National Library of Energy BETA

Sample records for hdr geothermal reservoir

  1. A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal...

    Open Energy Info (EERE)

    A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Evaluation Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...

  2. Performance testing the Phase 2 HDR reservoir

    SciTech Connect (OSTI)

    Ponden, R.F.; Dreesen, D.S. ); Thomson, J.C. )

    1991-01-01

    The geothermal energy program at the Los Alamos National Laboratory is directed toward developing the Hot Dry Rock (HDR) technology as an alternate energy source. Positive results have been obtained in previous circulation tests of HDR reservoirs at the Laboratory's test site in Fenton Hill, New Mexico. There still remains however, the need to demonstrate that adequate geothermal energy can be extracted in an efficient manner to support commercial power production. This year, the Laboratory will begin a circulation test of its Phase 2, reservoir. The objectives of this test are to characterize steady-state power production and long-term reservoir performance. 6 refs., 2 figs., 3 tabs.

  3. Geothermal Reservoir Dynamics - TOUGHREACT

    E-Print Network [OSTI]

    2005-01-01

    enhanced geothermal systems (EGS) and hot dry rock (HDR),deformation, to demonstrate new EGS technology through fieldsystems, primarily focusing on EGS and HDR systems and on

  4. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby...

    Open Energy Info (EERE)

    Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas...

  5. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff...

    Open Energy Info (EERE)

    Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling...

  6. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Brown & DuTeaux, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  7. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    Geothermal Area (Rao, Et Al., 1996) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date 1996 -...

  8. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area ...

    Open Energy Info (EERE)

    Geothermal Area (Rao, Et Al., 1996) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1996 - 1996...

  9. Petrography Analysis At Fenton Hill HDR Geothermal Area (Laughlin...

    Open Energy Info (EERE)

    Petrography Analysis At Fenton Hill HDR Geothermal Area (Laughlin, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography...

  10. Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik...

    Open Energy Info (EERE)

    Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Sampling At...

  11. GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79

    E-Print Network [OSTI]

    Pruess, Karsten

    2012-01-01

    that well blocks must geothermal reservoir s·tudies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

  12. ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Zais, E.J.; Bodvarsson, G.

    2008-01-01

    Petroleum Reservoirs. Geothermal Reservoirs IV. DATA1970, Superheating of Geothermal Steam, Proc. of the U.N.the Development & Utilization of Geothermal Resources, Pisa.

  13. Reinjection into geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  14. Modeling of Geothermal Reservoirs: Fundamental Processes, Computer...

    Open Energy Info (EERE)

    Abstract This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir...

  15. Fenton Hill HDR Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello Geothermal PowerGuidelines | OpenFediRenewableFenton Hill HDR

  16. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01

    on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

  17. Economic predictions for heat mining : a review and analysis of hot dry rock (HDR) geothermal energy technology

    E-Print Network [OSTI]

    Tester, Jefferson W.

    1990-01-01

    The main objectives of this study were first, to review and analyze several economic assessments of Hot Dry Rock (HDR) geothermal energy systems, and second, to reformulate an economic model for HDR with revised cost components.

  18. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01

    the characteristics of a geothermal reservoir: Items 2, 6,new data important to geothermal reservoir engineering prac-forecast performance of the geothermal reservoir and bore

  19. Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff &...

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Redirect page Jump to:...

  20. -Injection Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    For the Period October 1, 1985 through September 30, 1986 DE-ASO7-84ID12529 Stanford Geothermal Program was initiated in fiscal year 1981. The report covers the period from October 1, 1985 through September 30, 1986SGP-TR-107 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

  1. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Stanford University

    an uncertainty analysis of thermo-hydro- mechanical (THM) coupled processes in a typical hot-dry-rock (HDR) reservoir in crystalline rock. The conceptual model is an equivalent porous media approach which is adequate taking parameter uncertainties into account for geothermal reservoir evaluation in order to assess

  2. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  3. Thermal Gradient Holes At Fenton Hill HDR Geothermal Area (Purtymun...

    Open Energy Info (EERE)

    Valles caldera in order to locate an of high heat flow that would serve as a favorable test site for the HDR concept. Notes Data from these wells are report in Reiter et al....

  4. Analysis of Geothermal Reservoir Stimulation using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of...

  5. Characterization of geothermal reservoir crack patterns using...

    Open Energy Info (EERE)

    with form History Characterization of geothermal reservoir crack patterns using shear-wave splitting Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  6. An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir...

    Open Energy Info (EERE)

    Humeros Geothermal Reservoir (Mexico) Abstract An analysis of production and reservoir engineering data of 42 wells from the Los Humeros geothermal field (Mexico) allowed...

  7. A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir

    E-Print Network [OSTI]

    Boyer, Edmond

    A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR of New South Wales, Sydney 2052, Australia. Abstract The constitutive thermo-hydro-mechanical equations is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo-hydro

  8. The history of HDR research and development

    SciTech Connect (OSTI)

    Duchane, D.

    1998-12-31

    An energy source rivaling the sun exists in the form of the heat emanating from the interior of the earth. Although limited quantities of this geothermal energy are produced today by bringing natural hot fluids to the surface, most of the earth`s heat is trapped in hot dry rock (HDR). The application of hydraulic fracturing technology to tap this vast HDR resource was pioneered by Los Alamos National Laboratory beginning in 1970. Since that time, engineered geothermal reservoirs have been constructed and operated at numerous locations around the world. Major work at the US HDR facility at Fenton Hill, NM, and at the British HDR site in Cornwall, UK, has been completed, but advanced HDR field work continues at two sites on the island of Honshu in Japan and at Soultz in northeastern France. In addition, plans are currently being completed for the construction of an HDR system on the continent of Australia. Over the past three decades the worldwide research and development effort has taken HDR from its early conceptual stage to its present state as a demonstrated technology that is on the verge of becoming commercially feasible. Extended flow tests in the United States, Japan, and Europe have proven that sustained operation of HDR reservoirs is possible. In support of these field tests, an international body of scientists and engineers have pursued a variety of innovative approaches for assessing HDR resources, constructing and characterizing engineered geothermal reservoirs, and operating HDR systems. Taken together, these developments form a strong base upon which to build the practical HDR systems that will provide clean energy for the world in the 21st century.

  9. Numerical modeling of water injection into vapor-dominated geothermal reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01

    Renewable Energy, Office of Geothermal Technologies, of theTransport in Fractured Geothermal Reservoirs, Geothermics,Depletion of Vapor-Dominated Geothermal Reservoirs, Lawrence

  10. HDR Geothermal Energy: Important Lessons From Fenton Hill

    National Nuclear Security Administration (NNSA)

    Stanford, California, February 9-11, 2009 SGP-TR-187 HOT DRY ROCK GEOTHERMAL ENERGY: IMPORTANT LESSONS FROM FENTON HILL Donald W. Brown Los Alamos National Laboratory...

  11. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Additional References Retrieved from...

  12. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    References D. G. Brookins, A. W. Laughlin (1983) Rb-Sr Geochronologic Investigation Of Precambrian Samples From Deep Geothermal Drill Holes, Fenton Hill, New Mexico Additional...

  13. Core Analysis At Fenton Hill HDR Geothermal Area (Brookins &...

    Open Energy Info (EERE)

    References D. G. Brookins, A. W. Laughlin (1983) Rb-Sr Geochronologic Investigation Of Precambrian Samples From Deep Geothermal Drill Holes, Fenton Hill, New Mexico Additional...

  14. Observation Wells At Fenton Hill HDR Geothermal Area (Shevenell...

    Open Energy Info (EERE)

    for Los Alamos National Laboratory in 1984. These wells were drilled to facilitate microseismic monitoring of ongoing MHF experiments attempting to produce a viable geothermal...

  15. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    of the geothermal fluids and gases were collected at regular intervals during each of the heat-extraction experiments from the production wellhead, the injection wellhead, and at...

  16. Heat extracted from the long term flow test in the Fenton Hill HDR reservoir

    SciTech Connect (OSTI)

    Kruger, Paul; Robinson, Bruce

    1994-01-20

    A long-term flow test was carried out in the Fenton Hill HDR Phase-2 reservoir for 14 months during 1992-1993 to examine the potential for supplying thermal energy at a sustained rate as a commercial demonstration of HDR technology. The test was accomplished in several segments with changes in mean flowrate due to pumping conditions. Re-test estimates of the extractable heat content above a minimum useful temperature were based on physical evidence of the size of the Fenton Hill reservoir. A numerical model was used to estimate the extent of heat extracted during the individual flow segments from the database of measured production data during the test. For a reservoir volume of 6.5x10{sup 6}m{sup 3}, the total heat content above a minimum temperature of 150{degree} C was 1.5x10{sup 15}J. For the total test period at the three sustained mean flowrates, the integrated heat extracted was 0.088x10{sup 15}J, with no discernable temperature decline of the produced fluid. The fraction of energy extracted above the abandonment temperature was 5.9%. On the basis of a constant thermal energy extraction rate, the lifetime of the reservoir (without reservoir growth) to the abandonment temperature would be 13.3 years, in good agreement with the pre-test estimate of 15.0 years for the given reservoir volume.

  17. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect (OSTI)

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  18. INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.

    2012-01-01

    and Pruess, K. , Analysis of injection testing of geothermalreservoirs: Geothermal Resoures Council, Vol. 4. , (into a fractured geothermal reservoir: Transactions, Vol. 4,

  19. Geothermal reservoir insurance study. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-10-09

    The principal goal of this study was to provide analysis of and recommendations on the need for and feasibility of a geothermal reservoir insurance program. Five major tasks are reported: perception of risk by major market sectors, status of private sector insurance programs, analysis of reservoir risks, alternative government roles, and recommendations.

  20. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    of the Deep Reservoir at Soultz-sous-Forets, France,Enhanced Geothermal Reservoir at Soultz-sous-Forêts, France,Chemical Modeling at the Soultz-sous-Forêts HDR Reservoir (

  1. Role of Fluid Pressure in the Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01

    Chemical Modeling at the Soultz-sous-Forêts HDR Reservoir (Enhanced Geothermal Reservoir at Soultz-sous-Forêts, France,Fracture System of the EGS Soultz Reservoir (France) based

  2. Fourteenth workshop geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-01-01

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  3. Fourteenth workshop geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-12-31

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  4. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01

    long-lived enhanced geothermal system (EGS) in the Northernis a vapor dominated geothermal reservoir system, which is

  5. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY

    E-Print Network [OSTI]

    Howard, J.H.

    2011-01-01

    the authors. Wairakei geothermal field: Lawrence BerkeleyR. C. , Evaluation of potential geothermal well-head and17, "S"r78" for use in geothermal reservoir 25 p. (LBL-

  6. Seventeenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W.

    1992-01-31

    PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

  7. On the production behavior of enhanced geothermal systems with CO2 as working fluid

    E-Print Network [OSTI]

    Pruess, K.

    2008-01-01

    Geochemical modeling of the Soultz-sous-Forêts hot dry rockchemical modeling at the Soultz-sous-Forêts HDR reservoir (enhanced geothermal reservoir at Soultz-sous-Forêts, France,

  8. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W.

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate the audiovisual equipment and to Michael Riley who coordinated the meeting arrangements for a second year. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  9. Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code...

    Office of Scientific and Technical Information (OSTI)

    Conference: Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code Comparison Study Citation Details In-Document Search Title: Flow and Thermal Behavior of an EGS...

  10. Base Technologies and Tools for Supercritical Reservoirs Geothermal...

    Open Energy Info (EERE)

    Base Technologies and Tools for Supercritical Reservoirs Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Base Technologies and...

  11. Geothermal Reservoir Temperatures Estimated from the Oxygen Isotope...

    Open Energy Info (EERE)

    Geothermal Reservoir Temperatures Estimated from the Oxygen Isotope Compositions of Dissolved Sulfate and Water from Hot Springs and Shallow Drillholes Jump to: navigation, search...

  12. Geothermal reservoir temperatures estimated from the oxygen isotope...

    Open Energy Info (EERE)

    Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Jump to: navigation, search...

  13. Evaluation of testing and reservoir parameters in geothermal...

    Open Energy Info (EERE)

    to library Conference Proceedings: Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Abstract Evaluating the Raft River and...

  14. Borehole geophysics evaluation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Borehole geophysics...

  15. FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR...

    Open Energy Info (EERE)

    FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR ASSESSMENT PRELIMINARY RESULTS Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  16. Hydrothermally altered and fractured granite as an HDR reservoir in the EPS-1 borehole, Alsace,

    SciTech Connect (OSTI)

    Genter, A.; Traineau, H.

    1992-01-01

    As part of the European Hot Dry Rocks Project, a second exploration borehole, EPS-1, has been cored to a depth of 2227 m at Soultz-sous-Forets (France). The target was a granite beginning at 1417 m depth, overlain by post-Paleozoic sedimentary cover. Structural analysis and petrographic examination of the 800-m porphyritic granite core, have shown that this rock has undergone several periods of hydrothermal alteration and fracturing. More than 3000 natural structures were recorded, whose distribution pattern shows clusters where low-density fracture zones (less than 1 per meter) alternate with zones of high fracture density (more than 20 per meter). Vein alteration, ascribed to paleohydrothermal systems, developed within the hydrothermally altered and highly fractured zones, transforming primary biotite and plagioclase into clay minerals. One of these zones at 2.2 km depth produced a hot-water outflow during coring, indicating the existence of a hydrothermal reservoir. Its permeability is provided by the fracture network and by secondary porosity of the granitic matrix resulting from vein alteration. This dual porosity in the HDR granite reservoir must be taken into account in the design of the heat exchanger, both for modeling the water-rock interactions and for hydraulic testing.

  17. Eighteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1993-01-28

    PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  18. Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs

    E-Print Network [OSTI]

    Wessling, S.

    2009-01-01

    in jointed and layered rocks in geothermal fields.of Volcanology and Geothermal Research 116, 257- 278.fracturing in a sedimentary geothermal reservoir: Results

  19. Twentieth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    None

    1995-01-26

    PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

  20. Twelfth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Rivera, J.

    1987-01-22

    Preface The Twelfth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 20-22, 1987. The year ending December 1986 was very difficult for the domestic geothermal industry. Low oil prices caused a sharp drop in geothermal steam prices. We expected to see some effect upon attendance at the Twelfth Workshop. To our surprise, the attendance was up by thirteen from previous years, with one hundred and fifty-seven registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, Japan, Mexico, New Zealand, and Turkey. Despite a worldwide surplus of oil, international geothermal interest and development is growing at a remarkable pace. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Seven technical papers not presented at the Workshop are also published; they concern geothermal developments and research in Iceland, Italy, and New Zealand. In addition to these forty-eight technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was John R. Berg from the Department of Energy. We thank him for sharing with the Workshop participants his thoughts on the expectations of this agency in the role of alternative energy resources, specifically geothermal, within the country???s energy framework. His talk is represented as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: M. Gulati, K. Goyal, G.S. Bodvarsson, A.S. Batchelor, H. Dykstra, M.J. Reed, A. Truesdell, J.S. Gudmundsson, and J.R. Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank Jean Cook, Marilyn King, Amy Osugi, Terri Ramey, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, specially Jim Lovekin. The Twelfth Workshop was supported by the Geothermal Technology Division of the U. S. Department of Energy through Contract Nos. DE-AS03-80SF11459 and DE-AS07- 84ID12529. We deeply appreciate this continued support. January 1987 Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jesus Rivera

  1. Bulletin of the Seismological Society of America, 90, 6, pp. 15281534, December 2000 Spatial Correlation of Seismic Slip at the HDR-Soultz Geothermal Site

    E-Print Network [OSTI]

    Correlation of Seismic Slip at the HDR-Soultz Geothermal Site: Qualitative Approach by Peter Starzec, Michael injection well at Soultz-sou-Fore^ts Hot Dry Rock geothermal site (Alsace, France). Variograms obtained of fractures in a borehole. We found that variograms exhibiting spatial dependency correlated well with zones

  2. Nineteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1994-01-20

    PREFACE The Nineteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 18-20, 1994. This workshop opened on a sad note because of the death of Prof. Henry J. Ramey, Jr. on November 19, 1993. Hank had been fighting leukemia for a long time and finally lost the battle. Many of the workshop participants were present for the celebration of his life on January 21 at Stanford's Memorial Church. Hank was one of the founders of the Stanford Geothermal Program and the Geothermal Reservoir Engineering Workshop. His energy, kindness, quick wit, and knowledge will long be missed at future workshops. Following the Preface we have included a copy of the Memorial Resolution passed by the Stanford University Senate. There were one hundred and four registered participants. Participants were from ten foreign countries: Costa Rica, England, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, Philippines and Turkey. Workshop papers described the performance of fourteen geothermal fields outside the United States. Roland N. Home opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a presentation about the future of geothermal development. The banquet speaker was Jesus Rivera and he spoke about Energy Sources of Central American Countries. Forty two papers were presented at the Workshop. Technical papers were organized in twelve sessions concerning: sciences, injection, production, modeling, and adsorption. Session chairmen are an important part of the workshop and our thanks go to: John Counsil, Mark Walters, Dave Duchane, David Faulder, Gudmundur Bodvarsson, Jim Lovekin, Joel Renner, and Iraj Ershaghi. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Xianfa Deng who coordinated the meeting arrangements for the Workshop. Roland N. Home Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  3. Eleventh workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Counsil, J.R. (Stanford Geothermal Program)

    1986-01-23

    The Eleventh Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 21-23, 1986. The attendance was up compared to previous years, with 144 registered participants. Ten foreign countries were represented: Canada, England, France, Iceland, Indonesia, Italy, Japan, Mexico, New Zealand and Turkey. There were 38 technical presentations at the Workshop which are published as papers in this Proceedings volume. Six technical papers not presented at the Workshop are also published and one presentation is not published. In addition to these 45 technical presentations or papers, the introductory address was given by J. E. Mock from the Department of Energy. The Workshop Banquet speaker was Jim Combs of Geothermal Resources International, Inc. We thank him for his presentation on GEO geothermal developments at The Geysers. The chairmen of the technical sessions made an important contribution to the Workshop. Other than Stanford faculty members they included: M. Gulati, E. Iglesias, A. Moench, S. Prestwich, and K. Pruess. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank J.W. Cook, J.R. Hartford, M.C. King, A.E. Osugi, P. Pettit, J. Arroyo, J. Thorne, and T.A. Ramey for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment. The Eleventh Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract DE-AS03-80SF11459. We deeply appreciate this continued support. January 1986 H.J. Ramey, Jr. P. Kruger R.N. Horne W.E. Brigham F.G. Miller J.R. Counsil

  4. Thirteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.; Cook, J.W.

    1988-01-21

    PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico and The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones, Yasmin Gulamani, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, especially Jeralyn Luetkehans. The Thirteenth Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract No. DE-AS07-84ID12529. We deeply appreciate this continued support. Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jean W. Cook

  5. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    I 2nd Geopressured Geothermal Energy Conference. UniversityExperiment t o Extract Geothermal Energy From Hot Dry Rock."2nd Geo- pressured Geothermal Energy Conference, Austin,

  6. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    characteristics of geothermal boreholes are studied.Maini, Tidu. "Geothermal Energy From a Borehole i n H o t28 (1967): Borehole Temperature Survey Analysis Geothermal

  7. Ninth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Gudmundsson, J.S.

    1983-12-15

    The attendance at the Workshop was similar to last year's with 123 registered participants of which 22 represented 8 foreign countries. A record number of technical papers (about 60) were submitted for presentation at the Workshop. The Program Committee, therefore, decided to have several parallel sessions to accommodate most of the papers. This format proved unpopular and will not be repeated. Many of the participants felt that the Workshop lost some of its unique qualities by having parallel sessions. The Workshop has always been held near the middle of December during examination week at Stanford. This timing was reviewed in an open discussion at the Workshop. The Program Committee subsequently decided to move the Workshop to January. The Tenth Workshop will be held on January 22-24, 1985. The theme of the Workshop this year was ''field developments worldwide''. The Program Committee addressed this theme by encouraging participants to submit field development papers, and by inviting several international authorities to give presentations at the Workshop. Field developments in at least twelve countries were reported: China, El Salvador, France, Greece, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, the Philippines, and the United States. There were 58 technical presentations at the Workshop, of which 4 were not made available for publication. Several authors submitted papers not presented at the Workshop. However, these are included in the 60 papers of these Proceedings. The introductory address was given by Ron Toms of the U.S. Department of Energy, and the banquet speaker was A1 Cooper of Chevron Resources Company. An important contribution was made to the Workshop by the chairmen of the technical sessions. Other than Stanford Geothermal Program faculty members, they included: Don White (Field Developments), Bill D'Olier (Hydrothermal Systems), Herman Dykstra (Well Testing), Karsten Pruess (Well Testing), John Counsil (Reservoir Chemistry), Malcolm Mossman (Reservoir Chemistry), Greg Raasch (Production), Manny Nathenson (Injection), Susan Petty (Injection), Subir Sanyal (Simulation), Marty Molloy (Petrothermal), and Allen Moench (Reservoir Physics). The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Jean Cook, Joanne Hartford, Terri Ramey, Amy Osugi, and Marilyn King for their valued help with the Workshop arrangements and the Proceedings. We also owe thanks to the program students who arranged and operated the audio-visual equipment. The Ninth Workshop was supported by the Geothermal and Hydropower Technologies Division of the U . S . Department of Energy through contract DE-AT03-80SF11459. We deeply appreciate this continued support. H. J. Ramey, Jr., R. N. Horne, P. Kruger, W. E. Brigham, F. G. Miller, J. S . Gudmundsson -vii

  8. Geothermal Resource-Reservoir Investigations Based On Heat Flow...

    Open Energy Info (EERE)

    Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  9. Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    Broader source: Energy.gov [DOE]

    Project objective: to develop a 3-D numerical model for simulating mode I; II; and III (tensile; shear; and tearing propagation of multiple fractures using the virtual multi-dimensional internal bond (VMIB); to predict geothermal reservoir stimulation.

