Sample records for hcfc hydrochlorofluorocarbon hfc

  1. Global emissions of refrigerants HCFC-22 and HFC-134a: Unforeseen seasonal contributions

    E-Print Network [OSTI]

    Xiang, Bin

    HCFC-22 (CHClF[subscript 2]) and HFC-134a (CH[subscript 2]FCF[subscript 3]) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ...

  2. Roof system effects on in-situ thermal performance of HCFC polyisocyanurate insulation. [Hydrochlorofluorocarbon (HCFC)

    SciTech Connect (OSTI)

    Christian, J.E.; Desjarlais, A.O.; Courville, G.; Graves, R.

    1992-01-01T23:59:59.000Z

    Industry-produced, permeably-faced, experimental polyisocyanurate (PIR) laminated boardstock foamed with several different hydrochlorofluorcarbons (HCFCS) is undergoing in-situ testing at the Building Envelopes Research User Center at Oak Ridge National Laboratory (ORNL). The overall objective of this research is to determine the long term thermal performance differences between PIR foamed with CFC-11 and PIR foamed with HCFC-123, HCFC-14lb and blends of HCFCs. Boards from the same batch were installed in outdoor test facilities and instrumented in part to determine if the insulation thermal performance aging characteristics are dependent on how they are handled and installed in the field. One of the major contributions of this research is the field validation of an accelerated thermal aging procedure. The laboratory measurements of the apparent thermal conductivity (k) of 10-mm-thick slices conducted over a period of less than a year are used to predict the k of 38-50-mm-thick PIR laminated board stock for 12--20 years after production. In situ thermal performance measurements of these well characterized three-year-old boards under white and under black ethylene propylene diene monomer (EPDM) membranes are compared with the accelerated aging procedure and with boards from the same batch in different roofing systems: mechanically attached EPDM, fully adhered EPDM, and built-up roof (BUR). The comparison indicates that this accelerated aging procedure should be seriously considered for providing in-service thermal performance information to building owners and roofing contractors.

  3. HFC-23 (CHF3) emission trend response to HCFC-22 (CHClF2) production and recent HFC-23 emission abatement measures

    E-Print Network [OSTI]

    Miller, B. R.

    HFC-23 (also known as CHF3 [CHF subscript 3], fluoroform or trifluoromethane) is a potent greenhouse gas (GHG), with a global warming potential (GWP) of 14 800 for a 100-year time horizon. It is an unavoidable by-product ...

  4. An Experimental Investigaton of the Effect of Oil on Convective Heat Trasfer and Pressure Drop of a HFC-32/HRC-125 Mixture

    E-Print Network [OSTI]

    McJimsey, Bert Ashford

    The heat transfer coefficients and pressure drops of HCFC-22 and a 50% mass mixture of HFC-32/HFC-125 were experimentally measured under flow boiling conditions in a smooth tube. The refrigerants were flowed through an 8 mm diameter smooth tube...

  5. Global and regional emission estimates for HCFC-22

    E-Print Network [OSTI]

    Saikawa, Eri

    HCFC-22 (CHClF[subscript 2], chlorodifluoromethane) is an ozone-depleting substance (ODS) as well as a significant greenhouse gas (GHG). HCFC-22 has been used widely as a refrigerant fluid in cooling and air-conditioning ...

  6. Two-Phase Flow of HCFC-22 and HFC-134a through Short Tube Orifices

    E-Print Network [OSTI]

    Yongchan, K.

    2008-01-23T23:59:59.000Z

    % of the experimental data. However, for the high subcooling region, some deviation, as high as ±11% of the measured values, was observed due to the imperfection of a selected two-phase critical flow model....

  7. Converting Centrifugal Chillers to HCFC-123 

    E-Print Network [OSTI]

    Siebert, B.

    1994-01-01T23:59:59.000Z

    of large water chillers in addressing the CFC issue. These owners, for a variety of reasons, chose to address the issue through the conversion of the existing equipment to an HCFC refrigerant. For each of the three owners, the option of converting...

  8. Recent increases in global HFC-23 emissions

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    of U.S. greenhouse gas emissions and sinks: 1990-2007, Rep.A. Lindley (2007), Global emissions of HFC-23 estimated to2009), Greenhouse Gas Emissions Data, http://unfccc.int/ghg_

  9. Growth of climate change commitments from HFC banks and emissions

    E-Print Network [OSTI]

    Velders, G. J. M.

    Chlorofluorocarbons (CFCs) are the primary cause of ozone depletion, and they also contribute to global climate change. With the global phaseout of CFCs and the coming phaseout of hydrochlorofluorocarbons (HCFCs), the ...

