Powered by Deep Web Technologies
Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EA-0970: Environmental Safety and Health Analytical Laboratory Project No. 94-AA-01 Pantex Plant, Amarillo, Texas  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to construct and operate an Environmental Safety and Health Analytical Laboratory and subsequent demolition of the existing Analytical...

2

Analytical laboratory quality audits  

SciTech Connect (OSTI)

Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

Kelley, William D.

2001-06-11T23:59:59.000Z

3

Determination of Extractives in Biomass: Laboratory Analytical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Extractives in Biomass Laboratory Analytical Procedure (LAP) Issue Date: 7172005 A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton Technical Report NRELTP-510-42619...

4

Summative Mass Closure: Laboratory Analytical Procedure (LAP...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prepared under Task No. BB072230 NREL Laboratory Analytical Procedures for standard biomass analysis are available electronically at http:www.nrel.govbiomass...

5

Road Transportable Analytical Laboratory system. Phase 1  

SciTech Connect (OSTI)

This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE`s internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex.

Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O`Donnell, M.; Vann, R.L.

1993-09-01T23:59:59.000Z

6

Guide to Savannah River Laboratory Analytical Services Group  

SciTech Connect (OSTI)

The mission of the Analytical Services Group (ASG) is to provide analytical support for Savannah River Laboratory Research and Development Programs using onsite and offsite analytical labs as resources. A second mission is to provide Savannah River Site (SRS) operations with analytical support for nonroutine material characterization or special chemical analyses. The ASG provides backup support for the SRS process control labs as necessary.

Not Available

1990-04-01T23:59:59.000Z

7

Determination of Ash in Biomass: Laboratory Analytical Procedure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ash in Biomass Laboratory Analytical Procedure (LAP) Issue Date: 7172005 A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton Technical Report NREL...

8

Determination of Protein Content in Biomass: Laboratory Analytical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Protein Content in Biomass Laboratory Analytical Procedure (LAP) Issue Date: 05232008 B. Hames, C. Scarlata, and A. Sluiter Technical Report NRELTP-510-42625 Revised May 2008...

9

Innovative technology summary report: Road Transportable Analytical Laboratory (RTAL)  

SciTech Connect (OSTI)

The Road Transportable Analytical Laboratory (RTAL) has been used in support of US Department of Energy (DOE) site and waste characterization and remediation planning at Fernald Environmental Management Project (FEMP) and is being considered for implementation at other DOE sites, including the Paducah Gaseous Diffusion Plant. The RTAL laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific analysis needs. The prototype RTAL, deployed at FEMP Operable Unit 1 Waste Pits, has been designed to be synergistic with existing analytical laboratory capabilities, thereby reducing the occurrence of unplanned rush samples that are disruptive to efficient laboratory operations.

NONE

1998-10-01T23:59:59.000Z

10

Analytical Chemistry Laboratory: Progress report for FY 1988  

SciTech Connect (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

1988-12-01T23:59:59.000Z

11

Analytical Chemistry Laboratory progress report for FY 1991  

SciTech Connect (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.

1991-12-01T23:59:59.000Z

12

Analytical Chemistry Laboratory progress report for FY 1985  

SciTech Connect (OSTI)

The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab.

Green, D.W.; Heinrich, R.R.; Jensen, K.J.

1985-12-01T23:59:59.000Z

13

analytical laboratory rtal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ecology Websites Summary: 12;12;A BRIEF HISTORY THE ANALYTICAL CHEMISTRY DIVISION OF OAK RIDGE NATIONAL LABORATORY 1950 hiembers of the Chemistry Division R-on: J. A. Swartout...

14

Analytical Chemistry Laboratory progress report for FY 1999  

SciTech Connect (OSTI)

This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

2000-06-15T23:59:59.000Z

15

Analytical Chemistry Laboratory progress report for FY 1998.  

SciTech Connect (OSTI)

This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

1999-03-29T23:59:59.000Z

16

Analytical Chemistry Laboratory. Progress report for FY 1996  

SciTech Connect (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

Green, D.W.; Boparai, A.S.; Bowers, D.L.

1996-12-01T23:59:59.000Z

17

ORISE: Radiochemistry and Environmental Analytical Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK MappingHistoryMedicalInternational

18

Analytical chemistry laboratory. Progress report for FY 1997  

SciTech Connect (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1997 (October 1996 through September 1997). This annual progress report is the fourteenth in this series for the ACL, and it describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

1997-12-01T23:59:59.000Z

19

Analytical Chemistry Laboratory Progress Report for FY 1994  

SciTech Connect (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

1994-12-01T23:59:59.000Z

20

Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures: Laboratory Analytical Procedure (LAP)  

SciTech Connect (OSTI)

This procedure guides the integration of laboratory analytical procedures to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in algal biomass analysis.

Laurens, L. M. L.

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

TRUEX processing of plutonium analytical solutions at Argonne National Laboratory  

SciTech Connect (OSTI)

The TRUEX (TRansUranic EXtraction) solvent extraction process was developed at Argonne National Laboratory (ANL) for the Department of Energy. A TRUEX demonstration completed at ANL involved the processing of analytical and experimental waste generated there and at the New Brunswick Laboratory. A 20-stage centrifugal contactor was used to recover plutonium, americium, and uranium from the waste. Approximately 84 g of plutonium, 18 g of uranium, and 0.2 g of americium were recovered from about 118 liters of solution during four process runs. Alpha decontamination factors as high as 65,000 were attained, which was especially important because it allowed the disposal of the process raffinate as a low-level waste. The recovered plutonium and uranium were converted to oxide; the recovered americium solution was concentrated by evaporation to approximately 100 ml. The flowsheet and operational procedures were modified to overcome process difficulties. These difficulties included the presence of complexants in the feed, solvent degradation, plutonium precipitation, and inadequate decontamination factors during startup. This paper will discuss details of the experimental effort.

Chamberlain, D.B.; Conner, C.; Hutter, J.C.; Leonard, R.A.; Wygmans, D.G.; Vandegrift, G.F. [Argonne National Lab., IL (United States). Chemical Technology Div.

1995-12-31T23:59:59.000Z

22

Radiation and Health Technology Laboratory Capabilities  

SciTech Connect (OSTI)

The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.

Goles, Ronald W.; Johnson, Michelle Lynn; Piper, Roman K.; Peters, Jerry D.; Murphy, Mark K.; Mercado, Mike S.; Bihl, Donald E.; Lynch, Timothy P.

2003-07-15T23:59:59.000Z

23

Radiation and Health Technology Laboratory Capabilities  

SciTech Connect (OSTI)

The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.

Bihl, Donald E.; Lynch, Timothy P.; Murphy, Mark K.; Myers, Lynette E.; Piper, Roman K.; Rolph, James T.

2005-07-09T23:59:59.000Z

24

E-Print Network 3.0 - analytical chemistry laboratory Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: analytical chemistry laboratory Page: << < 1 2 3 4 5 > >> 1 Department of Chemistry Three Year Projection...

25

Starting up a new U.S. Department of Energy Analytical Laboratory at the Hanford site  

SciTech Connect (OSTI)

A new analytical chemistry laboratory was constructed on the Hanford Site near Richland, Washington by the U.S. Department of Energy to provide radiochemistry, inorganic, and organic analytical services. The laboratory is staffed and operated by Westinghouse Hanford Company, the U.S. Department of Energy contractor of the government-owned contractor-operated site. The start-up process, after laboratory construction and analytical equipment installation, requires a safety analysis report, approved analytical procedures, training, a plant {open_quotes}readiness review{close_quotes} by Westinghouse Hanford Company, and final approval for start-up by the U.S. Department of Energy.

Grabbe, R.R.

1994-05-01T23:59:59.000Z

26

analytical laboratories method: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

observations Geosciences Websites Summary: Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA Christa D. Peters Environmental...

27

Laboratory Safety Manual Office of Environment, Health and Safety  

E-Print Network [OSTI]

Prevention Plan is a key step in strengthening the safety culture in laboratories. The UCLA Injury#12;Laboratory Safety Manual Office of Environment, Health and Safety December 201 #12;UCLA Laboratory Safety Manual Introduction Laboratory safety is an integral part of laboratory research

Jalali. Bahram

28

Manual of analytical methods for the Industrial Hygiene Chemistry Laboratory  

SciTech Connect (OSTI)

This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned.

Greulich, K.A.; Gray, C.E. (comp.)

1991-08-01T23:59:59.000Z

29

Standard guide for establishing a quality assurance program for analytical chemistry laboratories within the nuclear industry  

E-Print Network [OSTI]

1.1 This guide covers the establishment of a quality assurance (QA) program for analytical chemistry laboratories within the nuclear industry. Reference to key elements of ANSI/ISO/ASQC Q9001, Quality Systems, provides guidance to the functional aspects of analytical laboratory operation. When implemented as recommended, the practices presented in this guide will provide a comprehensive QA program for the laboratory. The practices are grouped by functions, which constitute the basic elements of a laboratory QA program. 1.2 The essential, basic elements of a laboratory QA program appear in the following order: Section Organization 5 Quality Assurance Program 6 Training and Qualification 7 Procedures 8 Laboratory Records 9 Control of Records 10 Control of Procurement 11 Control of Measuring Equipment and Materials 12 Control of Measurements 13 Deficiencies and Corrective Actions 14

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

30

Analytical Instrumentation for the MFRC | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site| Department September 1999 The

31

Discrete event simulation of the Defense Waste Processing Facility (DWPF) analytical laboratory  

SciTech Connect (OSTI)

A discrete event simulation of the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) analytical laboratory has been constructed in the GPSS language. It was used to estimate laboratory analysis times at process analytical hold points and to study the effect of sample number on those times. Typical results are presented for three different simultaneous representing increasing levels of complexity, and for different sampling schemes. Example equipment utilization time plots are also included. SRS DWPF laboratory management and chemists found the simulations very useful for resource and schedule planning.

Shanahan, K.L.

1992-02-01T23:59:59.000Z

32

Service Level Agreement for the Analytical Laboratory School of Biological and Chemical Sciences  

E-Print Network [OSTI]

.g.scott@qmul.ac.uk Definition of Service The Analytical Laboratory offers facilities for Atomic Absorption Spectrometry, Chromatography, Mass Spectrometry and Radioisotope Measurement. Users of the service are encouraged to actively Provided ∑ The Atomic Absorption Spectrometry facility is able to provide quantitative analysis of a wide

Chittka, Lars

33

Sandia National Laboratories: Structural Health Monitoring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and reduce downtime. A particular focus is to mitigate the large rise in costs for offshore O&M due to access difficulty, weather, high sea states, etc. using structural health...

34

Health Insurance Rates | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9HarveyWellness > Health FairsHealth

35

ORISE: Worker Health Studies - Beryllium Testing Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACKRadiologicalEric Dulmes Student'sDuringandOakBeLPT

36

Quality Assurance Baseline Assessment Report to Los Alamos National Laboratory Analytical Chemistry Operations  

SciTech Connect (OSTI)

This report summarizes observations that were made during a Quality Assurance (QA) Baseline Assessment of the Nuclear Materials Technology Analytical Chemistry Group (NMT-1). The Quality and Planning personnel, for NMT-1, are spending a significant amount of time transitioning out of their roles of environmental oversight into production oversight. A team from the Idaho National Engineering and Environmental Laboratory Defense Program Environmental Surety Program performed an assessment of the current status of the QA Program. Several Los Alamos National Laboratory Analytical Chemistry procedures were reviewed, as well as Transuranic Waste Characterization Program (TWCP) QA documents. Checklists were developed and the assessment was performed according to an Implementation Work Plan, INEEL/EXT-98-00740.

Jordan, R. A.

1998-09-01T23:59:59.000Z

37

Environmental, Safety, Security, and Health Policy Brookhaven National Laboratory  

E-Print Network [OSTI]

Environmental, Safety, Security, and Health Policy Brookhaven National Laboratory This document is a statement of BNL's ESSH policy. BNL is a world leader in scientific research and strives to demonstrate's progress on ESSH goals and adherence to this policy, I invite all interested parties to provide me

Ohta, Shigemi

38

Pacific Northwest Laboratory: Director`s overview of research performed for DOE Office of Health And Environmental Research  

SciTech Connect (OSTI)

A significant portion of the research undertaken at Pacific Northwest Laboratory (PNL) is focused on the strategic programs of the US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER). These programs, which include Environmental Processes (Subsurface Science, Ecosystem Function and Response, and Atmospheric Chemistry), Global Change (Climate Change, Environmental Vulnerability, and Integrated Assessments), Biotechnology (Human Genome and Structural Biology), and Health (Health Effects and Medical Applications), have been established by OHER to support DOE business areas in science and technology and environmental quality. PNL uses a set of critical capabilities based on the Laboratory`s research facilities and the scientific and technological expertise of its staff to help OHER achieve its programmatic research goals. Integration of these capabilities across the Laboratory enables PNL to assemble multidisciplinary research teams that are highly effective in addressing the complex scientific and technical issues associated with OHER-sponsored research. PNL research efforts increasingly are focused on complex environmental and health problems that require multidisciplinary teams to address the multitude of time and spatial scales found in health and environmental research. PNL is currently engaged in research in the following areas for these OHER Divisions: Environmental Sciences -- atmospheric radiation monitoring, climate modeling, carbon cycle, atmospheric chemistry, ecological research, subsurface sciences, bioremediation, and environmental molecular sciences; Health Effects and Life Sciences -- cell/molecular biology, and biotechnology; Medical Applications and Biophysical Research -- analytical technology, and radiological and chemical physics. PNL`s contributions to OHER strategic research programs are described in this report.

NONE

1995-06-01T23:59:59.000Z

39

ORGANISATIONAL CHART 2009 Laboratory: Research, Development and Services  

E-Print Network [OSTI]

. Sampani Radiation Protection of the Center G. Pantelias* HEALTH PHYSICS & ENVIRONMENTAL HEALTH LABORATORY G. Pantelias Operation & Maintenance of Research Reactor I. Stamatelatos Nuclear Analytical LABORATORY C. Housiadas Dynamic Reliability of Complex System & Decision Analysis I.A. Papazoglou

40

Environmental Health and Safety Laboratory Preparation for Tropical Storms or Hurricanes  

E-Print Network [OSTI]

Environmental Health and Safety Laboratory Preparation for Tropical Storms or Hurricanes damage, significant rainfall and possible campus flooding. Below are some guidelines that should exits and corridors are clear. Someone from the Environmental Health and Safety Department

Natelson, Douglas

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CRAD, Occupational Safety & Health - Los Alamos National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

- Los Alamos National Laboratory TA 55 SST Facility More Documents & Publications CRAD, Conduct of Operations - Los Alamos National Laboratory TA 55 SST Facility CRAD,...

42

Summer 2012Protecting MU's Health, Safety, and the Environment Laboratory Safety Incidents  

E-Print Network [OSTI]

to be safety conscious in the work they do, especially in a laboratory setting. In fiscal year 2011, MU and Safety is working to raise awareness of the need to work safely in laboratories. It is important to have Laboratory Safety plays an important role at MU. As Environmental Health and Safety works to promote lab

Taylor, Jerry

43

E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division  

E-Print Network [OSTI]

DESCRIPTION 1.1 SITE DESCRIPTION 1.1.1 Laboratory Operations The Ernest Orlando Lawrence Berkeley National#12;#12;E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division Lawrence Berkeley National Laboratory Address: MS 85B0198 One Cyclotron Road Berkeley, CA 94720 Contact

44

SURVEY RESEARCH LABORATORY UNIVERSITY OF ILLINOIS AT CHICAGO Conference on Health Survey Research Methods  

E-Print Network [OSTI]

SURVEY RESEARCH LABORATORY ∑ UNIVERSITY OF ILLINOIS AT CHICAGO 10th Conference on Health Survey Research Methods April 8≠11, 2011 CALL FOR PAPERS The Tenth Conference on Health Survey research methods that improve the quality of health survey data. The CHSRM will bring together researchers

Illinois at Chicago, University of

45

Needs analysis and project schedule for the Los Alamos National Laboratory (LANL) Health Physics Analysis Laboratory (HPAL) upgrade  

SciTech Connect (OSTI)

This report is a needs assessment and project schedule for the Health Physics Analysis Laboratory (HPAL) upgrade project at Los Alamos National Laboratory (LANL). After reviewing current and projected HPAL operations, two custom-developed laboratory information management systems (LIMS) for similar facilities were reviewed; four commercially available LIMS products were also evaluated. This project is motivated by new regulations for radiation protection and training and by increased emphasis on quality assurance (QA). HPAL data are used to: protect the health of radiation workers; document contamination levels for transportation of radioactive materials and for release of materials to the public for uncontrolled use; and verify compliance with environmental emission regulations. Phase 1 of the HPAL upgrade project concentrates on four types of counting instruments which support in excess of 90% of the sample workload at the existing central laboratories. Phase 2 is a refinement phase and also integrates summary-level databases on the central Health, Safety, and Environment (HSE) VAX. Phase 3 incorporates additional instrument types and integrates satellite laboratories into the HPAL LIMS. Phase 1 will be a multi-year, multimillion dollar project. The temptation to approach the upgrade of the HPAL program in a piece meal fashion should be avoided. This is a major project, with clearly-defined goals and priorities, and should be approached as such. Major programmatic and operational impacts will be felt throughout HSE as a result of this upgrade, so effective coordination with key customer contacts will be critical.

Rhea, T.A.; Rucker, T.L. [Science Applications International Corp., Oak Ridge, TN (United States); Stafford, M.W. [NUS Corp., Aiken, SC (US)

1990-09-28T23:59:59.000Z

46

Sandia National Laboratories: Safety and Health Go Green Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Initiative Excellence Award in the 2012 Facilities Environmental, Safety and Health Go Green Initiative On December 19, 2012, in Concentrating Solar Power, Energy, Events,...

47

Major Energy Efficiency Opportunities in Laboratories --Implications for Health and Safety  

SciTech Connect (OSTI)

Laboratory facilities present a unique challenge for energy efficient design, partly due to their health and safety requirements. Recent experience has shown that there is significant energy efficiency potential in laboratory buildings. However, there is often a misperception in the laboratory community that energy efficiency will inherently compromise safety. In some cases, energy efficiency measures require special provisions to ensure that safety requirements are met. In other cases, efficiency measures actually improve safety. In this paper we present five major, yet under-utilized, energy efficiency strategies for ventilation-intensive laboratories and discuss their implications for health and safety. These include: (a) optimizing ventilation rates; (b) reducing laboratory chemical hood energy use; (c) low-pressure drop HVAC design; (d) right-sizing HVAC systems; and (e) reducing simultaneous heating and cooling. In all cases, the successful design and implementation of these strategies requires active and informed participation by health and safety personnel.

Mathew, Paul A.; Sartor, Dale A.; Bell, Geoffrey C.; Drummond,David

2007-04-27T23:59:59.000Z

48

Louis Stokes Laboratories, Building 50, National Institutes of Health, Bethesda, Maryland: Laboratories for the 21st Century Case Studies (Revision)  

SciTech Connect (OSTI)

This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the new laboratories in Building 50 at the National Institutes of Health in Bethesda, Maryland, include extensive use of daylighting, variable-air-volume control of the ventilation air supply and exhaust air system, and a unique energy recovery system that makes use of large desiccant energy wheels. With nearly 300,000 gross square feet, the building is estimated to use much less energy than traditional research facilities consume because of its energy-efficient design and features.

Not Available

2002-03-01T23:59:59.000Z

49

Louis Stokes Laboratories, Building 50, National Institutes of Health, Bethesda, Maryland: Laboratories for the 21st Century Case Studies  

SciTech Connect (OSTI)

This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the new laboratories in Building 50 at the National Institutes of Health in Bethesda, Maryland, include extensive use of daylighting, variable-air-volume control of the ventilation air supply and exhaust air system, and a unique energy recovery system that makes use of large desiccant energy wheels. With nearly 300,000 gross square feet, the building is estimated to use much less energy than traditional research facilities consume because of its energy-efficient design and features.

Not Available

2001-12-01T23:59:59.000Z

50

Environmental Health and Safety's Laboratory Safety Trainings Title of Training Description Required Training  

E-Print Network [OSTI]

and chemical safety are discussed. You work in a laboratory that has chemical, biological, radiologicalEnvironmental Health and Safety's Laboratory Safety Trainings Title of Training Description Safety (Includes Fire Safety, Hazardous Waste and Right to Know) This training is an overview of general

Massachusetts at Amherst, University of

51

E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division  

E-Print Network [OSTI]

-4298 Site Information Operator: University of California Ernest Orlando Lawrence Berkeley National.3 SOURCE DESCRIPTION 1.1 SITE DESCRIPTION 1.1.1 Laboratory Operations The Ernest Orlando Lawrence BerkeleyE.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division Environmental

52

E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division  

E-Print Network [OSTI]

#12;E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division Lawrence Berkeley National Laboratory Operation Office Information Office: U.S. Department of Energy: (510) 486-4298 Site Information Operator: University of California Ernest Orlando Lawrence Berkeley

53

Health Benefits of GHG Reduction | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks,Programs ¬ĽHealthHealth

54

Analytical Plans Supporting The Sludge Batch 8 Glass Variability Study Being Conducted By Energysolutions And Cua's Vitreous State Laboratory  

SciTech Connect (OSTI)

EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested via a statement of work that ES/VSL conduct a glass variability study (VS) for Sludge Batch 8. SRR issued a technical task request (TTR) asking that the Savannah River National Laboratory (SRNL) provide planning and data reduction support for the ES/VSL effort. This document provides two analytical plans for use by ES/VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses. The measurements generated by ES/VSL are to be provided to SRNL for data reduction and evaluation. SRNL is to review the results of its evaluation with ES/VSL and SRR. The results will subsequently be incorporated into a joint report with ES/VSL as a deliverable to SRR to support the processing of SB8 at DWPF.

Edwards, T. B.; Peeler, D. K.

2012-11-26T23:59:59.000Z

55

ANALYTICAL PLANS SUPPORTING THE SWPF GAP ANALYSIS BEING CONDUCTED WITH ENERGYSOLUTIONS AND THE VITREOUS STATE LABORATORY AT THE CUA  

SciTech Connect (OSTI)

EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested that the glass formulation team of Savannah River National Laboratory (SRNL) and ES-VSL develop a technical basis that validates the current Product Composition Control System models for use during the processing of the coupled flowsheet or that leads to the refinements of or modifications to the models that are needed so that they may be used during the processing of the coupled flowsheet. SRNL has developed a matrix of test glasses that are to be batched and fabricated by ES-VSL as part of this effort. This document provides two analytical plans for use by ES-VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses based upon the results of testing by ASTMís Product Consistency Test (PCT) Method A.

Edwards, T.; Peeler, D.

2014-10-28T23:59:59.000Z

56

U.S. Department of Energy Office of Inspector General report on inspection of analytical laboratories oversight at the Strategic Petroleum Reserve  

SciTech Connect (OSTI)

The Department of Energy`s (DOE) Assistant Secretary for Fossil Energy has overall programmatic responsibility for the Strategic Petroleum Reserve (SPR). The SPR Project Management Office (SPRPMO), located in New Orleans, Louisiana, and under the direction of the Project Manager, manages day-to-day project activities. The SPR currently has five underground crude oil storage facilities, and one marine terminal, on or near the Gulf Coasts of Texas and Louisiana. The purpose of this inspection was to review oversight of M and O and subcontractor laboratories performing analyses on samples taken for SPR environmental compliance and oil quality purposes. During this inspection, the M and O contractor operated on-site environmental laboratories at four of the SPR storage facilities, and oil quality laboratories at two of the facilities. The number of subcontractor laboratories varies depending on the need for analytical support. The objective of this inspection was to determine if the SPRPMO had implemented management systems to provide adequate oversight of M and O contractor analytical laboratory activities, as well as to ensure effective oversight of subcontractor analytical laboratories.

NONE

1995-07-26T23:59:59.000Z

57

Health and environmental chemistry: Analytical techniques, data management, and quality assurance. Volume 1, Manual  

SciTech Connect (OSTI)

Analytical procedures are described for the determination of organic compounds, metals and radioisotopes in environmental materials, human tissues, urine, feces, and waste water.

Gautier, M.A. [ed.

1993-11-01T23:59:59.000Z

58

Health and environmental chemistry: analytical techniques, data management, and quality assurance. Volume 1  

SciTech Connect (OSTI)

Analytical procedures are described for the determination of organic compounds, metals, and radioisotopes in environmental materials, human tissue, urine, feces, and waste water.

Gautier, M A

1986-05-01T23:59:59.000Z

59

CRAD, Occupational Safety & Health- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Occupational Safety and Health Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

60

Office of Laboratory Animal Welfare (OLAW) http://olaw.nih.gov National Institutes of Health  

E-Print Network [OSTI]

Office of Laboratory Animal Welfare (OLAW) http://olaw.nih.gov National Institutes of Health RKL 1.A. olaw@od.nih.gov 301-496-7163 301-915-9481 Patricia A. Brown, V.M.D., M.S. Director brownp@od.nih.gov 301-496-7163 301-915-9481 Joan Ward Program Assistant (c) wardjoa@od.nih.gov 301-594-2506 301

Baker, Chris I.