  10. 3-D Seismic Methods For Geothermal Reservoir Exploration And...

    Open Energy Info (EERE)

    3-D Seismic Methods For Geothermal Reservoir Exploration And Assessment-Summary Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: 3-D Seismic Methods For...

  11. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    i o n o f Geothermal Resources. Pisa, Sept. 22-Oct. 1, 1970:n o f Geothermal Resources. Pisa, Sept. 22-Oct. 1 1970: 516-o f Geothermal Resources, Pisa, Sept. 22-Oct. 1 1970: .1440-

  12. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    Phenomena i n Geothermal Systems. I' U.N. Symposium on theModeling o f Geothermal Systems." 2nd U.N. Symposium on theassociations of geothermal systems and postulates on a

  13. Analysis of Geothermal Reservoir Stimulation Using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Microseismic Study...

  14. Numerical Simulation of Injectivity Effects of Mineral Scaling and Clay Swelling in a Fractured Geothermal Reservoir

    E-Print Network [OSTI]

    Xu, Tianfu; Pruess, Karsten

    2004-01-01

    Geochemical modeling of the Soultz-sous-Forêts Hot Dry Rocken géothermie profonde (Soultz-sous-Forêts, Bas Rhin,chemical modeling at the Soultz-sous-Forêts HDR reservoir (

  15. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    data base from which general management procedures , interpretive techniques , and conceptual models for producin geothermal systems

  16. Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs

    E-Print Network [OSTI]

    Wessling, S.

    2009-01-01

    geothermal energy production because it uses a single borehole,geothermal energy from tight sedimentary reservoirs. It uses a single borehole,

  17. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    f a Hawaii Geothermal Well-- HGP-A. It Geothermal ResourcesPrelimin 11 Test Results from HGP-A." Resources Counci 1and others. e s t Results Trom HGP-A." Geothermat 2 (Part 1,

  18. GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA

    E-Print Network [OSTI]

    2009-01-01

    document. LBL-7094 UC-66~1 GEOTHERMAL RESOURCE AND RESERVOIRInc. , 1976. Study of the geothermal reservoir underlyingtest, 1976, East Mesa geothermal field in California.

  19. Transient well testing in two-phase geothermal reservoirs

    SciTech Connect (OSTI)

    Aydelotte, S.R.

    1980-03-01

    A study of well test analysis techniques in two-phase geothermal reservoirs has been conducted using a three-dimensional, two-phase, wellbore and reservoir simulation model. Well tests from Cerro Prieto and the Hawaiian Geothermal project have been history matched. Using these well tests as a base, the influence of reservoir permeability, porosity, thickness, and heat capacity, along with flow rate and fracturing were studied. Single and two-phase transient well test equations were used to analyze these tests with poor results due to rapidly changing fluid properties and inability to calculate the flowing steam saturation in the reservoir. The injection of cold water into the reservoir does give good data from which formation properties can be calculated.

  20. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    reservoir engineering research program a t the University of Colorado is described. Physical characterization

  1. Reservoir depletion at The Geysers geothermal area, California, shown by four-dimensional seismic tomography

    E-Print Network [OSTI]

    Foulger, G. R.

    Reservoir depletion at The Geysers geothermal area, California, shown by four-dimensional seismic geothermal exploitation at The Geysers geothermal area, California, induces myriads of small of Vp, Vs, and Vp/Vs is an effective geothermal reservoir depletion monitoring tool and can potentially

  2. Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs: W. Scott Phillips

    E-Print Network [OSTI]

    Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs: A Review W. Scott or production of fluids can induce microseismic events in hydrocarbon and geothermal reservoirs. By deploying Patterns in Reservoirs Key Words: induced microseismicity, geothermal, oil and gas, fluid flow, location

  3. Fiber-optic sensors and geothermal reservoir engineering

    SciTech Connect (OSTI)

    Angel, S.M.; Kasameyer, P.W. )

    1988-12-01

    Perhaps the first demonstrations of fiber-optic sensors in a geothermal well occurred in early 1988 on the Island of Hawaii. The first of two fiber-optic optrode tests was at the HGP-A well and 3-megawatt power plant facility managed by the Hawaii National Energy Institute at the University of Hawaii. The second test was in a nearby geothermal exploratory well, Geothermal Test Well 2. Both sites are in the Kilauea East Rift zone. A fiber-optic temperature sensor test will be undertaken soon in a deeper, hotter geothermal well. Problems will be examined that may occur with a stainless steel-sleeved, fiber-optic cable. The paper describes fiber optic technology and its use in geothermal reservoir engineering.

  4. Analysis of Geothermal Reservoir Stimulation using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    between micro-seismicity; reservoir flow and geomechanical characteristics. seismicghassmireservoirstimulation.pdf More Documents & Publications Analysis of...

  5. GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79

    E-Print Network [OSTI]

    Pruess, Karsten

    2012-01-01

    Krafla reservoir. Temperature, pressure and vapor saturationreservoirs because i·t does not residual immobile steam saturation

  6. Tenth workshop on geothermal reservoir engineering: proceedings

    SciTech Connect (OSTI)

    Not Available

    1985-01-22

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  7. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University The Triassic sandstone reservoirs of the Paris Basin (France) have attractive geothermal potential for district heating. However, previous exploitations of these reservoirs have revealed re-injection problems

  8. Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs W. Scott Phillips

    E-Print Network [OSTI]

    Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs W. Scott Phillips James T microseismic events in hydrocarbon and geothermal reservoirs. By deploying sensors downhole, data sets have Key Words: induced microseismicity, geothermal, oil and gas, fluid flow, location #12;2 Introduction

  9. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    and subsequent change t o a superheated steam state. Faust,for electric power of the superheated steam reservoir a ttwo-phase condition t o superheated steam. Knapp, R. M. and

  10. Reservoir technology - geothermal reservoir engineering research at Stanford. Fifth annual report, October 1, 1984-September 30, 1985

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.

    1985-09-01

    The objective is to carry out research on geothermal reservoir engineering techniques useful to the geothermal industry. A parallel objective is the training of geothermal engineers and scientists. The research is focused toward accelerated development of hydrothermal resources through the evaluation of fluid reserves, and the forecasting of field behavior with time. Injection technology is a research area receiving special attention. The program is divided into reservoir definition research, modeling of heat extraction from fractured reservoirs, application and testing of new and proven reservoir engineering technology, and technology transfer. (ACR)

  11. Use of TOUGHREACT to Simulate Effects of Fluid Chemistry on Injectivity in Fractured Geothermal Reservoirs with High Ionic Strength Fluids

    E-Print Network [OSTI]

    Xu, Tianfu; Zhang, Guoxiang; Pruess, Karsten

    2005-01-01

    Geochemical modeling of the Soultz-sous-Forêts Hot Dry Rocken géothermie profonde (Soultz-sous- Forêts, Bas Rhin,chemical modeling at the Soultz-sous-Forêts HDR reservoir (

  12. Imaging the Soultz Enhanced Geothermal Reservoir using double-difference tomography and microseismic data

    E-Print Network [OSTI]

    Piñeros Concha, Diego Alvaro

    2010-01-01

    We applied the double-difference tomography method to image the P and S-wave velocity structure of the European Hot Dry Rock geothermal reservoir (also known as the Soultz Enhanced Geothermal System) at Soultz-sous-Forets, ...

  13. ADVANCING REACTIVE TRACER METHODS FOR MONITORING THERMAL DRAWDOWN IN GEOTHERMAL ENHANCED GEOTHERMAL RESERVOIRS

    SciTech Connect (OSTI)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; George D. Redden; Laurence C. Hull

    2010-10-01

    Reactive tracers have long been considered a possible means of measuring thermal drawdown in a geothermal system, before significant cooling occurs at the extraction well. Here, we examine the sensitivity of the proposed method to evaluate reservoir cooling and demonstrate that while the sensitivity of the method as generally proposed is low, it may be practical under certain conditions.

  14. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    SciTech Connect (OSTI)

    Neupane, Ghanashyam; Mattson, Earl D.; McLing, Travis L.; Palmer, Carl D.; Smith, Robert W.; Wood, Thomas R.; Podgorney, Robert K.

    2015-03-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 – 61 ºC/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 ºC) to over 175 ºC. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

  15. 3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary

    E-Print Network [OSTI]

    Majer, E.L.

    2003-01-01

    3-D Seismic Methods For Geothermal Reservoir Exploration andseismic imaging which will increase the efficiency of explorationexploration and are early drilling 1. Surface studies (a) Reflection seismic.

  16. Artificial Geothermal Energy Potential of Steam-flooded Heavy Oil Reservoirs 

    E-Print Network [OSTI]

    Limpasurat, Akkharachai

    2011-10-21

    This study presents an investigation of the concept of harvesting geothermal energy that remains in heavy oil reservoirs after abandonment when steamflooding is no longer economics. Substantial heat that has accumulated within reservoir rock and its...

  17. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01

    2 Mission of Division of Geothermal Energy . . . . .Coordination with Other Geothermal Programs . . . . . . 6the Behavior of Geothermal Systems . . . . . . . . . 1 6

  18. Reservoir analysis of the Palinpinon geothermal field, Negros Oriental, Philippines

    SciTech Connect (OSTI)

    Amistoso, A.E.; Aquino, B.G.; Aunzo, Z.P.; Jordan, O.T.; Ana, F.X.M.S.; Bodvarsson, G.S.; Doughty, C.

    1993-10-01

    The Philippine National Oil Company and Lawrence Berkeley Laboratory have conducted an informal cooperative project on the reservoir evaluation of the Palinpinon geothermal field in the Philippines. The work involved the development of various numerical models of the field in order to understand the observed data. A three-dimensional porous medium model of the reservoir has been developed that matches well the observed pressure declines and enthalpy transients of the wells. Submodels representing the reservoir as a fractured porous medium were developed for the analysis of chemical transport of chlorides within the reservoir and the movement of the cold water front away from injection wells. These models indicate that the effective porosity of the reservoir varies between 1 and 7% and the effective permeability between 1 and 45 millidarcies. The numerical models were used to predict the future performance of the Palinpinon reservoir using various possible exploitation scenarios. A limited number of make-up wells were allocated to each sector of the field. When all the make-up wells had been put on line, power production gradually began to decline. The model indicates that under the assumed conditions it will not be possible to maintain the planned power production of 112.5 MWe at Palinpinon I and 80 MWe at Palinpinon II for the next 30 years, but the decline in power output will be within acceptable normal operating capacities of the plants.

  19. Twenty-first workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    1996-01-26

    PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.

  20. Magic Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New York:Magic Reservoir

  1. Isotopic Analysis At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIrem GeothermalIslipNotOpen Energy

  2. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01

    DOE), Division of Geothermal Energy (DGE) proposed thatof Energy, Division of Geothermal Energy, through Lawrence

  3. Detailed Joint Structure in a Geothermal Reservoir from Studies of Induced Microearthquake Clusters

    E-Print Network [OSTI]

    Detailed Joint Structure in a Geothermal Reservoir from Studies of Induced Microearthquake Clusters form distinct, planar patterns within five study regions of a geothermal reservoir undergoing hydraulic as the direct S wave. Direct waves may have excited borehole tube waves that became trapped in the vicinity

  4. Deep geothermal reservoirs evolution: from a modeling perspective BRGM, 3 Avenue Claude Guillemin, BP 36009 -45060 Orlans Cedex 2, France

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Deep geothermal reservoirs evolution: from a modeling perspective S. Lopez1 1 BRGM, 3 Avenue Claude deep geothermal reservoirs evolution and management based on examples ranging from direct use of geothermal heat to geothermal electricity production. We will try to focus on French experiences

  5. Bayesian calibration of a large-scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm

    E-Print Network [OSTI]

    Fox, Colin

    Bayesian calibration of a large-scale geothermal reservoir model by a new adaptive delayed of this research is to estimate the parameters of a large-scale numerical model of a geothermal reservoir using that technique. For the 3-D geothermal reservoir model we present here, ADAMH shows a great improvement

  6. PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 -February 1, 2012

    E-Print Network [OSTI]

    Santos, Juan

    in the reservoir around this fracture can be harvested, which is highly undesired for enhanced geothermal system be hydraulically stimulated to create enhanced (or engineered) geothermal reservoirs with enhanced permeabilityPROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University

  7. Using Parallel MCMC Sampling to Calibrate a Computer Model of a Geothermal Reservoir

    E-Print Network [OSTI]

    Fox, Colin

    Using Parallel MCMC Sampling to Calibrate a Computer Model of a Geothermal Reservoir by T. Cui, C. 686 ISSN 1178-360 #12;Using Parallel MCMC Sampling to Calibrate a Computer Model of a Geothermal of a geothermal field to achieve model `calibration' from measured well-test data. We explore three scenarios

  8. Monitoring the Bulalo geothermal reservoir, Philippines, using precision gravity data

    SciTech Connect (OSTI)

    San Andres, R.B.; Pedersen, J.R.

    1993-10-01

    Precision gravity monitoring of the Bulalo geothermal field began in 1980 to estimate the natural mass recharge to the reservoir. Between 1980 and 1991, gravity decreases exceeding 2.5 {times} 10{sup {minus}6} N/kg (250 microgals) were observed in response to fluid withdrawals. A maximum rate of {minus}26 microgals per year was observed near the production center. Mass discharges predicted by recent reservoir simulation modeling generally match those inferred from the observed gravity data. According to simulation studies, no recharge occurred between 1980 and 1984. The mass recharge between 1984 and 1991 was estimated to be 30% of net fluid withdrawal during the same period, equivalent to an average rate of 175 kg/s (630 metric tons per hour).

  9. INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.

    2012-01-01

    Applications & Operations, Geothermal Energy Division of theP. , and Otte, C. , Geothermal energy: Stanford, California,Applications & Operations, Geothermal Energy Division of the

  10. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01

    2 Mission of Division of Geothermal Energy . . . . .Milora and J . W. Tester, Geothermal Energy as a Source o fNations Symposium on Geothermal Energy, San Francisco, May

  11. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01

    are applicable to geothermal systems, and esta- blish aof an unexploited geothermal system has been constructed inment methods for geothermal well system param- eters,

  12. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01

    the Behavior of Geothermal Systems . . . . . . . . . 1 6energy transport in geothermal systems. Analysis o f shortthe Behavior of Geothermal Systems B. Numerical Model i ng

  13. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  14. Integrated seismic studies at the Rye Patch Geothermal Reservoir, Nevada

    E-Print Network [OSTI]

    Gritto, Roland; Daley, Thomas M.; Majer, Ernest L.

    2002-01-01

    most geothermal areas provide access to open boreholesand borehole experiments were conducted at the Rye Patch geothermal

  15. Hydraulic Fracture Stimulation and Acid Treatment of Well Baca 20; Geothermal Reservoir Well Stimulation Program

    SciTech Connect (OSTI)

    None

    1983-07-01

    The U.S. Department of Energy-sponsored Geothermal Reservoir Well Stimulation Program was initiated in February 1979 to pursue industry interest in geothermal well stimulation work and to develop technical expertise in areas directly related to geothermal well stimulation activities. This report provides an overview of the two experiments conducted in the high-temperature reservoir in Baca, New Mexico. The report discusses resource and reservoir properties, and provides a description of the stimulation experiment, a description of the treatment evaluation, and a summary of the experiment costs. (DJE-2005)

  16. A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram | OpenEnergyEvaluation | Open Energy

  17. Thermo-hydro-mechanical Analysis of Fractures and Wellbores in Petroleum/Geothermal Reservoirs 

    E-Print Network [OSTI]

    Safariforoshani, Mohammadreza

    2013-08-09

    The thesis considers three-dimensional analyses of fractures and wellbores in low-permeability petroleum/geothermal reservoirs, with a special emphasis on the role of coupled thermo-hydro-mechanical processes. Thermoporoelastic ...

  18. Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal...

    Open Energy Info (EERE)

    response to the changes in the Earth's gravitational field caused by the passage of the sun and the moon. Overall, the results of the tests indicate that the geothermal reservoir...

  19. NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS

    E-Print Network [OSTI]

    Lippmann, M.J.

    2010-01-01

    13. modeling of liquid geothermal systems: Ph.D. thesis,of water dominated geothermal fields with large temper~of land subsidence in geothermal areas: Proc. 2nd Int. Symp.

  20. Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir

    E-Print Network [OSTI]

    Feighner, Mark A.

    2010-01-01

    at Well 46-28, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,

  1. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01

    environment o f a geothermal borehole. (The problems of f ra data bank of geothermal borehole information. EvaluationBOREHOLE GEOPHYSICS IT-c MATERIALS WELL TESTING L lU-A FUNDAMENTAL STUDIES OF THE BEHAVIOR OF GEOTHERMAL

  2. NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS

    E-Print Network [OSTI]

    Lippmann, M.J.

    2010-01-01

    modeling of liquid geothermal systems: Ph.D. thesis, Univ.IN LIQUID DOMINATED GEOTHERMAL SYSTEMS by M, J. Lippmann, T.IN LIQUID DOMINATED GEOTHERMAL SYSTEMS Marcelo J. Lippmann,

  3. \\PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010

    E-Print Network [OSTI]

    Stanford University

    to the analysis of stress induced micro-seismicity and fracture propagations in geothermal reservoirs. Simulation of the reservoir rock. Generally, the strain-stress behavior of rocks in triaxial tests shows hardening and post\\PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University

  4. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    be able to be maintained for more than 30 years with small decreases in reservoir pressure and temperaturePROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University RESERVOIR MODEL OF THE TAKIGAMI GEOTHERMAL FIELD, OITA, JAPAN Saeid Jalilinasrabady1 , Ryuichi Itoi1

  5. PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010

    E-Print Network [OSTI]

    Stanford University

    for more than 30 years with small decreases in reservoir pressure and temperature in the production zonePROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University GEOTHERMAL RESERVOIR, OITA, JAPAN Saeid Jalilinasrabady1 , Ryuichi Itoi1 , Hiroki Gotoh2 , Toshiaki Tanaka1 1

  6. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    HDR research programme at Soultz-sous-Forêts (France). In:the HDR reservoir at Soultz; maintaining production andhot and fractured granite at Soultz. In: Proceedings of the

  7. PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010

    E-Print Network [OSTI]

    Foulger, G. R.

    with Enhanced Geothermal Systems (EGS) experiments and other geothermal operations. With support from the Dept in geothermal operations and EGS experiments. Two of these are: 1. Enhanced relative hypocenter locationPROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University

  8. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University resources and the practical technological and economic aspects of resource exploitation while remaining continued in use until the present. For example, the basic framework for geothermal resource

  9. Interest in using microearthquakes for characterizing petro-leum and geothermal reservoirs and the region surround-

    E-Print Network [OSTI]

    Interest in using microearthquakes for characterizing petro- leum and geothermal reservoirs information about reservoirs and fracture systems at locations as far as 1 km from boreholes applications where borehole access is limited. The events are frequently dis- tributed as a "cloud," and we

  10. Reservoir engineering applications for development and exploitation of geothermal fields in the Philippines

    SciTech Connect (OSTI)

    Vasquez, N.C.; Sarmiento, Z.F.

