

    Indoor radon concentrations show a strong dependence on weather. winter tends to be associated with higher than average indoor radon, and summer with lower than average. However, in northern Virginia, the summer of 1988 was wetter than the summer of 1987. Consequently, the regional indoor radon during the summer of 1988 was about 30 % higher than during the summer of 1987, and indoor radon during the summer of 1988 actually exceeded the indoor radon level of the 1987-88 winter. Evidently care must be taken when attempting to estimate regional indoor radon concentrations, and homesite risk estimates should rely on long-term measurement intervals. Key word index: summer precipitation, soil capping, alpha-track radon monitors, home heating system, radon and radon progeny,

  10. Indoor air quality: multivariate analyses of the relationship between indoor and outdoor aerosols

    SciTech Connect (OSTI)

    McCarthy, S.M.

    1986-01-01T23:59:59.000Z

    A unique multivariate data set incorporating simultaneous indoor and outdoor measurements of sixteen air contaminants at ten homes has been used to investigate the contribution of outdoor concentrations to indoor aerosol variability, and to characterize indoor source contribution to the indoor concentrations. The data were available from an earlier field study of particle and gas concentrations outside and inside five homes in each of two cities: Portage, Wisconsin, and Steubenville, Ohio. Three distinct multivariate statistical techniques were used sequentially in the research, successively building on the results and interpretations as they developed. Cluster analysis was selected as the initial method for partitioning the variables into subgroups comprised of highly intercorrelated variables. Significant site-to-site variability was evident in both cities, however within sites, indoor clusters had similarities to the outdoor clusters. Principal component analysis was next performed on the Portage data, reduced in dimension to avoid problems of singularity in the data matrix. The principal component analyses results were used to attribute predominant indoor and outdoor sources, including cigarette smoke, wood stove, road dust, and urban combustion sources. Finally, multiple regression analysis was performed to relate outdoor pollutant concentrations to a composite index of the indoor aerosol as represented by the orthogonal rotations of the indoor principal components. The research indicates that this multivariate analysis framework is preferable to single univariate analysis in evaluating the influence of outdoor aerosols and indoor sources on indoor air quality data.

  11. Combustion Safety for Appliances Using Indoor Air (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoal Combustion ProductsCombustion Safety for Appliances Using

  12. Building Efficiency and Indoor Air Quality - You Can Have Both

    E-Print Network [OSTI]

    Kettler, G. J.

    1998-01-01T23:59:59.000Z

    Providing ventilation for acceptable indoor air quality per ASHRAE Standard 62-1989 does not require large increases in utility costs. Building efficiency does not have to be sacrificed for a healthy building. The ASHRAE 62- 1989 requirement...

  13. inAir: Sharing Indoor Air Quality Measurements and Visualizations

    E-Print Network [OSTI]

    Mankoff, Jennifer

    evidence has indicated that indoor air pollution within homes and other buildings can be worse than the outdoor air pollution in even the largest and most industrialized cities. For example, the California Air Resources Board estimates that indoor air pollutant levels are 25-62% greater than outside levels [4

  14. Building America Whole-House Solutions for New Homes: Nexus EnergyHome...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    indoor environmental quality, achieving the highest rating possible under the National Green Building Standard Nexus EnergyHomes - Frederick, Maryland More Documents &...

  15. Health Hazards in Indoor Air

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2012-01-01T23:59:59.000Z

    Health Hazards in Indoor Air. In Proceedings of the 2010for VOCs from post-1990 indoor air concentration studies inUnion project on indoor air pollutants. Allergy, 2008. 63(

  16. Indoor Powerline Conductor Accelerated Testing Facility (Indoor-PCAT)

    E-Print Network [OSTI]

    conductors in parallel tests. The tension limitations (i.e., the number of conductors) inherent in towersIndoor Powerline Conductor Accelerated Testing Facility (Indoor-PCAT) Overview: The Indoor Powerline Conductor Accelerated Testing facility (or Indoor-PCAT), planned for construction in FY04 at Oak

  17. Automobile proximity and indoor residential concentrations of BTEX and MTBE

    SciTech Connect (OSTI)

    Corsi, Dr. Richard [University of Texas, Austin; Morandi, Dr. Maria [University of Texas Health Science Center, Houston; Siegel, Dr. Jeffrey [University of Texas, Austin; Hun, Diana E [ORNL

    2011-01-01T23:59:59.000Z

    Attached garages have been identified as important sources of indoor residential air pollution. However, the literature lacks information on how the proximity of cars to the living area affects indoor concentrations of gasoline-related compounds, and the origin of these pollutants. We analyzed data from the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study and evaluated 114 residences with cars in an attached garage, detached garage or carport, or without cars. Results indicate that homes with cars in attached garages were affected the most. Concentrations in homes with cars in detached garages and residences without cars were similar. The contribution from gasoline-related sources to indoor benzene and MTBE concentrations appeared to be dominated by car exhaust, or a combination of tailpipe and gasoline vapor emissions. Residing in a home with an attached garage could lead to benzene exposures ten times higher than exposures from commuting in heavy traffic.

  18. GATEWAY Demonstration Indoor Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL ENVIRONMENTAL POLICYEnergyIndoor

  19. DOE Tour of Zero: The System Home by Evolutionary Home Builders...

    Office of Environmental Management (EM)

    a similar-sized minimum-code home. 4 of 15 All of the paints and finishes in the home are lowno-VOC certified to help meet the requirements of the EPA's Indoor airPLUS program....

  20. DOE Zero Ready Home Case Study: Promethean Homes, Gross-Shepard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    this home. To help ensure good indoor air quality in the super-tight home, an energy recovery ventilator (ERV) was installed. The ERV has ducts to the outside to bring in fresh...

  1. Healthy buildings

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This book is covered under the following headings: Healthy building strategies/productivity, Energy and design issues, Ventilation, Contaminants, Thermal, airflow, and humidity issues, School-related issues, Sources and sinks, Filtering, Operation and maintenance.

  2. Tips for Reducing Asthma Triggers in Indoor Environments The goal of parents who have children with

    E-Print Network [OSTI]

    products and pesticides can add pollutants to the indoor air. Keep your home well ventilated when using it in a tightly covered container to help control pests. 2. Ventilation Good ventilation can help reduce some. However, if the indoor air is still a problem after doing everything you can to control the source

  3. Building America Whole-House Solutions for New Homes: Nexus EnergyHomes- Frederick, Maryland

    Broader source: Energy.gov [DOE]

    This new duplex home successfully combines affordability with state-of-the-art efficiency and indoor environmental quality, achieving the highest rating possible under the National Green Building Standard

  4. Indoor Radon and Its Decay Products: Concentrations, Causes, and Control Strategies

    SciTech Connect (OSTI)

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-01-01T23:59:59.000Z

    This report is an introduction to the behavior of radon 222 and its decay products in indoor air. This includes review of basic characteristics of radon and its decay products and of features of the indoor environment itself, all of which factors affect behavior in indoor air. The experimental and theoretical evidence on behavior of radon and its decay products is examined, providing a basis for understanding the influence of geological, structural, and meteorological factors on indoor concentrations, as well as the effectiveness of control techniques. We go on to examine three important issues concerning indoor radon. We thus include (1) an appraisal of the concentration distribution in homes, (2) an examination of the utility and limitations of popular monitoring techniques and protocols, and (3) an assessment of the key elements of strategies for controlling radon levels in homes.

  5. Health Hazards in Indoor Air

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2012-01-01T23:59:59.000Z

    residences: acetaldehyde, acrolein, benzene, 1,3-butadiene,with the addition of acrolein, which was not included inlarge contributors to acrolein and NO 2 respectively indoors

  6. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2010-01-01T23:59:59.000Z

    The Status of Indoor Air Pollution Research 1976. Geometand appliances and air pollution levels in the indoorAnnual Meeting of the Air Pollution Control Association,

  7. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2010-01-01T23:59:59.000Z

    The Status of Indoor Air Pollution Research 1976. GeometNovakov, T. : Formation of Pollution Particulate NitrogenGENERATED INDOOR AIR POLLUTION Dr. C. D. Hollowell, Dr. R.

  8. Workshop on indoor air quality research needs

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  9. Air temperature thresholds for indoor comfort and perceived air quality

    E-Print Network [OSTI]

    Zhang, Hui; Edward, Arens; Pasut, Wilmer

    2012-01-01T23:59:59.000Z

    system on perceived air quality, Indoor Air 2008, August 17-perception of indoor air quality during immediate and longeraddressing indoor air quality, thermal environment, lighting

  10. The Cricket indoor location system

    E-Print Network [OSTI]

    Priyantha, Nissanka Bodhi, 1968-

    2005-01-01T23:59:59.000Z

    Indoor environments present opportunities for a rich set of location-aware applications such as navigation tools for humans and robots, interactive virtual games, resource discovery, asset tracking, location-aware sensor ...

  11. address home address: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Healthy, Low-Energy Homes University of California eScholarship Repository Summary: Home Ventilating Products Directory: Certified Ratings in Air Delivery, Sound and...

  12. address office home: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Healthy, Low-Energy Homes University of California eScholarship Repository Summary: Home Ventilating Products Directory: Certified Ratings in Air Delivery, Sound and...

  13. Indoor Pollutants Emitted by Electronic Office Equipment

    SciTech Connect (OSTI)

    Maddalena, Randy L.; Destaillats, Hugo; Russell, Marion L.; Hodgson, Alfred T.; McKone, Thomas E.

    2008-07-01T23:59:59.000Z

    The last few decades have seen major changes in how people collect and process information at work and in their homes. More people are spending significant amounts of time in close proximity to computers, video display units, printers, fax machines and photocopiers. At the same time, efforts to improve energy efficiency in buildings by reducing leaks in building envelopes are resulting in tighter (i.e., less ventilated) indoor environments. Therefore, it is critical to understand pollutant emission rates for office equipment because even low emissions in areas that are under-ventilated or where individuals are in close proximity to the pollutant source can result in important indoor exposures. We reviewed existing literature reports on pollutant emission by office equipment, and measured emission factors of equipment with significant market share in California. We determined emission factors for a range of chemical classes including volatile and semivolatile organic compounds (VOCs and SVOCs), ozone and particulates. The measured SVOCs include phthalate esters, brominated and organophosphate flame retardants and polycyclic aromatic hydrocarbons. Measurements were carried out in large and small exposure chambers for several different categories of office equipment. Screening experiments using specific duty cycles in a large test chamber ({approx}20 m{sup 3}) allowed for the assessment of emissions for a range of pollutants. Results from the screening experiments identified pollutants and conditions that were relevant for each category of office equipment. In the second phase of the study, we used a smaller test chamber ({approx}1 m{sup 3}) to measure pollutant specific emission factors for individual devices and explored the influence of a range of environmental and operational factors on emission rates. The measured emission factors provide a data set for estimating indoor pollutant concentrations and for exploring the importance of user proximity when estimating exposure concentrations.

  14. Indoor Air Quality Poor indoor air quality comes from many sources. It can lead to having

    E-Print Network [OSTI]

    Indoor Air Quality Fact Sheet Poor indoor air quality comes from many sources. It can lead Indoor Air Pollutants · Molds · Pollen · Dander from pet fur · Secondhand smoke · Formaldehyde · Carbon such as cleaners and pesticides How to Improve Indoor Air Quality · Open windows when you can to let in fresh air

  15. Bayesian Prediction of Mean Indoor Radon Concentrations for Minnesota Counties

    SciTech Connect (OSTI)

    Price, P.N.; Nero, A.V.; Gelman, A.

    1995-08-01T23:59:59.000Z

    Past efforts to identify areas having higher than average indoor radon concentrations by examining the statistical relationship between local mean concentrations and physical parameters such as the soil radium concentration have been hampered by the noise in local means caused by the small number of homes monitored in some or most areas, In the present paper, indoor radon data from a survey in Minnesota are analyzed in such a way as to minimize the effect of finite sample size within counties, in order to determine the true county-to-county variation of indoor radon concentrations in the state and the extent to which this variation is explained by the variation in surficial radium concentration among counties, The analysis uses hierarchical modeling, in which some parameters of interest (such as county geometric mean (GM) radon concentrations) are assumed to be drawn from a single population, for which the distributional parameters are estimated from the data. Extensions of this technique, known as a random effects regression and mixed effects regression, are used to determine the relationship between predictive variables and indoor radon concentrations; the results are used to refine the predictions of each county's radon levels, resulting in a great decrease in uncertainty. The true county-to-county variation of GM radon levels is found to be substantially less than the county-to-county variation of the observed GMs, much of which is due to the small sample size in each county. The variation in the logarithm of surficial radium content is shown to explain approximately 80% of the variation of the logarithm of GM radon concentration among counties. The influences of housing and measurement factors, such as whether the monitored home has a basement and whether the measurement was made in a basement, are also discussed. This approach offers a self-consistent statistical method for predicting the mean values of indoor radon concentrations or other geographically distributed environmental parameters.

  16. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    E-Print Network [OSTI]

    Sherman, Max H.

    2010-01-01T23:59:59.000Z

    local mean ages of air in buildings for characterizing ventilationof local exhaust increases average whole-house ventilation

  17. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    E-Print Network [OSTI]

    Sherman, Max H.

    2010-01-01T23:59:59.000Z

    Mechanical Ventilation Systems. ” Int. J. Ventilation, 6(4),Residential Mechanical Ventilation Systems. ” ASHRAE HVAC&Rfor Extension of Ventilation System Tracer Gas Testing. ” (

  18. The Center for Indoor Environments

    E-Print Network [OSTI]

    Kim, Duck O.

    review of indoor air pollution in schools requested by the Environment Committee of the Connecticut risk 99 Industrial hygiene visit and walk- through assessment 99 Review of industrial hygiene interventions 99 Provide guidance on protecting occupants from exposures during construction 99 Coordinate

  19. MANDATORY MEASURES INDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 4 MANDATORY LIGHTING CONTROLS 1. 130.1 (a) Area Controls: Manual controls that control lighting in each area separately 2. 130.1 (b) Multi-level Controls: Allow occupants to choose the appropriate light level for each

  20. MANDATORY MEASURES INDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 3 MANDATORY LIGHTING CONTROLS 1. 130.1 (a) Area Controls: Manual controls that control lighting in each area separately 2. 130.1 (b) Multi-level Controls: "Dimmability." Allow occupants to choose the appropriate light

  1. MANDATORY MEASURES INDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 5 MANDATORY LIGHTING CONTROLS 1. Area Controls: Manual controls that control lighting in each area separately 2. Multi-level Controls: Allow occupants to choose the appropriate light level for each area 3. Shut

  2. Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain

    2014-06-01T23:59:59.000Z

    Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr--1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 ?g/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 ?g/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

  3. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    SciTech Connect (OSTI)

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01T23:59:59.000Z

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

  4. The effects of indoor pollution on Arizona children

    SciTech Connect (OSTI)

    Dodge, R.

    1982-05-01T23:59:59.000Z

    The respiratory health of a large group of Arizona school children who have been exposed to indoor pollutants-tobacco smoke and home cooking fumes-is reported. A significant relationship was found between parental smoking and symptoms of cough, wheeze, and sputum production. Also, children in homes where gas cooking fuel was used had higher rates of cough than children in homes where electricity was used. No differences in pulmonary function or yearly lung growth rates occurred among subjects grouped by exposure to tobacco smoke or cooking fuel. Thus, parental smoking and home cooking fuel affected cross-sectional respiratory symptom rates in a large group of Arizona school children. Study of pulmonary function, however, revealed no lung function or lung growth effects during 4 yr of study.

  5. Healthy!Zero!Energy!Buildings!(HZEB)!Program! ! ! Interim!Report!on!Cross"Sectional!Study!of!Contaminant!!

    E-Print Network [OSTI]

    1 ! ! Healthy!Zero!Energy!Buildings!(HZEB)!Program­! ! ! Interim!R.!Chan,!Meera!Sidheswaran,!Douglas!Sullivan,!! ! ! Sebastian!Cohn,!William!J.!Fisk!! ! ! ! Environmental!Energy!Technologies!Division! ! ! Indoor,!2012! ! ! ! ! ! ! ! ! ! ! The!research!reported!here!was!supported!by!the!California!Energy!Commission! ! ! Public!Interest!Energy!Research!Program,!Energy

  6. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01T23:59:59.000Z

    Pollutants from Indoor Combustion Sources: I. Field Measure-Characteristics in Two Stage Combustion, paper presented atInternational) on Combustion, August, 1974, Tokyo, Japan. 8

  7. Equivalence in Ventilation and Indoor Air Quality

    E-Print Network [OSTI]

    Sherman, Max

    2012-01-01T23:59:59.000Z

    Equivalence in Ventilation and Indoor Air Quality M. H.have a method for determining equivalence in terms of eitherwe need to establish an equivalence principle that allows

  8. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01T23:59:59.000Z

    The Japanese Union of Air Pollution Prevention Associations,The Status of Indoor Air Pollution Research 1976, GeometAnnual Meeting of the Air Pollution Control Association,

  9. Indoor airPLUS Construction Specifications Version 1 (Rev. 02...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Specifications Version 1 (Rev. 02) Indoor airPLUS Construction Specifications Version 1 (Rev. 02) Indoor airPLUS Construction Specifications Version 1 (Rev. 02), November 2013,...

  10. Energy Department Launches Better Buildings Alliance Indoor Lighting...

    Energy Savers [EERE]

    Energy Department Launches Better Buildings Alliance Indoor Lighting Campaign for Commercial Buildings Energy Department Launches Better Buildings Alliance Indoor Lighting Campaign...