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The first years of the Atomic Energy Commission New York Operations Office Health and Safety Laboratory  

SciTech Connect (OSTI)

The Health and Safety Laboratory (HASL) of the Atomic Energy Commission has provided much of the data on exposure assessment in uranium contractor facilities and on fallout radionuclides in the environment. The research performed in the beryllium industry 1947-1949 led to establishment of the protection standards that exist to this day. This laboratory was formed in 1947, as part of the Medical Division of the New York Operations Office, directed by B.S. Wolf, HASL was directed initially by Merril Eisenbud and subsequently by S. Allen Lough and John Harley. The history of the Laboratory is traced from its beginning, and the projects described that led to HASL's reputation as a trouble-shooting arm of the Atomic Energy Commission. 4 refs.

Eisenbud, M. (Duke Univ. Medical Center, Durham, NC (United States))

1994-01-01T23:59:59.000Z

62

LABORATORY SAFETY CHECKLIST Department of Environment, Health and Safety v.1.9 July 2014 Page 1  

E-Print Network [OSTI]

years. c) Persons working in the lab who are not radiation safety certified have read and signed the Radiation Safety Guidelines for Non-users. C. Laboratory Housekeeping and Work Practices Criteria yes no nLABORATORY SAFETY CHECKLIST Department of Environment, Health and Safety v.1.9 July 2014 Page 1

Machel, Hans

63

Pacific Northwest Laboratory annual report for 1990 to the Assistant Secretary for Environment, Safety, and Health  

SciTech Connect (OSTI)

Part 5 of the 1990 Annual Report to the US Department of Energy's Assistant Secretary for Environment, Safety, and Health presents Pacific Northwest Laboratory's progress on work performed for the Office of Environmental Guidance, the Office of Environmental Compliance, the Office of Environmental Audit, the Office of National Environmental Policy Act Project Assistance, the Office of Nuclear Safety, the Office of Safety Compliance, and the Office of Policy and Standards. For each project, as identified by the Field Work Proposal, there is an article describing progress made during fiscal year 1990. Authors of these articles represent a broad spectrum of capabilities derived from five of the seven technical centers of the Laboratory, reflecting the interdisciplinary nature of the work.

Faust, L.G.; Moraski, R.V.; Selby, J.M.

1991-05-01T23:59:59.000Z

64

Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering |LabVideoLaboratories

65

Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering |LabVideoLaboratoriesForest fire

66

Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering |LabVideoLaboratoriesForest

67

Human-health effects of radium: an epidemiolgic perspective of research at Argonne National Laboratory  

SciTech Connect (OSTI)

The topic of health effects of radium has recently been considerably broadened by the identification of multiple myeloma as a specific outcome of bone-seeking radionuclides, and by evidence that the incidence of breast cancer may be significantly increased by radium exposure. All soft-tissue tumors are now suspect, especially leukemias. Concepts of dose-response need to be broadened to include the concept of risk factors, or, if one prefers, of susceptible subgroups. Biological factors relating to radium uptake and retention require study, as do risk factors modifying risk of both the clasical tumors, osteosarcoma and nasal sinus/mastoid, and the more recently suspect soft-tissue tumors. The history, organization, and current research activities in epidemiology at Argonne National Laboratory are described, and findings of the last decade and a half reviewed. Plans for future research are briefly discussed.

Stebbings, J.H.

1982-01-01T23:59:59.000Z

68

Brookhaven National Laboratory/ Photon Sciences Subject: Frequently Asked Questions about Occupational Health and Safety Management System (OHSAS 18001)  

E-Print Network [OSTI]

Occupational Health and Safety Management System (OHSAS 18001) Number: PS-ESH-0060 Revision: 2 Effective: 6 used by Photon Sciences to ensure that the ESH policies of the Laboratory are met in our activities and Safety Management System (OHSAS 18001) Number: PS-ESH-0060 Revision: 2 Effective: 6/6/12 Page 2 of 2

Homes, Christopher C.

69

Biomedical Optics Laser Laboratory The lab's objective is to improve human health through research and education in Biomedical Optics, a  

E-Print Network [OSTI]

Biomedical Optics Laser Laboratory The lab's objective is to improve human health through research and education in Biomedical Optics, a multidisciplinary field incorporating elements of the physical and life in Biomedical Optics involves developing and applying methods of optical science and engineering

Kamat, Vineet R.

70

E.O. Lawrence Berkeley National Laboratory Environment, Health, & Safety Division  

E-Print Network [OSTI]

Ernest Orlando Lawrence Berkeley National Laboratory 06/09/99 #12;Section I. Facility Information Site Description: Laboratory Operations The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab Figure 1. LBNL on Site Buildings Ernest Orlando Lawrence Berkeley National Laboratory 06/09/99 2 #12;HILL

71

Conceptual Site Treatment Plan Laboratory for Energy-Related Health Research Environmental Restoration Project  

SciTech Connect (OSTI)

The Federal Facilities Compliance Act (the Act) of 1992 waives sovereign immunity for federal facilities for fines and penalties under the provisions of the Resource Recovery and Conservation Act, state, interstate, and local hazardous and solid waste management requirements. However, for three years the Act delays the waiver for violations involving US Department of Energy (DOE) facilities. The Act, however, requires that the DOE prepare a Conceptual Site Treatment Plan (CSTP) for each of its sites that generate or store mixed wastes (MWs). The purpose of the CSTP is to present DOE`s preliminary evaluations of the development of treatment capacities and technologies for treating a site`s MW. This CSTP presents the preliminary capacity and technology evaluation for the Laboratory for Energy-Related Health Research (LEHR). The five identified MW streams at LEHR are evaluated to the extent possible given available information. Only one MW stream is sufficiently well defined to permit a technology evaluation to be performed. Two other MW streams are in the process of being characterized so that an evaluation can be performed. The other two MW streams will be generated by the decommissioning of inactive facilities onsite within the next five years.

Chapman, T.E.

1993-10-01T23:59:59.000Z

72

SPATIAL DATA ON ENERGY, ENVIRONMENTAL, SOCIOECONOMIC, HEALTH AND DEMOGRAPHIC THEMES AT LAWRENCE BERKELEY LABORATORY: 1978 INVENTORY  

E-Print Network [OSTI]

1963-1967 ē ē ē ē Truck Inventory and Use Survey, 1972 U.S.BERKELEY LABORATORY: 1978 INVENTORY April 1979 Prepared forBerkeley Laboratory: 1978 Inventory, LBL-8707. vi CONTENTS

Burkhart Ed., B.R.

2012-01-01T23:59:59.000Z

73

TRAINING REQUIREMENTS FOR MNI LABORATORY PERSONNEL (version February, 2014) Principal Investigators are responsible for ensuring good occupational health and safety practices in their  

E-Print Network [OSTI]

TRAINING REQUIREMENTS FOR MNI LABORATORY PERSONNEL (version February, 2014) Principal Investigators ensuring all personnel receive the proper training according to McGill Environmental Health and Safety are taken through McGill Environmental Health and Safety[ Safety Training | Environmental Health and Safety

Shoubridge, Eric

74

Project health and safety plan for the Gunite and Associated Tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Lockheed Martin Energy Systems, Inc. (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at the Gunite and Associated Tanks (GAAT) in the North and South Tank Farms (NTF and STF) at the Department of Energy (DOE) Oak Ridge National Laboratory are guided by an overall plan and consistent proactive approach to health and safety (H and S) issues. The policy and procedures in this plan apply to all GAAT operations in the NTF and STF. The provisions of this plan are to be carried out whenever activities identifies s part of the GAAT are initiated that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and best management practices in order to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air. This plan explains additional task-specific health and safety requirements such as the Site Safety and health Addendum and Activity Hazard Analysis, which should be used in concert with this plan and existing established procedures.

Abston, J.P.

1997-04-01T23:59:59.000Z

75

HEALTH HISTORY FORM FOR ALL USER GROUP/VISITING RESEARCHER PARTICIPANTS @ SHOALS MARINE LABORATORY. Thank you for taking the time to provide us with your personal, health and insurance information. The  

E-Print Network [OSTI]

HEALTH HISTORY FORM FOR ALL USER GROUP/VISITING RESEARCHER PARTICIPANTS @ SHOALS MARINE LABORATORY. Thank you for taking the time to provide us with your personal, health and insurance information: Policyholder's name: Relationship to policyholder: HEALTH and MEDICAL INFORMATION SECTION (required) Please

Pringle, James "Jamie"

76

The NIH Almanac -National Institutes of Health (NIH) Page 1 of 1 Begun as a one-room Laboratory of Hygiene in 1887, the National Institutes of Health (NIH) today is one of the world's foremost medical research centers. An  

E-Print Network [OSTI]

The NIH Almanac - National Institutes of Health (NIH) Page 1 of 1 Begun as a one-room Laboratory of Hygiene in 1887, the National Institutes of Health (NIH) today is one of the world's foremost medical research centers. An agency of the Department of Health and Human Services, the NIH is the Federal focal

Levin, Judith G.

77

Sandia National Laboratories: advanced analytics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinksZparts of the solar spectrum

78

Rice University Environmental Health and Safety Laboratory-Specific Safety Training Attendance Record  

E-Print Network [OSTI]

acute hazardous chemicals. 8. Location of all waste collection areas and review of all waste collection protocols including chemical, biological and glass waste. 9. Location of personal protective equipment in the laboratory or training existing researchers on new hazards within the laboratory. It is recommended

Natelson, Douglas

79

E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division  

E-Print Network [OSTI]

DESCRIPTION 1.1 SITE DESCRIPTION 1.1.1 Laboratory Operations The Ernest Orlando Lawrence Berkeley National Report (Subpart H of 40 CFR 61) Calendar Year 2001 Site Name: Ernest Orlando Lawrence Berkeley National Orlando Lawrence Berkeley National Laboratory Address: One Cyclotron Road Berkeley, CA 94720 Contractor

80

Independent Oversight Inspection of Environment, Safety, and Health Programs at the Sandia National Laboratories, Technical Appendices, Volume II, May 2005  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA) inspected environment, safety, and health (ES&H) programs at DOE Sandia National Laboratories (SNL) during March and April 2005. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. This volume of the report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for SNL work activities. Appendix D presents the results of the review of NNSA, SSO, and SNL feedback and continuous improvement processes and management systems. Appendix E presents the results of the review of essential safety system functionality, and Appendix F presents the results of the review of safety management of the selected focus areas.

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Independent Oversight Inspection of Environment, Safety, and Health Programs at the Argonne National Laboratory, Technical Appendices, Volume II, May 2005  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA) inspected environment, safety, and health (ES&H) programs at the DOE Argonne National Laboratory (ANL) during April and May 2005. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. This volume of the report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for ANL work activities. Appendix D presents the results of the review of SC, ASO, and ANL feedback and continuous improvement processes and management systems. Appendix E presents the results of the review of essential safety system functionality, and Appendix F presents the results of the review of safety management of the selected focus areas.

82

The Environmental Science & Health Effects Program at the at the National Renewable Energy Laboratory  

SciTech Connect (OSTI)

To conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources.

Lawson, Douglas R.

2000-08-20T23:59:59.000Z

83

CRAD, Occupational Safety & Health- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Occupational and Industrial Safety and Hygiene Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

84

CRAD, Occupational Safety & Health- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Industrial Hygiene program at the Los Alamos National Laboratory TA 55 SST Facility.

85

CRAD, Occupational Safety & Health- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Industrial Safety and Hygiene Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

86

Connecticut Public Health Code. 19a-36-A25. Laboratories to register  

E-Print Network [OSTI]

is required for any of the following laboratory procedures: (1) Those which utilize any living agent capable and service maintained by a licensed practitioner of a healing art exclusively for the examination of his own as an agency of the state or federal government for the purpose of providing data for state or federal

Oliver, Douglas L.

87

ADVANTAGES AND DISADVANTAGES TO OPERATING AN ON-SITE LABORATORY AT THE SANDIA NATIONAL LABORATORIES CHEMICAL WASTE LANDFILL  

SciTech Connect (OSTI)

During the excavation of the Sandia National Laboratories, New Mexico (SNL/NM) Chemical Waste Landfill (CWL), operations were realized by the presence of URS' (formerly known as United Research Services) On-site Mobile Laboratory (OSML) and the close proximity of the SNL/NM Environmental Restoration Chemical Laboratory (ERCL). The laboratory was located adjacent to the landfill in order to provide soil characterization, health and safety support, and waste management data. Although the cost of maintaining and operating an analytical laboratory can be higher than off-site analysis, there are many benefits to providing on site analytical services. This paper describes the synergies between the laboratory, as well as the advantages and disadvantages to having a laboratory on-site during the excavation of SNL/NM CWL.

Young, S.G.; Creech, M.N.

2003-02-27T23:59:59.000Z

88

Laboratory for Energy-Related Health Research Compliance Order, October 6, 1995  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergy Invitation toDepartment ofofDDepartmentLaboratory for

89

Laboratory for Energy-Related Health Research Compliance Order, October 6, 1995 Summary  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergy Invitation toDepartment ofofDDepartmentLaboratory

90

Cost of presumptive source term Remedial Actions Laboratory for energy-related health research, University of California, Davis  

SciTech Connect (OSTI)

A Remedial Investigation/Feasibility Study (RI/FS) is in progress at the Laboratory for Energy Related Health Research (LEHR) at the University of California, Davis. The purpose of the RI/FS is to gather sufficient information to support an informed risk management decision regarding the most appropriate remedial actions for impacted areas of the facility. In an effort to expedite remediation of the LEHR facility, the remedial project managers requested a more detailed evaluation of a selected set of remedial actions. In particular, they requested information on both characterization and remedial action costs. The US Department of Energy -- Oakland Office requested the assistance of the Pacific Northwest National Laboratory to prepare order-of-magnitude cost estimates for presumptive remedial actions being considered for the five source term operable units. The cost estimates presented in this report include characterization costs, capital costs, and annual operation and maintenance (O&M) costs. These cost estimates are intended to aid planning and direction of future environmental remediation efforts.

Last, G.V.; Bagaasen, L.M.; Josephson, G.B.; Lanigan, D.C.; Liikala, T.L.; Newcomer, D.R.; Pearson, A.W.; Teel, S.S.

1995-12-01T23:59:59.000Z

91

Health risk assessment for the Building 3001 Storage Canal at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This human health risk assessment has been prepared for the Environmental Restoration (ER) Program at the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. The objectives of this risk assessment are to evaluate the alternatives for interim closure of the Building 3001 Storage Canal and to identify the potential health risk from an existing leak in the canal. The Building 3001 Storage Canal connects Buildings 3001 and 3019. The volume of water in the canal is monitored and kept constant at about 62,000 gal. The primary contaminants of the canal water are the radionuclides {sup 137}Cs, {sup 60}Co, and {sup 90}Sr; a layer of sediment on the canal floor also contains radionuclides and metals. The prime medium of contaminant transport has been identified as groundwater. The primary route for occupational exposure at the canal is external exposure to gamma radiation from the canal water and the walls of the canal. Similarly, the primary exposure route at the 3042 sump is external exposure to gamma radiation from the groundwater and the walls of the sump. Based on the exposure rates in the radiation work permits (Appendix C) and assuming conservative occupational work periods, the annual radiation dose to workers is considerably less than the relevant dose limits. The potential risk to the public using the Clinch River was determined for three significant exposure pathways: ingestion of drinking water; ingestion of contaminated fish; and external exposure to contaminated sediments on the shoreline, the dominant exposure pathway.

Chidambariah, V.; White, R.K.

1991-12-01T23:59:59.000Z

92

Summative Mass Analysis of Algal Biomass ? Integration of Analytical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures Laboratory Analytical Procedure (LAP) Issue Date: December 2, 2013 L. M. L. Laurens Technical Report...

93

Environment, Safety and Health progress assessment of the Idaho National Engineering Laboratory (INEL)  

SciTech Connect (OSTI)

The ES&H Progress Assessments are part of the Department`s continuous improvement process throughout DOE and its contractor organizations. The purpose of the INEL ES&H Progress Assessment is to provide the Department with concise independent information on the following: (1) change in culture and attitude related to ES&H activities; (2) progress and effectiveness of the ES&H corrective actions resulting from previous Tiger Team Assessments; (3) adequacy and effectiveness of the ES&H self-assessment programs of the DOE line organizations and the site management and operating contractor; and (4) effectiveness of DOE and contractor management structures, resources, and systems to effectively address ES&H problems. It is not intended that this Progress Assessment be a comprehensive compliance assessments of ES&H activities. The points of reference for assessing programs at the INEL were, for the most part, the 1991 INEL Tiger Team Assessment, the INEL Corrective Action Plan, and recent appraisals and self-assessments of INEL. Horizontal and vertical reviews of the following programmatic areas were conducted: Management: Corrective action program; self-assessment; oversight; directives, policies, and procedures; human resources management; and planning, budgeting, and resource allocation. Environment: Air quality management, surface water management, groundwater protection, and environmental radiation. Safety and Health: Construction safety, worker safety and OSHA, maintenance, packaging and transportation, site/facility safety review, and industrial hygiene.

Not Available

1993-08-01T23:59:59.000Z

94

Health and Safety Work Plan for Sampling Colloids in Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This Work Plan/Site Safety and Health Plan (SSHP) and the attached work plan are for the performance of the colloid project at WAG 5. The work will be conducted by the Oak Ridge National Laboratory (ORNL) Environmental Sciences Division (ESD) and associated ORNL environmental, safety, and health support groups. The purpose of this document is to establish health and safety guidelines to be followed by all personnel involved in conducting work for this project. The levels of protection and the procedures specified in this plan are based on the best information available from historical data and preliminary evaluations of the area. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project.

Marsh, J.D.; McCarthy, J.F.

1994-01-01T23:59:59.000Z

95

Inspection of Environment, Safety, and Health Management at the Argonne National Laboratory- East, Volume I, May 2002  

Broader source: Energy.gov [DOE]

The Secretary of Energyís Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) programs and emergency management programs at the U. S. Department of Energy (DOE) Argonne National Laboratory (ANL) in April and May 2002. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight. This volume discusses the results of the review of ANL ES&H programs. The results of the review of the ANL emergency management programs are discussed in Volume II of this report and the combined results are discussed in a summary report. As discussed in this report, some aspects of ISM are effectively implemented at ANL, including institutional roles and responsibilities, training and qualification programs, and processes for incorporating ES&H needs into the planning and budgeting processes. In addition, CH/AAO and ANL have been effective in establishing rigorous processes for reviewing experiment safety. However, performance weaknesses are evident in several areas, including work planning and control processes, radiation protection, and some aspects of management of the AGHCF (including nuclear safety requirements). Weaknesses in management systems, such as CH/AAO and ANL feedback and continuous improvement systems and requirements management systems, contribute to the observed performance deficiencies. Section 2 of this volume provides an overall discussion of the results of the review of the ANL ISM program, including positive aspects, findings, and other items requiring management attention. Section 3 provides OAís conclusions regarding the overall effectiveness of CH and ANL management of the ES&H programs. Section 4 presents the ratings assigned as a result of this review. Appendix A provides supplemental information, including team member composition. Appendix B identifies the specific findings that require corrective actions and follow-up. Appendix C presents the results of the review of the guiding principles of ISM. Appendix D presents the results of the review of the CH and ANL feedback and continuous improvement processes. The results of the review of the application of the core functions of ISM at the selected ANL facilities are discussed in Appendix E.

96

Environmental, Safety, and Health Plan for the remedial investigation of the liquid low-level waste tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

The Environmental, Safety, and Health (ES&H) Plan presents the concepts and methodologies to be used during the Oak Ridge National Laboratory (ORNL) RI/FS project to protect the health and safety of employees, the public, and the environment. The ES&H Plan acts as a management extension for ORNL and Energy Systems to direct and control implementation of the project ES&H program. This report describes the program philosophy, requirements, quality assurance measures, and methods for applying the ES&H program to individual task remedial investigations, project facilities, and other major tasks assigned to the project.

Not Available

1991-09-01T23:59:59.000Z

97

Environmental, Safety, and Health Plan for the remedial investigation of the liquid low-level waste tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Environmental, Safety, and Health (ES H) Plan presents the concepts and methodologies to be used during the Oak Ridge National Laboratory (ORNL) RI/FS project to protect the health and safety of employees, the public, and the environment. The ES H Plan acts as a management extension for ORNL and Energy Systems to direct and control implementation of the project ES H program. This report describes the program philosophy, requirements, quality assurance measures, and methods for applying the ES H program to individual task remedial investigations, project facilities, and other major tasks assigned to the project.

Not Available

1991-09-01T23:59:59.000Z

98

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

99

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents  

SciTech Connect (OSTI)

This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

100

Work plan and health and safety plan for Building 3019B underground storage tank at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

As part of the Underground Storage Tank Program at the Department of Energy`s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, this Health and Safety Plan has been developed for removal of the 110-gal leaded fuel underground storage tank (UST) located in the Building 3019B area at ORNL This Health and Safety Plan was developed by the Measurement Applications and Development Group of the Health and Safety Research Division at ORNL The major components of the plan follow: (1) A project description that gives the scope and objectives of the 110-gal tank removal project and assigns responsibilities, in addition to providing emergency information for situations occurring during field operations; (2) a health and safety plan in Sect. 15 for the Building 3019B UST activities, which describes general site hazards and particular hazards associated with specific tasks, personnel protection requirements and mandatory safety procedures; and (3) discussion of the proper form completion and reporting requirements during removal of the UST. This document addresses Occupational Safety and Health Administration (OSHA) requirements in 29 CFR 1910.120 with respect to all aspects of health and safety involved in a UST removal. In addition, the plan follows the Environmental Protection Agency (EPA) QAMS 005/80 (1980) format with the inclusion of the health and safety section (Sect. 15).

Burman, S.N.; Brown, K.S.; Landguth, D.C.

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Work plan and health and safety plan for Building 3019B underground storage tank at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

As part of the Underground Storage Tank Program at the Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, this Health and Safety Plan has been developed for removal of the 110-gal leaded fuel underground storage tank (UST) located in the Building 3019B area at ORNL This Health and Safety Plan was developed by the Measurement Applications and Development Group of the Health and Safety Research Division at ORNL The major components of the plan follow: (1) A project description that gives the scope and objectives of the 110-gal tank removal project and assigns responsibilities, in addition to providing emergency information for situations occurring during field operations; (2) a health and safety plan in Sect. 15 for the Building 3019B UST activities, which describes general site hazards and particular hazards associated with specific tasks, personnel protection requirements and mandatory safety procedures; and (3) discussion of the proper form completion and reporting requirements during removal of the UST. This document addresses Occupational Safety and Health Administration (OSHA) requirements in 29 CFR 1910.120 with respect to all aspects of health and safety involved in a UST removal. In addition, the plan follows the Environmental Protection Agency (EPA) QAMS 005/80 (1980) format with the inclusion of the health and safety section (Sect. 15).

Burman, S.N.; Brown, K.S.; Landguth, D.C.

1992-08-01T23:59:59.000Z

102

Health, Safety, and Environment Division  

SciTech Connect (OSTI)

The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

Wade, C [comp.] [comp.

1992-01-01T23:59:59.000Z

103

Environmental, Safety, and Health Plan for the remedial investigation/feasibility study at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Revision 1, Environmental Restoration Program  

SciTech Connect (OSTI)

This Environmental, Safety, and Health (ES&H) Plan presents the concepts and methodologies to be followed during the remedial investigation/feasibility study (RI/FS) for Oak Ridge National Laboratory (ORNL) to protect the health and safety of employees, the public, and the environment. This ES&H Plan acts as a management extension for ORNL and Martin Marietta Energy Systems, Inc. (Energy Systems) to direct and control implementation of the project ES&H program. The subsections that follow describe the program philosophy, requirements, quality assurance measures, and methods for applying the ES&H program to individual waste area grouping (WAG) remedial investigations. Hazardous work permits (HWPs) will be used to provide task-specific health and safety requirements.

Not Available

1993-05-01T23:59:59.000Z

104

SearchHome Video News Images Health Education Topics Blogs Mobile Space Science Technology Health General Sci-Fi & Gaming Oddities International Business Education Mars Science Laboratory Curiosity  

E-Print Network [OSTI]

SearchHome Video News Images Health Education Topics Blogs Mobile Space Science Technology Health the Video: Stingless Bees Fight Over Food Source ] April Flowers for redOrbit.com ≠ Your Universe Online Dancing Bees Show Researchers The Way To The Best Environmental Schemes UK Honeybees Threatened

Nieh, James

105

Toxicologic evaluation of analytes from Tank 241-C-103  

SciTech Connect (OSTI)

Westinghouse Hanford Company requested PNL to assemble a toxicology review panel (TRP) to evaluate analytical data compiled by WHC, and provide advice concerning potential health effects associated with exposure to tank-vapor constituents. The team`s objectives would be to (1) review procedures used for sampling vapors from tanks, (2) identify constituents in tank-vapor samples that could be related to symptoms reported by workers, (3) evaluate the toxicological implications of those constituents by comparison to establish toxicological databases, (4) provide advice for additional analytical efforts, and (5) support other activities as requested by WHC. The TRP represents a wide range of expertise, including toxicology, industrial hygiene, and occupational medicine. The TRP prepared a list of target analytes that chemists at the Oregon Graduate Institute/Sandia (OGI), Oak Ridge National Laboratory (ORNL), and PNL used to establish validated methods for quantitative analysis of head-space vapors from Tank 241-C-103. this list was used by the analytical laboratories to develop appropriate analytical methods for samples from Tank 241-C-103. Target compounds on the list included acetone, acetonitrile, ammonia, benzene, 1, 3-butadiene, butanal, n-butanol, hexane, 2-hexanone, methylene chloride, nitric oxide, nitrogen dioxide, nitrous oxide, dodecane, tridecane, propane nitrile, sulfur oxide, tributyl phosphate, and vinylidene chloride. The TRP considered constituent concentrations, current exposure limits, reliability of data relative to toxicity, consistency of the analytical data, and whether the material was carcinogenic or teratogenic. A final consideration in the analyte selection process was to include representative chemicals for each class of compounds found.