  10. Atmospheric histories and global emissions of the anthropogenic hydrofluorocarbons HFC-365mfc, HFC-245fa, HFC-227ea, and HFC-236fa

    E-Print Network [OSTI]

    Rigby, Matthew

    We report on ground-based atmospheric measurements and emission estimates of the four anthropogenic hydrofluorocarbons (HFCs) HFC-365mfc (CH[subscript 3]CF[subscript 2]CH[subscript 2]CF[subscript 3], 1,1,1,3,3-pentafluorobutane), ...

  11. Polyol esters as HFC-134a compressor lubricants

    SciTech Connect (OSTI)

    Komatsuzaki, S.; Homma, Y.; Itoh, Y. [Hitachi Ltd. (Japan)] [and others

    1994-10-01T23:59:59.000Z

    A polyol ester-based lubricant has been applied to HFC-134a household refrigerator compressors, because of its good miscibility with HFC-134a refrigerant, and there is a possibility that it will be applied to automobile air conditions. For better performance, further improvements are needed regarding miscibility, lubricity and chemical stability of the lubricant, because such systems are often used under extreme conditions. This report discusses the required properties and ways to improve performance of polyol esters as HFC-134a compressor lubricants. 7 refs., 14 figs., 4 tabs.

  12. Elevated temperature ablation resistance of HfC particle-reinforced tungsten composites

    E-Print Network [OSTI]

    Hong, Soon Hyung

    and spark plasma sintering (SPS) process. HfC was chos Keywords: Composite materials Powder metallurgy Sintering Ablation properties Microstructure The effects

  13. Roof system effects on in-situ thermal performance of HCFC polyisocyanurate insulation

    SciTech Connect (OSTI)

    Christian, J.E.; Desjarlais, A.O.; Courville, G.; Graves, R.

    1992-10-01T23:59:59.000Z

    Industry-produced, permeably-faced, experimental polyisocyanurate (PIR) laminated boardstock foamed with several different hydrochlorofluorcarbons (HCFCS) is undergoing in-situ testing at the Building Envelopes Research User Center at Oak Ridge National Laboratory (ORNL). The overall objective of this research is to determine the long term thermal performance differences between PIR foamed with CFC-11 and PIR foamed with HCFC-123, HCFC-14lb and blends of HCFCs. Boards from the same batch were installed in outdoor test facilities and instrumented in part to determine if the insulation thermal performance aging characteristics are dependent on how they are handled and installed in the field. One of the major contributions of this research is the field validation of an accelerated thermal aging procedure. The laboratory measurements of the apparent thermal conductivity (k) of 10-mm-thick slices conducted over a period of less than a year are used to predict the k of 38-50-mm-thick PIR laminated board stock for 12--20 years after production. In situ thermal performance measurements of these well characterized three-year-old boards under white and under black ethylene propylene diene monomer (EPDM) membranes are compared with the accelerated aging procedure and with boards from the same batch in different roofing systems: mechanically attached EPDM, fully adhered EPDM, and built-up roof (BUR). The comparison indicates that this accelerated aging procedure should be seriously considered for providing in-service thermal performance information to building owners and roofing contractors.

  14. Thermophysical properties of HCFC alternatives. Quarterly report, April 1--June 30, 1995

    SciTech Connect (OSTI)

    Haynes, W.M.

    1995-07-01T23:59:59.000Z

    Numerous fluids and fluid mixtures have been identified as promising alternatives to the HCFC refrigerants, but, for many of them, reliable thermodynamic data do not exist. In particular, reliable thermodynamic properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to measure, with high accuracy, selected thermodynamic properties data for two pure refrigerants and nine refrigerant blends; these data will be used to fit equations of state and other property models which can be used in equipment design. The new data will fill in gaps in the existing data and resolve problems and differences that exist in and between existing data sets. Most of the studied fluids and blends are potential replacements for HCFC-22 and/or R502; in addition, one pure fluid and one blend are potential replacements for CFC-13 in low temperature refrigeration applications.

  15. HCFC1 is a common component of active human CpG-island promoters and coincides with ZNF143, THAP11, YY1, and GABP transcription factor occupancy

    E-Print Network [OSTI]

    JnBaptiste, Courtney Kenneil

    In human transcriptional regulation, DNA-sequence-specific factors can associate with intermediaries that orchestrate interactions with a diverse set of chromatin-modifying enzymes. One such intermediary is HCFC1 (also ...