  11. Integrating Energy and Indoor Environmental Quality Retrofits in Apartments

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    ventilating, and air conditioning Indoor air quality IndoorRefrigerating, and Air Conditioning Engineers, Inc. ASHRAE (Refrigerating, and Air Conditioning Engineers, Inc. ASHRAE (

  12. Air temperature thresholds for indoor comfort and perceived air quality

    E-Print Network [OSTI]

    Zhang, Hui; Edward, Arens; Pasut, Wilmer

    2012-01-01T23:59:59.000Z

    in the Netherlands, Indoor Air 2, 127 – 136. BuildingPaliaga, G. (2009) Moving air for comfort. ASHRAE Journal,ventilation system on perceived air quality, Indoor Air

  13. assessing indoor air: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sheet Poor indoor air quality comes from many sources. It can lead, and charcoal Household products such as cleaners and pesticides How to Improve Indoor Air Quality Open...

  14. Technical note Barriers and opportunities for passive removal of indoor ozone

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Technical note Barriers and opportunities for passive removal of indoor ozone Elliott T. Gall presents a Monte Carlo simulation to assess passive removal materials (PRMs) that remove ozone of homes in Houston, Texas, were taken from the literature and combined with back- ground ozone removal

  15. ENERGY IMPACTS OF ENERGY AND INDOOR ENVIRONMENTAL QUALITY RETROFITS OF APARTMENTS IN CALIFORNIA

    E-Print Network [OSTI]

    .S. is implementing many energy retrofits in homes with the goal of reducing building energy consumption and carbon1 ENERGY IMPACTS OF ENERGY AND INDOOR ENVIRONMENTAL QUALITY RETROFITS OF APARTMENTS IN CALIFORNIA Environment Group, Berkeley, CA, USA Corresponding author: William J. Fisk 1 Cyclotron Road, 90R3058 Lawrence

  16. Design and Evaluation of a Wireless Magnetic-based Proximity Detection Platform for Indoor Applications

    E-Print Network [OSTI]

    Zhao, Feng

    Design and Evaluation of a Wireless Magnetic-based Proximity Detection Platform for Indoor and evaluation of a wireless proximity detection platform based on magnetic induction - LiveSynergy. Live to reach people who can see and touch these clothes. A home appliance (e.g., refrigerator or microwave) may

  17. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES Home Home About Us Contact

  18. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES Home Home About Us ContactAUG 18

  19. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES Home Home About Us ContactAUG

  20. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES Home Home About Us

  1. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAES Home Home

  2. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAES Home Home User

  3. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAES Home Home User

  4. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAES Home Home

  5. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAES Home HomeCAES

  6. DOE Zero Ready Home Case Study: The Imery Group, Proud Green...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green Home's mini-split heat pump system consists of one outdoor compressorcondenser unit connected to three indoor units, with one upstairs in the attic and two downstairs in...

  7. Respiratory health effects of the indoor environment in a population of Dutch children

    SciTech Connect (OSTI)

    Dijkstra, L.; Houthuijs, D.; Brunekreef, B.; Akkerman, I.; Boleij, J.S. (Univ. of Wageningen (Netherlands))

    1990-11-01T23:59:59.000Z

    The effect of indoor exposure to nitrogen dioxide on respiratory health was studied over a period of 2 yr in a population of nonsmoking Dutch children 6 to 12 yr of age. Lung function was measured at the schools, and information on respiratory symptoms was collected from a self-administered questionnaire completed by the parents of the children. Nitrogen dioxide was measured in the homes of all children with Palmes' diffusion tubes. In addition, information on smoking and dampness in the home was collected by questionnaire. There was no relationship between exposure to nitrogen dioxide in the home and respiratory symptoms. Respiratory symptoms were found to be associated with exposure to tobacco smoke and home dampness. There was a weak, negative association between maximal midexpiratory flow (MMEF) and exposure to nitrogen dioxide. FEV1, peak expiratory flow, and MMEF were all negatively associated with exposure to tobacco smoke. Home dampness was not associated with pulmonary function. Lung function growth, measured over a period of 2 yr, was not consistently associated with any of the indoor exposure variables. The development of respiratory symptoms over time was not associated with indoor exposure to nitrogen dioxide. There was a significant association between exposure to environmental tobacco smoke in the home and the development of wheeze. There was also a significant association between home dampness and the development of cough.

  8. Home | DOEpatents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of greatHomeDiscover

  9. Challenge Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desertof Energy0 Chairs Meeting -June1ChairsDOE

  10. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAES Home

  11. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAES HomeRequest

  12. Classification of dwellings into profiles regarding indoor air quality, and identification of indoor air pollution determinant factors

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of indoor air pollution determinant factors Jean-Baptiste Masson1,2 * , Gérard Govaert2 , Corinne Mandin1 representing different types of indoor air pollution. We restrain to the 20 variables corresponding to indoorClassification of dwellings into profiles regarding indoor air quality, and identification

  13. indoor | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,Eaga SolarZoloHomeimprove Home Dc'sindoor Home

  14. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylaws pdfAUG

  15. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylaws

  16. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylaws User ID:

  17. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylaws User

  18. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylaws UserMaCS

  19. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylaws

  20. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylawsAUG 18

  1. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylawsAUG 18MaCS

  2. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylawsAUG

  3. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylawsAUGArchive

  4. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries

  5. Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About |Pages default Sign221

  6. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAES

  7. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAESMaCS About MaCS

  8. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAESMaCS About MaCS

  9. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAESMaCS About

  10. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAESMaCS About User

  11. GCPCC home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunitiesTheGAO AuditHKL-2000

  12. Home Page

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 sGwen

  13. Home Page

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 sGwen2 Click on

  14. Home Page

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 sGwen2 Click

  15. Home Page

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 sGwen2 Click

  16. Home Page

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 sGwen2

  17. Home Page

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 sGwen2Ecology

  18. Home | DOEpatents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu, Stephen G"EnergyENERGYMSAContact Us

  19. Fermilab | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹ ›Energy.govFermi

  20. BCP Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELATED LINKS Home Page Image Welcome Hoover Dam is the highest and third largest concrete dam in the United States. The dam, power plant, and high-voltage switchyards are...

  1. Indoor robot gardening: design and implementation

    E-Print Network [OSTI]

    Correll, Nikolaus

    This paper describes the architecture and implementation of a distributed autonomous gardening system with applications in urban/indoor precision agriculture. The garden is a mesh network of robots and plants. The gardening ...

  2. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2010-01-01T23:59:59.000Z

    x A Emission Characteristics in Two Stage Combustion. PaperInternational) on Combustion, Tokyo (August, 1974). Chang,fll , J I ___F J "J LBL-S9lS COMBUSTION-GENERATED INDOOR AIR

  3. Simplified methodology for indoor environment designs

    E-Print Network [OSTI]

    Srebric, Jelena, 1970-

    2000-01-01T23:59:59.000Z

    Current design of the building indoor environment uses averaged single parameters such as air velocity, air temperature or contaminant concentration. This approach gives only general information about thermal comfort and ...

  4. Indoor Landscaping with Living Foliage Plants.

    E-Print Network [OSTI]

    DeWerth, A. F.

    1972-01-01T23:59:59.000Z

    exotica Ficus eburnea Ficus elastica Ficus elas tica tlecora Ficus elasstica variegated Ficus nlacrophylla Ficus nititla (retusa) Ficus pandurata Ficus religiosa Ficus rubiginosa variegated (australis) Gyriura aurantiaca . Hedera canariensis... and nutrients. ,411 of these l'actors are interrelated, and all effect the height, strength ant1 health of the plant. Indoor Environmental Factors The selection of plants for indoor landscaping, therefore, is depenclent upon the environment. The problem...

  5. Indoor unit for electric heat pump

    DOE Patents [OSTI]

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22T23:59:59.000Z

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  6. Healthy habits: reducing our carbon footprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecoveryG -Hazmat workHowHealthy

  7. Personal exposure to nitrogen dioxide: relationship to indoor/outdoor air quality and activity patterns

    SciTech Connect (OSTI)

    Quackenboss, J.J.; Spengler, J.D.; Kanarek, M.S.; Letz, R.; Duffy, C.P.

    1986-08-01T23:59:59.000Z

    Personal NO/sub 2/ exposures and indoor and outdoor concentrations were measured for nearly 350 individuals in the Portage, WI, area. Concentrations in homes with gas stoves averaged 18 ..mu..g/m/sup 3/ higher in the summer (median indoor/outdoor ratio 2.4) and 36 ..mu..g/m/sup 3/ (median indoor/outdoor ratio 3.2) higher in the winter than outdoor levels. Personal exposures were closely related to indoor averages for households with gas stoves (r = 0.85 summer, r = 0.87 winter) and with electric stoves (r = 0.68 summer, r = 0.61 winter); more than 65% of the average day was spent at home while about 15% was spent outdoors in summer and less than 5% in winter. The association between personal exposure and outdoor levels of NO/sub 2/ was weakest during the winter for both gas (r = 0.20) and electric (r = 0.28) stove groups. The measures of exposure and time allocation indicate that there is a wide range of variability in personal exposures to NO/sub 2/ that may not be adequately accounted for by simple stratifications based on cooking fuel type. 46 references, 7 tables.

  8. Indoor environment program - 1995 annual report

    SciTech Connect (OSTI)

    Daisey, J.M.

    1996-06-01T23:59:59.000Z

    Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, and energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.

  9. Indoor environment program. 1994 annual report

    SciTech Connect (OSTI)

    Daisey, J.M.

    1995-04-01T23:59:59.000Z

    Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, and energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.

  10. COOKING APPLIANCE USE IN CALIFORNIA HOMES--DATA

    E-Print Network [OSTI]

    COOKING APPLIANCE USE IN CALIFORNIA HOMES--DATA COLLECTED FROM A WEB-BASED SURVEY Victoria L. Klug, Agnes B. Lobscheid, and Brett C. Singer Environmental Energy Technologies Division August 2011 LBNL-5028 FROM A WEB-BASED SURVEY Victoria L. Klug, Agnes B. Lobscheid, and Brett C. Singer Indoor Environment

  11. DOE Zero Energy Ready Home: Ventilation and Filtration Strategies with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustomIndoor airPLUS Webinar (Text

  12. Healthy Air Act (Maryland)

    Broader source: Energy.gov [DOE]

    The Maryland Healthy Air Act was developed with the purpose of bringing Maryland into attainment with the National Ambient Air Quality Standards (NAAQS) for ozone and fine particulate matter by the...

  13. Growing Potatoes in Your Home Garden

    E-Print Network [OSTI]

    Douches, David S.

    Growing Potatoes in Your Home Garden A Guide to Growing Potatoes In Your Home Garden Yes potatoes! Potatoes, along with many other vegetables, can be prepared as part of a healthy diet. Luckily, potatoes are versatile and are easy to prepare. Whether baked, boiled, roasted or fried

  14. Proceedings: Indoor Air 2005 A PRELIMINARY FIELD STUDY OF INDOOR CHEMISTRY

    E-Print Network [OSTI]

    Boyer, Edmond

    of ozone-initiated reactions products indoors. In particular, formaldehyde, hexanal and presumably occurring indoors (Weschler 2000). The ozone removal on building products has been experimentally-induced reaction products, including odorous compounds (Knudsen et al. 2003) but also airway irritants (Wolkoff et

  15. Comparison of dust from HVAC filters, indoor surfaces, and indoor air Federico Noris*

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Comparison of dust from HVAC filters, indoor surfaces, and indoor air Federico Noris* , Kerry A and Environmental Engineering * Corresponding email: Fedenoris@mail.utexas.edu SUMMARY HVAC filters are long heavy metal (Pb, Cd and As) concentrations. HVAC filter microbial concentrations appear to be consistent

  16. Hartford Neighborhood Healthy Homes Project (NeHHP) Checklist Definitions

    E-Print Network [OSTI]

    Oliver, Douglas L.

    @uchc.edu DRAFT 11/13/2009 Combustion Appliance (nonelectric) that is not vented: Some combustion appliances, such as gas ranges and unvented space heaters, and other products (gas logs and charcoal stoves) discharge combustion products directly into the living area. Combustion byproducts can include strong

  17. National Tribal Healthy Homes and Energy Efficiency Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012 - 6:21pm Addthis This event will take place May 8-10, 2012, in Sault Ste. Marie, Michigan. Sponsored by the Inter-Tribal Council of Michigan and the U.S. Environmental...

  18. Addressing Kitchen Contaminants for Healthy, Low-Energy Homes

    E-Print Network [OSTI]

    Stratton, J. Chris

    2014-01-01T23:59:59.000Z

    Code (IMC), International Energy Conservation Code (IECC),IgCC) International Energy Conservation Code (IECC) HighCode (IMC), International Energy Conservation Code (IECC),

  19. LOWELL C. KRUSE HEALTHY CHOICES. HEALTHY LIVES. SCHOLARSHIP

    E-Print Network [OSTI]

    : Atchison, Brown, Doniphan, and Nemaha; and IN NEBRASKA: Nemaha and Richardson. #12;LOWELL C. KRUSE HEALTHY

  20. Combustion Safety for Appliances Using Indoor Air (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  1. Human Occupancy as a Source of Indoor Airborne Bacteria

    E-Print Network [OSTI]

    Hospodsky, Denina

    Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study ...

  2. Indoor environment quality in LEED buildings: Understanding conditions affecting performance

    E-Print Network [OSTI]

    Walker, Kristine

    2015-01-01T23:59:59.000Z

    Listening to the occupants: A web-based indoor environmentalC, Laeser KArens EA (2002) A web-based occupant satisfactionindoor environmental quality: A web- based indoor occupant

  3. Indoor Environmental Quality Benefits of Apartment Energy Retrofits

    E-Print Network [OSTI]

    Urban Habitat Initiatives Inc. Boston, MA, USA June 2013 Funding was provided by the California Energy energy consumption and improving indoor environmental quality (IEQ). Retrofit measures varied among1 Indoor Environmental Quality Benefits of Apartment Energy Retrofits Federico Norisa, , Gary

  4. Factors Analysis on Safety of Indoor Air Quality

    E-Print Network [OSTI]

    Luo, Q.; Liu, Z.; Xiong, J.

    2006-01-01T23:59:59.000Z

    . Handbook on Review and Detection of Indoor Environment [M]. Beijing: Mechanical Industry Press, 2003: 1-5.(In Chinese) [2] Pan Xiaochuan. Review on Indoor Air Pollution and Its Harmfulness to Health [J]. Chin. Prev. Med., 2002,3(3):167-169 (in... of Urban Construction, Nanhua University, Hengyang, P.R.China hunanluoqinghai@163.com Abstract: Influence factors on safety of indoor air quality (IAQ) were analyzed in this paper. Some regeneration compositions resulting from potential indoor...

  5. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01T23:59:59.000Z

    incorporating energy efficient designs. Indoor air qualityincorporating energy efficient designs. In the future, theenergy efficient ventilation standards and ventilation designs

  6. Effectiveness of Houseplants in Reducing the Indoor Air Pollutant Ozone

    E-Print Network [OSTI]

    Decoteau, Dennis R.

    Effectiveness of Houseplants in Reducing the Indoor Air Pollutant Ozone Heather L. Papinchak1 , E for their species effectiveness in reducing ozone concentrations in a simulated indoor environment. Continuously supply system were used to simulate an indoor environment in which ozone concentrations could be measured

  7. Indoor air quality in French dwellings Sverine Kirchner1,*

    E-Print Network [OSTI]

    Boyer, Edmond

    on Indoor Air Quality (OQAI) aims at collecting data on population exposure to indoor pollutants in various INTRODUCTION Our lack of understanding of the health risks related to air pollutants exposure in buildingsIndoor air quality in French dwellings Séverine Kirchner1,* , Mickael Derbez1 , Cédric Duboudin2

  8. Indoor unit for electric heat pump

    DOE Patents [OSTI]

    Draper, Robert (Churchill, PA); Lackey, Robert S. (Pittsburgh, PA); Fagan, Jr., Thomas J. (Penn HIlls, PA); Veyo, Stephen E. (Murrysville, PA); Humphrey, Joseph R. (Grand Rapids, MI)

    1984-01-01T23:59:59.000Z

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module 10, an air mover module 12, and a resistance heat package module 14, the refrigeration module including all of the indoor refrigerant circuit components including the compressor 36 in a space adjacent the heat exchanger 28, the modules being adapted to be connected to air flow communication in several different ways as shown in FIGS. 4-7 to accommodate placement of the unit in various orientations.

  9. Indoor Environment Program 1991 annual report

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    Approximately 38% of the energy consumed in the United States is used in buildings. Much of this energy can be saved by reducing buildings' air infiltration and ventilation, since the heat load associated with these processes is about 13 quads per year. However, because ventilation is the dominant mechanism for removing pollutants that originate indoors, reducing ventilation can cause undesirable side effects such as lowering indoor air quality and adversely affecting the health, comfort and productivity of building occupants. The purpose of this research is to increase the energy efficiency of buildings while maintaining or improving occupant health and comfort. The research explores energy use and efficiency of buildings; building ventilation and infiltration; the nature, sources, transport, transformation, and deposition of indoor air pollutants; and exposure and risk assessment for indoor air pollutants. Pollutants of particular interest include radon; volatile, semi-volatile and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO[sub x]. The Program also conducts multidisciplinary studies on relationships between occupant health and comfort symptoms and factors within a building's environment. Air infiltration and ventilation rates are measured and modeled for residential and commercial buildings in order to understand energy transport and thermal losses from various components of building shells and ventilation systems. Methods for reducing energy losses are based on these studies. The effectiveness of various ventilation systems for pollutant removal is also investigated. Methods for characterizing ventilation and building energy use are developed for experimental and applied uses.