    1986-07-01

    After a geothermal well is completed, several tests and downhole measurements are conducted to help evaluate the subsurface fluid and reservoir properties intersected. From these tests, a conceptual model of the well can be developed by integrating data from the various parts of the field. This paper presents the completion techniques applied in geothermal wells, as well as the role of reservoir engineering science in delineating a field for development. Monitoring techniques and other reservoir engineering aspects of a field under exploitation are also discussed, with examples from the Philippines.

  11. World Geothermal Congress, Melbourne, Australia, 19-25 April, 2015 TOMO4D: Temporal Changes in Reservoir Structure at Geothermal Areas

    E-Print Network [OSTI]

    Foulger, G. R.

    World Geothermal Congress, Melbourne, Australia, 19-25 April, 2015 TOMO4D: Temporal Changes in Reservoir Structure at Geothermal Areas Bruce Julian, Gillian Foulger, Andrew Sabin, Najwa Mhana Temporal geothermal areas, California, using three-dimensional local-earthquake tomography repeated on a year

  12. Modeling brine-rock interactions in an enhanced geothermal system deep fractured reservoir at Soultz-Sous-Forets (France): a joint approach using two geochemical codes: frachem and toughreact

    E-Print Network [OSTI]

    Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz, Francois-D.; Pruess, Karsten.

    2006-01-01

    on the properties of the Soultz fractured reservoir.Conference, March 17-18, 2005, Soultz-sous-Forêts, France.Chemical Modelling at the Soultz-sous-Forêts HDR reservoir (

  13. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY

    E-Print Network [OSTI]

    Howard, J.H.

    2011-01-01

    BY USDOE/DIVISION OF GEOTHERMAL ENERGY J J. H. Howard and W.BY USWE/DIVISION O GEOTHERMAL ENERGY F Berkeley, CaliforniaWE), Division of Geothermal Energy (mS) proposed that

  14. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

  15. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2012-01-01

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

  16. GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY

    E-Print Network [OSTI]

    Bresee, J. C.

    2011-01-01

    B. Direct Application of Geothermal Energy . . . . . . . . .Reservoir Assessment: Geothermal Fluid Injection, ReservoirD. E. Appendix Small Geothermal Power Plants . . . . . . .

  17. PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 -February 1, 2011

    E-Print Network [OSTI]

    Foulger, G. R.

    PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 - February 1, 2011 Geothermal Seismology: The State of the Art Bruce R into crustal rocks for purposes such as engineering geothermal systems and sequestering CO2 often has

  18. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Foulger, G. R.

    PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009 SGP-TR-187 MONITORING GEOTHERMAL PROCESSES WITH MICROEARTHQUAKE-tensor) mechanisms of microearthquakes at geothermal areas are valuable for diagnosing processes such as shear

  19. PROCEEDINGS, Thirty-Third Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 28-30, 2008

    E-Print Network [OSTI]

    Foulger, G. R.

    PROCEEDINGS, Thirty-Third Workshop on Geothermal Reservoir Engineering Stanford University TO THE COSO GEOTHERMAL AREA, 1996-2006 Bruce R. Julian1 , Gillian R. Foulger2 , Francis C. Monastero3 1 U.r.foulger@durham.ac.uk 3 Geothermal Program Office, U.S. Navy, China Lake, CA 93555-6001, e-mail: francis

  20. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Foulger, G. R.

    PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 MAPPING DEEP STRUCTURE IN GEOTHERMAL AREAS of volcanic and geothermal areas has always been limited by the absence of local microearthquakes at depth

  1. PROCEEDINGS, Thirty-First Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30-February 1, 2006

    E-Print Network [OSTI]

    Foulger, G. R.

    1 PROCEEDINGS, Thirty-First Workshop on Geothermal Reservoir Engineering Stanford University GEOTHERMAL AREA, 1996-2004 Bruce R. Julian1 , Gillian R. Foulger1,2 , Keith Richards-Dinger3 , Francis Dept. Earth Sciences University of Durham Durham DH1 3LE, U.K. 3 Geothermal Program Office, U.S. Navy 1

  2. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Foulger, G. R.

    PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 Mapping Deep Structure in Geothermal Areas 3LE U.K. g.r.foulger@durham.ac.uk Tomographic study of volcanic and geothermal areas has always been

  3. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Foulger, G. R.

    PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University INJECTION IN A PRODUCING INDONESIAN GEOTHERMAL FIELD Gillian R. Foulger1 & Luciana De Luca2 1 Dept. Earth injection experiment in a geothermal field in Indonesia. We calculated an optimal a-priori one- dimensional

  4. PROCEEDINGS, Thirty-Third Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 28-30, 2008

    E-Print Network [OSTI]

    Foulger, G. R.

    PROCEEDINGS, Thirty-Third Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 28-30, 2008 SGP-TR-185 SEISMIC MONITORING OF EGS TESTS AT THE COSO GEOTHERMAL Middlefield Rd., Menlo Park, CA 94306, e-mail: julian@usgs.gov 3 Geothermal Program Office, U.S. Navy, China

  5. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Sandiford, Mike

    .long@sa.gov.au See author affiliations at end. ABSTRACT Australia is amongst the forefront of Enhanced Geothermal high-permeability systems of fluid-borne crustal heat, commercially-viable geothermal systemsPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University

  6. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Foulger, G. R.

    to provide state-of-the-art tools that are customized for Enhanced Geothermal Systems (EGS). This includesPROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University AT THE COSO GEOTHERMAL FIELD, CALIFORNIA, USING MICROEARTHQUAKE LOCATIONS AND MOMENT TENSORS Bruce R. Julian1

  7. Hydraulic fracture stimulation treatment of Well Baca 23. Geothermal Reservoir Well-Stimulation Program

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    Well Stimulation Experiment No. 5 of the Geothermal Reservoir Well Stimulation Program (GRWSP) was performed on March 22, 1981 in Baca 23, located in Union's Redondo Creek Project Area in Sandoval County, New Mexico. The treatment selected was a large hydraulic fracture job designed specifically for, and utilizing frac materials chosen for, the high temperature geothermal environment. The well selection, fracture treatment, experiment evaluation, and summary of the job costs are presented herein.

  8. Two-dimensional simulation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    and the time dependent temperature response of the wells at the Raft River, Idaho, Geothermal Resource were developed. A horizontal, two-dimensional, finite-difference model...

  9. Statistical study of seismicity associated with geothermal reservoirs...

    Open Energy Info (EERE)

    a geothermal system. Authors Hadley, D. M.; Cavit and D. S. Published DOE Information Bridge, 111982 DOI 10.21725456535 Citation Hadley, D. M.; Cavit, D. S. . 111982....

  10. Geothermal Reservoir Assessment Case Study, Northern Basin and...

    Open Energy Info (EERE)

    Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal...

  11. Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis

    SciTech Connect (OSTI)

    Horne, Roland N.; Li, Kewen; Alaskar, Mohammed; Ames, Morgan; Co, Carla; Juliusson, Egill; Magnusdottir, Lilja

    2012-06-30

    This report highlights the work that was done to characterize fractured geothermal reservoirs using production data. That includes methods that were developed to infer characteristic functions from production data and models that were designed to optimize reinjection scheduling into geothermal reservoirs, based on these characteristic functions. The characterization method provides a robust way of interpreting tracer and flow rate data from fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods were developed to estimate the tracer kernels for situations where data is collected at variable flow-rate or variable injected concentration conditions. The characteristic functions can be used to calibrate thermal transport models, which can in turn be used to predict the productivity of geothermal systems. This predictive model can be used to optimize injection scheduling in a geothermal reservoir, as is illustrated in this report.

  12. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2000-01-01

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  13. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2012-01-01

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  14. Integrated Geothermal-CO2 Storage Reservoirs: FY1 Final Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2012-01-01

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  15. Integrated Geothermal-CO2 Storage Reservoirs: FY1 Final Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  16. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  17. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    parameters. A sensitivity analysis has revealed that within this step a crucial parameter is the uncertainty by running the results of the second step through a simple analytical reservoir model. This reservoir model that covers the most significant uncertainties for geothermal reservoir feasibility studies in sedimentary

  18. Reservoir Investigations on the Hot Dry Rock Geothermal System...

    Open Energy Info (EERE)

    and reservoir volume were investigated and compared to previous circulation tests. Chemical tracers can be used to measure the volume of flow paths in hydrologic systems....

  19. Nanosensors as Reservoir Engineering Tools to Map Insitu Temperature Distributions in Geothermal Reservoirs

    SciTech Connect (OSTI)

    Morgan Ames

    2011-06-15

    The feasibility of using nanosensors to measure temperature distribution and predict thermal breakthrough in geothermal reservoirs is addressed in this report. Four candidate sensors were identified: melting tin-bismuth alloy nanoparticles, silica nanoparticles with covalently-attached dye, hollow silica nanoparticles with encapsulated dye and impermeable melting shells, and dye-polymer composite time-temperature indicators. Four main challenges associated with the successful implementation of temperature nanosensors were identified: nanoparticle mobility in porous and fractured media, the collection and detection of nanoparticles at the production well, engineering temperature sensing mechanisms that are both detectable and irreversible, and inferring the spatial geolocation of temperature measurements in order to map temperature distribution. Initial experiments were carried out to investigate each of these challenges. It was demonstrated in a slim-tube injection experiment that it is possible to transport silica nanoparticles over large distances through porous media. The feasibility of magnetic collection of nanoparticles from produced fluid was evaluated experimentally, and it was estimated that 3% of the injected nanoparticles were recovered in a prototype magnetic collection device. An analysis technique was tailored to nanosensors with a dye-release mechanism to estimate temperature measurement geolocation by analyzing the return curve of the released dye. This technique was used in a hypothetical example problem, and good estimates of geolocation were achieved. Tin-bismuth alloy nanoparticles were synthesized using a sonochemical method, and a bench heating experiment was performed using these nanoparticles. Particle growth due to melting was observed, indicating that tin-bismuth nanoparticles have potential as temperature nanosensors

  20. The Bulalo geothermal field, Philippines: Reservoir characteristics and response to production

    SciTech Connect (OSTI)

    Clemente, W.C.; Villadolid-Abrigo, F.L.

    1993-10-01

    The Bulalo geothermal field has been operating since 1979, and currently has 330 MWe of installed capacity. The field is associated with a 0.5 Ma dacite dome on the southeastern flank of the Late Pliocene to Quaternary Mt. Makiling stratovolcano. The reservoir occurs within pre-Makiling andesite flows and pyroclastic rocks capped by the volcanic products of Mt. Makiling. Initially, the reservoir was liquid-dominated with a two-phase zone overlying the neutral-pH liquid. Exploitation has resulted in an enlargement of the two-phase zone, return to the reservoir of separated waste liquid that has been injected, scaling in the wellbores and rock formation, and influx of cooler groundwaters. Return of injected waters to the reservoir and scaling have been the major reservoir management concerns. These have been mitigated effectively by relocating injection wells farther away from the production area and by dissolving scale from wells with an acid treatment.

  1. Mise-a-la-masse mapping of the HGP-A geothermal reservoir, Hawaii

    SciTech Connect (OSTI)

    Kauahikaua, J.; Mattice, M.; Jackson, D.

    1980-09-01

    The HGP-A well casing was used as an electrode in a mise-a-la-masse experiment to define the boundaries of the geothermal reservoir. Electric potentials were measured to distances of 2 km from the drill hole. Although cased or lined the full 1967 m, only the top 670 m of the HGP-A casing are electrically continuous; the electrode did not extend into the high-temperature part of the reservoir. Nevertheless, the data did define a compartment of dike-impounded freshwater of higher resistivity than the surrounding saltwater-saturated rock. This dike-impounded water is warm and apparently overlies the actual reservoir; however, the lateral boundaries impounding this water probably confine geothermal fluids at depth.

  2. An assessment of the Tongonan geothermal reservoir, Philippines, at high-pressure operating conditions

    SciTech Connect (OSTI)

    Sarmiento, Z.F.; Aquino, B.G.; Aunzo, Z.P.; Rodis, N.O.; Saw, V.S.

    1993-10-01

    An evaluation of the Tongonan geothermal reservoir was conducted to improve the power recovery through reservoir and process optimization. The performance of the existing production wells was reviewed and the response of the field based on the anticipated production levels was simulated at various operating conditions. The results indicate that the Tongonan geothermal reservoir can be exploited at a high pressure operating condition with substantial improvement in the field capacity. The authors calculate that the Upper Mahiao and the Malitbog sectors of the Tongonan field are capable of generating 395 MWe at 1.0 MPa abs., on top of the existing 112.5 MWe plant, compared with 275 MWe if the field is operated at 0.6 MPa abs. The total capacity for the proposed Leyte A 640 MWe expansion can be generated from these sectors with the additional power to be tapped from Mahanagdong and Alto Peak sectors.

  3. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01

    Geothermal Field, Monograph on The Geysers GeothermalField, Geothermal Resources Council, Special Report no. 17,Subsidence at The Geysers geothermal field, N. California

  4. Geothermal reservoir assessment based on slim hole drilling. Volume 1, Analytical Method: Final report

    SciTech Connect (OSTI)

    Olson, H.J.

    1993-12-01

    The Hawaii Scientific Observation Hole (SOH) program was supplied by the State of Hawaii to drill six, 4,000 foot scientific observation holes on Maui and the Big Island of Hawaii to confirm and stimulate geothermal, resource development in Hawaii. After a lengthy permitting process, three SOHs, totaling 18,890 feet of mostly core drilling were finally drilled along the Kilauea East Rift Zone (KERZ) in the Puna district on the Big Island. The SOH program was highly successful in meeting the highly restrictive permitting conditions imposed on the program, and in developing slim hole drilling techniques, establishing subsurface geological conditions, and initiating an assessment and characterization of the geothermal resources potential of Hawaii - even though permitting specifically prohibited pumping or flowing the holes to obtain data of subsurface fluid conditions. The first hole, SOH-4, reached a depth of 2,000 meters, recorded a bottom hole temperature of 306.1 C, and established subsurface thermal continuity along the KERZ between the HGP-A and the True/Mid-Pacific Geothermal Venture wells. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole SOH-1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C, effectively doubled the size of the Hawaii Geothermal Project -- Abbott/Puna Geothermal Venture (HGP-A/PGV) proven/probable reservoir, and defined the northern limit of the HGP-A/PGV reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C, and has sufficient indicated permeability to be designated as a potential ''discovery.''

  5. Geothermal reservoir assessment based on slim hole drilling. Volume 2: Application in Hawaii: Final report

    SciTech Connect (OSTI)

    Olson, H.J.

    1993-12-01

    The Hawaii Scientific Observation Hole (SOH) program was planned, funded, and initiated in 1988 by the Hawaii Natural Energy Institute, an institute within the School of Ocean and Earth Science and Technology, at the University of Hawaii at Manoa. Initial funding for the SOH program was $3.25 million supplied by the State of Hawaii to drill six, 4,000 foot scientific observation holes on Maui and the Big Island of Hawaii to confirm and stimulate geothermal resource development in Hawaii. After a lengthy permitting process, three SOHs, totaling 18,890 feet of mostly core drilling were finally drilled along the Kilauea East Rift Zone (KERZ) in the Puna district on the Big Island. The SOH program was highly successful in meeting the highly restrictive permitting conditions imposed on the program, and in developing slim hole drilling techniques, establishing subsurface geological conditions, and initiating an assessment and characterization of the geothermal resources potential of Hawaii - - even though permitting specifically prohibited pumping or flowing the holes to obtain data of subsurface fluid conditions. The first hole, SOH-4, reached a depth of 2,000 meters, recorded a/bottom hole temperature of 306.1 C, and established subsurface thermal continuity along the KERZ between the HGP-A and the True/Mid-Pacific Geothermal Venture wells. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole SOH-1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C, effectively doubled the size of the Hawaii Geothermal Project-Abbott/Puna Geothermal Venture (HGP-A/PGV) proven/probable reservoir, and defined the northern limit of the HGP-A/PGV reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C, and has sufficient indicated permeability to be designated as a potential discovery.

  6. Exploration model for possible geothermal reservoir, Coso Hot...

    Open Energy Info (EERE)

    reservoir exists at Coso Hot Springs KGRA, as proposed by Combs and Jarzabek (1977). Gravity data collected by the USGS (Isherwood and Plouff, 1978) was plotted and compared with...

  7. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    TESTS IN GEOTHERMAL RESERVOIRS M.R. Safari and A. Ghassemi Department of Petroleum Engineering at Texas into a fracture using 2.D-ROCMAS finite element software which has a coupled flow- geomechanic capability. Mathias

  8. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    carried out. Basic design and process-dependent variables of NSGH, exergy and economic parameters. Engineering-and-physical research and technical and economic substantiation of NSGH constructionPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University

  9. Julian, B.R., G.R. Foulger and F. Monastero, Microearthquake moment tensors from the Coso Geothermal area, Thirty-Second Workshop on Geothermal Reservoir Engineering, Stanford University,

    E-Print Network [OSTI]

    Foulger, G. R.

    Geothermal area, Thirty-Second Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 22-24, 2007. Microearthquake Moment Tensors from the Coso Geothermal Area Bruce R. Julian of Durham, Durham, U. K. Francis Monastero, Geothermal Program Office, US Navy, China Lake, California

  10. PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013

    E-Print Network [OSTI]

    Foulger, G. R.

    PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University in the summer to monitor the EGS growth. Eight geophones were installed in 213-246 m deep boreholes, four and shift stimulation to new fractures. The Newberry Volcano EGS Demonstration will allow geothermal

  11. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    for lifetimes between 30-100 years, with a 90% confidence interval of 98-1200 MWth. Lumped parameter modeling the past 20 years. INTRODUCTION The OBGA comprises the regions of low temperature geothermal activityPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University

  12. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and the resource has been cooled by the 30 years of reinjection. The thermal breakthrough (Tb) is expected to occurPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University AT THE SCALE OF THE GEOTHERMAL HEATING DOUBLET IN THE PARIS BASIN, FRANCE. M.Le Brun1* , V.Hamm1 , S.Lopez1 , P

  13. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    transferred to Zorlu Energy Group for 30 years. After this transfer, the Group has started to work on bothPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University OF KIZILDERE GEOTHERMAL FIELD IN TURKEY Füsun S. Tut Haklidir, Taylan Akin, Aygün Güney, Aye Alpagut Bükülmez

  14. PROCEEDINGS, Twenty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 28-30, 2002

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . INTRODUCTION During on a previous geothermal exploration phase done 30 years ago in the Lamentin areaPROCEEDINGS, Twenty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 28-30, 2002 SGP-TR-171 PRELIMINARY GEOLOGICAL RESULTS OF RECENT EXPLORATORY

  15. Using Automated, High-Precision Repicking to Improve Delineation of Microseismic Structures at the Soultz Geothermal Reservoir

    E-Print Network [OSTI]

    at the Soultz Geothermal Reservoir C.A. Rowe*1 , R.C. Aster1 , W.S. Phillips2 , R.H.Jones3 , B.Borchers4 and M seismicity at the Soultz-sous-Forets geothermal site, France. The method is first applied to a small to future velocity model refinements. ^ #12;3 INTRODUCTION The Soultz-sous-Forets geothermal field

  16. Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field

    SciTech Connect (OSTI)

    Williams, Alan E.; Copp, John F.

