National Library of Energy BETA

Sample records for health analytical laboratory

  1. EA-0970: Environmental Safety and Health Analytical Laboratory Project No. 94-AA-01 Pantex Plant, Amarillo, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to construct and operate an Environmental Safety and Health Analytical Laboratory and subsequent demolition of the existing Analytical...

  2. Analytical Chemistry Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Laboratory provides a broad range of analytical chemistry support services to the scientific and engineering programs. AnalyticalChemistryLaboratoryfactsheet...

  3. Analytical laboratory quality audits

    SciTech Connect (OSTI)

    Kelley, William D.

    2001-06-11

    Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

  4. Transesterification: Laboratory Analytical Procedure (LAP) Van...

    Office of Scientific and Technical Information (OSTI)

    Wychen, S.; Laurens, L. M. L. 09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES BIOMASS; ALGAE; LABORATORY ANALYTICAL PROCEDURES; LAPS; TOTAL LIPIDS; FATTY ACID METHYL ESTERS; FAME;...

  5. Road Transportable Analytical Laboratory system. Phase 1

    SciTech Connect (OSTI)

    Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O`Donnell, M.; Vann, R.L.

    1993-09-01

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE`s internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex.

  6. Analytical laboratory and mobile sampling platform

    SciTech Connect (OSTI)

    Stetzenbach, K.; Smiecinski, A.

    1996-04-30

    This is the final report for the Analytical Laboratory and Mobile Sampling Platform project. This report contains only major findings and conclusions resulting from this project. Detailed reports of all activities performed for this project were provided to the Project Office every quarter since the beginning of the project. This report contains water chemistry data for samples collected in the Nevada section of Death Valley National Park (Triangle Area Springs), Nevada Test Site springs, Pahranagat Valley springs, Nevada Test Site wells, Spring Mountain springs and Crater Flat and Amargosa Valley wells.

  7. Environmental Health Facilities Experimental laboratories

    E-Print Network [OSTI]

    Stuart, Amy L.

    , and a Nanopure® DiamondTM analytical ultra-pure water treatment system. Common facilities include two temperature, and low temperature freezer. Major analytical equipment in the Environmental Health group includes reference method PM2.5 sampler, TEI nitrogen oxides (NOx) sulfur dioxide, and carbon monoxide analyzers, two

  8. Guide to Savannah River Laboratory Analytical Services Group

    SciTech Connect (OSTI)

    Not Available

    1990-04-01

    The mission of the Analytical Services Group (ASG) is to provide analytical support for Savannah River Laboratory Research and Development Programs using onsite and offsite analytical labs as resources. A second mission is to provide Savannah River Site (SRS) operations with analytical support for nonroutine material characterization or special chemical analyses. The ASG provides backup support for the SRS process control labs as necessary.

  9. Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory...

    Office of Environmental Management (EM)

    2 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory, Balance of Facilities and LAW Waste Vitrification Facilities L....

  10. Analytical Chemistry Laboratory progress report for FY 1985

    SciTech Connect (OSTI)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    1985-12-01

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab.

  11. Analytical Chemistry Laboratory progress report for FY 1999

    SciTech Connect (OSTI)

    Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

    2000-06-15

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  12. Analytical Chemistry Laboratory progress report for FY 1998.

    SciTech Connect (OSTI)

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-03-29

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  13. Analytical Chemistry Laboratory. Progress report for FY 1996

    SciTech Connect (OSTI)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  14. SRC-I Demonstration Plant Analytical Laboratory. Final technical report

    SciTech Connect (OSTI)

    Hamilton, R.F.; Klusaritz, M.; Maroulis, P.J.; Moyer, J.D.; Parees, D.M.; Skinner, R.W.; Sydlik, E.; Tewari, K.C.; Tiedge, W.F.; Znaimer, S.

    1983-09-01

    This report describes planning and methods development activities to establish an SRC-I Coal Liquefaction Demonstration Plant analytical laboratory. Laboratory requirements are listed and methods qualification/development activities are described for the following areas: microanalytical carbon, hydrogen, chlorine, nitrogen, and sulfur procedures; ash determination; GC/MS and GC/FID analyses; metals analyses; and GC-simulated distillation. 2 references, 64 figures, 108 tables.

  15. Analytical Chemistry Laboratory Progress Report for FY 1994

    SciTech Connect (OSTI)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1994-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

  16. Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures: Laboratory Analytical Procedure (LAP)

    SciTech Connect (OSTI)

    Laurens, L. M. L.

    2013-12-01

    This procedure guides the integration of laboratory analytical procedures to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in algal biomass analysis.

  17. World Health Organization Laboratory biosafety manual

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    World Health Organization Geneva 2004 Laboratory biosafety manual Third edition #12;WHO Library Cataloguing-in-Publication Data World Health Organization. Laboratory biosafety manual. ­ 3rd ed. 1 4.Manuals I.Title. ISBN 92 4 154650 6 (LC/NLM classification: QY 25) WHO/CDS/CSR/LYO/2004.11 © World

  18. Analytical Chemistry Laboratory progress report for FY 1984

    SciTech Connect (OSTI)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

    1985-03-01

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs.

  19. Analytical and Instrumentation Laboratory Department of Chemistry E5-35

    E-Print Network [OSTI]

    Machel, Hans

    Analytical and Instrumentation Laboratory Department of Chemistry E5-35 University of Alberta Tel are returned for disposal Analytical and Instrumentation Laboratory Department of Chemistry E5-35 University

  20. CRAD, Occupational Safety & Health - Los Alamos National Laboratory...

    Office of Environmental Management (EM)

    Occupational Safety & Health - Los Alamos National Laboratory TA 55 SST Facility CRAD, Occupational Safety & Health - Los Alamos National Laboratory TA 55 SST Facility A section of...

  1. Radiation and Health Technology Laboratory Capabilities

    SciTech Connect (OSTI)

    Goles, Ronald W.; Johnson, Michelle Lynn; Piper, Roman K.; Peters, Jerry D.; Murphy, Mark K.; Mercado, Mike S.; Bihl, Donald E.; Lynch, Timothy P.

    2003-07-15

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.

  2. Manual of analytical methods for the Industrial Hygiene Chemistry Laboratory

    SciTech Connect (OSTI)

    Greulich, K.A.; Gray, C.E. (comp.)

    1991-08-01

    This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned.

  3. Laboratory Health and Safety Procedure -1 -Bishop's University Safety Policy

    E-Print Network [OSTI]

    Laboratory Health and Safety Procedure - 1 - Bishop's University Safety Policy 1.03 Laboratory community. This manual is intended to provide basic rules for safe practices in a laboratory. Individual and training specific to the needs of their laboratory safety programs when the safety subject

  4. Analytical Laboratory Reopens at Paducah Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslieAlgae BiomassServicesWindAmyAnalysisAnalytical

  5. ORISE: Worker Health Studies - Beryllium Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process Diagram Click image for larger view Oak Ridge Institute for Science Education Beryllium Testing Laboratory Beryllium is a metal that is primarily used as a hardening agent...

  6. Minimum Analytical Chemistry Requirements for Pit Manufacturing at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Moy, Ming M.; Leasure, Craig S.

    1998-08-01

    Analytical chemistry is one of several capabilities necessary for executing the Stockpile Stewardship and Management Program at Los Alamos National Laboratory (LANL). Analytical chemistry capabilities reside in the Chemistry Metallurgy Research (CMR) Facility and Plutonium Facility (TA-55). These analytical capabilities support plutonium recovery operations, plutonium metallurgy, and waste management. Analytical chemistry capabilities at both nuclear facilities are currently being configured to support pit manufacturing. This document summarizes the minimum analytical chemistry capabilities required to sustain pit manufacturing at LANL. By the year 2004, approximately $16 million will be required to procure analytical instrumentation to support pit manufacturing. In addition, $8.5 million will be required to procure glovebox enclosures. An estimated 50% increase in costs has been included for installation of analytical instruments and glovebox enclosures. However, no general and administrative (G and A) taxes have been included. If an additional 42.5/0 G and A tax were to be incurred, approximately $35 million would be required over the next five years to prepare analytical chemistry to support a 50-pit-per-year manufacturing capability by the year 2004.

  7. Structural health monitoring activities at National Laboratories

    SciTech Connect (OSTI)

    Farrar, C.R.; Doebling, S.W. [Los Alamos National Lab., NM (United States); James, G.H.; Simmermacher, T. [Sandia National Labs., Albuquerque, NM (United States)

    1997-09-01

    Sandia National Laboratories and Los Alamos National Laboratory have on-going programs to assess damage in structures and mechanical systems from changes in their dynamic characteristics. This paper provides a summary of how both institutes became involved with this technology, their experience in this field and the directions that their research in this area will be taking in the future.

  8. Environmental Health and Safety Chemical Hygiene Laboratory Assessment

    E-Print Network [OSTI]

    Environmental Health and Safety Chemical Hygiene Laboratory Assessment PI or environmental concerns were identified. B. Items of safety or environmental concerns were identified. C. Uncorrected repeated safety or environmental items were identified. Compressed Gas Cylinders / Distribution

  9. Quality Assurance Baseline Assessment Report to Los Alamos National Laboratory Analytical Chemistry Operations

    SciTech Connect (OSTI)

    Jordan, R. A.

    1998-09-01

    This report summarizes observations that were made during a Quality Assurance (QA) Baseline Assessment of the Nuclear Materials Technology Analytical Chemistry Group (NMT-1). The Quality and Planning personnel, for NMT-1, are spending a significant amount of time transitioning out of their roles of environmental oversight into production oversight. A team from the Idaho National Engineering and Environmental Laboratory Defense Program Environmental Surety Program performed an assessment of the current status of the QA Program. Several Los Alamos National Laboratory Analytical Chemistry procedures were reviewed, as well as Transuranic Waste Characterization Program (TWCP) QA documents. Checklists were developed and the assessment was performed according to an Implementation Work Plan, INEEL/EXT-98-00740.

  10. Health Insurance Rates | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for Accidental Releases ofHealth EffectsHealth

  11. ORISE: Worker Health Studies - Beryllium Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSEHow ORISE isParis CornwellDuringWorker HealthBeLPT

  12. Environmental Health Systematic Review How the new analytical geomatics technologies can help

    E-Print Network [OSTI]

    1 Environmental Health Systematic Review How the new analytical geomatics technologies can help Sherbrooke) Eddie Oldfield, Maurice Lanteigne and Xiaolun Yi (New Brunswick Lung Association) Appendix dinformation dont plusieurs utilisent des systèmes dinformation géographiques (SIG) et des technologies de

  13. SRC-I demonstration plant analytical laboratory methods manual. Final technical report

    SciTech Connect (OSTI)

    Klusaritz, M.L.; Tewari, K.C.; Tiedge, W.F.; Skinner, R.W.; Znaimer, S.

    1983-03-01

    This manual is a compilation of analytical procedures required for operation of a Solvent-Refined Coal (SRC-I) demonstration or commercial plant. Each method reproduced in full includes a detailed procedure, a list of equipment and reagents, safety precautions, and, where possible, a precision statement. Procedures for the laboratory's environmental and industrial hygiene modules are not included. Required American Society for Testing and Materials (ASTM) methods are cited, and ICRC's suggested modifications to these methods for handling coal-derived products are provided.

  14. Environmental Health & Safety (EH&S) Laboratory Safety Training

    E-Print Network [OSTI]

    Environmental Health & Safety (EH&S) Laboratory Safety Training Fiscal Year 2015 1 #12;Important to ehsibc@wusm.wustl.edu For more information, see http://ehs.wustl.edu/resources/EHS%20Docum ents/MyIBC%20 fiscal year A lab fails the initial inspection during two consecutive fiscal years The Dean

  15. Environmental Health & Safety (EH&S) Laboratory Safety Training

    E-Print Network [OSTI]

    7/8/2014 1 Environmental Health & Safety (EH&S) Laboratory Safety Training Fiscal Year 2015 1 to ehsibc@wusm.wustl.edu For more information, see http://ehs.wustl.edu/resources/EHS%20Docum ents/MyIBC%20 will be notified if: A lab fails both the initial inspection and re- inspection in a single fiscal year A lab

  16. Dry sample storage system for an analytical laboratory supporting plutonium processing

    SciTech Connect (OSTI)

    Treibs, H.A.; Hartenstein, S.D.; Griebenow, B.L.; Wade, M.A.

    1990-07-25

    The Special Isotope Separation (SIS) plant is designed to provide removal of undesirable isotopes in fuel grade plutonium by the atomic vapor laser isotope separation (AVLIS) process. The AVLIS process involves evaporation of plutonium metal, and passage of an intense beam of light from a laser through the plutonium vapor. The laser beam consists of several discrete wavelengths, tuned to the precise wavelength required to ionize the undesired isotopes. These ions are attracted to charged plates, leaving the bulk of the plutonium vapor enriched in the desired isotopes to be collected on a cold plate. Major portions of the process consist of pyrochemical processes, including direct reduction of the plutonium oxide feed material with calcium metal, and aqueous processes for purification of plutonium in residues. The analytical laboratory for the plant is called the Material and Process Control Laboratory (MPCL), and provides for the analysis of solid and liquid process samples.

  17. US EPA biomass fuel analytical laboratory. Report for January-April 1997

    SciTech Connect (OSTI)

    Baskin, E.; Lee, C.W.; Natschke, D.F.

    1997-01-01

    The paper describes the U.S. EPA`s biomass fuel analytical laboratory at its Environmental Research Center in Research Triangle Park, NC. There is increasing interest in utlizing biomass-based fuels in thermal energy systems as an effective means for global warming remediation. The laboratory is examining biomass fuels and the variation in products of incomplete combustion (PICs) with combustion conditions. The objectives are to evaluate the kinetics of combustion and emission characteristics (e.g., structure and composition) of representative samples of relevant types of biomass fuels by studying (1) the local pyrolysis and combustion processes and products, and (2) the overall degradation rate as influenced by heat transmission. Biomass fuel samples will be examined by thermogravimetric analysis with an on-line Fourier transform infrared spectrometer (TGA-FTIR). EPA has built a prototype TGA, capable of handling a 100 g sample with 1 microgram resolution for this laboratory. This instrument is capable of heating the sample to 1200 C. Samples can be pyrolyzed and combusted sequentially by automated gas switching.

  18. Analytical Chemistry Laboratory Quality Assurance Project Plan for the Transuranic Waste Characterization Program

    SciTech Connect (OSTI)

    Sailer, S.J.

    1996-08-01

    This Quality Assurance Project Plan (QAPJP) specifies the quality of data necessary and the characterization techniques employed at the Idaho National Engineering Laboratory (INEL) to meet the objectives of the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) requirements. This QAPJP is written to conform with the requirements and guidelines specified in the QAPP and the associated documents referenced in the QAPP. This QAPJP is one of a set of five interrelated QAPjPs that describe the INEL Transuranic Waste Characterization Program (TWCP). Each of the five facilities participating in the TWCP has a QAPJP that describes the activities applicable to that particular facility. This QAPJP describes the roles and responsibilities of the Idaho Chemical Processing Plant (ICPP) Analytical Chemistry Laboratory (ACL) in the TWCP. Data quality objectives and quality assurance objectives are explained. Sample analysis procedures and associated quality assurance measures are also addressed; these include: sample chain of custody; data validation; usability and reporting; documentation and records; audits and 0385 assessments; laboratory QC samples; and instrument testing, inspection, maintenance and calibration. Finally, administrative quality control measures, such as document control, control of nonconformances, variances and QA status reporting are described.

  19. Pacific Northwest Laboratory: Director`s overview of research performed for DOE Office of Health And Environmental Research

    SciTech Connect (OSTI)

    1995-06-01

    A significant portion of the research undertaken at Pacific Northwest Laboratory (PNL) is focused on the strategic programs of the US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER). These programs, which include Environmental Processes (Subsurface Science, Ecosystem Function and Response, and Atmospheric Chemistry), Global Change (Climate Change, Environmental Vulnerability, and Integrated Assessments), Biotechnology (Human Genome and Structural Biology), and Health (Health Effects and Medical Applications), have been established by OHER to support DOE business areas in science and technology and environmental quality. PNL uses a set of critical capabilities based on the Laboratory`s research facilities and the scientific and technological expertise of its staff to help OHER achieve its programmatic research goals. Integration of these capabilities across the Laboratory enables PNL to assemble multidisciplinary research teams that are highly effective in addressing the complex scientific and technical issues associated with OHER-sponsored research. PNL research efforts increasingly are focused on complex environmental and health problems that require multidisciplinary teams to address the multitude of time and spatial scales found in health and environmental research. PNL is currently engaged in research in the following areas for these OHER Divisions: Environmental Sciences -- atmospheric radiation monitoring, climate modeling, carbon cycle, atmospheric chemistry, ecological research, subsurface sciences, bioremediation, and environmental molecular sciences; Health Effects and Life Sciences -- cell/molecular biology, and biotechnology; Medical Applications and Biophysical Research -- analytical technology, and radiological and chemical physics. PNL`s contributions to OHER strategic research programs are described in this report.

  20. Page 1 of 3 Laboratory Safety and Environmental Health Assessment Program

    E-Print Network [OSTI]

    Page 1 of 3 Laboratory Safety and Environmental Health Assessment Program Principal Investigators responsibilities. This Laboratory Assessment Program identifies four processes to evaluate safety and environmental to modify an assessment checklist that best addresses specific safety and environmental compliance needs

  1. Needs analysis and project schedule for the Los Alamos National Laboratory (LANL) Health Physics Analysis Laboratory (HPAL) upgrade

    SciTech Connect (OSTI)

    Rhea, T.A.; Rucker, T.L.; Stafford, M.W.

    1990-09-28

    This report is a needs assessment and project schedule for the Health Physics Analysis Laboratory (HPAL) upgrade project at Los Alamos National Laboratory (LANL). After reviewing current and projected HPAL operations, two custom-developed laboratory information management systems (LIMS) for similar facilities were reviewed; four commercially available LIMS products were also evaluated. This project is motivated by new regulations for radiation protection and training and by increased emphasis on quality assurance (QA). HPAL data are used to: protect the health of radiation workers; document contamination levels for transportation of radioactive materials and for release of materials to the public for uncontrolled use; and verify compliance with environmental emission regulations. Phase 1 of the HPAL upgrade project concentrates on four types of counting instruments which support in excess of 90% of the sample workload at the existing central laboratories. Phase 2 is a refinement phase and also integrates summary-level databases on the central Health, Safety, and Environment (HSE) VAX. Phase 3 incorporates additional instrument types and integrates satellite laboratories into the HPAL LIMS. Phase 1 will be a multi-year, multimillion dollar project. The temptation to approach the upgrade of the HPAL program in a piece meal fashion should be avoided. This is a major project, with clearly-defined goals and priorities, and should be approached as such. Major programmatic and operational impacts will be felt throughout HSE as a result of this upgrade, so effective coordination with key customer contacts will be critical.

  2. Laboratory for Energy-Related Health Research Compliance Order...

    Office of Environmental Management (EM)

    for Energy-Related Health Research (LEHR) Compliance Order HWCA 9596-020 State California Agreement Type Compliance Order Legal Driver(s) FFCAct Scope Summary Require...

  3. E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division

    E-Print Network [OSTI]

    material areas (work areas where unsealed radioactive material is handled) and radioactive material storage) 75A Old Hazardous Waste Facility 75S Tritium Storage Locker 76 Radioanalytical Laboratory 83 LifeE.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division Environmental

  4. Environment, Safety, Health, and Assurance | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010Environment, Health, Safety

  5. Health Benefits of GHG Reduction | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for Accidental Releases of LastProgramsHealth

  6. CRAD, Occupational Safety & Health- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Occupational Safety and Health Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  7. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS,...

  8. The Analytical Sciences Digital Library (ASDL)

    E-Print Network [OSTI]

    Larive, Cynthia K.

    2009-01-01

    computations, electrochemistry, instrumen- tation, massand “Analytical electrochemistry: a laboratory manual” [14].T (2008) Analyical electrochemistry: a laboratory manual,

  9. Decentralized Fault Detection and Isolation in Wireless Structural Health Monitoring Systems using Analytical Redundancy

    E-Print Network [OSTI]

    Stanford University

    , if permanently installed on large-scale engineering structures such as bridges, dams, towers or wind turbines when deploying wireless sensor networks for long-term structural health monitoring (SHM) is the correct and reliable operation of sensors. Sensor faults may reduce the quality of monitoring and, if remaining

  10. Pacific Northwest Laboratory annual report for 1990 to the Assistant Secretary for Environment, Safety, and Health

    SciTech Connect (OSTI)

    Faust, L.G.; Moraski, R.V.; Selby, J.M.

    1991-05-01

    Part 5 of the 1990 Annual Report to the US Department of Energy's Assistant Secretary for Environment, Safety, and Health presents Pacific Northwest Laboratory's progress on work performed for the Office of Environmental Guidance, the Office of Environmental Compliance, the Office of Environmental Audit, the Office of National Environmental Policy Act Project Assistance, the Office of Nuclear Safety, the Office of Safety Compliance, and the Office of Policy and Standards. For each project, as identified by the Field Work Proposal, there is an article describing progress made during fiscal year 1990. Authors of these articles represent a broad spectrum of capabilities derived from five of the seven technical centers of the Laboratory, reflecting the interdisciplinary nature of the work.

  11. Health and safety plan for the Environmental Restoration Program at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Clark, C. Jr.; Burman, S.N.; Cipriano, D.J. Jr.; Uziel, M.S.; Kleinhans, K.R.; Tiner, P.F.

    1994-08-01

    This Programmatic Health and Safety plan (PHASP) is prepared for the U.S. Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program. This plan follows the format recommended by the U.S. Environmental Protection Agency (EPA) for remedial investigations and feasibility studies and that recommended by the EM40 Health and Safety Plan (HASP) Guidelines (DOE February 1994). This plan complies with the Occupational Safety and Health Administration (OSHA) requirements found in 29 CFR 1910.120 and EM-40 guidelines for any activities dealing with hazardous waste operations and emergency response efforts and with OSHA requirements found in 29 CFR 1926.65. The policies and procedures in this plan apply to all Environmental Restoration sites and activities including employees of Energy Systems, subcontractors, and prime contractors performing work for the DOE ORNL ER Program. The provisions of this plan are to be carried out whenever activities are initiated that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and best management practices to minimize hazards to human health and safety and to the environment from event such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to air, soil, or surface water.

  12. Environmental Survey preliminary report, Laboratory for Energy-Related Health Research, Davis, California

    SciTech Connect (OSTI)

    Not Available

    1988-03-01

    This report presents the preliminary findings from the first phase of the Survey of the United States Department of Energy (DOE) Laboratory for Energy-Related Health Research (LEHR) at the University of California, Davis (UC Davis), conducted November 16 through 20, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LEHR. The Survey covers all environmental media and all areas of environmental regulation, and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the LEHR and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the LEHR at UC Davis. The Interim Report will reflect the final determinations of the LEHR Survey. 75 refs., 26 figs., 23 tabs.

  13. RADBALL TECHNOLOGY TESTING IN THE SAVANNAH RIVER SITE HEALTH PHYSICS INSTRUMENT CALIBRATION LABORATORY

    SciTech Connect (OSTI)

    Farfan, E.