  10. Indoor Environment Program 1991 annual report

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    Approximately 38% of the energy consumed in the United States is used in buildings. Much of this energy can be saved by reducing buildings` air infiltration and ventilation, since the heat load associated with these processes is about 13 quads per year. However, because ventilation is the dominant mechanism for removing pollutants that originate indoors, reducing ventilation can cause undesirable side effects such as lowering indoor air quality and adversely affecting the health, comfort and productivity of building occupants. The purpose of this research is to increase the energy efficiency of buildings while maintaining or improving occupant health and comfort. The research explores energy use and efficiency of buildings; building ventilation and infiltration; the nature, sources, transport, transformation, and deposition of indoor air pollutants; and exposure and risk assessment for indoor air pollutants. Pollutants of particular interest include radon; volatile, semi-volatile and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}. The Program also conducts multidisciplinary studies on relationships between occupant health and comfort symptoms and factors within a building`s environment. Air infiltration and ventilation rates are measured and modeled for residential and commercial buildings in order to understand energy transport and thermal losses from various components of building shells and ventilation systems. Methods for reducing energy losses are based on these studies. The effectiveness of various ventilation systems for pollutant removal is also investigated. Methods for characterizing ventilation and building energy use are developed for experimental and applied uses.

  11. Arnold Schwarzenegger INDOOR-OUTDOOR AIR LEAKAGE

    E-Print Network [OSTI]

    ;#12;Indoor-Outdoor Air Leakage in Apartments and Commercial Buildings Appendix A Air Infiltration Model for Large Buildings Appendix B Analysis of Commercial Building Data Appendix C Commercial Building Data contains data and discussion of the leakage parameter in commercial buildings. The leakage parameter

  12. Algorithms for GPS operation indoors and downtown

    E-Print Network [OSTI]

    Sahai, Anant

    Algorithms for GPS operation indoors and downtown Nainesh Agarwal Ć Julien Basch Ć Paul Beckmann Ć Piyush Bharti Ć Scott Bloebaum Stefano Casadei Ć Andrew Chou Ć Per Enge Ć Wungkum Fong Ć Neesha Hathi. Casadei Ć A. Chou Ć P. Enge Ć W. Fong N. Hathi Ć W. Mann Ć J. Stone Ć J. Tsitsiklis Ć B. Van Roy

  13. Woodland Park Healthy Forest Initiative

    E-Print Network [OSTI]

    March 2010 Woodland Park Healthy Forest Initiative Collaboration Case Study #12;Woodland Park Healthy Forest Initiative 1 1 Colorado Forest Restoration Institute Collaboration Case Study: Woodland at Colorado State University, to conduct case studies of two collaborative forest health efforts

  14. Chronic respiratory effects of indoor formaldehyde exposure

    SciTech Connect (OSTI)

    Krzyzanowski, M.; Quackenboss, J.J.; Lebowitz, M.D. (Univ. of Arizona Health Sciences Center, Tucson (USA))

    1990-08-01T23:59:59.000Z

    The relation of chronic respiratory symptoms and pulmonary function to formaldehyde (HCHO) in homes was studied in a sample of 298 children (6-15 years of age) and 613 adults. HCHO measurements were made with passive samplers during two 1-week periods. Data on chronic cough and phlegm, wheeze, attacks of breathlessness, and doctor diagnoses of chronic bronchitis and asthma were collected with self-completed questionnaires. Peak expiratory flow rates (PEFR) were obtained during the evenings and mornings for up to 14 consecutive days for each individual. Significantly greater prevalence rates of asthma and chronic bronchitis were found in children from houses with HCHO levels 60-120 ppb than in those less exposed, especially in children also exposed to environmental tobacco smoke. In children, levels of PEFR decreased linearly with HCHO exposure, with the estimated decrease due to 60 ppb of HCHO equivalent to 22% of PEFR level in nonexposed children. The effects in asthmatic children exposed to HCHO below 50 ppb were greater than in healthy ones. The effects in adults were less evident: decrements in PEFR due to HCHO over 40 ppb were seen only in the morning, and mainly in smokers.

  15. Home Inventory User Manual About Home Inventory

    E-Print Network [OSTI]

    Wolfgang, Paul

    Home Inventory User Manual About Home Inventory The HomeInventory Project consists of a customized. With two types of roles, Users and Administrators, clients logged into the HomeInventory have access to a variety of commands. HomeInventory stores each user's items safely and privately, without worry

  16. Are Ventilation Filters Degrading Indoor Air Quality in California Classrooms?

    SciTech Connect (OSTI)

    Fisk, William J.; Destaillats, H.; Apte, M.G.; Destaillats,, Hugo; Fisk, Michael G. Apte and William J.

    2008-10-01T23:59:59.000Z

    Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

  17. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect (OSTI)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01T23:59:59.000Z

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  18. Energy-related indoor environmental quality research: A priority agenda

    E-Print Network [OSTI]

    2002-01-01T23:59:59.000Z

    LBNL - 51328 ENERGY-RELATED INDOOR ENVIRONMENTAL QUALITYof Public Health Florida Solar Energy Center, Florida StateStandards, U.S. Department of Energy National Institute of

  19. administration indoor air: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the investigations Mentifyhg indoor eflvironmental @leas were initiated in response to energy audit requests. One investigation was requested after parents cnplained to the school...

  20. acceptable indoor air: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the investigations Mentifyhg indoor eflvironmental @leas were initiated in response to energy audit requests. One investigation was requested after parents cnplained to the school...

  1. Measure Guideline: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, R.

    2014-02-01T23:59:59.000Z

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  2. Mount Healthy, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill, California:Morse,Wave GroupChase, Maine:Healthy,

  3. New Homes Incentive Program

    Broader source: Energy.gov [DOE]

    Energy Trust's New Homes Program offers builders cash incentives for energy efficient measures included in new homes, where the measures exceed the building code. Lighting upgrades, whole home...

  4. Air quality and thermal comfort in office buildings: Results of a large indoor environmental quality survey

    E-Print Network [OSTI]

    Huizenga, C; Abbaszadeh, S.; Zagreus, Leah; Arens, Edward A

    2006-01-01T23:59:59.000Z

    based Indoor Environmental Quality Survey. Indoor Air 2004;L. Zagreus. 2005. Acoustic Quality in Office Workstations asare you with the air quality in your workspace? very

  5. CfA Home HCO Home SAO Home Donate Search

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    CfA Home HCO Home SAO Home Donate Search Measuring the Ancient Solar Nebula's Magnetic Field meteorites that formed in brief heating events in the young solar nebula. They probably constitute sized constituents of primitive meteorites that formed in brief heating events in the young solar nebula

  6. Association of indoor nitrogen dioxide with respiratory symptoms and pulmonary function in children

    SciTech Connect (OSTI)

    Neas, L.M.; Dockery, D.W.; Ware, J.H.; Spengler, J.D.; Speizer, F.E.; Ferris, B.G. Jr. (Harvard School of Public Health, Boston, MA (USA))

    1991-07-15T23:59:59.000Z

    The effect of indoor nitrogen dioxide on the cumulative incidence of respiratory symptoms and pulmonary function level was studied in a cohort of 1,567 white children aged 7-11 years examined in six US cities from 1983 through 1988. Week-long measurements of nitrogen dioxide were obtained at three indoor locations over 2 consecutive weeks in both the winter and the summer months. The household annual average nitrogen dioxide concentration was modeled as a continuous variable and as four ordered categories. Multiple logistic regression analysis of symptom reports from a questionnaire administered after indoor monitoring showed that a 15-ppb increase in the household annual nitrogen dioxide mean was associated with an increased cumulative incidence of lower respiratory symptoms (odds ratio (OR) = 1.4, 95% confidence interval (95% Cl) 1.1-1.7). The response variable indicated the report of one or more of the following symptoms: attacks of shortness of breath with wheeze, chronic wheeze, chronic cough, chronic phlegm, or bronchitis. Girls showed a stronger association (OR = 1.7, 95% Cl 1.3-2.2) than did boys (OR = 1.2, 95% Cl 0.9-1.5). An analysis of pulmonary function measurements showed no consistent effect of nitrogen dioxide. These results are consistent with earlier reports based on categorical indicators of household nitrogen dioxide sources and provide a more specific association with nitrogen dioxide as measured in children's homes.

  7. Healthy Foods, Healthy Lives: Cooking on a Student's Budget

    E-Print Network [OSTI]

    Amin, S. Massoud

    Healthy Foods, Healthy Lives: Cooking on a Student's Budget FScN 2002 ­ Fall & Spring Semesters/monthly menus within a realistic food budget and a modest supply list Gain valuable information and connect to a variety of resources on nutrition, food safety, budgeting and meal planning Develop a social network

  8. Seeking Healthy Buildings By Eva Matsuzaki

    E-Print Network [OSTI]

    Kyte, Michael

    - $3/gallon Price of water - $8/gallon Really??? #12;Indoor Air Quality Lack of proper ventilation of some of our existing conditions. Energy Materials Water Stress Indoor Air Quality What's wrong;Water consumption Average person in U.S. uses 90 gallons/day of potable water. (40 gallons

  9. Performance House -- A Cold Climate Challenge Home

    SciTech Connect (OSTI)

    Puttagunta, S.; Grab, J.; Williamson, J.

    2013-08-01T23:59:59.000Z

    Working with builder partners on a test homes allows for vetting of whole-house building strategies to eliminate any potential unintended consequences prior to implementing these solution packages on a production scale. To support this research, CARB partnered with Preferred Builders Inc. on a high-performance test home in Old Greenwich, CT. The philosophy and science behind the 2,700 ft2 'Performance House' was based on the premise that homes should be safe, healthy, comfortable, durable, efficient, and adapt with the homeowners. The technologies and strategies used in the 'Performance House' were not cutting-edge, but simply 'best practices practiced'. The focus was on simplicity in construction, maintenance, and operation. When seeking a 30% source energy savings targets over a comparable 2009 IECC code-built home in the cold climate zone, nearly all components of a home must be optimized. Careful planning and design are critical. To help builders and architects seeking to match the performance of this home, a step-by-step guide through the building shell components of DOE's Challenge Home are provided in a pictorial story book. The end result was a DOE Challenge Home that achieved a HERS Index Score of 20 (43 without PV, the minimum target was 55 for compliance). This home was also awarded the 2012 HOBI for Best Green Energy Efficient Home from the Home Builders & Remodelers Association of Connecticut.

  10. Assessment of Indoor Air Quality Benefits and Energy Costs of

    E-Print Network [OSTI]

    Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation J.M.Logue1,P Quality Benefits and Energy Costs of Mechanical Ventilation LBNL-4945E Disclaimer This document.H. Sherman, B.C. Singer, Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

  11. STATE OF CALIFORNIA INDOOR AIR QUALITY AND MECHANICAL VENTILATION

    E-Print Network [OSTI]

    STATE OF CALIFORNIA INDOOR AIR QUALITY AND MECHANICAL VENTILATION CEC- CF-6R-MECH-05 (Revised 08 Ventilation (Page 1 of 7) Site Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 Ventilation for Indoor Air Quality (IAQ): All dwelling units shall meet the requirements

  12. Ris-R-1462(EN) Airborne contamination in the indoor

    E-Print Network [OSTI]

    Risř-R-1462(EN) Airborne contamination in the indoor environment and its implications for dose K. Byskov, X.L. Hou, H. Prip, S.K. Olsen, T. Roed Title: Airborne contamination in the indoor environment of contaminant aerosol were examined, and since the previous measurements had indicated that elemental iodine

  13. Impacts of Contaminant Storage on Indoor Air Quality: Model Development

    E-Print Network [OSTI]

    . Impacts of contaminant storage on indoor air quality: Model development. Atmospheric Environment. LBNL the buffering of airborne chemical species by building materials and furnishings in the indoor environment to the time scale of depletion of the compound from the storage medium, however, the total exposure

  14. Evolving an Indoor Robotic Localization System Based on Wireless Networks

    E-Print Network [OSTI]

    Braun, Torsten

    of indoor robotic localization. We investigate the design and building of an autonomous localization system provides the position of one robot in a space, as in a Cartesian plane, corroborating with the EvoEvolving an Indoor Robotic Localization System Based on Wireless Networks Gustavo Pessin1

  15. Residential HVAC Indoor Air Quality(ASHRAE 62.2)

    E-Print Network [OSTI]

    Residential HVAC && Indoor Air Quality(ASHRAE 62.2) Tav Commins #12;Contact Information · Energy construction, Additions /Alterations · Nonresidential and Residential #12;Residential HVAC && Indoor Air Quality(ASHRAE 62.2) ·HVAC EfficiencyHVAC Efficiency ·Quality Installation (HERS Measures) S li b HERS R t

  16. Proceedings: Indoor Air 2005 OZONE REMOVAL BY RESIDENTIAL HVAC FILTERS

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Proceedings: Indoor Air 2005 2366 OZONE REMOVAL BY RESIDENTIAL HVAC FILTERS P Zhao1,2 , JA Siegel1, Austin, Texas 78758, USA ABSTRACT HVAC filters have a significant influence on indoor air quality% for Filter #2 at a face velocity of 0.81 cm/s. The potential for HVAC filters to affect ozone concentrations

  17. The Center for Indoor Environments and Health's specific mission is

    E-Print Network [OSTI]

    Oliver, Douglas L.

    pollutants and materials Outdoor air contaminants (including diesel particulates) and materials brought for Indoor Environments and Health #12;Why are building communities struggling with managing indoor air air problems? Design Structures built slab on grade, and/or with flat roofs with poor drainage

  18. Energy Code Enforcement Training Manual : Covering the Washington State Energy Code and the Ventilation and Indoor Air Quality Code.

    SciTech Connect (OSTI)

    Washington State Energy Code Program

    1992-05-01T23:59:59.000Z

    This manual is designed to provide building department personnel with specific inspection and plan review skills and information on provisions of the 1991 edition of the Washington State Energy Code (WSEC). It also provides information on provisions of the new stand-alone Ventilation and Indoor Air Quality (VIAQ) Code.The intent of the WSEC is to reduce the amount of energy used by requiring energy-efficient construction. Such conservation reduces energy requirements, and, as a result, reduces the use of finite resources, such as gas or oil. Lowering energy demand helps everyone by keeping electricity costs down. (It is less expensive to use existing electrical capacity efficiently than it is to develop new and additional capacity needed to heat or cool inefficient buildings.) The new VIAQ Code (effective July, 1991) is a natural companion to the energy code. Whether energy-efficient or not, an homes have potential indoor air quality problems. Studies have shown that indoor air is often more polluted than outdoor air. The VIAQ Code provides a means of exchanging stale air for fresh, without compromising energy savings, by setting standards for a controlled ventilation system. It also offers requirements meant to prevent indoor air pollution from building products or radon.

  19. DOE Zero Ready Home Case Study: Caldwell and Johnson, Church Community Housing Corporation, Charlestown, RI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustomIndoor airPLUS Webinar (TextCaldwell

  20. DOE Zero Ready Home Case Study: Greenhill Contracting, The Preserve, New Paltz, NY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustomIndoor airPLUS Webinar

  1. DOE Zero Ready Home Case Study: John Hubert Associates, EXIT-0, North Cape May, NJ

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustomIndoor airPLUS WebinarHubert

  2. School Indoor Environmental Quality Assessments and Interventions: Benefits of Effective Partnerships in California

    SciTech Connect (OSTI)

    Shendell, Derek G.; Apte, Michael G.; Kim, Janice; Smorodinsky, Svetlana

    2002-07-01T23:59:59.000Z

    Public, private, government, and university stakeholders have focused increasing attention on children's environmental health. Priority areas have been healthy school environments including indoor air and environmental quality (IEQ); susceptibilities of children to environmental factors and associated illness; and, understanding exposure to biological, chemical, and physical agents. As multidisciplinary teams, studies and intervention demonstrations in California public schools were conducted. A common theme among them was a ''partnership,'' the collaboration between stakeholders from the aforementioned sectors. Federal funding and local bond measures for planning, maintenance, and modernization of school facilities have recently been authorized. Therefore, beneficial ''partnerships'' should be established to conduct needed IEQ, environmental health, and productivity research, development and demonstration. This commentary describes benefits for stakeholders and five strategies for future effective collaborations.

  3. Particle size distribution of indoor aerosol sources

    SciTech Connect (OSTI)

    Shah, K.B.

    1990-10-24T23:59:59.000Z

    As concern about Indoor Air Quality (IAQ) has grown in recent years, it has become necessary to determine the nature of particles produced by different indoor aerosol sources and the typical concentration that these sources tend to produce. These data are important in predicting the dose of particles to people exposed to these sources and it will also enable us to take effective mitigation procedures. Further, it will also help in designing appropriate air cleaners. A new state of the art technique, DMPS (Differential Mobility Particle Sizer) System is used to determine the particle size distributions of a number of sources. This system employs the electrical mobility characteristics of these particles and is very effective in the 0.01--1.0 {mu}m size range. A modified system that can measure particle sizes in the lower size range down to 3 nm was also used. Experimental results for various aerosol sources is presented in the ensuing chapters. 37 refs., 20 figs., 2 tabs.