  16. Matrix isolation infrared spectroscopic and theoretical study of 1,1,1-trifluoro-2-chloroethane (HCFC-133a)

    SciTech Connect (OSTI)

    Rodrigues, Gessenildo Pereira; Ventura, Elizete, E-mail: elizete@quimica.ufpb.br, E-mail: rfausto@ci.uc.pt; Andrade do Monte, Silmar [Departamento de Química, Universidade Federal da Paraíba, 58059-900 João Pessoa-PB (Brazil)] [Departamento de Química, Universidade Federal da Paraíba, 58059-900 João Pessoa-PB (Brazil); Lucena, Juracy Régis [Departamento de Química, Universidade Estadual da Paraíba, 58429-500 Campina Grande-PB (Brazil)] [Departamento de Química, Universidade Estadual da Paraíba, 58429-500 Campina Grande-PB (Brazil); Reva, Igor; Fausto, Rui, E-mail: elizete@quimica.ufpb.br, E-mail: rfausto@ci.uc.pt [Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra (Portugal)] [Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra (Portugal)

    2013-11-28T23:59:59.000Z

    The molecular structure and infrared spectrum of the atmospheric pollutant 1,1,1-trifluoro-2-chloroethane (HCFC-133a; CF{sub 3}CH{sub 2}Cl) in the ground electronic state were characterized experimentally and theoretically. Excited state calculations (at the CASSCF, MR-CISD, and MR-CISD+Q levels) have also been performed in the range up to ?9.8 eV. The theoretical calculations show the existence of one (staggered) conformer, which has been identified spectroscopically for the monomeric compound isolated in cryogenic (?10 K) argon and xenon matrices. The observed infrared spectra of the matrix-isolated HCFC-133a were interpreted with the aid of MP2/aug-cc-pVTZ calculations and normal coordinate analysis, which allowed a detailed assignment of the observed spectra to be carried out, including identification of bands due to different isotopologues ({sup 35}Cl and {sup 37}Cl containing molecules). The calculated energies of the several excited states along with the values of oscillator strengths and previous results obtained for CFCs and HCFCs suggest that the previously reported photolyses of the title compound at 147 and 123.6 nm [T. Ichimura, A. W. Kirk, and E. Tschuikow-Roux, J. Phys. Chem. 81, 1153 (1977)] are likely to be initiated in the n-4s and n-4p Rydberg states, respectively.

  17. Alternative Refrigerants for Building Air Conditioning 

    E-Print Network [OSTI]

    Bivens, D. B.

    1996-01-01T23:59:59.000Z

    , and HFC-245ca. HCFC-22 is also scheduled for phase-out, and three alternatives for HCFC-22 have been identified: HFC-134a, a near-azeotropic mixture of R32/Rl25, and a zeotropic mixture of R32/R125/R134a. Performance test results, future potential energy...

  18. Peter Bernath Department of Chemistry, University of YorkDepartment of Chemistry, University of York

    E-Print Network [OSTI]

    - 12 11,000 CFC - 113 6,540 Carbon Tetrachloride 2,700 HCFC-142b, CCl4, CH3Cl, CF4, SF6, (HFC-134a-142b CFC-12 SF6 HCFC-22 SF6 #12;N. Allen:N. Allen: Global hydrogenhydrogen peroxide, HOxHOx reservoir

  19. Alternative Refrigerants for Building Air Conditioning

    E-Print Network [OSTI]

    Bivens, D. B.

    1996-01-01T23:59:59.000Z

    The majority of building air conditioning has traditionally been achieved with vapor compression technology using CFC-I I or HCFC-22 as refrigerant fluids. CFC-11 is being successfully replaced by HCFC-123 (retrofit or new equipment) or by HFC- 134a...

  20. International Journal of Thermophysics, Vol. 20, No. 1, 1999 Vapor-Liquid Equilibria of Alternative Refrigerants

    E-Print Network [OSTI]

    Lisal, Martin

    Refrigerants by Molecular Dynamics Simulations1 M. Lisal,2 R. Budinsky,3 V. Vacek,3 and K. Aim2, 4 Alternative refrigerants HFC-152a (CHF2CH3), HFC-143a (CF3CH3), HFC- 134a (CF3CH2F), and HCFC-142b (CF2ClCH3) are modeled Republic. 4 To whom correspondence should be addressed. KEY WORDS: alternative refrigerants; Gibbs

  1. Substitutes for ozone depleting aerosol electrical contact cleaners and cleaner/lubricants. Technical report

    SciTech Connect (OSTI)

    Bevilacqua, P.; Clark, K.G.