    1991-01-01

    Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may represent two limbs of fluid migration away from an area of two-phase upwelling. During migration, the upwelling fluids mix with chemically evolved waters of moderately dissimilar composition. CO{sub 2} rich fluids found in the limb in the southeastern portion of the Coso field are chemically distinct from liquids in the northern limb of the field. Steam-rich portions of the reservoir also indicate distinctive gas compositions. Steam sampled from wells in the central and southwestern Coso reservoir is unusually enriched in both H{sub 2}S and H{sub 2}. Such a large enrichment in both a soluble and insoluble gas cannot be produced by boiling of any liquid yet observed in single-phase portions of the field. In accord with an upflow-lateral mixing model for the Coso field, at least three end-member thermal fluids having distinct gas and liquid compositions appear to have interacted (through mixing, boiling and steam migration) to produce the observed natural state of the reservoir.

  17. Geothermal reservoir assessment case study: Northern Dixie Valley, Nevada

    SciTech Connect (OSTI)

    Denton, J.M.; Bell, E.J.; Jodry, R.L.

    1980-11-01

    Two 1500 foot temperature gradient holes and two deep exploratory wells were drilled and tested. Hydrologic-hydrochemical, shallow temperature survey, structural-tectonic, petrologic alteration, and solid-sample geochemistry studies were completed. Eighteen miles of high resolution reflection seismic data were gathered over the area. The study indicates that a geothermal regime with temperatures greater than 400/sup 0/F may exist at a depth of approximately 7500' to 10,000' over an area more than ten miles in length.

  18. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    reservoirs are characterized by high temperatures and saline formation waters. Figure 1: Regions of potential1 PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University and to characterize the various fluid- material surface interactions in an EGS. These interactions were described

  19. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Stanford University

    /cm2 sec up to 10-7 g/cm2 sec. The thermal evolution was calculated for up to 30,000 years. The deep and the performance of reservoir was predicted for 30 years production. Depths of the reservoir are assumed from 0 province about 30 Km southwest of Semarang, Indonesia as shown in Figure 1, is still undeveloped geothermal

  20. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    to develop in Oligocene time (approximately 30 million years ago) and continues to be an active tectonic zonePROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 RESERVOIR RESPONSE TO 28 YEARS OF PRODUCTION

  1. Tracer testing in geothermal reservoirs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy FacilitiesInformationTown700testing in geothermal

  2. Geysers Hi-T Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpen EnergyGermencik Geothermal PowerGeyserGeysers Hi-T

  3. Fluid Circulation and Heat Extraction from Engineered Geothermal Reservoirs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint GeothermalSilver PeakWister| Open

  4. Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlintInformation )Geothermal

  5. Effects of adsorption and capillarity on injection in vapor-dominated geothermal reservoirs

    SciTech Connect (OSTI)

    Sta. Maria, R.B.; Horne, R.N.

    1996-04-10

    One major motivation for the study of the effects of adsorption in geothermal reservoirs is the phenomenon known as {open_quotes}The Geysers Paradox{close_quotes}. Data from The Geysers field suggest that some water must be stored in the reservoir in a condensed phase even though the prevailing reservoir pressure and temperature dictate superheated conditions. Physical adsorption of steam onto rocks and the thermodynamics of curved interfaces prevailing in the pore spaces of the rock matrix can explain the apparent paradox. These mechanisms make it possible for water and steam to coexist in conditions we normally refer to as {open_quotes}superheated{close_quotes} based on our concept of flat interface thermodynamics (e.g., the Steam Table).

  6. Reservoir-scale fracture permeability in the Dixie Valley, Nevada, geothermal field

    SciTech Connect (OSTI)

    Barton, C.A.; Zoback, M.D.; Hickman, S.; Morin, R.; Benoit, D.

    1998-08-01

    Wellbore image data recorded in six wells penetrating a geothermal reservoir associated with an active normal fault at Dixie Valley, Nevada, were used in conjunction with hydrologic tests and in situ stress measurements to investigate the relationship between reservoir productivity and the contemporary in situ stress field. The analysis of data from wells drilled into productive and non-productive segments of the Stillwater fault zone indicates that fractures must be both optimally oriented and critically stressed to have high measured permeabilities. Fracture permeability in all wells is dominated by a relatively small number of fractures oriented parallel to the local trend of the Stillwater Fault. Fracture geometry may also play a significant role in reservoir productivity. The well-developed populations of low angle fractures present in wells drilled into the producing segment of the fault are not present in the zone where production is not commercially viable.

  7. Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs

    E-Print Network [OSTI]

    Wessling, S.

    2009-01-01

    Geothermal; Enhanced Geothermal Systems; Huff-puff process;viability of an Enhanced Geothermal System not only depends

  8. Development of an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs

    E-Print Network [OSTI]

    Jung, Y.

    2014-01-01

    I. (2005), Geothermal Reservoir Characterization via Thermalfor characterization of fractured geothermal reservoirs. For

  9. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    SciTech Connect (OSTI)

    Haukwa, C.; Bodvarsson, G.S.; Lippmann, M.J.; Mainieri, A.

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells, a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260 C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt. On the basis of the natural-state model a two-dimensional exploitation model was developed. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220 C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.

  10. Start-up operations at the Fenton Hill HDR Pilot Plant

    SciTech Connect (OSTI)

    Ponden, R.F.

    1991-01-01

    With the completion of the surface test facilities at Fenton Hill, the Hot Dry Rock (HDR) Geothermal Energy Program at Los Alamos is moving steadily into the next stage of development. Start-up operations of the surface facilities have begun in preparation for testing the Phase II reservoir and the initial steady-state phase of operations. A test program has been developed that will entail a number of operational strategies to characterize the thermal performance of the reservoir. The surface facilities have been designed to assure high reliability while providing the flexibility and control to support the different operating modes. This paper presents a review of the system design and provides a discussion of the preliminary results of plant operations and equipment performance.

  11. Start-Up Operations at the Fenton Hill HDR Pilot Plant

    SciTech Connect (OSTI)

    Ponden, Raymond F.

    1992-03-24

    With the completion of the surface test facilities at Fenton Hill, the Hot Dry Rock (HDR) Geothermal Energy Program at Los Alamos is moving steadily into the next stage of development. Start-up operations of the surface facilities have begun in preparation for testing the Phase II reservoir and the initial steady-state phase of operations. A test program has been developed that will entail a number of operational strategies to characterize the thermal performance of the reservoir. The surface facilities have been designed to assure high reliability while providing the flexibility and control to support the different operating modes. This paper presents a review of the system design and provides a discussion of the preliminary results of plant operations and equipment performance.

  12. Julian, B.R. and G.R. Foulger, Monitoring Geothermal Processes with Microearthquake Mechanisms, Thirty-Fourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 9-

    E-Print Network [OSTI]

    Foulger, G. R.

    Julian, B.R. and G.R. Foulger, Monitoring Geothermal Processes with Microearthquake Mechanisms, Thirty- Fourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 9- 11, 2009. Monitoring Geothermal Processes with Microearthquake Mechanisms Bruce R. Julian, U. S

  13. Julian, B.R. and G.R. Foulger, Time-Dependent Seismic Tomography of Geothermal Systems, Thirty-Fourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 9-11, 2009.

    E-Print Network [OSTI]

    Foulger, G. R.

    Julian, B.R. and G.R. Foulger, Time-Dependent Seismic Tomography of Geothermal Systems, Thirty-Fourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 9-11, 2009. Time-Dependent Seismic Tomography of Geothermal Systems Bruce R. Julian, U. S. Geological Survey

  14. Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs

    E-Print Network [OSTI]

    Wessling, S.

    2009-01-01

    The future of Geothermal Energy. Massachusetts Institute ofthe exploitation of geothermal energy from such rocks. Wemethod to extract geothermal energy from tight sedimentary

  15. HEAT AND MASS TRANSFER IN A FAULT-CONTROLLED GEOTHERMAL RESERVOIR CHARGED AT CONSTANT PRESSURE

    E-Print Network [OSTI]

    Goyal, K.P.

    2013-01-01

    in Hydrothermal Systems, Geothermal Resources (eds. L.1975. Heat Transfer in Geothermal Systems, 11 in Advances inI. G. , The Simulation of Geothermal Systems with a Simple

  16. Geochemical Enhancement Of Enhanced Geothermal System Reservoirs: An Integrated Field And Geochemical Approach

    SciTech Connect (OSTI)

    Joseph N. Moore

    2007-12-31

    The geochemical effects of injecting fluids into geothermal reservoirs are poorly understood and may be significantly underestimated. Decreased performance of injection wells has been observed in several geothermal fields after only a few years of service, but the reasons for these declines has not been established. This study had three primary objectives: 1) determine the cause(s) of the loss of injectivity; 2) utilize these observations to constrain numerical models of water-rock interactions; and 3) develop injection strategies for mitigating and reversing the potential effects of these interactions. In this study rock samples from original and redrilled injection wells at Coso and the Salton Sea geothermal fields, CA, were used to characterize the mineral and geochemical changes that occurred as a result of injection. The study documented the presence of mineral scales and at both fields in the reservoir rocks adjacent to the injection wells. At the Salton Sea, the scales consist of alternating layers of fluorite and barite, accompanied by minor anhydrite, amorphous silica and copper arsenic sulfides. Amorphous silica and traces of calcite were deposited at Coso. The formation of silica scale at Coso provides an example of the effects of untreated (unacidified) injectate on the reservoir rocks. Scanning electron microscopy and X-ray diffractometry were used to characterize the scale deposits. The silica scale in the reservoir rocks at Coso was initially deposited as spheres of opal-A 1-2 micrometers in diameter. As the deposits matured, the spheres coalesced to form larger spheres up to 10 micrometer in diameter. Further maturation and infilling of the spaces between spheres resulted in the formation of plates and sheets that substantially reduce the original porosity and permeability of the fractures. Peripheral to the silica deposits, fluid inclusions with high water/gas ratios provide a subtle record of interactions between the injectate and reservoir rocks. In contrast, fluid inclusions trapped prior to injection are relatively gas rich. These results suggest that the rocks undergo extensive microfracturing during injection and that the composition of the fluid inclusions will be biased toward the youngest event. Interactions between the reservoir rocks and injectate were modeled using the non-isothermal reactive geochemical transport code TOUGHREACT. Changes in fluid pH, fracture porosity, fracture permeability, fluid temperature, and mineral abundances were monitored. The simulations predict that amorphous silica will precipitate primarily within a few meters of the injection well and that mineral deposition will lead to rapid declines in fracture porosity and permeability, consistent with field observations. In support of Enhanced Geothermal System development, petrologic studies of Coso well 46A-19RD were conducted to determine the regions that are most likely to fail when stimulated. These studies indicate that the most intensely brecciated and altered rocks in the zone targeted for stimulation (below 10,000 ft (3048 m)) occur between 11,200 and 11,350 ft (3414 and 3459 m). This zone is interpreted as a shear zone that initially juxtaposed quartz diorite against granodiorite. Strong pervasive alteration and veining within the brecciated quartz diorite and granodiorite suggest this shear zone was permeable in the past. This zone of weakness was subsequently exploited by a granophyre dike whose top occurs at 11,350 ft (3459 m). The dike is unaltered. We anticipate, based on analysis of the well samples that failure during stimulation will most likely occur on this shear zone.

  17. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    EGS site (Nevada) were used for the modeling analysis. A five-spot well configuration in a twoPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University the thermal and hydraulic aspects of a CO2-EGS system look promising, major uncertainties remain with regard

  18. PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010

    E-Print Network [OSTI]

    Stanford University

    of uncertainty associated with expected bottomhole temperatures during cementing. Temperature modeling has shownPROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University properties, and crystalline-phase analysis are discussed. A discussion of this work and ongoing research

  19. PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010

    E-Print Network [OSTI]

    Stanford University

    PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University commercially exploited to date; there are still technical or economic barriers to exploiting the others dozen countries to date, but their distribution worldwide is limited. There are two basic classes

  20. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    -rock interactions, and changes in reservoir porosity. The properties of CO2-rich fluids are particularly relevant-CONFINED SUPERCRITICAL CO2 BY VIBRATING TUBE DENSIMETRY Miroslaw S. Gruszkiewicz1 , David J. Wesolowski1 and David R. INTRODUCTION Enhanced Geothermal Systems (EGS) using CO2 as the heat mining fluid Development of two

  1. PROCEEDINGS, Twenty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 28-30, 2002

    E-Print Network [OSTI]

    Boyer, Edmond

    and with magmatic CO2 emanations (minimum CO2 partial pressure estimated to 1 bar). Relative to a diluted sea water laterally from NW to SE at relatively low depths. No major evidence of a high temperature geothermal, 1984 and 1985 showed no major shallow evidences of the occurrence of an high temperature reservoir

  2. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    % capacity factor over a typical project life of 30 years; and (b) innovations in field management have led1 PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 FIFTY YEARS OF POWER GENERATION

  3. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    and the resource has been cooled by the 30 years of reinjection. The thermal breakthrough (Tb) is expected to occur are next to 30 years old. They would need to be restored or shut down for scaling and/or corrosion problemsPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University

  4. A History of Geothermal Energy Research and Development in the United States. Reservoir Engineering 1976-2006

    SciTech Connect (OSTI)

    Kennedy, B. Mack; Pruess, Karsten; Lippmann, Marcelo J.; Majer, Ernest L.; Rose, Peter E.; Adams, Michael; Roberston-Tait, Ann; Moller, Nancy; Weare, John; Clutter, Ted; Brown, Donald W.

    2010-09-01

    This report, the third in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in reservoir engineering and to make generation of electricity from geothermal resources more cost-competitive.

  5. Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hunt, Jonathan

    In enhanced geothermal systems (EGS) the reservoir permeability is often enhanced or created using hydraulic fracturing. In hydraulic fracturing, high fluid pressures are applied to confined zones in the subsurface usually using packers to fracture the host rock. This enhances rock permeability and therefore conductive heat transfer to the circulating geothermal fluid (e.g. water or supercritical carbon dioxide). The ultimate goal is to increase or improve the thermal energy production from the subsurface by either optimal designs of injection and production wells or by altering the fracture permeability to create different zones of circulation that can be exploited in geothermal heat extraction. Moreover, hydraulic fracturing can lead to the creation of undesirable short-circuits or fast flow-paths between the injection and extraction wells leading to a short thermal residence time, low heat recovery, and thus a short-life of the EGS. A potential remedy to these problems is to deploy a cementing (blocking, diverting) agent to minimize short-cuts and/or create new circulation cells for heat extraction. A potential diverting agent is the colloidal silica by-product that can be co-produced from geothermal fluids. Silica gels are abundant in various surface and subsurface applications, yet they have not been evaluated for EGS applications. In this study we are investigating the benefits of silica gel deployment on thermal response of an EGS, either by blocking short-circuiting undesirable pathways as a result of diverting the geofluid to other fractures; or creating, within fractures, new circulation cells for harvesting heat through newly active surface area contact. A significant advantage of colloidal silica is that it can be co-produced from geothermal fluids using an inexpensive membrane-based separation technology that was developed previously using DOE-GTP funding. This co-produced silica has properties that potentially make it useful as a fluid diversion agent for subsurface applications. Colloidal silica solutions exist as low-viscosity fluids during their “induction period” but then undergo a rapid increase in viscosity (gelation) to form a solid gel. The length of the induction period can be manipulated by varying the properties of the solution, such as silica concentration and colloid size. We believe it is possible to produce colloidal silica gels suitable for use as diverting agents for blocking undesirable fast-paths which result in short-circuiting the EGS once hydraulic fracturing has been deployed. In addition, the gels could be used in conventional geothermal fields to increase overall energy recovery by modifying flow.

  6. Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hunt, Jonathan

    2013-01-31

    In enhanced geothermal systems (EGS) the reservoir permeability is often enhanced or created using hydraulic fracturing. In hydraulic fracturing, high fluid pressures are applied to confined zones in the subsurface usually using packers to fracture the host rock. This enhances rock permeability and therefore conductive heat transfer to the circulating geothermal fluid (e.g. water or supercritical carbon dioxide). The ultimate goal is to increase or improve the thermal energy production from the subsurface by either optimal designs of injection and production wells or by altering the fracture permeability to create different zones of circulation that can be exploited in geothermal heat extraction. Moreover, hydraulic fracturing can lead to the creation of undesirable short-circuits or fast flow-paths between the injection and extraction wells leading to a short thermal residence time, low heat recovery, and thus a short-life of the EGS. A potential remedy to these problems is to deploy a cementing (blocking, diverting) agent to minimize short-cuts and/or create new circulation cells for heat extraction. A potential diverting agent is the colloidal silica by-product that can be co-produced from geothermal fluids. Silica gels are abundant in various surface and subsurface applications, yet they have not been evaluated for EGS applications. In this study we are investigating the benefits of silica gel deployment on thermal response of an EGS, either by blocking short-circuiting undesirable pathways as a result of diverting the geofluid to other fractures; or creating, within fractures, new circulation cells for harvesting heat through newly active surface area contact. A significant advantage of colloidal silica is that it can be co-produced from geothermal fluids using an inexpensive membrane-based separation technology that was developed previously using DOE-GTP funding. This co-produced silica has properties that potentially make it useful as a fluid diversion agent for subsurface applications. Colloidal silica solutions exist as low-viscosity fluids during their “induction period” but then undergo a rapid increase in viscosity (gelation) to form a solid gel. The length of the induction period can be manipulated by varying the properties of the solution, such as silica concentration and colloid size. We believe it is possible to produce colloidal silica gels suitable for use as diverting agents for blocking undesirable fast-paths which result in short-circuiting the EGS once hydraulic fracturing has been deployed. In addition, the gels could be used in conventional geothermal fields to increase overall energy recovery by modifying flow.

  7. Microhole arrays for improved heat mining from enhanced geothermal systems

    E-Print Network [OSTI]

    Finsterle, S.

    2014-01-01

    from enhanced geothermal systems. Transactions Geothermalapproach to enhanced geothermal systems. Transactionsof the enhanced geothermal system demonstration reservoir in

  8. National Geothermal Academy Underway at University of Nevada...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aspects of geothermal energy development and utilization. Modules include Geothermal Geology and Geochemistry, Geothermal Geophysics, Reservoir Engineering, and more. The...

  9. Tectonic controls on fracture permeability in a geothermal reservoir at Dixie Valley, Nevada

    SciTech Connect (OSTI)

    Hickman, S.; Zoback, M.

    1998-08-01

    To help determine the nature and origins of permeability variations within a fault-hosted geothermal reservoir at Dixie Valley, Nevada, the authors conducted borehole televiewer logging and hydraulic fracturing stress measurements in six wells drilled into the Stillwater fault zone at depths of 2--3 km. Televiewer logs from wells penetrating the highly permeable portion of the fault zone revealed extensive drilling-induced tensile fractures. As the Stillwater fault at this location dips S45{degree}E at {approximately} 53{degree} it is nearly at the optimal orientation for normal faulting in the current stress field. Hydraulic fracturing tests from these permeable wells show that the magnitude of S{sub hmin} is very low relative to the vertical stress S{sub v}. Similar measurements conducted in two wells penetrating a relatively impermeable segment of the Stillwater fault zone 8 and 20 km southwest of the producing geothermal reservoir indicate that the orientation of S{sub hmin} is S20{degree}E and S41{degree}E, respectively, with S{sub hmin}/S{sub v} ranging from 0.55--0.64 at depths of 1.9--2.2 km. This stress orientation is near optimal for normal faulting on the Stillwater fault in the northernmost non-producing well, but {approximately} 40{degree} rotated from the optimal orientation for normal faulting in the southernmost well. The observation that borehole breakouts were present in these nonproducing wells, but absent in wells drilled into the permeable main reservoir, indicates a significant increase in the magnitude of maximum horizontal principal stress, S{sub Hmax}, in going from the producing to non-producing segments of the fault. The increase in S{sub Hmaz}, coupled with elevated S{sub hmin}/S{sub v} values and a misorientation of the Stillwater fault zone with respect to the principal stress directions, leads to a decrease in the proximity of the fault zone to Coulomb failure. This suggests that a necessary condition for high reservoir permeability is that the Stillwater fault zone be critically stressed for frictional failure in the current stress field.