  4. DOE Zero Ready Home Case Study: Sterling Brook Custom Homes,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Version 3.0, the insulation requirements of the 2012 International Energy Conservation Code, and the indoor air quality and water saving requirements of the U.S. Environmental...

  5. Office of radiation and indoor air: Program description

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The goal of the Environmental Protection Agency`s (EPA) Office of Radiation and Indoor Air is to protect the public and the environment from exposures to radiation and indoor air pollutants. The Office develops protection criteria, standards, and policies and works with other programs within EPA and other agencies to control radiation and indoor air pollution exposures; provides technical assistance to states through EPA`s regional offices and other agencies having radiation and indoor air protection programs; directs an environmental radiation monitoring program; responds to radiological emergencies; and evaluates and assesses the overall risk and impact of radiation and indoor air pollution. The Office is EPA`s lead office for intra- and interagency activities coordinated through the Committee for Indoor Air Quality. It coordinates with and assists the Office of Enforcement in enforcement activities where EPA has jurisdiction. The Office disseminates information and works with state and local governments, industry and professional groups, and citizens to promote actions to reduce exposures to harmful levels of radiation and indoor air pollutants.

  6. Indoor air quality environmental information handbook: Combustion sources

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    This environmental information handbook was prepared to assist both the non-technical reader (i.e., homeowner) and technical persons (such as researchers, policy analysts, and builders/designers) in understanding the current state of knowledge regarding combustion sources of indoor air pollution. Quantitative and descriptive data addressing the emissions, indoor concentrations, factors influencing indoor concentrations, and health effects of combustion-generated pollutants are provided. In addition, a review of the models, controls, and standards applicable to indoor air pollution from combustion sources is presented. The emphasis is on the residential environment. The data presented here have been compiled from government and privately-funded research results, conference proceedings, technical journals, and recent publications. It is intended to provide the technical reader with a comprehensive overview and reference source on the major indoor air quality aspects relating to indoor combustion activities, including tobacco smoking. In addition, techniques for determining potential concentrations of pollutants in residential settings are presented. This is an update of a 1985 study documenting the state of knowledge of combustion-generated pollutants in the indoor environment. 191 refs., 51 figs., 71 tabs.

  7. Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovemberInvestigationsCommittee on EnergyMarketHollett Takes on1 Homes

  8. Home Energy Solutions for Existing Homes

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon offers a variety of incentives and services through their Home Energy Solutions program. All equipment eligible for incentives needs to meet the efficiency requirements...

  9. Heat Pump Water Heaters and American Homes: A Good Fit?

    SciTech Connect (OSTI)

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14T23:59:59.000Z

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  10. Reaching agreements on indoor air quality

    SciTech Connect (OSTI)

    Stewart, S.M.

    1992-08-01T23:59:59.000Z

    The phrases sick building syndrome and indoor air quality (IAQ) are in common use today because of a heightened public awareness of various environmental issues. IAQ complaints must be diplomatically resolved because employers and building owners and managers now face a potential impact on their bottom-lines. The office's IAQ was first questioned when 12 of the 47 employees reported complaints particular to the time they spent in the office building. Three employees were so severely affected, they developed respective cases of rhinitis, conjunctivitis and sinus infection. When the tenant presented this information to the building owner, he was told that there was not an IAQ problem within the building. This article summarizes an unfortunate, yet typical, aspect of IAQ problems. It also offers a more efficient method for evaluating and resolving all IAQ problems.

  11. Commissioning to avoid indoor air quality problems

    SciTech Connect (OSTI)

    Sterling, E.M.; Collett, C.W. (Theodore D. Sterling and Associates, Ltd., Vancouver, British Columbia (Canada)); Turner, S. (Healthy Buildings International Inc., Fairfax, VA (United States)); Downing, C.C. (Environmental Science and Technology Lab., Georgia Technology Research Inst., Atlanta, GA (United States))

    1992-10-01T23:59:59.000Z

    This paper reports on indoor air quality (IAQ) which has become a pervasive problem plaguing the building industry worldwide. Poor IAQ in commercial and office buildings is primarily related to new building technology, new materials and equipment and energy management operating systems. Occupants of buildings with air quality problems suffer from a common series of symptoms. As early as 1982, ASHRAE, realizing the significance of the problem, produced an IAQ position statement that identified strategies for solving IAQ problems. Many of those strategies have now been implemented, including Standard 62-1989, Ventilation for Acceptable Air Quality; Standard 90.1, Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings; the 100 series of energy standards; and Guideline 1, Guideline for Commissioning of HVAC Systems.

  12. Condition Controlling and Monitoring of Indoor Swimming Pools

    E-Print Network [OSTI]

    Nissinen, K.; Kauppinen, T.; Hekkanen, M.

    2004-01-01T23:59:59.000Z

    VTT has executed a lot of research work concerning the usage, functionality and refurbishment of indoor swimming pools and spas lately. This work includes for instance detailed condition surveys, energy audits, cost analysis and maintenance planning...

  13. Toward Indoor Flying Robots Jean-D. Nicoud1

    E-Print Network [OSTI]

    Floreano, Dario

    air vehicles, MAVs [4-7]), or airships but most of them are outdoor machines, consequently requiring-than-air, flapping wings, rotary wings, and fixed wings. All of them are not convenient for indoor use. Airships

  14. Multipath Reflections Analysis on Indoor Visible Light Positioning System

    E-Print Network [OSTI]

    Gu, Wenjun; Kavehrad, Mohsen

    2015-01-01T23:59:59.000Z

    Visible light communication (VLC) has become a promising research topic in recent years, and finds its wide applications in indoor environments. Particularly, for location based services (LBS), visible light also provides a practical solution for indoor positioning. Multipath-induced dispersion is one of the major concerns for complex indoor environments. It affects not only the communication performance but also the positioning accuracy. In this paper, we investigate the impact of multipath reflections on the positioning accuracy of indoor VLC positioning systems. Combined Deterministic and Modified Monte Carlo (CDMMC) approach is applied to estimate the channel impulse response considering multipath reflections. Since the received signal strength (RSS) information is used for the positioning algorithm, the power distribution from one transmitter in a typical room configuration is first calculated. Then, the positioning accuracy in terms of root mean square error is obtained and analyzed.

  15. 2013 4-H Indoor Exhibits Junior New Mexico State Fair

    E-Print Network [OSTI]

    2013 4-H Indoor Exhibits Junior New Mexico State Fair Exhibitor Name County Place Animal Science J 0015 - Exhibit- Rodeo Arden Gardner Dona Ana 2 Timia Northcutt Curry County 3 0017 - Pet Pals Exhibit

  16. Study of building material emissions and indoor air quality

    E-Print Network [OSTI]

    Yang, Xudong, 1966-

    1999-01-01T23:59:59.000Z

    Building materials and furnishings emit a wide variety of indoor pollutants, such as volatile organic compounds (VOCs). At present, no accurate models are available to characterize material emissions and sorption under ...

  17. Indoor Environmental Science and Engineering: An Integrated Academic Program

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Quality (Physics and Chemistry), HVAC Design, Building Energy Simulation, Design of Energy Efficient1 . This statistic is disturbing given that recent studies indicate that indoor environments no regulatory attention and little research funding. Academic programs are lacking to train engineers

  18. air pollution indoor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Houseplants in Reducing the Indoor Air Pollutant Ozone Heather L. Papinchak1 , E ndoor air pollution is ranked as one of the world's greatest public health risks (Wolverton,...

  19. Healthy Housing Opportunities During Weatherization Work

    SciTech Connect (OSTI)

    Wilson, J.; Tohn, E.

    2011-03-01T23:59:59.000Z

    In the summer and early fall of 2010, the National Center for Healthy Housing interviewed people from a selection of state and local agencies that perform weatherizations on low-income housing in order to gauge their approach to improving the health and safety of the homes. The interviews provided a strong cross section of what work agencies can do, and how they go about funding this work when funds from the Weatherization Assistance Program (WAP) do not cover the full extent of the repairs. The report also makes recommendations for WAP in how to assist agencies to streamline and maximize the health and safety repairs they are able to make in the course of a standard weatherization.

  20. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    continuous mechanical ventilation and local exhaust fromlocal exhaust fans (kitchens, bathrooms and laundry) and resulting increased ventilation

  1. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    They recommend sealed natural gas combustion in all climateare indicative of natural gas combustion and are easy tosealed-combustion, direct vented natural gas appliances, and

  2. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    buildings to climate change, concerns over the detrimental air quality impacts of high performance green

  3. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    Resistance Electric - Induction Oven Fuel Type Gas Electrican electric induction cooktop and electric oven; the onlyinduction heating elements. Gas usage was more prevalent for cooktops than for ovens,

  4. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    uc/item/25x5j8w6 9. Gas water heater General Information: a.the technology of the water heater (check all that apply) i.i. Staining on top of the water heater ii. Corrosion on the

  5. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    PM 2.5 , acetaldehyde, acrolein, benzene, 1,3- butadiene,PM 2.5 , formaldehyde and acrolein accounted for the vastof these pollutants, except acrolein, radon and ozone are

  6. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    that incorporated energy efficient design. The EEB measuredshowed that energy efficient design features, intended toenergy efficient ventilation standards and ventilation designs

  7. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    commercial kitchen ventilation system intercontinental markresidential mechanical ventilation systems. Ontario, Canada:to innovative ventilation systems. Ventilation Information

  8. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    water heater is the most common type; it has a large tankwater heaters, gas boilers, and heat pumps in single and multiple storage tank

  9. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    uc/item/25x5j8w6 9. Gas water heater General Information: a.the technology of the water heater (check all that apply) i.production and (3) vented water heaters and furnaces undergo

  10. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    Washington, D.C. : U.S. Green Building Council. U.S. DOE. (NAHB/ICC. (2009). National green building standard. NAHBcommercial-customers/green-building-and- the- environment/

  11. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    Advantage Institute. Emmerich, S. J. , Gorfain, J. E. ,in attached garages. Emmerich et al. (2003) provide anthe building envelope (Emmerich et al. , 2003). Measurements

  12. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    Gas furnace Air-to-air heat pump Gas fireplace (primarywith their air-to-air heat pumps, such as nighttimeSystem Type None Air-to-air heat pump Night ventilative

  13. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    and optional sustainability and energy performance standards62 1.14.1 Housing Characteristics and Energy/SustainabilityCharacteristics and Energy/Sustainability Classification 24

  14. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    the literature for problems with ventilation systems, withthat the problems of kitchen pollutants and ventilation areand Installation Problems in Mechanical Ventilation Systems

  15. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    second the output of heat pump water heaters cannot servicewith tankless water heaters, gas boilers, and heat pumps inspace heater – § J Heat Pump Baseboard electric Hot water

  16. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    used either natural gas or propane for cooktop fuel. Of the1302 Cooktop Fuel Type Gas Propane Electric - ResistanceFuel Type Gas Electric Propane Cooktop and Oven Together

  17. Improving Home Indoor Air Quality There are three general ways of improving air quality in

    E-Print Network [OSTI]

    Lightsey, Glenn

    of back-drafting from combustion appliances such as gas water heaters that might be located in the garage they can do damage. Do not use unvented fossil-fuel-based space heaters, e.g., kerosene heaters, under any faulty gas wall heaters and other combustion appliances. Consider hiring a qualified professional to test

  18. Building America Best Practices Series, Vol. 10 - Retrofit Techniques...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    air leaks in homes, while ensuring healthy levels of ventilation and avoiding indoor air pollution. Retrofit Techniques & Technologies: Air Sealing More Documents &...

  19. DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman...

    Energy Savers [EERE]

    Garbett Homes, Herriman, UT, Production Home DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman, UT, Production Home Case study of a DOE Zero Energy Ready Home in...

  20. Home Energy Assessments

    ScienceCinema (OSTI)

    Dispenza, Jason

    2013-05-29T23:59:59.000Z

    A home energy assessment, also known as a home energy audit, is the first step to assess how much energy your home consumes and to evaluate what measures you can take to make your home more energy efficient. An assessment will show you problems that may, when corrected, save you significant amounts of money over time. This video shows some of the ways that a contractor may test your home during an assessment, and helps you understand how an assessment can help you move toward energy savings. Find out more at: http://www.energysavers.gov/your_home/energy_audits/index.cfm/mytopic=11160

  1. Homes | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome| DepartmentPumpHome Office and

  2. Homes Success Stories

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37Energy Highlights fromHome Solar1 Homes

  3. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, A.; Bergey, D.

    2014-02-01T23:59:59.000Z

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  4. Optimal Indoor Air Temperature Considering Energy Savings and Thermal Comfort in the Shanghai Area

    E-Print Network [OSTI]

    Yao, Y.; Lian, Z.; Hou, Z.; Liu, W.

    2006-01-01T23:59:59.000Z

    influence on the optimal indoor air temperature than other influential factors. (2) The optimal indoor air temperature is nonlinear with the air velocity, and be linear with the air humidity and the clothes thermo-resistance. 25 25.5 26 26.5 27 27.5 28...) Optimal indoor air temperature in summer () ? Fig. 3 Influence of clothes thermo-resistance on the optimal indoor air temperature 3. OPTIMAL INDOOR AIR TEMPERATURE Known from the above analysis, when the indoor air velocity is below 0.3m...

  5. UNDERSTANDING HOME RENOVATION DECISIONS

    E-Print Network [OSTI]

    Watson, Andrew

    UNDERSTANDING HOME RENOVATION DECISIONS - A Research Project - Background to Our Research Energy to renovate their homes. We're interested in energy efficiency, but in all other efficient renova/ons can lower energy bills, improve comfort by reducing dra

  6. Variability in Measured Space Temperatures in 60 Homes

    SciTech Connect (OSTI)

    Roberts, D.; Lay, K.

    2013-03-01T23:59:59.000Z

    This report discusses the observed variability in indoor space temperature in a set of 60 homes located in Florida, New York, Oregon, and Washington. Temperature data were collected at 15-minute intervals for an entire year, including living room, master bedroom, and outdoor air temperature (Arena, et. al). The data were examined to establish the average living room temperature for the set of homes for the heating and cooling seasons, the variability of living room temperature depending on climate, and the variability of indoor space temperature within the homes. The accuracy of software-based energy analysis depends on the accuracy of input values. Thermostat set point is one of the most influential inputs for building energy simulation. Several industry standards exist that recommend differing default thermostat settings for heating and cooling seasons. These standards were compared to the values calculated for this analysis. The data examined for this report show that there is a definite difference between the climates and that the data do not agree well with any particular standard.

  7. Strategy Guideline: Demonstration Home

    SciTech Connect (OSTI)

    Savage, C.; Hunt, A.

    2012-12-01T23:59:59.000Z

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  8. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    SciTech Connect (OSTI)

    Brand, L.

    2014-04-01T23:59:59.000Z

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  9. Better Indoor Climate With Less Energy: European Energy Performance of Building Directive (EPBD)

    E-Print Network [OSTI]

    Magyar, Z.; Leitner, A.

    2006-01-01T23:59:59.000Z

    of the energy performance of buildings, taking into account outdoor climatic and local conditions, as well as indoor climate requirements. The main objective is to achieve better indoor climate with less energy....

  10. A fine-grained geospatial representation and framework for large-scale indoor environments

    E-Print Network [OSTI]

    Battat, Jonathan

    2010-01-01T23:59:59.000Z

    This thesis describes a system and method for extending the current paradigm of geographic information systems (GIS) to support indoor environments. It introduces features and properties of indoor multi-building environments ...

  11. Who are Climbing the Walls? An Exploration of the Social World of Indoor Rock Climbing

    E-Print Network [OSTI]

    Kurten, Jason Henry

    2011-02-22T23:59:59.000Z

    , and share values, goals and language. For years, non-academics involved in the indoor climbing industry have recognized the social component of indoor rock climbing. A recent issue of Recreation Management magazine quoted Adam Koberna, the vice...

  12. Modeling the comfort effects of short-wave solar radiation indoors

    E-Print Network [OSTI]

    Arens, Edward; Huang, Li; Hoyt, Tyler; Zhou, Xin; Schiavon, Stefano

    2014-01-01T23:59:59.000Z

    effects of short-wave solar radiation indoors. Building andEFFECTS OF SHORT-WAVE SOLAR RADIATION INDOORS Edward ARENSK. The effects of solar radiation on thermal comfort.

  13. Modeling VOC sorption of building materials and its impact on indoor air quality

    E-Print Network [OSTI]

    Zhang, Jinsong, 1975-

    2001-01-01T23:59:59.000Z

    Sorption of volatile organic compounds (VOCs) by building materials can have significant effect on the indoor VOC concentration levels and indoor air quality in buildings. The objective of this study was to investigate ...

  14. Better Indoor Climate With Less Energy: European Energy Performance of Building Directive (EPBD) 

    E-Print Network [OSTI]

    Magyar, Z.; Leitner, A.

    2006-01-01T23:59:59.000Z

    of the energy performance of buildings, taking into account outdoor climatic and local conditions, as well as indoor climate requirements. The main objective is to achieve better indoor climate with less energy....

  15. Impact on the Indoor Environment of the Release and Diffusion of TVOC

    E-Print Network [OSTI]

    Cong, X.; Liu, Y.; Wang, M.