    1996-01-24T23:59:59.000Z

    With the production of Class I Ozone Depleting Substances discontinued as of January 1996, it became necessary to identify suitable replacements for chlorofluorocarbon (CFC-113) and trichloroethane (TCA) based electrical contact cleaners and cleaner/lubricant products. Two hydrochlorofluorocarbon (HCFC-141b) blends were identified as substitutes and recommended for interim use.

  2. Final Technical Report HFC Concrete: A Low-�������­���¢�������Energy, Carbon-�������­Dioxide-�������­Negative Solution for reducing Industrial Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Dr. Larry McCandlish, Principal Investigator; Dr. Richard Riman, Co-Principal Investigator

    2012-05-14T23:59:59.000Z

    Solidia/CCSM received funding for further research and development of its Low Temperature Solidification Process (LTS), which is used to create hydrate-free concrete (HFC). LTS/HFC is a technology/materials platform that offers wide applicability in the built infrastructure. Most importantly, it provides a means of making concrete without Portland cement. Cement and concrete production is a major consumer of energy and source of industrial greenhouse gas (GHG) emissions. The primary goal of this project was to develop and commercialize a novel material, HFC, which by replacing traditional concrete and cement, reduces both energy use and GHG emissions in the built infrastructure. Traditional concrete uses Portland Cement (PC) as a binder. PC production involves calcination of limestone at {approx}1450 C, which releases significant amounts of CO{sub 2} gas to the atmosphere and consumes a large amount of energy due to the high temperature required. In contrast, HFC is a carbonate-based hydrate-free concrete (HFC) that consumes CO{sub 2} gas in its production. HFC is made by reaction of silicate minerals with CO{sub 2} at temperatures below 100 C, more than an order-of-magnitude below the temperature required to make PC. Because of this significant difference in temperature, it is estimated that we will be able to reduce energy use in the cement and concrete industry by up to 30 trillion Btu by 2020. Because of the insulating properties of HFC, we believe we will also be able to significantly reduce energy use in the Building sector, though the extent of this saving is not yet quantified. It is estimated that production of a tonne of PC-based concrete requires about 6.2 million Btu of energy and produces over 1 tonne of CO{sub 2} emissions (Choate, 2003). These can be reduced to 1.9 million Btu and 0.025 tonnes of CO{sub 2} emissions per tonne of HFC (with overall CO{sub 2}-negativity possible by increasing carbonation yield). In this way, by replacing PC-based concrete with HFC in infrastructure we can reduce energy use in concrete production by 70%, and reduce CO{sub 2} emissions by 98%; thus the potential to reduce the impact of building materials on global warming and climate change is highly significant. Low Temperature Solidification (LTS) is a breakthrough technology that enables the densification of inorganic materials via a hydrothermal process. The resulting product exhibits excellent control of chemistry and microstructure, to provide durability and mechanical performance that exceeds that of concrete or natural stone. The technology can be used in a wide range of applications including facade panels, interior tiles, roof tiles, countertops, and pre-cast concrete. Replacing traditional building materials and concrete in these applications will result in significant reduction in both energy consumption and CO{sub 2} emissions.

  3. Zevenhoven & Kilpinen List of Abbreviations 13.4.2002 Abb.-1 List of abbreviations

    E-Print Network [OSTI]

    Zevenhoven, Ron

    potential HAP Hazardous air pollutant (USA) HC Hydrocarbon HCFC Hydrogenated chlorofluorocarbon HFC carbon AF Air factor ASR Auto shredder residue ASTM American Society for Testing and Materials BaP Benzo and Development ODP Ozone-depleting potential ODS Ozoen-depleting substance OFA Over-fire air PAH Polycyclic

  4. Performance of HCFC22 alternative refrigerants

    SciTech Connect (OSTI)

    Jung, D.; Kim, C.B.; Song, Y.J.; Park, B.J.

    1999-07-01T23:59:59.000Z

    In this study, 14 refrigerant mixtures composed of R32, R125, R134a, R152a, R290(Propane) and R1270(Propylene) were tested in a breadboard heat pump in an attempt to replace R22 used in residential air-conditioners. The test heat pump was of 1 ton capacity with water as the secondary heat transfer fluids. All tests were conducted under ARI test A condition. Test results how that ternary mixtures composed of R32, R125, and R134a have 4 {approximately} 5% higher coefficient of performance(COP) and capacity than R22. Hence they seem to be promising alternatives for R22. On the other hand, ternary mixtures containing R125, R134a, and R152a have lower COPs and capacities than R22. R290/R134 azeotrope also shows 3--4% increases in COP and capacity. The compressor discharge and dome temperatures of all the mixtures tested are lower than those of R22 by 15.9--34.7 C and 5.5--14.3 C respectively, indicating that these mixtures would offer better system reliability and longer life time than R22. Finally, the test results with a suction line heat exchanger (SLHX) indicated that SLHX must be used with special care in air-conditioners since its effect is fluid dependent.