Mahlum, D.D.; Young, J.Y.; Weller, R.E.

1994-11-01T23:59:59.000Z

106

Environmental health and safety plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Lockheed Martin Energy Systems, Inc. (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to environmental protection and safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air.

Burman, S.N.; Tiner, P.F.; Gosslee, R.C.

1998-01-01T23:59:59.000Z

107

Audit of Construction of an Environmental, Safety, and Health Analytical Laboratory at the Pantex Plant, WR-B-96-02  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical5/08 Attendance List1-02Evaluation Report The Department'sAudit

108

Independent Oversight Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory, Technical Appendices, Volume II, December 2004  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA), within the Office of Security and Safety Performance Assurance (SSA), conducted an inspection of environment, safety, and health (ES&H) at the DOE Lawrence Livermore National Laboratory (LLNL) during October and November 2004. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. Volume II of this report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for LLNL work activities. Appendix D presents the results of the review of NNSA, LSO, and contractor feedback and continuous improvement processes. Appendix E presents the results of the review of Plutonium Building essential safety system functionality, and Appendix F presents the results of the review of management of the selected focus areas.

109

Pacific Northwest Laboratory annual report for 1980 to the DOE Assistant Secretary for Environment. Part 5. Environmental assessment, control, health and safety  

SciTech Connect (OSTI)

Pacific Northwest Laboratory's (PNL) 1980 annual report to the DOE Assistant Secretary for Environment describes research in environment, health, and safety conducted during fiscal year 1980. Part 5 includes technology assessments for natural gas, enhanced oil recovery, oil shale, uranium mining, magnetic fusion energy, solar energy, uranium enrichment and industrial energy utilization; regional analysis studies of environmental transport and community impacts; environmental and safety engineering for LNG, oil spills, LPG, shale oil waste waters, geothermal liquid waste disposal, compressed air energy storage, and nuclear/fusion fuel cycles; operational and environmental safety studies of decommissioning, environmental monitoring, personnel dosimetry, and analysis of criticality safety; health physics studies; and epidemiological studies. Also included are an author index, organization of PNL charts and distribution lists of the annual report, along with lists of presentations and publications. (DLS)

Baalman, R.W.; Hays, I.D. (eds.)

1981-02-01T23:59:59.000Z

110

Improved clinical and laboratory skills after team-based, malaria case management training of health professionals in Uganda  

E-Print Network [OSTI]

care professionals in Uganda. Malaria Journal 2012 11:44.covering four districts in Uganda. AmJTrop Med Hyg 2011, 8.3:38. 10. Government of Uganda, Ministry of Health, Malaria

2012-01-01T23:59:59.000Z

111

ORISE: Radiochemistry and Environmental Analytical Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a high degree of accuracy and reliability. Liquid scintillation counting The liquid scintillation analyzer has a 300-sample capacity and the total amount of samples that can...

112

Dark Field Microscopy for Analytical Laboratory Courses  

SciTech Connect (OSTI)

An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also observe and measure individual crystal growth during a replacement reaction between copper and silver nitrate. The experiment allows for quantitative, qualitative, and image data analyses for undergraduate students.

Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

2014-06-10T23:59:59.000Z

113

Working with SRNL - Our Facilities - Analytical Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellowsWoodAnalysisCFTF Aiken

114

Veterinary Toxicology Veterinary toxicologists based in the California Animal Health and Food Safety Laboratory System and the  

E-Print Network [OSTI]

Veterinary Toxicology Veterinary toxicologists based in the California Animal Health and Food toxicants affecting livestock and food products of animal origin, including large-scale events of food of individual poisonings, herd-level toxicity events and rare cases so that producers can minimize losses

Schladow, S. Geoffrey

115

Health and safety plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

This health and safety plan (HASP) was developed by the members of the Measurement Applications and Development Group of the Health Science Research Division at the Oak Ridge National Laboratory (ORNL). This plan was prepared to ensure that health and safety related items for the Waste Area Grouping (WAG) 2 Remedial Investigation (RI)/Feasibility Study and Site Investigation projects conform with the requirements of 29 CFR 1910.120 (April 18, 1992). The RI Plan calls for the characterization, monitoring, risk assessment, and identification of remedial needs and alternatives that have been structured and staged with short-term and long-term objectives. In early FY 1992, the WAG 2 RI was integrated with the ORNL Environmental Restoration (ER) Site Investigations program in order to achieve the complimentary objectives of the projects more effectively by providing an integrated basis of support. The combined effort was named the WAG 2 Remedial Investigation and Site Investigations Program (WAG 2 RI&SI). The Site Investigation activities are a series of monitoring efforts and directed investigations that support other ER activities by providing information about (1) watershed hydrogeology; (2) contaminants, pathways, and fluxes for groundwater at ORNL; (3) shallow subsurface areas that can act as secondary sources of contaminants; and (4) biological populations and contaminants in biota, in addition to other support and coordination activities.

Cofer, G.H.; Holt, V.L.; Roupe, G.W.

1993-11-01T23:59:59.000Z

116

Health  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL SecretaryHazmat work opens up new worldHealth

117

Independent Oversight Inspection, Sandia National Laboratories...  

Office of Environmental Management (EM)

National Laboratories, Summary Report - February 2003 February 2003 Inspection of Environment, Safety, and Health and Emergency Management at the Sandia National Laboratories...

118

Environmental, safety, and health plan for the remedial investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

This document outlines the environmental, safety, and health (ES&H) approach to be followed for the remedial investigation of Waste Area Grouping (WAG) 10 at Oak at Ridge National Laboratory. This ES&H Plan addresses hazards associated with upcoming Operable Unit 3 field work activities and provides the program elements required to maintain minimal personnel exposures and to reduce the potential for environmental impacts during field operations. The hazards evaluation for WAG 10 is presented in Sect. 3. This section includes the potential radiological, chemical, and physical hazards that may be encountered. Previous sampling results suggest that the primary contaminants of concern will be radiological (cobalt-60, europium-154, americium-241, strontium-90, plutonium-238, plutonium-239, cesium-134, cesium-137, and curium-244). External and internal exposures to radioactive materials will be minimized through engineering controls (e.g., ventilation, containment, isolation) and administrative controls (e.g., procedures, training, postings, protective clothing).

Not Available

1993-10-01T23:59:59.000Z

119

We will present an overview of Oak Ridge Bio-surveillance Toolkit (ORBiT), which we have developed specifically to address data analytic challenges in the realm of public health surveillance. The digitization of health related information  

E-Print Network [OSTI]

We will present an overview of Oak Ridge Bio-surveillance Toolkit (ORBiT), which we have developed research scientist in the Computational Data Analytics Group at the Oak Ridge National Labor- atory. Her and machine learning systems, and R&D of ORBiT, the Oak Ridge Biosurveillance Toolkit. Prior to joining ORNL

Mukherjee, Amar

120

Environmental assessment for the decommissioning and decontamination of contaminated facilities at the Laboratory for Energy-Related Health Research University of California, Davis  

SciTech Connect (OSTI)

The Laboratory for Energy-Related Health Research (LEHR) was established in 1958 at its present location by the Atomic Energy Commission. Research at LEHR originally focused on the health effects from chronic exposures to radionuclides, primarily strontium 90 and radium 226, using beagles to simulate radiation effects on humans. In 1988, pursuant to a memorandum of agreement between the US Department of Energy (DOE) and the University of California, DOE`s Office of Energy Research decided to close out the research program, shut down LEHR, and turn the facilities and site over to the University of California, Davis (UCD) after remediation. The decontamination and decommissioning (D&D) of LEHR will be managed by the San Francisco Operations Office (SF) under DOE`s Environmental Restoration Program. This environmental assessment (EA) addresses the D&D of four site buildings and a tank trailer, and the removal of the on-site cobalt 60 (Co-60) source. Future activities at the site will include D&D of the Imhoff building and the outdoor dog pens, and may include remediation of underground tanks, and the landfill and radioactive disposal trenches. The remaining buildings on the LEHR site are not contaminated. The environmental impacts of the future activities cannot be determined at this time because the extent of contamination has not yet been ascertained. The impacts of these future activities (including the cumulative impacts of the future activities and those addressed in this EA) will be addressed in future National Environmental Policy Act (NEPA) documentation.

Not Available

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Design/installation and structural integrity assessment under the Federal Facility Agreement for Bethel Valley Low-Level Waste Collection and Transfer System upgrade for Building 2026 (High Radiation Level Analytical Laboratory) and Building 2099 (Monitoring and Control Station) at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This document presents a Design/Installation and Structural Integrity Assessment for a replacement tank system for portions of the Bethel Valley Low Level Waste (LLW) System, located at the Oak Ridge Reservation, Oak Ridge, Tennessee. This issue of the assessment covers the design aspects of the replacement tank system, and certifies that the design has sufficient structural integrity and is acceptable for the storing or treating of hazardous and/or radioactive substances. The present issue identifies specific activities that must be completed during the fabrication, installation, and testing of the replacement tank system in order to provide assurance that the final installation complies with governing requirements. Portions of the LLW system are several decades old, or older, and do not comply with current environmental protection regulations. Several subsystems of the LLW system have been designated to receive a state-of-the-art replacement and refurbishment. One such subsystem serves Building 2026, the High Radiation Level Analytical Laboratory. This assessment focuses on the scope of work for the Building 2026 replacement LLW Collection and Transfer System, including the provision of a new Monitoring and Control Station (Building 2099) to receive, store, and treat (adjust pH) low level radioactive waste.

Not Available

1994-10-01T23:59:59.000Z

122

winter 2015 Health Informatics  

E-Print Network [OSTI]

UinG anD PrOfeSSiOnal eDUCatiOn HEALTH INFORMATICS ANd ANALYTICS #12;2 Advancing Health Care Through.S. health care prior to commencing study. High-quality, Convenient Online Learning Format All courses, computer science and health care. In this introductory course, gain broad exposure to the field of health

California at Davis, University of

123

2.672 Projects Laboratory, Spring 2004  

E-Print Network [OSTI]

Engineering laboratory subject for mechanical engineering juniors and seniors. Major emphasis on interplay between analytical and experimental methods in solution of research and development problems. Communication (written ...

Cheng, Wai Kong

124

Enzymatic Saccharification of Lignocellulosic Biomass: Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enzymatic Saccharification of NRELTP-510-42629 Lignocellulosic Biomass March 2008 Laboratory Analytical Procedure (LAP) Issue Date: 3212008 M. Selig, N. Weiss, and Y. Ji NREL is...

125

RADON 131 7. ANALYTICAL METHODS  

E-Print Network [OSTI]

The purpose of this chapter is to describe the analytical methods that are available for detecting, measuring, and/or monitoring radon and its progeny. The intent is not to provide an exhaustive list of analytical methods. Rather, the intention is to identify well-established methods that are used as the standard methods of analysis. Many of the analytical methods used for environmental samples are the methods approved by federal agencies and organizations such as EPA and the National Institute for Occupational Safety and Health (NIOSH). Other methods presented in this chapter are those that are approved by groups such as the Association of Official Analytical Chemists (AOAC) and the American Public Health Association (APHA). Additionally, analytical methods are included that modify previously used methods to obtain lower detection limits and/or to improve accuracy and precision. 7.1 BIOLOGICAL MATERIALS Table 7-1 lists various methods used to detect radon progeny in biological samples. Since the half-life of radon is short, its measurement in biological samples, such as serum, urine, blood, etc., is not practical. Measurements of the longer lived radon progeny 210 Pb and 210 Po in biological samples may be used as an indication of radon exposure; however, ingestion of these isotopes from food and drinking water or direct exposure from other environmental media are considered the primary sources of exposure for these

unknown authors

126

Independent Oversight Inspection, Pacific Northwest National Laboratory- December 2003  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety, and Health Management at the Pacific Northwest National Laboratory

127

Independent Oversight Inspection, Lawrence Livermore National Laboratory- May 2007  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety, and Health Programs at the Lawrence Livermore National Laboratory

128

Independent Oversight Inspection, Idaho National Laboratory- June 2005  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety, and Health Programs at the Idaho National Laboratory Advanced Test Reactor

129

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies  

SciTech Connect (OSTI)

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

130

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

131

Storm Water Analytical Period  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storm Water Analytical Period Storm Water Analytical Period The Individual Permit authorizes the discharge of storm water associated with historical industrial activities at LANL...

132

Hanford analytical services quality assurance requirements documents  

SciTech Connect (OSTI)

Hanford Analytical Services Quality Assurance Requirements Document (HASQARD) is issued by the Analytical Services, Program of the Waste Management Division, US Department of Energy (US DOE), Richland Operations Office (DOE-RL). The HASQARD establishes quality requirements in response to DOE Order 5700.6C (DOE 1991b). The HASQARD is designed to meet the needs of DOE-RL for maintaining a consistent level of quality for sampling and field and laboratory analytical services provided by contractor and commercial field and laboratory analytical operations. The HASQARD serves as the quality basis for all sampling and field/laboratory analytical services provided to DOE-RL through the Analytical Services Program of the Waste Management Division in support of Hanford Site environmental cleanup efforts. This includes work performed by contractor and commercial laboratories and covers radiological and nonradiological analyses. The HASQARD applies to field sampling, field analysis, and research and development activities that support work conducted under the Hanford Federal Facility Agreement and Consent Order Tri-Party Agreement and regulatory permit applications and applicable permit requirements described in subsections of this volume. The HASQARD applies to work done to support process chemistry analysis (e.g., ongoing site waste treatment and characterization operations) and research and development projects related to Hanford Site environmental cleanup activities. This ensures a uniform quality umbrella to analytical site activities predicated on the concepts contained in the HASQARD. Using HASQARD will ensure data of known quality and technical defensibility of the methods used to obtain that data. The HASQARD is made up of four volumes: Volume 1, Administrative Requirements; Volume 2, Sampling Technical Requirements; Volume 3, Field Analytical Technical Requirements; and Volume 4, Laboratory Technical Requirements. Volume 1 describes the administrative requirements applicable to each of the other three volumes and is intended to be used in conjunction with the technical volumes.

Hyatt, J.E.

1997-09-25T23:59:59.000Z

133

Selection of analytical methods for mixed waste analysis at the Hanford Site  

SciTech Connect (OSTI)

This document describes the process that the US Department of Energy (DOE), Richland Operations Office (RL) and contractor laboratories use to select appropriate or develop new or modified analytical methods. These methods are needed to provide reliable mixed waste characterization data that meet project-specific quality assurance (QA) requirements while also meeting health and safety standards for handling radioactive materials. This process will provide the technical basis for DOE`s analysis of mixed waste and support requests for regulatory approval of these new methods when they are used to satisfy the regulatory requirements of the Hanford Federal Facility Agreement and Consent Order (Tri-party Agreement) (Ecology et al. 1992).

Morant, P.M.

1994-09-01T23:59:59.000Z

134

Environment, Safety, and Health Special Review, Department of...  

Broader source: Energy.gov (indexed) [DOE]

Environment, Safety, and Health Special Review, Department of Energy Laboratories - August 2008 Environment, Safety, and Health Special Review, Department of Energy Laboratories -...

135

PRELIMINARY SURVEY OF WINCHESTER ENGINEERING AND ANALYTICAL CENTER  

Office of Legacy Management (LM)

Winchester, Massachusetts Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1980 . .- 2. f OAK...

136

Toby D. Couture E3Analytics  

E-Print Network [OSTI]

Acknowledgments This work was funded by the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (German Renewable Energy Sources Act) EU ­ European Union FIT ­ feed-in tariff IOU ­ investorToby D. Couture E3Analytics Karlynn Cory Claire Kreycik NationalRenewableEnergyLaboratory Emily

137

A postdoctoral position is available in the laboratory of Dr. Razq Hakem at the Ontario Cancer Institute/University Health Network/University of Toronto, Canada.  

E-Print Network [OSTI]

Institute/University Health Network/University of Toronto, Canada. http. CANADA E-mail: rhakem@uhnres.utoronto.ca #12;

Woodgett, Jim

138

Anti-malarial prescription practices among outpatients with laboratory-confirmed malaria in the setting of a health facility-based sentinel site surveillance system in Uganda  

E-Print Network [OSTI]

site surveillance system in Uganda. Malaria Journal 2013 12:San Francisco, CA 94143, USA. 2 Uganda Malaria SurveillanceProject, Kampala, Uganda. 3 Child Health & Development

2013-01-01T23:59:59.000Z

139

Analytical Chemistry Applied Mathematics  

E-Print Network [OSTI]

Analytical Chemistry Applied Mathematics Architectural Engineering Architecture Architecture Electricity Markets Environmental Engineering Food Process Engineering Food Safety & Technology Architecture Information Technology & Management Integrated Building Delivery Landscape Architecture Management

Heller, Barbara

140

Determination of Total Carbohydrates in Algal Biomass: Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbohydrates in Algal Biomass Laboratory Analytical Procedure (LAP) Issue Date: December 2, 2013 S. Van Wychen and L. M. L. Laurens Technical Report NRELTP-5100-60957 December...

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sandia National Laboratories: About Sandia: Environmental Responsibili...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environment, Safety & Health Policy Policy Statement It is the policy of Sandia National Laboratories to perform work in a safe and environmentally responsible manner by committing...

142

Independent Oversight Inspection, Argonne National Laboratory- East, Summary Report- May 2002  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety, and Health and Emergency Management at the Argonne National Laboratory - East

143

Independent Oversight Inspection, Lawrence Livermore National Laboratory, Summary Report- July 2002  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety, and Health and Emergency Management at the Lawrence Livermore National Laboratory

144

Independent Oversight Inspection, Lawrence Livermore National Laboratory, Volume I- December 2004  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory

145

CHARLOTTE: BIG DATA & ANALYTICS  

E-Print Network [OSTI]

. A Staffing Services Co. Lincoln Harris Louis Raphael -- Kizan International, Inc. Moore & Van Allen PLLCFab, Inc. UGL Services Weyco Group #12;charlottechamber.com Charlotte: Big Data & Analytics 3 12/13 330 S applies analytics to design customer services and contact strategies, to gain insights about employees

Raja, Anita

146

Health Services Center Organizations 3333 & 3335  

Broader source: Energy.gov (indexed) [DOE]

systems and communications unified by a commitment to provide the best in evidence-based health care. Sandia National Laboratories Health, Benefits, and Employee Services http:...

147

UNIVERSITY OF CONNECTICUT HEALTH CENTER  

E-Print Network [OSTI]

UNIVERSITY OF CONNECTICUT HEALTH CENTER GUIDELINES FOR THE LABORATORY USE OF CHEMICAL CARCINOGENS 4/09 #12;1.0 INTRODUCTION The University of Connecticut Health Center (UCHC) Guidelines for the Laboratory Safety and Health Administration (OSHA) in 20 CFR 1910.1001-1045, chemical substances for which OSHA

Kim, Duck O.

148

Richland Analytical Building Blocks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Special Nuclear Material. Data as of April 5, 2013 1 of 10 Richland Analytical Building Blocks FY 2015 in Thousands Draft Pre-Decisional PBS ABB Title FY 2015 FY 2015 FY...

149

Spark Distributed Analytic Framework  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analytic Framework Description and Overview Apache Spark(tm) is a fast and general engine for large-scale data processing. Availibility Spark is Available on Edison in CCM...

150

Extreme Scale Visual Analytics  

SciTech Connect (OSTI)

Given the scale and complexity of today s data, visual analytics is rapidly becoming a necessity rather than an option for comprehensive exploratory analysis. In this paper, we provide an overview of three applications of visual analytics for addressing the challenges of analyzing climate, text streams, and biosurveilance data. These systems feature varying levels of interaction and high performance computing technology integration to permit exploratory analysis of large and complex data of global significance.

Steed, Chad A [ORNL] [ORNL; Potok, Thomas E [ORNL] [ORNL; Pullum, Laura L [ORNL] [ORNL; Ramanathan, Arvind [ORNL] [ORNL; Shipman, Galen M [ORNL] [ORNL; Thornton, Peter E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

151

Hanford performance evaluation program for Hanford site analytical services  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Order 5700.6C, Quality Assurance, and Title 10 of the Code of Federal Regulations, Part 830.120, Quality Assurance Requirements, states that it is the responsibility of DOE contractors to ensure that ``quality is achieved and maintained by those who have been assigned the responsibility for performing the work.`` Hanford Analytical Services Quality Assurance Plan (HASQAP) is designed to meet the needs of the Richland Operations Office (RL) for maintaining a consistent level of quality for the analytical chemistry services provided by contractor and commmercial analytical laboratory operations. Therefore, services supporting Hanford environmental monitoring, environmental restoration, and waste management analytical services shall meet appropriate quality standards. This performance evaluation program will monitor the quality standards of all analytical laboratories supporting the Hanforad Site including on-site and off-site laboratories. The monitoring and evaluation of laboratory performance can be completed by the use of several tools. This program will discuss the tools that will be utilized for laboratory performance evaluations. Revision 0 will primarily focus on presently available programs using readily available performance evaluation materials provided by DOE, EPA or commercial sources. Discussion of project specific PE materials and evaluations will be described in section 9.0 and Appendix A.

Markel, L.P.

1995-09-01T23:59:59.000Z

152

Sandia National Laboratories: Geomechanics Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science: Latest News and Events Earth Science: Facilities and Equipment Bureau of Land Management Fossil Energy Liquid Natural Gas (LNG) Clean Coal Geomechanics Laboratory User...

153

Decision Analytic Modelling in the Economic Evaluation of  

E-Print Network [OSTI]

Decision Analytic Modelling in the Economic Evaluation of Health Technologies A Consensus Statement when used for the economic evaluation of health technologies; there is limited guidanceforgoodmodelling developed in the context of broader healthcare and economic evaluations, for which ex- plicit guidelines

Oakley, Jeremy

154

An Analytic Holographic Superconductor  

E-Print Network [OSTI]

We investigate a holographic superconductor that admits an analytic treatment near the phase transition. In the dual 3+1 dimensional field theory, the phase transition occurs when a scalar operator of scaling dimension two gets a vacuum expectation value. We calculate current-current correlation functions along with the speed of second sound near the critical temperature. We also make some remarks about critical exponents. An analytic treatment is possible because an underlying Heun equation describing the zero mode of the phase transition has a polynomial solution. Amusingly, the treatment here may generalize for an order parameter with any integer spin, and we propose a Lagrangian for a spin two holographic superconductor.

Christopher P. Herzog

2011-01-16T23:59:59.000Z

155

MICROSYSTEMS LABORATORIES  

E-Print Network [OSTI]

15 nm MICROSYSTEMS TECHNOLOGY LABORATORIES ANNUAL RESEARCH REPORT 2014 MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MA AUGUST 2014 #12;MTL Annual Research Report 2014 Director Jes√ļs A. del Alamo Project........................................................................ 47 Energy: Photovoltaics, Energy Harvesting, Batteries, Fuel Cells

Culpepper, Martin L.

156

Health and Safety Research Division progress report for the period April 1, 1990--September 30, 1991  

SciTech Connect (OSTI)

This is a brief progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology including Measurement Applications and Development, Pollutant Assessments, Measurement Systems Research, Dosimetry Applications Research, Metabolism and Dosimetry Research and Nuclear Medicine. Biological and Radiation Physics including Atomic, Molecular, and High Voltage Physics, Physics of Solids and Macromolecules, Liquid and Submicron Physics, Analytic Dosimetry and Surface Physics and Health Effects. Chemical Physics including Molecular Physics, Photophysics and Advanced Monitoring Development. Biomedical and Environmental Information Analysis including Human Genome and Toxicology, Chemical Hazard Evaluation and Communication, Environmental Regulations and Remediation and Information Management Technology. Risk Analysis including Hazardous Waste.

Kaye, S.V.

1992-03-01T23:59:59.000Z

157

Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 4, Organic methods  

SciTech Connect (OSTI)

This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{sub 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.

Not Available

1993-08-01T23:59:59.000Z

158

Analytical Chemistry Laboratory progress report for FY 1992  

SciTech Connect (OSTI)

The ACL activities covered IFR fuel reprocessing, corium-concrete interactions, environmental samples, wastes, WIPP support, Advanced Photon Source, H-Tc superconductors, EBWR vessel, soils, illegal drug detection, quality control, etc.

Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.; Bass, D.A.