    2010-07-08

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall{trademark}, consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBallTM technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL).

  14. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLabLabor ComplianceLaboratories

  15. Human-health effects of radium: an epidemiolgic perspective of research at Argonne National Laboratory

    SciTech Connect (OSTI)

    Stebbings, J.H.

    1982-01-01

    The topic of health effects of radium has recently been considerably broadened by the identification of multiple myeloma as a specific outcome of bone-seeking radionuclides, and by evidence that the incidence of breast cancer may be significantly increased by radium exposure. All soft-tissue tumors are now suspect, especially leukemias. Concepts of dose-response need to be broadened to include the concept of risk factors, or, if one prefers, of susceptible subgroups. Biological factors relating to radium uptake and retention require study, as do risk factors modifying risk of both the clasical tumors, osteosarcoma and nasal sinus/mastoid, and the more recently suspect soft-tissue tumors. The history, organization, and current research activities in epidemiology at Argonne National Laboratory are described, and findings of the last decade and a half reviewed. Plans for future research are briefly discussed.

  16. Conceptual Site Treatment Plan Laboratory for Energy-Related Health Research Environmental Restoration Project

    SciTech Connect (OSTI)

    Chapman, T.E.

    1993-10-01

    The Federal Facilities Compliance Act (the Act) of 1992 waives sovereign immunity for federal facilities for fines and penalties under the provisions of the Resource Recovery and Conservation Act, state, interstate, and local hazardous and solid waste management requirements. However, for three years the Act delays the waiver for violations involving US Department of Energy (DOE) facilities. The Act, however, requires that the DOE prepare a Conceptual Site Treatment Plan (CSTP) for each of its sites that generate or store mixed wastes (MWs). The purpose of the CSTP is to present DOE`s preliminary evaluations of the development of treatment capacities and technologies for treating a site`s MW. This CSTP presents the preliminary capacity and technology evaluation for the Laboratory for Energy-Related Health Research (LEHR). The five identified MW streams at LEHR are evaluated to the extent possible given available information. Only one MW stream is sufficiently well defined to permit a technology evaluation to be performed. Two other MW streams are in the process of being characterized so that an evaluation can be performed. The other two MW streams will be generated by the decommissioning of inactive facilities onsite within the next five years.

  17. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1997-09-01

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S&M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S&M effort would be required to maintain the building safety envelope. Other than the minimal S&M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S&M until decommissioning activities begin.

  18. Analytical mass spectrometry. Abstracts

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  19. Analytical mass spectrometry

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  20. TRAINING REQUIREMENTS FOR MNI LABORATORY PERSONNEL (version February, 2014) Principal Investigators are responsible for ensuring good occupational health and safety practices in their

    E-Print Network [OSTI]

    Shoubridge, Eric

    TRAINING REQUIREMENTS FOR MNI LABORATORY PERSONNEL (version February, 2014) Principal Investigators ensuring all personnel receive the proper training according to McGill Environmental Health and Safety are taken through McGill Environmental Health and Safety[ Safety Training | Environmental Health and Safety

  1. Rice University Environmental Health and Safety Laboratory-Specific Safety Training Attendance Record

    E-Print Network [OSTI]

    Natelson, Douglas

    acute hazardous chemicals. 8. Location of all waste collection areas and review of all waste collection in the laboratory or training existing researchers on new hazards within the laboratory. It is recommended by the researcher highlighting the proper use of hazardous materials and their proper disposal. 3. Storage locations

  2. Independent Oversight Inspection of Environment, Safety, and Health Programs at the Argonne National Laboratory, Technical Appendices, Volume II, May 2005

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA) inspected environment, safety, and health (ES&H) programs at the DOE Argonne National Laboratory (ANL) during April and May 2005. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. This volume of the report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for ANL work activities. Appendix D presents the results of the review of SC, ASO, and ANL feedback and continuous improvement processes and management systems. Appendix E presents the results of the review of essential safety system functionality, and Appendix F presents the results of the review of safety management of the selected focus areas.

  3. Independent Oversight Inspection of Environment, Safety, and Health Programs at the Sandia National Laboratories, Technical Appendices, Volume II, May 2005

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA) inspected environment, safety, and health (ES&H) programs at DOE Sandia National Laboratories (SNL) during March and April 2005. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. This volume of the report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for SNL work activities. Appendix D presents the results of the review of NNSA, SSO, and SNL feedback and continuous improvement processes and management systems. Appendix E presents the results of the review of essential safety system functionality, and Appendix F presents the results of the review of safety management of the selected focus areas.

  4. CRAD, Occupational Safety & Health- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Occupational and Industrial Safety and Hygiene Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  5. Environmental Health and Safety Laboratory Preparation for Tropical Storms or Hurricanes

    E-Print Network [OSTI]

    Natelson, Douglas

    be followed prior to landfall. 1. Check the accuracy of emergency contacts and telephone numbers on the lab isotopes, and DEA regulated drugs. Make sure all inventories of these materials are up to date. 6. Shut down all laboratory equipment which is not essential. Ovens, solvent stills, stir plates, biohazard

  6. CRAD, Occupational Safety & Health- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Industrial Safety and Hygiene Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  7. Environmental Health and Safety's Laboratory Safety Trainings Title of Training Description Required Training

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    modules: 1. Laboratory Safety 2. Hazardous Waste 3. Right to Know Classroom training schedules are posted thereafter you may renew on- line with the Biosafety Training Module. Classroom training schedules are posted Radiation safety training consists of two modules. The first training module covers general radiation safety

  8. Medical surveillance of employee health at the Superconducting Super Collider Laboratory

    SciTech Connect (OSTI)

    Chester, T.J.

    1992-03-01

    Medical surveillance can best be defined as conducting specific, targeted medical examinations at pre-determined intervals for the purpose of assessing whether individuals have suffered work-related illness or injury. The objectives of the medical examinations are to determine if there is any evidence of illness or injury and to determine whether any illness or injury found is occupationally related. If illness or injury is found, the employee under medical surveillance can be referred for immediate treatment. Other employees in the same work group can be examined, and any hazardous defects in the workplace can be corrected. Additional objectives of these periodic examinations are to determine whether the employee's health status and physical fitness continue to be compatible with the safe performance of his assigned job tasks; to contribute to employee health maintenance by providing the opportunity for early detection, treatment, and prevention of disease or injuries; and to provide a documented record status that can be used in analysis of the health of the work group as a whole.

  9. Medical surveillance of employee health at the Superconducting Super Collider Laboratory

    SciTech Connect (OSTI)

    Chester, T.J.

    1992-03-01

    Medical surveillance can best be defined as conducting specific, targeted medical examinations at pre-determined intervals for the purpose of assessing whether individuals have suffered work-related illness or injury. The objectives of the medical examinations are to determine if there is any evidence of illness or injury and to determine whether any illness or injury found is occupationally related. If illness or injury is found, the employee under medical surveillance can be referred for immediate treatment. Other employees in the same work group can be examined, and any hazardous defects in the workplace can be corrected. Additional objectives of these periodic examinations are to determine whether the employee`s health status and physical fitness continue to be compatible with the safe performance of his assigned job tasks; to contribute to employee health maintenance by providing the opportunity for early detection, treatment, and prevention of disease or injuries; and to provide a documented record status that can be used in analysis of the health of the work group as a whole.

  10. Cost of presumptive source term Remedial Actions Laboratory for energy-related health research, University of California, Davis

    SciTech Connect (OSTI)

    Last, G.V.; Bagaasen, L.M.; Josephson, G.B.; Lanigan, D.C.; Liikala, T.L.; Newcomer, D.R.; Pearson, A.W.; Teel, S.S.

    1995-12-01

    A Remedial Investigation/Feasibility Study (RI/FS) is in progress at the Laboratory for Energy Related Health Research (LEHR) at the University of California, Davis. The purpose of the RI/FS is to gather sufficient information to support an informed risk management decision regarding the most appropriate remedial actions for impacted areas of the facility. In an effort to expedite remediation of the LEHR facility, the remedial project managers requested a more detailed evaluation of a selected set of remedial actions. In particular, they requested information on both characterization and remedial action costs. The US Department of Energy -- Oakland Office requested the assistance of the Pacific Northwest National Laboratory to prepare order-of-magnitude cost estimates for presumptive remedial actions being considered for the five source term operable units. The cost estimates presented in this report include characterization costs, capital costs, and annual operation and maintenance (O&M) costs. These cost estimates are intended to aid planning and direction of future environmental remediation efforts.

  11. Pacific Northwest Laboratory annual report for 1979 to the DOE Assistant Secretary for Environment. Part 5. Environmental assessment, control, health, and safety

    SciTech Connect (OSTI)

    Baalman, R.W.; Dotson, C.W. (eds.)

    1980-02-01

    Part 5 of the 1979 Annual Report to the Department of Energy Assistant Secretary for the Environment presents Pacific Northwest Laboratory's progress on work performed for the Office of Technology Impacts, the Office of Environmental Compliance and Overview, and the Office of Health and Environmental Research. The report is in four sections, corresponding to the program elements: technology impacts, environmental control engineering, operational and environmental compliance, and human health studies. In each section, articles describe progress made during FY 1979 on individual projects.

  12. Health and Safety Work Plan for Sampling Colloids in Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Marsh, J.D.; McCarthy, J.F.

    1994-01-01

    This Work Plan/Site Safety and Health Plan (SSHP) and the attached work plan are for the performance of the colloid project at WAG 5. The work will be conducted by the Oak Ridge National Laboratory (ORNL) Environmental Sciences Division (ESD) and associated ORNL environmental, safety, and health support groups. The purpose of this document is to establish health and safety guidelines to be followed by all personnel involved in conducting work for this project. The levels of protection and the procedures specified in this plan are based on the best information available from historical data and preliminary evaluations of the area. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project.

  13. Division of Laboratory Sciences

    E-Print Network [OSTI]

    #12;#12;Division of Laboratory Sciences U.S. Department of Health and Human Services Centers and Prevention National Center for Environmental Health Division of Laboratory Sciences Atlanta, Georgia 30341 at the Centers for Disease Control and Prevention's (CDC's) Division of Laboratory Sciences have lots

  14. A BRIEF HISTORY THE ANALYTICAL CHEMISTRY DIVISION

    E-Print Network [OSTI]

    #12;#12;A BRIEF HISTORY THE ANALYTICAL CHEMISTRY DIVISION OF OAK RIDGE NATIONAL LABORATORY 1950 hiembers of the Chemistry Division R-on: J. A. Swartout In ra: Transfer of Personnel to Analytical Analytical Chemistry Division under Dr. M. T. Kelley, effective immediately; C. L. Burros and Group L. T

  15. Inspection of Environment, Safety, and Health Management at the Argonne National Laboratory- East, Volume I, May 2002

    Broader source: Energy.gov [DOE]

    The Secretary of Energy’s Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) programs and emergency management programs at the U. S. Department of Energy (DOE) Argonne National Laboratory (ANL) in April and May 2002. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight. This volume discusses the results of the review of ANL ES&H programs. The results of the review of the ANL emergency management programs are discussed in Volume II of this report and the combined results are discussed in a summary report. As discussed in this report, some aspects of ISM are effectively implemented at ANL, including institutional roles and responsibilities, training and qualification programs, and processes for incorporating ES&H needs into the planning and budgeting processes. In addition, CH/AAO and ANL have been effective in establishing rigorous processes for reviewing experiment safety. However, performance weaknesses are evident in several areas, including work planning and control processes, radiation protection, and some aspects of management of the AGHCF (including nuclear safety requirements). Weaknesses in management systems, such as CH/AAO and ANL feedback and continuous improvement systems and requirements management systems, contribute to the observed performance deficiencies. Section 2 of this volume provides an overall discussion of the results of the review of the ANL ISM program, including positive aspects, findings, and other items requiring management attention. Section 3 provides OA’s conclusions regarding the overall effectiveness of CH and ANL management of the ES&H programs. Section 4 presents the ratings assigned as a result of this review. Appendix A provides supplemental information, including team member composition. Appendix B identifies the specific findings that require corrective actions and follow-up. Appendix C presents the results of the review of the guiding principles of ISM. Appendix D presents the results of the review of the CH and ANL feedback and continuous improvement processes. The results of the review of the application of the core functions of ISM at the selected ANL facilities are discussed in Appendix E.

  16. Bearing Analytics

    Broader source: Energy.gov [DOE]

    Bearing Analytics is a leading-edge equipment monitoring company aimed at pioneering a new era in industrial bearing condition monitoring. Our objective is to consolidate the needs of customers, environment, and manufacturers to improve asset management and energy efficiency capabilities one bearing at a time.

  17. morhaley | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    morhaley Ames Laboratory Profile Haley Morris Office Assistant-X Human Resources Office Environmental, Safety, Health, and Assuarance 105 TASF Phone Number: 515-294-2153 Email...

  18. 2012 -2013 Department of Clinical Laboratory Sciences

    E-Print Network [OSTI]

    Health Professions #12;2 DEPARTMENT OF CLINICAL LABORATORY SCIENCES SCHOOL OF ALLIED HEALTH PROFESSIONS...........................................................................15 School of Allied Health Professions Policies and Procedures Related to Student Conduct

  19. 2011 -2012 Department of Clinical Laboratory Sciences

    E-Print Network [OSTI]

    Health Professions #12;2 DEPARTMENT OF CLINICAL LABORATORY SCIENCES SCHOOL OF ALLIED HEALTH PROFESSIONS...........................................................................15 School of Allied Health Professions Policies and Procedures Related to Student Conduct

  20. Environmental health and safety plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Burman, S.N.; Tiner, P.F.; Gosslee, R.C.

    1998-01-01

    The Lockheed Martin Energy Systems, Inc. (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to environmental protection and safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air.

  1. Audit of Construction of an Environmental, Safety, and Health Analytical Laboratory at the Pantex Plant, WR-B-96-02

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIES AT THE IDAHO NATIONALENERGY OFFICE OF

  2. Data Analytics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet HanfordDOEDaniel Shechtman andDark FiberAnalytics Data

  3. Savannah River Analytical Laboratories Achieve International...

    National Nuclear Security Administration (NNSA)

    2014 (17) April 2014 (12) March 2014 (7) February 2014 (11) January 2014 (12) December 2013 (18) November 2013 (21) October 2013 (9) September 2013 (18) August 2013 (17) July 2013...

  4. ORISE: Radiochemistry and Environmental Analytical Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    matrices. ORISE performs radiochemical analyses exclusively for the U.S. Nuclear Regulatory Commission (NRC), as well as provides support to the U.S. Department of Energy, the...

  5. Working with SRNL - Our Facilities - Analytical Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos andSeminarsDesignIn theWorking with Aiken

  6. Savannah River Analytical Laboratories Achieve International Standard

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal ofNational Nuclear Security Administration

  7. ORISE: Radiochemistry and Environmental Analytical Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSEHow ORISE is Making aDose EstimatesRadiochemistry and

  8. Pacific Northwest Laboratory annual report for 1980 to the DOE Assistant Secretary for Environment. Part 5. Environmental assessment, control, health and safety

    SciTech Connect (OSTI)

    Baalman, R.W.; Hays, I.D. (eds.)

    1981-02-01

    Pacific Northwest Laboratory's (PNL) 1980 annual report to the DOE Assistant Secretary for Environment describes research in environment, health, and safety conducted during fiscal year 1980. Part 5 includes technology assessments for natural gas, enhanced oil recovery, oil shale, uranium mining, magnetic fusion energy, solar energy, uranium enrichment and industrial energy utilization; regional analysis studies of environmental transport and community impacts; environmental and safety engineering for LNG, oil spills, LPG, shale oil waste waters, geothermal liquid waste disposal, compressed air energy storage, and nuclear/fusion fuel cycles; operational and environmental safety studies of decommissioning, environmental monitoring, personnel dosimetry, and analysis of criticality safety; health physics studies; and epidemiological studies. Also included are an author index, organization of PNL charts and distribution lists of the annual report, along with lists of presentations and publications. (DLS)

  9. LABORATORY SAFETY CHECKLIST Department of Environment, Health and Safety v.1.9 July 2014 Page 1

    E-Print Network [OSTI]

    Machel, Hans

    ) WHMIS Designate SPILL Designate TDG Designate CHEMATIX Designate A. Laboratory Signage and Identification Criteria yes no n/a Comments / Corrective Action Taken Correction Date Initial 1 Main entrance is posted in each lab listed on the permit. i. A copy of the CNSC (Canadian Nuclear Safety Commission) lab

  10. Bioengineering Laboratory MAEDA, Mizuo (Ph.D)

    E-Print Network [OSTI]

    Fukai, Tomoki

    science and engineering. Incorporating polymer chemistry, analytical chemistry, surface chemistry, Micro-analytical system, Molecular chaperone engineering, Biodegradable polymer, Semiconductor device technology Purpose of Research This laboratory is working on a new frontier of research that fuses biological

  11. Laboratory Biosafety Manual 1. Introduction

    E-Print Network [OSTI]

    Natelson, Douglas

    Laboratory Biosafety Manual 1. Introduction This Manual is intended to be a resource in the laboratory environment to work safely and reduce or eliminate the potential for exposure to biological and Biomedical Laboratories (U.S. Health and Human Services Publication No. CDC99-8395, Public Health Service

  12. Health

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSCGrid-based29HaiWhy Is ItHarry1-1642Health

  13. Storm Water Analytical Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Individual Permit Storm Water Analytical Period Storm Water Analytical Period The Individual Permit authorizes the discharge of storm water associated with historical industrial...

  14. Independent Oversight Inspection, Idaho National Laboratory- August 2007

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Programs at the Idaho National Laboratory's Materials and Fuels Complex

  15. Independent Oversight Inspection, Idaho National Laboratory- June 2005

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Programs at the Idaho National Laboratory Advanced Test Reactor

  16. Independent Oversight Inspection, Pacific Northwest National Laboratory- December 2003

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management at the Pacific Northwest National Laboratory

  17. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  18. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  19. Hanford analytical sample projections 1996--2001

    SciTech Connect (OSTI)

    Joyce, S.M.

    1996-06-26

    This document summarizes the biannual Hanford sample projections for fiscal years 1996 to 2001. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Analytical Services, Site Monitoring, and Industrial Hygiene. This information will be used by Hanford Analytical Services to assure that laboratories and resources are available and effectively utilized to meet these documented needs. Sample projections are categorized by radiation level, protocol, sample matrix and Program. Analyses requirements are also presented.

  20. Interlaboratory Analytical Comparison Study to Support Deepwater Horizon

    E-Print Network [OSTI]

    R. Kucklick Analytical Chemistry Division Material Measurement Laboratory National Institute tissue QA10TIS01 reported here. In this exercise, selected polycyclic aromatic hydrocarbons (PAHs have collected environmental samples for hydrocarbon analysis and submitted them to different

  1. President's The Future of Health

    E-Print Network [OSTI]

    Alexandrova, Ivana

    President's Forum on Data The Future of Health Data Analytics 2nd ANNUAL FORUM TUESDAY, FEBRUARY 24's Forum is focused on a critical and timely topic: The Future of Health Data Analytics. Across the nation, groundbreaking advances in capturing, managing, and using data in health care are making it possible to push

  2. LABORATORY SAFETY CHECKLIST LABORATORY: DATE

    E-Print Network [OSTI]

    Fleming, Andrew J.

    LABORATORY SAFETY CHECKLIST LABORATORY: DATE: RESPONSIBLE OFFICER: INSPECTION BY: Boxes/A indicates the item does not apply to this laboratory. 1 HAZARD IDENTIFICATION /x/NA Comments 1 in the laboratory? 1.2 Are current copies available of: (a) permits for notifiable or prohibited carcinogens, (b

  3. Statistical Sciences Group, Los Alamos National Laboratory,

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Luke Bornn CCS-6, Statistical Sciences Group, Los Alamos National Laboratory, MS F600, Los Alamos Institute, Los Alamos National Laboratory, MS T006, Los Alamos, NM 87545 Structural Health Monitoring

  4. NIST Laboratory Programs and the National Voluntary Laboratory

    E-Print Network [OSTI]

    a "weighing design." Georgia Harris from this division provided the technical criteria for mass and volume from accredited laboratories to make decisions that affect safety, security, health and the environment

  5. Interlaboratory Analytical Comparison Study to Support Deepwater Horizon

    E-Print Network [OSTI]

    and John R. Kucklick Analytical Chemistry Division Material Measurement Laboratory National Institute, marine sediment QA10SED01 reported here. In this exercise, selected polycyclic aromatic hydrocarbons for hydrocarbon analysis and submitted them to different laboratories throughout the country. In the past

  6. EARTHQUAKE PREPAREDNESS FOR LABORATORIES

    E-Print Network [OSTI]

    Polly, David

    EARTHQUAKE PREPAREDNESS FOR LABORATORIES By: Christopher E. Kohler (Environmental Health and Safety, principal investigators, lab supervisors, and lab personnel assess their areas of responsibility to determine safety procedures and use this information to mitigate situations that may pose a problem in case

  7. Sandia National Laboratories: About Sandia: Environmental Responsibili...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environment, Safety & Health Policy Policy Statement It is the policy of Sandia National Laboratories to perform work in a safe and environmentally responsible manner by committing...

  8. Independent Oversight Inspection, Sandia National Laboratories...

    Office of Environmental Management (EM)

    Summary Report - February 2003 February 2003 Inspection of Environment, Safety, and Health and Emergency Management at the Sandia National Laboratories This report provides a...

  9. Independent Oversight Inspection, Lawrence Livermore National Laboratory, Volume I- December 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory

  10. Independent Oversight Inspection, Argonne National Laboratory- East, Summary Report- May 2002

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management at the Argonne National Laboratory - East

  11. Independent Oversight Inspection, Los Alamos National Laboratory, Summary Report- April 2002

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management at the Los Alamos National Laboratory

  12. Independent Oversight Inspection, Lawrence Livermore National Laboratory, Summary Report- July 2002

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management at the Lawrence Livermore National Laboratory

  13. Bioengineering Laboratory MAEDA, Mizuo (Ph.D)

    E-Print Network [OSTI]

    Fukai, Tomoki

    which fuses engineering and biological science. On the basis of polymer chemistry, analytical chemistry, micro-analytical system, molecular chaperone engineering, biodegradable polymer, semiconductor device technology Outline The principal purpose of our laboratory is to explore a new frontier of research field

  14. Analytical Chemistry Applied Mathematics

    E-Print Network [OSTI]

    Heller, Barbara

    Architecture Information Technology & Management Integrated Building Delivery Landscape Architecture ManagementAnalytical Chemistry Applied Mathematics Architectural Engineering Architecture Architecture Electricity Markets Environmental Engineering Food Process Engineering Food Safety & Technology

  15. Web Analytics and Statistics

    Office of Energy Efficiency and Renewable Energy (EERE)

    EERE uses Google Analytics to capture statistics on its websites. These statistics help website managers measure and report on users, sessions, most visited pages, and more. The Web Template...

  16. Analysis And Analyticity

    E-Print Network [OSTI]

    Schick, Theodore W. Jr.