  5. Converting Centrifugal Chillers to HCFC-123

    E-Print Network [OSTI]

    Siebert, B.

    This paper describes the effect that the issue of ozone depletion has on the owners and operators of large commercial water chillers that currently use chlorofluorocarbons (CFC's) for refrigeration. The production ban of CFC's mandated...

  6. The technical viability of alternative blowing agents in polyisocyanurate roof insulation

    SciTech Connect (OSTI)

    McElroy, D.L.; Graves, R.S.; Weaver, F.J.; Yarbrough, D.W.

    1990-01-01T23:59:59.000Z

    This paper is a progress report on the initial results of laboratory test on a set of prototypical, experimental, polyisocyanurate (PIR) laminate boardstock produced to evaluate the viability of alternative hydrochlorofluorocarbons (HCFCs) as blowing agents. All boardstock was produced from the same formulation and was not optimized for thermal performance. Boardstock made in the future may differ in performance from this set. Thermal resistance values are reported for PIR boards prepared with CFC-11, HCFC-123, HCFC-141b, and two blends of HCFC-123 and HCFC-141b. The primary purpose of the laboratory tests is to answer a key question: will foams produced with the alternative blowing agents yield the same outstanding thermal properties obtained with CFC-11 The CFC problem is enormous. Reductions in the production of CFC-11 and CFC-12 may lead to less efficient substitutes and increase annual US energy consumption for building applications alone by one (10{sup 15}Btu) or more (1). The current effort is a cooperative industry/government program to avoid this undesirable effect by establishing the viability of alternative blowing agents. The research project for CFC alternatives resulted from two workshops that involved participants from industry, government, and academia (2). At the initial workshop the participants prioritized 29 research projects of a CFC research menu. The second workshop focused on a single cooperative project, the long-term performance of substitute insulations containing HCFC-123 and HCFC-141b for roofing applications. 20 refs., 5 figs., 7 tabs.

  7. Using Acid Number as a Leading Indicator of Refrigeration and Air Conditioning System Performance

    SciTech Connect (OSTI)

    Dennis Cartlidge; Hans Schellhase

    2003-07-31T23:59:59.000Z

    This report summarizes a literature review to assess the acidity characteristics of the older mineral oil and newer polyolester (POE) refrigeration systems as well as to evaluate acid measuring techniques used in other non-aqueous systems which may be applicable for refrigeration systems. Failure in the older chlorofluorocarbon/hydrochlorofluorocarbon (CFC/HCFC) / mineral oil systems was primarily due to thermal degradation of the refrigerant which resulted in the formation of hydrochloric and hydrofluoric acids. These are strong mineral acids, which can, over time, severely corrode the system metals and lead to the formation of copper plating on iron surfaces. The oil lubricants used in the older systems were relatively stable and were not prone to hydrolytic degradation due to the low solubility of water in oil. The refrigerants in the newer hydrofluorocarbon (HFC)/POE systems are much more thermally stable than the older CFC/HCFC refrigerants and mineral acid formation is negligible. However, acidity is produced in the new systems by hydrolytic decomposition of the POE lubricants with water to produce the parent organic acids and alcohols used to prepare the POE. The individual acids can therefore vary but they are generally C5 to C9 carboxylic acids. Organic acids are much weaker and far less corrosive to metals than the mineral acids from the older systems but they can, over long time periods, react with metals to form carboxylic metal salts. The salts tend to accumulate in narrow areas such as capillary tubes, particularly if residual hydrocarbon processing chemicals are present in the system, which can lead to plugging. The rate of acid production from POEs varies on a number of factors including chemical structure, moisture levels, temperature, acid concentration and metals. The hydrolysis rate of reaction can be reduced by using driers to reduce the free water concentration and by using scavenging chemicals which react with the system acids. Total acid number (TAN), which includes both mineral acids and organic acids, is therefore a useful indicator which can be used to monitor the condition of the system in order to perform remedial maintenance, when required, to prevent system failure. The critical TAN value is the acid level at which remedial action should be taken to prevent the onset of rapid acid formation which can result in system failure. The level of 0.05 mg KOH/g of oil was established for CFC/mineral oil systems based on analysis of 700 used lubricants from operating systems and failed units. There is no consensus within the refrigeration industry as to the critical TAN value for HFC/POE systems, however, the value will be higher than the CFC/mineral oil systems critical TAN value because of the much weaker organic acids produced from POE. A similar study of used POE lubricants should be performed to establish a critical TAN limit for POE systems. Titrimetric analysis per ASTM procedures is the most commonly used method to determine TAN values in lubricants in the refrigeration industry and other industries dealing with lubricating oils. For field measurements, acid test kits are often used since they provide rapid, semi-quantitative TAN results.