    2006-01-01T23:59:59.000Z

    The release of VOCs by architectural decorative material, furniture and indoor things for use is considered the main reason for indoor environment pollution. The polypropylene Styene-Butadiene Rubber (abbreviation SBR) is regarded as a TVOC release...

  16. Impacts of contaminant storage on indoor air quality: Model development

    SciTech Connect (OSTI)

    Sherman, Max H.; Hult, Erin L.

    2013-02-26T23:59:59.000Z

    A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde in building materials and the concentration of the species in the indoor air. Storage buffering can decrease the effect of ventilation on the indoor concentration, compared to the inverse dependence of indoor concentration on the air exchange rate that is consistent with a constant emission rate source. If the exposure time of an occupant is long relative to the time scale of depletion of the compound from the storage medium, however, the total exposure will depend inversely on the air exchange rate. This lumped capacitance model is also applied to moisture buffering in the indoor environment, which occurs over much shorter depletion timescales of the order of days. This model provides a framework to interpret the impact of storage buffering on time-varying concentrations of chemical species and resulting occupant exposure. Pseudo-steady state behavior is validated using field measurements. Model behavior over longer times is consistent with formaldehyde and moisture concentration measurements in previous studies.

  17. Eat Healthy at Dal LOCATION VENUE HEALTHY OPTIONS

    E-Print Network [OSTI]

    Brownstone, Rob

    and gluten free. Home Zone: Cooked vegetable option, rice, and a variety of hot home style meals (some (Greek, Fruit, Garden, 3 bean, Spinach),Gourmet Sandwiches made with whole grain bread, Daily Soup, turkey and ham, club, oven roasted chicken breast, sweet onion chicken teriyaki) water, 100% fruit juice

  18. Flying over the Reality Gap: From Simulated to Real Indoor Airships

    E-Print Network [OSTI]

    Floreano, Dario

    Flying over the Reality Gap: From Simulated to Real Indoor Airships Jean-Christophe Zufferey-Christophe.Zufferey@epfl.ch Abstract Because of their ability to naturally float in the air, indoor airships (often called blimps) con physics-based dynamic modelling of indoor airships including a pragmatic methodology for parameter

  19. Model Reduction for Indoor-Air Behavior in Control Design for Energy-Efficient Buildings

    E-Print Network [OSTI]

    Gugercin, Serkan

    Model Reduction for Indoor-Air Behavior in Control Design for Energy-Efficient Buildings Jeff models for the indoor-air environment in control design for energy efficient buildings. In one method by a desire to incorporate models of the indoor-air environment in the design of energy efficient buildings

  20. A Marked Point Process Model for the Source Proximity E ect in the Indoor Environment 1

    E-Print Network [OSTI]

    West, Mike

    indoor air quality monitors arise because of the source proximity e#11;ect, in which pollutant sources. McBride Abstract In indoor air quality studies, discrepancies between personal and station- ary Science Foundation Graduate Fellowship as well as the Center for Indoor Air Research. The author thanks

  1. Development of a new model to predict indoor daylighting : integration in CODYRUN software and validation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Development of a new model to predict indoor daylighting : integration in CODYRUN software in the scientific literature for determining indoor daylighting values. They are classified in three categories. The originality of our paper relies on the coupling of several simplified models of indoor daylighting

  2. Experimental Design and Analysis of Transmission Properties in an Indoor Wireless Sensor Network

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Experimental Design and Analysis of Transmission Properties in an Indoor Wireless Sensor Network channel common to an indoor, single-hop, wireless sensors networks in which the sensor deployment sensor network in a real-world indoor environment. We quantify the impact of primary factors

  3. Indoor Lighting Overview Page 5-1 2008 Nonresidential Compliance Manual August 2009

    E-Print Network [OSTI]

    Indoor Lighting ­ Overview Page 5-1 2008 Nonresidential Compliance Manual August 2009 5 Indoor Lighting This chapter covers the requirements for indoor lighting design and installation, including controls. It is addressed primarily to lighting designers or electrical engineers and to enforcement agency

  4. Energy Efficiency -- Home Page

    U.S. Energy Information Administration (EIA) Indexed Site

    If you are having trouble, call 202-586-8800 for help. Home >Energy Users EEnergy Efficiency Page Energy-Efficiency Measurement MEASUREMENT DISCUSSION: Measures and Policy Issues...

  5. Inside RHIC | Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BNL People Inside RHICRelativistic Heavy Ion Collider Home Archives Submission Guidelines Contact RHIC Latest Stories gnes Mcsy RHIC Physics Feeds Future High-Tech Workforce:...

  6. Home Safety: Radon Gas 

    E-Print Network [OSTI]

    Shaw, Bryan W.; Denny, Monica L.

    1999-11-12T23:59:59.000Z

    Every home should be tested for radon, an invisible, odorless, radioactive gas that occurs naturally. This publication explains the health risks, testing methods, and mitigation and reduction techniques....

  7. Home Safety: Radon Gas

    E-Print Network [OSTI]

    Shaw, Bryan W.; Denny, Monica L.

    1999-11-12T23:59:59.000Z

    Every home should be tested for radon, an invisible, odorless, radioactive gas that occurs naturally. This publication explains the health risks, testing methods, and mitigation and reduction techniques....

  8. Ozark Mountain solar home

    SciTech Connect (OSTI)

    Miller, B.

    1998-03-01T23:59:59.000Z

    If seeing is believing, Kyle and Christine Sarratt are believers. The couple has been living in their passive solar custom home for almost two years, long enough to see a steady stream of eye-opening utility bills and to experience the quality and comfort of energy-efficient design. Skeptical of solar homes at first, the Sarratts found an energy-conscious designer that showed them how they could realize their home-building dreams and live in greater comfort while spending less money. As Kyle says, {open_quotes}We knew almost nothing about solar design and weren`t looking for it, but when we realized we could get everything we wanted in a home and more, we were sold.{close_quotes} Now the couple is enjoying the great feeling of solar and wood heat in the winter, natural cooling in the summer and heating/cooling bills that average less than $20/month. The Sarratts` home overlooks a large lake near the town of Rogers, tucked up in the northwest corner of Arkansas. It is one of three completed homes out of 29 planned for the South Sun Estates subdivision, where homes are required by covenant to incorporate passive solar design principles. Orlo Stitt, owner of Stitt Energy Systems and developer of the subdivision, has been designing passive solar, energy-efficient homes for twenty years. His passive solar custom home development is the first in Arkansas.

  9. Home | Better Buildings Workforce

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Connect with Us LinkedIn Twitter Better Buildings...

  10. DOE Challenge Home Verification

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentIOffshoreDepartmentBegins DOE Challenge Home

  11. HomeCooling101

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,GlenLearningDepartment of EnergyHomes

  12. Home | DOE Data Explorer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of greatHomeDiscover

  13. LAPD 2013 - home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as ReadyAppointedKyungmin2010SciencesLANS16th

  14. DOE Challenge Home Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project for ETTPFeedstockDepartment DOE

  15. Partnership for Home Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.SPRESSHeavy-duty EnginePartnersPartnership for

  16. WIPP Home Page Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLargeHome Page Search Enter

  17. WIPP Home Page header

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLargeHome Page Search Enter |

  18. Home Energy Score Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p aDepartment ofEnergy

  19. My Home EQ

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock, New Mexico | DepartmentServicesMy

  20. HOMEe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoodsGuangzhou,GuizhouGuyana: EnergyHEROHOMEe Jump to:

  1. Home - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRSTApplied ComputingHome

  2. Home - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRSTApplied ComputingHome

  3. The PNNL Lab Homes Experimental Plan, FY12?FY15

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.

    2012-05-30T23:59:59.000Z

    The PNNL lab homes (http://labhomes.pnnl.gov/ ) are two manufactured homes recently installed immediately south of the 6th Street Warehouse on the PNNL Richland, WA campus that will serve as a project test bed for DOE, PNNL and its research partners who aim to achieve highly energy efficient and grid-responsive homes. The PNNL Lab Homes project is the first of its kind in the Pacific Northwest region. The Energy & Environment Directorate at PNNL, working with multiple sponsors, will use the identical 1,500 square-foot homes for experiments focused on reducing energy use and peak demand. Research and demonstration primarily will focus on retrofit technologies, and the homes will offer a unique, side-by-side ability to test and compare new ideas and approaches that are applicable to site-built as well as manufactured homes. The test plan has the following objectives: • To define a retrofit solution packages for moderate to cold climates that can be cost effectively deployed in the Pacific NW to save 50% of the energy needs of a typical home while enhancing the comfort and indoor air quality. The retrofit strategies would also lower the peak demands on the grid. • To leverage the unique opportunity in the lab homes to reach out to researchers, industry, and other interested parties in the building science community to collaborate on new smart and efficient solutions for residential retrofits. • To increase PNNL’s visibility in the area of buildings energy efficiency based on the communication strategy and presentation of the unique and impactful data generated in the lab homes. This document describes the proposed test plan for the lab homes to achieve these goals, through FY15. The subsequent sections will provide a brief description of each proposed experiment, summarize the timing of the experiment (including any experiments that may be run in parallel, and propose potential contributors and collaborators. For those experiments with funding information available, it is provided.

  4. Indoor and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance Measurement

    SciTech Connect (OSTI)

    Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, R.; Kobashi, T.; Akiyama, A.; Takagi, S.

    2014-05-01T23:59:59.000Z

    This report details the global spectral irradiance intercomparison using spectroradiometers that was organized by the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. The intercomparison was performed both indoors and outdoors on September 17, 2013. Five laboratories participated in the intercomparison using 10 spectroradiometers, and a coordinated measurement setup and a common platform were employed to compare spectral irradiances under both indoor and outdoor conditions. The intercomparison aimed to understand the performance of the different spectroradiometers and to share knowledge in making spectral irradiance measurements. This intercomparison was the first of its kind in the United States.

  5. The Home Microbiome Project

    ScienceCinema (OSTI)

    Gilbert, Jack

    2014-09-15T23:59:59.000Z

    The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.

  6. GREEN HOMES LONG ISLAND

    E-Print Network [OSTI]

    Kammen, Daniel M.

    energy bill, reduce your carbon footprint... at little or no cost to you. #12;A Message From Supervisor energy-efficient and reduce our community's carbon footprint. Why do we call it Long Island Green Homes to yourevery day. By making basic improvements to yourevery day home, you can reduce your carbon footprint

  7. Protocols for radon and radon decay product measurements in homes (revised)

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The document provides a technical discussion of the guidelines presented in EPA's Citizen's Guide to Radon and Home Buyer's and Seller's Guide to Radon. In addition, general procedural recommendations are included for measurement services. For example, recommendations are provided for topics such as client interview, measurement procedures, quality assurance, standard operating procedures, providing test results and information to consumers. The document supersedes EPA's Indoor Radon and Radon Decay Product Measurement Protocols (EPA 520-1-89-009).

  8. Building America Case Study: Selecting Ventilation Systems for Existing Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01T23:59:59.000Z

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  9. Taking the Challenge at Singer Village--A Cold Climate Zero Energy Ready Home

    SciTech Connect (OSTI)

    Puttagunta, S.; Gaakye, O.

    2014-10-01T23:59:59.000Z

    After progressively incorporating ENERGY STAR(R) for Homes Versions 1, 2, and 3 into its standard practices over the years, this builder, Brookside Development, was seeking to build an even more sustainable product that would further increase energy efficiency, while also addressing indoor air quality, water conservation, renewable-ready, and resiliency. These objectives align with the framework of the DOE Challenge Home program, which 'builds upon the comprehensive building science requirements of ENERGY STAR for Homes Version 3, along with proven Building America innovations and best practices. Other special attribute programs are incorporated to help builders reach unparalleled levels of performance with homes designed to last hundreds of years.' CARB partnered with Brookside Development on the design optimization and construction of the first home in a small development of seven planned new homes being built on the old Singer Estate in Derby, CT.

  10. Smart Home Concepts: Current Trends

    E-Print Network [OSTI]

    Venkatesh, Alladi

    2003-01-01T23:59:59.000Z

    Smart Home Concepts: Current Trends Alladi Venkatesh Ph.D.developments concerning smart home technologies and theirNews (Southern Report): Smart homes and high-tech clothing

  11. Communication in Home Area Networks

    E-Print Network [OSTI]

    Wang, Yubo

    2012-01-01T23:59:59.000Z

    and implementation of smart home energy management systemsStandard Technologies for Smart Home Area Networks EnablingInteroperability framework for smart home systems”, Consumer

  12. DOE Zero Ready Home Case Study: Clifton View Homes, Kaltenbach...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    want to go anywhere else," said Clifton. Clifton, founder of Clifton View Homes, offers net zero energy homes and home designs. Clifton has been building high-performance homes...

  13. DOE Zero Ready Home Case Study: Mandalay Homes, Pronghorn Ranch...

    Broader source: Energy.gov (indexed) [DOE]

    Zero Energy Ready Home certifi ed, every home will have a Home Energy Rating System (HERS) score of 50 or less. Everson fi rst heard about the DOE Zero Energy Ready Home program...

  14. DOE Zero Ready Home Case Study: Cobblestone Homes, 2014 Model...

    Broader source: Energy.gov (indexed) [DOE]

    Challenge Home and made it a true zero energy home with a -4 Home Energy Rating System (HERS) score," said Melissa. Cobblestone's fi rst DOE Zero Energy Ready Home scored a HERS 49...

  15. Home Inspection Checklist.

    E-Print Network [OSTI]

    Quiring, Susan M.

    1987-01-01T23:59:59.000Z

    ment, recreational and health facilities? Is the site free from threat of flooding? Are local zoning laws compatible with your plans for use of the home? Are paved streets, water, sewer and public walkways provided? Are local property taxes...8-1586 Texas Agricultural Extension Service HOME INSPECTION CHECKLIST MAR 3 1 1988 Susan M. Quiring* Why A Home Inspection? If you're looking for a "perfect" house, you won't find it. Every house has its strengths and weaknesses. Some flaws...

  16. Home | ScienceCinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of ScienceCinema Database

  17. Home | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of ScienceCinema

  18. Homes | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of ScienceCinemaScience

  19. Home | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault *** The nextError

  20. Comments on: Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate,CobaltColdin679April

  1. Home Energy Score graphic

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of EnergySeacrist,theA12345 Honeysuckle Lane 1,800

  2. nstec_home.xls

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. HirschOccurrencei-rapter | ¡ ¢ £ ¤ ¥

  3. Kids DO Science Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin2015JustKateKent5 B O N N E V

  4. Life Sciences Division Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienert namedLife Sciences

  5. Stellarator News Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep Slope Calculator Estimates Cooling andRequirements

  6. David Gates home page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OFSupplementalC. L. Martin andandTopFoster About ESnet

  7. RevCom Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResources Resources About1 Sign In About | Careersweb

  8. Fermilab | DASTOW | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013 NAME:Job OpportunitiesDASTOW '15 U.S.

  9. Comments on: Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms AboutRESEARCH CAPABILITIES ThematerialsAboutCenter athourly 1

  10. Comments on: Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms AboutRESEARCH CAPABILITIES ThematerialsAboutCenter athourly 1

  11. Helms Research Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeat TransferStartupHe!

  12. The Ren Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's LowerFacility |TheDepartment-|

  13. Yennello Group Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12 recognized forCyclotron Chemistry Dept.

  14. Schuck Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch Briefs TheSanketPlease contact the beamlineAug 14

  15. Genomics Division Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFundingGeneGenome Engineering withfor Genomics

  16. Organization Chart - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and Biofuels Biomass and Biofuels FindReclamationLSD Logo

  17. Home | DOE Data Explorer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu, Stephen G"EnergyENERGYMSAContact Us MemberDDE

  18. Home | ScienceCinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu, Stephen G"EnergyENERGYMSAContact UsScienceCinema

  19. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    SciTech Connect (OSTI)

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01T23:59:59.000Z

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  20. Application of CFD Tools for Indoor and Outdoor Environment Design

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    used to assess building shape design, to evaluate the effectiveness of natural ventilation in buildings environment parameters. Nomenclature Ar Archimedes number Ary local Archimedes number, 2 n U/Tyg C for designing a comfortable indoor or outdoor environment. This is because the design of appropriate ventilation

  1. Investigative Tools and Techniques for Indoor Air Quality Studies

    E-Print Network [OSTI]

    Kennedy, S. R.; Quinn, C. B.; Henderson, J. E.; Vickery, R. G.

    1994-01-01T23:59:59.000Z

    INVESTIGATIVE TOOLS AND TECHNIQUES FOR INDOOR AIR QUALITY STUDIES Steven R. Kennedy, C.E.P., REM, project Manager I C. Brandon ~uinn, P.E., C.P.G., Project Manager James E. Henderson, Ph. D., Director of ~nalytical services ' Robert G. ~ickery...