  10. Geothermal reservoir assessment, Roosevelt Hot Springs. Final report, October 1, 1977-June 30, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The geology, geophysics, and geothermal potential of the northern Mineral Mountains, located in Beaver and Millard Counties, Utah, are studied. More specifically, the commercial geothermal potential of lease holdings of the Geothermal Power Corporation is addressed.

  11. Fracture Permeability and in Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir

    SciTech Connect (OSTI)

    M. D. Zoback

    1999-03-08

    We have collected and analyzed fracture and fluid flow data from wells both within and outside the producing geothermal reservoir at Dixie Valley. Data from wellbore imaging and flow tests in wells outside the producing field that are not sufficiently hydraulically connected to the reservoir to be of commercial value provide both the necessary control group of fracture populations and an opportunity to test the concepts proposed in this study on a regional, whole-reservoir scale. Results of our analysis indicate that fracture zones with high measured permeabilities within the producing segment of the fault are parallel to the local trend of the Stillwater fault and are optimally oriented and critically stressed for frictional failure in the overall east-southeast extensional stress regime measured at the site. In contrast, in the non-producing (i.e., relatively impermeable:) well 66-21 the higher ratio of S{sub hmin} to S{sub v} acts to decrease the shear stress available to drive fault slip. Thus, although many of the fractures at this site (like the Stillwater fault itself) are optimally oriented for normal faulting they are not critically stressed for frictional failure. Although some of the fractures observed in the non-producing well 45-14 are critically stressed for frictional failure, the Stillwater fault zone itself is frictionally stable. Thus, the high horizontal differential stress (i.e., S{sub Hmax}-S{sub hmin}) together with the severe misorientation of the Stillwater fault zone for normal faulting at this location appear to dominate the overall potential for fluid flow.

  12. Microhole arrays for improved heat mining from enhanced geothermal systems

    E-Print Network [OSTI]

    Finsterle, S.

    2014-01-01

    lowers reservoir explo- ration, characterization costs. Oilthe characterization of the geothermal reservoir properties.

  13. An evaluation of the deep reservoir conditions of the Bacon-Manito geothermal field, Philippines using well gas chemistry

    SciTech Connect (OSTI)

    D'Amore, Franco; Maniquis-Buenviaje, Marinela; Solis, Ramonito P.

    1993-01-28

    Gas chemistry from 28 wells complement water chemistry and physical data in developing a reservoir model for the Bacon-Manito geothermal project (BMGP), Philippines. Reservoir temperature, THSH, and steam fraction, y, are calculated or extrapolated from the grid defined by the Fischer-Tropsch (FT) and H2-H2S (HSH) gas equilibria reactions. A correction is made for H2 that is lost due to preferential partitioning into the vapor phase and the reequilibration of H2S after steam loss.

  14. Session: Geopressured-Geothermal

    SciTech Connect (OSTI)

    Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

  15. HEAT AND MASS TRANSFER IN A FAULT-CONTROLLED GEOTHERMAL RESERVOIR CHARGED AT CONSTANT PRESSURE

    E-Print Network [OSTI]

    Goyal, K.P.

    2013-01-01

    from the natural geothermal gradient ~T /L A quantitativegradients in a fault-controlled liquid dominated geothermalgradients in the fault-aquifer system. DEVELOPMENT OF CONCEPTUAL MODEL Studies of liquid-dominated geothermal

  16. HEAT AND MASS TRANSFER IN A FAULT-CONTROLLED GEOTHERMAL RESERVOIR CHARGED AT CONSTANT PRESSURE

    E-Print Network [OSTI]

    Goyal, K.P.

    2013-01-01

    and borehole logging data is known, it is possible to calculate total fluid recharge rate to the geothermal

  17. Geothermal reservoir simulation to enhance confidence in predictions for nuclear waste disposal

    E-Print Network [OSTI]

    Kneafsey, Timothy J.; Pruess, Karsten; O'Sullivan, Michael J.; Bodvarsson, Gudmundur S.

    2002-01-01

    California The Mammoth geothermal field is a single–phase, liquid–dominated field with a 40 MW power plant.

  18. Numerical modeling of water injection into vapor-dominated geothermal reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01

    reaches the saturation temperature at prevailing reservoirsaturation profiles at different times in the top reservoir

  19. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    1 Stanford Geothermal Program Final Report July 1990 - June 1996 Stanford Geothermal Program. THE EFFECTS OF ADSORPTION ON VAPOR-DOMINATED GEOTHERMAL FIELDS.1 1.1 SUMMARY? ..............................................................................................2 1.4 ADSORPTION IN GEOTHERMAL RESERVOIRS ........................................................3

  20. PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010

    E-Print Network [OSTI]

    Stanford University

    recipients. The Australian Geothermal Energy Group (AGEG) has also seen significant changes and developments. Additionally the joint AGEG ­ Australian Geothermal Energy Association (AGEA) Geothermal Reporting Code Geothermal Energy Centre of Excellence at the University of Queensland, the Western Australian Geothermal

  1. Geothermal | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applying advanced materials to improve well construction technologies Development of harsh environment sensors for reservoir characterization DOE Geothermal Technologies Office...

  2. Geological Interpretation of Self-Potential Data from the Cerro Prieto Geothermal Field

    E-Print Network [OSTI]

    Corwin, R.F.

    2009-01-01

    study of samples from geothermal reservoirs: Riverside,study of samples from geothermal reservoirs: petrology andat the Cerro Prieto geothermal field, in Proceedings, First

  3. The Impact of Injection on Seismicity at The Geyses, California Geothermal Field

    E-Print Network [OSTI]

    Majer, Ernest L.; Peterson, John E.

    2008-01-01

    The Geysers, California, geothermal area, U.S. Geol. Surv.seismicity at The Geysers geothermal reservoir, Californiaseismic image of a geothermal reservoir: The Geysers,

  4. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    and Clay Swelling in a Fractured Geothermal Reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.the 5-km Deep Enhanced Geothermal Reservoir at Soultz-sous-

  5. Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir

    Broader source: Energy.gov [DOE]

    Project objectives: Joint inversion of geophysical data for ground water flow imaging; Reduced the cost in geothermal exploration and monitoring; & Combined passive and active geophysical methods.

  6. 3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary

    E-Print Network [OSTI]

    Majer, E.L.

    2003-01-01

    borehole methods developed in the petroleum industry the limitation for geothermaland borehole seismic methods (Vertical Seismic Profiling (VSP), Crosswell and Single Well) to locate and quantify geothermal

  7. Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity

    Broader source: Energy.gov [DOE]

    This project will develop a model for seismicity-based reservoir characterization (SBRC) by combining rock mechanics; finite element modeling; geo-statistical concepts to establish relationships between micro-seismicity; reservoir flow and geomechanical characteristics.

  8. GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA

    E-Print Network [OSTI]

    2009-01-01

    to assess their geothermal desalination program. The studyin the geothermal fluids for desalination and systemdesalination project includes mining the better-quality geothermal

  9. Geothermal Basics

    Broader source: Energy.gov [DOE]

    Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

  10. OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL RESERVOIRS CONSIDERING ADSORPTION governing the behavior of vapor- dominated geothermal reservoirs. These mechanisms affect both was to determine the most effective injection strategy once these two effects are considered. Geothermal reservoir

  11. Core Analysis for the Development and Constraint of Physical Models of Geothermal Reservoirs

    SciTech Connect (OSTI)

    Greg N. Boitnott

    2003-12-14

    Effective reservoir exploration, characterization, and engineering require a fundamental understanding of the geophysical properties of reservoir rocks and fracture systems. Even in the best of circumstances, spatial variability in porosity, fracture density, salinity, saturation, tectonic stress, fluid pressures, and lithology can all potentially produce and/or contribute to geophysical anomalies. As a result, serious uniqueness problems frequently occur when interpreting assumptions based on a knowledge base founded in validated rock physics models of reservoir material.

  12. Evaluation of potential geothermal reservoirs in central and western New York state. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    Computer processes geophysical well logs from central and western New York State were analyzed to evaluate the potential of subsurface formations as a source for low-temperature geothermal water. The analysis indicated that porous sandstone sections at the top of the Ordovician Theresa Formation and at the base of the Cambrian Potsdam Formation have the required depth, porosity, and permeability to act as a source for geothermal fluids over a relatively large area in the central part of the state. The fluid potential plus an advantageous geothermal gradient and the results of the test well drilled in the city of Auburn in Cayuga County suggest that low temperature geothermal energy may be a viable alternative to other more conventional forms of energy that are not indigenous to New York State.

  13. Evaluation of potential geothermal reservoirs in central and western New York State. Volume 3. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    Computer processed geophysical well logs from central and western New York State were analysed to evaluate the potential of subsurface formations as a source for low-temperature geothermal water. The analysis indicated that porous sandstone sections at the top of the Ordovician Theresa Formation and at the base of the Cambrian Potsdam Formation have the required depth, porosity, and permeability to act as a source for geothermal fluids over a relatively large area in the central part of the state. The fluid potential plus an advantageous geothermal gradient and the results of the test well drilled in the city of Auburn in Cayuga County suggest that low temperature geothermal energy may ba a viable alternative to other more conventional forms of energy that not indigenous to New York State.

  14. Imaging hydraulic fractures in a geothermal reservoir Bruce R. Julian,1,2

    E-Print Network [OSTI]

    Foulger, G. R.

    the 1980s to produce electric power. [3] In February and March of 2005 an "Enhanced Geothermal Systems that seismological techniques can provide information of high quality about hydraulic fractures that are of potential

  15. Numerical simulation to study the feasibility of using CO2 as a stimulation agent for enhanced geothermal systems

    E-Print Network [OSTI]

    Xu, T.

    2010-01-01

    stimulation of an enhanced geothermal system using a high pHTwenty-Ninth Workshop on Geothermal Reservoir Engineering,Calcite dissolution in geothermal reservoirs using chelants,

  16. Application of geochemical techniques to deduce the reservoir performance of the Palinpinon Geothermal Field, Philippines - an update

    SciTech Connect (OSTI)

    Ramos-Candelaria, M.N.; Garcia, S.E.; Hermoso, D.Z.

    1997-12-31

    Regular monitoring of various geochemical parameters in the water and vapor phases of the production wells at the Palinpinon I and II sectors of the Southern Negros Geothermal Field have been useful in the identification of the dominant reservoir processes occurring related to the present exploitation strategy. Observed geochemical and physical changes in the output of production wells have dictated production and injection strategies adopted to maximize production to meet the steam requirements of the power plant. Correlation of both physical and chemical data have identified the following reservoir processes: (1) Injection breakthrough via the Ticala Fault of the highly mineralized (Cl {approximately}8,000-10,500 mg/kg), isotopically enriched ({delta}{sup 18}O = -3.00{per_thousand}, {delta}{sup 2} H = -39{per_thousand}), and gas depleted brine for wells in the SW and central Puhagan. Injection breakthrough is also occurring in Palinpinon II and has resulted in temperature drops of 5-10{degrees}C.2. Pressure drawdown enhanced boiling in the liquid reservoir with steam separation of 220-240{degrees}C, feeding wells tapping the natural steam zone. However, enhanced drawdown has induced the entry of shallow acid steam condensate fluids in some wells (e.g. OK-7, PN-29D, PN-18D), which if not arrested could reduce production.

  17. Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk

    SciTech Connect (OSTI)

    Buscheck, T A; Chen, M; Sun, Y; Hao, Y; Elliot, T R

    2012-02-02

    We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine, which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.

  18. The Role of Cost Shared R&D in the Development of Geothermal Resources

    SciTech Connect (OSTI)

    None

    1995-03-16

    This U.S. Department of Energy Geothermal Program Review starts with two interesting pieces on industries outlook about market conditions. Dr. Allan Jelacics introductory talk includes the statistics on the impacts of the Industry Coupled Drilling Program (late-1970's) on geothermal power projects in Nevada and Utah (about 140 MWe of power stimulated). Most of the papers in these Proceedings are in a technical report format, with results. Sessions included: Exploration, The Geysers, Reservoir Engineering, Drilling, Energy Conversion (including demonstration of a BiPhase Turbine Separator), Energy Partnerships (including the Lake County effluent pipeline to The Geysers), and Technology Transfer (Biochemical processing of brines, modeling of chemistry, HDR, the OIT low-temperature assessment of collocation of resources with population, and geothermal heat pumps). There were no industry reviews at this meeting.

  19. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979

    SciTech Connect (OSTI)

    Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G. (comps.)

    1980-08-01

    The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

  20. Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

  1. 3D Magnetotelluic characterization of the Coso Geothermal Field

    E-Print Network [OSTI]

    Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

    2008-01-01

    130, 475-496. the Coso Geothermal Field, Proc.28 th Workshop on Geothermal Reservoir Engineering, Stanfords ratio and porosity at Coso geothermal area, California: J.

  2. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    which has potential for a geothermal sitting at the eastern flanks INTRODUCTION The geothermal energy), which is green geothermal area and as a lesson learned to apply in the similar area in order

  3. FRACTURE STIMULATION IN ENHANCED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY (Principal Advisor) #12;#12;v Abstract Enhanced Geothermal Systems (EGS) are geothermal reservoirs formed

  4. Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop reactive tracer method for monitoring thermal drawdown in enhanced geothermal systems.

  5. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  6. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    . While geomechanics in conventional reservoir simulator is often governed by change in pore addresses the modelling of the geomechanical effects induced by reservoir production and reinjection, the optimum production rate and the reservoir performance, reservoir geomechanics tries to capture rock

  7. EXPERIMENTAL VERIFICATION OF THE LOAD-FOLLOWING POTENTIAL OF A HOT DRY ROCK GEOTHERMAL RESERVOIR

    E-Print Network [OSTI]

    , the main component of the reservoir fluid storage arises from the elastic compression of the rock blocks Donald Brown Los Alamos National Laboratory Earth and Environmental Sciences Division Los Alamos, New that are mostly jacked open by fluid pressures that are well above the least principal earth stress. Therefore

  8. Field Studies of Geothermal Reservoirs: Rio Grande Rift, New Mexico | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello GeothermalFideris Inc formerly1-2003)EmidioMapping JumpEnergy

  9. Mise-A-La-Masse Mapping of the HGP-A Geothermal Reservoir, Hawaii | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005Minnehaha County,EnergyII Geothermal1980) | Open

  10. Geothermal Technologies Office 2015 Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | US DOE Geothermal Office eere.energy.gov Geothermal Technologies Office 2015 Peer Review Sustainability of Shear-Induced Permeability for EGS Reservoirs - A Laboratory...

  11. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

  12. Sensitivity of CO2 migration estimation on reservoir temperature and pressure uncertainty

    E-Print Network [OSTI]

    Jordan, Preston

    2009-01-01

    to hydrostatic and a geothermal gradient. a) b) Figure 1.Figure 2 shows the geothermal gradient plotted against theshown. Figure 2. Geothermal gradients from initial reservoir

  13. Permeability, electrical impedance, and acoustic velocities on reservoir rocks from the Geysers geothermal field

    SciTech Connect (OSTI)

    Boitnott, G.N.; Boyd, P.J.

    1996-01-24

    Previous measurements of acoustic velocities on NEGU- 17 cores indicate that saturation effects are significant enough to cause Vp/Vs anomalies observed in the field. In this study we report on the results of new measurements on core recently recovered from SB-15-D along with some additional measurements on the NEGU-17 cores. The measurements indicate correlations between mechanical, transport, and water storage properties of the matrix which may prove useful for reservoir assessment and management. The SB-15-D material is found to be similar to the NEGU-17 material in terms of acoustic velocities, being characterized by a notably weak pressure dependence on the velocities and a modest Vp/Vs signature of saturation. The effect of saturation on Vp/Vs appears to result in part from a chemo-mechanical weakening of the shear modulus due to the presence of water. Electrical properties of SB-15-D material are qualitatively similar to those of the NEGU-17 cores, although resistivities of SB-15-D cores are notably lower and dielectric permittivities higher than in their NEGU- 17 counterparts. While some limited correlations of measured properties with depth are noted, no clear change in character is observed within SB-15-D cores which can be associated with the proposed cap-rock/reservoir boundary.

  14. PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 -February 1, 2012

    E-Print Network [OSTI]

    Boyer, Edmond

    : Organic Rankine Cycle) with maximal installed net capacity of 1.5MWe (Figure 1). Several deep geothermal

  15. 120 GRC BULLETIN Reservoir Engineering

    E-Print Network [OSTI]

    Foulger, G. R.

    of The Geysers geothermal area. The production area is shaded grey. Red dots: seismometers with vertical sensors120 GRC BULLETIN Reservoir Engineering nergy production at geothermal areas causes physical changes Tool Use of Time-Dependent MEQ Tomography for Monitoring Producing Geothermal Reservoirs G. R. Foulger

  16. Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Sites at McGee Mountain, Nevada

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: To evaluate the cost-effectiveness of two innovative technologies in early-stage geothermal exploration:a) shallow (2m) survey; b) hydroprobe; and Identify a geothermal resource at the project site.

  17. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    are all directed at achieving the Australian Geothermal Energy Group's (AGEG) aspirational targets (the Australian Geothermal Energy Association, AGEA) and the AGEG is to see geothermal energy providing the lowest cost, emissions-free, renewable base load energy for centuries to come. This paper summarizes: (1

  18. Reservoir-Stimulation Optimization with Operational Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems Reservoir-Stimulation Optimization with Operational Monitoring for Creation...

  19. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production. Annual report, May 1, 1979-May 31, 1980

    SciTech Connect (OSTI)

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1980-07-01

    Differing extents of diagenetic modification is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the Upper and Lower Texas Gulf Coast. Detailed comparison of Frio sandstones from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. Vicksburg sandstones from the McAllen Ranch Field area are less stable, chemically and mechanically, than Frio sandstones from the Chocolate Bayou/Danbury dome area. Vicksburg sandstones are mineralogically immature and contain greater proportions of feldspars and rock fragments than do Frio sandstones. Thr reactive detrital assemblage of Vicksubrg sandstones is highly susceptible to diagenetic modification. Susceptibility is enhanced by higher than normal geothermal gradients in the McAllen Ranch Field area. Thus, consolidation of Vicksburg sandstones began at shallower depth of burial and precipitation of authigenic phases (especially calcite) was more pervasive than in Frio sandstones. Moreover, the late-stage episode of ferroan calcite precipitation that occluded most secondary porosity in Vicksburg sandstones did not occur significantly in Frio sandstones. Therefore, regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production.

  20. Surface water supply for the Clearlake, California Hot Dry Rock Geothermal Project

    SciTech Connect (OSTI)

    Jager, A.R.

    1996-03-01

    It is proposed to construct a demonstration Hot Dry Rock (HDR) geothermal plant in the vicinity of the City of Clearlake. An interim evaluation has been made of the availability of surface water to supply the plant. The evaluation has required consideration of the likely water consumption of such a plant. It has also required consideration of population, land, and water uses in the drainage basins adjacent to Clear Lake, where the HDR demonstration project is likely to be located. Five sources were identified that appear to be able to supply water of suitable quality in adequate quantity for initial filling of the reservoir, and on a continuing basis, as makeup for water losses during operation. Those sources are California Cities Water Company, a municipal supplier to the City of Clearlake; Clear Lake, controlled by Yolo County Flood Control and Water Conservation District; Borax Lake, controlled by a local developer; Southeast Regional Wastewater Treatment Plant, controlled by Lake County; and wells, ponds, and streams on private land. The evaluation involved the water uses, water rights, stream flows, precipitation, evaporation, a water balance, and water quality. In spite of California`s prolonged drought, the interim conclusion is that adequate water is available at a reasonable cost to supply the proposed HDR demonstration project.