1992-12-01T23:59:59.000Z

159

Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB),  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dryWashington'sResults |EnergyDepartment

160

Quality assurance management plan (QAPP) special analytical support (SAS)  

SciTech Connect (OSTI)

It is the policy of Special Analytical Support (SAS) that the analytical aspects of all environmental data generated and processed in the laboratory, subject to the Environmental Protection Agency (EPA), U.S. Department of Energy or other project specific requirements, be of known and acceptable quality. It is the intention of this QAPP to establish and assure that an effective quality controlled management system is maintained in order to meet the quality requirements of the intended use(s) of the data.

LOCKREM, L.L.

1999-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Trace-level beryllium analysis in the laboratory and in the field: State of the art, challenges, and opportunities  

SciTech Connect (OSTI)

Control of workplace exposure to beryllium is a growing issue in the United States and other nations. As the health risks associated with low-level exposure to beryllium are better understood, the need increases for improved analytical techniques both in the laboratory and in the field. These techniques also require a greater degree of standardization to permit reliable comparison of data obtained from different locations and at different times. Analysis of low-level beryllium samples, in the form of air filters or surface wipes, is frequently required for workplace monitoring or to provide data to support decision-making on implementation of exposure controls. In the United States and the United Kingdom, the current permissible exposure level is 2 {micro}g/m{sup 3} (air), and the United States Department of Energy has implemented an action level of 0.2 {micro}g/m{sup 3} (air) and 0.2 {micro}g/100 cm{sup 2} (surface). These low-level samples present a number of analytical challenges, including (1) a lack of suitable standard reference materials, (2) unknown robustness of sample preparation techniques, (3) interferences during analysis, (4) sensitivity (sufficiently low detection limits), (5) specificity (beryllium speciation), and (6) data comparability among laboratories. Additionally, there is a need for portable, real-time (or near real-time) equipment for beryllium air monitoring and surface wipe analysis that is both laboratory-validated and field-validated in a manner that would be accepted by national and/or international standards organizations. This paper provides a review of the current analytical requirements for trace-level beryllium analysis for worker protection, and also addresses issues that may change those requirements. The current analytical state of the art and relevant challenges facing the analytical community will be presented, followed by suggested criteria for real-time monitoring equipment. Recognizing and addressing these challenges will present opportunities for laboratories, research and development organizations, instrument manufacturers, and others.

BRISSON, MICHAEL

2006-03-30T23:59:59.000Z

162

Industrial Analytics Corporation  

SciTech Connect (OSTI)

The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

Industrial Analytics Corporation

2004-01-30T23:59:59.000Z

163

Scope and Description Laboratory Robotics and Automation seeks to  

E-Print Network [OSTI]

#12;Scope and Description Laboratory Robotics and Automation seeks to communicate developments and information about the automation of the laboratory. Application areas generally include analytical peripherals, and other robotics developments that may have an impact on laboratory automation. In the area

Kostic, Milivoje M.

164

Volume II, Environment, Safety, and Health Special Review of...  

Broader source: Energy.gov (indexed) [DOE]

Safety, and Health Special Review, Department of Energy Laboratories - August 2008 Nanomaterials Safety Implementation Plan, Ames Laboratory Approaches to Safe Nanotechnology...

165

Environmental Health and Safety  

E-Print Network [OSTI]

Environmental Health and Safety Approved by Document No. Version Date Replaces Page EHS EHS-FORM-072 1.0 15-May-2008 N/A 1 of 4 Laboratory Safety Orientation Checklist Name (Print) Department Supervisor Date (DD/MM/YY) A Laboratory Safety Orientation Checklist should be completed within one month

Shoubridge, Eric

166

Analytic Feminism: A Brief Introduction  

E-Print Network [OSTI]

This essay introduces the subject of this special issue by offering a characterization of analytic feminism in terms of its context, methods, and problem areas. I argue that analytic feminism is a legitimate sub-field both ...

Cudd, Ann E.

1995-01-01T23:59:59.000Z

167

1 | P a g e THE OSHA LABORATORY STANDARD  

E-Print Network [OSTI]

1 | P a g e THE OSHA LABORATORY STANDARD AND THE RICE UNIVERSITY CHEMICAL HYGIENE PLAN THE OSHA LABORATORY STANDARD Laboratories typically differ from industrial operations in their use and handling of hazardous chemicals. The Occupational Safety and Health Administration (OSHA) Laboratory Standard (29 CFR

Natelson, Douglas

168

Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix  

SciTech Connect (OSTI)

For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

NONE

1994-12-01T23:59:59.000Z

169

Nuclear Forensics at Los Alamos National Laboratory  

SciTech Connect (OSTI)

The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities at Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities. Some conclusions are: (1) Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous defense and non-defense programs including safeguards accountancy verification measurements; (2) Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material forensic characterization; (3) Actinide analytical chemistry uses numerous means to validate and independently verify that measurement data quality objectives are met; and (4) Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

Podlesak, David W [Los Alamos National Laboratory; Steiner, Robert E. [Los Alamos National Laboratory; Burns, Carol J. [Los Alamos National Laboratory; LaMont, Stephen P. [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory

2012-08-09T23:59:59.000Z

170

Data and Analytics Strategy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data Files 1 EIA Best Estimate ofand Analytics Strategy

171

Inspection of Environment, Safety, and Health Management at the...  

Broader source: Energy.gov (indexed) [DOE]

Inspection of Environment, Safety, and Health Management at the Argonne National Laboratory - East, Volume I, May 2002 Inspection of Environment, Safety, and Health Management at...

172

Analytics_Ushizima.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site| Department September 1999Analytics‚Ä©

173

SULI at Ames Laboratory  

SciTech Connect (OSTI)

A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

None

2011-01-01T23:59:59.000Z

174

Laboratory Directed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisal Process Laboratory

175

Laboratory Directors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisalLaboratory Directors

176

University-Industry-National Laboratory Partnership to Improve...  

Office of Environmental Management (EM)

University-Industry-National Laboratory Partnership to Improve Building Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing University-Industry-National...

177

20 | Issue No. 5wpahospitalnews.com Laboratory Science Workforce  

E-Print Network [OSTI]

treatment is expected to nearly triple by 2020, according to the Substance Abuse and Mental Health Services their highest health- care consuming years, an increasing number of laboratory tests will exacerbate the need

Cui, Yan

178

The Habif Health and Wellness Student Health Services  

E-Print Network [OSTI]

offers general medical care, comprehensive women's health care, laboratory, x-ray, physical therapy for their own health care. Appointments Our services do require appointments. These appointments may be made on. After Hours Care Student Health Services has a team of nurses who will answer student calls when SHS

Subramanian, Venkat

179

The Habif Health and Wellness Student Health Services  

E-Print Network [OSTI]

offers general medical care, comprehensive women's health care, laboratory, x-ray, physical therapy for their own health care. Appointments Our services do require appointments. These appointments may be made on appointments may be required. After Hours Care Student Health Services has a team of nurses who will answer

Subramanian, Venkat

180

The Habif Health and Wellness Student Health Services  

E-Print Network [OSTI]

offers general medical care, comprehensive women's health care, laboratory, x-ray, a pharmacy, allergy the confidentiality is an important step for young adults to begin taking responsibility for their own health care Hours Care Student Health Services has a team of nurses who will answer student calls when SHS

Subramanian, Venkat

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Health Behavior Health Promotion -Prevention  

E-Print Network [OSTI]

chronic disease complications Improve quality of life Reduce health care costs #12;ImpactHealth Behavior Health Promotion - Prevention Modification of Health Attitudes and Health Behavior #12;Health Promotion: An Overview Basic philosophy Good health = individual and collective goal

Meagher, Mary

182

Analytical Performance of Accelerator Mass Spectrometry and Liquid Scintillation Counting for  

E-Print Network [OSTI]

Analytical Performance of Accelerator Mass Spectrometry and Liquid Scintillation Counting for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California of California, San Francisco, California 94143 Accelerator mass spectrometry (AMS) has been applied

Hammock, Bruce D.

183

12.119 Analytical Techniques for Studying Environmental and Geologic Samples, Spring 2006  

E-Print Network [OSTI]

This is a laboratory course supplemented by lectures that focus on selected analytical facilities that are commonly used to determine the mineralogy, elemental abundance and isotopic ratios of Sr and Pb in rocks, soils, ...

Boyle, Edward

184

2013Science Pacific Northwest National Laboratory (PNNL),  

E-Print Network [OSTI]

2013Science Frontiers #12;Pacific Northwest National Laboratory (PNNL), a U.S. Department of Energy Office of Science Laboratory, is pushing the frontiers of science in areas that are critical to the nation's security, health and prosperity. PNNL's science and technology base ranges from basic research

185

Statistical Sciences Group, Los Alamos National Laboratory,  

E-Print Network [OSTI]

Luke Bornn CCS-6, Statistical Sciences Group, Los Alamos National Laboratory, MS F600, Los Alamos, NM 87545 Charles R. Farrar1 e-mail: farrar@lanl.gov Gyuhae Park Kevin Farinholt The Engineering Institute, Los Alamos National Laboratory, MS T006, Los Alamos, NM 87545 Structural Health Monitoring

Wolfe, Patrick J.

186

Determination of Total Solids and Ash in Algal Biomass: Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solids and Ash in Algal Biomass Laboratory Analytical Procedure (LAP) Issue Date: December 2, 2013 S. Van Wychen and L. M. L. Laurens Technical Report NRELTP-5100-60956 December...

187

University of Connecticut Health Center  

E-Print Network [OSTI]

's continued care. If this disclosure contains information relating to HIV, behavioral health, alcohol or drugUniversity of Connecticut Health Center John Dempsey Hospital Dept of Pathology & Laboratory. 1/2007 Rev. 00/0000 Page 1 of 2 DS 1. I hereby authorize UConn Health Center, Department

Oliver, Douglas L.

188

Laboratory Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11 Laboratory I | Nuclear

189

National Laboratory Impact Initiative  

Broader source: Energy.gov [DOE]

The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.† The national laboratories...

190

Radioisotope Laboratory Techniques Environmental Health & Safety  

E-Print Network [OSTI]

. Work Areas e. Refrigerators / Freezers f. Waste Areas #12;Lab Safety Checklist 1. Caution Signs a. Doors b. Hoods c. Hardware d. Work Areas e. Refrigerators / Freezers f. Waste Areas #12;Lab Safety Checklist 1. Caution Signs a. Doors b. Hoods c. Hardware d. Work Areas e. Refrigerators / Freezers f. Waste

Slatton, Clint

191

ORISE: Worker Health Studies - Beryllium Testing Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

procedures are performed according to the protocol specified by the U.S. Department of Energy. Featured Video Beryllium Awareness Video WATCH: Beryllium Awareness Video (15:10)...

192

STANFORD UNIVERSITY LABORATORY ANIMAL OCCUPATIONAL HEALTH PROGRAM  

E-Print Network [OSTI]

? Excessive weight loss Persistent coughing Excessive fatigue Coughing up blood Persistent fever Have you been

193

Sandia National Laboratories: forecasting plant health outcomes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluating wind-turbine/radar impactsfluid-structureforecasting

194

Sandia National Laboratories: Structural Health Monitoring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandards Solar ThermochemicalStorage Protected:Stray

195

Tribology Laboratory | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation From919-660-2694Tribology Laboratory

196

Laboratory Events | Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisalLaboratoryGet the tools you

197

Geoscience Laboratory | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshort version)UnveilsGeorgeGeoscience Laboratory

198

Environmental Measurements Laboratory (EML) procedures manual  

SciTech Connect (OSTI)

Volume 1 of this manual documents the procedures and existing technology that are currently used by the Environmental Measurements Laboratory. A section devoted to quality assurance has been included. These procedures have been updated and revised and new procedures have been added. They include: sampling; radiation measurements; analytical chemistry; radionuclide data; special facilities; and specifications. 228 refs., 62 figs., 37 tabs. (FL)

Chieco, N.A.; Bogen, D.C.; Knutson, E.O. (eds.)

1990-11-01T23:59:59.000Z

199

Laboratory services series: a programmed maintenance system  

SciTech Connect (OSTI)

The diverse facilities, operations and equipment at a major national research and development laboratory require a systematic, analytical approach to operating equipment maintenance. A computer-scheduled preventive maintenance program is described including program development, equipment identification, maintenance and inspection instructions, scheduling, personnel, and equipment history.

Tuxbury, D.C.; Srite, B.E.

1980-01-01T23:59:59.000Z

200

ANALYTICAL METHODS in CHEMICAL ECOLOGY  

E-Print Network [OSTI]

ANALYTICAL METHODS in CHEMICAL ECOLOGY a post graduate course (doktorandkurs) when: February 10 ­ 28, 2014 where: Chemical Ecology, Plant Protection Biology, Swedish University of Agriculture (SLU to modern analytical methods used in Chemical Ecological and Ecotoxicological research, such as: methods

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Environmental | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental...

202

Environmental Health and Safety Environmental Health Laboratory Assessment  

E-Print Network [OSTI]

: Category Item Comments (description, location, etc.) Lab refrigerators/freezers/microwaves labeled: "No Food" "No Flammables" (unless a flammable rated refrigerator is present) Restricted areas

203

Strontium-90 Error Discovered in Subcontract Laboratory Spreadsheet  

SciTech Connect (OSTI)

West Valley Demonstration Project health physicists and environment scientists discovered a series of errors in a subcontractor's spreadsheet being used to reduce data as part of their strontium-90 analytical process.

D. D. Brown A. S. Nagel

1999-07-31T23:59:59.000Z

204

Functionalized magnetic nanoparticle analyte sensor  

DOE Patents [OSTI]

A method and system for simply and efficiently determining quantities of a preselected material in a particular solution by the placement of at least one superparamagnetic nanoparticle having a specified functionalized organic material connected thereto into a particular sample solution, wherein preselected analytes attach to the functionalized organic groups, these superparamagnetic nanoparticles are then collected at a collection site and analyzed for the presence of a particular analyte.

Yantasee, Wassana; Warner, Maryin G; Warner, Cynthia L; Addleman, Raymond S; Fryxell, Glen E; Timchalk, Charles; Toloczko, Mychailo B

2014-03-25T23:59:59.000Z

205

Analytics Cloud for Computational Analysis | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site| Department September 1999Analytics

206

ANALYTICAL DATA SHEET ANALYTICAL DEPT. - HEALTH AhD SAFETY DlVlSlDN  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r 'Xxy";^itE;;;: 61c

207

ANALYTICAL DATA SHEET ANALYTICAL DEPT. - HEALTH Al\rD SAFETY DlVlSlON  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r 'Xxy";^itE;;;:

208

ANALYTICAL DATA SHEET hlul ANALYTICAL DEPT. - HEALTH ANI SAFETY DlVlSlON  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r 'Xxy";^itE;;;:hlul

209

Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2  

SciTech Connect (OSTI)

Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided, this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.

Kilmer, J.

1997-08-01T23:59:59.000Z

210

Hydrogen Fuel Quality - Focus: Analytical Methods Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

211

Environmental Health and Safety  

E-Print Network [OSTI]

Environmental Health and Safety EHS-FORM-022 v.1.1 Page 1 of 1 Laboratory safety self NA Radioactive materials [MNI Radiation Safety Manua ]l MNI: contact Christian Janicki christian.janicki@mcgill.ca 8888-43866 ANSI (American National Standards Institute) Class 3b or 4 lasers Biological safety

Shoubridge, Eric

212

University of Connecticut Health Center  

E-Print Network [OSTI]

University of Connecticut Health Center John Dempsey Hospital Dept of Pathology & Laboratory/Reports HCH 1770 Eff. 1/2007 Rev. 00/0000 Page 1 of 2 1. I hereby authorize UConn Health Center, Department: _____________________________________ Transfer of care 5. Name of the person(s)/organization(s): to whom slides/report will be released (Please

Oliver, Douglas L.

213

Adaptation and Analytical Validation of a Radioimmunoassay for the Measurement of Human Cholecystokinin for Use in Dogs  

E-Print Network [OSTI]

radioimmunoassay protocol and antiserum were generously provided to us by the laboratory of Jens Rehfeld, Copenhagen, Denmark. Assay runs were set up to replace all human reagents that are part of the original protocol, followed by analytical validation...

Lagutchik, Stephen Christopher

2014-04-22T23:59:59.000Z

214

LANL Analytical and Radiochemistry Capabilities  

SciTech Connect (OSTI)

The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities.

Steiner, Robert E. [Los Alamos National Laboratory; Burns, Carol J. [Los Alamos National Laboratory; Lamont, Stephen P. [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory

2012-07-27T23:59:59.000Z

215

National Renewable Energy Laboratory  

E-Print Network [OSTI]

National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

216

From Metaphor to Analytic Tool  

E-Print Network [OSTI]

Process Tracing From Metaphor to Analytic Tool Edited by ANDREW BENNETT and JEFFREY T. CHECKEL process tracing." Andrew Bennett is Professor of Government at Georgetown Uni versity. He is also: © VvoeVale/iStock.com series cover design: sue watson "Bennett and Checkel have assembled an im- pressive

217

Biomass Compositional Analysis Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

Not Available

2014-07-01T23:59:59.000Z

218

Materials Design Laboratory | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design Laboratory, scheduled for completion in FY 2020, is designed to meet U.S. Green Building Council Leadership in Energy and Environmental Design (LEED) Gold...

219

Analytical Plan for Roman Glasses  

SciTech Connect (OSTI)

Roman glasses that have been in the sea or underground for about 1800 years can serve as the independent ďexperimentĒ that is needed for validation of codes and models that are used in performance assessment. Two sets of Roman-era glasses have been obtained for this purpose. One set comes from the sunken vessel the Iulia Felix; the second from recently excavated glasses from a Roman villa in Aquileia, Italy. The specimens contain glass artifacts and attached sediment or soil. In the case of the Iulia Felix glasses quite a lot of analytical work has been completed at the University of Padova, but from an archaeological perspective. The glasses from Aquileia have not been so carefully analyzed, but they are similar to other Roman glasses. Both glass and sediment or soil need to be analyzed and are the subject of this analytical plan. The glasses need to be analyzed with the goal of validating the model used to describe glass dissolution. The sediment and soil need to be analyzed to determine the profile of elements released from the glass. This latter need represents a significant analytical challenge because of the trace quantities that need to be analyzed. Both pieces of information will yield important information useful in the validation of the glass dissolution model and the chemical transport code(s) used to determine the migration of elements once released from the glass. In this plan, we outline the analytical techniques that should be useful in obtaining the needed information and suggest a useful starting point for this analytical effort.

Strachan, Denis M.; Buck, Edgar C.; Mueller, Karl T.; Schwantes, Jon M.; Olszta, Matthew J.; Thevuthasan, Suntharampillai; Heeren, Ronald M.

2011-01-01T23:59:59.000Z

220

Laboratory Surveys when Working with Radioactive Materials  

E-Print Network [OSTI]

radioactive materials (RAM) are used or stored, including waste areas. Negative results should be clearlyLaboratory Surveys when Working with Radioactive Materials Procedure: 7.546 Created: 9/25/14 Version: 1.0 Revised: Environmental Health & Safety Page 1 of 6 A. Purpose Radioactive contamination and

Jia, Songtao

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FOR PERSONNEL WORKING WITH LABORATORY ANIMALS  

E-Print Network [OSTI]

to Standard Operating Procedures. SOPs at the University of Delaware are detailed operating procedures, which and maintenance of the animals. AHT ≠ Animal Health Technician AUP ≠ Animal Use Protocol AV ≠ Attending to the IACUC. Accommodations are available at the OLAM AF for the housing and maintenance of common laboratory

Bacuta, Constantin

222

Analyte detection using an active assay  

DOE Patents [OSTI]

Analytes using an active assay may be detected by introducing an analyte solution containing a plurality of analytes to a lacquered membrane. The lacquered membrane may be a membrane having at least one surface treated with a layer of polymers. The lacquered membrane may be semi-permeable to nonanalytes. The layer of polymers may include cross-linked polymers. A plurality of probe molecules may be arrayed and immobilized on the lacquered membrane. An external force may be applied to the analyte solution to move the analytes towards the lacquered membrane. Movement may cause some or all of the analytes to bind to the lacquered membrane. In cases where probe molecules are presented, some or all of the analytes may bind to probe molecules. The direction of the external force may be reversed to remove unbound or weakly bound analytes. Bound analytes may be detected using known detection types.

Morozov, Victor (Manassas, VA); Bailey, Charles L. (Cross Junction, VA); Evanskey, Melissa R. (Potomac Falls, VA)

2010-11-02T23:59:59.000Z

223

Appendix B: LABORATORY-SPECIFIC CHEMICAL HYGIENE PLAN  

E-Print Network [OSTI]

operations, if any, will require prior approval. I. STANDARD OPERATING PROCEDURES Some laboratory procedures involving hazardous chemicals should have specific Standard Operating Procedures that address health, special precautions or procedures, preventative maintenance schedules (fume hoods are evaluated annually

Ferrara, Katherine W.

224

Analytical methods under emergency conditions  

SciTech Connect (OSTI)

This lecture discusses methods for the radiochemical determination of internal contamination of the body under emergency conditions, here defined as a situation in which results on internal radioactive contamination are needed quickly. The purpose of speed is to determine the necessity for medical treatment to increase the natural elimination rate. Analytical methods discussed include whole-body counting, organ counting, wound monitoring, and excreta analysis. 12 references. (ACR)

Sedlet, J.

1983-01-01T23:59:59.000Z

225

Combustion & Health  

E-Print Network [OSTI]

FFCOMBUSTION & HEALTH Winifred J. Hamilton, PhD, SM Clear Air Through Energy Efficiency (CATEE) Galveston, TX October 9?11, 2012 FFCOMBUSTION & HEALTH FFCOMBUSTION: THE THREAT ? Biggest threat to world ecosystems (and to human health...

Hamilton, W.

2012-01-01T23:59:59.000Z

226

Argonne National Laboratory's Nondestructive  

E-Print Network [OSTI]

Argonne National Laboratory's Nondestructive Evaluation Technologies NDE #12;Over45yearsexperienceinNondestructiveEvaluation... Argonne National Laboratory's world-renowned researchers have a proven the safe operationof advanced nuclear reactors. Argonne's World-Class Nondestructive Evaluation

Kemner, Ken

227

Analytical Chemistry Division annual progress report for period ending December 31, 1985  

SciTech Connect (OSTI)

Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

Shultz, W.D.

1986-05-01T23:59:59.000Z

228

Independent Oversight Inspection of Environment, Safety and Health...  

Broader source: Energy.gov (indexed) [DOE]

15 Abbreviations Used in This Report AAAHC Accreditation Association for Ambulatory Health Care AMPL Advanced Manufacturing and Processes Laboratory CFR Code of Federal...

229

Naval Civil Engineering Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Naval Civil Engineering Laboratory Personnel from the Power Systems Department have participated in numerous distribution equipment research, development, demonstration, testing,...

230

Emergency Response Health Physics  

SciTech Connect (OSTI)

Health physics is an important discipline with regard to understanding the effects of radiation on human health. Topics of discussion included in this manuscript are related to responding to a radiation emergency, and the necessary balance between desired high accuracy laboratory results and rapid turnaround requirements. Considerations are addressed for methodology with which to provide the most competent solutions despite challenges presented from incomplete datasets and, at times, limited methodology. An emphasis is placed on error and uncertainty of sample analysis results, how error affects products, and what is communicated in the final product.

Mena, R., Pemberton, W., Beal, W.

2012-05-01T23:59:59.000Z

231

Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety  

E-Print Network [OSTI]

Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety Risk all connections and fittings prior to start of anesthesia. Carefully pour Isoflurane from Environmental Health & Safety before re-entering the laboratory. REFERENCES 1. Procedure

Machel, Hans

232

MAR flow mapping of Analytical Chemistry Operations (Preliminary Report)  

SciTech Connect (OSTI)

The recently released Supplemental Directive, NA-1 SD 1027, updates the radionuclide threshold values in DOE-STD-1027-92 CN1 to reflect the use of modern parameters for dose conversion factors and breathing rates. The directive also corrects several arithmetic errors within the original standard. The result is a roughly four-fold increase in the amount of weapons-grade nuclear material allowed within a designated radiological facility. Radiological laboratory space within the recently constructed Radiological Laboratory Office and Utility Building (RLUOB) is slated to house selected analytical chemistry support activities in addition to small-scale actinide R&D activities. RLUOB is within the same facility operations envelope as TA-55. Consolidation of analytical chemistry activities to RLUOB and PF-4 offers operational efficiency improvements relative to the current pre-CMRR plans of dividing these activities between RLUOB, PF-4, and CMR. RLUOB is considered a Radiological Facility under STD-1027 - 'Facilities that do not meet or exceed Category 3 threshold criteria but still possess some amount of radioactive material may be considered Radiological Facilities.' The supplemental directive essentially increases the allowable material-at-risk (MAR) within radiological facilities from 8.4 g to 38.6 g for {sup 239}Pu. This increase in allowable MAR provides a unique opportunity to establish additional analytical chemistry support functions in RLUOB without negatively impacting either R&D activities or facility operations. Individual radiological facilities are tasked to determine MAR limits (up to the Category 3 thresholds) appropriate to their operational conditions. This study presents parameters that impact establishing MAR limits for RLUOB and an assessment of how various analytical chemistry support functions could operate within the established MAR limits.