  2. Enhancements to RSS Based Indoor Tracking Systems Using Kalman Filters

    E-Print Network [OSTI]

    Enhancements to RSS Based Indoor Tracking Systems Using Kalman Filters I. Guvenc EECE Department of a location system over the deployed network, and the application of a Kalman filtering algorithm to enhance a Kalman filter algorithm are then presented. General Terms Algorithms, Measurement, Experimentation

  3. Understanding the Limitations of Transmit Power Control for Indoor WLANs

    E-Print Network [OSTI]

    Liblit, Ben

    Understanding the Limitations of Transmit Power Control for Indoor WLANs Vivek Shrivastava range of transmit power control (TPC) algorithms have been proposed in recent literature to reduce need to support power control mechanisms in a fine- grained manner ­ both in the number of possible

  4. Energy and Indoor Environmental Quality Retrofits in Low-Income

    E-Print Network [OSTI]

    environmental measurements and collect energy consumption data. Based on analyses of the data collected fromEnergy and Indoor Environmental Quality Retrofits in Low-Income Apartments ENVIRONMENTAL ENERGY RESEARCH PIER Environmental Research www.energy.ca.gov/research/environmental August 2011 The Issue

  5. A Sensor Placement Approach for the Monitoring of Indoor Scenes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    needed by research projects on energy management (ERGDOM [1]) and on the medical monitoringA Sensor Placement Approach for the Monitoring of Indoor Scenes Pierre David, Vincent Idasiak of a French project, which aims at developing a new human presence sensor, we intend to design a sensor system

  6. Handover Performance of HVAC Duct Based Indoor Wireless Networks

    E-Print Network [OSTI]

    Stancil, Daniel D.

    in indoor wireless net- works (IWN) that use heating, ventilation, and air conditioning (HVAC) ducts]. An alternative approach to transmitt/receive the RF signal is to use heating, ventilation, and airconditioning and is connected to one or more antennas in the duct. Each antenna acts as a remote antenna (RA) for a particular

  7. Experimental Evaluation of an Angle Based Indoor Localization System

    E-Print Network [OSTI]

    Nasipuri, Asis

    Experimental Evaluation of an Angle Based Indoor Localization System Asis Nasipuri and Ribal El available off-the-shelf components. Wireless sensor nodes equipped with photo sensors determine is required at the sensor nodes. The system also does not involve any centralized server or off

  8. Maintaining Indoor Air Quality During Construction and Renovation Projects

    E-Print Network [OSTI]

    Huang, Jianyu

    and pollutants that can impact the indoor air quality (IAQ) of a building. These contaminants may be transported of pollutants. While there are currently no enforceable IAQ standards, workers are certain to consider exposure, they are reported to be irritants to the eyes, nose and throat. Specification of low VOC emitting products is always

  9. Indoor Air Quality and Health in FEMA Temporary Housing

    E-Print Network [OSTI]

    Indoor Air Quality and Health in FEMA Temporary Housing For Healthcare Providers Background formaldehyde and air quality in FEMA trailers. This fact sheet provides basic information on formaldehyde expo sure, other air quality concerns, risk factors and tips to give to trailer residents so they can

  10. Impacts of contaminant storage on indoor air quality: Model development

    E-Print Network [OSTI]

    environment. The model is applied to describe the interaction between formaldehyde in building materials to the timescale of depletion of the compound from the storage medium, however, the total exposure will depend in the indoor environment, which occurs over much shorter depletion timescales of the order of days. This model

  11. An Information Theoretic Analysis on Indoor PLC Channel Characterizations

    E-Print Network [OSTI]

    Gesbert, David

    An Information Theoretic Analysis on Indoor PLC Channel Characterizations Hao LIN , Aawatif MENOUNI. But the development of Power Line Communications (PLC) highly depends on the knowledge of the channel characterizations. For this reason, a large number of attentions have been payed on the PLC channel analysis using

  12. Indoor exposure to radiation in the case of an outdoorrelease

    SciTech Connect (OSTI)

    Price, Phillip N.; Jayaraman, Buvana

    2006-06-01T23:59:59.000Z

    This report quantifies the effectiveness of ''sheltering in place'' in a commercial building in the event of an outdoor radiological release. The indoor exposure to airborne particles is calculated by solving the mass balance equation that accounts for the loss of particles due to deposition, filtration and exhaust. Quantitative estimates of shelter-inplace effectiveness are provided for typical commercial buildings.

  13. Indoor Dose Conversion Coefficients for Radon Progeny for Different

    E-Print Network [OSTI]

    Yu, K.N.

    Indoor Dose Conversion Coefficients for Radon Progeny for Different Ambient Environments K . N . Y Inhaled progeny of 222Rn (radon progeny) are the most important source of irradiation of the human-, urban-, and marine-influenced aerosols. The ASDs of attached radon progeny for all three studied ambient

  14. New excitation system for indoor testing of overhead conductors

    SciTech Connect (OSTI)

    Gopalan, T.V. (Regional Engineering Coll., Calicut (India). Industry-Inst. Linkage Cell)

    1993-12-01T23:59:59.000Z

    In the study of wind-induced motion of conductors of overhead power transmission lines, an indoor test span measuring 30 m or more is normally used. The span is generally excited into motion by an electrodynamic-type exciter connected at a span end. This connection increases the stiffness of the span at the point of connection, which will affect the dynamic characteristics of the test span. A more exact simulation of the indoor test-conductor motion is essential. Simulation of test-conductor motion using the principle of electrodynamic forces between parallel, long conductors is proposed. Indoor test-span motion by this method is equivalent to steady crosswinds excitation in the field as distinguished from galloping conductors resulting from a combination of wind direction, velocity, moisture, and temperature. Consequently, the results of vibration experiments also will be more exact. The principle employed in the new excitation system, the methods of excitation in indoor spans using the principle, and the advantages of the new excitation system as compared to the presently employed system are discussed in this paper.

  15. The Home Broiler Flock

    E-Print Network [OSTI]

    Thornberry, Fredrick D.

    2002-04-23T23:59:59.000Z

    Many families are interested in producing their own broiler chickens for home consumption. This publication discusses purchasing chicks, preparing and operating the brooder, feeding chicks, maintaining proper lighting and ventilation, and ensuring...

  16. The passive solar home

    SciTech Connect (OSTI)

    Weiss, J.; Stone, L. [Solar Energy International, Carbondale, CO (United States)

    1995-02-01T23:59:59.000Z

    This article describes a home designed with both energy efficiency and solar principles in mind. The house is situated in Colorado and maintains a comfortable, relatively even heat year around with little backup heat needed. The sun heats the home and the energy efficient design works to store and distribute the heat slowly and continuously. Specific design elements discussed include the following: collection, storage, distribution and retention of solar energy.

  17. NEW SOLAR HOMES PARTNERSHIP DRAFTGUIDEBOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP DRAFTGUIDEBOOK SEPTEMBER 2006 CEC-300. Custom Homes and Small Developments .......................................................... 17 1

  18. Communication in Home Area Networks

    E-Print Network [OSTI]

    Wang, Yubo

    2012-01-01T23:59:59.000Z

    in home automation and LonWorks is widely used in industrialto industrial control, building and home automation. Fig.

  19. Mosquito Control Around the Home

    E-Print Network [OSTI]

    Jackman, John A.; Olson, Jimmy K.

    2003-03-17T23:59:59.000Z

    ? inch long. Wig- glers have a small head, an enlarged thorax (center body section) and a long cylindrical abdomen. Wigglers live in the water. Most of them feed on microscopic plants, animals and organic debris suspended in the water. Pupal stage... for mosquitoes. Drain water from flower pots, bird baths, rain gutters, rain barrels, birdbaths, pet dishes, livestock watering troughs, etc. at least once a week. ? Empty your plastic wading pool weekly and store it indoors when not in use. ? Fill holes...

  20. Measured Performance of Occupied, Side-by-Side, South Texas Homes

    SciTech Connect (OSTI)

    Chasar, D.; vonSchramm, V.

    2012-09-01T23:59:59.000Z

    The performance of three homes in San Antonio, Texas with identical floor plans and orientation were evaluated through a partnership between the Florida Solar Energy Center (FSEC), CPS Energy, and Woodside Homes of South Texas. Measurements included whole house gas and electric use as well as heating, cooling, hot water, major appliances and indoor and outdoor conditions. One home built to builder standard practice served as the control, while the other homes demonstrated high performance features. Utility peak electric load comparisons of these dual-fuel homes provide an assessment of envelope and equipment improvements. The control home used natural gas for space and water heating only, while the improved homes had gas heating and major appliances with the exception of a high efficiency heat pump in one home. Data collection began in July of 2009 and continued through April of 2011. Energy ratings for the homes yielded E-Scales (aka HERS indices) of 86 for the control home, 54 for one improved home and 37 for the other home which has a 2.4kW photovoltaic array.

  1. Mountain Home Well - Photos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  2. Home Weatherization Visit

    ScienceCinema (OSTI)

    Chu, Steven

    2013-05-29T23:59:59.000Z

    Secretary Steven Chu visits a home that is in the process of being weatherized in Columbus, OH, along with Ohio Governor Ted Strickland and Columbus Mayor Michael Coleman. They discuss the benefits of weatherization and how funding from the recovery act is having a direct impact in communities across America.

  3. Indoor air and human health revisited: A recent IAQ symposium

    SciTech Connect (OSTI)

    Gammage, R.B.

    1994-12-31T23:59:59.000Z

    Indoor Air and Human Health Revisited was a speciality symposium examining the scientific underpinnings of sensory and sensitivity effects, allergy and respiratory disease, neurotoxicity and cancer. An organizing committee selected four persons to chain the sessions and invite experts to give state-of-the-art presentations that will be published as a book. A summary of the presentations is made and some critical issues identified.

  4. Chronic respiratory effects of indoor formaldehyde exposure

    SciTech Connect (OSTI)

    Krzyzanowski, M.; Quackenboss, J.J.; Lebowitz, M.D.

    1990-01-01T23:59:59.000Z

    The relation of chronic respiratory symptoms and pulmonary function to formaldehyde (HCHO) in homes was studied in a sample of 298 children (6-15 years of age) and 613 adults. HCHO measurements were made with passive samplers two one-week periods. Data on chronic cough and phlegm, wheeze, attacks of breathlessness, and doctor diagnoses of chronic bronchitis and asthma were collected with self-completed questionnaires. Peak expiratory flow rates (PEFR) were obtained during the evenings and mornings for up to 14 consecutive days for each individual. Significantly greater prevalence rates of asthma and chronic bronchitis were found in children from houses with HCHO levels 60-120 ppb than in those less exposed, especially in children also exposed to environmental tobacco smoke. In children, levels of PEFR linearly decreased with HCHO exposure, with estimated decrease due to 60 ppb of HCHO equivalent to 22% of PEFR level in nonexposed children.

  5. Psychologically Healthy Workplace Practices = Good Business

    Broader source: Energy.gov [DOE]

    Creating a psychologically healthy workplace is not just the right thing to do for employees; it’s also the smart thing to do for an organization’s financial well being and productivity. A small investment in psychologically healthy work practices can pay big dividends in years to come.

  6. making healthy prisons work in Canada

    E-Print Network [OSTI]

    Michelson, David G.

    making healthy prisons work in Canada PREMIERE SHOWING OF VIDEO DOCUMENTARY: `Cancer Walks Free panel discussion in support of healthy prisons in Canada. Panelists will discuss why preventive health be implemented in Canada. PANELISTS Ms. Mo Korchinski Film Director, Member of Women in2 Healing Dr. Keith

  7. The Airborne Metagenome in an Indoor Urban Environment

    SciTech Connect (OSTI)

    Tringe, Susannah; Zhang, Tao; Liu, Xuguo; Yu, Yiting; Lee, Wah Heng; Yap, Jennifer; Yao, Fei; Suan, Sim Tiow; Ing, Seah Keng; Haynes, Matthew; Rohwer, Forest; Wei, Chia Lin; Tan, Patrick; Bristow, James; Rubin, Edward M.; Ruan, Yijun

    2008-02-12T23:59:59.000Z

    The indoor atmosphere is an ecological unit that impacts on public health. To investigate the composition of organisms in this space, we applied culture-independent approaches to microbes harvested from the air of two densely populated urban buildings, from which we analyzed 80 megabases genomic DNA sequence and 6000 16S rDNA clones. The air microbiota is primarily bacteria, including potential opportunistic pathogens commonly isolated from human-inhabited environments such as hospitals, but none of the data contain matches to virulent pathogens or bioterror agents. Comparison of air samples with each other and nearby environments suggested that the indoor air microbes are not random transients from surrounding outdoor environments, but rather originate from indoor niches. Sequence annotation by gene function revealed specific adaptive capabilities enriched in the air environment, including genes potentially involved in resistance to desiccation and oxidative damage. This baseline index of air microbiota will be valuable for improving designs of surveillance for natural or man-made release of virulent pathogens.

  8. Nexus EnergyHomes, Frederick, Maryland (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    With this new home - which achieved the highest rating possible under the National Green Building Standard - Nexus EnergyHomes demonstrated that green and affordable can go hand in hand. The mixed-humid climate builder, along with the U.S. Department of Energy Building America team Partnership for Home Innovation, embraced the challenge to create a new duplex home in downtown Frederick, Maryland, that successfully combines affordability with state-of-the-art efficiency and indoor environmental quality. To limit costs, the builder designed a simple rectangular shape and kept interesting architectural features such as porches outside the building's structure. This strategy avoided the common pitfall of creating potential air leakage where architectural features are connected to the structure before the building is sealed against air infiltration. To speed construction and limit costs, the company chose factory-assembled components such as structural insulated panel walls and floor and roof trusses. Factory-built elements were key in achieving continuous insulation around the entire structure. Open-cell spray foam at the rim joist and attic roofline completed the insulation package, and kept the heating, ventilating, and air-conditioning system in conditioned space.

  9. Communication in Home Area Networks

    E-Print Network [OSTI]

    Wang, Yubo

    2012-01-01T23:59:59.000Z

    AMR uses UNB-PLC to read smart meter every 15 minutes [29].can be shared. Home 1 Smart meter Utility distribution2 HomePlug AV HomePlug GP Smart meter Cable PEV Appliance

  10. NEW SOLAR HOMES PARTNERSHIP FINALGUIDEBOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP FINALGUIDEBOOK DECEMBER 2006 CEC-300 Executive Director Payam Narvand Program Lead NEW SOLAR HOMES PARTNERSHIP Bill Blackburn Supervisor EMERGING RENEWABLES PROGRAM & NEW SOLAR HOMES PARTNERSHIP Drake Johnson Office Manager RENEWABLE ENERGY PROGRAM

  11. NEW SOLAR HOMES PARTNERSHIP COMMITTEEDRAFTGUIDEBOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP COMMITTEEDRAFTGUIDEBOOK NOVEMBER 2006 CEC................................................................................................ 1 C. Comparison of Emerging Renewables Program and New Solar Homes Partnership Guidebooks....................................................................................... 19 B. Custom Homes and Small Developments..................

  12. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    E-Print Network [OSTI]

    Logue, J.M.

    2012-01-01T23:59:59.000Z

    Energy Costs of Mechanical Ventilation KEMA-XENERGY.2004.Offermann, F. J.2009. Ventilation and indoor air quality intowards meeting residential ventilation needs. Berkeley, CA,

  13. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation ASHRAE Standard 62.2. Ventilation and...

  14. Factors Affecting Indoor Air Concentrations of Volatile Organic Compounds at a Site of Subsurface Gasoline Contamination

    E-Print Network [OSTI]

    Fischer, M.L.

    2011-01-01T23:59:59.000Z

    OF SUBSURFACE GASOLINE CONTAMINATION Marc L. Fischer, AbraOF SUBSURFACE GASOLINE CONTAMINATION Marc L. Fischer, Abrareporting indoor air contamination (6,7). Estimation of

  15. Indoor exposure to radiation in the case of an outdoor release

    E-Print Network [OSTI]

    Price, Phillip N.; Jayaraman, Buvana

    2006-01-01T23:59:59.000Z

    Indoor C in Deposition Resuspension Exhaust Figure 1deposition loss rate to areas where resuspension may occur (h -1 ) r: resuspension rate from “temporary” areas (h -1 ) D

  16. Factors affecting the concentration of outdoor particles indoors (COPI): Identification of data needs and existing data

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    surfaces, and resuspension activities lead to significantnear a secondary lead smelter, indicates that resuspensionresuspension. However, even moderate indoor activity, such as walking, can lead

  17. Movement of outdoor particles to the indoor environment: An analysis of the Arnhem Lead Study

    SciTech Connect (OSTI)

    Layton, D.W. [Lawrence Livermore National Lab., CA (United States); Thatcher, T.L. [Univ. of California, Berkeley, CA (United States). Dept. of Civil Engineering

    1995-03-01T23:59:59.000Z

    This paper analyzes the role of soil tracking as a source of indoor particles and quantifies key parameters influencing the transport of soil-derived particles (resuspension rates for particulate matter on floors, deposition velocities of suspended particles in indoor and outdoor air). The paper begins with a brief review of studies of particle transport processes and presents a simple model for studying the transport of particles in the indoor environment. The model is used to examine data on Pb distributions in the indoor and outdoor environments of community adjacent to a secondary lead smelter.

  18. Shading and Cooling: Impacts of Solar Control and Windows on Indoor Airflow

    E-Print Network [OSTI]

    Hildebrand, Penapa Wankaeo

    2012-01-01T23:59:59.000Z

    summer wind driven natural ventilation potential for indoor estimates the cooling potential of wind?driven ventilation and monsoon ? have  potential for wind?driven occupant 

  19. Home Gardening in Texas.

    E-Print Network [OSTI]

    Cotner, Sam; Larsen, John

    1978-01-01T23:59:59.000Z

    Spinach Very Difficult Without Using Containers Beans Cantaloupe Corn Cucumber Peas Squash Turnip Wahnnelon Watering and fertilizing by the use of sunken pots provides optimum growth conditions for tomato plants. One level teospoon of complete... buildups. Table 1. Home Small Garden Vegetables Beets Green beans Broccoli Lettuce Bush squash Onions Cabbage Parsley Carrots Peppers Eggplant Radishes English peas Spinach Garlic Tomatoes Garden Vegetables Large Garden Vegetables Cantaloupes...