  1. What is an Enhanced Geothermal System (EGS)? Fact Sheet

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-09-14

    This Geothermal Technologies Office fact sheet explains how engineered geothermal reservoirs called Enhanced Geothermal Systems are used to produce energy from geothermal resources that are otherwise not economical due to a lack of fluid and/or permeability.

  2. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    -mail: hector.carlos.pulido@pemex.com ABSTRACT Complex reservoir geometries can influence the results obtained

  3. Geothermal Literature Review At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems...

  4. THERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Seminario del Grupo de Hidrologìa Subterrànea - UPC, Barcelona #12;INTRODUCTION Enhanced geothermal systems Geothermal gradient ~ 33 °C/Km Hydraulic stimulation enhances fracture permeability (energyTHERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL RESERVOIR STIMULATIONRESERVOIR STIMULATION Silvia

  5. Stanford Geothermal Program Tnterdisciplinary Research

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Tnterdisciplinary Research in Engineering and Earth Sciences Stanford University Stanford, California A LABORATORY MODEL OF STWLATED GEOTHERMAL RESERVOIRS by A. Hunsbedt P. Kruger created by artificial stimulation of geothermal reservoirs has been con- structed. The model has been used

  6. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Stanford University

    of the geothermal heat-carriers began to be used for power generation. On the hydrothermal deposit in Turkey 10 % for 24 hours to

  7. DESCRIPTION OF THE THREE-DIMENSIONAL TWO-PHASE SIMULATOR SHAFT78 FOR USE IN GEOTHERMAL RESERVOIR STUDIES

    E-Print Network [OSTI]

    Pruess, K.

    2011-01-01

    reservoir of Table 4 with a uniform initial steam saturationa l reservoir with an initial l i q u i d saturation of 2%.u i d saturation a f t e r producing of t h e reservoir f l

  8. Final report of the Department of Energy Reservoir Definition Review Team for the Baca Geothermal Demonstration Project

    SciTech Connect (OSTI)

    Goldstein, N.E.; Holman, W.R.; Molloy, M.W. (eds.)

    1982-06-01

    The Baca project was terminated due to inability to find sufficient steam production to support the power plant. The following aspects of the project are discussed: regional geology; structure, stratigraphy, and permeability in the Redondo Creek; geophysics; geochemical indicators of reservoir conditions; drilling problems; fracture stimulation experiments; reservoir definition and conceptual model; and prediction of reservoir performance.

  9. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    AND LOW TEMPERATURE GEOTHERMAL RESOURCES Timothy Reinhardt1 , Lyle A. Johnson2 and Neil Popovich3 1 U the production of power from coproduced and low temperature geothermal resources. To this end, and through production technologies. These technologies produce electricity by leveraging existing oil and gas field

  10. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    , Stanford, California, January 31 - February 2, 2011 SGP-TR-191 GEOTHERMAL RESOURCES IN THE PACIFIC ISLANDS: THE POTENTIAL OF POWER GENERATION TO BENEFIT INDIGENOUS COMMUNITIES Alex J. McCoy-West1,2 , Sarah Milicich1 their untapped geothermal resources) for cost effective power production and direct-use applications. As part

  11. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Stanford University

    , Stanford, California, February 9-11, 2009 SGP-TR-187 DISTRICT HEATING MODELLING AND SIMULATION Lei Haiyan1 air pollution and save conventional energy, geothermal energy as a heat source for district heating. This paper describes the geothermal resource and district heating system in Tianjin. Heat load for one sample

  12. PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010

    E-Print Network [OSTI]

    Stanford University

    of geothermal energy in Turkey has focused mainly on district heating. The first of these systems came on line at the low-temperature Gönen field in 1987. During 1991-2006 period other 19 district heating systems were like to #12;Figure 1: Locations of major geothermal fields, district heating and

  13. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    and more been recognized by government and popular users. GHP district heating reached 18% of total meaning that GHP had very rapid growth but conventional geothermal district heating reduced its propotion Keyan Zheng1 Fang He2 1 Geothermal Council of China Energy Society 20 Da Hui Si Road, Haidian District

  14. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    geothermal resource in the US Gulf of Mexico region. In particular, geopressured sandstones near salt domes are potential sources of geothermal energy because salt diapirs with high thermal conductivity may pierce many low- grade geopressured systems subcommercial. These include a necessity to drill multiple wells

  15. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Stanford University

    ), water consumption, and land use from geothermal electricity generation than from traditional fossil-fuel-production activities allows us to more accurately assess and compare EGSs to fossil fuel-based electricity generators­based electricity generators. However, the environmental impacts from the construction of geothermal energy

  16. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Stanford University

    . MOL, Enex ehf. of Iceland and Vulcan Kft. (its owner is Green Rock Energy Ltd. of Australia EXPLORATION IN HUNGARY Attila Kujbus CEGE Central-European Geothermal Energy Production Plc. Infopark D of this fact, there are hardly any geothermal energy facilities in Hungary, and those few are operated

  17. PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010

    E-Print Network [OSTI]

    Stanford University

    , Stanford, California, February 1-3, 2010 SGP-TR-188 STRENGTH RETROGRESSION IN CEMENTS UNDER HIGH-TEMPERATURE designs for high-temperature geothermal applications have typically included 35 to 40% additional be inadequate to provide a high-strength, low-permeability cement at temperatures typical for geothermal

  18. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    -of-the-art electrolyte models, to gain insight into CO2-induced fluid-rock interactions for temperatures in the range 10 GEOTHERMAL SYSTEMS WITH CO2 AS HEAT TRANSFER FLUID John Apps and Karsten Pruess Earth Sciences Division to as an Enhanced Geothermal System with CO2 (EGSCO2). The concept has yet to be tested in the field

  19. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 34105 Stanford Geothermal, California SGP-TR-72 A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD BY John Forrest Dee June 1983 Financial support was provided through the Stanford Geothermal Program under Department

  20. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY Stanford Geothermal Program Interdisciplinary was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 heat sweep model for estimating energy recovery from fractured geothermal reservoirs based on early

  1. Numerical studies of fluid-rock interactions in Enhanced Geothermal Systems (EGS) with CO2 as working fluid

    E-Print Network [OSTI]

    Xu, Tianfu; Pruess, Karsten; Apps, John

    2008-01-01

    en Géothermie Profonde (Soultz-sous- Forêts, Bas Rhin,of the deep reservoir at Soultz-sous- Forêts, France,”chemical Modeling at the Soultz-sous-Forêts HDR Reservoir (

  2. Geothermal energy

    SciTech Connect (OSTI)

    Renner, J.L. [Idaho National Engineering Laboratory, Idaho Fall, ID (United States); Reed, M.J. [Dept. of Energy, Washington, DC (United States)

    1993-12-31

    Use of geothermal energy (heat from the earth) has a small impact on the environmental relative to other energy sources; avoiding the problems of acid rain and greenhouse emissions. Geothermal resources have been utilized for centuries. US electrical generation began at The Geysers, California in 1960 and is now about 2300 MW. The direct use of geothermal heat for industrial processes and space conditioning in the US is about 1700 MW of thermal energy. Electrical production occurs in the western US and direct uses are found throughout the US. Typical geothermal power plants produce less than 5% of the CO{sub 2} released by fossil plants. Geothermal plants can now be configured so that no gaseous emissions are released. Sulfurous gases are effectively removed by existing scrubber technology. Potentially hazardous elements produced in geothermal brines are injected back into the producing reservoir. Land use for geothermal wells, pipelines, and power plants is small compared to land use for other extractive energy sources like oil, gas, coal, and nuclear. Per megawatt produced, geothermal uses less than one eighth the land that is used by a typical coal mine and power plant system. Geothermal development sites often co-exist with agricultural land uses like crop production or grazing.

  3. Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Tracers to Characterize Fractures in Engineered Geothermal Systems Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs...

  4. Geothermal Direct-Use — Minimizing Land Use and Impact

    Office of Energy Efficiency and Renewable Energy (EERE)

    With geothermal direct-use applications, land use issues usually only arise during exploration and development when geothermal reservoirs are located in or near urbanized areas, critical habitat...

  5. Fracture Characterization in Enhanced Geothermal Systems by Wellbore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in Enhanced...

  6. BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL...

    Open Energy Info (EERE)

    to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A finite element model was developed for the fully...

  7. Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States

    SciTech Connect (OSTI)

    D. D. Blackwell; K. W. Wisian; M. C. Richards; J. L. Steele

    2000-04-01

    Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships between structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.

  8. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    Callahan1 , Will Osborn1 , Stephen Hickman2 and Nicholas Davatzes3 1 AltaRock Energy, 7900 E. Green Lake by AltaRock Energy (ARE) with participants from Newberry Geothermal, Davenport Power, Temple University

  9. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    to the relatively high abundance and reactivity of the main geothermal gases (CO2, H2S, H2 and to a lesser extent. This high-temperature field is part of the Hengill volcanic system, and is host to the largest geothermal for the concentrations of the major reactive gases (CO2, H2S, H2 and CH4). Aquifer chemical compositions were calculated

  10. PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 -February1, 2012

    E-Print Network [OSTI]

    Boyer, Edmond

    processes at the doublet scale. For the numerical simulations we used a 3D numerical block obtained of the reservoir to the injected fluid paths. MODEL DESCRIPTION In this study we carried out numerical simulations of reservoir characterization as they may have a significant impact on dynamic processes such as water flooding

  11. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 3, 2011

    E-Print Network [OSTI]

    Stanford University

    of numerical experiments have been carried out to study the impact of cold water injection on the reservoir of the reservoir rock. Generally, the strain-stress behavior of rocks in triaxial tests shows hardening and post that for granite permeability can increase by a factor of four. Other studies present different magnitudes

  12. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    be effectively used to image structures inside/around the seismically activated EGS reservoirs. In the multiplet and monitoring of EGS reservoirs. However, in practice, conventional seismic techniques, which have been mainly. Reflected waves are identified by evaluation of linearity of three dimensional motion of the seismic wave

  13. Geothermal energy abstract sets. Special report No. 14

    SciTech Connect (OSTI)

    Stone, C.

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  14. A Phase-Partitioning Model for CO2–Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems

    E-Print Network [OSTI]

    Spycher, Nicolas; Pruess, Karsten

    2010-01-01

    D.W. : A hot dry rock geothermal energy concept utilizingtwenty-?fth workshop on geothermal reservoir engineering,the development of enhanced geothermal systems? In: Paper

  15. Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01

    and Clay Swelling in a Fractured Geothermal Reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.Renewable Energy, Office of Geothermal Technologies, of the

  16. Validation of Geothermal Tracer Methods in Highly Constrained...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir...

  17. Verification of Geothermal Tracer Methods in Highly Constrained...

    Open Energy Info (EERE)

    wells, much of the reservoir is left untapped. Artificial tracers added to the injected water are used to estimate the potential for short circuiting in geothermal reservoirs,...

  18. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01

    and  saturation  determination  of  reservoir saturation  in  The  Geysers  rock.   In:  Proceedings  of  the  28th  Workshop  on  Geothermal  Reservoir 

  19. A History of Geothermal Energy Research and Development in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Engineering 1976-2006 A History of Geothermal Energy Research and Development in the United States: Reservoir Engineering 1976-2006 This report summarizes significant...

  20. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    point of view. INTRODUCTION Oil and gas resources are traditionally considered as high CO2 emissions to about 29-46 billion bbls of oil). Milliken (2007) reported that the geothermal resources at Naval TEMPERATURE DURING POWER GENERATION IN OIL FIELDS Bin Gong1 , Hongbin Liang2 , Shouliang Xin2 , and Kewen Li

  1. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    IN GEOTHERMAL SYSTEMS USING SMALL ANGLE NEUTRON SCATTERING (SANS) Lawrence M1 . Anovitz, Gernot Rother1 , David angle and ultra-small angle neutron scattering (SANS/USANS) are powerful tools to characterize the pore summary of neutron scattering techniques, and discuss the utility of neutron scattering (NS) for EGS

  2. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Stanford University

    Company, Salt Lake City, UT 84104 3 ORMAT Nevada Inc., Reno NV 89511 4 Schlumberger, Data and Consulting mineral grains, drilling induced fractures, and natural fractures. This paper describes selected geologic was drilled and then logged and analyzed using a multi-disciplinary approach to help evaluate the geothermal

  3. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Stanford University

    EXPLORATION DATA William Cumming Cumming Geoscience 4728 Shade Tree Lane Santa Rosa, CA, 95405, USA e. A common alternative approach to both targeting and assessment is to focus on a data anomaly or, in some conceptual models based on information from typical geothermal exploration data sets. A conceptual model

  4. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    , a floor deicing system was installed. This consists of a heating grid system placed in the floor emission from the oil burners, I recommended a geothermal solution for the floor and the roof heating.aniko@uni-miskolc.hu ABSTRACT The floor of the entrance tunnel to an underground waste deposit system in Hungary is exposed

  5. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010

    E-Print Network [OSTI]

    Stanford University

    fuel, geothermal energy is generally considered to be a benign energy source in regard to environmental characterized by two organisms: firstly, the photoautotrophic Cyanobacterium (blue-green microalgae), which represents the primary producers, using light as the energy source, gradually dominating the ecosystem

  6. PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010

    E-Print Network [OSTI]

    Stanford University

    and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 12,611 MWt and the annual energy use is 56,552 TJ or 15,709 GWh. The largest application is ground-source (geothermal) heat pumps (84% of the energy

  7. PROCEEDINGS, Thirty-Second Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 22-24, 2007

    E-Print Network [OSTI]

    Foulger, G. R.

    geothermal area, California, has produced hot water and steam for electricity generation for more than 20 microearthquakes occurred in the first 2 minutes. Accurate relative relocations and moment tensors for the best-recorded with industrial activities such as injection and production. Interpretation of moment tensors in terms of physical

  8. Tectonic & Structural Controls of Great Basin Geothermal Systems...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Characterizing Structural Controls of EGS Candidate and Conventional Geothermal Reservoirs in the Great Basin: Developing...

  9. Testing geopressured geothermal reservoirs in existing wells. Final report P. R. Girouard Well No. 1, Lafayette Parish, Louisiana. Volume I. Completion and testing

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The P.R. Girouard No. 1 Well, located approximately 10 miles southeast of Lafayette, Louisiana, was the fourth successful test of a geopressured-geothermal aquifer under the Wells of Opportunity program. The well was tested through 3-1/2 inch tubing set on a packer at 14,570 feet without major problems. The geological section tested was the Oligocene Marginulina Texana No. 1 sand of upper Frio age. The interval tested was from 14,744 to 14,819 feet. Produced water was piped down a disposal well perforated from 2870 to 3000 feet in a Miocene saltwater sand. Four flow tests were conducted for sustained production rates of approximately 4000 BWPD to approximately 15,000 BWPD. The highest achieved, during a fifth short test, was 18,460 BWPD. The test equipment was capable of handling higher rates. The gas-to-water ratio was relatively uniform at approximately 40 SCF/bbl. The heating value of the gas is 970 Btu/SCF. The reservoir tests show that is is doubtful that this well would sustain production rates over 10,000 BWPD for any lengthy period from the sand zone in which it was completed. This limited flow capacity is due to the well's poor location in the reservoir and is not a result of any production deficiencies of the Marginulina Texana sand.

  10. Appendix F - GPRA06 geothermal technologies program documentation

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The primary goal of the Geothermal Technologies Program is to reduce the cost of geothermal generation technologies, including both conventional and enhanced geothermal systems (EGS). EGS are defined as geothermal systems where the reservoir requires substantial engineering manipulation to make using the reservoir economically feasible.

  11. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-35 SECOND ANNUAL #12;INTRODUCTION The research e f f o r t of t h e Stanford Geothermal Program is focused on geothermal reservoir engineering. The major o b j e c t i v e of t h e protiram is t o develop techniques f o

  12. Stanford Geothermal Program Stanford University

    E-Print Network [OSTI]

    Stanford University

    s Stanford Geothermal Program Stanford University Stanford, California RADON MEASUEMENTS I N GEOTHERMAL SYSTEMS ? d by * ** Alan K. Stoker and Paul Kruger SGP-TR-4 January 1975 :: raw at Lcs Alams S c i and water, o i l and n a t u r a l gas wells. with radon i n geothermal reservoirs. Its presence i n

  13. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Final Report July 1996 - June 1999 Funded by the U.S. Department of Energy under grant number DE-FG07-95ID13370 Stanford Geothermal Program Department of Petroleum ....................................................................................................................6 2. THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS

  14. DOE-Funded Research at Stanford Sees Results in Reservoir Characteriza...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Systems (EGS). This research will help developers learn more about the fracture systems in geothermal reservoirs, so that they may better predict the results of...

  15. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Stanford University

    the efficiency of multi-parameter analysis of underground reservoirs hydrodynamics conditions (Finsterle, 2004; Kiryukhin et al., 2008). Inverse modeling analysis performed in this paper with iTOUGH2, a computer program statistical information about residuals, estimation uncertainties, and the ability to discriminate among model

  16. Evaluation Of Chemical Geothermometers For Calculating Reservoir...

    Open Energy Info (EERE)

    Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  17. Geothermal Today - 2001

    SciTech Connect (OSTI)

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  18. THE CONVERSION OF BIOMASS TO ETHANOL USING GEOTHERMAL ENERGY DERIVED FROM HOT DRY ROCK

    E-Print Network [OSTI]

    97505 THE CONVERSION OF BIOMASS TO ETHANOL USING GEOTHERMAL ENERGY DERIVED FROM HOT DRY ROCK of biomass to fuel ethanol is considerable. In addition, combining these two renewable energy resources of wedding an HDR geothermal power source to a biomass conversion process is flexibility, both in plant

  19. Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and...

  20. Role of Fluid Pressure in the Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01

    K. Enhanced Geothermal Systems (EGS) Using CO 2 as Workingand Fracture System of the EGS Soultz Reservoir (France)enhanced geothermal systems (EGS), heat transmission, CO 2

  1. Geothermal well log interpretation state of the art. Final report

    SciTech Connect (OSTI)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1980-01-01

    An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

  2. Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal...

    Open Energy Info (EERE)

    core section over a depth interval from 1420 to 2230 m: 97% of the macroscopic structures were successfully reorientated with a good degree of confidence by comparison...

  3. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems...

  4. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area ...

    Open Energy Info (EERE)

    respect to the caldera, to understand variations in gas compositions that occured during drilling and flow testing of the Valles scientific wells, and to compare Valles gases with...

  5. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    respect to the caldera, to understand variations in gas compositions that occured during drilling and flow testing of the Valles scientific wells, and to compare Valles gases with...

  6. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    from each core. Standard petrographic techniques were used to identify constituent minerals and to obtain modal analyses. The number of points counted varied from about 500 to...

  7. Development Wells At Fenton Hill HDR Geothermal Area (Dreesen...

    Open Energy Info (EERE)

    required to support a commercial power plant. Initial attempts to connect the two wells by hydraulic pressure-stimulation in 1982 were unsuccessful. Efforts to produce a...

  8. HDR Geothermal Energy: Important Lessons From Fenton Hill

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) AugustA. -71- Particulate: Columns 59 and

  9. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusComposite keys? Home|(Brookins

  10. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusComposite keys?