Barr, Mary E. [Los Alamos National Laboratory; Farish, Thomas J. [Los Alamos National Laboratory

2012-06-13T23:59:59.000Z

233

WSRC-waste and environmental analytical methods  

SciTech Connect (OSTI)

A list of 491 analytical procedures to directly support waste and environmental analytical work is attached. The list is available from the author as a lotus or excel spreadsheet file.

Spencer, W.A.

1991-05-22T23:59:59.000Z

234

Developer Dashboards: The Need For Qualitative Analytics  

E-Print Network [OSTI]

Developer Dashboards: The Need For Qualitative Analytics Olga Baysal, Reid Holmes, and Michael W-to-day development tasks. I. SOFTWARE ANALYTICS IN PRACTICE Many organizations have adopted data-driven decision

Godfrey, Michael W.

235

Arguments for an Alternative Account of Analyticity  

E-Print Network [OSTI]

This dissertation presents an alternative account of analyticity, as well as arguments for that account. Although an analysis and interpretation of previous accounts of analyticity are presented, the focus is on the analysis ...

Sexton, Clark Alan

2009-11-09T23:59:59.000Z

236

Appendix C Analytical Chemistry Data  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawanda North Site This page Analytical

237

Analytical Modeling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:Operations atAnaconda,ParkAnalytical

238

Energy Analytics | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classifiedProject)EnerVault CorporationSolaireEnergreen CoAnalytics

239

RBS' New BAIT Major: Business Analytics and  

E-Print Network [OSTI]

:623:386) ­ Analytics / decision making and planning ­ Building mathematical models of business situations ­ Also builds · 33:623:485 Time Series Modeling for Business · 33:623:400 Business Decision Analytics underRBS' New BAIT Major: Business Analytics and Information Technology "Introducing the New Business

240

ISO 14001 IMPLEMENTATION AT A NATIONAL LABORATORY.  

SciTech Connect (OSTI)

After a tumultuous year discovering serious lapses in environment, safety and health management at Brookhaven National Laboratory, the Department of Energy established a new management contract. It called for implementation of an IS0 14001 Environmental Management System and registration of key facilities. Brookhaven Science Associates, the managing contractor for the Laboratory, designed and developed a three-year project to change culture and achieve the goals of the contract. The focus of its efforts were to use IS0 14001 to integrate environmental stewardship into all facets of the Laboratory's mission, and manage its programs in a manner that protected the ecosystem and public health. A large multidisciplinary National Laboratory with over 3,000 employees and 4,000 visiting scientists annually posed significant challenges for IS0 14001 implementation. Activities with environmental impacts varied from regulated industrial waste generation, to soil activation from particle accelerator operations, to radioactive groundwater contamination from research reactors. A project management approach was taken to ensure project completion on schedule and within budget. The major work units for the Environmental Management System Project were as follows: Institutional EMS Program Requirements, Communications, Training, Laboratory-wide Implementation, and Program Assessments. To minimize costs and incorporate lessons learned before full-scale deployment throughout the Laboratory, a pilot process was employed at three facilities. Brookhaven National Laboratory has completed its second year of the project in the summer of 2000, successfully registering nine facilities and self-declaring conformance in all remaining facilities. Project controls, including tracking and reporting progress against a model, have been critical to the successful implementation. Costs summaries are lower than initial estimates, but as expected legal requirements, training, and assessments are key cost centers. Successes to date include the pilot process, heightened employee awareness, registration of the first DOE National Laboratory facility, line ownership of the program, and senior management commitment.

BRIGGS,S.L.K.

2001-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Analytical Spectroscopy - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site| Department September 1999

242

Going green earns Laboratory gold  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

243

LBNL Worker Safety and Health Program LBNL/PUB-3851, Rev. 2.2 (March 2012) Worker Safety and Health  

E-Print Network [OSTI]

LBNL Worker Safety and Health Program LBNL/PUB-3851, Rev. 2.2 (March 2012) Worker Safety and Health Program Lawrence Berkeley National Laboratory #12;LBNL Worker Safety and Health Program LBNL/PUB-3851, Rev. 2.2 (March 2012) This page intentionally left blank. #12;LBNL Worker Safety and Health Program LBNL

Knowles, David William

244

Thirty-seventh ORNL/DOE conference on analytical chemistry in energy technology: Abstracts of papers  

SciTech Connect (OSTI)

Abstracts only are given for papers presented during the following topical sessions: Opportunities for collaboration: Industry, academic, national laboratories; Developments in sensor technology; Analysis in containment facilities; Improving the quality of environmental data; Process analysis; Field analysis; Radiological separations; Interactive analytical seminars; Measurements and chemical industry initiatives; and Isotopic measurements and mass spectroscopy.

NONE

1997-12-31T23:59:59.000Z

245

Tank 241-BY-109, cores 201 and 203, analytical results for the final report  

SciTech Connect (OSTI)

This document is the final laboratory report for tank 241-BY-109 push mode core segments collected between June 6, 1997 and June 17, 1997. The segments were subsampled and analyzed in accordance with the Tank Push Mode Core Sampling and Analysis Plan (Bell, 1997), the Tank Safety Screening Data Quality Objective (Dukelow, et al, 1995). The analytical results are included.

Esch, R.A.

1997-11-20T23:59:59.000Z

246

Radiological Laboratory, Utility, Office Building LEED Strategy & Achievement  

SciTech Connect (OSTI)

Missions that the Radiological Laboratory, utility, Office Building (RLUOB) supports are: (1) Nuclear Materials Handling, Processing, and Fabrication; (2) Stockpile Management; (3) Materials and Manufacturing Technologies; (4) Nonproliferation Programs; (5) Waste Management Activities - Environmental Programs; and (6) Materials Disposition. The key capabilities are actinide analytical chemistry and material characterization.

Seguin, Nicole R. [Los Alamos National Laboratory

2012-07-18T23:59:59.000Z

247

Graph Analytics for Signature Discovery  

SciTech Connect (OSTI)

Within large amounts of seemingly unstructured data it can be diffcult to find signatures of events. In our work we transform unstructured data into a graph representation. By doing this we expose underlying structure in the data and can take advantage of existing graph analytics capabilities, as well as develop new capabilities. Currently we focus on applications in cybersecurity and communication domains. Within cybersecurity we aim to find signatures for perpetrators using the pass-the-hash attack, and in communications we look for emails or phone calls going up or down a chain of command. In both of these areas, and in many others, the signature we look for is a path with certain temporal properties. In this paper we discuss our methodology for finding these temporal paths within large graphs.

Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh; Lo, Chaomei

2013-06-01T23:59:59.000Z

248

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than 8...

249

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

involving a rail car, a clandestine laboratory, transportation and industrial piping scenarios, a simulated radiological release, and a confined space, said Chris Rittner...

250

Laborativ matematik; Laboratory mathematics.  

E-Print Network [OSTI]

?? Research indicates that a more hands-on education in mathematics could improve how students relate to mathematics. Laboratory mathematics is a way of making mathematicsÖ (more)

KŚresjŲ, Ida

2010-01-01T23:59:59.000Z

251

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

environmental service to northern New Mexico," said Jeff Mousseau, associate director for environmental programs at the Laboratory. "Having local companies of this high caliber...

252

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

commitment to the environment and the public," said Jeff Mousseau, associate director for Environmental Programs at the Laboratory. This is the fifth master task order agreement...

253

Exercise Design Laboratory  

Broader source: Energy.gov [DOE]

The Emergency Operations Training Academy (EOTA), NA 40.2, Readiness and Training, Albuquerque, NM is pleased to announce the EXR231, Exercise Design Laboratory course

254

National Laboratory Photovoltaics Research  

Broader source: Energy.gov [DOE]

DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

255

Laboratory Director PRINCETON PLASMA PHYSICS LABORATORY  

E-Print Network [OSTI]

.C. Zarnstorff Deputy Director for Operations A.B. Cohen Laboratory Management Council Research Council Associate Diagnostics D.W. Johnson Electrical Systems C. Neumeyer Lab Astrophysics M. Yamada, H. Ji Projects: MRX, MRI Science Education A. Post-Zwicker Quality Assurance J.A. Malsbury Tech. Transfer Patents & Publications L

Princeton Plasma Physics Laboratory

256

Quality assurance guidance for laboratory assessment plates in support of EM environmental sampling and analysis activities  

SciTech Connect (OSTI)

This document is one of several guidance documents developed to support the EM (DOE Environmental Restoration and Waste Management) Analytical Services program. Its purpose is to introduce assessment plates that can be used to conduct performance assessments of an organization`s or project`s ability to meet quality goals for analytical laboratory activities. These assessment plates are provided as non-prescriptive guidance to EM-support organizations responsible for collection of environmental data for remediation and waste management programs at DOE facilities. The assessments evaluate objectively all components of the analytical laboratory process to determine their proper selection and use.

Not Available

1994-05-01T23:59:59.000Z

257

Pacific Northwest National Laboratory Institutional Plan FY 2000-2004  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory Institutional Plan for FY 2000-2004 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; management practices and standards; and communications and trust.

Pearson, Erik W.

2000-03-01T23:59:59.000Z

258

Pacific Northwest National Laboratory Institutional Plan FY 2001-2005  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory Institutional Plan for FY 2001-2005 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; managaement procatices and standards; and communications and trust.

Fisher, Darrell R.; Pearson, Erik W.

2000-12-29T23:59:59.000Z

259

Radiological standards and calibration laboratory capabilities  

SciTech Connect (OSTI)

The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest Laboratory (PNL), performs calibrations and upholds reference standards necessary to maintain traceability to national radiological standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE sites, and research programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site`s 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, and thermoluminescent and radiochromic dosimetry. The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, and a beta standards laboratory used for beta energy response studies and beta reference calibrations. Calibrations are routinely performed for personnel dosimeters, health physics instrumentations, photon transfer standards and alpha, beta and gamma field sources used throughout the Hanford Site. This report describes the standards and calibrations laboratory. Photographs that accompany the text appear in the Appendix and are designated Figure A.1 through A.29.

Goles, R.W.

1995-01-01T23:59:59.000Z

260

Tiger Team Assessment of the Ames Laboratory  

SciTech Connect (OSTI)

This report documents the Tiger Assessment of the Ames Laboratory (Ames), located in Ames, Iowa. Ames is operated for the US Department of Energy (DOE) by Iowa State University. The assessment was conducted from February 10 to March 5, 1992, under the auspices of the Office of Special Projects, Office of the Assistant Secretary of Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing Environment, Safety, and Health (ES H) disciplines; management practices; and contractor and DOE self-assessments. Compliance with applicable Federal, State of Iowa, and local regulations; applicable DOE Orders; best management practices; and internal requirements at Ames Laboratory were assessed. In addition, an evaluation of the adequacy and effectiveness of DOE and the site contractor's management of ES H/quality assurance program was conducted.

Not Available

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Russell Furr Laboratory Safety &  

E-Print Network [OSTI]

Russell Furr Director 8/20/13 Laboratory Safety & Compliance #12;#12;Research Safety Full Time Students Part- Time #12; Organizational Changes Office of Research Safety Research Safety Advisors Safety Culture Survey Fire Marshal Inspections Laboratory Plans Review New Research Safety Initiatives

262

LABORATORY V ELECTRIC CIRCUITS  

E-Print Network [OSTI]

Lab V -1 LABORATORY V ELECTRIC CIRCUITS Electrical devices are the cornerstones of our modern world understanding of them. In the previous laboratory, you studied the behavior of electric fields and their effect on the motion of electrons using a cathode ray tube (CRT). This beam of electrons is one example of an electric

Minnesota, University of

263

LABORATORY IV ELECTRIC CIRCUITS  

E-Print Network [OSTI]

LABORATORY IV ELECTRIC CIRCUITS Lab IV - 1 In the first laboratory, you studied the behavior of electric fields and their effect on the motion of electrons using a cathode ray tube (CRT). This beam of electrons is one example of an electric current ­ charges in motion. The current in the CRT was simple

Minnesota, University of

264

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2007 Prepared by: National Institute to present to the President and the Congress this Federal Laboratory Technology Transfer Report summarizing the achievements of Federal technology transfer and partnering programs of the Federal research and development

Perkins, Richard A.

265

Technical Report Computer Laboratory  

E-Print Network [OSTI]

the opportunity to consider a physical attack, with very little to lose. We thus set out to analyse the deviceTechnical Report Number 592 Computer Laboratory UCAM-CL-TR-592 ISSN 1476-2986 Unwrapping J. Murdoch Technical reports published by the University of Cambridge Computer Laboratory are freely

Haddadi, Hamed

266

The Virtual Robotics Laboratory  

SciTech Connect (OSTI)

The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

Kress, R.L.; Love, L.J.

1999-09-01T23:59:59.000Z

267

LABORATORY I: GEOMETRIC OPTICS  

E-Print Network [OSTI]

Lab I - 1 LABORATORY I: GEOMETRIC OPTICS In this lab, you will solve several problems related to the formation of optical images. Most of us have a great deal of experience with the formation of optical images this laboratory, you should be able to: · Describe features of real optical systems in terms of ray diagrams

Minnesota, University of

268

Analytic calculation of properties of holographic superconductors  

E-Print Network [OSTI]

We calculate analytically properties of holographic superconductors in the probe limit. We analyze the range $1/2 3/2$. We also obtain the frequency dependence of the conductivity by solving analytically the wave equation of electromagnetic perturbations. We show that the real part of the DC conductivity behaves as $e^{-\\Delta_g /T}$ and estimate the gap $\\Delta_g$ analytically. Our results are in good agreement with numerical results.

George Siopsis; Jason Therrien

2010-03-22T23:59:59.000Z

269

Method of identity analyte-binding peptides  

DOE Patents [OSTI]

A method for affinity chromatography or adsorption of a designated analyte utilizes a paralog as the affinity partner. The immobilized paralog can be used in purification or analysis of the analyte; the paralog can also be used as a substitute for antibody in an immunoassay. The paralog is identified by screening candidate peptide sequences of 4--20 amino acids for specific affinity to the analyte. 5 figs.

Kauvar, L.M.

1990-10-16T23:59:59.000Z

270

Strategies for Choosing Analytics and Visualization Software...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in mind that their functions may be interchangeable. Visualization Analytics Visit Matlab Python tools: Numpy, Scipy, iPython, matplotlib Paraview Mathematica Perl IDL Python...

271

Contained radiological analytical chemistry module  

DOE Patents [OSTI]

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1989-01-01T23:59:59.000Z

272

Contained radiological analytical chemistry module  

DOE Patents [OSTI]

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1990-01-01T23:59:59.000Z

273

Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Three - Appendix F  

SciTech Connect (OSTI)

This appendix supports the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-13711/V1. This volume contains Appendix F. Appendix F is essentially a photocopy of the ORNL researchers' laboratory notebooks from the Environmental Sciences Division (ESD) and the Radioactive Materials Analytical Laboratory (RMAL).

Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

1999-04-01T23:59:59.000Z

274

Laboratory Equipment & Supplies | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisalLaboratory

275

Laboratory Graduate Research Appointment | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisalLaboratoryGet the

276

Design | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cost of conventional systems. Outdoor air raises indoor air quality by reducing indoor air pollution, which improves the health and productivity of building occupants. This...

277

Sonication standard laboratory module  

DOE Patents [OSTI]

A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

1999-01-01T23:59:59.000Z

278

Microfabricated field calibration assembly for analytical instruments  

DOE Patents [OSTI]

A microfabricated field calibration assembly for use in calibrating analytical instruments and sensor systems. The assembly comprises a circuit board comprising one or more resistively heatable microbridge elements, an interface device that enables addressable heating of the microbridge elements, and, in some embodiments, a means for positioning the circuit board within an inlet structure of an analytical instrument or sensor system.

Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM); Rodacy, Philip J. (Albuquerque, NM); Simonson, Robert J. (Cedar Crest, NM)

2011-03-29T23:59:59.000Z

279

Analytical Chemistry Division's sample transaction system  

SciTech Connect (OSTI)

The Analytical Chemistry Division uses the DECsystem-10 computer for a wide range of tasks: sample management, timekeeping, quality assurance, and data calculation. This document describes the features and operating characteristics of many of the computer programs used by the Division. The descriptions are divided into chapters which cover all of the information about one aspect of the Analytical Chemistry Division's computer processing.

Stanton, J.S.; Tilson, P.A.

1980-10-01T23:59:59.000Z

280

Tiger Team Assessment of the Los Alamos National Laboratory  

SciTech Connect (OSTI)

The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

Not Available

1991-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Postirradiation Testing Laboratory (327 Building)  

SciTech Connect (OSTI)

A Standards/Requirements Identification Document (S/RID) is the total list of the Environment, Safety and Health (ES and H) requirements to be implemented by a site, facility, or activity. These requirements are appropriate to the life cycle phase to achieve an adequate level of protection for worker and public health and safety, and the environment during design, construction, operation, decontamination and decommissioning, and environmental restoration. S/RlDs are living documents, to be revised appropriately based on change in the site`s or facility`s mission or configuration, a change in the facility`s life cycle phase, or a change to the applicable standards/requirements. S/RIDs encompass health and safety, environmental, and safety related safeguards and security (S and S) standards/requirements related to the functional areas listed in the US Department of Energy (DOE) Environment, Safety and Health Configuration Guide. The Fluor Daniel Hanford (FDH) Contract S/RID contains standards/requirements, applicable to FDH and FDH subcontractors, necessary for safe operation of Project Hanford Management Contract (PHMC) facilities, that are not the direct responsibility of the facility manager (e.g., a site-wide fire department). Facility S/RIDs contain standards/requirements applicable to a specific facility that are the direct responsibility of the facility manager. S/RlDs are prepared by those responsible for managing the operation of facilities or the conduct of activities that present a potential threat to the health and safety of workers, public, or the environment, including: Hazard Category 1 and 2 nuclear facilities and activities, as defined in DOE 5480.23. Selected Hazard Category 3 nuclear, and Low Hazard non-nuclear facilities and activities, as agreed upon by RL. The Postirradiation Testing Laboratory (PTL) S/RID contains standards/ requirements that are necessary for safe operation of the PTL facility, and other building/areas that are the direct responsibility of the specific facility manager. The specific DOE Orders, regulations, industry codes/standards, guidance documents and good industry practices that serve as the basis for each element/subelement are identified and aligned with each subelement.

Kammenzind, D.E.

1997-05-28T23:59:59.000Z

282

Analytical energy spectrum for hybrid mechanical systems  

E-Print Network [OSTI]

We investigate the energy spectrum for hybrid mechanical systems described by non-parity-symmetric quantum Rabi models. A set of analytical solutions in terms of the confluent Heun functions and their analytical energy spectrum are obtained. The analytical energy spectrum includes regular and exceptional parts, which are both confirmed by direct numerical simulation. The regular part is determined by the zeros of the Wronskian for a pair of analytical solutions. The exceptional part is relevant to the isolated exact solutions and its energy eigenvalues are obtained by analyzing the truncation conditions for the confluent Heun functions. By analyzing the energy eigenvalues for exceptional points, we obtain the analytical conditions for the energy-level-crossings, which correspond to two-fold energy degeneracy.

Honghua Zhong; Qiongtao Xie; Xiwen Guan; Murray T. Batchelor; Kelin Gao; Chaohong Lee

2013-11-07T23:59:59.000Z

283

Idaho National Laboratory  

ScienceCinema (OSTI)

INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

McCarthy, Kathy

2013-05-28T23:59:59.000Z

284

Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory November 25, 2013 Podcast part of Lab's new multi-channel effort to better...

285

Statistical Laboratory established 1933  

E-Print Network [OSTI]

Statistical Laboratory established 1933 Biennial Report July 1, 1997 to June 30, 1999 #12;Index 50 years of statistics ....................... 1 Self study & external review .......... 2 Social sciences statistics ................ 3 On the lighter side........................... 6 Publications 1997

286

Radiochemical Radiochemical Processing Laboratory  

E-Print Network [OSTI]

capabilities, supports the design and testing of advanced nuclear fuel recycling technologies. Expert Chemical is a critical facility at the Pacific Northwest National Laboratory, supporting environmental, nuclear, national and development. Capabilities include comprehensive nuclear counting instrumentation radionuclide separations

287

Argonne National Laboratory  

Broader source: Energy.gov [DOE]

HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois.† The 1,500 acre ANL site is completely surrounded by the 2,240...

288

Brookhaven National Laboratory  

Broader source: Energy.gov [DOE]

Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

289

ARPEFS as an analytic technique  

SciTech Connect (OSTI)

Two modifications to the ARPEFS technique are introduced. These are studied using p(2 {times} 2)S/Cu(001) as a model system. The first modification is the obtaining of ARPEFS {chi}(k) curves at temperatures as low as our equipment will permit. While adding to the difficulty of the experiment, this modification is shown to almost double the signal-to-noise ratio of normal emission p(2 {times} 2)S/Cu(001) {chi}(k) curves. This is shown by visual comparison of the raw data and by the improved precision of the extracted structural parameters. The second change is the replacement of manual fitting of the Fourier filtered {chi}(k) curves by the use of the simplex algorithm for parameter determination. Again using p(2 {times} 2)S/Cu(001) data, this is shown to result in better agreement between experimental {chi}(k) curves and curves calculated based on model structures. The improved ARPEFS is then applied to p(2 {times} 2)S/Ni(111) and ({radical}3 {times} {radical}3) R30{degree}S/Ni(111). For p(2 {times} 2)S/Cu(001) we find a S-Cu bond length of 2.26 {Angstrom}, with the S adatom 1.31 {Angstrom} above the fourfold hollow site. The second Cu layer appears to be corrugated. Analysis of the p(2 {times} 2)S/Ni(111) data indicates that the S adatom adatom adsorbs onto the FCC threefold hollow site 1.53 {Angstrom} above the Ni surface. The S-Ni bond length is determined to be 2.13 {Angstrom}, indicating an outwards shift of the first layer Ni atoms. We are unable to assign a unique structure to ({radical}3 {times} {radical}3)R30{degree}S/Ni(111). An analysis of the strengths and weaknesses of ARPEFS as an experimental and analytic technique is presented, along with a summary of problems still to be addressed.

Schach von Wittenau, A.E.

1991-04-01T23:59:59.000Z

290

Sandia National Laboratories: Nuclear Energy Systems Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More Green WasteTheSystems Laboratory

291

Ames Laboratory Metrics | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropaneSecurityhere!American-MadeAmes Laboratory

292

Strategic Laboratory Leadership Program | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'!StoresStrategic Laboratory

293

Sandia National Laboratories: Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National Laboratory Consortium for

294

RADCAL Operations Manual Radiation Calibration Laboratory Protocol  

SciTech Connect (OSTI)

The Life Sciences Division (LSD) of Oak Ridge National Laboratory (ORNL) has a long record of radiation dosimetry research, primarily using the Health Physics Research Reactor (HPRR) and the Radiation Calibration Laboratory (RADCAL) in its Dosimetry Applications Research (DOSAR) Program. These facilities have been used by a broad segment of the research community to perform a variety of experiments in areas including, but not limited to, radiobiology, radiation dosimeter and instrumentation development and calibration, and the testing of materials in a variety of radiation environments. Operations of the HPRR were terminated in 1987 and the reactor was moved to storage at the Oak Ridge Y-12 Plant; however, RADCAL will continue to be operated in accordance with the guidelines of the National Institute of Standards and Technology (NIST) Secondary Calibration Laboratory program and will meet all requirements for testing dosimeters under the National Voluntary Laboratory Accreditation Program (NVLAP). This manual is to serve as the primary instruction and operation manual for the Oak Ridge National Laboratory's RADCAL facility. Its purpose is to (1) provide operating protocols for the RADCAL facility, (2) outline the organizational structure, (3) define the Quality Assurance Action Plan, and (4) describe all the procedures, operations, and responsibilities for the safe and proper operation of all routine aspects of the calibration facility.

Bogard, J.S.

1998-12-01T23:59:59.000Z

295

Health Sciences and Nursing Health Sociology ------------------------------------------------------------------------------------------  

E-Print Network [OSTI]

related to health problems and health care systems, through developing and applying theories, concepts44 Health Sciences and Nursing Health Sociology in interdisciplinary academic fields, involving health, medicine and nursing as well as the field of sociology

Miyashita, Yasushi

296

Health Economics College of Public Health and Health Professions  

E-Print Network [OSTI]

of health, the demand for health care, health insurance theory, the demand for health insurance, the health insurance market and managed care, the market for physicians' services, production and cost of health care care environment. #12;2 Apply general and health economics concepts and show demonstrated competence

Kane, Andrew S.

297

Health Sciences LEAP Application deadline is May 3, 2013  

E-Print Network [OSTI]

Health Sciences LEAP 2013-2014 Application deadline is May 3, 2013 Make a successful "leap" from high school to college Find your place at the University! Prepares students for health professions majors & graduate programs Health professional shadowing, laboratory research & service learning Get

Tipple, Brett

298

Los Alamos National Laboratory Institutes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research interests are important to the Laboratory. Sponsoring, partnering with, and funding university professors and students in areas that are important to meet Laboratory...

299

Edward Daniels | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edward Daniels Edward Daniels Deputy Associate Laboratory Director - Energy and Global Security Mr. Daniels is currently a deputy associate laboratory director in the Energy...