  20. Home Energy Efficiency Twitter Chat

    Broader source: Energy.gov [DOE]

    Did you miss our home energy efficiency Twitter Chat? We compiled the discussion so you can learn ways to save energy and money at home.

  1. Exploring California PV Home Premiums

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    of Photovoltaic Energy Systems on Residential Selling PricesResidential Photovoltaic Energy Systems on Home Sales PricesResidential Photovoltaic Energy Systems on Home Sales Prices

  2. Home Performance with Energy Star

    Broader source: Energy.gov [DOE]

    Through the Home Performance with Energy Star program, Focus on Energy offers instant rewards for installing select recommended efficiency measures following a home energy audit. Energy consultants...

  3. A Pilot Study of the Effectiveness of Indoor Plants for Removal of Volatile Organic Compounds in Indoor Air in a Seven-Story Office Building

    SciTech Connect (OSTI)

    Apte, Michael G.; Apte, Joshua S.

    2010-04-27T23:59:59.000Z

    The Paharpur Business Centre and Software Technology Incubator Park (PBC) is a 7 story, 50,400 ft{sup 2} office building located near Nehru Place in New Delhi India. The occupancy of the building at full normal operations is about 500 people. The building management philosophy embodies innovation in energy efficiency while providing full service and a comfortable, safe, healthy environment to the occupants. Provision of excellent Indoor Air Quality (IAQ) is an expressed goal of the facility, and the management has gone to great lengths to achieve it. This is particularly challenging in New Delhi, where ambient urban pollution levels rank among the worst on the planet. The approach to provide good IAQ in the building includes a range of technical elements: air washing and filtration of ventilation intake air from rooftop air handler, the use of an enclosed rooftop greenhouse with a high density of potted plants as a bio-filtration system, dedicated secondary HVAC/air handling units on each floor with re-circulating high efficiency filtration and UVC treatment of the heat exchanger coils, additional potted plants for bio-filtration on each floor, and a final exhaust via the restrooms located at each floor. The conditioned building exhaust air is passed through an energy recovery wheel and chemisorbent cartridge, transferring some heat to the incoming air to increase the HVAC energy efficiency. The management uses 'green' cleaning products exclusively in the building. Flooring is a combination of stone, tile and 'zero VOC' carpeting. Wood trim and finish appears to be primarily of solid sawn materials, with very little evidence of composite wood products. Furniture is likewise in large proportion constructed from solid wood materials. The overall impression is that of a very clean and well-kept facility. Surfaces are polished to a high sheen, probably with wax products. There was an odor of urinal cake in the restrooms. Smoking is not allowed in the building. The plants used in the rooftop greenhouse and on the floors were made up of a number of species selected for the following functions: daytime metabolic carbon dioxide (CO{sub 2}) absorption, nighttime metabolic CO{sub 2} absorption, and volatile organic compound (VOC) and inorganic gas absorption/removal for air cleaning. The building contains a reported 910 indoor plants. Daytime metabolic species reported by the PBC include Areca Palm, Oxycardium, Rubber Plant, and Ficus alii totaling 188 plants (21%). The single nighttime metabolic species is the Sansevieria with a total of 28 plants (3%). The 'air cleaning' plant species reported by the PBC include the Money Plant, Aglaonema, Dracaena Warneckii, Bamboo Palm, and Raphis Palm with a total of 694 plants (76%). The plants in the greenhouse (Areca Palm, Rubber Plant, Ficus alii, Bamboo Palm, and Raphis Palm) numbering 161 (18%) of those in the building are grown hydroponically, with the room air blown by fan across the plant root zones. The plants on the building floors are grown in pots and are located on floors 1-6. We conducted a one-day monitoring session in the PBC on January 1, 2010. The date of the study was based on availability of the measurement equipment that the researchers had shipped from Lawrence Berkeley National Lab in the U.S.A. The study date was not optimal because a large proportion of the regular building occupants were not present being New Year's Day. An estimated 40 people were present in the building all day during January 1. This being said, the building systems were in normal operations, including the air handlers and other HVAC components. The study was focused primarily on measurements in the Greenhouse and 3rd and 5th floor environments as well as rooftop outdoors. Measurements included a set of volatile organic compounds (VOCs) and aldehydes, with a more limited set of observations of indoor and outdoor particulate and carbon dioxide concentrations. Continuous measurements of Temperature (T) and relative humidity (RH) were made selected indoor and outdoor locations.

  4. Lighting Options for Homes.

    SciTech Connect (OSTI)

    Baker, W.S.

    1991-04-01T23:59:59.000Z

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  5. Home Fruit Production - Pears.

    E-Print Network [OSTI]

    Lipe, John A.; Lyons, Calvin; Stein, Larry

    1988-01-01T23:59:59.000Z

    System ? College Station, Texas (Blank Pa,ge -in Origi.aI BoHetiDl ' : . 1 r . .- HOME FRUIT PRODUCTION - PEARS John A. Upe, Calvin Lyons and Larry Stein* Pears are long-lived attractive trees for Texas land scapes. Selected varieties produce good... to Texas and adaptation is still undetermined. SITE AND SOIL REQUIREMENTS Climatically, pears are adapted to all areas of Texas north of a line from Corpus Christi to Laredo. Pears are not recommended farther south, although a few trees have grown...

  6. THE EFFECTS OF ENERGY-EFFICIENT VENTILATION RATES ON INDOOR AIR QUALITY AT AN OHIO ELEMENTARY SCHOOL

    E-Print Network [OSTI]

    Berk, J.V.

    2013-01-01T23:59:59.000Z

    ENERGY-EFFICIENT VENTILATION RATES ON INDOOR AIR QUALITY AT AN OHIOENERGY~EFFICIENT VENTILATION RATES ON INDOOR AIR QUALITY AT AN OHIOenergy conservation opportunities i.n ten elementary schools. 1 Fairmoor Elementary School in Columbus • Ohio

  7. Field Study of Exhaust Fans for Mitigating Indoor Air Quality Problems: Final Report to Bonneville Power Administration

    E-Print Network [OSTI]

    Grimsrud, David T.

    2009-01-01T23:59:59.000Z

    solution to ventilation problem in some situations [TurielIndoor Air Quality Problem. - BPA Ventilation - Air Qualityventilation on indoor air Quality and to develop energy conserving strategies to mitigate potential problems

  8. Community-wide benefits of targeted indoor residual spray for malaria control in the Western Kenya Highland

    E-Print Network [OSTI]

    Zhou, Guofa; Githeko, Andrew K; Minakawa, Noboru; Yan, Guiyun

    2010-01-01T23:59:59.000Z

    ecological settings [4]. Among those control measures, insecticide- treated bed nets (ITNs) and indoor residual-house

  9. DOE Zero Energy Ready Home Case Study: Promethean Homes, Charlottesville,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustom Home |RIProductionVA | Department

  10. Model for energy efficiency in radio over fiber distributed indoor antenna Wi-Fi network

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Model for energy efficiency in radio over fiber distributed indoor antenna Wi-Fi network Yves Josse communications in indoor environments. In this paper, the power consumption and energy efficiency of a DAS using for different transmission configurations, yielding a distance- dependent energy efficiency model. In a second

  11. Ventilation and Air Quality in Indoor Ice Skating Arenas Chunxin Yang, Ph.D.1

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    Ventilation and Air Quality in Indoor Ice Skating Arenas Chunxin Yang, Ph.D.1 Philip Demokritou, and the operation strategy of the ventilation system are significant contributing factors to the indoor air quality exchange rate, air distribution method, and ventilation control strategies on the IAQ in an arena. With CFD

  12. Automobile Proximity and Indoor Residential Concentrations of BTEX and Diana E. Hun1,*

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Automobile Proximity and Indoor Residential Concentrations of BTEX and MTBE Diana E. Hun1 from gasoline-related sources to indoor benzene and MTBE concentrations appeared to be dominated by car of other BTEX components and MTBE have been reported (CalEPA 2009; U.S. EPA 2005). Up until 2000, MTBE

  13. Author's personal copy Automobile proximity and indoor residential concentrations of BTEX and MTBE

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Author's personal copy Automobile proximity and indoor residential concentrations of BTEX and MTBE to indoor benzene and MTBE concentrations appeared to have been dominated by car exhaust concentrations of other BTEX components and methyl tert-butyl ether (MTBE) have been reported [5,6]. Up until

  14. Quantification of Ozone Levels in Indoor Environments Generated by Ionization and Ozonolysis Air Purifiers

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Quantification of Ozone Levels in Indoor Environments Generated by Ionization and Ozonolysis Air ozone (O3) during operation, either in- tentionally or as a byproduct of air ionization standards. Sev- eral types of air purifiers were tested for their ability to produce ozone in various indoor

  15. Efficient Probabilistic Localization for Autonomous Indoor Airships using Sonar, Air Flow, and IMU Sensors

    E-Print Network [OSTI]

    Teschner, Matthias

    Efficient Probabilistic Localization for Autonomous Indoor Airships using Sonar, Air Flow, and IMU, {muellerj, burgard}@informatik.uni-freiburg.de Abstract In recent years, autonomous miniature airships have navigation, sonar, IMU 1 Introduction Miniature airships as autonomous mobile systems for indoor navigation

  16. Proceedings: Indoor Air 2005 REACTIONS BETWEEN OZONE AND BUILDING PRODUCTS: IMPACT ON

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    indoor sources such as photocopiers, laser printers or air purifiers, outdoor ozone is the main source generated using pure oxygen (Air Liquide, 99.999 % O2) through an UV light generator (Pen Ray, model SOG 1Proceedings: Indoor Air 2005 2118 REACTIONS BETWEEN OZONE AND BUILDING PRODUCTS: IMPACT ON PRIMARY

  17. IMPACT OF THE URBAN POLLUTION ON THE INDOOR ENVIRONMENT -EXPERIMENTAL STUDY ON A MECHANICAL

    E-Print Network [OSTI]

    Boyer, Edmond

    Bâtiment (CSTB), Nantes, France ABSTRACT This study aims to assess the transfer of outdoor air pollution and the relationships between outdoor and indoor urban air pollutant concentrations are more and more a subject indoor pollutant sources. At the initial state, the dwelling was naturally ventilated. Air renewal

  18. Changes in indoor pollutants since the 1950s Charles J. Weschler a,b

    E-Print Network [OSTI]

    Short, Daniel

    University, Piscataway, NJ 08854, USA b International Centre for Indoor Environment and Energy, Technical eventually been regulated. Many of the manufacturers of the materials, furnishings and products used indoors, Europe, Asia and other parts of the world have come to resemble one another. Initially, because

  19. Indoor air quality implications of using ion generators in residences Michael S. Waring*

    E-Print Network [OSTI]

    Siegel, Jeffrey

    (IAQ). Positively, ion generators remove the charged particle contaminants to collector plates, Denmark - Paper ID: 598 #12;mortality and exposures to indoor ozone and its oxidation products. Ozone and Shields, 1999). Terpenes are common indoors and are emitted from consumer products such as air fresheners

  20. Particle resuspension from indoor flooring materials James H. Lohaus, Atila Novoselac and Jeffrey A. Siegel*

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Particle resuspension from indoor flooring materials James H. Lohaus, Atila Novoselac and Jeffrey A@mail.utexas.edu Keywords: Fluid dynamics, Indoor surfaces, Particle experiments Introduction Particle resuspension from for supermicron particles. Resuspension is usually reported either as a critical velocity, the velocity at which

  1. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    SciTech Connect (OSTI)

    Hellweg, Stefanie; Demou, Evangelia; Bruzzi, Raffaella; Meijer, Arjen; Rosenbaum, Ralph K.; Huijbregts, Mark A.J.; McKone, Thomas E.

    2008-12-21T23:59:59.000Z

    Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers? or consumers? health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.

  2. ORISE: Training Tools for Healthy Schools | How ORISE is Making...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Tools for Healthy Schools CDC gains wider audience through e-learning developed by ORAU Training Tools for Healthy Schools ORAU instructional designers and developers are...

  3. Urban agriculture is a gateway to healthy foods

    E-Print Network [OSTI]

    Pérez, John A

    2013-01-01T23:59:59.000Z

    healthy tomorrow. Urban agriculture has multiple benefitsWestlake. 192 CALIFORNIA AGRICULTURE • VOLUME 67 , NUMBER 4Editorial Urban agriculture is a gateway to healthy foods A

  4. Occupant satisfaction with indoor environmental quality in green buildings

    E-Print Network [OSTI]

    Abbaszadeh, S.; Zagreus, Leah; Lehrer, D.; Huizenga, C

    2006-01-01T23:59:59.000Z

    145: Learning from our buildings: a state-of-the- practiceProceedings of Healthy Buildings 2006, Lisbon, Vol. III,Environmental Quality in Green Buildings S. Abbaszadeh 1 ,

  5. Factors affecting the concentration of outdoor particles indoors (COPI): Identification of data needs and existing data

    SciTech Connect (OSTI)

    Thatcher, Tracy L.; McKone, Thomas E.; Fisk, William J.; Sohn, Michael D.; Delp, Woody W.; Riley, William J.; Sextro, Richard G.

    2001-12-01T23:59:59.000Z

    The process of characterizing human exposure to particulate matter requires information on both particle concentrations in microenvironments and the time-specific activity budgets of individuals among these microenvironments. Because the average amount of time spent indoors by individuals in the US is estimated to be greater than 75%, accurate characterization of particle concentrations indoors is critical to exposure assessments for the US population. In addition, it is estimated that indoor particle concentrations depend strongly on outdoor concentrations. The spatial and temporal variations of indoor particle concentrations as well as the factors that affect these variations are important to health scientists. For them, knowledge of the factors that control the relationship of indoor particle concentrations to outdoor levels is particularly important. In this report, we identify and evaluate sources of data for those factors that affect the transport to and concentration of outdoor particles in the indoor environment. Concentrations of particles indoors depend upon the fraction of outdoor particles that penetrate through the building shell or are transported via the air handling (HVAC) system, the generation of particles by indoor sources, and the loss mechanisms that occur indoors, such as deposition. To address these issues, we (i) identify and assemble relevant information including the behavior of particles during air leakage, HVAC operations, and particle filtration; (ii) review and evaluate the assembled information to distinguish data that are directly relevant to specific estimates of particle transport from those that are only indirectly useful and (iii) provide a synthesis of the currently available information on building air-leakage parameters and their effect on indoor particle matter concentrations.

  6. Home Performance with ENERGY STAR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p pof Energy Home PerformanceHome

  7. PNNL Laboratory Research Homes Pacific Northwest National Laboratory's Lab Homes

    E-Print Network [OSTI]

    ,500 square-foot Lab Homes for experiments focused on reducing energy use and peak demand on the electric grid. Results and reports from the experiments will be available at labhomes.pnnl.gov. ENERGY EFFICIENCY. To account for human activity, researchers will simulate occupancy in each home. "The PNNL Lab Homes project

  8. Energy Department Announces Indoor Lighting Winners of Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement | DepartmentBlog EnergyFuels |Winners |

  9. NEW SOLAR HOMES PARTNERSHIP GUIDEBOOKSTAFFDRAFT

    E-Print Network [OSTI]

    RENEWABLES PROGRAM & NEW SOLAR HOMES PARTNERSHIP Mark Hutchison Office Manager RENEWABLE ENERGY PROGRAMCALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK­STAFFDRAFT JUNE 2007 CEC-300-2007-008-SD Arnold Schwarzenegger, Governor #12;CALIFORNIA ENERGY COMMISSION Jackalyne Pfannenstiel Chairman

  10. SCE- California Advanced Homes Incentives

    Broader source: Energy.gov [DOE]

    Southern California Edison offers an incentive for home builders to build homes which exceed 2008 Title 24 standards by 15%. The program is open to all single-family and multi-family new...

  11. Energy Star Homes (New Construction)

    Broader source: Energy.gov [DOE]

    For individuals building a new home, Efficiency Vermont offers free technical assistance and targeted rebates to help ensure that the home is as energy efficient as possible. The first step is to...

  12. Indoor Air Quality Assessment of the San Francisco Federal Building

    SciTech Connect (OSTI)

    Apte, Michael; Bennett, Deborah H.; Faulkner, David; Maddalena, Randy L.; Russell, Marion L.; Spears, Michael; Sullivan, Douglas P; Trout, Amber L.

    2008-07-01T23:59:59.000Z

    An assessment of the indoor air quality (IAQ) of the San Francisco Federal Building (SFFB) was conducted on May 12 and 14, 2009 at the request of the General Services Administration (GSA). The purpose of the assessment was for a general screening of IAQ parameters typically indicative of well functioning building systems. One naturally ventilated space and one mechanically ventilated space were studied. In both zones, the levels of indoor air contaminants, including CO2, CO, particulate matter, volatile organic compounds, and aldehydes, were low, relative to reference exposure levels and air quality standards for comparable office buildings. We found slightly elevated levels of volatile organic compounds (VOCs) including two compounds often found in"green" cleaning products. In addition, we found two industrial solvents at levels higher than typically seen in office buildings, but the levels were not sufficient to be of a health concern. The ventilation rates in the two study spaces were high by any standard. Ventilation rates in the building should be further investigated and adjusted to be in line with the building design. Based on our measurements, we conclude that the IAQ is satisfactory in the zone we tested, but IAQ may need to be re-checked after the ventilation rates have been lowered.