  11. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusComposite keys?(Grigsby, Et

  12. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusComposite keys?(Grigsby,

  13. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusComposite

  14. . Stanford Geothermal Program Interdisciplinary Research in

    E-Print Network [OSTI]

    Stanford University

    . Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California SGP-TR- 80 DEPLETION MODELING OF LIQUID DOMINATED GEOTHERMAL RESERVOIRS BY Gudmund 01sen June 1984 Financial support was provided through the Stanford Geothermal Program under

  15. SGP-TR-32 STANFORD GEOTHERMAL PROGRAM

    E-Print Network [OSTI]

    Stanford University

    SGP- TR- 32 STANFORD GEOTHERMAL PROGRAM PROGRESS REPORT NO. 7 t o U. S. DEPARTMENT OF ENERGY Recent Radon Transient Experiments Energy Recovery from Fracture-Stimulated Geothermal Reservoirs 1 2 l e c t i o n of Summary presentations prepared by t h e Stanford Geothermal Program s t a f f

  16. Stanford Geothermal Program Interdisciplinary Research in

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORTI UNIVERSITY Stanford, California SGP-TR-85 ANALYSIS OF THE STANFORD GEOTHERMAL RESERVOIR MODEL EXPERIMENTS was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459

  17. Stanford Geothermal Program Interdisciplinary Research in

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Departnent by water cir- culated in a " hot dry rock" geothermal reservoir will induce tensile thermal stresses i n

  18. Measurements of radon concentration in geothermal fluids at Cerro Prieto are evaluated with respect to spatial and temporal variations in reservoir thermodynamic conditions and

    E-Print Network [OSTI]

    Semprini, Lewis

    significantly suggesting an increase in the steam saturation in this part of the reservoir due to exploitation to spatial and temporal variations in reservoir thermodynamic conditions and the rock -- fluid mass ratio be attributed to the higher steam fraction in the reservoir fluid. Regression analysis of radon concentration

  19. Modeling brine-rock interactions in an enhanced geothermal system deep fractured reservoir at Soultz-Sous-Forets (France): a joint approach using two geochemical codes: frachem and toughreact

    E-Print Network [OSTI]

    Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz, Francois-D.; Pruess, Karsten.

    2006-01-01

    in enhanced geothermal systems (EGS). Proceedings 31 thmodeling for geothermal systems: predicting carbonate andTHC) processes in geothermal systems is complicated by

  20. Modeling brine-rock interactions in an enhanced geothermal system deep fractured reservoir at Soultz-Sous-Forets (France): a joint approach using two geochemical codes: frachem and toughreact

    E-Print Network [OSTI]

    Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz, Francois-D.; Pruess, Karsten.

    2006-01-01

    rock interactions in enhanced geothermal systems (EGS).the study of enhanced geothermal systems (EGS) to forecastrate, porosity, Enhanced Geothermal System (EGS), Soultz-

  1. Unique aspects of drilling and completing hot-dry-rock geothermal wells

    SciTech Connect (OSTI)

    Carden, R.S.; Nicholson, R.W.; Pettitt, R.A.; Rowley, J.C.

    1983-01-01

    Drilling operations at the Fenton Hill Hot Dry Rock (HDR) Geothermal Test Site have led to numerous developments needed to solve the problems caused by a very harsh downhole environment. A pair of deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures were in excess of 600/sup 0/F (300/sup 0/C). The wells were directionally drilled, inclined at 35/sup 0/, one above the other, in a direction orthogonal to the least principal stress field. The well site is near the flank of a young silicic composite volcano in the Jemez Mountains of northern New Mexico. The completion of this pair of wells is unique in reservoir development. The lower well was planned as a cold water injector which will be cooled by the introduced water from the static geothermal gradient to about 80/sup 0/F (25/sup 0/C). The upper well will be heated during production to over 500/sup 0/F (250/sup 0/C). The well pair is designed to perform as a closed loop heat-extraction system connected by hydraulic fractures with a vertical spacing of 1200 ft between the wells. These conditions strongly constrain the drilling technique, casing design, cement formulation, and cementing operations.

  2. Assessing geothermal energy potential in upstate New York. Final report

    SciTech Connect (OSTI)

    Hodge, D.S.

    1996-08-01

    The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

  3. A Simple, Fast Method of Estimating Fractured Reservoir Geometry...

    Open Energy Info (EERE)

    Fractured Reservoir Geometry from Tracer Tests Abstract A simple method of estimating flow geometry and pore geometry from conservative tracer tests in single phase geothermal...

  4. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Abstract Borehole televiewer, temperature, and flowmeter datarecorded in...

  5. Collection and Analysis of Reservoir Data from Testing and Operation...

    Open Energy Info (EERE)

    geothermal field. Intera used a 2-D simulator to predict temperatures, pressures over 30 years and movement of dissolved solids in the reservoir. Data collected during...

  6. Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01

    and Fracture System of the EGS Soultz Reservoir (France)Enhanced Geothermal Systems (EGS) Using CO 2 as Workingenhanced geothermal systems (EGS) concept that would use CO

  7. Geothermal program review 16: Proceedings. A strategic plan for geothermal research

    SciTech Connect (OSTI)

    1998-12-31

    The proceedings contain 21 papers arranged under the following topical sections: Exploration technology (4 papers); Reservoir technology (5 papers); Energy conversion technology (8 papers); Drilling technology (2 papers); and Direct use and geothermal heat pump technology (2 papers). An additional section contains a report on a workshop on dual-use technologies for hydrothermal and advanced geothermal reservoirs.

  8. Numerical simulation to study the feasibility of using CO2 as a stimulation agent for enhanced geothermal systems

    E-Print Network [OSTI]

    Xu, T.

    2010-01-01

    geothermal system (EGS) for commercial production is "reservoir stimulation," a process that involves injecting fluids under high pressure through boreholes

  9. Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...

  10. Geothermal development in the Pacific rim. Transactions, Volume 20

    SciTech Connect (OSTI)

    NONE

    1996-12-31

    This document entitled Geothermal Development in the Pacific Rim contains the Transactions, Volume 20 of the Geothermal Resources Council, 1996 Annual Meeting. Topics of the presentations include: Air quality assessment and mitigation, District heating and other direct-uses of geothermal energy, Environmental permitting in the Pacific Rim, Geothermal exploration strategies, tools and techniques, and Focus of IEA Geothermal programs. Geothermal resources and resource development in the USA, Indonesia, Mexico, Japan, and the Philippines are highlighted. Also included is a section on Geothermal power plant design, construction, and operation, and Geothermal reservoir assessment, the key to international financing.

  11. Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    purpose of this research activity was to determine the fluid and heat source, Identify flow paths, and evaluate the possibility of a more extensive deep geothermal reservoir...

  12. Structural Analysis of the Desert Peak-Brady Geothermal Fields...

    Open Energy Info (EERE)

    Nevada: Implications for Understanding Linkages Between Northeast-Trending Structures and Geothermal Reservoirs in the Humboldt Structural Zone Jump to: navigation,...

  13. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    regional heat flux around the hot springs and potentially identify the location of the geothermal reservoir feeding the hot springs Notes Eight thermal gradient boreholes were...

  14. Effectiveness of Shallow Temperatures Surveys to Target a Geothermal...

    Open Energy Info (EERE)

    Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Site at Mcgee Mountain, Nevada Jump to: navigation, search OpenEI Reference...

  15. A History of Geothermal Energy Research and Development in the...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy (DOE) over 30 years to overcome challenges in reservoir engineering and to make generation of electricity from geothermal resources more cost-competitive....

  16. Characterization Of Fracture Patterns In The Geysers Geothermal...

    Open Energy Info (EERE)

    Characterization Of Fracture Patterns In The Geysers Geothermal Reservoir By Shear-Wave Splitting Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  17. Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and Fracture/Heat Transfer Surface Area in Geothermal Reservoirs

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Project Summary. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate quantitative characterization of temperature distributions and surface area available for heat transfer in EGS.

  18. Geothermal Permeability Enhancement - Final Report

    SciTech Connect (OSTI)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  19. Modeling brine-rock interactions in an enhanced geothermal system deep fractured reservoir at Soultz-Sous-Forets (France): a joint approach using two geochemical codes: frachem and toughreact

    E-Print Network [OSTI]

    Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz, Francois-D.; Pruess, Karsten.

    2006-01-01

    an initial reservoir fluid composition reflecting saturationfluid saturation with respect to calcite in the reservoir.

  20. Numerical Investigation of Fractured Reservoir Response to Injection/Extraction Using a Fully Coupled Displacement Discontinuity Method 

    E-Print Network [OSTI]

    Lee, Byungtark

    2011-10-21

    In geothermal reservoirs and unconventional gas reservoirs with very low matrix permeability, fractures are the main routes of fluid flow and heat transport, so the fracture permeability change is important. In fact, reservoir development under...

  1. GPFA-AB_Phase1ReservoirTask2DataUpload

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Teresa E. Jordan

    2015-10-22

    This submission to the Geothermal Data Repository (GDR) node of the National Geothermal Data System (NGDS) in support of Phase 1 Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin. The files included in this zip file contain all data pertinent to the methods and results of this task’s output, which is a cohesive multi-state map of all known potential geothermal reservoirs in our region, ranked by their potential favorability. Favorability is quantified using a new metric, Reservoir Productivity Index, as explained in the Reservoirs Methodology Memo (included in zip file). Shapefile and images of the Reservoir Productivity and Reservoir Uncertainty are included as well.

  2. G. M. Koelemay well No. 1, Jefferson County, Texas. Volume I. Completion and testing: testing geopressured geothermal reservoirs in existing wells. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The acquisition, completion, and testing of a geopressured-geothermal well are described. The following are covered: geology; petrophysics; re-entry and completion operations - test well; drilling and completion operations - disposal well; test objectives; surface testing facilities; pre-test operations; test sequence; test results and analysis; and return of wells and location to operator. (MHR)

  3. Geothermal energy production with supercritical fluids

    DOE Patents [OSTI]

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  4. Modeling brine-rock interactions in an enhanced geothermal system deep fractured reservoir at Soultz-Sous-Forets (France): a joint approach using two geochemical codes: frachem and toughreact

    E-Print Network [OSTI]

    Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz, Francois-D.; Pruess, Karsten.

    2006-01-01

    geothermal systems (EGS). Proceedings 31 th Workshop onenhanced geothermal systems (EGS) to forecast the long-termdeveloped to investigate EGS, were applied to model the same

  5. Experimental Study of Water Vapor Adsorption on Geothermal

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-148 Experimental Study of Water Vapor Adsorption on Geothermal Reservoir Rocks Shubo Shang Geothermal Program under Department of Energy Grant No. DE-FG07-90IDI2934,and by the Department of Petroleum Engineering, Stanford University Stanford Geothermal Program Interdisciplinary Research in Engineering

  6. NPIP: A skew line needle configuration optimization system for HDR brachytherapy

    E-Print Network [OSTI]

    Goldberg, Ken

    NPIP: A skew line needle configuration optimization system for HDR brachytherapy Timmy Siauwa) brachytherapy and needle planning by integer program (NPIP), a computational method for generat- ing needles than the current HDR brachytherapy workflow. Combined with robot assisted brachytherapy

  7. Hot Dry Rock Geothermal Energy Development in the USA David Duchane and Donald Brown

    E-Print Network [OSTI]

    1 Hot Dry Rock Geothermal Energy Development in the USA by David Duchane and Donald Brown Los of the world's store of geothermal energy. The real potential for growth in the use of geothermal energy lies-engineered geothermal reservoir in hot, crystalline rock by the application of hydraulic fracturing techniques

  8. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  9. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  10. Geothermal Literature Review At Fenton Hill HDR Geothermal Area (Goff &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore Technologies Inc JumpFacilityInformation

  11. Optimization of HDR brachytherapy dose distributions using linear programming with penalty costs

    E-Print Network [OSTI]

    Alterovitz, Ron

    Optimization of HDR brachytherapy dose distributions using linear programming with penalty costs-dose-rate HDR brachytherapy, a type of radio- therapy in which a radioactive source is guided through catheters each year,1 is increasingly treated with high-dose-rate HDR brachytherapy, a medical procedure in which

  12. Brachytherapy Anatomy-based inverse planning dose optimization in HDR prostate

    E-Print Network [OSTI]

    Pouliot, Jean

    Brachytherapy Anatomy-based inverse planning dose optimization in HDR prostate implant: A toxicity-planned HDR brachytherapy is a viable option to deliver higher dose to the prostate as a boost without; HDR brachytherapy; Inverse planning; Simulated annealing; Toxicity Worldwide, more than 650,000 men

  13. Geothermal Energy Association Recognizes the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  14. Thermo-Poroelastic Modeling of Reservoir Stimulation and Microseismicity Using Finite Element Method with Damage Mechanics 

    E-Print Network [OSTI]

    Lee, Sang Hoon

    2012-02-14

    Stress and permeability variations around a wellbore and in the reservoir are of much interest in petroleum and geothermal reservoir development. Water injection causes significant changes in pore pressure, temperature, ...

  15. Hot dry rock geothermal energy. Draft final report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This second EPRI workshop on hot dry rock (HDR) geothermal energy, held in May 1994, focused on the status of worldwide HDR research and development and used that status review as the starting point for discussions of what could and should be done next: by U.S. federal government, by U.S. industry, by U.S. state governments, and by international organizations or through international agreements. The papers presented and the discussion that took place indicate that there is a community of researchers and industrial partners that could join forces, with government support, to begin a new effort on hot dry rock geothermal development. This new heat mining effort would start with site selection and confirmatory studies, done concurrently. The confirmatory studies would test past evaluations against the most current results (from the U.S. site at Fenton Hill, New Mexico, and from the two sites in Japan, the one in Russia, and the two in western Europe) and the best models of relevant physical and economic aspects. Site selection would be done in the light of the confirmatory studies and would be influenced by the need to find a site where success is probable and which is representative enough of other sites so that its success would imply good prospects for success at numerous other sites. The test of success would be circulation between a pair of wells, or more wells, in a way that confirmed, with the help of flow modeling, that a multi-well system would yield temperatures, flows and lifetimes that support economically feasible power generation. The flow modeling would have to have previously achieved its own confirmation from relevant data taken from both heat mining and conventional hydrothermal geothermal experience. There may be very relevant experience from the enhancement of ''hot wet rock'' sites, i.e., sites where hydrothermal reservoirs lack, or have come to lack, enough natural water or steam and are helped by water injected cold and produced hot. The new site would have to be selected in parallel with the confirmatory studies because it would have to be modeled as part of the studies and because its similarity to other candidate sites must be known well enough to assure that results at the selected site are relevant to many others. Also, the industry partners in the joint effort at the new site must be part of the confirmatory studies, because they must be convinced of the economic feasibility. This meeting may have brought together the core of people who can make such a joint effort take place. EPRI sponsored the organization of this meeting in order to provide utilities with an update on the prospects for power generation via heat mining. Although the emerging rules for electric utilities competing in power generation make it very unlikely that the rate-payers of any one utility (or small group of utilities) can pay the differential to support this new heat mining research and development effort, the community represented at this meeting may be able to make the case for national or international support of a new heat mining effort, based on the potential size and economics of this resource as a benefit for the nation as a whole and as a contribution to reduced emissions of fossil CO{sub 2} worldwide.

  16. An Integrated Model For The Geothermal Field Of Milos From Geophysical...

    Open Energy Info (EERE)

    considered. The combination of these data with earlier studies on the geology and geophysics of Milos allow the compilation of a possible model of the geothermal reservoir and...

  17. GEOTHERMAL A N D HEAVY-OIL RESOURCES I N TEXAS TOPICAL REPORT

    Office of Scientific and Technical Information (OSTI)

    about the size and productivity of individual geothermal reservoirs, low prices for natural gas, flat demand for electricity, higher rate of return from competing energy...

  18. Geothermal Case Studies

    SciTech Connect (OSTI)

    Young, Katherine

    2014-09-30

    The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  19. Fenton Hill Hdr Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello Geothermal PowerGuidelines | OpenFediRenewableFenton Hill

  20. THE LEAD AND COPPER RULE Anne Sandvig, HDR-EES

    E-Print Network [OSTI]

    Maynard, J. Barry

    THE LEAD AND COPPER RULE Anne Sandvig, HDR-EES 2008 Historical Background The 1986 Safe Drinking Water Act required the use of "lead-free" pipes, solders, pipe fittings or plumbing fixtures in the 1986 Amendment and were required to meet "voluntary standards." The term "lead-free" was defined

  1. development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    field Leyte, Philippines. Report on exploration and development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL FIELD; GEOTHERMAL EXPLORATION; GEOTHERMAL POWER...

  2. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Farhar, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  3. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  4. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Witcher, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  5. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Sammel, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  6. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  7. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Callender, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  8. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  9. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  10. Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project will provide the first ever formal evaluation of fracture and fracture flow evolution in an EGS reservoir following a hydraulic stimulation.

  11. Neutron imaging for geothermal energy systems

    SciTech Connect (OSTI)

    Bingham, Philip R; Anovitz, Lawrence {Larry} M; Polsky, Yarom

    2013-01-01

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  12. Hot dry rock energy: Hot dry rock geothermal development program. Progress report. Fiscal year 1993

    SciTech Connect (OSTI)

    Salazar, J.; Brown, M. [eds.

    1995-03-01

    Extended flow testing at the Fenton Hill Hot Dry Rock (HDR) test facility concluded in Fiscal Year 1993 with the completion of Phase 2 of the long-term flow test (LTFT) program. As is reported in detail in this report, the second phase of the LTFT, although only 55 days in duration, confirmed in every way the encouraging test results of the 112-day Phase I LTFT carried out in Fiscal Year 1992. Interim flow testing was conducted early in FY 1993 during the period between the two LTFT segments. In addition, two brief tests involving operation of the reservoir on a cyclic schedule were run at the end of the Phase 2 LTFT. These interim and cyclic tests provided an opportunity to conduct evaluations and field demonstrations of several reservoir engineering concepts that can now be applied to significantly increase the productivity of HDR systems. The Fenton Hill HDR test facility was shut down and brought into standby status during the last part of FY 1993. Unfortunately, the world`s largest, deepest, and most productive HDR reservoir has gone essentially unused since that time.

  13. Geothermal initiatives in Central America

    SciTech Connect (OSTI)

    Hanold, R.J.; Loose, V.W.; Laughlin, A.W.; Wade, P.E.

    1986-01-01

    The US Agency for International Development is supporting a new project in energy and resources exploitation for Central America. One of the largest components of the project involves exploration and reservoir development investigations directed at enhancing the production of electricity from the region's geothermal resources. An assessment of the geothermal resources of Honduras is in progress, and interesting geothermal regions in the Guanacaste Province of Costa Rica are being explored. Well-logging activities are in progress in the production wells at the Miravalles geothermal field in Costa Rica, and preparations are being made for logging critical wells at Ahuachapan in El Salvador. A self-contained logging truck, complete with high-temperature logging cable and logging tools designed for geothermal service, is being fabricated and will be made available for dedicated use throughout Central America. Geochemical and isotopic analyses of water samples collected in Panama are being evaluated to select a high-priority geothermal site in that country. Application of low- and medium-enthalpy geothermal fluids for industrial and agricultural processes is being investigated in Guatemala.

  14. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect (OSTI)

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  15. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect (OSTI)

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  16. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Broader source: Energy.gov (indexed) [DOE]

    by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013. stanford2013hollett.pdf More Documents & Publications Geothermal...

  17. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Fiscal Year...

  18. Geothermal Energy Research and Development Program; Project Summaries

    SciTech Connect (OSTI)

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  19. DOE Offers Loan Guarantees to Geothermal Projects in Nevada and...

    Broader source: Energy.gov (indexed) [DOE]

    Act. Geothermal power plants generally draw on underground reservoirs of hot water or steam, using that energy to drive a turbine, which spins a generator to produce power. For...

  20. Harsh Environment Silicon Carbide Sensor Technology for Geothermal Instrumentation

    Broader source: Energy.gov [DOE]

    Project objectives: Develop advanced sensor technology for the direct monitoring of geothermal reservoirs. Engineer sensors to survive and operate in H2O pressures up to 220 bar and temperatures as high as 374o C.

  1. Quantum Dot Tracers for Use in Engineered Geothermal Systems

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: To develop and demonstrate a new class of tracers?semiconductor nanoparticles(quantum dots)?that offer great promise for use in characterizing fracture networks in EGS reservoirs.