300

Los Alamos National Laboratory support to IAEA environmental safeguards  

SciTech Connect (OSTI)

The nuclear and radiochemistry group provides sample preparation and analysis support to the International Atomic Energy Agency (IAEA) Network of Analytical Laboratories (NWAL). These analyses include both non-destructive (alpha and gamma-ray spectrometry) and destructive (thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry) methods. On a bi-annual basis the NWAL laboratories are invited to meet to discuss program evolution and issues. During this meeting each participating laboratory summarizes their efforts over the previous two years. This presentation will present Los Alamos National Laboratories efforts in support of this program. Data showing results from sample and blank analysis will be presented along with capability enhancement and issues that arose over the previous two years.

Steiner, Robert E [Los Alamos National Laboratory; Dry, Don E [Los Alamos National Laboratory; Roensch, Fred R [Los Alamos National Laboratory; Kinman, Will S [Los Alamos National Laboratory; Roach, Jeff L [Los Alamos National Laboratory; La Mont, Stephen P [Los Alamos National Laboratory

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Analytical Chemistry Division annual progress report for period ending December 31, 1988  

SciTech Connect (OSTI)

The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.

Not Available

1988-05-01T23:59:59.000Z

302

ON THE MOVE! The New Jersey Department of Agriculture Division of Animal Health and Animal Health Di-  

E-Print Network [OSTI]

chemicals, increasing the lab's capacity to respond to high consequential animal diseases like avian Public Health, Environmental, and Agricultural Laboratories (NJPHEAL) facility, located in Ewing, New: The Division of Animal Health maintains disease control programs to protect the health and well- being

Delgado, Mauricio

303

Ames Laboratory Hot Canyon | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRed Cross Blood Drive Hanford HealthLab,

304

Oversight Reports - Argonne National Laboratory | Department...  

Broader source: Energy.gov (indexed) [DOE]

Argonne National Laboratory Oversight Reports - Argonne National Laboratory August 24, 2012 Independent Activity Report, Argonne National Laboratory - July 2012 Operational...

305

Materials Characterization Laboratory (Fact Sheet), NREL (National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Characterization Laboratory may include: * PEMFC industry * Certification laboratories * Universities * Other National laboratories Contact Us If you are interested in...

306

274 CEREAL CHEMISTRY ANALYTICAL TECHNIQUES AND INSTRUMENTATION  

E-Print Network [OSTI]

274 CEREAL CHEMISTRY ANALYTICAL TECHNIQUES AND INSTRUMENTATION Evaluation of the Displacement Value). Production of fuel-grade ethanol, initiated in the late 1970's as a result of rising gasoline prices

307

Process Analytical Technology in biopharmaceutical manufacturing  

E-Print Network [OSTI]

Process Analytical Technology (PAT) became a well-defined concept within the pharmaceutical industry as a result of a major initiative by the FDA called "Pharmaceutical cGMPs for the 21st Century: A Risk-Based Approach." ...

Cosby, Samuel T. (Samuel Thomas)

2013-01-01T23:59:59.000Z

308

Development of Analytical Methodology for Neurochemical Investigations  

E-Print Network [OSTI]

on the fabrication and characterization of the novel carbon-based electrode material, pyrolyzed photoresist. The fabrication of pyrolyzed photoresist film (PPF) electrodes was optimized for use in microchip electrophoresis and analytical performance was characterized...

Fischer, David John

2010-01-25T23:59:59.000Z

309

Sensor for detecting and differentiating chemical analytes  

DOE Patents [OSTI]

A sensor for detecting and differentiating chemical analytes includes a microscale body having a first end and a second end and a surface between the ends for adsorbing a chemical analyte. The surface includes at least one conductive heating track for heating the chemical analyte and also a conductive response track, which is electrically isolated from the heating track, for producing a thermal response signal from the chemical analyte. The heating track is electrically connected with a voltage source and the response track is electrically connected with a signal recorder. The microscale body is restrained at the first end and the second end and is substantially isolated from its surroundings therebetween, thus having a bridge configuration.

Yi, Dechang (Metuchen, NJ); Senesac, Lawrence R. (Knoxville, TN); Thundat, Thomas G. (Knoxville, TN)

2011-07-05T23:59:59.000Z

310

Predicting Student Success using Analytics in Course Learning Management Systems  

SciTech Connect (OSTI)

Educational data analytics is an emerging discipline, concerned with developing methods for exploring the unique types of data that come from the educational context. For example, predicting college student performance is crucial for both the student and educational institutions. It can support timely intervention to prevent students from failing a course, increasing efficacy of advising functions, and improving course completion rate. In this paper, we present the efforts carried out at Oak Ridge National Laboratory (ORNL) toward conducting predictive analytics to academic data collected from 2009 through 2013 and available in one of the most commonly used learning management systems, called Moodle. First, we have identified the data features useful for predicting student outcomes such as students scores in homework assignments, quizzes, exams, in addition to their activities in discussion forums and their total GPA at the same term they enrolled in the course. Then, Logistic Regression and Neural Network predictive models are used to identify students as early as possible that are in danger of failing the course they are currently enrolled in. These models compute the likelihood of any given student failing (or passing) the current course. Numerical results are presented to evaluate and compare the performance of the developed models and their predictive accuracy.

Olama, Mohammed M [ORNL] [ORNL; Thakur, Gautam [ORNL] [ORNL; McNair, Wade [ORNL] [ORNL; Sukumar, Sreenivas R [ORNL] [ORNL

2014-01-01T23:59:59.000Z

311

Advanced Hydride Laboratory  

SciTech Connect (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-01-01T23:59:59.000Z

312

Advanced Hydride Laboratory  

SciTech Connect (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-12-31T23:59:59.000Z

313

An analytical investigation of the sideslip maneuver  

E-Print Network [OSTI]

. 1970 ABSTBACT An Analytical Investigation of the Sideslip Maneuver. (Augu. t 1970) John Mark Alvis, 8 . S . , Texas A&M College Directed by: Professor Alfred g. Crcnk An analytical study of a-high wing, single engine aircraft in a sideslip... maneuver is presented to determine the crosswind land- ing capabilities of light, single engine aircraft. Por the purpose of this study it is assumed that all aircraft of the same type studied have similar crosswind capabilities. A method is shown...

Alvis, John Mark

1970-01-01T23:59:59.000Z

314

Transfer Operators for Coupled Analytic Maps  

E-Print Network [OSTI]

We consider analytic coupled map lattices over $\\Z^d$ with exponentially decaying interaction. We introduce Banach spaces for the infinite-dimensional system that include measures with analytic, exponentially bounded finite dimensional marginals. Using residue calculus and `cluster expansion'-like techniques we define transfer operators on these Banach spaces. For these we get a unique probability measure that exhibits exponential decay of correlations.

Torsten Fischer; Hans Henrik Rugh

1997-11-18T23:59:59.000Z

315

Building up the elliptic flow: analytical insights  

E-Print Network [OSTI]

In this paper, we present a fully analytical description of the early-stage formation of elliptic flow in relativistic viscous hydrodynamics. We first construct an elliptic deformation of Gubser flow which is a boost invariant solution of the Navier-Stokes equation with a nontrivial transverse profile. We then analytically calculate the momentum anisotropy of the flow as a function of time and discuss the connection with the empirical formula by Bhalerao {\\it et al.} regarding the viscosity dependence of elliptic flow.

Yoshitaka Hatta; Bo-Wen Xiao

2014-07-15T23:59:59.000Z

316

Laboratory Shuttle Bus Routes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11 Laboratory I | NuclearLaboratoryRear

317

Laboratory Organization Chart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space controlAppraisalLaboratoryGet theLaboratory

318

An Analytical Study of Thermophoretic Particulate Deposition in Turbulent Pipe Flows  

SciTech Connect (OSTI)

The presence of a cold surface in non-isothermal pipe flows conveying submicron particles causes thermophoretic particulate deposition. In this study, an analytical method is developed to estimate thermophoretic particulate deposition efficiency and its effect on overall heat transfer coefficient of pipe flows in transition and turbulent flow regimes. The proposed analytical solution has been validated against experiments conducted at Oak Ridge National Laboratory. Exhaust gas carrying submicron soot particles was passed through pipes with a constant wall temperature and various designed boundary conditions to correlate transition and turbulent flow regimes. Prediction of the reduction in heat transfer coefficient and particulate mass deposited has been compared with experiments. The results of the analytical method are in a reasonably good agreement with experiments.

Abarham, Mehdi [University of Michigan; Hoard, John W. [University of Michigan; Assanis, Dennis [University of Michigan; Styles, Dan [Ford Motor Company; Sluder, Scott [ORNL; Storey, John Morse [ORNL

2010-01-01T23:59:59.000Z

319

Lawrence Berkeley National Laboratory Overview  

Office of Energy Efficiency and Renewable Energy (EERE)

Presentation about the history, structure, and projects of the Lawrence Berkeley National Laboratory.

320

Telco Laboratory Prof. Riccardo Melen  

E-Print Network [OSTI]

. Collaborations · Internal: OpenIT laboratory, GAS project · Industry: Lottomatica (security certifications), UGIS

Schettini, Raimondo

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Digital Technology Group Computer Laboratory  

E-Print Network [OSTI]

Digital Technology Group 1/20 Computer Laboratory Digital Technology Group Computer Laboratory William R Carson Building on the presentation by Francisco Monteiro Matlab #12;Digital Technology Group 2/20 Computer Laboratory Digital Technology Group Computer Laboratory The product: MATLAB¬ģ - The Language

Cambridge, University of

322

Hanford environmental analytical methods: Methods as of March 1990. Volume 3, Appendix A2-I  

SciTech Connect (OSTI)

This paper from the analytical laboratories at Hanford describes the method used to measure pH of single-shell tank core samples. Sludge or solid samples are mixed with deionized water. The pH electrode used combines both a sensor and reference electrode in one unit. The meter amplifies the input signal from the electrode and displays the pH visually.

Goheen, S.C.; McCulloch, M.; Daniel, J.L.

1993-05-01T23:59:59.000Z

323

Thermal Storage Materials Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Thermal Storage Materials Laboratory at the Energy Systems Integration Facility. The Thermal Storage Materials Laboratory at NREL's Energy Systems Integration Facility (ESIF) investigates materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar power (CSP) plants. Research objectives include the discovery and evaluation of candidate fluids and phase-change materials (PCM) to serve as thermal energy storage media in the temperature range of 300 C to 800 C. Knowledge of thermophysical properties such as melting point, heat of fusion, density, viscosity, thermal stability are essential for understanding how candidate materials could be deployed in CSP plants. The laboratory runs high-temperature instruments for the analysis of thermophysical properties. Small samples of candidate materials are prepared and characterized using differential scanning calorimetry, thermogravimetric analysis, and other specialized analytical methods. Instrumentation capabilities are being expanded to allow for analysis of samples up to 1,200 C. Higher temperature operation is one method to increase the efficiency and lower the cost of CSP systems.

Not Available

2011-10-01T23:59:59.000Z

324

BIOMEDICAL AND HEALTH Assessing the Environmental, Health  

E-Print Network [OSTI]

BIOMEDICAL AND HEALTH Assessing the Environmental, Health and Safety Impact of Nanoparticles- proaching the sensitivity limit for most instruments. #12;BIOMEDICAL AND HEALTH A colloidal nanoparticle

Magee, Joseph W.

325

E-Print Network 3.0 - animal health animal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

City -UMKC Laboratory Animal Research Core -LARC Summary: applicable training in animal care and use, occupational health and safety, equipment operation, and Standard... Status...

326

Energy Systems Laboratory Groundbreaking  

ScienceCinema (OSTI)

INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

2013-05-28T23:59:59.000Z

327

LABORATORY IV OSCILLATIONS  

E-Print Network [OSTI]

some of these laboratory problems before your lecturer addresses this material. It is very important, a stopwatch, a balance, a set of weights, and a computer with a video analysis application written in Lab with basic physics principles, show how you get an equation that gives the solution to the problem for each

Minnesota, University of

328

FUTURE LOGISTICS LIVING LABORATORY  

E-Print Network [OSTI]

FUTURE LOGISTICS LIVING LABORATORY Delivering Innovation The Future Logistics Living Lab is a collaboration between NICTA, SAP and Fraunhofer. Australia's first Living Lab provides a platform for industry and research to work together, to investigate real-world problems and to demonstrate innovative technology

Heiser, Gernot

329

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2009 Prepared by: National Institute to submit this fiscal year 2009 Technology Transfer Summary Report to the President and the Congress in accordance with 15 USC Sec 3710(g)(2) for an annual summary on the implementation of technology transfer

Perkins, Richard A.

330

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2008 Prepared by: National Institute to submit this fiscal year 2008 Technology Transfer Summary Report to the President and the Congress transfer authorities established by the Technology Transfer Commercialization Act of 2000 (P.L. 106

Perkins, Richard A.

331

Technical Report Computer Laboratory  

E-Print Network [OSTI]

process by examining the relationship between human perception of depth and three-dimensional computerTechnical Report Number 546 Computer Laboratory UCAM-CL-TR-546 ISSN 1476-2986 Depth perception-generated imagery (3D CGI). Depth is perceived when the human visual system combines various different sources

Haddadi, Hamed

332

Technical Report Computer Laboratory  

E-Print Network [OSTI]

for criminal activity. One general attack route to breach the security is to carry out physical attack afterTechnical Report Number 829 Computer Laboratory UCAM-CL-TR-829 ISSN 1476-2986 Microelectronic report is based on a dissertation submitted January 2009 by the author for the degree of Doctor

Haddadi, Hamed

333

BROOKHAVENNATIONAL LABORATORY Building 510  

E-Print Network [OSTI]

BROOKHAVENNATIONAL LABORATORY Building 510 P.O. Box 5000 Upton, NY 11973-5000 Phone 631 344 in C-AD buildings. Work Planning and Control for Experiments The intent of this agreement is to ensure or modification work on experiments performed by Physics personnel or guests in C-AD buildings. The Collider

Homes, Christopher C.

334

National Laboratory Contacts  

Broader source: Energy.gov [DOE]

Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

335

ECOLOGY LABORATORY BIOLOGY 341  

E-Print Network [OSTI]

Page 1 ECOLOGY LABORATORY BIOLOGY 341 Fall Semester 2008 Bighorn Sheep Rams at Bison Range National ecological data; and 3) oral and written communication skills. Thus, these ecology labs, and statistical analyses appropriate for ecological data. A major goal of this class will be for you to gain

Vonessen, Nikolaus

336

Sandia National Laboratories  

E-Print Network [OSTI]

Sandia National Laboratories 7011 East Ave. Livermore, CA 94550 Las Positas College 3000 Campus competitions scheduled for the California Bay Area. The Science Bowl is a Jeopardy-like highly competitive Area competitions: Date (all on Saturdays): Location: Host: Regional HIGH SCHOOL Science Bowls January

337

LABORATORY III POTENTIAL ENERGY  

E-Print Network [OSTI]

LABORATORY III POTENTIAL ENERGY Lab III - 1 In previous problems, you have been introduced to the concepts of kinetic energy, which is associated with the motion of an object, and internal energy, which is associated with the internal structure of a system. In this section, you work with another form of energy

Minnesota, University of

338

STRUCTURAL AND CHEMICAL STUDIES ON CdTe/CdS THIN FILM SOLAR CELLS WITH ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY  

E-Print Network [OSTI]

STRUCTURAL AND CHEMICAL STUDIES ON CdTe/CdS THIN FILM SOLAR CELLS WITH ANALYTICAL TRANSMISSION, A. N. Tiwari Thin Film Physics Group, Laboratory for Solid State Physics, Technopark ETH-Building, Technoparkstr. 1, CH-8005 Zurich, Switzerland ABSTRACT: CdTe/CdS thin £lm solar cells have been grown by closed

Romeo, Alessandro

339

BUSH, BLAKE MARSHALL. Analytical Evaluation of Concrete Penetration Modeling Techniques. (Under the direction of Dr. Emmett Sumner.)  

E-Print Network [OSTI]

. The experimental test data, provided by Sandia National Laboratories, comprises concrete targets of two compressive testing of the experimental concrete is used to calibrate the constitutive models in each analysis packageABSTRACT BUSH, BLAKE MARSHALL. Analytical Evaluation of Concrete Penetration Modeling Techniques

340

Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)  

SciTech Connect (OSTI)

This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575?C is covered for ash content.

Van Wychen, S.; Laurens, L. M. L.

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Determination of Total Carbohydrates in Algal Biomass: Laboratory Analytical Procedure (LAP)  

SciTech Connect (OSTI)

This procedure uses two-step sulfuric acid hydrolysis to hydrolyze the polymeric forms of carbohydrates in algal biomass into monomeric subunits. The monomers are then quantified by either HPLC or a suitable spectrophotometric method.

Van Wychen, S.; Laurens, L. M. L.

2013-12-01T23:59:59.000Z

342

A Sensitive Nitrate Ion-Selective Electrode from a Pencil Lead: An Analytical Laboratory Experiment  

E-Print Network [OSTI]

rural areas as a component of fertilizer and is a major component of concern in the effluent of wastewater- treatment

Bendikov, Tatyana; Harmon, T C

2005-01-01T23:59:59.000Z

343

Report on Inspection of Analytical Laboratories Oversight at the Strategic Petroleum Reserve, INS-9502  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReportNuclear Reactor Technology Subcommittee S.8,1

344

Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 3, Inorganic instrumental methods  

SciTech Connect (OSTI)

The methods cover: C in solutions, F (electrode), elements by atomic emission spectrometry, inorganic anions by ion chromatography, Hg in water/solids/sludges, As, Se, Bi, Pb, data calculations for SST (single shell tank?) samples, Sb, Tl, Ag, Pu, O/M ratio, ignition weight loss, pH value, ammonia (N), Cr(VI), alkalinity, U, C sepn. from soil/sediment/sludge, Pu purif., total N, water, C and S, surface Cl/F, leachable Cl/F, outgassing of Ge detector dewars, gas mixing, gas isotopic analysis, XRF of metals/alloys/compounds, H in Zircaloy, H/O in metals, inpurity extraction, reduced/total Fe in glass, free acid in U/Pu solns, density of solns, Kr/Xe isotopes in FFTF cover gas, H by combustion, MS of Li and Cs isotopes, MS of lanthanide isotopes, GC operation, total Na on filters, XRF spectroscopy QC, multichannel analyzer operation, total cyanide in water/solid/sludge, free cyanide in water/leachate, hydrazine conc., ICP-MS, {sup 99}Tc, U conc./isotopes, microprobe analysis of solids, gas analysis, total cyanide, H/N{sub 2}O in air, and pH in soil.

Not Available

1993-08-01T23:59:59.000Z

345

Program director`s report for the Office of Health and Environmental Research  

SciTech Connect (OSTI)

LBNL performs basic and applied research and develops technologies in support of the Department of Energy Office of Health and Environmental Research`s mission to explore and mitigate the long-term health and environmental consequences of energy use and to advance solutions to major medical challenges. The ability of the Laboratory to engage in this mission depends upon the strength of its core competencies. In addition, there are several key capabilities that are crosscutting, or underlie, many of the core competencies. They are: bioscience and biotechnology; environmental assessment and remediation; advanced detector systems; materials characterization and synthesis; chemical dynamics, catalysis, and surface science; advanced technologies for energy supply and energy efficiency; particle and photon beams; national research facilities; computation and information management; engineering design and fabrication technologies; and education of future scientists and engineers. Research in progress and major accomplishments are summarized for projects in analytical technology; environmental research; health effects; molecular carcinogenesis; general life sciences; human genome project; medical applications; and imaging of E-binding proteins.

NONE

1995-07-01T23:59:59.000Z

346

Health Physicist  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as a Health Physicist in the Facility Operations Division, Oak Ridge Office of Environmental Management (OREM). The selectee will be regarded as a...

347

Model and Analytic Processes for Export License Assessments  

SciTech Connect (OSTI)

This paper represents the Department of Energy Office of Nonproliferation Research and Development (NA-22) Simulations, Algorithms and Modeling (SAM) Program's first effort to identify and frame analytical methods and tools to aid export control professionals in effectively predicting proliferation intent; a complex, multi-step and multi-agency process. The report focuses on analytical modeling methodologies that alone, or combined, may improve the proliferation export control license approval process. It is a follow-up to an earlier paper describing information sources and environments related to international nuclear technology transfer. This report describes the decision criteria used to evaluate modeling techniques and tools to determine which approaches will be investigated during the final 2 years of the project. The report also details the motivation for why new modeling techniques and tools are needed. The analytical modeling methodologies will enable analysts to evaluate the information environment for relevance to detecting proliferation intent, with specific focus on assessing risks associated with transferring dual-use technologies. Dual-use technologies can be used in both weapons and commercial enterprises. A decision-framework was developed to evaluate which of the different analytical modeling methodologies would be most appropriate conditional on the uniqueness of the approach, data availability, laboratory capabilities, relevance to NA-22 and Office of Arms Control and Nonproliferation (NA-24) research needs and the impact if successful. Modeling methodologies were divided into whether they could help micro-level assessments (e.g., help improve individual license assessments) or macro-level assessment. Macro-level assessment focuses on suppliers, technology, consumers, economies, and proliferation context. Macro-level assessment technologies scored higher in the area of uniqueness because less work has been done at the macro level. An approach to developing testable hypotheses for the macro-level assessment methodologies is provided. The outcome of this works suggests that we should develop a Bayes Net for micro-level analysis and continue to focus on Bayes Net, System Dynamics and Economic Input/Output models for assessing macro-level problems. Simultaneously, we need to develop metrics for assessing intent in export control, including the risks and consequences associated with all aspects of export control.

Thompson, Sandra E.; Whitney, Paul D.; Weimar, Mark R.; Wood, Thomas W.; Daly, Don S.; Brothers, Alan J.; Sanfilippo, Antonio P.; Cook, Diane; Holder, Larry

2011-09-29T23:59:59.000Z

348

BUSINESS ANALYTICS CONCENTRATION FOR UNDERGRADUATES The business analytics concentration, like a major, focuses on using information to develop business  

E-Print Network [OSTI]

their business models. Possible Job Titles Data scientist, business analytics specialist, customer relationshipBUSINESS ANALYTICS CONCENTRATION FOR UNDERGRADUATES The business analytics concentration, like a major, focuses on using information to develop business insights and influence decision

Salama, Khaled

349

September 2013 Laboratory Safety Manual Appendix B -Glossary  

E-Print Network [OSTI]

Appendix B - Glossary Laboratory Safety Manual UW Environmental Health and Safety ANSI American National and public needs for national consensus standards and coordinates development of such standards. Many ANSI, etc. (ANSI, 1819 L Street NW, Suite 600, Washington DC 20036, 202-293-8020, http://www.ansi

Wilcock, William

350

September 2013 Laboratory Safety Manual Section 7 -Safety Training  

E-Print Network [OSTI]

September 2013 Laboratory Safety Manual Section 7 - Safety Training UW Environmental Health and Safety Page 7-1 Section 7 - Safety Training Contents A. SAFETY TRAINING REQUIREMENTS ......................................................7-1 B. EH&S SAFETY TRAINING AND RECORDS ..............................................7-1 C

Wilcock, William

351

Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document  

SciTech Connect (OSTI)

In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today`s design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building.

NONE

1997-02-04T23:59:59.000Z

352

College of Health Sciences Health Sciences Connection  

E-Print Network [OSTI]

with a variety of topics including substance abuse, worksite health promotion, health care cost containment the importance of health care as well as the promotion, protection and maintenance of health. Without a doubt things in the area of health promotion and health care. As the COHS look to the future, we need to take

Barrash, Warren

353

Global Health Research | 2 Global Health Research  

E-Print Network [OSTI]

Global Health Research | 2 Global Health Research Supporting researchers in low- and middle-income countries to carry out health- related research within their own countries. Gl bal Health #12;3 | Global Health Research #12;Global Health Research | 4 We are a global charitable foundation dedicated

Rambaut, Andrew

354

HEALTH ECONOMICS Health Econ. (in press)  

E-Print Network [OSTI]

health services/economics; costs and cost analysis; health services/utilization; quality of health careHEALTH ECONOMICS Health Econ. (in press) Published online in Wiley InterScience (www and ROBERT BLACKb a Department of Population and Family Health Sciences, Johns Hopkins Bloomberg School

Scharfstein, Daniel

355

Environmental Health and Safety Chemical Hygiene Laboratory Assessment  

E-Print Network [OSTI]

and intact labels. Transportation in cylinder cart. Excessive amount of flammable gases Excessive amount of oxidizing gases Excessive amount of toxic gases #12;General Appearances / Housekeeping # Compliance Items containers. Excess empty chemical containers. Containers properly labeled and intact. Flammable Liquid

356

Sandia National Laboratories: Goal 2: Development of Prognostics and Health  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvideAidsCanal,

357

Environment, Safety, Health, and Assurance | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: NetworkingEnvironment Environment Events Environment,About

358

Sandia National Laboratories: Structural health-monitoring system  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandards Solar ThermochemicalStorageStructural

359

Sandia National Laboratories: Public Health Service Financial Conflict of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP ResourcesSyntheticChemicalInterest Policy

360

Remote Sensing Laboratory - RSL  

SciTech Connect (OSTI)

One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

None

2014-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Remote Sensing Laboratory - RSL  

ScienceCinema (OSTI)

One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

None

2015-01-09T23:59:59.000Z

362

Division of Laboratory Sciences  

E-Print Network [OSTI]

for Disease Control and Prevention National Center for Environmental Health #12;Centers for Disease Control. At this writing, our scientists have developed methods for measuring more than 450 environmental chemicals the relation between genetics and environmental exposures as factors in the cause of disease, and we

363

National Renewable Energy Laboratory Solar Radiation Research Laboratory  

E-Print Network [OSTI]

National Renewable Energy Laboratory Solar Radiation Research Laboratory (SRRL) Instrument of Energy (DoE). Objectives · Provide Improved Methods for Radiometer Calibrations · Develop a Solar Energy Resources · Offer Unique Training Methods for Solar Monitoring Network Design, Operation

364

Princeton Plasma Physics Laboratory:  

SciTech Connect (OSTI)

This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

Phillips, C.A. (ed.)