  8. Cooling season study and economic analysis of a desiccant cooling system

    E-Print Network [OSTI]

    Lee, James Howard

    1992-01-01T23:59:59.000Z

    . This effect stems from using refrigerants which contain fluorocarbons. Fluorocarbons released into the atmosphere react with, and destroy, upper level ozone. As a result several alternative cooling processes have been proposed as replacements. One... of the detrimental effect fluorocarbons have on the environment, legislation has been passed banning their manufacture and sale. Refrigerants proposed as replacements, HFC 134a and HCFC-123, are more costly and less efficient than fluorocarbon , and their long...

  9. Reactions of {sup 1}:CX{sub 2} during chlorofluorocarbon pyrolysis

    SciTech Connect (OSTI)

    DiFelice, J.J.; Ritter, E.R. [Villanova Univ., Villanova, PA (United States)

    1994-12-31T23:59:59.000Z

    Singlet carbenes are reactive intermediates which behave in a fashion quite different from radicals. In hydrocarbon and hydrochlorocarbon systems, radicals and radical chemistry typically dominate. However, in chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) systems, formation of perhalogenated singlet carbenes ({sup 1}:CX{sub 2}) has been observed. While radicals undergo abstraction reactions and addition to double bonds, singlet carbenes can insert into single bonds. Singlet carbenes are species which have two paired nonbonded electrons; since paired electrons have opposite spin, singlet carbenes can insert into single bonds. Triplet carbenes, in contrast, contain unpaired electrons and behave essentially like radicals. Formation of perhalogenated triplet carbenes ({sup 3}:CX{sub 2}) is less favorable in CFC and HCFC systems since the :CX{sub 2} singlet state is as much as 56 kcal/mol lower in energy than the triplet state. This paper discusses the results of chlorofluorocarbon pyrolysis in helium at different temperatures and with carbene insertion.

  10. The technical viability of alternative blowing agents in polyisocyanurate roof insulation: A cooperative industry/government project

    SciTech Connect (OSTI)

    Christian, J.E.; Courville, G.E.; Desjarlais, A.O.; Graves, R.S.; Linkous, R.L.; McElroy, D.L.; Weaver, F.J.; Wendt, R.L.; Yarbrough, D.W.

    1993-06-01T23:59:59.000Z

    This report is a summary of the cooperative industry/government program to establish the viability of alternative blowing agents to chlorofluorocarbons (CFCs). The project was initiated in 1989 following two workshops that focused on needed research on thermal insulation blown with substitutes for CFC-11 and CFC-12. The project is directed by a steering committee of representatives of the sponsors and of Oak Ridge National Laboratory (ORNL). The purpose of the project is to determine if the performance of polyisocyanurate (PIR) roof insulation foam boards blown with alternate agents differs from the performance of boards blown with CFC-1. This report describes apparent thermal conductivity (k) results obtained from field and laboratory tests from 1989 to 1992 on a set of experimental PIR laminate boardstock produced to evaluate the viability of alternative hydrochlorofluorocarbons (HCFCs) as blowing agents. All boardstock was manufactured from similar formulations that were not optimized for thermal performance. Commercial broadstock made in the future may differ in performance from this set. The PIR boards were prepared with CFC-11, HCFC-123, HCFC-141b, and 50/50 and 65/35 blends of HCFC-123/HCFC-141b.

  11. Thermal resistance of prototypical cellular plastic roof insulations

    SciTech Connect (OSTI)

    McElroy, D.L.; Graves, R.S.; Weaver, F.J.