  2. Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal...

    Open Energy Info (EERE)

    Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Seismic Mapping Of The...

  3. Small geothermal electric systems for remote powering

    SciTech Connect (OSTI)

    Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

    1994-08-08

    This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

  4. Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015

    E-Print Network [OSTI]

    Foulger, G. R.

    Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 1 TOMO4D: Temporal Changes in Reservoir Structure at Geothermal Areas Bruce R. Julian1 , Gillian R. Foulger1 , Andrew.r.foulger@durham.ac.uk najwa.mhanna@durham.ac.uk 2 Geothermal Program Office, China Lake, CA 93555 andrew

  5. Near-Surface Microearthquakes at The Geysers Geothermal Field, California James T. Rutledge

    E-Print Network [OSTI]

    to permeability in geothermal reservoirs, the ability to map them at large distance from boreholes has direct-1- Near-Surface Microearthquakes at The Geysers Geothermal Field, California James T. Rutledge# 00-1554 Keywords: Induced seismicity, microearthquake, wellbore deformation, geothermal #12;Near

  6. Stanford Geothermal Program Interd is c i p l inary Research

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Interd is c i p l inary Research i n Engineering and Earth Sciences Stanford University Stanford, C a l i f o r n i a LABORATORY STUDIES OF STIMULATED GEOTHERMAL RESERVOIRS.E geothermal energy from artificially stimu- lated systems by in-place flashing was studied experimentally

  7. European Geothermal Congress 2013 Pisa, Italy, 3-7 June 2013

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    European Geothermal Congress 2013 Pisa, Italy, 3-7 June 2013 1 Relative chronology of deep Rhine Graben, the deep geothermal reservoirs constitute fractured dominated systems. However constitute recharge drain. 1. INTRODUCTION In France, the geothermal heating production is mainly located

  8. IPIP: A new approach to inverse planning for HDR brachytherapy by directly optimizing dosimetric indices

    E-Print Network [OSTI]

    Goldberg, Ken

    IPIP: A new approach to inverse planning for HDR brachytherapy by directly optimizing dosimetric; published 22 June 2011) Purpose: Many planning methods for high dose rate (HDR) brachytherapy require brachytherapy by directly optimizing the dose distribution based on dosimetric criteria. Methods: The authors

  9. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  10. Geopressured geothermal bibliography. Volume I. Citation extracts. Second edition

    SciTech Connect (OSTI)

    Sepehrnoori, K.; Carter, F.; Schneider, R.; Street, S.; McGill, K.

    1983-05-01

    This annoted bibliography contains 1131 citations. It represents reports, papers, and articles appearing over the past eighteen years covering topics from the scientific and technical aspects of geopressured geothermal reservoirs to the social, environmental, and legal considerations of exploiting those reservoirs for their energy resources. Six indexes include: author, conference title, descriptor, journal title, report number, and sponsor. (MHR)

  11. Numerical simulation study of silica and calcite dissolution around a geothermal well by injecting high pH solutions with chelating agent.

    E-Print Network [OSTI]

    Xu, Tianfu

    2009-01-01

    at the Desert Peak east EGS area, Nevada, In Proceedings ofthe Enhanced Geothermal System (EGS) site at Desert Peak (chemical stimulation of an EGS reservoir. A general kinetic

  12. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  13. Federal Geothermal Research Program Update Fiscal Year 1998

    SciTech Connect (OSTI)

    Keller, J.G.

    1999-05-01

    This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

  14. Pueblo of Jemez Geothermal Feasibility Study Fianl Report

    SciTech Connect (OSTI)

    S.A. Kelley; N. Rogers; S. Sandberg; J. Witcher; J. Whittier

    2005-03-31

    This project assessed the feasibility of developing geothermal energy on the Pueblo of Jemez, with particular attention to the Red Rocks area. Geologic mapping of the Red Rocks area was done at a scale of 1:6000 and geophysical surveys identified a potential drilling target at a depth of 420 feet. The most feasible business identified to use geothermal energy on the reservation was a greenhouse growing culinary and medicinal herbs. Space heating and a spa were identified as two other likely uses of geothermal energy at Jemez Pueblo. Further geophysical surveys are needed to identify the depth to the Madera Limestone, the most likely host for a major geothermal reservoir.

  15. Geothermal research at the Puna Facility

    SciTech Connect (OSTI)

    Chen, B.

    1987-06-01

    This report consists of two research papers: (1) Isotopic and Mineralogical Analyses of Samples from the HGP-A Well; (2) Report on Kapoho Geothermal Reservoir Study at the Puna Facility. These papers contain results of recent research and outline future activities.

  16. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association hosts its annual National Geothermal Summit in Reno, Nevada, June 3-4, 2015.

  17. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    for effective energy yields hydraulic fracturlng or ex .tohydraulic fracture that can cracks, and (2) the development ductivity and longevity o rsion of mass, momentum, and energy;

  18. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    J. Jr. "Wellbore Heat Transmission." JowlnaZ of PetroZewnt o wellbore heat- transmission. The solution permits

  19. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    M. and Abe, H. Shape by Hydraulic Fracturing s e r v o i rprinciples involved i n hydraulic fracturing are out1 ined.crack during hydraulic fracturing has been investigated. I t

  20. ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Zais, E.J.; Bodvarsson, G.

    2008-01-01

    3&0.OQ t~~~ ~:g~g ~: g8~ g:88~ 8: 8g 8:ggX _. --. ---l-120"-00£+ O~ 2 • 12-04-0G-O~+G8 2.0500000E+Oo -1. 3106622E+1.1,h414t3E+Q8 1.G.. 321'o3E+G8 1.00,+9266E+08 1.07691,+3E+

  1. GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79

    E-Print Network [OSTI]

    Pruess, Karsten

    2012-01-01

    into two-phase and superheated steam zones, respectively 2-transitions from superheated steam SIMULATION OF SERRAZZANOinitially filled with superheated steam at T = 250 °C,

  2. Modeling of Geothermal Reservoirs: Fundamental Processes, Computer

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectric Coop,Mithril

  3. PROCEEDINGS SECOND WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLEDSpeeding accessSpeedingPATENTS- 05 - - A75 I30518 18

  4. PROCEEDINGS SIXTEENTH WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLEDSpeeding accessSpeedingPATENTS- 05 - - A75 I30518

  5. PROCEEDINGS THIRD WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLEDSpeeding accessSpeedingPATENTS- 05 - - A75 I30518THIRD

  6. Blackfoot Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLCMichigan:Earth,DrillingBlackLight

  7. Blackfoot Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility JumpII JumpBlackfeet Nation Wind

  8. Federal Geothermal Research Program Update Fiscal Year 2000

    SciTech Connect (OSTI)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  9. Geothermal resources of Montana

    SciTech Connect (OSTI)

    Metesh, J.

    1994-06-01

    The Montana Bureau of Mines and Geology has updated its inventory of low and moderate temperature resources for the state and has assisted the Oregon Institute of Technology - GeoHeat Center and the University of Utah Research Institute in prioritizing and collocating important geothermal resource areas. The database compiled for this assessment contains information on location, flow, water chemistry, and estimated reservoir temperatures for 267 geothermal well and springs in Montana. For this assessment, the minimum temperature for low-temperature resource is defined as 10{degree} C above the mean annual air temperature at the surface. The maximum temperature for a moderate-temperature resource is defined as greater than 50{degree} C. Approximately 12% of the wells and springs in the database have temperatures above 50{degree} C, 17% are between 30{degree} and 50{degree} C, 29% are between 20{degree} and 30{degree}C, and 42% are between 10{degree} and 20{degree} C. Low and moderate temperature wells and springs can be found in nearly all areas of Montana, but most are in the western third of the state. Information sources for the current database include the MBMG Ground Water Information Center, the USGS statewide database, the USGS GEOTHERM database, and new information collected as part of this program. Five areas of Montana were identified for consideration in future investigations of geothermal development. The areas identified are those near Bozeman, Ennis, Butte, Boulder, and Camas Prairie. These areas were chosen based on the potential of the resource and its proximity to population centers.

  10. Time lapse HDR: time lapse photography with high dynamic range images 

    E-Print Network [OSTI]

    Clark, Brian Sean

    2005-08-29

    for assembling HDR images. Greg Ward, creator of the Radiance software package, released soft- 21 ware called Photosphere that also assembles HDR images from multiple exposures. He also released a command line utility called hdrgen, which I found to be the most... utilities or commercial software packages such as Adobe?s After Effects. 31 CHAPTER IV IMPLEMENTATION This is the story of my process to assemble the tools to create a pipeline for creating sequences of HDR images and bringing them back into LDR, and then my...

  11. Geopressured geothermal bibliography. Volume 1 (citation extracts)

    SciTech Connect (OSTI)

    Hill, T.R.; Sepehrnoori, K.

    1981-08-01

    This bibliography was compiled by the Center for Energy Studies at The University of Texas at Austin to serve as a tool for researchers in the field of geopressured geothermal energy resources. The bibliography represents citations of papers on geopressured geothermal energy resources over the past eighteen years. Topics covered in the bibliography range from the technical aspects of geopressured geothermal reservoirs to social, environmental, and legal aspects of tapping those reservoirs for their energy resources. The bibliography currently contains more than 750 entries. For quick reference to a given topic, the citations are indexed into five divisions: author, category, conference title, descriptor, and sponsor. These indexes are arranged alphabetically and cross-referenced by page number.

  12. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Stone, Et Al., 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  13. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  14. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Dahal, Et Al., 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  15. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Elston, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  16. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  17. National Geothermal Data System - DOE Geothermal Data Repository...

    Energy Savers [EERE]

    - DOE Geothermal Data Repository Presentation National Geothermal Data System - DOE Geothermal Data Repository Presentation Overview of the National Geothermal Data System (NGDS)...

  18. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Clemons, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  19. track 3: enhanced geothermal systems (EGS) | geothermal 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: enhanced geothermal systems (EGS) | geothermal 2015 peer review track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review EGS technologies utilize directional...

  20. Geothermal Data Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

  1. Summary of Recent Flow Testing of the Fenton Hill HDR Reservoir | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergy Information Recent Flow Testing of the Fenton

  2. Iceland Geothermal Conference 2013 - Geothermal Policies and...

    Broader source: Energy.gov (indexed) [DOE]

    Iceland Geothermal Conference presentation on March 7, 2013 by Chief Engineer Jay Nathwani of the U.S. Department of Energys Geothermal Technologies Office. icelandgeothermalco...

  3. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Geothermal Technologies Program presentation at the SMU Geothermal Conference in June 2011. gtpsmuconferencereinhardt2011.pdf More Documents & Publications Low Temperature...

  4. Geothermal Energy Association Recognizes the National Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Development and Demonstration Projects for up to 78 Million to Promote Enhanced Geothermal Systems Geothermal energy, traditionally a baseload power source among renewables,...

  5. Geothermal direct use engineering and design guidebook

    SciTech Connect (OSTI)

    Lienau, P.J.; Lunis, B.C.

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  6. Geothermal direct use engineering and design guidebook

    SciTech Connect (OSTI)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  7. Geothermal Technologies Program Overview Presentation at Stanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

  8. Sandia Energy - Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Energy & Drilling Technology Home Stationary Power Energy Conversion Efficiency Geothermal Geothermal Energy & Drilling Technology Geothermal Energy & Drilling...

  9. Economics of Developing Hot Stratigraphic Reservoirs

    SciTech Connect (OSTI)

    Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore

    2014-09-01

    Stratigraphic geothermal reservoirs at 3 – 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200°C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

  10. Well Log Data At Fenton Hill HDR Geothermal Area (Dreesen, Et Al., 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources Jump to:Search Your Data SearchEnergyOpen Energy

  11. Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History ViewInformation

  12. Tracer Testing At Fenton Hill HDR Geothermal Area (Callahan, 1996) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy FacilitiesInformationTown700 Jump(Klein,Energy

  13. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff & Janik,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for theSunLanSuperDrive IncCity, New Jersey:2002) |

  14. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for theSunLanSuperDrive IncCity, New Jersey:2002)

  15. Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1994) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport Jump to:Flanders,Information85-1986) Jump

  16. Development Wells At Fenton Hill HDR Geothermal Area (Dreesen, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi:DeltaFishDesertDetroitSolarSurveyOpen1987) |

  17. Micro-Earthquake At Fenton Hill HDR Geothermal Area (Brown, 2009) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPRO isMickey Hot Springs5) Jump to:

  18. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Brown &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectricInformation Walker,2010)DuTeaux,

  19. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Goff &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectricInformation

  20. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area (Goff & Janik,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information Laney,Information2002) |

  1. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area (Goff, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information Laney,Information2002)

  2. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area (Grigsby, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information

  3. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area (Rao, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996) | Open Energy

  4. Petrography Analysis At Fenton Hill HDR Geothermal Area (Laughlin, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio ProgramInformationMissouri:PartnershipPetroAsia1983) | Open

  5. Thermal Gradient Holes At Fenton Hill HDR Geothermal Area (Purtymun, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy InformationEnergyAl., 1974) | Open

  6. Water Sampling At Fenton Hill HDR Geothermal Area (Rao, Et Al., 1996) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage EditWaterEnergyOpen EnergyOpen Energy

  7. Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:Energy Information AreaEnergy| Open Energy

  8. Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal Well

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,In TheExperimentsExplorationEps-1,

  9. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area (Goff &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusCompositeJanik, 2002) | Open

  10. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area (Goff,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusCompositeJanik, 2002) | OpenEt

  11. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area (Janik &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusCompositeJanik, 2002) |

  12. Compound and Elemental Analysis At Fenton Hill HDR Geothermal Area (Rao, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColoradoBiomassPlusCompositeJanik, 2002) |Al.,

  13. Conceptual Model At Fenton Hill HDR Geothermal Area (Goff, Et Al., 1988) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) ||Open EnergyOpen Energy

  14. Conceptual Model At Fenton Hill HDR Geothermal Area (Grigsby & Tester,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) ||Open EnergyOpen Energy1989) |

  15. Core Analysis At Fenton Hill HDR Geothermal Area (Brookins & Laughlin,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: Energy ResourcesCorbin2009) |1983) | Open

  16. Core Analysis At Fenton Hill HDR Geothermal Area (Laughlin, Et Al., 1983) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: Energy ResourcesCorbin2009) |1983) |

  17. Cuttings Analysis At Fenton Hill HDR Geothermal Area (Laughlin, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc Jump to: navigation, searchCut and1983) | Open Energy

  18. Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1995) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformation 7thFlorin,

  19. Flow Test At Fenton Hill HDR Geothermal Area (Callahan, 1996) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformation 7thFlorin,Information Callahan,

  20. Flow Test At Fenton Hill HDR Geothermal Area (Dash, 1989) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformation 7thFlorin,Information

  1. Flow Test At Fenton Hill HDR Geothermal Area (Dash, Et Al., 1983) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformation 7thFlorin,InformationEnergy

  2. Flow Test At Fenton Hill HDR Geothermal Area (Grigsby, Et Al., 1983) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformation 7thFlorin,InformationEnergyEnergy

  3. Development Wells At Fenton Hill HDR Geothermal Area (Dash, Et Al., 1983) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queries TypeDeveloper

  4. Observation Wells At Fenton Hill HDR Geothermal Area (Dash, Et Al., 1983) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName0

  5. Observation Wells At Fenton Hill HDR Geothermal Area (Shevenell, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName01988) | Open Energy

  6. Symposium in the field of geothermal energy

    SciTech Connect (OSTI)

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

  7. Updated U.S. Geothermal Supply Curve

    SciTech Connect (OSTI)

    Augustine, C.; Young, K. R.; Anderson, A.

    2010-02-01

    This paper documents the approach used to update the U.S. geothermal supply curve. The analysis undertaken in this study estimates the supply of electricity generation potential from geothermal resources in the United States and the levelized cost of electricity (LCOE), capital costs, and operating and maintenance costs associated with developing these geothermal resources. Supply curves were developed for four categories of geothermal resources: identified hydrothermal (6.4 GWe), undiscovered hydrothermal (30.0 GWe), near-hydrothermal field enhanced geothermal systems (EGS) (7.0 GWe) and deep EGS (15,900 GWe). Two cases were considered: a base case and a target case. Supply curves were generated for each of the four geothermal resource categories for both cases. For both cases, hydrothermal resources dominate the lower cost range of the combined geothermal supply curve. The supply curves indicate that the reservoir performance improvements assumed in the target case could significantly lower EGS costs and greatly increase EGS deployment over the base case.

  8. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect (OSTI)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

  9. Geothermal innovative technologies catalog

    SciTech Connect (OSTI)

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  10. Advanced biochemical processes for geothermal brines FY 1998 annual operating plan

    SciTech Connect (OSTI)

    1997-10-01

    As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

  11. Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy

    SciTech Connect (OSTI)

    Aminzadeh, Fred; Sammis, Charles; Sahimi, Mohammad; Okaya, David

    2015-04-30

    The ultimate objective of the project was to develop new methodologies to characterize the northwestern part of The Geysers geothermal reservoir (Sonoma County, California). The goal is to gain a better knowledge of the reservoir porosity, permeability, fracture size, fracture spacing, reservoir discontinuities (leaky barriers) and impermeable boundaries.

  12. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  13. Geophysical imaging methods for analysis of the Krafla Geothermal Field, NE Iceland

    E-Print Network [OSTI]

    Parker, Beatrice Smith

    2012-01-01

    Joint geophysical imaging techniques have the potential to be reliable methods for characterizing geothermal sites and reservoirs while reducing drilling and production risks. In this study, we applied a finite difference ...

  14. A model of the subsurface structure at the Rye Patch geothermal...

    Open Energy Info (EERE)

    structure at the Rye Patch geothermal reservoir based on surface-to-borehole seismic data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  15. Fairbanks Geothermal Energy Project Final Report

    SciTech Connect (OSTI)

    Karl, Bernie

    2013-05-31

    The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

  16. BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustria GeothermalInformationColor40LienhwaRESERVOIR

  17. Indiana/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation...

  18. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect (OSTI)

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  19. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    SciTech Connect (OSTI)

    Patten, Kim

    2013-05-01

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production. Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing data are insufficient for promoting geothermal exploration. Authors of this paper are Arlene Anderson, US DOE Geothermal Technologies Office, David Blackwell, Southern Methodist University (SMU), Cathy Chickering (SMU), Toni Boyd, Oregon Institute of Technology’s GeoHeat Center, Roland Horne, Stanford University, Matthew MacKenzie, Uberity, Joe Moore, University of Utah, Duane Nickull, Uberity, Stephen Richard, Arizona Geological Survey, and Lisa Shevenell, University of Nevada, Reno. “NGDS User Centered Design: Meeting the Needs of the Geothermal Community,” discusses the user- centered design approach taken in the development of a user interface solution for the NGDS. The development process is research based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user interface for the widest and greatest utility. Authors of this paper are Harold Blackman, Boise State University, Suzanne Boyd, Anthro-Tech, Kim Patten, Arizona Geological Survey, and Sam Zheng, Siemens Corporate Research. “Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository Node on the National Geothermal Data System,” describes the motivation behind the development of the Geothermal Data Repository (GDR) and its role in the NGDS. This includes the benefits of using the GDR to share geothermal data of all types and DOE’s data submission process. Authors of this paper are Jon Weers, National Renewable Energy Laboratory and Arlene Anderson, US DOE Geothermal Technologies Office. Finally, “Developing the NGDS Adoption of CKAN for Domestic & International Data Deployment,” provides an overview of the “Node-In-A-Box” software package designed to provide data consumers with a highly functional interface to access the system, and to ease the burden on data providers who wish to publish data in the system. It is important to note that this software package constitutes a reference implementation and that the NGDS architecture is based on open standards, which means other server software can make resources available, a

  20. National Geothermal Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Geothermal Energy Association (GEA) will be holding it’s fifth annual National Geothermal Summit on June 3-4 at the Grand Sierra Resort and Casino in Reno, NV. The National Geothermal Summit is...