1986-01-01T23:59:59.000Z

365

News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutronsNew

366

ARM - Laboratory Partners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Related Information CollaborationsOrganizationLaboratory

367

Neutron noise calculations using the Analytical Nodal Method and comparisons with analytical solutions  

E-Print Network [OSTI]

Neutron noise calculations using the Analytical Nodal Method and comparisons with analytical Available online 28 December 2010 Keywords: Neutron noise ANM Power reactor approximation 2-Group theory Diffusion theory a b s t r a c t In this study, the neutron noise, i.e. the stationary fluctuations

Demazière, Christophe

368

Analytical Chemistry Core Capability Assessment - Preliminary Report  

SciTech Connect (OSTI)

The concept of 'core capability' can be nebulous one. Even at a fairly specific level, where core capability equals maintaining essential services, it is highly dependent upon the perspective of the requestor. Samples are submitted to analytical services because the requesters do not have the capability to conduct adequate analyses themselves. Some requests are for general chemical information in support of R and D, process control, or process improvement. Many analyses, however, are part of a product certification package and must comply with higher-level customer quality assurance requirements. So which services are essential to that customer - just those for product certification? Does the customer also (indirectly) need services that support process control and improvement? And what is the timeframe? Capability is often expressed in terms of the currently utilized procedures, and most programmatic customers can only plan a few years out, at best. But should core capability consider the long term where new technologies, aging facilities, and personnel replacements must be considered? These questions, and a multitude of others, explain why attempts to gain long-term consensus on the definition of core capability have consistently failed. This preliminary report will not try to define core capability for any specific program or set of programs. Instead, it will try to address the underlying concerns that drive the desire to determine core capability. Essentially, programmatic customers want to be able to call upon analytical chemistry services to provide all the assays they need, and they don't want to pay for analytical chemistry services they don't currently use (or use infrequently). This report will focus on explaining how the current analytical capabilities and methods evolved to serve a variety of needs with a focus on why some analytes have multiple analytical techniques, and what determines the infrastructure for these analyses. This information will be useful in defining a roadmap for what future capability needs to look like.

Barr, Mary E. [Los Alamos National Laboratory; Farish, Thomas J. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

369

Notes 04. Elements of analytical dynamics.  

E-Print Network [OSTI]

MEEN 617 - Handout 4 Elements of Analytical Mechanics ? 2008 Luis San Andr?s 1 MEEN 617 - Handout 4a ELEMENTS OF ANALYTICAL MECHANICS Newton's laws (Euler's fundamental principles of motion) are formulated for a single particle and easily... Mechanics ? 2008 Luis San Andr?s 2 WORK AND ENERGY FOR A SINGLE PARTICLE Consider a particle (point mass) moving along the curve C under the action of a force F. The position of the particle at any time is given by the position vector r #0;K...

San Andres, Luis

2008-01-01T23:59:59.000Z

370

222-S Laboratory Quality Assurance Plan. Revision 1  

SciTech Connect (OSTI)

This Quality Assurance Plan provides,quality assurance (QA) guidance, regulatory QA requirements (e.g., 10 CFR 830.120), and quality control (QC) specifications for analytical service. This document follows the U.S Department of Energy (DOE) issued Hanford Analytical Services Quality Assurance Plan (HASQAP). In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. Quality assurance elements required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAMS-004) and Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (QAMS-005) from the US Environmental Protection Agency (EPA) are covered throughout this document. A quality assurance index is provided in the Appendix A. This document also provides and/or identifies the procedural information that governs laboratory operations. The personnel of the 222-S Laboratory and the Standards Laboratory including managers, analysts, QA/QC staff, auditors, and support staff shall use this document as guidance and instructions for their operational and quality assurance activities. Other organizations that conduct activities described in this document for the 222-S Laboratory shall follow this QA/QC document.

Meznarich, H.K.

1995-07-31T23:59:59.000Z

371

History of the Laboratory Protection Division Oak Ridge National Laboratory  

E-Print Network [OSTI]

i i #12;#12;History of the Laboratory Protection Division Oak Ridge National Laboratory 1942, Emergency Preparedness Date Published: March 1992 Prepared by the Oak Ridge National Laboratory Oak Ridge stations should be tucked comfortably away in isolated places. As such, the Oak Ridge area seemed perfect

372

Smart Grid Integration Laboratory  

SciTech Connect (OSTI)

The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation ‚?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU‚??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory‚??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

Wade Troxell

2011-09-30T23:59:59.000Z

373

Visual Analytics at the Pacific Northwest  

E-Print Network [OSTI]

Laboratory has a long history of information visualization research leading to high-impact tools for its portfolio analysis, energy grid reliability, environmental safety, training, and law enforcement. #12;FOCUS

374

Laboratories to Explore, Explain VLBACHANDRA  

E-Print Network [OSTI]

Princeton Plasma Physics Laboratory Sandia National Laboratory Stone and Webster The Boeing Company on FIRE and fusion science accessible and up to date. A steady stream of about 150 visitors per week log

375

Laboratory compaction of cohesionless sands  

E-Print Network [OSTI]

on the maximum dry unit weight during compaction. Three different laboratory compaction methods were used: 1) Standard Proctor', 2) Modified Proctor; and 3) Vibrating hammer. The effects of the grain size distribution, particle shape and laboratory compaction...

Delphia, John Girard

1998-01-01T23:59:59.000Z

376

Laboratory Directed Research and Development  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

2001-01-08T23:59:59.000Z

377

Laboratory Directed Research and Development  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

2006-04-19T23:59:59.000Z

378

100-B/C Target Analyte List Development for Soil  

SciTech Connect (OSTI)

This report documents the process used to identify source area target analytes in support of the 100-B/C remedial investigation/feasibility study addendum to DOE/RL-2008-46. This report also establishes the analyte exclusion criteria applicable for 100-B/C use and the analytical methods needed to analyze the target analytes.

R.W. Ovink

2010-03-18T23:59:59.000Z

379

CRAIG G. FRASER"' LAGRANGE'S ANALYTICAL MATHEMATICS,  

E-Print Network [OSTI]

CRAIG G. FRASER"' LAGRANGE'S ANALYTICAL MATHEMATICS, ITS CARTESIAN ORIGINS AND RECEPTION IN COMTE to the mathematical methods developed in the preceding century by Euler and Lagrange. In the course of his discussion. . . . All his mathematical compositions are remarkable for a singular elegance, by the symmetry of forms

Fraser, Craig

380

NERSC Analytics Program Status and Update  

E-Print Network [OSTI]

spanning all aspects of analytics, high performance computing, and many science domains. · SGI Altix ­ 32, application, and deployment of a diverse array of technologies spanning the domains of high performance computing, data management, data analysis and visualization, and workflow management. #12;DOE CGF April 29

Geddes, Cameron Guy Robinson

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Analytical Study of Thermonuclear Reaction Probability Integrals  

E-Print Network [OSTI]

An analytic study of the reaction probability integrals corresponding to the various forms of the slowly varying cross-section factor $S(E)$ is attempted. Exact expressions for reaction probability integrals are expressed in terms of the extended gamma functions.

M. A. Chaudhry; H. J. Haubold; A. M. Mathai

2000-01-16T23:59:59.000Z

382

MODIFIED KREIN FORMULA AND ANALYTIC PERTURBATION PROCEDURE  

E-Print Network [OSTI]

mathematical problem concerning perturbation of embedded eigen- values. For practical needs consisting of a single compact quantum well and few semi-infinite wires attached to it. In the theoretical-body scattering problem. In this paper we suggest a semi-analytic perturbation procedure which permits

383

Parallel Matlab MIT Lincoln Laboratory  

E-Print Network [OSTI]

Slide-1 Parallel Matlab MIT Lincoln Laboratory Parallel Matlab: The Next Generation Dr. Jeremy Lincoln LaboratorySlide-2 Parallel Matlab · Motivation · Challenges Outline · Introduction · Approach · Performance Results · Future Work and Summary #12;MIT Lincoln LaboratorySlide-3 Parallel Matlab Motivation: Do

Kepner, Jeremy

384

Humidity requirements in WSCF Laboratories  

SciTech Connect (OSTI)

The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment.

Evans, R.A.

1994-10-01T23:59:59.000Z

385

2009 Site environmental reportiii Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER)  

E-Print Network [OSTI]

Organization for Standardization (ISO) 14001 Standard (for the Laboratory's Environmental Management System DRAFT (for the Laboratory's Safety and Health Pro- gram). Both standards require an organization and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented

386

Proceedings of 2014 INFORMS Workshop on Data Mining and Analytics (DMA 2014) D. Sundaramoorthi, H. Yang, eds.  

E-Print Network [OSTI]

Proceedings of 2014 INFORMS Workshop on Data Mining and Analytics (DMA 2014) D. Sundaramoorthi, H. Yang, eds. 1 PREDICTING USER ENGAGEMENT IN ONLINE HEALTH COMMUNITIES BASED ON SOCIAL SUPPORT ACTIVITIES. Using a case study of an OHC among breast cancer survivors, we first illustrated that members' levels

Street, Nick

387

Purdue Hydrogen Systems Laboratory  

SciTech Connect (OSTI)

The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

2011-12-28T23:59:59.000Z

388

Princeton Plasma Physics Laboratory  

SciTech Connect (OSTI)

This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

Not Available

1990-01-01T23:59:59.000Z

389

rfry | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrectiveResearchrfry Ames Laboratory

390

tdball | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgramApplication ofU Ctdball Ames Laboratory

391

xinyufu | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent3,19963xinyufu Ames Laboratory Profile

392

Naval Civil Engineering Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn Cyber Security NuclearNewNatural GasNatureNaval

393

News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutronsNew researchInNewsNewsCriticalNews

394

News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutronsNew researchInNewsNewsCriticalNewsNews

395

News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutronsNewNews & Events Events Press

396

News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutronsNewNews & Events Events PressNews

397

News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutronsNewNews & Events Events

398

Laboratory, Valles Caldera sponsor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11 Laboratory I |Season of Giving

399

Lawrence Livermore National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors|UpcomingElectrolyteLaboratory Home

400

Operations | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat CornellInternships,(SC) Laboratories ¬Ľ OPM Home

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Laboratory Director Search | NREL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission Statement TitanProposalsLaboratory Director Search

402

Sandia National Laboratories: RITE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test CenterCMCNational LaboratoriesRF &RITE

403

Sandia National Laboratories: RO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test CenterCMCNational LaboratoriesRFRO ECIS-UNM:

404

Sandia National Laboratories: RTC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test CenterCMCNational LaboratoriesRFRO

405

baugie | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, partReview64,783 56,478Tiddbaugie Ames Laboratory

406

eguidez | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storageconvert 2S~ Governmenteguidez Ames Laboratory

407

grootvel | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors | National91 Agrootvel Ames Laboratory

408

hcelliott | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors |hcelliott Ames Laboratory Profile

409

herrman | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors |hcelliott Ames Laboratory

410

mwiley | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J. NoremImwiley Ames Laboratory Profile

411

naa | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J. NoremImwiley Amesnaa Ames Laboratory

412

nbarbee | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J.nbarbee Ames Laboratory Profile Nicole

413

Partners | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizingToolstoPartnering MechanismsPartners andPartners

414

Oak Ridge National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access toSpeedingScientific andScientific NewsHome

415

Oak Ridge National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access toSpeedingScientific andScientific NewsHomeAbout

416

Ombudsman | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access1 TechnicalOil inventories inOmbuds

417

Organizations | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizing I/O performance onAbout MissionOrganizations

418

Overview | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizing I/O performanceOtherOutreach

419

Sandia National Laboratories: Lumenworks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National Laboratory ConsortiumLumenworks

420

Sandia National Laboratories: Luxim  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National Laboratory

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sandia National Laboratories: MASK  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National LaboratoryEngineersMASK

422

Sandia National Laboratories: MD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National LaboratoryEngineersMASKMD CINT

423

Sandia National Laboratories: MEMS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National LaboratoryEngineersMASKMD

424

Sandia National Laboratories: MEPV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos National LaboratoryEngineersMASKMDMEPV

425

Sustainability | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout ¬ĽLabSustainability Ames Laboratory is committed to

426

Nuclear Materials Characterization in the Materials and Fuels Complex Analytical Hot Cells  

SciTech Connect (OSTI)

As energy prices skyrocket and interest in alternative, clean energy sources builds, interest in nuclear energy has increased. This increased interest in nuclear energy has been termed the ďNuclear RenaissanceĒ. The performance of nuclear fuels, fuels and reactor materials and waste products are becoming a more important issue as the potential for designing new nuclear reactors is more immediate. The Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Analytical Laboratory Hot Cells (ALHC) are rising to the challenge of characterizing new reactor materials, byproducts and performance. The ALHC is a facility located near Idaho Falls, Idaho at the INL Site. It was built in 1958 as part of the former Argonne National Laboratory West Complex to support the operation of the second Experimental Breeder Reactor (EBR-II). It is part of a larger analytical laboratory structure that includes wet chemistry, instrumentation and radiochemistry laboratories. The purpose of the ALHC is to perform analytical chemistry work on highly radioactive materials. The primary work in the ALHC has traditionally been dissolution of nuclear materials so that less radioactive subsamples (aliquots) could be transferred to other sections of the laboratory for analysis. Over the last 50 years though, the capabilities within the ALHC have also become independent of other laboratory sections in a number of ways. While dissolution, digestion and subdividing samples are still a vitally important role, the ALHC has stand alone capabilities in the area of immersion density, gamma scanning and combustion gas analysis. Recent use of the ALHC for immersion density shows that extremely fine and delicate operations can be performed with the master-slave manipulators by qualified operators. Twenty milligram samples were tested for immersion density to determine the expansion of uranium dioxide after irradiation in a nuclear reactor. The data collected confirmed modeling analysis with very tight precision. The gamma scanning equipment in the ALHC has taken on a new role also as a micro-gamma scanning system and has been put into service; allowing the linear and radial counting of a spent fuel segment to determine reaction characteristics within a small section of nuclear fuel. The nitrogen, oxygen and carbon analysis allows the identification of these impurities in spent nuclear fuel and also most oxides, nitrides, carbides, C-14 and tritium.

Michael Rodriquez

2009-03-01T23:59:59.000Z

427

Mobile Energy Laboratory Procedures  

SciTech Connect (OSTI)

Pacific Northwest Laboratory (PNL) has been tasked to plan and implement a framework for measuring and analyzing the efficiency of on-site energy conversion, distribution, and end-use application on federal facilities as part of its overall technical support to the US Department of Energy (DOE) Federal Energy Management Program (FEMP). The Mobile Energy Laboratory (MEL) Procedures establish guidelines for specific activities performed by PNL staff. PNL provided sophisticated energy monitoring, auditing, and analysis equipment for on-site evaluation of energy use efficiency. Specially trained engineers and technicians were provided to conduct tests in a safe and efficient manner with the assistance of host facility staff and contractors. Reports were produced to describe test procedures, results, and suggested courses of action. These reports may be used to justify changes in operating procedures, maintenance efforts, system designs, or energy-using equipment. The MEL capabilities can subsequently be used to assess the results of energy conservation projects. These procedures recognize the need for centralized NM administration, test procedure development, operator training, and technical oversight. This need is evidenced by increasing requests fbr MEL use and the economies available by having trained, full-time MEL operators and near continuous MEL operation. DOE will assign new equipment and upgrade existing equipment as new capabilities are developed. The equipment and trained technicians will be made available to federal agencies that provide funding for the direct costs associated with MEL use.

Armstrong, P.R.; Batishko, C.R.; Dittmer, A.L.; Hadley, D.L.; Stoops, J.L.

1993-09-01T23:59:59.000Z

428

CERTS Microgrid Laboratory Test Bed  

SciTech Connect (OSTI)

The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2) an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources. These techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations,and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. The results from these tests are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or more of the CERTS Microgrid concepts. Future planned microgrid work involves unattended continuous operation of the microgrid for 30 to 60 days to determine how utility faults impact the operation of the microgrid and to gage the power quality and reliability improvements offered by microgrids.

Eto, Joe; Lasseter, Robert; Schenkman, Ben; Stevens, John; Klapp, Dave; Volkommer, Harry; Linton, Ed; Hurtado, Hector; Roy, Jean

2009-06-18T23:59:59.000Z

429

College of Health Sciences Health Sciences Connection  

E-Print Network [OSTI]

College of Health Sciences Health Sciences Connection 1 Dean's Message College of Health Sciences Health Sciences Connection April 2011 Volume IX (4) The end of the spring semester is quickly approaching accreditation review. Similarly, the Environmental and Occupational Health program also had a very positive

Barrash, Warren

430

College of Health Sciences Health Sciences Connection  

E-Print Network [OSTI]

, College of Health Sciences. ∑ "Innovative Ways to Address Idaho's Healthcare Needs: Long-Term CareCollege of Health Sciences Health Sciences Connection 1 Dean's Message College of Health Sciences Health Sciences Connection February 2011 Volume IX (3) Since the last COHS newsletter, the faculty

Barrash, Warren

431

College of Health Sciences Health Sciences Connection  

E-Print Network [OSTI]

today. In politics, in education, in health care, in society in general we are so turned inwardCollege of Health Sciences Health Sciences Connection 1 Dean's Message College of Health Sciences Health Sciences Connection April/May 2010 Volume VIII (8) WOW! Spring semester of 2010 is almost

Barrash, Warren

432

Students' Health Service Hampton House Health Centre  

E-Print Network [OSTI]

.bristol.ac.uk/infectious-diseases/meningitis www.bristol.ac.uk/infectious-diseases/mumps www.bristol.ac.uk/infectious-diseases/measles. Health care / Health care Student support Health care Registering with a doctor It is important that you register' Health Service The Students' Health Service (SHS) offers full general practice care, including: ∑travel

Bristol, University of

433

Ames Laboratory annual site environmental report, calendar year 1996  

SciTech Connect (OSTI)

This report summarizes the environmental status of Ames Laboratory for calendar year 1996. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies twelve buildings owned by the Department of Energy (DOE). The Laboratory also leases space in ISU owned buildings. Laboratory activities involve less than ten percent of the total chemical use and approximately one percent of the radioisotope use on the ISU campus. In 1996, the Office of Assurance and Assessment merged with the Environment, Safety and Health Group forming the Environment, Safety, Health and Assurance (ESH and A) office. In 1996, the Laboratory accumulated and disposed of wastes under US Environmental Protection Agency (EPA) issued generator numbers. Ames Laboratory submitted a Proposed Site Treatment Plan to EPA in December 1995. This plan complied with the Federal Facilities Compliance Act (FFCA). It was approved by EPA in January 1996. The consent agreement/consent order was issued in February 1996. Pollution awareness, waste minimization and recycling programs, implemented in 1990 and updated in 1994, continued through 1996. Included in these efforts were a waste white paper and green computer paper recycling program. Ames Laboratory also continued to recycle salvageable metal and used oil, and it recovered freon for recycling. All of the chemical and nearly all of the radiological legacy wastes were properly disposed by the end of 1996. Additional radiological legacy waste will be properly disposed during 1997.

NONE

1998-04-01T23:59:59.000Z

434

Independent Oversight Review, Oak Ridge National Laboratory ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Laboratory - January 2013 Independent Oversight Review, Oak Ridge National Laboratory - January 2013 January 2013 Review of the Oak Ridge National Laboratory High Flux...

435

Oversight Reports - Oak Ridge National Laboratory | Department...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory Oversight Reports - Oak Ridge National Laboratory April 24, 2014 Independent Oversight Targeted Review, Oak Ridge National Laboratory - April 2014...

436

An Analytical Solution on Convective and Diffusive Transport of Analyte in Laminar Flow of Microfluidic Slit  

E-Print Network [OSTI]

Microfluidic devices could find applications in many areas, such as BioMEMs, miniature fuel cells and microfluidic cooling of electronic circuitry. One of the important considerations of microfluidic device in analytical ...

Chen, X.

437

An analytics approach to hypertension treatment  

E-Print Network [OSTI]

Hypertension is a major public health issue worldwide, affecting more than a third of the adult population and increasing the risk of myocardial infarction, heart failure, stroke, and kidney disease. Current clinical ...

Epstein, Christina (Christina Lynn)

2014-01-01T23:59:59.000Z

438

ORISE: Health Literacy Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials related to personal health, as well as navigate the health system. To assist government agencies and organizations educate populations facing health disparities, the...

439

Analytic solutions of topologically disjoint systems  

E-Print Network [OSTI]

We describe a procedure to solve an up to $2N$ problem where the particles are separated topologically in $N$ groups with at most two particles in each. Arbitrary interactions are allowed between the (two) particles within one group. All other interactions are approximated by harmonic oscillator potentials. The problem is first reduced to an analytically solvable $N$-body problem and $N$ independent two-body problems. We calculate analytically spectra, wave functions, and normal modes for both the inverse square and delta-function two-body interactions. In particular, we calculate separation energies between two strings of particles. We find that the string separation energy increases with $N$ and interaction strength.

J. R. Armstrong; A. G. Volosniev; D. V. Fedorov; A. S. Jensen; N. T. Zinner

2015-01-29T23:59:59.000Z

440

Electrospray ion source with reduced analyte electrochemistry  

DOE Patents [OSTI]

An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

Kertesz, Vilmos; Van Berkel, Gary J

2013-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Analytical model for Stirling cycle machine design  

E-Print Network [OSTI]

In order to study further the promising free piston Stirling engine architecture, there is a need of an analytical thermodynamic model which could be used in a dynamical analysis for preliminary design. To aim at more realistic values, the models have to take into account the heat losses and irreversibilities on the engine. An analytical model which encompasses the critical flaws of the regenerator and furthermore the heat exchangers effectivenesses has been developed. This model has been validated using the whole range of the experimental data available from the General Motor GPU-3 Stirling engine prototype. The effects of the technological and operating parameters on Stirling engine performance have been investigated. In addition to the regenerator influence, the effect of the cooler effectiveness is underlined.

Formosa, Fabien; 10.1016/j.enconman.2010.02.010

2013-01-01T23:59:59.000Z

442

Electrospray ion source with reduced analyte electrochemistry  

DOE Patents [OSTI]

An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

2011-08-23T23:59:59.000Z

443

Hanford Site background: Part 1, Soil background for nonradioactive analytes. Revision 1, Volume 1  

SciTech Connect (OSTI)

The determination of soil background is one of the most important activities supporting environmental restoration and waste management on the Hanford Site. Background compositions serve as the basis for identifying soil contamination, and also as a baseline in risk assessment processes used to determine soil cleanup and treatment levels. These uses of soil background require an understanding of the extent to which analytes of concern occur naturally in the soils. This report documents the results of sampling and analysis activities designed to characterize the composition of soil background at the Hanford Site, and to evaluate the feasibility for use as Sitewide background. The compositions of naturally occurring soils in the vadose Zone have been-determined for-nonradioactive inorganic and organic analytes and related physical properties. These results confirm that a Sitewide approach to the characterization of soil background is technically sound and is a viable alternative to the determination and use of numerous local or area backgrounds that yield inconsistent definitions of contamination. Sitewide soil background consists of several types of data and is appropriate for use in identifying contamination in all soils in the vadose zone on the Hanford Site. The natural concentrations of nearly every inorganic analyte extend to levels that exceed calculated health-based cleanup limits. The levels of most inorganic analytes, however, are well below these health-based limits. The highest measured background concentrations occur in three volumetrically minor soil types, the most important of which are topsoils adjacent to the Columbia River that are rich in organic carbon. No organic analyte levels above detection were found in any of the soil samples.

Not Available

1993-04-01T23:59:59.000Z

444

Visual Analytics and Storytelling through Video  

SciTech Connect (OSTI)

This paper supplements a video clip submitted to the Video Track of IEEE Symposium on Information Visualization 2005. The original video submission applies a two-way storytelling approach to demonstrate the visual analytics capabilities of a new visualization technique. The paper presents our video production philosophy, describes the plot of the video, explains the rationale behind the plot, and finally, shares our production experiences with our readers.