    229 ANALYSIS AND ANALYTICITY THEODORE W. SCHICK, JR. In this paper, I attempt to solve the paradox of analysis by eliminating certain ambiguities that have have plagued theories of property-identity and proposition-identity. The paradox...229 ANALYSIS AND ANALYTICITY THEODORE W. SCHICK, JR. In this paper, I attempt to solve the paradox of analysis by eliminating certain ambiguities that have have plagued theories of property-identity and proposition-identity. The paradox...

  17. Setting Up a New Lab: Environmental Health and Safety Information All laboratories are subject to the rules and regulations of the State of Washington and

    E-Print Network [OSTI]

    Borenstein, Elhanan

    to the rules and regulations of the State of Washington and the University of Washington. The department at the following url: http://www.ehs.washington.edu/ New principal investigators can find information helpful to opening their laboratory with good practices at the following url: http://www.ehs.washington

  18. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory January 4, 2013 Lecture series begins yearlong commemoration of 70th anniversary LOS...

  19. Los Alamos National Laboratory names new leadership for Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, a Master's in Chemistry from Eastern New Mexico University, and a Ph.D. in Analytical Chemistry from New Mexico State University. PDF TOPICS Health Space Computing...

  20. An Analytic Holographic Superconductor

    E-Print Network [OSTI]

    Christopher P. Herzog

    2011-01-16

    We investigate a holographic superconductor that admits an analytic treatment near the phase transition. In the dual 3+1 dimensional field theory, the phase transition occurs when a scalar operator of scaling dimension two gets a vacuum expectation value. We calculate current-current correlation functions along with the speed of second sound near the critical temperature. We also make some remarks about critical exponents. An analytic treatment is possible because an underlying Heun equation describing the zero mode of the phase transition has a polynomial solution. Amusingly, the treatment here may generalize for an order parameter with any integer spin, and we propose a Lagrangian for a spin two holographic superconductor.

  1. Existing technology transfer report: analytical capabilities. Volume 1

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    The overall objective of the on-going analytical efforts was to develop in-house expertise and analytical capability for the analysis of coal and coal-derived products in support of SRC-I process technology. The approach taken and work accomplished involved: identification of test methods and associated equipment; review and implementation of analytical facility plan; evaluation of existing instrumentation; evaluation and purchase of new instruments; training of laboratory personnel; validation or development of analytical methods; development of standard product work-up methods; and development of analytical protocol for detailed characterization of SRC-I solid and liquid products. Expertise in analytical chemistry was developed by organizing historical knowledge and assimilating new knowledge as it became available from inside and outside research facilities and the chemical literature. The data were then used to define analytical methods, instrumentation, space, staff needed to create a functional coal analysis laboratory. This report summarizes the direction and progress of the analytical development efforts during the period 1974 to 1980. 2 references, 5 figures.

  2. Decision Analytic Modelling in the Economic Evaluation of

    E-Print Network [OSTI]

    Oakley, Jeremy

    Decision Analytic Modelling in the Economic Evaluation of Health Technologies A Consensus Statement when used for the economic evaluation of health technologies; there is limited guidanceforgoodmodelling developed in the context of broader healthcare and economic evaluations, for which ex- plicit guidelines

  3. Fields with analytic structure

    E-Print Network [OSTI]

    2011-05-06

    analytic functions” are the strictly convergent power series over A (i.e. the elements of ... standard models of the theory of Qp in the language with symbols for the .... We call the family B a real Weierstrass system if the following conditions

  4. Quality assurance management plan (QAPP) special analytical support (SAS)

    SciTech Connect (OSTI)

    LOCKREM, L.L.

    1999-05-20

    It is the policy of Special Analytical Support (SAS) that the analytical aspects of all environmental data generated and processed in the laboratory, subject to the Environmental Protection Agency (EPA), U.S. Department of Energy or other project specific requirements, be of known and acceptable quality. It is the intention of this QAPP to establish and assure that an effective quality controlled management system is maintained in order to meet the quality requirements of the intended use(s) of the data.

  5. Analytical Instrumentation for the MFRC | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with one Agilent gas chromatograph - mass spectrometer (GC-MS) and one Agilent heart-cut multidimensional GC-MS, which allows higher specificity identification of...

  6. Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB),

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulators consumerWaste Isolationof Energy

  7. Energy, Power, and Decision Analytics | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOEEnergy StorageTricks Lead toJohnUnit Provi

  8. NIST Presentation to FBI Laboratory May 19, 2005 http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm 1

    E-Print Network [OSTI]

    NIST Presentation to FBI Laboratory May 19, 2005 http Redman, Amy Decker, and Becky Hill Dave Duewer (NIST Analytical Chemistry Division) FBI Laboratory/review articles, validation standardization) Mike Margaret Pete John #12;NIST Presentation to FBI Laboratory May

  9. Visgraf Laboratory IMPA Visgraf Laboratory IMPA

    E-Print Network [OSTI]

    de Figueiredo, Luiz Henrique

    1 Visgraf Laboratory ­ IMPA Visgraf Laboratory ­ IMPA Visgraf Laboratory ­ IMPA CNMAC 99 CNMAC 99 jonas@impa.br @impa.br Visgraf Laboratory ­ IMPA Visgraf Laboratory ­ IMPA Rio de Janeiro Rio de Janeiro www.visgraf.impa.br www.visgraf.impa.br Visgraf Laboratory ­ IMPA Visgraf Laboratory ­ IMPA Visgraf

  10. Industrial Analytics Corporation

    SciTech Connect (OSTI)

    Industrial Analytics Corporation

    2004-01-30

    The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

  11. Quality control and statistical process control for nuclear analytical measurements

    SciTech Connect (OSTI)

    Seymour, R.; Sergent, F.; Clark, W.H.C.; Gleason, G.

    1993-12-31

    The same driving forces that are making businesses examine quality control of manufacturing processes are making laboratories reevaluate their quality control programs. Increased regulation (accountability), global competitiveness (profitability), and potential for litigation (defensibility) are the principal driving forces behind the development and implementation of QA/QC programs in the nuclear analytical laboratory. Both manufacturing and scientific quality control can use identical statistical methods, albeit with some differences in the treatment of the measured data. Today, the approaches to QC programs are quite different for most analytical laboratories as compared with manufacturing sciences. This is unfortunate because the statistical process control methods are directly applicable to measurement processes. It is shown that statistical process control methods can provide many benefits for laboratory QC data treatment.

  12. Existing technology transfer report: analytical capabilities. Appendix B. Volume 3

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    The overall objective of the on-going analytical efforts was to develop in-house expertise and analytical capability for the analysis of coal and coal-derived products in support of SRC-I process technology. The approach taken and work accomplished involved: identification of test methods and associated equipment; review and implementation of analytical facility plan; evaluation of existing instrumentation; evaluation and purchase of new instruments; training of laboratory personnel; validation or development of analytical methods; development of standard product work-up methods and development of analytical protocol for detailed characterization of SRC-I solid and liquid products. This volume contains Appendix B with the following attachments: solvent separation procedure A; Wilsonville solvent separation procedure, distillation separation procedure; solvent separation modified Wilsonville Procedure W; statistical comparison of 3 solvent separation procedures; methods development for column chromatography, and application of gas chromatography to characterization of a hydrogen donor solvent; and high performance liquid chromatographic procedure.

  13. SPECIAL REPORT Environmental Health specialists'

    E-Print Network [OSTI]

    with epidemiologists and laboratori ans in federal, state, and local public health agencies are typically involved during investigations (Bry an, 2002; Ehiri & Morris, 1994; Jones et al., 2004). The Environmental Health 45­54 38 55 or

  14. Ames Laboratory Argonne National Laboratory

    E-Print Network [OSTI]

    that advance knowl- edge and provide the foundation for American innovation. From unlocking atomic energy's electric vehicles, solar panels, and wind turbines, the National Labs have pushed the boundaries Energy Technology Laboratory Morgantown, West Virginia Pittsburgh, Pennsylvania Albany, Oregon National

  15. Health and Safety Research Division progress report for the period April 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Kaye, S.V.

    1992-03-01

    This is a brief progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology including Measurement Applications and Development, Pollutant Assessments, Measurement Systems Research, Dosimetry Applications Research, Metabolism and Dosimetry Research and Nuclear Medicine. Biological and Radiation Physics including Atomic, Molecular, and High Voltage Physics, Physics of Solids and Macromolecules, Liquid and Submicron Physics, Analytic Dosimetry and Surface Physics and Health Effects. Chemical Physics including Molecular Physics, Photophysics and Advanced Monitoring Development. Biomedical and Environmental Information Analysis including Human Genome and Toxicology, Chemical Hazard Evaluation and Communication, Environmental Regulations and Remediation and Information Management Technology. Risk Analysis including Hazardous Waste.

  16. Laboratory Safety OSHA 3404-11R 2011

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Laboratory Safety Guidance OSHA 3404-11R 2011 #12;Occupational Safety and Health Act of 1970 "To-1999; teletypewriter (TTY) number: 1-877- 889-5627. #12;Laboratory Safety Guidance Occupational Safety and Health Hazards 9 Laboratory Standard 9 Hazard Communication Standard 13 Specific Chemical Hazards 13 Air

  17. Analytic Feminism: A Brief Introduction

    E-Print Network [OSTI]

    Cudd, Ann E.

    1995-01-01

    This essay introduces the subject of this special issue by offering a characterization of analytic feminism in terms of its context, methods, and problem areas. I argue that analytic feminism is a legitimate sub-field both of feminism...

  18. Analytical solutions to matrix diffusion problems

    SciTech Connect (OSTI)

    Kekäläinen, Pekka

    2014-10-06

    We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.

  19. STRICTLY CONVERGENT ANALYTIC STRUCTURES 1 ...

    E-Print Network [OSTI]

    2015-02-03

    STRICTLY CONVERGENT ANALYTIC STRUCTURES. RAF CLUCKERS1 AND LEONARD LIPSHITZ2. Abstract. We give conclusive answers to some questions

  20. EE 448 Laboratory Preface Laboratory Introduction

    E-Print Network [OSTI]

    Kumar, Ratnesh

    EE 448 Laboratory Preface Laboratory Introduction -1- EE 448 Preface 2/26/2007 Laboratory Introduction #12;EE 448 Laboratory Preface Laboratory Introduction -2- I. INTRODUCTION The electric machinery laboratory provides students with the opportunity to examine and experiment with different types

  1. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect (OSTI)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  2. Interlaboratory Analytical Comparison Study to Support Deepwater Horizon

    E-Print Network [OSTI]

    . Kucklick Analytical Chemistry Division Material Measurement Laboratory National Institute of Standards, crude oil QA10OIL01 reported here. In this exercise, selected polycyclic aromatic hydrocarbons (PAHs will be required. In addition, numerous other entities have collected environmental samples for hydrocarbon

  3. Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12

    E-Print Network [OSTI]

    Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12 State Feedback Controller for Position Control of a Flexible Link 12.1 Objective The objective of this laboratory is to design a full of the combined system (i.e., servomotor and flexible link) introduced in the Laboratory 9 (refer to [1

  4. Laboratory 10 Control Systems Laboratory ECE3557 Laboratory 10

    E-Print Network [OSTI]

    Laboratory 10 Control Systems Laboratory ECE3557 Laboratory 10 State Feedback Controller for Position Control of a DC Servo 10.1 Objective The objective of this laboratory is to position the gears, we will use the state space model of the DC servo introduced in the laboratory 3 (refer to [1

  5. TAMU Laboratory Safety Manual TEXAS A&M UNIVERSITY

    E-Print Network [OSTI]

    TAMU Laboratory Safety Manual i TEXAS A&M UNIVERSITY LABORATORY SAFETY MANUAL Prepared by ENVIRONMENTAL HEALTH & SAFETY TEXAS A&M UNIVERSITY FEBRUARY 2009 #12;TAMU Laboratory Safety Manual ii TABLE ..............................................................................................1-1 EHS LABORATORY SAFETY - PROGRAMS AND SERVICES ........................................1

  6. The Analytical Sciences Digital Library (ASDL)

    E-Print Network [OSTI]

    Larive, Cynthia K.

    2009-01-01

    Analytical Sciences Digital Library (http://www.asdlib.org).Analytical Sciences Digital Library (ASDL) Cynthia K. LariveAnalytical Sciences Digital Library (ASDL) is a collection

  7. Laser ablation in analytical chemistry - A review

    E-Print Network [OSTI]

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-01-01

    Encyclopedia of Analytical Chemistry, John Wiley & Sons,applications in analytical chemistry. Matrix independentLaser Ablation in Analytical Chemistry - A Review Richard E.

  8. The Analytical Sciences Digital Library (ASDL)

    E-Print Network [OSTI]

    Larive, Cynthia K.

    2009-01-01

    sciences include analytical chemistry, and other disciplinesis Professor of Analytical Chemistry at the University ofregistered users are analytical chemistry faculty members at

  9. HEALTH & HUMANITYHEALTH & HUMANITYHEALTH & HUMANITY This major is intended for students interested in fields that inform the health

    E-Print Network [OSTI]

    Krylov, Anna I.

    HEALTH & HUMANITYHEALTH & HUMANITYHEALTH & HUMANITY This major is intended for students interested in fields that inform the health profession and in related questions about health and human experience the how health issues relate to different fields. Ethnographics Lab: The Ethnographics Laboratory

  10. 12.119 Analytical Techniques for Studying Environmental and Geologic Samples, Spring 2006

    E-Print Network [OSTI]

    Boyle, Edward

    This is a laboratory course supplemented by lectures that focus on selected analytical facilities that are commonly used to determine the mineralogy, elemental abundance and isotopic ratios of Sr and Pb in rocks, soils, ...

  11. Laboratory Safety Survey Chemical Hygiene Plan

    E-Print Network [OSTI]

    Ishida, Yuko

    Laboratory Safety Survey Chemical Hygiene Plan OFFICE OF ENVIRONMENTAL HEALTH AND SAFETY UNIVERSITY and charged? (if not, call UC Davis Fire Department). 17. Are sinks labeled "Industrial Water - Do Not Drink

  12. Laboratory performance evaluation reports for management

    SciTech Connect (OSTI)

    Lindahl, P.C.; Hensley, J.E.; Bass, D.A.; Johnson, P.L.; Marr, J.J.; Streets, W.E.; Warren, S.W.; Newberry, R.W.

    1995-05-01

    In support of the US DOE`s environmental restoration efforts, the Integrated Performance Evaluation Program (IPEP) was developed to produce laboratory performance evaluation reports for management. These reports will provide information necessary to allow DOE headquarters and field offices to determine whether or not contracted analytical laboratories have the capability to produce environmental data of the quality necessary for the remediation program. This document describes the management report.

  13. University-Industry-National Laboratory Partnership to Improve...

    Office of Environmental Management (EM)

    University-Industry-National Laboratory Partnership to Improve Building Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing University-Industry-National...

  14. Enterprise Assessments Review of the Sandia National Laboratories...

    Office of Environmental Management (EM)

    Sandia National LaboratoriesNew Mexico Emergency Management Exercise Program November 2015 Office of Emergency Management Assessments Office of Environment, Safety and Health...

  15. Health Behavior Health Promotion -Prevention

    E-Print Network [OSTI]

    Meagher, Mary

    Health Behavior Health Promotion - Prevention Modification of Health Attitudes and Health Behavior #12;Health Promotion: An Overview Basic philosophy Good health = individual and collective goal interventions Public Health Strategies #12;Introduction to Health Behaviors: Role of Behavioral Factors

  16. Laboratory Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC) Directed ResearchLaboratory

  17. Donner Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full reportTown2008Donald Raby Donald_ -

  18. 2013Science Pacific Northwest National Laboratory (PNNL),

    E-Print Network [OSTI]

    2013Science Frontiers #12;Pacific Northwest National Laboratory (PNNL), a U.S. Department of Energy Office of Science Laboratory, is pushing the frontiers of science in areas that are critical to the nation's security, health and prosperity. PNNL's science and technology base ranges from basic research

  19. LABORATORY GUIDE FOR MANAGING CHEMICAL WASTE

    E-Print Network [OSTI]

    Wikswo, John

    LABORATORY GUIDE FOR MANAGING CHEMICAL WASTE VANDERBILT UNIVERSITY Vanderbilt Environmental Health-4951 After hours pager: 835-4965 www.safety.vanderbilt.edu TABLE OF CONTENTS CHEMICAL WASTE MANAGEMENT and Safety (VEHS) 322-2057 www.safety.vanderbilt.edu Revision 1: 3/03 #12;Laboratory Guide for Managing

  20. HEALTH & COUNSELLING Health Clinic

    E-Print Network [OSTI]

    HEALTH & COUNSELLING SERVICES Health Clinic 778.783.4615 - Burnaby 778.782.5200 - Vancouver_counsellor@sfu.ca Health Promotion 778.782.4674 Health & Counselling Services, SFU - 8888 University Drive, MBC 0164 health can suffer if you're under stress for a long time, especially if you are not eating well. You may

  1. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Mercury used in many laboratory areas on campus. All laboratory areas and former laboratory areas should. Cleanup by a hazardous materials contractor is required before demolition or construction can begin

  2. Data Mining and Business Analytics

    E-Print Network [OSTI]

    Data Mining and Business Analytics CertifiCate Programs spears school of business oklahoma state university #12;e ach year, students enrolled in the OSU Graduate Certificate in Business Data Mining program compete in a national data mining shootout competition at the annual analytics (data mining) conference

  3. ANALYTIC COMPLETION (DRAFT) CHARLES REZK

    E-Print Network [OSTI]

    Rezk, Charles

    ANALYTIC COMPLETION (DRAFT) CHARLES REZK Abstract. This is an expository treatment of what we call "analytic completion" of R- modules, which is a kind of completion defined in terms of quotients of power series modules. It is closely related to the left derived functors of adic completion, in which guise

  4. Tribology Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / TransformingTransuranic SolicitationTribology Laboratory

  5. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNL’s Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package – in preparation). Sediment samples and characterization results from PNNL’s Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  6. Stirling engine research at Argonne National Laboratory

    SciTech Connect (OSTI)

    Holtz, R.E.; Daley, J.G.; Roach, P.D.

    1986-06-01

    Stirling engine research at Argonne National Laboratory has been focused at (1) development of mathematical models and analytical tools for predicting component and engine performance, and (2) experimental research into fundamental heat transfer and fluid flow phenomena occurring in Stirling cycle devices. A result of the analytical effort has been the formation of a computer library specifically for Stirling engine researchers and developers. The library contains properties of structural materials commonly used, thermophysical properties of several working fluids, correlations for heat transfer calculations and general specifications of mechanical arrangements (including various drive mechanisms) that can be utilized to model a particular engine. The library also contains alternative modules to perform analysis at different levels of sophistication, including design optimization. A reversing flow heat transfer facility is operating at Argonne to provide data at prototypic Stirling engine operating conditions under controlled laboratory conditions. This information is needed to validate analytical models.

  7. Sandia National Laboratories' Structural Health Monitoring and...

    Broader source: Energy.gov (indexed) [DOE]

    clean, renewable, and diversified resources. One current obstacle to the utilization of offshore wind energy is that most projections put the operation and maintenance (O&M)...

  8. Radioisotope Laboratory Techniques Environmental Health & Safety

    E-Print Network [OSTI]

    Slatton, Clint

    areas > 100mCi? g. Waste disposal receipts? UNIVERSITY OF FLORIDA RADIOACTIVE MATERIALS USER STATEMENT No Yes No D. Biological effects of radiation exposure Yes No Yes No E. Transportation of radioactive with the information to work smarter and safer! ·To fulfill the requirements of the University of Florida's Radioactive

  9. STANFORD UNIVERSITY LABORATORY ANIMAL OCCUPATIONAL HEALTH PROGRAM

    E-Print Network [OSTI]

    ? Excessive weight loss Persistent coughing Excessive fatigue Coughing up blood Persistent fever Have you been

  10. Sandia National Laboratories' Structural Health Monitoring and

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION JSTEM-ing theSummary of Reported6, 2015 Ms.

  11. 222-S laboratory quality assurance plan

    SciTech Connect (OSTI)

    Meznarich, H.K.

    1995-04-01

    This document provides quality assurance guidelines and quality control requirements for analytical services. This document is designed on the basis of Hanford Analytical Services Quality Assurance Plan (HASQAP) technical guidelines and is used for governing 222-S and 222-SA analytical and quality control activities. The 222-S Laboratory provides analytical services to various clients including, but not limited to, waste characterization for the Tank Waste Remediation Systems (TWRS), waste characterization for regulatory waste treatment, storage, and disposal (TSD), regulatory compliance samples, radiation screening, process samples, and TPA samples. A graded approach is applied on the level of sample custody, QC, data verification, and data reporting to meet the specific needs of the client.

  12. November 2014 Laboratory Safety Manual Section 3 -Chemical Waste Management

    E-Print Network [OSTI]

    Brown, Sally

    November 2014 Laboratory Safety Manual Section 3 - Chemical Waste Management UW Environmental Health and Safety Page 3-1 Section 3 - Chemical Waste Management Contents A. HAZARDOUS CHEMICAL WASTE Section 3 - Chemical Waste Management Laboratory Safety Manual UW Environmental Health and Safety Page 3

  13. Laboratory 11 Control Systems Laboratory ECE3557 Laboratory 11

    E-Print Network [OSTI]

    for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full in this laboratory is illustrated. For this laboratory, the servo is used in the high gear ratio configuration (refer = 2.6 · Km: one of the motor torque constants. Km = 0.00767 · Kg: gear ratio of the motor

  14. Environmental Health and Safety Environmental Health Laboratory Assessment

    E-Print Network [OSTI]

    : properly labeled sealed with secondary containment (as needed) Personal dosimeters and area dosimeter

  15. Functionalized magnetic nanoparticle analyte sensor

    SciTech Connect (OSTI)

    Yantasee, Wassana; Warner, Maryin G; Warner, Cynthia L; Addleman, Raymond S; Fryxell, Glen E; Timchalk, Charles; Toloczko, Mychailo B

    2014-03-25

    A method and system for simply and efficiently determining quantities of a preselected material in a particular solution by the placement of at least one superparamagnetic nanoparticle having a specified functionalized organic material connected thereto into a particular sample solution, wherein preselected analytes attach to the functionalized organic groups, these superparamagnetic nanoparticles are then collected at a collection site and analyzed for the presence of a particular analyte.

  16. Laboratory Safety Guide University of Illinois at Urbana-Champaign

    E-Print Network [OSTI]

    Chen, Deming

    Laboratory Safety Guide University of Illinois at Urbana-Champaign Responsibilities The Chancellor environmental health and safety rules, regulations and standards. Ensure that General Laboratory Safety training is completed by all incoming faculty and staff who will work in laboratory space, belonging

  17. Laboratory Personnel Safety Check List Employee/Student Name_________________________________ Date_______________

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Laboratory Personnel Safety Check List Employee/Student Name_________________________________ Date in the laboratory? 2. _______ Has the PI/Lab Supervisor discussed all hazardous components of the research? a in the laboratory? 4. _______ Has the PI/Lab Supervisor discussed the need for the employee/student to inform health

  18. 2014-2015Series Health Sciences

    E-Print Network [OSTI]

    MacAdam, Keith

    : radiological technology, respiratory therapy, dental hygiene, clinical laboratory technicians, and nursing accommodates transfer students for many allied health disciplines including, but not limited to: radiological benefit their employers, health care facility, and patients. For additional information, go to: www

  19. Health Education & Wellness - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wellness Health Education & Wellness Health Education & Wellness Downloads & Patient Materials Health & Productivity Health Calculators & Logs Health Coaching Health Fairs and...