    1991-01-01T23:59:59.000Z

    A cooperative industry/government project was initiated in 1989 to evaluate the viability of alternative hydrochlorofluorocarbons (HCFCs) as blowing agents in polyisocyanurate (PIR) boardstock for roofing applications. Five sets of PIR boardstock were produced to industry specifications for current roof insulation technology. The boardstock allowed the performance of four alternative blowing agents (HCFC-123, HCFC-14lb, and two blends of HCFC-123 and HCFC-14lb) to compared to CFC-11. Laboratory and field tests show the relative thermal performance of the individual PIR boards. One set of laboratory tests show the thermal conductivity (k) from 0 to 50{degree}C (30 to 120{degree}F) of boards prior to installation and as a function of time after exposure to field conditions in the Roof Thermal Research Apparatus (0, 9, and 15 months). Another set of laboratory tests show k as a function of aging time 24{degree}C (75{degree}F) and 65{degree}C (150{degree}F) for full-thickness, half-thickness, and quarter-thickness specimens. These test results and modeling calculations show the value of thin specimen testing as an accelerated aging procedure. 24 refs., 5 figs., 7 tabs.

  12. Technology alternatives to CFC/HCFC vapor compression

    SciTech Connect (OSTI)

    Fischer, S.

    1996-08-01T23:59:59.000Z

    Phaseouts of CFCs and HCFCs to protect the stratospheric ozone layer have caused many developments in replacement or alternative technologies for heat pumping. Some of this effort has been of an ``evolutionary`` nature where the designs of conventional vapor compression systems were adapted to use chlorine-free refrigerants. Other alternatives are more radical departures from conventional practice such as operating above the critical point of an alternative refrigerant. Revolutionary changes in technology based on cycles sor principles not commonly associated with refrigeration have also attracted interest. Many of these technologies are being touted because they are ``ozone-safe`` or because they do not use greenhouse gases as refrigerants. Basic principles and some advantages and disadvantages of each technology are discussed in this paper.

  13. In-situ and thin-specimen aging of experimental polyisocyanurate roof insulation foamed with alternative blowing agents

    SciTech Connect (OSTI)

    Christian, J.E.; Courville, G.E.; Graves, R.S.; Linkous, R.L.; McElroy, D.L.; Weaver, F.J.; Yarbrough, D.W.

    1991-01-01T23:59:59.000Z

    This paper reports apparent thermal conductivity (k) values from field and laboratory aging tests on a set of industry-produced, experimental polyisocyanurate (PIR) laminated boardstock foamed with hydrochlorofluorocarbons (HCFCs) as alternatives to chlorofluorocarbon (CFC). The PIR boards were blown with five gases: CFC-11, HCFC-123, HCFC-14lb, and 50/50 and 65/35 blends of HCFC-123/HCFC-14lb. The k-values were determined from 0 to 50{degree}C (30 to 120{degree}F) using techniques that meet ASTM C 114 (Thin Heater Apparatus) and ASTM C 518 (Heat Flow Meter Apparatus). Results on laminate boards with facers provide an independent laboratory check on the increase in k observed for field exposure in the ORNL Roof Thermal Research Apparatus (RTRA). The observed laboratory increase in k was between 8% and 11% for a 240 day field exposure in the RTRA. A thin-specimen aging procedure established the long-term thermal resistance of gas-filled foams. Thin specimens were planed from the industry-produced boardstock foams and aged at 24 and 65{degree}C (75{degree}F and 150{degree}F) for up to 300 days. An exponential dependency of k with the quantity (diffusion coefficient X time){sup {1/2}}/ thickness, provide effective diffusion coefficients for air components into the foams and blowing agent out of the foams. The foams blown with alternative blowing agents exhibited k-values 3 to 16% (average 9.4%) above CFC-11 foams under similar conditions. Field exposures were conducted on specimens under single ply EPDM membranes in the RTRA for over 400 days. Hourly averages of panel temperature and heat flux were analyzed to obtain K as a function of mean temperature on a week by week basis. The relative performance of test specimens of HCFC-14B under a black and under a white membrane is reported. 29 refs., 10 figs., 10 tabs.

  14. Laboratory test results on the thermal resistance of polyisocyanurate foamboard insulation blown with CFC-11 substitutes: A cooperative industry/government project

    SciTech Connect (OSTI)

    McElroy, D.L.; Graves, R.S.; Yarbrough, D.W.; Weaver, F.J.