Wong, Pak C.; Perrine, Kenneth A.; Mackey, Patrick S.; Foote, Harlan P.; Thomas, Jim

2005-10-31T23:59:59.000Z

445

Tiger Team assessment of the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

Not Available

1991-08-01T23:59:59.000Z

446

University of Rochester University Health Service  

E-Print Network [OSTI]

-related information, mental health related care, or substance abuse diagnosis and treatment information requires one.) Healthcare Insurance coverage Personal Other Transfer of Care TYPE OF RECORDS REQUESTED illness/injury Date(s) of treatment Treatment summary (includes history/physical, laboratory tests & x

Mahon, Bradford Z.

447

Environmental Health & Safety Office of Radiological Safety  

E-Print Network [OSTI]

Environmental Health & Safety Office of Radiological Safety Page 1 of 2 FORM LU-1 Revision 01 1 safety training and submit this registration to the LSO prior to use of Class 3B or 4 lasers. A copy will be returned to the Laser Supervisor to be filed in the Laboratory Laser Safety Notebook. Both the Laser

Houston, Paul L.

448

Creating the laboratory`s future; A strategy for Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

``Creating The Laboratory`s Future`` describes Livermore`s roles and responsibilities as a Department of Energy (DOE) national laboratory and sets the foundation for decisions about the Laboratory`s programs and operations. It summarizes Livermore`s near-term strategy, which builds on recent Lab achievements and world events affecting their future. It also discusses their programmatic and operational emphases and highlights program areas that the authors believe can grow through application of Lab science and technology. Creating the Laboratory`s Future reflects their very strong focus on national security, important changes in the character of their national security work, major efforts are under way to overhaul their administrative and operational systems, and the continuing challenge of achieving national consensus on the role of the government in energy, environment, and the biosciences.

NONE

1997-09-01T23:59:59.000Z

449

Los Alamos National Laboratory  

SciTech Connect (OSTI)

The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

Dogliani, Harold O [Los Alamos National Laboratory

2011-01-19T23:59:59.000Z

450

ELECTRONICS UPGRADE TO THE SAVANNAH RIVER NATIONAL LABORATORY COULOMETER FOR PLUTONIUM AND NEPTUNIUM ASSAY  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has the analytical measurement capability to perform high-precision plutonium concentration measurements by controlled-potential coulometry. State-of-the-art controlled-potential coulometers were designed and fabricated by the Savannah River National Laboratory and installed in the Analytical Laboratories process control laboratory. The Analytical Laboratories uses coulometry for routine accountability measurements of and for verification of standard preparations used to calibrate other plutonium measurement systems routinely applied to process control, nuclear safety, and other accountability applications. The SRNL Coulometer has a demonstrated measurement reliability of {approx}0.05% for 10 mg samples. The system has also been applied to the characterization of neptunium standard solutions with a comparable reliability. The SRNL coulometer features: a patented current integration system; continuous electrical calibration versus Faraday's Constants and Ohm's Law; the control-potential adjustment technique for enhanced application of the Nernst Equation; a wide operating room temperature range; and a fully automated instrument control and data acquisition capability. Systems have been supplied to the International Atomic Energy Agency (IAEA), Russia, Japanese Atomic Energy Agency (JAEA) and the New Brunswick Laboratory (NBL). The most recent vintage of electronics was based on early 1990's integrated circuits. Many of the components are no longer available. At the request of the IAEA and the Department of State, SRNL has completed an electronics upgrade of their controlled-potential coulometer design. Three systems have built with the new design, one for the IAEA which was installed at SAL in May 2011, one system for Los Alamos National Laboratory, (LANL) and one for the SRS Analytical Laboratory. The LANL and SRS systems are undergoing startup testing with installation scheduled for this summer.

Cordaro, J.; Holland, M.; Reeves, G.; Nichols, S.; Kruzner, A.

2011-07-08T23:59:59.000Z

451

Experimental and analytical study of rotating cavitation  

SciTech Connect (OSTI)

This paper describes experimental and analytical results of rotating cavitation. There are four major sections in this paper. The first section presents the main characteristics of rotating cavitation which was found in the inducer test using a water tunnel. The second section describes the rotating cavitation which occurred in the development test of an LE-7 liquid oxygen pump for the H-II rocket. Also described in this section is how the rotating cavitation was suppressed. The rotating cavitation was the cause of both super synchronous shaft vibration and an unstable head coefficient curve. The third section presents how the theory of rotating cavitation was developed. The final section shows the measured cavitation compliance and mass flow gain factor of the LE-7 pump inducer for comparison of the experimental and analytical results of the rotating cavitation of the LE-7 pump inducer. Almost all the information presented in this paper has already been reported by Kamijo et al. (1977, 1980, 1993, 1993) and by Shimura (1993). In the present paper, the authors attempt to combine and give a clear overview of the experimental and analytical results described in the previous papers to systematically show their experience and findings on rotating cavitation.

Kamijo, Kenjiro; Shimura, Takashi; Tsujimoto, Yoshinobu [National Aerospace Lab., Miyagi (Japan). Kakuda Research Center

1994-12-31T23:59:59.000Z

452

Sandia National Laboratories: Grand Challenge Laboratory-Directed...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grand Challenge Laboratory-Directed Research and Development project Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments On March 3, 2015, in...

453

The procedures manual of the Environmental Measurements Laboratory. Volume 1, 28. edition  

SciTech Connect (OSTI)

This manual covers procedures and technology currently in use at the Environmental Measurements Laboratory. An attempt is made to be sure that all work carried out will be of the highest quality. Attention is focused on the following areas: quality assurance; sampling; radiation measurements; analytical chemistry; radionuclide data; special facilities; and specifications.

Chieco, N.A. [ed.

1997-02-01T23:59:59.000Z

454

Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and  

E-Print Network [OSTI]

CMR Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry analytical chemistry and metallurgy. In 1952, the first LANL CMR facility was completed. At that time chemistry and metallurgy. Upgrades to the original CMR were completed in 2002. In 2012, the CMR facility

455

The procedures manual of the Environmental Measurements Laboratory. Volume 2, 28. edition  

SciTech Connect (OSTI)

This report contains environmental sampling and analytical chemistry procedures that are performed by the Environmental Measurements Laboratory. The purpose of environmental sampling and analysis is to obtain data that describe a particular site at a specific point in time from which an evaluation can be made as a basis for possible action.

Chieco, N.A. [ed.

1997-02-01T23:59:59.000Z

456

ENVIRONMENT, SAFETY, HEALTH, AND QUALITY DIVISION Chapter 42: Subcontractor Safety  

E-Print Network [OSTI]

ENVIRONMENT, SAFETY, HEALTH, AND QUALITY DIVISION Chapter 42: Subcontractor Safety Non-green Work Laboratory Environment, Safety, Health, and Quality Division Chapter 42 | Non-green Work Procedure Step is classified as green, follows the Subcontractor Safety: Green Work Procedure. If not, continues

Wechsler, Risa H.

457

Health and Safety Research Division progress report for the period October 1, 1991--March 31, 1993  

SciTech Connect (OSTI)

This is a progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology, Biological and Radiation Physics, Chemical Physics, Biomedical and Environmental Information Analysis, Risk Analysis, Center for Risk Management, Associate Laboratories for Excellence in Radiation Technology (ALERT), and Contributions to National and Lead Laboratory Programs and Assignments--Environmental Restoration.

Berven, B.A.

1993-09-01T23:59:59.000Z

458

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 58752 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Laboratory Evaluation of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 3 #12;Abstract A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility

459

Brookhaven National Laboratory site environmental report for calendar year 1990  

SciTech Connect (OSTI)

Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance.

Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

1992-01-01T23:59:59.000Z

460

Laboratory Directed Research and Development Program. FY 1993  

SciTech Connect (OSTI)

This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

Not Available

1994-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

OCCUPATIONAL HEALTH AND SAFETY  

E-Print Network [OSTI]

OCCUPATIONAL HEALTH AND SAFETY MANAGEMENT SYSTEM Department of Occupational Health and Safety Revised December 2009 #12;Occupational Health and Safety (OHS) Management System 1. Introduction.............................................................................................................. 3 2.2 Management of Health and Safety

462

Fact Sheet HEALTH SCIENCE  

E-Print Network [OSTI]

· Long Term Care Administrator · Training Coordinator · Clinical Health Education Specialist · Health Media Director · Long Term Care Facilities Manager Fact Sheet HEALTH SCIENCE Highlights · Health Science

Su, Xiao

463

HEALTH SCIENCES Division of  

E-Print Network [OSTI]

, athletic trainers, health care administrators, and environmental health specialists. In addition to highly faculty and students are studying the effect of long-term exercise on cholesterol levels, examining Imaging Health Care Administration Health Physics Kinesiological Sciences Nuclear Medicine Nursing

Cho, Hokwon

464

National Renewable Energy Laboratory's Energy Systems Integration...  

Broader source: Energy.gov (indexed) [DOE]

National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

465

Independent Oversight Review, Los Alamos National Laboratory...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laboratory Chemistry and Metallurgy Research Facility - January 2012 Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility -...

466

Tank 241-AX-103, cores 212 and 214 analytical results for the final report  

SciTech Connect (OSTI)

This document is the analytical laboratory report for tank 241-AX-103 push mode core segments collected between July 30, 1997 and August 11, 1997. The segments were subsampled and analyzed in accordance with the Tank 241-AX-103 Push Mode Core Sampling and Analysis Plan (TSAP) (Comer, 1997), the Safety Screening Data Quality Objective (DQO) (Dukelow, et al., 1995) and the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue (Organic DQO) (Turner, et al., 1995). The analytical results are included in the data summary table (Table 1). None of the samples submitted for Differential Scanning Calorimetry (DSC), Total Alpha Activity (AT), plutonium 239 (Pu239), and Total Organic Carbon (TOC) exceeded notification limits as stated in the TSAP (Conner, 1997). The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group in accordance with the Memorandum of Understanding (Schreiber, 1997) and not considered in this report.

Steen, F.H.

1998-02-05T23:59:59.000Z

467

Tank 241-T-112, cores 185 and 186 analytical results for the final report  

SciTech Connect (OSTI)

This document is the analytical laboratory report for tank 241-T-112 push mode core segments collected between February 26, 1997 and March 19, 1997. The segments were subsampled and analyzed in accordance with the Tank 241-T-112 Push Mode Core Samplings and Analysis Plan (TSAP) and the Safety Screening Data Quality Objective (DQO). The analytical results are included in the data summary table. None of the samples submitted for Differential Scanning Calorimetry and Total Alpha Activity (AT) exceeded notification limits as stated in the TSAP. The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group in accordance with the Memorandum of Understanding and are not considered in this report.

Steen, F.H.

1997-06-03T23:59:59.000Z

468

RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report provides a detailed summary of the activities carried out to sample groundwater at Waste Area Grouping (WAG) 6. The analytical results for samples collected during Phase 1, Activity 2 of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI) are also presented. In addition, analytical results for Phase 1, activity sampling events for which data were not previously reported are included in this TM. A summary of the groundwater sampling activities of WAG 6, to date, are given in the Introduction. The Methodology section describes the sampling procedures and analytical parameters. Six attachments are included. Attachments 1 and 2 provide analytical results for selected RFI groundwater samples and ORNL sampling event. Attachment 3 provides a summary of the contaminants detected in each well sampled for all sampling events conducted at WAG 6. Bechtel National Inc. (BNI)/IT Corporation Contract Laboratory (IT) RFI analytical methods and detection limits are given in Attachment 4. Attachment 5 provides the Oak Ridge National Laboratory (ORNL)/Analytical Chemistry Division (ACD) analytical methods and detection limits and Resource Conservation and Recovery Act (RCRA) quarterly compliance monitoring (1988--1989). Attachment 6 provides ORNL/ACD groundwater analytical methods and detection limits (for the 1990 RCRA semi-annual compliance monitoring).

Not Available

1991-09-01T23:59:59.000Z

469

MagLab - Microanalysis Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microanalysis Laboratory BSCCO Sample of the superconducting material bismuth strontium calcium copper oxide (BSCCO). Section pictured measures 120 microns wide. Click on photo for...

470

Radiation Protection | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Protection Radiation Protection Regulations: The Federal Regulation governing the use of radioactive materials at Ames Laboratory is 10 CFR 835. To implement this...

471

Los Alamos National Laboratory begins  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

one of our highest environmental priorities," said Jeff Mousseau, associate director for environmental programs at the Laboratory. "We've committed this to the state and it's the...

472

with Oak Ridge National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Mechanisms for Partnering with Oak Ridge National Laboratory Partnerships-It's our name, but it also represents our driving philosophy and commitment. Oak Ridge National...

473

johnson2 | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

johnson2 Ames Laboratory Profile Stacie Johnson Lab Assistant-X Environmental & Protective Sciences 5 Spedding Phone Number: 515-294-2069 Email Address: johnson2...

474

Sandia National Laboratories: SMART Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SMART Grid Vermont and Sandia National Laboratories Announce Energy Research Center On December 20, 2011, in Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis,...

475

Beyond Laboratories, Beyond Being Green  

Broader source: Energy.gov (indexed) [DOE]

- Labs21 Introductory Course: High Performance, Low- Energy Design - Labs21 Advanced Course: Laboratory Ventilation Design - Labs21 Workshop: Environmental Performance Criteria -...

476

Sandia National Laboratories: Mechanical Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyNuclear Energy Systems Laboratory (NESL) Brayton LabMechanical Testing Mechanical Testing Mechanical Testing Overview Mechanical 1-2 (2008). Standard Test Methods for...

477

Two Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

event in Albuquerque LOS ALAMOS, N.M., March 26, 2015-Los Alamos National Laboratory's Nuclear Material Control and Accountability Group and the Quality and Performance...

478

GUIDELINES FOR SAFE LABORATORY PRACTICES  

E-Print Network [OSTI]

University's Chemical Hygiene Plan (CHP). The CHP was written to comply with the Occupational Safety in Laboratories (29 CFR 1910.1450)). The CHP is the most detailed

Haller, Gary L.

479

Quality Assurance: Are Laboratories Assuring, Assessing, or Assuming the Quality of Clinical Testing Today?  

E-Print Network [OSTI]

Abstract: Quality assurance implies making certain, guaranteeing the attainment of quality. Do laboratories actually guarantee the quality of testing services today? If not, what is the purpose of quality assurance plans, programs, and practices? Have laboratories even defined the quality to be achieved for each test? If not, how can quality be guaranteed? Do current efforts in assessing quality provide for real-time control that will guarantee quality? If not, are laboratories just assuming that measuring quality will somehow make it happen? Even analytical quality, which is fundamental for the core production processes of any laboratory, is mainly assessed and assumed, not assured. Problems include the lack of well defined quality requirements, inadequate method performance, poorly designed statistical control procedures, misguided quality control instructions and recommendations, insufficient technical quality management skills, reduced operator skills, and delays in implementing of laboratory regulations. Quality assurance should be understood, not as a component, but as the outcome of a quality management process that includes quality planning, quality laboratory practices, quality control, quality assessment, and quality improvement, all linked together and guided by quality goals and customer requirements, and applied to the total testing process. In the future, automation and computerization will be necessary to manage the quality of centralized and distributed laboratory testing. Analytical quality will be guaranteed through on-line or on-board quality control. Other critical quality characteristics will need real-time monitors and control mechanisms to guarantee quality if process failures cannot be prevented.

James O. Westgard, Ph.D.

480

Health Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL SecretaryHazmat work opens up newHowHealth

Note: This page contains sample records for the topic "health analytical laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999  

SciTech Connect (OSTI)

The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

Not Available

1993-09-01T23:59:59.000Z

482

Environmental assessment for construction and operation of a Human Genome Laboratory at Lawrence Berkeley Laboratory, Berkeley, California  

SciTech Connect (OSTI)

Lawrence Berkeley Laboratory (LBL) proposes to construct and operate a new laboratory for consolidation of current and future activities of the Human Genome Center (HGC). This document addresses the potential direct, indirect, and cumulative environmental and human-health effects from the proposed facility construction and operation. This document was prepared in accordance the National Environmental Policy Act of 1969 (United States Codes 42 USC 4321-4347) (NEPA) and the US Department of Energy`s (DOE) Final Rule for NEPA Implementing Procedures [Code of Federal Regulations 10CFR 1021].

NONE

1994-12-01T23:59:59.000Z

483

Global Health Seminar Series  

E-Print Network [OSTI]

Bay Area Global Health Seminar Series Moving beyond millennium targets in global health: The challenges of investing in health and universal health coverage Although targets can help to focus global health efforts, they can also detract attention from deeper underlying challenges in global health

Klein, Ophir

484

Transforming Health Research  

E-Print Network [OSTI]

Transforming Health Research the first two years National Institute for Health Research Progress For Information R OCR R ef: 0 Gateway R ef: 9298 Title Transforming Health Research the first two years. Health Institute for Health Research Progress Report i Transforming Health Research the first two years National

Diggle, Peter J.

485

The key to minimizing minesite versus utility laboratory analyses on Powder River Basin coals  

SciTech Connect (OSTI)

Powder River Basin (PRB) coals are continuing to expand their areas of use into regions previously reserved for higher ranked coals. PRB coals are subbituminous by rank. Inherent moisture values of 25 to 30 percent are the norm. PRB coals, being lower rank in nature, also tend to oxidize very easily. These factors combined produce a coal which can cause analysis problems for laboratories unaccustomed to PRB coals. In fact, even laboratories that deal with this type of coal on a daily basis can experience analytical difficulties. Special care needs to be taken by both minesite laboratory and the utility laboratory to ensure accurate analyses. Cooperation between both parties is the key to reproducible analyses. Only by working together can parties fully analyze the situation and develop analytical methods acceptable to both. This paper will describe the methods employed by the Caballo Rojo Mine (CRM) and the Georgia Power Company (GPC) to resolve laboratory analysis differences found during shipments by CRM to GPC beginning in 1994. The following topics are discussed: initial comparative results, analytical investigations, the cooperative process, recent comparative results, and conclusions.

Rexin, M.G.

1995-08-01T23:59:59.000Z

486

analytical tool supporting: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an Analytical Tool for Track Component Response (I-TRACK) Thiago B. do Carmo, J, NV 7 October 2013 12;Slide 2Simplified Analytical Tool and Parametric Analysis Outline ...

487

A method for interpreting continental and analytic epistemology  

E-Print Network [OSTI]

of this thesis is to investigate the feasibility and profitability of communication between analytic and continental philosophy in epistemology. Wittgenstein's concept of language games will be used to frame the issue', continental and analytic philosophers play...

McCoy, Sarah Ruth

1999-01-01T23:59:59.000Z

488

An Interactive Visual Analytics Framework for Multi-Field Data...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Visual Analytics Framework for Multi-Field Data in a Geo-Spatial Context. An Interactive Visual Analytics Framework for Multi-Field Data in a Geo-Spatial Context....

489

1995 Annual epidemiologic surveillance report for Brookhaven National Laboratory  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) conduct of epidemiologic surveillance provides an early warning system for health problems among workers. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. This report summarizes epidemiologic surveillance data collected from Brookhaven National Laboratory (BNL) from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at BNL and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out.

NONE

1995-12-31T23:59:59.000Z

490

College of Health Sciences Health Sciences Connection  

E-Print Network [OSTI]

College of Health Sciences Health Sciences Connection 1 Dean's Message College of Health Sciences Health Sciences Connection December 2009 January 2010 Volume VIII (5) Moving from the Superficial the superficial level so that the result is the formation of deep relationships, caring, compassion, justice, love

Barrash, Warren

491

Center for Health & Counseling Services Health Services  

E-Print Network [OSTI]

College How is West Nile diagnosed? If a health care provider suspects WNV, samples of the patient's bloodCenter for Health & Counseling Services Health Services 505 Ramapo Valley Road, Mahwah, NJ 07430 Nile Virus outbreak is the biggest since the virus was first identified in the United States, health

Rainforth, Emma C.

492

College of Health Sciences Health Sciences Connection  

E-Print Network [OSTI]

the sweeping changes associated with health care reform. Health care reform represents the most significant health care legislation since the development of Medicare and Medicaid in 1965. It has tremendous potential ramification for the future of our college. Health care reform will dramatically increase

Barrash, Warren

493

of Health Care National Institutes of Health  

E-Print Network [OSTI]

of Health Care National Institutes of Health Expanding Horizons Strategic Plan 2005-2009 UR nesmohsirh retir,ztnelinaoJ #12;of Health Care Expanding Horizons Strategic Plan 2005-2009 National Center.S Department of Health and Human Services National Center for Complementary and Alternative Medicine #12;A M mo

Bandettini, Peter A.

494

Annual Women's Health Forum Global Women's Health  

E-Print Network [OSTI]

5th Annual Women's Health Forum Global Women's Health Hosted by The Stanford WSDM* Center May 21;3 Welcome to the 5th Annual Women's Health Forum - hosted by the Stanford WSDM Center, also known as the Stanford Center for Health Research on Women and Sex Differences in Medicine. The Stanford WSDM Center

Kay, Mark A.

495

Students' Health Service Hampton House Health Centre  

E-Print Network [OSTI]

.ac.uk/infectious-diseases. Health care / Student support Other NHS services NHS 111 NHS 111 is a telephone service, giving in an emergency. Student support / Health care Student support Health care Registering with a doctor practice care, including: · travel immunisation and advice · contraceptive advice · sexual health testing

Bristol, University of

496

validation_vs66_fe_and_analytical_dry.eps  

E-Print Network [OSTI]

Page 1. 0. 50. 100. 150. 2. Frequency (Hz). 800. 1000. 1200. 1400. Phase velocity (m/s). Numerical. Analytical.

santos

497

An analytically solvable, axially non-homogeneous reactor model  

E-Print Network [OSTI]

and Glasstone,1970) and analytically in 1-D noise problems (Kosa¬ ly et al., 1977). The general conclusion

PŠzsit, Imre

498

Analytic Models of Plausible Gravitational Lens Potentials  

SciTech Connect (OSTI)

Gravitational lenses on galaxy scales are plausibly modeled as having ellipsoidal symmetry and a universal dark matter density profile, with a Sersic profile to describe the distribution of baryonic matter. Predicting all lensing effects requires knowledge of the total lens potential: in this work we give analytic forms for that of the above hybrid model. Emphasizing that complex lens potentials can be constructed from simpler components in linear combination, we provide a recipe for attaining elliptical symmetry in either projected mass or lens potential.We also provide analytic formulae for the lens potentials of Sersic profiles for integer and half-integer index. We then present formulae describing the gravitational lensing effects due to smoothly-truncated universal density profiles in cold dark matter model. For our isolated haloes the density profile falls off as radius to the minus fifth or seventh power beyond the tidal radius, functional forms that allow all orders of lens potential derivatives to be calculated analytically, while ensuring a non-divergent total mass. We show how the observables predicted by this profile differ from that of the original infinite-mass NFW profile. Expressions for the gravitational flexion are highlighted. We show how decreasing the tidal radius allows stripped haloes to be modeled, providing a framework for a fuller investigation of dark matter substructure in galaxies and clusters. Finally we remark on the need for finite mass halo profiles when doing cosmological ray-tracing simulations, and the need for readily-calculable higher order derivatives of the lens potential when studying catastrophes in strong lenses.

Baltz, Edward A.; Marshall, Phil; Oguri, Masamune

2007-05-04T23:59:59.000Z

499

Analytic models of plausible gravitational lens potentials  

SciTech Connect (OSTI)

Gravitational lenses on galaxy scales are plausibly modelled as having ellipsoidal symmetry and a universal dark matter density profile, with a Sersic profile to describe the distribution of baryonic matter. Predicting all lensing effects requires knowledge of the total lens potential: in this work we give analytic forms for that of the above hybrid model. Emphasising that complex lens potentials can be constructed from simpler components in linear combination, we provide a recipe for attaining elliptical symmetry in either projected mass or lens potential. We also provide analytic formulae for the lens potentials of Sersic profiles for integer and half-integer index. We then present formulae describing the gravitational lensing effects due to smoothly-truncated universal density profiles in cold dark matter model. For our isolated haloes the density profile falls off as radius to the minus fifth or seventh power beyond the tidal radius, functional forms that allow all orders of lens potential derivatives to be calculated analytically, while ensuring a non-divergent total mass. We show how the observables predicted by this profile differ from that of the original infinite-mass NFW profile. Expressions for the gravitational flexion are highlighted. We show how decreasing the tidal radius allows stripped haloes to be modelled, providing a framework for a fuller investigation of dark matter substructure in galaxies and clusters. Finally we remark on the need for finite mass halo profiles when doing cosmological ray-tracing simulations, and the need for readily-calculable higher order derivatives of the lens potential when studying catastrophes in strong lenses.

Baltz, Edward A.; Marshall, Phil; Oguri, Masamune, E-mail: eabaltz@slac.stanford.edu, E-mail: pjm@physics.ucsb.edu, E-mail: oguri@slac.stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, PO Box 20450, MS29, Stanford, CA 94309 (United States)] [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, PO Box 20450, MS29, Stanford, CA 94309 (United States)

2009-01-15T23:59:59.000Z

500

DOE National Analytical Management Program Draws Global Interest...  

Office of Environmental Management (EM)

Addthis Hnin Khaing focuses on her work at WIPP Laboratories near Carlsbad, New Mexico Hnin Khaing focuses on her work at WIPP Laboratories near Carlsbad, New Mexico Corey...