  20. Health & Productivity - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health & Productivity Health Education & Wellness Downloads & Patient Materials Health & Productivity Health Calculators & Logs Health Coaching Health Fairs and Screenings...

  1. Visualization and Analytics Software at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analytics Data, Visualization, and Analytics AVSExpress AVSExpress includes functionality for data visualization and analysis, image processing and data display. It uses a...

  2. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

  3. SHIPBOARD LABORATORY SAFETY PROGRAM

    E-Print Network [OSTI]

    SHIPBOARD LABORATORY SAFETY PROGRAM INTEGRATED OCEAN DRILLING PROGRAM U.S. IMPLEMENTING ORGANIZATION AUGUST 2013 #12;IODP Shipboard Laboratory Safety: Introduction 2 CONTENTS Introduction ................................................................................................................................6 TAMU EHSD: Laboratory Safety Manual

  4. Commercial Fisheries Biological Laboratory

    E-Print Network [OSTI]

    Bureau of Commercial Fisheries Biological Laboratory Oxford, Maryland #12;Chart of the Tred Avon River, showing the location of the BCF Biological Laboratory and the orientation of this area modern laboratories for chem- ical, histological, microbiological, and physiological re- search

  5. LABORATORY SAFETY October 2012

    E-Print Network [OSTI]

    Chan, Hue Sun

    of the program are: 1) the adherence to appropriate design criteria when designing and constructing a laboratoryLABORATORY SAFETY PROGRAM October 2012 #12;OUTLINE 1.0 INTRODUCTION AND SCOPE ...................................................................................................................................6 4.0 LABORATORY DESIGN, CONSTRUCTION, DECOMMISSIONING

  6. ANALYTICAL DATA SHEET ANALYTICAL DEPT. - HEALTH AhD SAFETY DlVlSlDN

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co -VANaval Ordnance,:n5.5.8GE 1AE;;;: 61c

  7. ANALYTICAL DATA SHEET ANALYTICAL DEPT. - HEALTH Al\rD SAFETY DlVlSlON

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co -VANaval Ordnance,:n5.5.8GE 1AE;;;:

  8. ANALYTICAL DATA SHEET hlul ANALYTICAL DEPT. - HEALTH ANI SAFETY DlVlSlON

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co -VANaval Ordnance,:n5.5.8GE 1AE;;;:hlul

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    associate director for Environmental Programs at the Laboratory. This is the fifth master task order agreement the Laboratory has issued in the past two years to support...

  10. Analytic equivalence of geometric transitions

    E-Print Network [OSTI]

    Michele Rossi

    2014-08-28

    In this paper \\emph{analytic equivalence} of geometric transition is defined in such a way that equivalence classes of geometric transitions turn out to be the \\emph{arrows} of the \\cy web. Then it seems natural and useful, both from the mathematical and physical point of view, look for privileged arrows' representatives, called \\emph{canonical models}, laying the foundations of an \\emph{analytic} classification of geometric transitions. At this purpose a numerical invariant, called \\emph{bi--degree}, summarizing the topological, geometric and physical changing properties of a geometric transition, is defined for a large class of geometric transitions.

  11. Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2

    SciTech Connect (OSTI)

    Kilmer, J.

    1997-08-01

    Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided, this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.

  12. Finite Element Simulation of Piezoelectric Wafer Active Sensors for Structural Health Monitoring with Coupled-Filed

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Finite Element Simulation of Piezoelectric Wafer Active Sensors for Structural Health Monitoring) is emerging as an effective and powerful technique in structural health monitoring (SHM). Modeling to analytical calculation and experimental data. Key words: Structural Health Monitoring, PWAS, finite element

  13. ADECENTRALIZED APPROACH TOWARDS AUTONOMOUS FAULT DETECTION IN WIRELESS STRUCTURAL HEALTH MONITORING SYSTEMS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ADECENTRALIZED APPROACH TOWARDS AUTONOMOUS FAULT DETECTION IN WIRELESS STRUCTURAL HEALTH MONITORING structural health monitoring (SHM) systems may reduce the monitoring quality and, if remaining undetected : Autonomous fault detection, structural health monitoring, wireless sensor networks, smart sensors, analytical

  14. Search & Analytics in Web Archives

    E-Print Network [OSTI]

    Waldmann, Uwe

    Search & Analytics in Web Archives Klaus Berberich References [1] S. Bedathur, K. Berberich, J, ECIR 2010 [3] K. Berberich: " Temporal Search in Web Archives, PhD Thesis, Saarland University, 2010 been identified. Motivation & Overview Web archives such as the Internet Archive or newspaper archives

  15. Analytical Plan for Roman Glasses

    SciTech Connect (OSTI)

    Strachan, Denis M.; Buck, Edgar C.; Mueller, Karl T.; Schwantes, Jon M.; Olszta, Matthew J.; Thevuthasan, Suntharampillai; Heeren, Ronald M.

    2011-01-01

    Roman glasses that have been in the sea or underground for about 1800 years can serve as the independent “experiment” that is needed for validation of codes and models that are used in performance assessment. Two sets of Roman-era glasses have been obtained for this purpose. One set comes from the sunken vessel the Iulia Felix; the second from recently excavated glasses from a Roman villa in Aquileia, Italy. The specimens contain glass artifacts and attached sediment or soil. In the case of the Iulia Felix glasses quite a lot of analytical work has been completed at the University of Padova, but from an archaeological perspective. The glasses from Aquileia have not been so carefully analyzed, but they are similar to other Roman glasses. Both glass and sediment or soil need to be analyzed and are the subject of this analytical plan. The glasses need to be analyzed with the goal of validating the model used to describe glass dissolution. The sediment and soil need to be analyzed to determine the profile of elements released from the glass. This latter need represents a significant analytical challenge because of the trace quantities that need to be analyzed. Both pieces of information will yield important information useful in the validation of the glass dissolution model and the chemical transport code(s) used to determine the migration of elements once released from the glass. In this plan, we outline the analytical techniques that should be useful in obtaining the needed information and suggest a useful starting point for this analytical effort.

  16. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Laboratory for Atmospheric and Space Physics Activity Report 2013 University of Colorado at Boulder from the Naval Research Center and the Air Force Cambridge Research Laboratory (now the Phillips Laboratory), the University of Colorado formed a research group called the Upper Air Laboratory (UAL

  17. LABORATORY II MECHANICAL OSCILLATIONS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab II - 1 LABORATORY II MECHANICAL OSCILLATIONS Most of the laboratory problems so far have was constant. In this set of laboratory problems, the total force acting on an object, and thus its's oscillation frequency. OBJECTIVES: After successfully completing this laboratory, you should be able to

  18. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Laboratory for Atmospheric and Space Physics Activity Report 2012 University of Colorado at Boulder from the Naval Research Center and the Air Force Cambridge Research Laboratory (now the Phillips Laboratory), the University of Colorado formed a research group called the Upper Air Laboratory (UAL

  19. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Laboratory for Atmospheric and Space Physics Activity Report 2008 University of Colorado at Boulder, Jet Propulsion Laboratory) LASP: A Brief History In 1946-47, a handful of American universities joined Laboratory (now the Phillips Laboratory), the University of Colorado formed a research group called the Upper

  20. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    1 Laboratory for Atmospheric and Space Physics Activity Report 2010 University of Colorado from the Na- val Research Center and the Air Force Cambridge Research Laboratory (now the Phillips Laboratory), the University of Colorado formed a research group called the Upper Air Laboratory (UAL

  1. LABORATORY IV ELECTRIC CIRCUITS

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY IV ELECTRIC CIRCUITS Lab IV - 1 In the first laboratory, you studied the behavior of conservation. OBJECTIVES After successfully completing this laboratory, you should be able to: · Apply that you will be doing these laboratory problems before your lecturer addresses this material. The purpose

  2. LABORATORY IV CIRCULAR MOTION

    E-Print Network [OSTI]

    Minnesota, University of

    Lab IV - 1 LABORATORY IV CIRCULAR MOTION The problems in this laboratory will help you investigate. OBJECTIVES: After successfully completing this laboratory, you should be able to: · Determine Laboratories I, II, and III. Before coming to the lab you should be able to: · Determine an object

  3. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  4. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01

    At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

  5. Health Coaching - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coaching Health Education & Wellness Downloads & Patient Materials Health & Productivity Health Calculators & Logs Health Coaching Health Fairs and Screenings Interactive Exercises...

  6. Analyte detection using an active assay

    DOE Patents [OSTI]

    Morozov, Victor (Manassas, VA); Bailey, Charles L. (Cross Junction, VA); Evanskey, Melissa R. (Potomac Falls, VA)

    2010-11-02

    Analytes using an active assay may be detected by introducing an analyte solution containing a plurality of analytes to a lacquered membrane. The lacquered membrane may be a membrane having at least one surface treated with a layer of polymers. The lacquered membrane may be semi-permeable to nonanalytes. The layer of polymers may include cross-linked polymers. A plurality of probe molecules may be arrayed and immobilized on the lacquered membrane. An external force may be applied to the analyte solution to move the analytes towards the lacquered membrane. Movement may cause some or all of the analytes to bind to the lacquered membrane. In cases where probe molecules are presented, some or all of the analytes may bind to probe molecules. The direction of the external force may be reversed to remove unbound or weakly bound analytes. Bound analytes may be detected using known detection types.

  7. Analytic bounds on transmission probabilities

    E-Print Network [OSTI]

    Boonserm, Petarpa

    2009-01-01

    We develop some new analytic bounds on transmission probabilities (and the related reflection probabilities and Bogoliubov coefficients) for generic one-dimensional scattering problems. To do so we rewrite the Schrodinger equation for some complicated potential whose properties we are trying to investigate in terms of some simpler potential whose properties are assumed known, plus a (possibly large) "shift" in the potential. Doing so permits us to extract considerable useful information without having to exactly solve the full scattering problem.

  8. Health & Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health & Safety Health & Safety1354608000000Health & SafetySome of these resources are LANL-only and will require Remote Access.NoQuestions? 667-5809library@lanl.gov Health &...

  9. School of Nursing and School of Health Professions University of Texas Health Science Center at San Antonio

    E-Print Network [OSTI]

    Nicholson, Bruce J.

    School of Nursing and School of Health Professions University of Texas Health Science Center at San. The School of Health Professions for over 25 years has been dedicated to making lives better through allied health programs in the School of Health Professions. We offer bachelor's degrees in Clinical Laboratory

  10. Quantitative analytical model for magnetic reconnection in hall magnetohydrodynamics

    SciTech Connect (OSTI)

    Simakov, Andrei N

    2008-01-01

    Magnetic reconnection is of fundamental importance for laboratory and naturally occurring plasmas. Reconnection usually develops on time scales which are much shorter than those associated with classical collisional dissipation processes, and which are not fully understood. While such dissipation-independent (or 'fast') reconnection rates have been observed in particle and Hall magnetohydrodynamics (MHD) simulations and predicted analytically in electron MHD, a quantitative analytical theory of fast reconnection valid for arbitrary ion inertial lengths d{sub i} has been lacking. Here we propose such a theory without a guide field. The theory describes two-dimensional magnetic field diffusion regions, provides expressions for the reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and di. It also demonstrates that both open X-point and elongated diffusion regions allow dissipation-independent reconnection and reveals a possibility of strong dependence of the reconnection rates on d{sub i}.

  11. MAR flow mapping of Analytical Chemistry Operations (Preliminary Report)

    SciTech Connect (OSTI)

    Barr, Mary E. [Los Alamos National Laboratory; Farish, Thomas J. [Los Alamos National Laboratory

    2012-06-13

    The recently released Supplemental Directive, NA-1 SD 1027, updates the radionuclide threshold values in DOE-STD-1027-92 CN1 to reflect the use of modern parameters for dose conversion factors and breathing rates. The directive also corrects several arithmetic errors within the original standard. The result is a roughly four-fold increase in the amount of weapons-grade nuclear material allowed within a designated radiological facility. Radiological laboratory space within the recently constructed Radiological Laboratory Office and Utility Building (RLUOB) is slated to house selected analytical chemistry support activities in addition to small-scale actinide R&D activities. RLUOB is within the same facility operations envelope as TA-55. Consolidation of analytical chemistry activities to RLUOB and PF-4 offers operational efficiency improvements relative to the current pre-CMRR plans of dividing these activities between RLUOB, PF-4, and CMR. RLUOB is considered a Radiological Facility under STD-1027 - 'Facilities that do not meet or exceed Category 3 threshold criteria but still possess some amount of radioactive material may be considered Radiological Facilities.' The supplemental directive essentially increases the allowable material-at-risk (MAR) within radiological facilities from 8.4 g to 38.6 g for {sup 239}Pu. This increase in allowable MAR provides a unique opportunity to establish additional analytical chemistry support functions in RLUOB without negatively impacting either R&D activities or facility operations. Individual radiological facilities are tasked to determine MAR limits (up to the Category 3 thresholds) appropriate to their operational conditions. This study presents parameters that impact establishing MAR limits for RLUOB and an assessment of how various analytical chemistry support functions could operate within the established MAR limits.

  12. Site Safety and Health Plan (Phase 3) for the treatability study for in situ vitrification at Seepage Pit 1 in Waste Area Grouping 7, Oak Ridge National Laboratory, Oak Ridge, TN

    SciTech Connect (OSTI)

    Spalding, B.P.; Naney, M.T.

    1995-06-01

    This plan is to be implemented for Phase III ISV operations and post operations sampling. Two previous project phases involving site characterization have been completed and required their own site specific health and safety plans. Project activities will take place at Seepage Pit 1 in Waste Area Grouping 7 at ORNL, Oak Ridge, Tennessee. Purpose of this document is to establish standard health and safety procedures for ORNL project personnel and contractor employees in performance of this work. Site activities shall be performed in accordance with Energy Systems safety and health policies and procedures, DOE orders, Occupational Safety and Health Administration Standards 29 CFR Part 1910 and 1926; applicable United States Environmental Protection Agency requirements; and consensus standards. Where the word ``shall`` is used, the provisions of this plan are mandatory. Specific requirements of regulations and orders have been incorporated into this plan in accordance with applicability. Included from 29 CFR are 1910.120 Hazardous Waste Operations and Emergency Response; 1910.146, Permit Required - Confined Space; 1910.1200, Hazard Communication; DOE Orders requirements of 5480.4, Environmental Protection, Safety and Health Protection Standards; 5480.11, Radiation Protection; and N5480.6, Radiological Control Manual. In addition, guidance and policy will be followed as described in the Environmental Restoration Program Health and Safety Plan. The levels of personal protection and the procedures specified in this plan are based on the best information available from reference documents and site characterization data. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project.

  13. International Health Global Health Policy--------------------------------------------------------------------------------------

    E-Print Network [OSTI]

    Miyashita, Yasushi

    50 International Health Global Health Policy-------------------------------------------------------------------------------------- http://www.ghp.m.u-tokyo.ac.jp Our mission is to improve population health by enhancing accountability and improving evidence base of global (both domestic and international) health programmes through the provision

  14. BIOCHEMISTRY Analytical Biochemistry 361 (2007) 287293

    E-Print Network [OSTI]

    2007-01-01

    ANALYTICAL BIOCHEMISTRY Analytical Biochemistry 361 (2007) 287­293 www- engineering yet there is a relative paucity of assays available for simple, stable and reproducible applica- tions in membrane biochemistry, transfection, and immuni- zation protocols

  15. Arguments for an Alternative Account of Analyticity

    E-Print Network [OSTI]

    Sexton, Clark Alan

    2009-11-09

    This dissertation presents an alternative account of analyticity, as well as arguments for that account. Although an analysis and interpretation of previous accounts of analyticity are presented, the focus is on the analysis of, and the arguments...

  16. The target laboratory of the Pelletron Accelerator's facilities

    SciTech Connect (OSTI)

    Ueta, Nobuko; Pereira Engel, Wanda Gabriel [Nuclear Physics Department - University of Sao Paulo (Brazil)

    2013-05-06

    A short report on the activities developed in the Target Laboratory, since 1970, will be presented. Basic target laboratory facilities were provided to produce the necessary nuclear targets as well as the ion beam stripper foils. Vacuum evaporation units, a roller, a press and an analytical balance were installed in the Oscar Sala building. A brief historical report will be presented in commemoration of the 40{sup th} year of the Pelletron Accelerator.

  17. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2015 Princeton Plasma Physics Laboratory. A...

  18. Analytic Challenges to Valuing Energy Storage Workshop Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) has coordinated energy storage efforts from a research and development (R&D) perspective – identifying technology needs, metrics, and goals – but DOE and the research and analytic community have struggled with valuing storage at a systems level. Sixteen stakeholders and experts from across the electric power industry, research universities, national laboratories, and federal agencies were invited to join 8 DOE staff members in a workshop on September 19-20, 2011, in Washington, D.C. to discuss the current state of knowledge for grid-scale energy storage and, in particular, the methodologies to assess its value on the grid.

  19. University Health Service Health Educator

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    University Health Service Health Educator A full-time, 12 month Health Educator position is available at the University Health Service, University of Rochester. The Health Educator plans, implements, and evaluates theory- and evidence-based health promotion strategies, programs, and services for University

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focused, interdisciplinary research effort to better understand human disease at the cellular level," said Laboratory Director Michael Anastasio. "Integrating measurements,...

  1. Think Health. Act Now! . CITY OF MILWAUKEE HEALTH DEPARTMENT . www.milwaukee.gov/Health Content in this presentation may not be duplicated, copied, or reproduced outside the purview of MHD without permission.

    E-Print Network [OSTI]

    Saldin, Dilano

    Think Health. Act Now! . CITY OF MILWAUKEE HEALTH DEPARTMENT . www.milwaukee.gov/Health © Content Health Research Interests City of Milwaukee Health Department Steve Gradus, Ph.D., D(ABMM) Laboratory Director November 29, 2011, revised Oct. 2013 www.milwaukee.gov/healthlab Think Health. Act Now! . CITY

  2. SUSS PM 5 Analytic Probe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV6STATDecember 2, 2014 Jose,SUSS PM 5 Analytic

  3. Renewable Analytics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b <Refurbished ProjectsInformationEnergyAnalytics

  4. Appendix C Analytical Chemistry Data

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the WeldonB10081278MaywoodWayne Analytical Chemistry

  5. Analytical Modeling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump to:HempsteadtemporalAnalytical Modeling Jump to:

  6. Analytical Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due Date Adv.Alison MarkovitzAmped Up!Analytical Tools

  7. Big Data Analytics in Financial Statement

    E-Print Network [OSTI]

    ;Demographic and Weather Big Data · OfficeMax personalizes online landing pages based on customerBig Data Analytics in Financial Statement Audits Min Cao Roman Chychyla Trevor Stewart February 26th, 2015 #12;Big Data Analytics · Big Data analytics is the process of inspecting, cleaning

  8. LABORATORY VI ROTATIONAL DYNAMICS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab VI - 1 LABORATORY VI ROTATIONAL DYNAMICS So far this semester, you have been asked to think kinematics. OBJECTIVES: Successfully completing this laboratory should enable you to: · Use linear kinematics in a laboratory on earth, before launching the satellite. EQUIPMENT You will use an apparatus that spins

  9. LABORATORY V ELECTRIC CIRCUITS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab V -1 LABORATORY V ELECTRIC CIRCUITS Electrical devices are the cornerstones of our modern world understanding of them. In the previous laboratory, you studied the behavior of electric fields and their effect successfully completing this laboratory, you should be able to: · apply the concept of circuit to any

  10. Interpretation Intelligent Systems Laboratory

    E-Print Network [OSTI]

    Ward, Koren

    1 TENS Text Interpretation Intelligent Systems Laboratory University of Wollongong TENS Text and delivering the text data to the user by electrically stimulating the fingers. Intelligent Systems Laboratory ­ University of Wollongong #12;2 The TENS Unit Intelligent Systems Laboratory ­ University of Wollongong

  11. OXFORD UNIVERSITY COMPUTING LABORATORY

    E-Print Network [OSTI]

    OXFORD UNIVERSITY COMPUTING LABORATORY The Expressive Power of Binary Submodular Functions Stanislav Zivn´y, David Cohen, Peter Jeavons Computing Laboratory, University of Oxford Rutgers, 22 January LABORATORY Problem Which submodular polynomials can be expressed by (or decomposed into) quadratic submodular

  12. LABORATORY IV OSCILLATIONS

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY IV OSCILLATIONS Lab IV ­ 1 You are familiar with many objects that oscillate this laboratory, you should be able to: · Provide a qualitative explanation of the behavior of oscillating systems some of these laboratory problems before your lecturer addresses this material. It is very important

  13. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  14. Analytical applications for delayed neutrons

    SciTech Connect (OSTI)

    Eccleston, G.W.

    1983-01-01

    Analytical formulations that describe the time dependence of neutron populations in nuclear materials contain delayed-neutron dependent terms. These terms are important because the delayed neutrons, even though their yields in fission are small, permit control of the fission chain reaction process. Analytical applications that use delayed neutrons range from simple problems that can be solved with the point reactor kinetics equations to complex problems that can only be solved with large codes that couple fluid calculations with the neutron dynamics. Reactor safety codes, such as SIMMER, model transients of the entire reactor core using coupled space-time neutronics and comprehensive thermal-fluid dynamics. Nondestructive delayed-neutron assay instruments are designed and modeled using a three-dimensional continuous-energy Monte Carlo code. Calculations on high-burnup spent fuels and other materials that contain a mix of uranium and plutonium isotopes require accurate and complete information on the delayed-neutron periods, yields, and energy spectra. A continuing need exists for delayed-neutron parameters for all the fissioning isotopes.

  15. U of MN Department of Pharmacology Laboratory Safety Plan

    E-Print Network [OSTI]

    Thomas, David D.

    . Labeling requirements for containers of hazardous substances and equipment or work areas that generate employees from the health hazards in laboratories. This Plan is intended to meet the requirements of the federal Laboratory Safety Standard, formally known as "Occupational Exposure to Hazardous Chemicals

  16. Evaluating sheries management options in Hawaii using analytic hierarchy process (AHP)1

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    Evaluating ®sheries management options in Hawaii using analytic hierarchy process (AHP)1 Ping Economics, University of Hawaii at Manoa, 3050 Maile Way, Gilmore 112, Honolulu, Hawaii 96822, USA b Honolulu Laboratory, National Marine Fisheries Service, Honolulu, Hawaii 96822, USA Received 25 November

  17. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

  18. EA-0970: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Environmental Safety and Health Analytical Laboratory Project No. 94-AA-01 Pantex Plant Amarillo, TX

  19. Men's Health - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Education & Wellness > Downloads & Patient Materials > Men's Health Health Education & Wellness Downloads & Patient Materials Ergonomics Fitness & Exercise Men's Health...