  13. Assistive Devices for the Home

    E-Print Network [OSTI]

    Harris, Janie

    2002-01-31T23:59:59.000Z

    , contact a physical therapist or occupational therapist through a home health agency or your local hospital. The following Web sites have information about devices that can make your home safer and more functional: http...Assistive Devices for the Home Janie Harris Extension Specialist, Housing and Environment The Texas A&M University System If you were to become impaired or disabled from an accident or illness, how ?user-friendly? would your home be? There are many...

  14. Imagine Homes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind

  15. DOE Zero Energy Ready Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | DepartmentEnergy Will

  16. Evaluation of Humidity Control Options in Hot-Humid Climate Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01T23:59:59.000Z

    This technical highlight describes NREL research to analyze the indoor relative humidity in three home types in the hot-humid climate zone, and examine the impacts of various dehumidification equipment and controls. As the Building America program researches construction of homes that achieve greater source energy savings over typical mid-1990s construction, proper modeling of whole-house latent loads and operation of humidity control equipment has become a high priority. Long-term high relative humidity can cause health and durability problems in homes, particularly in a hot-humid climate. In this study, researchers at the National Renewable Energy Laboratory (NREL) used the latest EnergyPlus tool equipped with the moisture capacitance model to analyze the indoor relative humidity in three home types: a Building America high-performance home; a mid-1990s reference home; and a 2006 International Energy Conservation Code (IECC)-compliant home in hot-humid climate zones. They examined the impacts of various dehumidification equipment and controls on the high-performance home where the dehumidification equipment energy use can become a much larger portion of whole-house energy consumption. The research included a number of simulated cases: thermostat reset, A/C with energy recovery ventilator, heat exchanger assisted A/C, A/C with condenser reheat, A/C with desiccant wheel dehumidifier, A/C with DX dehumidifier, A/C with energy recovery ventilator, and DX dehumidifier. Space relative humidity, thermal comfort, and whole-house source energy consumption were compared for indoor relative humidity set points of 50%, 55%, and 60%. The study revealed why similar trends of high humidity were observed in all three homes regardless of energy efficiency, and why humidity problems are not necessarily unique in the high-performance home. Thermal comfort analysis indicated that occupants are unlikely to notice indoor humidity problems. The study confirmed that supplemental dehumidification is needed to maintain space relative humidity (RH) below 60% in a hot-humid climate home. Researchers also concluded that while all the active dehumidification options included in the study successfully controlled space relative humidity excursions, the increase in whole-house energy consumption was much more sensitive to the humidity set point than the chosen technology option. In the high-performance home, supplemental dehumidification equipment results in a significant source energy consumption penalty at 50% RH set point (12.6%-22.4%) compared to the consumption at 60% RH set point (1.5%-2.7%). At 50% and 55% RH set points, A/C with desiccant wheel dehumidifier and A/C with ERV and high-efficiency DX dehumidifier stand out as the two cases resulting in the smallest increase of source energy consumption. At an RH set point of 60%, all explicit dehumidification technologies result in similar insignificant increases in source energy consumption and thus are equally competitive.

  17. www.hfhl.umn.edu Healthy Foods, Healthy Lives (HFHL) Institute

    E-Print Network [OSTI]

    Amin, S. Massoud

    Lives (HFHL) Institute is an all-university Institute supported by funds from the University funding cycle (fall 2014) OR proposals may be prepared and submitted to other equivalent Universitywww.hfhl.umn.edu Healthy Foods, Healthy Lives (HFHL) Institute Planning Grant Program for Community-University

  18. DOE Zero Ready Home Case Study: Palo Duro Homes, Most DOE Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and cooling at SEER 15 efficiency. To ensure good indoor air quality, an energy recovery ventilator is installed. The ERV has ducts to the outside to bring in fresh air and...

  19. 4Home | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S. National SoftwareE Place:3TIER4C4Home

  20. Winchester Homes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon: Energy ResourcesHomes Jump to:

  1. DOE Challenge Home Label Methodology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy -StateOffshoreFuel Cycle |Department of

  2. Home | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHolocene Magmatic GeothermalHomeOpenEI

  3. Insight Homes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown,Innoferm GmbH Jump to:EnergyInsight Homes

  4. Home Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar PowerCommercial Cold ClimateHiringHistory

  5. The Future of Home Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe Facts on Gas Prices:The FirstThe Future

  6. Baldwin Homes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: EnergyBagley Public UtilitiesBaldHomes Jump to:

  7. Belcher Homes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes Jump to: navigation, search Name: Belcher

  8. CAES MaCS Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES Home Home About Us Dr. Yaqiao (Y.

  9. Home Performance with Energy Star

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p pof Energy HomeEnergy- HPwES

  10. DOE Zero Energy Ready Home Case Study, KB Home, San Marcos, CA, Production Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials |

  11. DOE Zero Ready Home Case Study: Cobblestone Homes, 2014 Model Home, Midland, MI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials |Production | Zero Energy

  12. Building America Business Solutions for New Homes: Marketing Zero Energy Homes: Lifestyle Homes, Melbourne, Florida

    Broader source: Energy.gov [DOE]

    Building America research has shown that high performance homes can potentially give builders an edge in the marketplace and can boost sales. But it doesn't happen automatically. It requires a tailored, easy to understand marketing campaign, and sometimes a little flair. This case study highlights LifeStyle Homes’ successful marketing approach for their SunSmart home package.

  13. Pilot Residential Deep Energy Retrofits and the PNNL Lab Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Chandra, Subrato; Parker, Graham B.; Sande, Susan; Blanchard, Jeremy; Stroer, Dennis; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen

    2012-01-01T23:59:59.000Z

    This report summarizes research investigating the technical and economic feasibility of several pilot deep energy retrofits, or retrofits that save 30% to 50% or more on a whole-house basis while increasing comfort, durability, combustion safety, and indoor air quality. The work is being conducted for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. As part of the overall program, Pacific Northwest National Laboratory (PNNL) researchers are collecting and analyzing a comprehensive dataset that describes pre- and post-retrofit energy consumption, retrofit measure cost, health and comfort impacts, and other pertinent information for each home participating in the study. The research and data collection protocol includes recruitment of candidate residences, a thorough test-in audit, home energy modeling, and generation of retrofit measure recommendations, implementation of the measures, test-out, and continued evaluation. On some homes, more detailed data will be collected to disaggregate energy-consumption information. This multi-year effort began in October 2010. To date, the PNNL team has performed test-in audits on 51 homes in the marine, cold, and hot-humid climate zones, and completed 3 retrofits in Texas, 10 in Florida, and 2 in the Pacific Northwest. Two of the retrofits are anticipated to save 50% or more in energy bills and the others - savings are in the 30% to 40% range. Fourteen other retrofits are under way in the three climate zones. Metering equipment has been installed in seven of these retrofits - three in Texas, three in Florida, and one in the Pacific Northwest. This report is an interim update, providing information on the research protocol and status of the PNNL deep energy retrofit project as of December, 2011. The report also presents key findings and lessons learned, based on the body of work to date. In addition, the report summarizes the status of the PNNL Lab Homes that are new manufactured homes procured with minimal energy-efficiency specifications typical of existing homes in the region, and sited on the PNNL campus. The Lab Homes serve as a flexible test facility (the first of its kind in the Pacific Northwest) to rapidly evaluate energy-efficient and grid-smart technologies that are applicable to residential construction.

  14. Affordable High Performance in Production Homes: Artistic Homes...

    Broader source: Energy.gov (indexed) [DOE]

    and technical assistance to Artistic Homes.Read about this Top Innovation. Find more case studies of Building America projects across the country that demonstrate how high...

  15. DOE Challenge Home (Now Zero Energy Ready Home) - Building America...

    Energy Savers [EERE]

    performance. Read about this Top Innovation. See an example of a DOE Challenge Home. Find case studies of Building America builders across the country that are taking the...

  16. DOE Zero Ready Home Case Study: Southern Energy Homes, First...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and water heating installed or conduit and electric panel space installed for future solar equipment installation. The DOE Zero Energy Ready-certified home actually exceeded the...

  17. Guidelines for Home Energy Professionals Project: Benefits for Home Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAMResource Guideand Contractors | Department

  18. Home Energy Audits: Making Homes More Energy Efficient and Comfortable |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37Energy Highlights from the

  19. Masco Home Services/WellHome | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <Stevens Jump to:source History View NewMarysville TestMasco

  20. Affordable High Performance in Production Homes: Artistic Homes,

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate - Issue 55-July 2014 Advocate -

  1. DOE Zero Energy Ready Home Case Study: Promethean Homes, Charlottesville,

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 ChairsEnergy DOEHeatEnergyInc.,| DepartmentCT, Custom |VA |

  2. "A place you haven't visited before": a critical analysis of the Healthy Communities movement

    E-Print Network [OSTI]

    Hank, Heather Moira

    1995-01-01T23:59:59.000Z

    and for not allowing me to go home when I thought I would never make it! And to Jennifer I say: WE DID IT!! vl. TABLE OF CONTENTS ABSTRACT ACKNOWLEDGEMENTS. Page iv TABLE OF CONTENTS. CHAPTER Vl I INTRODUCTION. Overview. Critical Perspective... DESCRIPTION OF HEALTHY COMMUNITY LITERATURE 15 21 25 43 45 The World Health Organization's HC Model HC in the United States. . . . . . . . . . . . . Conclusion 45 61 85 IV CRITICAL ANALYSIS OF THE DISCOURSE OF LOCAL INITIATIVES...

  3. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    Residential Retrofit team provides guidance on how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for...

  4. alternative home building: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Shades of Green Environments for Living, ENERGY STAR, Water Sense, Indoor Air Plus, LEED......

  5. ucsf sustainability healthy environment, sustainable future

    E-Print Network [OSTI]

    Yamamoto, Keith

    ucsf sustainability healthy environment, sustainable future UC SAN FRANCISCO ANNUAL REPORT FY 2009-2010 Annual Report of the Chancellor's Advisory Committee on Sustainability #12;TABLE OF CONTENTS Executive Summary 1 UCSF Sustainability Governance 3 Table 1: CACS Members 4 Figure 1: UCSF Sustainability

  6. Energy 101: Home Energy Assessment

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    A home energy checkup helps owners determine where their house is losing energy and money - and how such problems can be corrected to make the home more energy efficient. A professional technician - often called an energy auditor - can give your home a checkup. You can also do some of the steps yourself. Items shown here include checking for leaks, examining insulation, inspecting the furnace and ductwork, performing a blower door test and using an infrared camera.

  7. Indoor airPLUS Construction Specifications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatment andJune 25, 2012

  8. Next Generation Luminaires Design Competition Announces 2014 Indoor Winners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletter Newsletter Better BuildingsAtticsWinners ||

  9. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott...

    Broader source: Energy.gov (indexed) [DOE]

    home in northern AZ that achieved a HERS score of 48 without PV or 25 if 3.5 kW PV were added. The two-story, 2,469-ft2 production home has 2x4 walls filled with R-13 open-cell...

  10. NEW SOLAR HOMES PARTNERSHIP COMMITTEEFINALGUIDEBOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP COMMITTEEFINALGUIDEBOOK NOVEMBER 2006 CEC .................................................................. 8 A. Technology and System Ownership ................................................. 10 G. Estimated Performance Using Commission PV Calculator ................................ 10 H

  11. NREL: Continuum Magazine Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amy Glickson | Web Development Email the editor Archives 6 Energy Saving Homes and Buildings 5 Sustainable Transportation 4 NREL Leads Energy Systems Integration 3 Spectrum...

  12. FORGE Home | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FORGE Home The Energy Department envisions Frontier Observatory for Research in Geothermal Energy (FORGE) as a dedicated site where scientists and engineers will be able to...

  13. Power Systems Group Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Information ASD Groups ESHQA Operations Argonne Home > Advanced Photon Source > Power Systems Group This page is currently under construction. Old PS Group Site (visible...

  14. Department of Energy Home Page

    Office of Scientific and Technical Information (OSTI)

    US DEPARTMENT OF ENERGY Search Home Page Contents ABOUT DOE About The Department of Energy (Learn about the Department of Energy, its mission, plans, organizational structure,...

  15. Home Heating | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of greatHome DesignHeating

  16. Home Weatherization | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of greatHome

  17. New American Home 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01T23:59:59.000Z

    This brochure details the New American Home 2009, which demonstrates the use of innovative building materials, cutting-edge design, and the latest construction techniques.

  18. Lesson Plan: Home Energy Investigation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e aTheLesson 8 -Makes A

  19. Challenge Home | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - April 2014 ENVIRONMENTAL MANAGEMENT2 ChairsChallenge

  20. Ryerson University Â… Harvest Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundA l iRuralDepartmentRyerson

  1. Home | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHolocene Magmatic

  2. Home Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey:Heights,Holyoke, Massachusetts:

  3. DOE Zero Energy Ready Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | DepartmentEnergy WillCalifornia Program

  4. DOE Zero Energy Ready Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | DepartmentEnergy WillCalifornia

  5. DOE Zero Energy Ready Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | DepartmentEnergy WillCalifornia5) May

  6. Your Home Fire Safety Checklist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contributeSecuritysupportsEnergyYourYourHome

  7. Pardee Homes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisadesParachute,Paramus, New Jersey:

  8. Challenge Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desertof Energy0 Chairs Meeting

  9. Clayton Homes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClark Energy Coop

  10. Home | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation HessHirschmannScoring Tool Jump to:OpenEI

  11. Particle Image Velocimetry measurement of indoor airflow field: A review of the technologies and applications

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    quantitative information of indoor air distribution and local air velocity around occupants or passengers, which has strong relationship with the ventilation effectiveness, the pollutant transportation Velocimetry (PIV); Measurement Technology 1. Introduction Ventilation concepts, including natural ventilation

  12. 3-D Wave Propagation Simulation in Complex Indoor Structures Farshid Aryanfar' and Kamal Sarabandi

    E-Print Network [OSTI]

    Sarabandi, Kamal

    3-D Wave Propagation Simulation in Complex Indoor Structures Farshid Aryanfar' and Kamal Sarabandi in different environments is important for specifying system parameters. Recently, wave propagation prediction electromagnetic wave propagation models have been developed. Examination of reported wave propagation algorithms

  13. Indoor Conditions Study and Impact on the Energy Consumption for a Large Commercial Building

    E-Print Network [OSTI]

    Catalina, T.

    2011-01-01T23:59:59.000Z

    that were studied using dynamic simulations. The article provides interesting insights of the building indoor conditions (summer/winter comfort), humidity, air temperature, mean operative temperature and energy consumption using hourly climate data. A...

  14. Coupling of a multizone airflow simulation program with computational fluid dynamics for indoor environmental analysis

    E-Print Network [OSTI]

    Gao, Yang, 1974-

    2002-01-01T23:59:59.000Z

    Current design of building indoor environment comprises macroscopIC approaches, such as CONT AM multizone airflow analysis tool, and microscopic approaches that apply Computational Fluid Dynamics (CFD). Each has certain ...

  15. Improve Indoor Air Quality, Energy Consumption and Building Performance: Leveraging Technology to Improve All Three

    E-Print Network [OSTI]

    Wiser, D.

    2011-01-01T23:59:59.000Z

    in the most efficient way possible. However, maintaining optimum indoor air quality often seems to be in conflict with minimizing operating and energy costs. Conventional wisdom says the best IAQ strategy involves increasing ventilation rates. But outdoor air...

  16. Operation of Energy Efficient Residential Buildings Under Indoor Environmental Quality Requirements

    E-Print Network [OSTI]

    Medhat, A. A.; Khalil, E. E.

    2010-01-01T23:59:59.000Z

    This paper is devoted to the influence of Indoor Environmental Quality, [IEQ] requirements associated with occupation regimes on the criterion of energy demand s for HVAC (Heating, Ventilating and Air-Conditioning) central systems that were...

  17. Risk Assessment Scheme of Infection Transmission Indoors Incorporating the Impact of Resuspension

    E-Print Network [OSTI]

    You, Siming; Wan, Man Pun

    2015-01-01T23:59:59.000Z

    models for fine particle resuspension from indoor surfaces.Reed J, Hall D. On the resuspension of small parti- cles byFichman M, Gutfinger C. Resuspension of par- ticulates from

  18. Impact of Indoor Environment Improvement on Comfort and Productivity in a Chipboard Workplace 

    E-Print Network [OSTI]

    Li, Z.; Li, D.; Du, H.; Zhang, G.; Li, L.

    2006-01-01T23:59:59.000Z

    A real example was investigated on the relationship between indoor environment, comfort and productivity in a chipboard workplace location in southern China. In this field study, a subjective evaluation and objective measurement were carried out...

  19. Improving Indoor Air Quality Improves the Performance of Office Work and School Work 

    E-Print Network [OSTI]

    Wargocki, P.

    2008-01-01T23:59:59.000Z

    Recent studies show that improving indoor air quality (IAQ) from the mediocre level prevalent in many buildings worldwide improves the performance of office work by adults and the performance of schoolwork by children. These results constitute a...

  20. Indoor Radon and Its Decay Products: Concentrations, Causes, and Control Strategies

    E-Print Network [OSTI]

    Nero, A.V.

    2008-01-01T23:59:59.000Z

    Removal of radon and radon progeny from indoor air, inMeeting on Radon-Radon Progeny Measurements, Report 520/5-August 1983. Radon - Radon Progeny Measurements, proceedings