  20. Radiological Laboratory, Utility, Office Building LEED Strategy & Achievement

    SciTech Connect (OSTI)

    Seguin, Nicole R. [Los Alamos National Laboratory

    2012-07-18

    Missions that the Radiological Laboratory, utility, Office Building (RLUOB) supports are: (1) Nuclear Materials Handling, Processing, and Fabrication; (2) Stockpile Management; (3) Materials and Manufacturing Technologies; (4) Nonproliferation Programs; (5) Waste Management Activities - Environmental Programs; and (6) Materials Disposition. The key capabilities are actinide analytical chemistry and material characterization.

  1. ECSI 322 Oceanography Laboratory -Manual 1 ESCI 322 -Oceanography Laboratory

    E-Print Network [OSTI]

    Shull, David H.

    ECSI 322 ­ Oceanography Laboratory - Manual 1 ESCI 322 - Oceanography Laboratory Laboratory Manual ­ Oceanography Laboratory - Manual 2 ESCI 322 - Introduction to Oceanography Laboratory Course Syllabus- 78-79 C+ 73-77 C 69-72C- 67-68 D+ 61-66 D 57-60 D- 0-56 F #12;ECSI 322 ­ Oceanography Laboratory

  2. Urban health and health inequalities

    E-Print Network [OSTI]

    Urban health and health inequalities and the role of urban forestry in Britain: A review Liz O'Brien Kathryn Williams Amy Stewart 2010 #12;Urban health and woodlands Contents Executive Summary 4 1.1.3 Definition of terms 9 3. The policy context: health and forestry policies 11 3.1 Health policies 11 3

  3. Enhancing the analytical performance of laser-induced breakdown spectroscopy

    SciTech Connect (OSTI)

    Cremers, D.A.; Chinni, R.C.; Pichahchy, A.E.; Thornquist, H.K.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this work is to enhance the analytical capabilities of laser-induced breakdown spectroscopy (LIBS). LIBS is a method of elemental analysis in which powerful laser pulses are focused on a sample to form a microplasma. LIBS is perhaps the most versatile elemental analysis method, applicable to a variety of different real-world analysis problems. Therefore, it is important to enhance the capabilities of the method as much as possible. Accomplishments include: (1) demonstration of signal enhancements of 5--30 times from soils and metals using a double pulse method; (2) development of a model of the observed enhancement obtained using double pulses; (3) demonstration that the analytical performance achievable using low laser-pulse energies (10 and 25 mJ) can match that achievable using an energy of 100 mJ; and (4) demonstration that time-gated detection is not necessary with LIBS.

  4. Secretary Chu Announces Nuclear Energy University Program Awards...

    Broader source: Energy.gov (indexed) [DOE]

    and Safety Research Laboratory Idaho State University Infrastructure support for analytical and health physics laboratory instrumentation Kansas State University Reactor...

  5. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    #12;GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY ANNUAL REPORT FY 1977 October 1977 Eugene J Research Laboratories Great Lakes Environmental Research Laboratory 2300 Washtenaw Avenue Ann Arbor, Michigan 48104. #12;NOTICE The NOAA Environmental Research Laboratories do not approve, recommend

  6. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    #12;GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY ANNUAL REPORT FY 1978 October 1978 Eugene J of Research and Development Environmental Research Laboratories Great Lakes Environmental Research Laboratory 2300 Washtenaw Avenue Ann Arbor, Michigan 48104 #12;NOTICE The NOAA Environmental Research Laboratories

  7. Chemistry 2B Laboratory Manual

    E-Print Network [OSTI]

    Guo, Ting

    Chemistry 2B Laboratory Manual Standard Operating Procedures Department of Chemistry University # ____________ Laboratory Information Teaching Assistant's Name _______________________ Laboratory Section Number _______________________ Laboratory Room Number _______________________ Dispensary Room Number 1060 Sciences Lab Building Location

  8. AEROSPACE LABORATORY GENERAL INFORMATION MANUAL

    E-Print Network [OSTI]

    Prodiæ, Aleksandar

    AEROSPACE LABORATORY GENERAL INFORMATION MANUAL 1. Introduction 2. Laboratory Format 3. Recommended Guidelines for Experiment Reports 4. Laboratory Notebooks 5. Report Marking Procedures 6. Course Mark compared to the systems you will find in the Undergraduate Laboratory. Typically, experimental setups

  9. Chemistry 2A Laboratory Manual

    E-Print Network [OSTI]

    Guo, Ting

    Chemistry 2A Laboratory Manual Standard Operating Procedures Department of Chemistry University # ____________ Laboratory Information Teaching Assistant's Name _______________________ Laboratory Section Number _______________________ Laboratory Room Number _______________________ Dispensary Room Number 1060 Sciences Lab Building Location

  10. Atlantic Oceanographic and Meteorological Laboratory

    E-Print Network [OSTI]

    Atlantic Oceanographic and Meteorological Laboratory AOML is an environmental research laboratory Laboratory conducts research that seeks to understand the physical, chemical, and biological characteristics;Organizational Structure The Atlantic Oceanographic and Meteorological Laboratory (AOML) fits within

  11. Chemistry 2C Laboratory Manual

    E-Print Network [OSTI]

    Guo, Ting

    Chemistry 2C Laboratory Manual Standard Operating Procedures Department of Chemistry University # ____________ Laboratory Information Teaching Assistant's Name _______________________ Laboratory Section Number _______________________ Laboratory Room Number _______________________ Dispensary Room Number 1060 Sciences Lab Building Location

  12. Analytical cell decontamination and shielding window refurbishment. Final report, March 1984-March 1985

    SciTech Connect (OSTI)

    Smokowski, R.T.

    1985-12-01

    This is a report on the decontamination and refurbishment of five inactive contaminated analytical cells and six zinc bromide filled shielding windows. The analytical cells became contaminated during the nuclear fuel reprocessing carried out by Nuclear Fuel Services from 1966 to 1972. The decontamination and decommissioning (D and D) work was performed in these cells to make them useful as laboratories in support of the West Valley Demonstration Project. To accomplish this objective, unnecessary equipment was removed from these cells. Necessary equipment and the interior of each cell were decontaminated and repaired. The shielding windows, essentially tanks holding zinc bromide, were drained and disassembled. The deteriorated, opaque zinc bromide was refined to optical clarity and returned to the tanks. All wastes generated in this operation were characterized and disposed of properly. All the decontamination and refurbishment was accomplished within 13 months. The Analytical Hot Cell has been turned over to Analytical Chemistry for the performance high-level waste (HLW) characterization analysis.

  13. Los Alamos National Laboratory ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guy" and "a very hard worker." Fanelli began his college education in his native Argentina. By 2005, he was stationed at the National High Magnetic Field Laboratory...

  14. mmorris | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mmorris Ames Laboratory Profile Max Morris Associate Environmental & Protective Sciences 304A Snedecor Phone Number: 515-294-2775 Email Address: mmorris...

  15. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  16. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Laboratory's Environmental Programs directorate and includes work such as environmental engineering design, regulatory support, risk assessment and reporting. - 2 -...

  17. shrotriy | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shrotriy Ames Laboratory Profile Pranav Shrotriya Associate Environmental & Protective Sciences 2026 Black Engineering Phone Number: 515-294-9719 Email Address: shrotriy...

  18. olafsson | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    olafsson Ames Laboratory Profile Sigurdur Olafsson Associate Environmental & Protective Sciences 3004 Black Engineering Phone Number: 515-294-8908 Email Address: olafsson...

  19. matheneyl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    matheneyl Ames Laboratory Profile Lindsey Matheney Associate Environmental & Protective Sciences 1095 Black Engineering Phone Number: 515-294-2069 Email Address: matheneyl...

  20. nastaran | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nastaran Ames Laboratory Profile Nastaran Hashemi Associate Environmental & Protective Sciences 2028 Black Engineering Phone Number: 515-294-2877 Email Address: nastaran...

  1. bkl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bkl Ames Laboratory Profile Barbara Lograsso Associate Environmental & Protective Sciences 2064 Black Engineering Phone Number: 515-294-0380 Email Address: bklogras@iastate.edu...

  2. paytong | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    paytong Ames Laboratory Profile Payton Goodrich Associate Environmental & Protective Sciences 1095 Black Engineering Phone Number: 515-294-2069 Email Address: paytong...

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawrence Livermore National Laboratory's weapon-physicist Greg Spriggs, leader of the Film Scanning and Reanalysis Project, the work has become a search-and-rescue mission. He...

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32...

  5. Northwest National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    senior author and Laboratory Fellow. The feat is the bacterial equivalent of removing lungs and coaxing the disembodied tissue to breathe. Bio-cells use enzymes to oxidize...

  6. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  7. marit | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honors & Awards: AAAS Fellow, 2007 Regents Award for Faculty Excellence, 2003 Inventor Incentive Award, Ames Laboratory, 2002 Iowa Regents Faculty Citation Award, 2000...

  8. Health Calculators & Logs - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculators & Logs Health Education & Wellness Downloads & Patient Materials Health & Productivity Health Calculators & Logs Body Mass Index Health Coaching Health Fairs and...

  9. Notes 04. Elements of analytical dynamics. 

    E-Print Network [OSTI]

    San Andres, Luis

    2008-01-01

    Elements of Analytical Mechanics ? 2008 Luis San Andr?s 1 MEEN 617 - Handout 4a ELEMENTS OF ANALYTICAL MECHANICS Newton's laws (Euler's fundamental principles of motion) are formulated for a single particle and easily extended to systems of particles.... This method is also valid for continuous systems, and in which case not only the equations of motion are obtained but also the associated (natural) boundary conditions. MEEN 617 - Handout 4 Elements of Analytical Mechanics ? 2008 Luis San Andr?s 2...

  10. Method of identity analyte-binding peptides

    DOE Patents [OSTI]

    Kauvar, L.M.

    1990-10-16

    A method for affinity chromatography or adsorption of a designated analyte utilizes a paralog as the affinity partner. The immobilized paralog can be used in purification or analysis of the analyte; the paralog can also be used as a substitute for antibody in an immunoassay. The paralog is identified by screening candidate peptide sequences of 4--20 amino acids for specific affinity to the analyte. 5 figs.

  11. Smart Microfabricated Preconcentrator (and Other Micro Analytical...

    Office of Scientific and Technical Information (OSTI)

    Smart Microfabricated Preconcentrator (and Other Micro Analytical Detection Components&Systems). Citation Details In-Document Search Title: Smart Microfabricated Preconcentrator...

  12. Analytic Challenges to Valuing Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    analytical task. Market Conditions - Markets are continually evolving, and the long-term value of energy storage is difficult to capture. Niche markets have emerged, but...

  13. Investigation and Analytical Description of Acoustic Production...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Investigation and Analytical Description of Acoustic Production by Magneto-Acoustic Mixing Technology Citation Details In-Document Search This content will become...

  14. Development of Analytical Methodology for Neurochemical Investigations

    E-Print Network [OSTI]

    Fischer, David John

    2010-01-25

    David J. Fischer Department of Pharmaceutical Chemistry University of Kansas Neurochemical Applications of Microchip Electrophoresis The development of sensitive and selective analytical tools has facilitated the investigation ...

  15. APPALACHIAN LABORATORY CHESAPEAKE BIOLOGICAL LABORATORY HORN POINT LABORATORY AN INSTITUTION OF THE UNIVERSITY SYSTEM OF MARYLAND

    E-Print Network [OSTI]

    Boynton, Walter R.

    APPALACHIAN LABORATORY CHESAPEAKE BIOLOGICAL LABORATORY HORN POINT LABORATORY AN INSTITUTION. of Budget and Management Please fax this form to: 410-333-7122 UMCES Agency #12;APPALACHIAN LABORATORY CHESAPEAKE BIOLOGICAL LABORATORY HORN POINT LABORATORY AN INSTITUTION OF THE UNIVERSITY SYSTEM OF MARYLAND

  16. Storage option an Analytic approach

    E-Print Network [OSTI]

    Dmitry Lesnik

    2012-05-28

    The mathematical problem of the static storage optimisation is formulated and solved by means of a variational analysis. The solution obtained in implicit form is shedding light on the most important features of the optimal exercise strategy. We show how the solution depends on different constraint types including carry cost and cycling constraint. We investigate the relation between intrinsic and stochastic solutions. In particular we give another proof that the stochastic problem has a "bang-bang" optimal exercise strategy. We also show why the optimal stochastic exercise decision is always close to the intrinsic one. In the second half we develop a perturbation analysis to solve the stochastic optimisation problem. The obtained approximate solution allows us to estimate the time value of the storage option. In particular we find an answer to rather academic question of asymptotic time value for the mean reversion parameter approaching zero or infinity. We also investigate the differences between swing and storage problems. The analytical results are compared with numerical valuations and found to be in a good agreement.

  17. Contained radiological analytical chemistry module

    DOE Patents [OSTI]

    Barney, David M. (Scotia, NY)

    1989-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  18. Contained radiological analytical chemistry module

    DOE Patents [OSTI]

    Barney, David M. (Scotia, NY)

    1990-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  19. Pacific Northwest National Laboratory Institutional Plan FY 2000-2004

    SciTech Connect (OSTI)

    Pearson, Erik W.

    2000-03-01

    The Pacific Northwest National Laboratory Institutional Plan for FY 2000-2004 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; management practices and standards; and communications and trust.

  20. Pacific Northwest National Laboratory Institutional Plan FY 2001-2005

    SciTech Connect (OSTI)

    Fisher, Darrell R.; Pearson, Erik W.

    2000-12-29

    The Pacific Northwest National Laboratory Institutional Plan for FY 2001-2005 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; managaement procatices and standards; and communications and trust.

  1. Reservoir Characterization Research Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir Characterization Research Laboratory for Carbonate Studies Executive Summary for 2014 Outcrop and Subsurface Characterization of Carbonate Reservoirs for Improved Recovery of Remaining/Al 0.00 0.02 0.04 Eagle Ford Fm #12;#12; Reservoir Characterization Research Laboratory Research Plans

  2. LABORATORY I: GEOMETRIC OPTICS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab I - 1 LABORATORY I: GEOMETRIC OPTICS In this lab, you will solve several problems related to the formation of optical images. Most of us have a great deal of experience with the formation of optical images this laboratory, you should be able to: · Describe features of real optical systems in terms of ray diagrams

  3. Commercial Fisheries Biological Laboratory

    E-Print Network [OSTI]

    , and tidal estuaries with bottom types ranging from soft mud to hard sand and rock. The Laboratory has grown research laboratories, an experimental shell- fish hatchery, administrative offices, a combined library freezer, and quick freezer. The library is limited to publications that have a direct bearing on current

  4. UMD College of Pharmacy, Pharmacy Practice and Pharmaceutical Laboratory Safety Plan

    E-Print Network [OSTI]

    Minnesota, University of

    requirements for containers of hazardous substances and equipment or work areas that generate harmful physical potential health hazards in laboratories. This plan is intended to meet the requirements of the federal Laboratory Safety Standard, formally known as "Occupational Exposure to Hazardous Chemicals in Laboratories

  5. Tiger Team Assessment of the Ames Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report documents the Tiger Assessment of the Ames Laboratory (Ames), located in Ames, Iowa. Ames is operated for the US Department of Energy (DOE) by Iowa State University. The assessment was conducted from February 10 to March 5, 1992, under the auspices of the Office of Special Projects, Office of the Assistant Secretary of Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing Environment, Safety, and Health (ES H) disciplines; management practices; and contractor and DOE self-assessments. Compliance with applicable Federal, State of Iowa, and local regulations; applicable DOE Orders; best management practices; and internal requirements at Ames Laboratory were assessed. In addition, an evaluation of the adequacy and effectiveness of DOE and the site contractor's management of ES H/quality assurance program was conducted.

  6. Integrated structural health monitoring.

    SciTech Connect (OSTI)

    Farrar, C. R. (Charles R.)

    2001-01-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the authors opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  7. Paci c Marine Environmental Laboratory Pacific Marine Environmental Laboratory (PMEL)

    E-Print Network [OSTI]

    Paci c Marine Environmental Laboratory #12;#12;Pacific Marine Environmental Laboratory (PMEL Laboratory #12;Contents Overview of PMEL's Strategy 1 Laboratory Structure 5 PMEL Themes 7 Climate Research 8 Contents iv #12;The Pacific Marine environMenTal laboraTory (PMEL) is one of seven federal research

  8. Method and apparatus for detecting an analyte

    DOE Patents [OSTI]

    Allendorf, Mark D. (Pleasanton, CA); Hesketh, Peter J. (Atlanta, GA)

    2011-11-29

    We describe the use of coordination polymers (CP) as coatings on microcantilevers for the detection of chemical analytes. CP exhibit changes in unit cell parameters upon adsorption of analytes, which will induce a stress in a static microcantilever upon which a CP layer is deposited. We also describe fabrication methods for depositing CP layers on surfaces.

  9. Tank 241-S-102, Core 232 analytical results for the final report

    SciTech Connect (OSTI)

    STEEN, F.H.

    1998-11-04

    This document is the analytical laboratory report for tank 241-S-102 push mode core segments collected between March 5, 1998 and April 2, 1998. The segments were subsampled and analyzed in accordance with the Tank 241-S-102 Retained Gas Sampler System Sampling and Analysis Plan (TSAP) (McCain, 1998), Letter of Instruction for Compatibility Analysis of Samples from Tank 241-S-102 (LOI) (Thompson, 1998) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO) (Mulkey and Miller, 1998). The analytical results are included in the data summary table (Table 1).

  10. Portable air monitoring laboratories

    SciTech Connect (OSTI)

    Ehntholt, D.J.; Beltis, K.J.; McCullough, J.E.; Valentine, J.R. [Arthur D. Little, Inc., Cambridge, MA (United States)

    1995-12-31

    Arthur D. Little, Inc. was contracted by the US Army to design, fabricate, test and deliver a series of portable air monitoring laboratories which could be used to detect trace levels of toxic chemicals on board cargo ships. The labs were designed to be completely self-sufficient, containing all supplies necessary for a 75-day mission, and to operate under rugged conditions. They were used to monitor for parts-per-billion concentrations of chemical agents in air and to provide information equivalent to high quality fixed laboratory analyses. The mission was successfully completed; independent design awards were received for the laboratories, and they were subsequently diverted to other uses.

  11. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  12. Analytical Characterization of the Thorium Nitrate Stockpile

    SciTech Connect (OSTI)

    Mattus, CH

    2003-12-30

    For several years, Oak Ridge National Laboratory (ORNL) has been supporting the Defense Logistics Agency-Defense National Stockpile Center with stewardship of a thorium nitrate (ThN) stockpile. The effort for fiscal year 2002 was to prepare a sampling and analysis plan and to use the activities developed in the plan to characterize the ThN stockpile. The sampling was performed in June and July 2002 by RWE NUKEM with oversight by ORNL personnel. The analysis was performed by Southwest Research Institute of San Antonio, Texas, and data validation was performed by NFT, Inc., of Oak Ridge, Tennessee. Of the {approx} 21,000 drums in the stockpile, 99 were sampled and 53 were analyzed for total metals composition, radiological constituents (using alpha and gamma spectrometry), and oxidizing characteristics. Each lot at the Curtis Bay Depot was sampled. Several of the samples were also analyzed for density. The average density of the domestic ThN was found to be 1.89 {+-} 0.08 g/cm{sup 3}. The oxidizer test was performed following procedures issued by the United Nations in 1999. Test results indicated that none of the samples tested was a Division 5.1 oxidizer per Department of Transportation definition. The samples were analyzed for total metals following the U.S. Environmental Protection Agency methods SW-846-6010B and 6020 (EPA 2003) using a combination of inductively coupled plasma--atomic emission spectroscopy and inductively coupled plasma--mass spectroscopy techniques. The results were used to compare the composition of the eight Resource Conservation and Recovery Act metals present in the sample (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) to regulatory limits. None of the samples was found to be hazardous for toxicity characteristics. The radiological analyses confirmed, when possible, the results obtained by the inductively coupled plasma analyses. These results--combined with the historical process knowledge acquired on the material and the results of previous tests--classified the ThN as low-level radioactive waste for disposal purposes. This characterization was necessary to continue the efforts associated with disposition of the material at the Nevada Test Site, Mercury, Nevada. With the current work presented in this report, the analytical characterization phase is completed for this source material stockpile.

  13. Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory at Austin Austin, Texas 78713Austin, Texas 78713--89248924 #12;Reservoir Characterization Research Laboratory for Carbonate Studies Research Plans for 2012 Outcrop and Subsurface Characterization of Carbonate

  14. CERTS Microgrid Laboratory Test Bed

    SciTech Connect (OSTI)

    Lasseter, R. H.; Eto, J. H.; Schenkman, B.; Stevens, J.; Volkmmer, H.; Klapp, D.; Linton, E.; Hurtado, H.; Roy, J.

    2010-06-08

    CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a 'microgrid'. The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults.

  15. Idaho National Laboratory

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  16. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  17. LABORATORY VII: WAVE OPTICS

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VII: WAVE OPTICS Lab VII - 1 In this lab, you will solve problems in ways that take-like behavior. These conditions may be less familiar to you than the conditions for which geometrical optics

  18. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam...

  19. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous devices teams showcase skills at Robot Rodeo June 24-27 June 18, 2014 Bomb squads compete in timed scenarios at Los Alamos National Laboratory LOS ALAMOS, N.M., June 19,...

  20. Fact Sheet HEALTH SCIENCE

    E-Print Network [OSTI]

    Su, Xiao

    contributions to the campus, community, and professions of public health and health Concentration · Health Services Administration Concentration · Health Professions

  1. HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY

    E-Print Network [OSTI]

    Calgary, University of

    HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY EH&S Hazard Alert - 2010.06.18 HAZARD ALERT ­ Reaction Manual. http://www.ucalgary.ca/safety/files/safety/LaboratoryFumeHoodUserStandard.pdf #12;HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY EH&S Hazard Alert - 2010.06.18 In the recent incident the sash was closed while

  2. Postirradiation Testing Laboratory (327 Building)

    SciTech Connect (OSTI)

    Kammenzind, D.E.

    1997-05-28

    A Standards/Requirements Identification Document (S/RID) is the total list of the Environment, Safety and Health (ES and H) requirements to be implemented by a site, facility, or activity. These requirements are appropriate to the life cycle phase to achieve an adequate level of protection for worker and public health and safety, and the environment during design, construction, operation, decontamination and decommissioning, and environmental restoration. S/RlDs are living documents, to be revised appropriately based on change in the site`s or facility`s mission or configuration, a change in the facility`s life cycle phase, or a change to the applicable standards/requirements. S/RIDs encompass health and safety, environmental, and safety related safeguards and security (S and S) standards/requirements related to the functional areas listed in the US Department of Energy (DOE) Environment, Safety and Health Configuration Guide. The Fluor Daniel Hanford (FDH) Contract S/RID contains standards/requirements, applicable to FDH and FDH subcontractors, necessary for safe operation of Project Hanford Management Contract (PHMC) facilities, that are not the direct responsibility of the facility manager (e.g., a site-wide fire department). Facility S/RIDs contain standards/requirements applicable to a specific facility that are the direct responsibility of the facility manager. S/RlDs are prepared by those responsible for managing the operation of facilities or the conduct of activities that present a potential threat to the health and safety of workers, public, or the environment, including: Hazard Category 1 and 2 nuclear facilities and activities, as defined in DOE 5480.23. Selected Hazard Category 3 nuclear, and Low Hazard non-nuclear facilities and activities, as agreed upon by RL. The Postirradiation Testing Laboratory (PTL) S/RID contains standards/ requirements that are necessary for safe operation of the PTL facility, and other building/areas that are the direct responsibility of the specific facility manager. The specific DOE Orders, regulations, industry codes/standards, guidance documents and good industry practices that serve as the basis for each element/subelement are identified and aligned with each subelement.

  3. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    SciTech Connect (OSTI)

    Not Available

    1988-05-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.

  4. Ames Laboratory Logos | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneand Los AlamosAuthorizationAmes Laboratory

  5. Ames Laboratory Hot Canyon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNaturalTest YourProgramAmes Laboratory Hot Canyon

  6. Status of Laboratory Goals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays IlluminateStateIntentchange.Status of Laboratory

  7. Sandia National Laboratories: About Sandia: Laboratories' Foundation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of the University of2013NationalNewLaboratories

  8. Laboratory Graduate Research Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC) DirectedEquipmentLaboratory

  9. Tiger Team Assessment of the Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  10. Los Alamos National Laboratory support to IAEA environmental safeguards

    SciTech Connect (OSTI)

    Steiner, Robert E [Los Alamos National Laboratory; Dry, Don E [Los Alamos National Laboratory; Roensch, Fred R [Los Alamos National Laboratory; Kinman, Will S [Los Alamos National Laboratory; Roach, Jeff L [Los Alamos National Laboratory; La Mont, Stephen P [Los Alamos National Laboratory

    2010-12-01

    The nuclear and radiochemistry group provides sample preparation and analysis support to the International Atomic Energy Agency (IAEA) Network of Analytical Laboratories (NWAL). These analyses include both non-destructive (alpha and gamma-ray spectrometry) and destructive (thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry) methods. On a bi-annual basis the NWAL laboratories are invited to meet to discuss program evolution and issues. During this meeting each participating laboratory summarizes their efforts over the previous two years. This presentation will present Los Alamos National Laboratories efforts in support of this program. Data showing results from sample and blank analysis will be presented along with capability enhancement and issues that arose over the previous two years.

  11. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  12. Mark Peters | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory, where he managed the science and engineering testing program at the Yucca Mountain Project. Before joining Los Alamos National Laboratory, Dr. Peters was a...

  13. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation.

  14. Predicting Student Success using Analytics in Course Learning Management Systems

    SciTech Connect (OSTI)

    Olama, Mohammed M [ORNL] [ORNL; Thakur, Gautam [ORNL] [ORNL; McNair, Wade [ORNL] [ORNL; Sukumar, Sreenivas R [ORNL] [ORNL

    2014-01-01

    Educational data analytics is an emerging discipline, concerned with developing methods for exploring the unique types of data that come from the educational context. For example, predicting college student performance is crucial for both the student and educational institutions. It can support timely intervention to prevent students from failing a course, increasing efficacy of advising functions, and improving course completion rate. In this paper, we present the efforts carried out at Oak Ridge National Laboratory (ORNL) toward conducting predictive analytics to academic data collected from 2009 through 2013 and available in one of the most commonly used learning management systems, called Moodle. First, we have identified the data features useful for predicting student outcomes such as students scores in homework assignments, quizzes, exams, in addition to their activities in discussion forums and their total GPA at the same term they enrolled in the course. Then, Logistic Regression and Neural Network predictive models are used to identify students as early as possible that are in danger of failing the course they are currently enrolled in. These models compute the likelihood of any given student failing (or passing) the current course. Numerical results are presented to evaluate and compare the performance of the developed models and their predictive accuracy.

  15. Laboratories for the 21st Century Best Practices: Energy Recovery in Laboratory Facilities

    SciTech Connect (OSTI)

    2012-06-01

    Laboratories typically require 100% outside air for ventilation at higher rates than other commercial buildings. Minimum ventilation is typically provided at air change per hour (ACH) rates in accordance with codes and adopted design standards including Occupational Safety and Health Administration (OSHA) Standard 1910.1450 (4 to 12 ACH – non-mandatory) or the 2011 American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Applications Handbook, Chapter 16 – Laboratories (6 to 12 ACH). While OSHA states this minimum ventilation rate “should not be relied on for protection from toxic substances released into the laboratory” it specifically indicates that it is intended to “provide a source of air for breathing and for input to local ventilation devices (e.g., chemical fume hoods or exhausted bio-safety cabinets), to ensure that laboratory air is continually replaced preventing the increase of air concentrations of toxic substances during the working day, direct air flow into the laboratory from non-laboratory areas and out to the exterior of the building.” The heating and cooling energy needed to condition and move this outside air can be 5 to 10 times greater than the amount of energy used in most office buildings. In addition, when the required ventilation rate exceeds the airflow needed to meet the cooling load in low-load laboratories, additional heating energy may be expended to reheat dehumidified supply air from the supply air condition to prevent over cooling. In addition to these low-load laboratories, reheat may also be required in adjacent spaces such as corridors that pro-vide makeup air to replace air being pulled into negative-pressure laboratories.

  16. Sensor for detecting and differentiating chemical analytes

    DOE Patents [OSTI]

    Yi, Dechang (Metuchen, NJ); Senesac, Lawrence R. (Knoxville, TN); Thundat, Thomas G. (Knoxville, TN)

    2011-07-05

    A sensor for detecting and differentiating chemical analytes includes a microscale body having a first end and a second end and a surface between the ends for adsorbing a chemical analyte. The surface includes at least one conductive heating track for heating the chemical analyte and also a conductive response track, which is electrically isolated from the heating track, for producing a thermal response signal from the chemical analyte. The heating track is electrically connected with a voltage source and the response track is electrically connected with a signal recorder. The microscale body is restrained at the first end and the second end and is substantially isolated from its surroundings therebetween, thus having a bridge configuration.

  17. Analytical Layer Planning for Nanometer VLSI Designs 

    E-Print Network [OSTI]

    Chang, Chi-Yu

    2012-10-19

    i ANALYTICAL LAYER PLANNING FOR NANOMETER VLSI DESIGNS A Thesis by CHI-YU CHANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 2012 Major Subject: Electrical Engineering ii ANALYTICAL LAYER PLANNING FOR NANOMETER VLSI DESIGNS A Thesis by CHI-YU CHANG Submitted to the Office of Graduate Studies of Texas A&M University in partial...

  18. Preconcentration and separation of analytes in microchannels

    DOE Patents [OSTI]

    Hatch, Anson (Tracy, CA); Singh, Anup K. (Danville, CA); Herr, Amy E. (Fremont, CA); Throckmorton, Daniel J. (Tracy, CA)

    2010-11-09

    Disclosed herein are methods and devices for preconcentrating and separating analytes such as proteins and polynucleotides in microchannels. As disclosed, at least one size-exclusion polymeric element is adjacent to processing area or an assay area in a microchannel which may be porous polymeric element. The size-exclusion polymeric element may be used to manipulate, e.g. concentrate, analytes in a sample prior to assaying in the assay area.

  19. Daresbury Laboratory STFC Daresbury Laboratory is renowned for its

    E-Print Network [OSTI]

    Daresbury Laboratory STFC Daresbury Laboratory is renowned for its world leading scientific computing. T he Laboratory is part of the Sci ­Tech Daresbury Campus near Warrington in Cheshire to perform cutting-edge research. Key activities Daresbury Laboratory is a hub for pioneering scientific

  20. Laboratory QualityLaboratory Quality ControlControl

    E-Print Network [OSTI]

    Laboratory QualityLaboratory Quality ControlControl Nabil A. NIMER Dept . Biotechnology & Genetic thatQA is defined as the overall program that ensures that the final results reported by the laboratory areensures that the final results reported by the laboratory are correct.correct. ""The aim of quality

  1. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSCGrid-based29HaiWhy IsHealth Period:HeatHeat

  2. Laboratory Heat Recovery System 

    E-Print Network [OSTI]

    Burrows, D. B.; Mendez, F. J.

    1981-01-01

    that they will be considerable. The system has been in successful operation since October 1979. 724 ESL-IE-81-04-123 Proceedings from the Third Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 Conoco R&D West The award-winning laboratory heat-recovery... stream_source_info ESL-IE-81-04-123.pdf.txt stream_content_type text/plain stream_size 11112 Content-Encoding ISO-8859-1 stream_name ESL-IE-81-04-123.pdf.txt Content-Type text/plain; charset=ISO-8859-1 LABORATORY HEAT...

  3. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY ANNUAL REPORT FY 1981 December 1981 Eugene J . Aubert and Development Environmental Research Laboratories Great Lakes Environmental Research Laboratory 2300 Washtenaw Avenue Ann Arbor, Michigan 48104 #12;NOTICE The NOAA Environmental Research Laboratories do not approve

  4. Lab VIII 1 LABORATORY VIII

    E-Print Network [OSTI]

    Minnesota, University of

    Lab VIII ­ 1 LABORATORY VIII MECHANICAL OSCILLATIONS In most of the laboratory problems constant. In this set of laboratory problems the force on an object, and thus its acceleration, will change this laboratory, you should be able to: · provide a qualitative explanation of the behavior of oscillating systems

  5. Lab VIII -1 LABORATORY VIII

    E-Print Network [OSTI]

    Minnesota, University of

    Lab VIII - 1 LABORATORY VIII MECHANICAL OSCILLATIONS Most of the laboratory problems so far have was constant. In this set of laboratory problems, the total force acting on an object, and thus its's oscillation frequency. OBJECTIVES: After successfully completing this laboratory, you should be able to

  6. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    #12;GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY ANNUAL REPORT FY 1980 December I980 Eugene J of Research and Development Environmental Research Laboratories Great Lakes Environmental Research Laboratory 2300 Washtenaw Avenue Ann Arbor, Michigan 48104 #12;NOTICE The NOAA Environmental Research Laboratories

  7. Lawrence Berkeley National Laboratory Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation about the history, structure, and projects of the Lawrence Berkeley National Laboratory.

  8. Visual Analytics at the Pacific Northwest

    E-Print Network [OSTI]

    the laboratory and around the world--including statisticians, machine vision experts, modelers, and domain portfolio analysis, energy grid reliability, environmental safety, training, and law enforcement. #12;FOCUS Laboratory Consortium Excellence in Technology Transfer awards for their visual approaches to text analysis

  9. OAK RIDGE NATIONAL LABORATORY

    Office of Legacy Management (LM)

    Building EM-421 Washington, D. C. 20585 Dear Dr. Williams: Trip Report of ORNL Health Physics Support at the Uniroyal Chemical Company Painesvik, Ohio, on June 25,1992 As per...

  10. Routine environmental audit of Ames Laboratory, Ames, Iowa

    SciTech Connect (OSTI)

    NONE

    1994-09-01

    This document contains the findings identified during the routine environmental audit of Ames Laboratory, Ames, Iowa, conducted September 12--23, 1994. The audit included a review of all Ames Laboratory operations and facilities supporting DOE-sponsored activities. The audit`s objective is to advise the Secretary of Energy, through the Assistant Secretary for Environment, Safety and Health, as to the adequacy of the environmental protection programs established at Ames Laboratory to ensure the protection of the environment, and compliance with Federal, state, and DOE requirements.

  11. Health Foods, Healthy Lives Institute Grants Awarded March 2011

    E-Print Network [OSTI]

    Amin, S. Massoud

    1 Health Foods, Healthy Lives Institute Grants Awarded March 2011 Food Safety "Prevalence of Medicine) Co-Investigators: Jeff Bender, DVM, Veterinary Public Health (College of Veterinary Medicine and Intl Medicine (School of Medicine) David Boxrud, MS, Molecular Typing Laboratory (MN Dept of Health

  12. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)

    SciTech Connect (OSTI)

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575?C is covered for ash content.

  13. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melaina, Marc; Saur, Genevieve; Ramsden, Todd; Eichman, Joshua

    2015-05-28

    This presentation summarizes NREL's hydrogen and fuel cell analysis work in three areas: resource potential, greenhouse gas emissions and cost of delivered energy, and influence of auxiliary revenue streams. NREL's hydrogen and fuel cell analysis projects focus on low-­carbon and economic transportation and stationary fuel cell applications. Analysis tools developed by the lab provide insight into the degree to which bridging markets can strengthen the business case for fuel cell applications.

  14. Determination of Total Carbohydrates in Algal Biomass: Laboratory Analytical Procedure (LAP)

    SciTech Connect (OSTI)

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure uses two-step sulfuric acid hydrolysis to hydrolyze the polymeric forms of carbohydrates in algal biomass into monomeric subunits. The monomers are then quantified by either HPLC or a suitable spectrophotometric method.

  15. Report on Inspection of Analytical Laboratories Oversight at the Strategic Petroleum Reserve, INS-9502

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7, 2015Verizon and VerizonCells: S. DEPARTMENT OF AUDIT1

  16. An Analytical Approach for Tail-Pipe Emissions Estimation with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Analytical Approach for Tail-Pipe Emissions Estimation with Coupled Engine and Aftertreatment System An Analytical Approach for Tail-Pipe Emissions Estimation with Coupled...

  17. SASSI Analytical Methods Compared with SHAKE Results | Department...

    Office of Environmental Management (EM)

    with SHAKE Results SASSI Analytical Methods Compared with SHAKE Results Structural Mechanics - SRS October 4, 2011 SASSI Analytical Methods Compared with SHAKE Results More...

  18. DOE National Analytical Management Program Draws Global Interest

    Broader source: Energy.gov [DOE]

    CARLSBAD, N.M. – The National Analytical Management Program (NAMP), which coordinates analytical services and capabilities throughout DOE, has garnered global interest.

  19. Big Data and Analytics at Work | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    time analytics is required At GE we keep pace with these trends via the Industrial Internet, a highly connected ecosystem of intelligent machines, advanced analytics and people...

  20. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    SciTech Connect (OSTI)

    Not Available

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R D). To be able to meet these R D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES H regulations. The Laboratory conducts applied R D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs.

  1. Model and Analytic Processes for Export License Assessments

    SciTech Connect (OSTI)

    Thompson, Sandra E.; Whitney, Paul D.; Weimar, Mark R.; Wood, Thomas W.; Daly, Don S.; Brothers, Alan J.; Sanfilippo, Antonio P.; Cook, Diane; Holder, Larry

    2011-09-29

    This paper represents the Department of Energy Office of Nonproliferation Research and Development (NA-22) Simulations, Algorithms and Modeling (SAM) Program's first effort to identify and frame analytical methods and tools to aid export control professionals in effectively predicting proliferation intent; a complex, multi-step and multi-agency process. The report focuses on analytical modeling methodologies that alone, or combined, may improve the proliferation export control license approval process. It is a follow-up to an earlier paper describing information sources and environments related to international nuclear technology transfer. This report describes the decision criteria used to evaluate modeling techniques and tools to determine which approaches will be investigated during the final 2 years of the project. The report also details the motivation for why new modeling techniques and tools are needed. The analytical modeling methodologies will enable analysts to evaluate the information environment for relevance to detecting proliferation intent, with specific focus on assessing risks associated with transferring dual-use technologies. Dual-use technologies can be used in both weapons and commercial enterprises. A decision-framework was developed to evaluate which of the different analytical modeling methodologies would be most appropriate conditional on the uniqueness of the approach, data availability, laboratory capabilities, relevance to NA-22 and Office of Arms Control and Nonproliferation (NA-24) research needs and the impact if successful. Modeling methodologies were divided into whether they could help micro-level assessments (e.g., help improve individual license assessments) or macro-level assessment. Macro-level assessment focuses on suppliers, technology, consumers, economies, and proliferation context. Macro-level assessment technologies scored higher in the area of uniqueness because less work has been done at the macro level. An approach to developing testable hypotheses for the macro-level assessment methodologies is provided. The outcome of this works suggests that we should develop a Bayes Net for micro-level analysis and continue to focus on Bayes Net, System Dynamics and Economic Input/Output models for assessing macro-level problems. Simultaneously, we need to develop metrics for assessing intent in export control, including the risks and consequences associated with all aspects of export control.

  2. Current Analytical Chemistry, 2005, 1, 103-119 103 Porphyrin Based Affinity Interactions: Analytical Applications with Special

    E-Print Network [OSTI]

    Miksik, Ivan

    Current Analytical Chemistry, 2005, 1, 103-119 103 Porphyrin Based Affinity Interactions in analytical chemistry as well. Spectropho- tometric, potentiometric and voltammetric methods for the analysis: Analytical Applications with Special Reference to Open Tubular Capillary Electrochromatography Zdenek Deyl*,1

  3. Visgraf Laboratory -IMPAVisgraf Laboratory -IMPAVisgraf Laboratory -IMPA CNMAC 99CNMAC 99CNMAC 99 Frontiers ofFrontiers of

    E-Print Network [OSTI]

    de Figueiredo, Luiz Henrique

    1 Visgraf Laboratory - IMPAVisgraf Laboratory - IMPAVisgraf Laboratory - IMPA CNMAC 99CNMAC 99CNMAC@impa.br@impa.br Visgraf Laboratory - IMPAVisgraf Laboratory - IMPA Rio de JaneiroRio de Janeiro www.visgraf.impa.brwww.visgraf.impa.br Visgraf Laboratory - IMPAVisgraf Laboratory - IMPAVisgraf Laboratory - IMPA CNMAC 99CNMAC 99CNMAC 99

  4. LABORATORY VII ROTATIONAL DYNAMICS

    E-Print Network [OSTI]

    Minnesota, University of

    OF A COMPLEX SYSTEM While examining the engine of your friend's snow blower you notice that the starter cord wraps around a cylindrical ring. This ring is fastened to the top of a heavy, solid disk, "a flywheel of the system. To test this idea you decide to build a laboratory model described below to determine the moment

  5. Energy Systems Laboratory Groundbreaking

    ScienceCinema (OSTI)

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

    2013-05-28

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  6. PHYSICAL GEOLOGY LABORATORY MANUAL

    E-Print Network [OSTI]

    Merguerian, Charles

    PHYSICAL GEOLOGY LABORATORY MANUAL Geology 001 Eleventh Edition by Professors Charles Merguerian and J Bret Bennington Department of Geology Hofstra University © 2010 #12;ii Table of Contents Lab and Find Out More about Geology at Hofstra Email: Geology professors can be contacted via Email: Full

  7. PENNSYLVANIA APPALACHIAN LABORATORY

    E-Print Network [OSTI]

    Boynton, Walter R.

    , coordinates, and catalyzes environmental research and graduate education within the University System. UMCES), in which UMCES has a leading role. UMCES also delivers its services through environmental science education LABORATORY INSTITUTE OF MARINE AND ENVIRONMENTAL TECHNOLOGY MARYLAND SEA GRANT ANNAPOLIS CHESAPEAKE

  8. LABORATORY III POTENTIAL ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY III POTENTIAL ENERGY Lab III - 1 In previous problems, you have been introduced to the concepts of kinetic energy, which is associated with the motion of an object, and internal energy, which is associated with the internal structure of a system. In this section, you work with another form of energy

  9. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

  10. Laboratory Density Functionals

    E-Print Network [OSTI]

    B. G. Giraud

    2007-07-26

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  11. FUTURE LOGISTICS LIVING LABORATORY

    E-Print Network [OSTI]

    Heiser, Gernot

    FUTURE LOGISTICS LIVING LABORATORY Delivering Innovation The Future Logistics Living Lab that will provide logistics solutions for the future. The Living Lab is a demonstration, exhibition and work space by a group of logistics companies, research organisations, universities, and IT providers that includes NICTA

  12. SAAF: SANS data Analysis using Analytical Functions

    SciTech Connect (OSTI)

    Zhao, Jinkui [ORNL

    2011-01-01

    The recently completed Extended Q-Range Small Angle Scattering Diffractometer (EQ-SANS) has put the focus on its software needs with renewed urgency. In a series of efforts, we aim at providing a complete set of software solutions on the EQ-SANS instrument. These programs include initial data processing, data correction and reduction, analytical model fitting to the scattering data, Monte Carlo simulation for structure determination, and virtual instrument simulation for experiment planning. SAAF is one such program for analytical data modeling. It takes the reduced EQ-SANS data and allows users to fit the data to analytical models. These models are easy to write. They can either be user written, or from the pre-supplied model library.

  13. Analytical Chemistry Core Capability Assessment - Preliminary Report

    SciTech Connect (OSTI)

    Barr, Mary E. [Los Alamos National Laboratory; Farish, Thomas J. [Los Alamos National Laboratory

    2012-05-16

    The concept of 'core capability' can be nebulous one. Even at a fairly specific level, where core capability equals maintaining essential services, it is highly dependent upon the perspective of the requestor. Samples are submitted to analytical services because the requesters do not have the capability to conduct adequate analyses themselves. Some requests are for general chemical information in support of R and D, process control, or process improvement. Many analyses, however, are part of a product certification package and must comply with higher-level customer quality assurance requirements. So which services are essential to that customer - just those for product certification? Does the customer also (indirectly) need services that support process control and improvement? And what is the timeframe? Capability is often expressed in terms of the currently utilized procedures, and most programmatic customers can only plan a few years out, at best. But should core capability consider the long term where new technologies, aging facilities, and personnel replacements must be considered? These questions, and a multitude of others, explain why attempts to gain long-term consensus on the definition of core capability have consistently failed. This preliminary report will not try to define core capability for any specific program or set of programs. Instead, it will try to address the underlying concerns that drive the desire to determine core capability. Essentially, programmatic customers want to be able to call upon analytical chemistry services to provide all the assays they need, and they don't want to pay for analytical chemistry services they don't currently use (or use infrequently). This report will focus on explaining how the current analytical capabilities and methods evolved to serve a variety of needs with a focus on why some analytes have multiple analytical techniques, and what determines the infrastructure for these analyses. This information will be useful in defining a roadmap for what future capability needs to look like.

  14. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Tandon, Lav [Los Alamos National Laboratory; Kuhn, Kevin J [Los Alamos National Laboratory; Drake, Lawrence R [Los Alamos National Laboratory; Decker, Diana L [Los Alamos National Laboratory; Walker, Laurie F [Los Alamos National Laboratory; Colletti, Lisa M [Los Alamos National Laboratory; Spencer, Khalil J [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Herrera, Jaclyn A [Los Alamos National Laboratory; Wong, Amy S [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguards Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.

  15. Laboratory Safety Manual Table of Contents

    E-Print Network [OSTI]

    Natelson, Douglas

    Laboratory Safety Manual Table of Contents I. Emergency Procedures a. Laboratory Contact Information b. Location of Laboratory Emergency Equipment c. Laboratory Hazard and Evacuation Maps d. University Emergency Procedures II. University Policies and Procedures a. Rice University Laboratory Safety

  16. National Renewable Energy Laboratory Solar Radiation Research Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Solar Radiation Research Laboratory (SRRL) Instrument of Energy (DoE). Objectives · Provide Improved Methods for Radiometer Calibrations · Develop a Solar Energy Resources · Offer Unique Training Methods for Solar Monitoring Network Design, Operation

  17. Program director`s report for the Office of Health and Environmental Research

    SciTech Connect (OSTI)

    NONE

    1995-07-01

    LBNL performs basic and applied research and develops technologies in support of the Department of Energy Office of Health and Environmental Research`s mission to explore and mitigate the long-term health and environmental consequences of energy use and to advance solutions to major medical challenges. The ability of the Laboratory to engage in this mission depends upon the strength of its core competencies. In addition, there are several key capabilities that are crosscutting, or underlie, many of the core competencies. They are: bioscience and biotechnology; environmental assessment and remediation; advanced detector systems; materials characterization and synthesis; chemical dynamics, catalysis, and surface science; advanced technologies for energy supply and energy efficiency; particle and photon beams; national research facilities; computation and information management; engineering design and fabrication technologies; and education of future scientists and engineers. Research in progress and major accomplishments are summarized for projects in analytical technology; environmental research; health effects; molecular carcinogenesis; general life sciences; human genome project; medical applications; and imaging of E-binding proteins.

  18. Remote Sensing Laboratory - RSL

    SciTech Connect (OSTI)

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  19. Remote Sensing Laboratory - RSL

    ScienceCinema (OSTI)

    None

    2015-01-09

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  20. environmental health The Local Board of Health

    E-Print Network [OSTI]

    environmental health The Local Board of Health Environmental Health Primer Second Edition #12;The Local Board of Health Environmental Health Primer Second Edition Author Carrie Hribar, MA Project Director ­ Public Health Policy National Association of Local Boards of Health Editor Mark Schultz, MEd

  1. Health Insurance After Graduation

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Health Insurance After Graduation: Individual Health Insurance in California University of California, Berkeley Student Health Insurance Office Tang Center Fall Semester 2013 #12;Health Care vs. Health Insurance Health Care is... Provision of Medical Services by ­ Private Physicians & Hospitals

  2. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  3. Laboratory microfusion capability study

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The purpose of this study is to elucidate the issues involved in developing a Laboratory Microfusion Capability (LMC) which is the major objective of the Inertial Confinement Fusion (ICF) program within the purview of the Department of Energy's Defense Programs. The study was initiated to support a number of DOE management needs: to provide insight for the evolution of the ICF program; to afford guidance to the ICF laboratories in planning their research and development programs; to inform Congress and others of the details and implications of the LMC; to identify criteria for selection of a concept for the Laboratory Microfusion Facility and to develop a coordinated plan for the realization of an LMC. As originally proposed, the LMC study was divided into two phases. The first phase identifies the purpose and potential utility of the LMC, the regime of its performance parameters, driver independent design issues and requirements, its development goals and requirements, and associated technical, management, staffing, environmental, and other developmental and operational issues. The second phase addresses driver-dependent issues such as specific design, range of performance capabilities, and cost. The study includes four driver options; the neodymium-glass solid state laser, the krypton fluoride excimer gas laser, the light-ion accelerator, and the heavy-ion induction linear accelerator. The results of the Phase II study are described in the present report.

  4. 100-B/C Target Analyte List Development for Soil

    SciTech Connect (OSTI)

    R.W. Ovink

    2010-03-18

    This report documents the process used to identify source area target analytes in support of the 100-B/C remedial investigation/feasibility study addendum to DOE/RL-2008-46. This report also establishes the analyte exclusion criteria applicable for 100-B/C use and the analytical methods needed to analyze the target analytes.

  5. Nonlinear mechanical and poromechanical analyses: comparison with analytical solutions

    E-Print Network [OSTI]

    Boyer, Edmond

    analytical solutions exist in the field of geomechanics. This is an important step before evaluating

  6. Support for Scalable Analytics over Databases and Data-Streams

    E-Print Network [OSTI]

    Laptev, Nikolay Pavlovich

    2012-01-01

    blogs, social medias and Internet searches. ‘Big Data Analytics’ is now recognized as an emerging technology

  7. Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document

    SciTech Connect (OSTI)

    NONE

    1997-02-04

    In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today`s design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building.

  8. Combustion & Health 

    E-Print Network [OSTI]

    Hamilton, W.

    2012-01-01

    stream_source_info ESL-KT-12-10-18.pdf.txt stream_content_type text/plain stream_size 4107 Content-Encoding ISO-8859-1 stream_name ESL-KT-12-10-18.pdf.txt Content-Type text/plain; charset=ISO-8859-1 FFCOMBUSTION & HEALTH... Winifred J. Hamilton, PhD, SM Clear Air Through Energy Efficiency (CATEE) Galveston, TX October 9?11, 2012 FFCOMBUSTION & HEALTH FFCOMBUSTION: THE THREAT ? Biggest threat to world ecosystems (and to human health) ? Combustion of fossil fuels...

  9. September 2013 Laboratory Safety Manual Section 7 -Safety Training

    E-Print Network [OSTI]

    Wilcock, William

    September 2013 Laboratory Safety Manual Section 7 - Safety Training UW Environmental Health and Safety Page 7-1 Section 7 - Safety Training Contents A. SAFETY TRAINING REQUIREMENTS ......................................................7-1 B. EH&S SAFETY TRAINING AND RECORDS ..............................................7-1 C

  10. November 2014 Laboratory Safety Manual Appendix B -Glossary

    E-Print Network [OSTI]

    Brown, Sally

    Appendix B - Glossary Laboratory Safety Manual UW Environmental Health and Safety ANSI American National and public needs for national consensus standards and coordinates development of such standards. Many ANSI, etc. (ANSI, 1819 L Street NW, Suite 600, Washington DC 20036, 202-293-8020, http://www.ansi

  11. Meeting National Needs, Creating Opportunities for Growth Brookhaven National Laboratory

    E-Print Network [OSTI]

    from 2006 to 2009 $74.7 Millioninvested in new facilities and renovations 314jobs directly supported.S. looks for new sources of growth while facing major challenges in areas as diverse as health, energy in Upton, New York, the U.S. Department of Energy's (DOE) Brookhaven National Laboratory is one of just six

  12. CRAIG G. FRASER"' LAGRANGE'S ANALYTICAL MATHEMATICS,

    E-Print Network [OSTI]

    Fraser, Craig

    CRAIG G. FRASER"' LAGRANGE'S ANALYTICAL MATHEMATICS, ITS CARTESIAN ORIGINS AND RECEPTION IN COMTE to the mathematical methods developed in the preceding century by Euler and Lagrange. In the course of his discussion. . . . All his mathematical compositions are remarkable for a singular elegance, by the symmetry of forms

  13. Analytical theory of multipass crystal extraction

    SciTech Connect (OSTI)

    Biryukov, V.; Murphy, C.T.

    1997-10-01

    An analytical theory for the efficiency of particle extraction from an accelerator by means of a bent crystal is proposed. The theory agrees with all the measurements performed in the broad energy range of 14 to 900 GeV, where the efficiency range also spans over two decades, from {approximately}0.3% to {approximately}30%.

  14. Enhancing Power Grid Stability through Analytics

    E-Print Network [OSTI]

    Lakoba, Taras I.

    Enhancing Power Grid Stability through Analytics: Information is Power, and Power is Information no dummies). · But... many challenges in the North American power grid revolve around coordinating? Power is Information · Refrain in many quarters of the power grid today says that we must "extract

  15. Software Analytics: Achievements and Challenges Dongmei Zhang

    E-Print Network [OSTI]

    Xie, Tao

    Software Analytics: Achievements and Challenges Dongmei Zhang Microsoft Research Asia Beijing, USA Email: xie@csc.ncsu.edu Abstract--A huge wealth of various data exist in the practice of software development. Further rich data are produced by modern software and services in operation, many of which tend

  16. Analytical Study of Thermonuclear Reaction Probability Integrals

    E-Print Network [OSTI]

    M. A. Chaudhry; H. J. Haubold; A. M. Mathai

    2000-01-16

    An analytic study of the reaction probability integrals corresponding to the various forms of the slowly varying cross-section factor $S(E)$ is attempted. Exact expressions for reaction probability integrals are expressed in terms of the extended gamma functions.

  17. Cardiogram: Visual Analytics for Automotive Engineers

    E-Print Network [OSTI]

    Cardiogram: Visual Analytics for Automotive Engineers Michael Sedlmair1, Petra Isenberg2, Dominikus that sup- ports automotive engineers in debugging masses of traces each consisting of millions of recorded-critical networks to be error-free has become a major task and challenge for automotive engi- neers. To overcome

  18. Using data analytics to streamline healthcare costs

    E-Print Network [OSTI]

    Using data analytics to streamline healthcare costs The STFC Hartree Centre has helped Albatross Financial Solutions optimise the patient cost benchmarking service it provides to NHS Trusts, helping them to validate and predict costs more accurately and establish best practices. Challenge Most of us will contract

  19. Georgia Institute of Laboratory Safety

    E-Print Network [OSTI]

    ENVIRONMENTAL HEALTH AND SAFETY POLICY.......................................10 Purpose Institute Council for Environmental Health and Safety (IC.........................................................................................12 Chemical and Environmental Safety Committee (CESC

  20. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  1. January 2012-August 21, 2014 Department of Pathology and Laboratory Medicine Publication List 375 Publications

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    January 2012-August 21, 2014 Department of Pathology and Laboratory Medicine Publication List 375 Publications Metabolism and Nutrition: 70 Publications Cancer: 75 Publications Health Care and Technology: 116 Publications Inflammation and Immunity: 76 Publications Neuroscience: 38 Publications Overview

  2. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-22

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Supersedes DOE O 413.2B.

  3. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  4. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  5. Laboratory for Energy-Related Health Research Compliance Order...

    Office of Environmental Management (EM)

    each party to this Order certifies that he or she is fully authorized to enter into the terms and conditions of this Order and to execute and legally bind that party to this Order....

  6. Environmental Health and Safety Fire and Life Safety Laboratory Assessment

    E-Print Network [OSTI]

    ) are not propped open. Fire sprinkler spray patterns are not blocked by equipment or furnishings. Emergency shut-down. Emergency shut-offs (ventilation, electrical and gas) are clearly visible and have unobstructed access unobstructed access. Emergency eyewashes and showers are in good condition, clearly visible and have

  7. Nuclear Materials Characterization in the Materials and Fuels Complex Analytical Hot Cells

    SciTech Connect (OSTI)

    Michael Rodriquez

    2009-03-01

    As energy prices skyrocket and interest in alternative, clean energy sources builds, interest in nuclear energy has increased. This increased interest in nuclear energy has been termed the “Nuclear Renaissance”. The performance of nuclear fuels, fuels and reactor materials and waste products are becoming a more important issue as the potential for designing new nuclear reactors is more immediate. The Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Analytical Laboratory Hot Cells (ALHC) are rising to the challenge of characterizing new reactor materials, byproducts and performance. The ALHC is a facility located near Idaho Falls, Idaho at the INL Site. It was built in 1958 as part of the former Argonne National Laboratory West Complex to support the operation of the second Experimental Breeder Reactor (EBR-II). It is part of a larger analytical laboratory structure that includes wet chemistry, instrumentation and radiochemistry laboratories. The purpose of the ALHC is to perform analytical chemistry work on highly radioactive materials. The primary work in the ALHC has traditionally been dissolution of nuclear materials so that less radioactive subsamples (aliquots) could be transferred to other sections of the laboratory for analysis. Over the last 50 years though, the capabilities within the ALHC have also become independent of other laboratory sections in a number of ways. While dissolution, digestion and subdividing samples are still a vitally important role, the ALHC has stand alone capabilities in the area of immersion density, gamma scanning and combustion gas analysis. Recent use of the ALHC for immersion density shows that extremely fine and delicate operations can be performed with the master-slave manipulators by qualified operators. Twenty milligram samples were tested for immersion density to determine the expansion of uranium dioxide after irradiation in a nuclear reactor. The data collected confirmed modeling analysis with very tight precision. The gamma scanning equipment in the ALHC has taken on a new role also as a micro-gamma scanning system and has been put into service; allowing the linear and radial counting of a spent fuel segment to determine reaction characteristics within a small section of nuclear fuel. The nitrogen, oxygen and carbon analysis allows the identification of these impurities in spent nuclear fuel and also most oxides, nitrides, carbides, C-14 and tritium.

  8. LABORATORY III ENERGY AND CAPACITORS

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY III ENERGY AND CAPACITORS Lab III -1 All biological systems rely on the ability to store and transfer energy. In this laboratory you will investigate the storage and transfer of energy in capacitors successfully completing this laboratory, you should be able to: · Apply the concept of conservation of energy

  9. Atlantic Oceanographic and Meteorological Laboratory

    E-Print Network [OSTI]

    Atlantic Oceanographic and Meteorological Laboratory Science Research Review March 18-20, 2008. Quality: Assess the quality of the laboratory's research and development. Assess whether appropriate." · How does the quality of the laboratory's research and development rank among Research and Development

  10. LABORATORY I FORCES AND EQUILIBRIUM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY I FORCES AND EQUILIBRIUM Lab I -1 In biological systems, most objects of interest system. OBJECTIVES: After successfully completing this laboratory, you should be able to: · Determine and 6), and chapter 15 (section 4). It is likely that you will be doing some of these laboratory

  11. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Colloquium at Princeton Plasma Physics Laboratory March 8, 2000 http://fire.pppl.gov A Next Step Option Institute of Technology Oak Ridge National Laboratory Princeton Plasma Physics Laboratory Sandia National: SOFT/Fr Sep 98 IAEA/Ja Oct 98 APS-DPP Nov 98 FPA Jan 99 APEX/UCLA Feb 99 APS Cent Mar 99 IGNITOR May 99

  12. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Physics Workshop Princeton Plasma Physics Laboratory May 1, 2000 http://fire.pppl.gov A Next Step Option Institute of Technology Oak Ridge National Laboratory Princeton Plasma Physics Laboratory Sandia National: SOFT/Fr Sep 98 IAEA/Ja Oct 98 APS-DPP Nov 98 FPA Jan 99 APEX/UCLA Feb 99 APS Cent Mar 99 IGNITOR May 99

  13. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  14. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  15. Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823 Revision 02AugustLaboratory Standard

  16. Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Argonne National Laboratory | 9700 South A

  17. Muncrief | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames Laboratory Profile Diane

  18. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovation Portal SNL Site Map Printable

  19. Sandia National Laboratories: Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovation Portal SNLLeadershipAgreements

  20. Sandia National Laboratories: Careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovation Portal SNLLeadershipAgreementsCareers

  1. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployee &

  2. Sandia National Laboratories: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployeeNews Detecting biothreat agents

  3. Sandia National Laboratories: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployeeNewsPublications

  4. Sandia National Laboratories Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandia National Laboratories

  5. Sandia National Laboratories Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandia National LaboratoriesSandia

  6. aboesenb | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largestnamedGroup! !aboesenb Ames Laboratory

  7. andersoi | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifiesValidation of MFRSR Dataandersoi Ames Laboratory

  8. bastaw | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifiesValidation ofUV-RSSSummary5bastaw Ames Laboratory

  9. cbertoni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifiesValidationENCOAL®April 8,9cbertoni Ames Laboratory

  10. dscomito | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulationdetonation detectionDouglasdscomito Ames Laboratory

  11. haaland | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th Annual ConferenceFall 2001,haaland Ames Laboratory Profile

  12. jiahao | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryM aterials S cience a ndjiahao Ames Laboratory

  13. jwang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryM aterials S cience ajwang Ames Laboratory

  14. nalms | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryMIII: TheJointCoupling, ,nalms Ames Laboratory

  15. nbarbee | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryMIII:National Laboratory Research

  16. ndesilva | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryMIII:National Laboratory

  17. rberrett | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m m port mrberrett Ames Laboratory

  18. rfry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m m portrespondingrfry Ames Laboratory

  19. rofox | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m mrofox Ames Laboratory Profile Rodney

  20. szhou | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m mDiurnalCarbonU C Lszhou Ames Laboratory

  1. witt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r mReducingwhistleblower |witt Ames Laboratory

  2. xinyufu | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r mReducingwhistleblowerxinyufu Ames Laboratory

  3. Idaho National Laboratory April

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdaho National Laboratory

  4. Laboratory Policy Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC)Planning Process Laboratory

  5. Diversity | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full reportTown Hall Program BookDiversity

  6. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005 toDownloads Topic

  7. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005 toDownloads

  8. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005 toDownloads Press

  9. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005 toDownloads

  10. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005

  11. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005Downloads Topic -

  12. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005Downloads Topic

  13. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005Downloads

  14. U of A Policies and Procedures On-Line (UAPPOL) Medical Laboratory Science Technical Standards Policy

    E-Print Network [OSTI]

    MacMillan, Andrew

    U of A Policies and Procedures On-Line (UAPPOL) Medical Laboratory Science Technical Standards to diagnose and manage health problems, perform technical and laboratory skills and, as needed, provide complete certain technical procedures in a reasonable time, all the while ensuring patient safety. POLICY

  15. U of MN College of Biological Sciences, Itasca Biological Station and Laboratories

    E-Print Network [OSTI]

    Weiblen, George D

    . Labeling requirements for containers of hazardous substances and equipment or work areas that generate of protecting employees from the health hazards in laboratories. This Plan is intended to meet the requirements of the federal Laboratory Safety Standard, formally known as "Occupational Exposure to Hazardous Chemicals

  16. An Analytical Solution on Convective and Diffusive Transport of Analyte in Laminar Flow of Microfluidic Slit

    E-Print Network [OSTI]

    Chen, X.

    Microfluidic devices could find applications in many areas, such as BioMEMs, miniature fuel cells and microfluidic cooling of electronic circuitry. One of the important considerations of microfluidic device in analytical ...

  17. College of Health Sciences Health Sciences Connection

    E-Print Network [OSTI]

    Barrash, Warren

    College of Health Sciences Health Sciences Connection 1 Dean's Message College of Health Sciences Health Sciences Connection February 2011 Volume IX (3) Since the last COHS newsletter, the faculty Dr. Tim Dunnagan, Dean #12;Health Sciences Connection 2 College News College of Health Sciences

  18. College of Health Sciences Health Sciences Connection

    E-Print Network [OSTI]

    Barrash, Warren

    College of Health Sciences Health Sciences Connection 1 Dean's Message College of Health Sciences Health Sciences Connection November 2010 Volume IX (2) Rationale The faculty, staff and students within the sweeping changes associated with health care reform. Health care reform represents the most significant

  19. 1-on-1 Health Coaching - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-on-1 Health Coaching Health Education & Wellness Downloads & Patient Materials Health & Productivity Health Calculators & Logs Health Coaching Health Fairs and Screenings...

  20. PIA - Environmental Molecular Sciences Laboratory (EMSL) User...

    Energy Savers [EERE]

    Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory...

  1. Independent Oversight Review, Argonne National Laboratory - November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory - November 2011 Independent Oversight Review, Argonne National Laboratory - November 2011 November 2011 Review of the Argonne National Laboratory...

  2. GRADUATE AERONAUTICAL LABORATORIES CALIFORNIA INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    Barr, Al

    Firestone Flight Sciences Laboratory Guggenheim Aeronautical Laboratory Karman Laboratory of Fluid Mechanics and Jet Propulsion Pasadena #12;Experiments and modeling of impinging laminar jets at moderate separation

  3. Technosocial Predictive Analytics for Illicit Nuclear Trafficking

    SciTech Connect (OSTI)

    Sanfilippo, Antonio P.; Butner, R. Scott; Cowell, Andrew J.; Dalton, Angela C.; Haack, Jereme N.; Kreyling, Sean J.; Riensche, Roderick M.; White, Amanda M.; Whitney, Paul D.

    2011-03-29

    Illicit nuclear trafficking networks are a national security threat. These networks can directly lead to nuclear proliferation, as state or non-state actors attempt to identify and acquire nuclear weapons-related expertise, technologies, components, and materials. The ability to characterize and anticipate the key nodes, transit routes, and exchange mechanisms associated with these networks is essential to influence, disrupt, interdict or destroy the function of the networks and their processes. The complexities inherent to the characterization and anticipation of illicit nuclear trafficking networks requires that a variety of modeling and knowledge technologies be jointly harnessed to construct an effective analytical and decision making workflow in which specific case studies can be built in reasonable time and with realistic effort. In this paper, we explore a solution to this challenge that integrates evidentiary and dynamic modeling with knowledge management and analytical gaming, and demonstrate its application to a geopolitical region at risk.

  4. Analytical model for Stirling cycle machine design

    E-Print Network [OSTI]

    Formosa, Fabien; 10.1016/j.enconman.2010.02.010

    2013-01-01

    In order to study further the promising free piston Stirling engine architecture, there is a need of an analytical thermodynamic model which could be used in a dynamical analysis for preliminary design. To aim at more realistic values, the models have to take into account the heat losses and irreversibilities on the engine. An analytical model which encompasses the critical flaws of the regenerator and furthermore the heat exchangers effectivenesses has been developed. This model has been validated using the whole range of the experimental data available from the General Motor GPU-3 Stirling engine prototype. The effects of the technological and operating parameters on Stirling engine performance have been investigated. In addition to the regenerator influence, the effect of the cooler effectiveness is underlined.

  5. Electrospray ion source with reduced analyte electrochemistry

    DOE Patents [OSTI]

    Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

    2011-08-23

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  6. Comparison of open source visual analytics toolkits.

    SciTech Connect (OSTI)

    Crossno, Patricia Joyce; Harger, John R.

    2010-11-01

    We present the results of the first stage of a two-stage evaluation of open source visual analytics packages. This stage is a broad feature comparison over a range of open source toolkits. Although we had originally intended to restrict ourselves to comparing visual analytics toolkits, we quickly found that very few were available. So we expanded our study to include information visualization, graph analysis, and statistical packages. We examine three aspects of each toolkit: visualization functions, analysis capabilities, and development environments. With respect to development environments, we look at platforms, language bindings, multi-threading/parallelism, user interface frameworks, ease of installation, documentation, and whether the package is still being actively developed.

  7. Electrospray ion source with reduced analyte electrochemistry

    DOE Patents [OSTI]

    Kertesz, Vilmos; Van Berkel, Gary J

    2013-07-30

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  8. Ames Laboratory annual site environmental report, calendar year 1996

    SciTech Connect (OSTI)

    1998-04-01

    This report summarizes the environmental status of Ames Laboratory for calendar year 1996. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies twelve buildings owned by the Department of Energy (DOE). The Laboratory also leases space in ISU owned buildings. Laboratory activities involve less than ten percent of the total chemical use and approximately one percent of the radioisotope use on the ISU campus. In 1996, the Office of Assurance and Assessment merged with the Environment, Safety and Health Group forming the Environment, Safety, Health and Assurance (ESH and A) office. In 1996, the Laboratory accumulated and disposed of wastes under US Environmental Protection Agency (EPA) issued generator numbers. Ames Laboratory submitted a Proposed Site Treatment Plan to EPA in December 1995. This plan complied with the Federal Facilities Compliance Act (FFCA). It was approved by EPA in January 1996. The consent agreement/consent order was issued in February 1996. Pollution awareness, waste minimization and recycling programs, implemented in 1990 and updated in 1994, continued through 1996. Included in these efforts were a waste white paper and green computer paper recycling program. Ames Laboratory also continued to recycle salvageable metal and used oil, and it recovered freon for recycling. All of the chemical and nearly all of the radiological legacy wastes were properly disposed by the end of 1996. Additional radiological legacy waste will be properly disposed during 1997.

  9. An analytics approach to hypertension treatment

    E-Print Network [OSTI]

    Epstein, Christina (Christina Lynn)

    2014-01-01

    Hypertension is a major public health issue worldwide, affecting more than a third of the adult population and increasing the risk of myocardial infarction, heart failure, stroke, and kidney disease. Current clinical ...

  10. Small Scale Cosmological Perturbations: An Analytic Approach

    E-Print Network [OSTI]

    Wayne Hu; Naoshi Sugiyama

    1996-04-19

    Through analytic techniques verified by numerical calculations, we establish general relations between the matter and cosmic microwave background (CMB) power spectra and their dependence on cosmological parameters on small scales. Fluctuations in the CMB, baryons, cold dark matter (CDM), and neutrinos receive a boost at horizon crossing. Baryon drag on the photons causes alternating acoustic peak heights in the CMB and is uncovered in its bare form under the photon diffusion scale. Decoupling of the photons at last scattering and of the baryons at the end of the Compton drag epoch, freezes the diffusion-damped acoustic oscillations into the CMB and matter power spectra at different scales. We determine the dependence of the respective acoustic amplitudes and damping lengths on fundamental cosmological parameters. The baryonic oscillations, enhanced by the velocity overshoot effect, compete with CDM fluctuations in the present matter power spectrum. We present new exact analytic solutions for the cold dark matter fluctuations in the presence of a growth- inhibiting radiation {\\it and} baryon background. Combined with the acoustic contributions and baryonic infall into CDM potential wells, this provides a highly accurate analytic form of the small-scale transfer function in the general case.

  11. Experimental and analytical study of rotating cavitation

    SciTech Connect (OSTI)

    Kamijo, Kenjiro; Shimura, Takashi; Tsujimoto, Yoshinobu [National Aerospace Lab., Miyagi (Japan). Kakuda Research Center

    1994-12-31

    This paper describes experimental and analytical results of rotating cavitation. There are four major sections in this paper. The first section presents the main characteristics of rotating cavitation which was found in the inducer test using a water tunnel. The second section describes the rotating cavitation which occurred in the development test of an LE-7 liquid oxygen pump for the H-II rocket. Also described in this section is how the rotating cavitation was suppressed. The rotating cavitation was the cause of both super synchronous shaft vibration and an unstable head coefficient curve. The third section presents how the theory of rotating cavitation was developed. The final section shows the measured cavitation compliance and mass flow gain factor of the LE-7 pump inducer for comparison of the experimental and analytical results of the rotating cavitation of the LE-7 pump inducer. Almost all the information presented in this paper has already been reported by Kamijo et al. (1977, 1980, 1993, 1993) and by Shimura (1993). In the present paper, the authors attempt to combine and give a clear overview of the experimental and analytical results described in the previous papers to systematically show their experience and findings on rotating cavitation.

  12. ELECTRONICS UPGRADE TO THE SAVANNAH RIVER NATIONAL LABORATORY COULOMETER FOR PLUTONIUM AND NEPTUNIUM ASSAY

    SciTech Connect (OSTI)

    Cordaro, J.; Holland, M.; Reeves, G.; Nichols, S.; Kruzner, A.

    2011-07-08

    The Savannah River Site (SRS) has the analytical measurement capability to perform high-precision plutonium concentration measurements by controlled-potential coulometry. State-of-the-art controlled-potential coulometers were designed and fabricated by the Savannah River National Laboratory and installed in the Analytical Laboratories process control laboratory. The Analytical Laboratories uses coulometry for routine accountability measurements of and for verification of standard preparations used to calibrate other plutonium measurement systems routinely applied to process control, nuclear safety, and other accountability applications. The SRNL Coulometer has a demonstrated measurement reliability of {approx}0.05% for 10 mg samples. The system has also been applied to the characterization of neptunium standard solutions with a comparable reliability. The SRNL coulometer features: a patented current integration system; continuous electrical calibration versus Faraday's Constants and Ohm's Law; the control-potential adjustment technique for enhanced application of the Nernst Equation; a wide operating room temperature range; and a fully automated instrument control and data acquisition capability. Systems have been supplied to the International Atomic Energy Agency (IAEA), Russia, Japanese Atomic Energy Agency (JAEA) and the New Brunswick Laboratory (NBL). The most recent vintage of electronics was based on early 1990's integrated circuits. Many of the components are no longer available. At the request of the IAEA and the Department of State, SRNL has completed an electronics upgrade of their controlled-potential coulometer design. Three systems have built with the new design, one for the IAEA which was installed at SAL in May 2011, one system for Los Alamos National Laboratory, (LANL) and one for the SRS Analytical Laboratory. The LANL and SRS systems are undergoing startup testing with installation scheduled for this summer.

  13. Brookhaven National Laboratory site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    Naidu, J.R.; Paquette, D.E.; Schroeder, G.L.

    1996-12-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1995. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment. Areas of known contamination are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement established by the Department of Energy, Environmental Protection Agency and the New York Department of Environmental Conservation. Except for identified areas of soil and groundwater contamination, the environmental monitoring data has continued to demonstrate that compliance was achieved with the applicable environmental laws and regulations governing emission and discharge of materials to the environment. Also, the data show that the environmental impacts at Brookhaven National Laboratory are minimal and pose no threat to the public nor to the environment. This report meets the requirements of Department of Energy Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

  14. Radioactive Waste Characterization Strategies; Comparisons Between AK/PK, Dose to Curie Modeling, Gamma Spectroscopy, and Laboratory Analysis Methods- 12194

    SciTech Connect (OSTI)

    Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.; Henckel, George; Gruetzmacher, Kathleen M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-01

    In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorized Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages including; - Cost benefit analysis (basic materials costs, overall program operations costs, man-hours per sample analyzed, etc.); - Radiation Exposure As Low As Reasonably Achievable (ALARA) program considerations; - Industrial Health and Safety risks; - Overall Analytical Confidence Level. The concepts in this paper apply to any organization with significant radioactive waste characterization and management activities working to within budget constraints and seeking to optimize their waste characterization strategies while reducing analytical costs. (authors)

  15. Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and

    E-Print Network [OSTI]

    . Capabilities Supporting National Security The CMR houses key capabilities for analytical chemistry, uraniumCMR Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) building supports research and experimental activities for plutonium and uranium

  16. The procedures manual of the Environmental Measurements Laboratory. Volume 1, 28. edition

    SciTech Connect (OSTI)

    Chieco, N.A. [ed.

    1997-02-01

    This manual covers procedures and technology currently in use at the Environmental Measurements Laboratory. An attempt is made to be sure that all work carried out will be of the highest quality. Attention is focused on the following areas: quality assurance; sampling; radiation measurements; analytical chemistry; radionuclide data; special facilities; and specifications.

  17. Tank 241-AX-103, cores 212 and 214 analytical results for the final report

    SciTech Connect (OSTI)

    Steen, F.H.

    1998-02-05

    This document is the analytical laboratory report for tank 241-AX-103 push mode core segments collected between July 30, 1997 and August 11, 1997. The segments were subsampled and analyzed in accordance with the Tank 241-AX-103 Push Mode Core Sampling and Analysis Plan (TSAP) (Comer, 1997), the Safety Screening Data Quality Objective (DQO) (Dukelow, et al., 1995) and the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue (Organic DQO) (Turner, et al., 1995). The analytical results are included in the data summary table (Table 1). None of the samples submitted for Differential Scanning Calorimetry (DSC), Total Alpha Activity (AT), plutonium 239 (Pu239), and Total Organic Carbon (TOC) exceeded notification limits as stated in the TSAP (Conner, 1997). The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group in accordance with the Memorandum of Understanding (Schreiber, 1997) and not considered in this report.

  18. Portable Analytical Systems for On-Site Diagnosis of Exposure to Pesticides and Nerve Agents

    SciTech Connect (OSTI)

    Lin, Yuehe; Wang, Jun; Liu, Guodong; Timchalk, Chuck

    2009-12-01

    In this chapter, we summarize recent work in our laboratory on the development of sensitive portable analytical systems for use in on-site detection of exposure to organophosphate (OP) pesticides and chemical nerve agents. These systems are based on various nanomaterials functioning as transducers; recognition agents or labels and various elelectrochemical/immunoassay techniques. The studied nanomaterials included functionalized carbon nanotubes (CNT), zirconia nanoparticles (NPs) and quantum dots (QDs). Three biomarkers e.g. the free OPs, metabolites of OPs and protein-OP adducts in biological matrices have been employed for biomonitoring of OP exposure with our developed system. It has been found that the nanomaterial-based portable analytical systems have high sensitivity for the detection of the biomarkers, which suggest that these technologies offer great promise for the rapid and on-site detection and evaluation of OP exposure.

  19. National Laboratory]; Kim, Young Jin [Los Alamos National Laboratory...

    Office of Scientific and Technical Information (OSTI)

    EDM Abstract Not Provided Los Alamos National Laboratory (LANL) DOELANL United States 2014-11-05 English Conference Conference: Challenges of the worldwide experimental search...

  20. Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dogliani, Harold O [Los Alamos National Laboratory

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  1. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    LBNL 58752 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Laboratory Evaluation of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 3 #12;Abstract A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility

  2. ME 361F Radiation and Radiation Protection Laboratory ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    8. Reactor Health Physics Practices Class/Laboratory Schedule (Type, number and duration of sessions-Ray Attenuation · Low-Level Gamma Ray Spectrometry · Reactor Health Physics · Neutron Shielding · Sodium Iodide. Apply principles of engineering, basic science, and mathematics (including multivariate calculus

  3. National Renewable Energy Laboratory's Energy Systems Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

  4. Occupational Medicine - Assistant PIA, Idaho National Laboratory...

    Energy Savers [EERE]

    Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho...

  5. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    McKenzie, Barbara J.; West, Stephanie G.; Jones, Olga G.; Kerr, Dorothy A.; Bieri, Rita A.; Sanderson, Nancy L.

    1991-08-01

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  6. On Jentzsch sets of functions analytic in the unit disc

    E-Print Network [OSTI]

    2015-10-14

    On Jentzsch sets of functions analytic in the. unit disc. Alexandre Eremenko. Sometime 1993. Dear Lee: Let f be an analytic function in the unit disc U = {z : |z|

  7. Modern Data Architectures for Scalable Analytics | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modern Data Architectures for Scalable Analytics Apr 14 2014 11:00 AM - 12:00 PM Arjun Shankar, Computational Data Analytics Group, ORNL Computer Sciences and Engineering Division...

  8. Sorbent Testing for the Solidification of Unidentified Rocky Flats Laboratory Waste Stored at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Bickford, J.; Kimmitt, R.

    2007-07-01

    At the request of the U.S. Department of Energy (DOE), MSE Technology Applications, Inc. (MSE) evaluated various commercially available sorbents to solidify unidentified laboratory liquids from Rocky Flats that are stored at the Idaho National Laboratory (INL). The liquids are a collection of laboratory wastes that were generated from various experiments and routine analytical laboratory activities carried out at Rocky Flats. The liquids are in bottles discovered inside of buried waste drums being exhumed from the subsurface disposal area at the Radioactive Waste Management Complex (RWMC) by the contractor, CH2M Hill Washington International (CWI). Free liquids are unacceptable at the Waste Isolation Pilot Plant (WIPP), and some of these liquids cannot be returned to the retrieval pit. Stabilization of the liquids into a solid mass will allow these materials to be sent to an appropriate disposal location. The selected sorbent or sorbent combinations should produce a stabilized mass that is capable of withstanding conditions similar to those experienced during storage, shipping, and burial. The final wasteform should release less than 1% liquid by volume per the WIPP Waste Acceptance Criteria (WAC). The absence or presence of free liquid in the solidified waste-forms was detected when tested by SW-846, Method 9095B, Paint Filter Free Liquids, and the amount of liquid released from the wasteform was determined by SW-846, Method 9096, Liquid Release Test. Reactivity testing was also conducted on the solidified laboratory liquids. (authors)

  9. European underground laboratories: An overview

    E-Print Network [OSTI]

    Lino Miramonti

    2005-03-31

    Underground laboratories are complementary to those where the research in fundamental physics is made using accelerators. This report focus on the logistic and on the background features of the most relevant laboratories in Europe, stressing also on the low background facilities available. In particular the report is focus on the laboratories involved in the new Europeean project ILIAS with the aim to support the European large infrastructures operating in the astroparticle physics area.

  10. LANL: Ion Beam Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion...

  11. Ray Bair | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science, computational and laboratory research Large scale applications of high performance computing and communications News DOE creates new Center for Computational Materials...

  12. Training Program | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To check out our resources on task-based systems, visit the Ames Laboratory Processes Training page. Training Schedule Training Catalog...

  13. US EPA Regional Laboratory Network

    E-Print Network [OSTI]

    LABORATORY NETWORK List of Acronyms AMD ............Acid Mine Drainage BNA..............Base/Neutrals and Acids Extractable Organics BMP.............Best Management Practice BOD .............Biological Oxygen

  14. Laboratory Directed Research and Development Program. FY 1993

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  15. Brookhaven National Laboratory site environmental report for calendar year 1990

    SciTech Connect (OSTI)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1992-01-01

    Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance.

  16. Analytic models of plausible gravitational lens potentials

    SciTech Connect (OSTI)

    Baltz, Edward A.; Marshall, Phil; Oguri, Masamune, E-mail: eabaltz@slac.stanford.edu, E-mail: pjm@physics.ucsb.edu, E-mail: oguri@slac.stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, PO Box 20450, MS29, Stanford, CA 94309 (United States)] [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, PO Box 20450, MS29, Stanford, CA 94309 (United States)

    2009-01-15

    Gravitational lenses on galaxy scales are plausibly modelled as having ellipsoidal symmetry and a universal dark matter density profile, with a Sersic profile to describe the distribution of baryonic matter. Predicting all lensing effects requires knowledge of the total lens potential: in this work we give analytic forms for that of the above hybrid model. Emphasising that complex lens potentials can be constructed from simpler components in linear combination, we provide a recipe for attaining elliptical symmetry in either projected mass or lens potential. We also provide analytic formulae for the lens potentials of Sersic profiles for integer and half-integer index. We then present formulae describing the gravitational lensing effects due to smoothly-truncated universal density profiles in cold dark matter model. For our isolated haloes the density profile falls off as radius to the minus fifth or seventh power beyond the tidal radius, functional forms that allow all orders of lens potential derivatives to be calculated analytically, while ensuring a non-divergent total mass. We show how the observables predicted by this profile differ from that of the original infinite-mass NFW profile. Expressions for the gravitational flexion are highlighted. We show how decreasing the tidal radius allows stripped haloes to be modelled, providing a framework for a fuller investigation of dark matter substructure in galaxies and clusters. Finally we remark on the need for finite mass halo profiles when doing cosmological ray-tracing simulations, and the need for readily-calculable higher order derivatives of the lens potential when studying catastrophes in strong lenses.

  17. Analytical models of relativistic accretion disks

    E-Print Network [OSTI]

    Viacheslav V. Zhuravlev

    2015-09-24

    We present not a literature review but a description, as detailed and consistent as possible, of two analytic models of disk accretion onto a rotating black hole: a standard relativistic disk and a twisted relativistic disk. Although one of these models is much older than the other, both are of topical current interest for black hole studies. The way the exposition is presented, the reader with only a limited knowledge of general relativity and relativistic hydrodynamics can --- with little or no use of additional sources -- gain good insight into many technical details lacking in the original papers.

  18. Photovoltaic Degradation Rates -- An Analytical Review

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-06-01

    As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0.5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology.

  19. Analytical mesoscale modeling of aeolian sand transport

    E-Print Network [OSTI]

    Marc Lämmel; Anne Meiwald; Klaus Kroy

    2014-05-03

    We analyze the mesoscale structure of aeolian sand transport, based on a recently developed two-species continuum model. The calculated sand flux and important average characteristics of the grain trajectories are found to be in remarkable agreement with field and wind-tunnel data. We conclude that the essential mesoscale physics is insensitive to unresolved details on smaller scales and well captured by the coarse-grained analytical model, thus providing a sound basis for precise and numerically efficient mesoscale modeling of aeolian structure formation.

  20. NREL: Measurements and Characterization - Analytical Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial Toolkit The GeospatialSolar Energy The(35.93Analytical

  1. Category:Analytical Modeling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village,8199089°,Analytical Modeling Jump to: navigation, search

  2. Analytical Approaches Towards Understanding Structure-Property

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563AbuseConnect Technicalofand PuConnect Analytic

  3. Scientific Achievement Analytical Transmission Electron Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| StanfordOffice of ScienceDiscovered theAnalytical Transmission

  4. Linear differential elimination for analytic functions W. Plesken, D. Robertz

    E-Print Network [OSTI]

    Robertz, Daniel

    Linear differential elimination for analytic functions W. Plesken, D. Robertz Abstract This paper provides methods to decide whether a given analytic function of several complex variables is a linear the function (sin x)2 is a linear combination of the form f1(x)·(cos(x+y))2 +f2(y)·cos(2x+y) with analytic

  5. One Statistician's Perspectives on Statistics and "Big Data" Analytics

    E-Print Network [OSTI]

    Vardeman, Stephen B.

    One Statistician's Perspectives on Statistics and "Big Data" Analytics Some (Ultimately 2014 Vardeman (Iowa State University) Perspectives on "Big Data" Analytics July 2014 1 / 16 #12;My/modern-multivariate-statistical-learning/ Vardeman (Iowa State University) Perspectives on "Big Data" Analytics July 2014 2 / 16 #12;Some (Indirect

  6. Analyte sensing mediated by adapter/carrier molecules

    DOE Patents [OSTI]

    Bayley, Hagan (College Station, TX); Braha, Orit (College Station, TX); Gu, LiQun (Bryan, TX)

    2002-07-30

    This invention relates to an improved method and system for sensing of one or more analytes. A host molecule, which serves as an adapter/carrier, is used to facilitate interaction between the analyte and the sensor element. A detectable signal is produced reflecting the identity and concentration of analyte present.

  7. Introduction to Health Bachelor of Health Sciences

    E-Print Network [OSTI]

    Hickman, Mark

    Health. 2016 Introduction to Health Bachelor of Health Sciences Bachelor of Social Work Bachelor Hurunui promoting physical wellbeing and Mori and Indigenous Health in Hagley Park. Published April 2015 are available online at www.canterbury.ac.nz/regulations 18 The UC Health Graduate 20 Frequently asked questions

  8. Public Health Conferences GENERAL PUBLIC HEALTH

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Public Health Conferences GENERAL PUBLIC HEALTH Michigan's Premier Public Health Conference.sph.umich.edu/scr/news_events/event.cfm?ID=2631 American Public Health Association (APHA) 140th Annual Meeting & Exposition: October 27-31, 2012 in San Francisco, CA o http://www.apha.org/meetings/AnnualMeeting/ Global Health & Innovation 2013

  9. Health Research National Institute for Health Research

    E-Print Network [OSTI]

    Diggle, Peter J.

    Embedding Health Research National Institute for Health Research Annual Report 2009/10 #12;Contents National Institute for Health Research Annual Report 2009/10 1 Foreword 2 The National Institute for Health to the NHS 40 Section 4: Strengthening health policy 54 Section 5: Changing NHS practice 64 Financial summary

  10. College of Health Sciences Health Sciences Connection

    E-Print Network [OSTI]

    Barrash, Warren

    College of Health Sciences Health Sciences Connection 1 Dean's Message College of Health Sciences Health Sciences Connection Back to School edition September 2010 Volume IX (1) Dr. Tim Dunnagan, Dean of the College of Health Sciences (COHS) at Boise State University (BSU). It is truly an honor to have

  11. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  12. Health and Safety Research Division progress report for the period October 1, 1991--March 31, 1993

    SciTech Connect (OSTI)

    Berven, B.A.

    1993-09-01

    This is a progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology, Biological and Radiation Physics, Chemical Physics, Biomedical and Environmental Information Analysis, Risk Analysis, Center for Risk Management, Associate Laboratories for Excellence in Radiation Technology (ALERT), and Contributions to National and Lead Laboratory Programs and Assignments--Environmental Restoration.

  13. counselling health promotion

    E-Print Network [OSTI]

    health and counselling services health promotion 10 Ways to get active Most people find that huff and puff stuff a few times a week and make it last for 15 minutes or more each time. students.sfu.ca/health counselling health promotion physiotherapy health clinic #12;health and counselling services health promotion

  14. Visual Analytics for Power Grid Contingency Analysis

    SciTech Connect (OSTI)

    Wong, Pak C.; Huang, Zhenyu; Chen, Yousu; Mackey, Patrick S.; Jin, Shuangshuang

    2014-01-20

    Contingency analysis is the process of employing different measures to model scenarios, analyze them, and then derive the best response to remove the threats. This application paper focuses on a class of contingency analysis problems found in the power grid management system. A power grid is a geographically distributed interconnected transmission network that transmits and delivers electricity from generators to end users. The power grid contingency analysis problem is increasingly important because of both the growing size of the underlying raw data that need to be analyzed and the urgency to deliver working solutions in an aggressive timeframe. Failure to do so may bring significant financial, economic, and security impacts to all parties involved and the society at large. The paper presents a scalable visual analytics pipeline that transforms about 100 million contingency scenarios to a manageable size and form for grid operators to examine different scenarios and come up with preventive or mitigation strategies to address the problems in a predictive and timely manner. Great attention is given to the computational scalability, information scalability, visual scalability, and display scalability issues surrounding the data analytics pipeline. Most of the large-scale computation requirements of our work are conducted on a Cray XMT multi-threaded parallel computer. The paper demonstrates a number of examples using western North American power grid models and data.

  15. Brookhaven National Laboratory site environmental report for calendar year 1991

    SciTech Connect (OSTI)

    Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

    1992-09-01

    This publication presents the results of BNL's environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively.

  16. Brookhaven National Laboratory site environmental report for calendar year 1991

    SciTech Connect (OSTI)

    Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

    1992-09-01

    This publication presents the results of BNL`s environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively.

  17. Structural Health Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Health Monitoring Engineering Institute Structural Health Monitoring Structural Health Monitoring is the process of implementing a damage detection strategy for...

  18. Mental health in schools and public health

    E-Print Network [OSTI]

    Adelman, Howard S; Taylor, Linda

    2006-01-01

    Corporation; 1989. Public Health Reports / May–June 2006 /comes in part from the Of?ce of Adolescent Health, Maternaland Child Health Bureau (Title V, Social Security Act),

  19. Analytical X-ray Safety Refresh Training

    E-Print Network [OSTI]

    radiation doses as low as social, technical, economic, practical, and public policy considerations permit damages. #12;BIOLOGICAL EFFECTS OF RADIATION 0 50 100 Radiation dose (rem) HealthEffect Atomic Bomb effects of radiation are linearly dependent on the radiation dose (discussed in following slides

  20. WOOD ANATOMY INSTRUCTIONS FOR LABORATORY

    E-Print Network [OSTI]

    Cufar, Katarina

    WOOD ANATOMY INSTRUCTIONS FOR LABORATORY WORK KATARINA CUFAR, MARTIN ZUPANCIC University of Ljubljana Biotechnical Faculty Department of Wood Science and Technology #12;Publisher Department of Wood The publishing of "Wood Anatomy - Instructions for Laboratory Work", a textbook by Katarina Cufar and Martin