    1991-09-01T23:59:59.000Z

    The fully halogenated chlorofluorocarbon gases (CFC-11 and CFC-12) are used as blowing agents for foam insulations for building and appliance applications. The thermal resistance per unit thickness of these insulations is greater than that of other commercially available insulations. Mandated reductions in the production of these chemicals may lead to less efficient substitutes and increase US energy consumption by one quad or more. This report describes laboratory thermal and aging tests on a set of industry-produced, experimental polyisocyanurate (PIR) laminate boardstock to evaluate the viability of hydrochlorofluorocarbons (HCFSs) as alternative blowing agents to chlorofluorcarbon-11 (CFC-11). The PIR boards were blown with five gases: CFC-11, HCFC- 123, HCFC-141b, and 50/50 and 65/35 blends of HCFC-123/HCFC-141b. These HCFC gases have a lower ozone depletion potential than CFC-11 or CFC-12. Apparent thermal conductivity (k) was determined from 0 to 50{degrees}C. Results on the laminate boards provide an independent laboratory check on the increase in k observed for field exposure in the Roof Thermal Research Apparatus (RTRA). The measured laboratory increase in k was between 8 and 11% after a 240-d field exposure in the RTRA. Results are reported on a thin-specimen, aging procedure to establish the long-term thermal resistance of gas-filled foams. These thin specimens were planed from the industry-produced boardstock foams and aged at 75 and 150{degrees}F for up to 300 d. The resulting k-values were correlated with an exponential dependency on (diffusion coefficient {times} time){sup {1/2}}/thickness and provided diffusion coefficients for air components into, and blowing agent out of, the foam. This aging procedure was used to predict the five-year thermal resistivity of the foams. The thin-specimen aging procedure is supported with calculations by a computer model for aging of foams. 43 refs., 33 figs., 25 tabs.

  15. 1. INTRODUCTION As a result of the phas e-out of CFC and HCFC refrigerants

    E-Print Network [OSTI]

    Kandlikar, Satish

    sources are compared with the Kandlikar [1,2] correlation. 2. HEAT TRANSFER MODEL 2.1. Pool boiling model

  16. Adsorption of Hydrofluorocarbons HFC-134 and HFC-134A on X and Y Zeolites: Effect of Ion-Exchange on Selectivity and Heat of Adsorption

    E-Print Network [OSTI]

    Siperstein, Flor R.

    rapidly as worldwide refrigerator and air-conditioner production rises almost exponentially.1 A byproduct) is a hydrofluorocarbon coolant for refrigerators designated to replace the ozone-damaging chloro- fluorocarbons (CFCs

  17. Accelerated screening methods for determining chemical and thermal stability of refrigerant-lubricant mixtures, Part 1: Method assessment. Final report

    SciTech Connect (OSTI)

    Kauffman, R.

    1993-04-01T23:59:59.000Z

    This report presents results of a literature search performed to identify analytical techniques suitable for accelerated screening of chemical and thermal stabilities of different refrigerant/lubricant combinations. Search focused on three areas: Chemical stability data of HFC-134a and other non-chlorine containing refrigerant candidates; chemical stability data of CFC-12, HCFC-22, and other chlorine containing refrigerants; and accelerated thermal analytical techniques. Literature was catalogued and an abstract was written for each journal article or technical report. Several thermal analytical techniques were identified as candidates for development into accelerated screening tests. They are easy to operate, are common to most laboratories, and are expected to produce refrigerant/lubricant stability evaluations which agree with the current stability test ANSI/ASHRAE (American National Standards Institute/American Society of Heating, Refrigerating, and Air-Conditioning Engineers) Standard 97-1989, ``Sealed Glass Tube Method to Test the Chemical Stability of Material for Use Within Refrigerant Systems.`` Initial results of one accelerated thermal analytical candidate, DTA, are presented for CFC-12/mineral oil and HCFC-22/mineral oil combinations. Also described is research which will be performed in Part II to optimize the selected candidate.

  18. Two-Phase Flow of Two HFC Refrigerant Mixtures Through Short Tube Orifices, Draft Final Report 

    E-Print Network [OSTI]

    Payne, W. V.; O'Neal, D. L.

    1994-01-01T23:59:59.000Z

    to commercially available short tubes in residential air conditioners or heat pumps. Figure 2.2 shows the schematic of the orifice test section for routine performance tests. The short tube was made from brass which was bored and reamed to insure a smooth...) measurements of the effects of oil concentration on performance. Conditions were chosen to cover a wide range of operating conditions for a short tube expansion device found in a typical residential heat pump or air-conditioner. The experimental variables...

  19. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 1

    SciTech Connect (OSTI)

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01T23:59:59.000Z

    The objective of this study was to investigate the film formation properties of refrigeration lubricants using the ultrathin film elastohydrodynamic (EHD) interferometry technique and to study the effects of refrigerants on film formation. Film thickness measurements were conducted as a function of lubricant viscosity, speed, temperature, and refrigerant concentration. Based on the EHD film thickness data, effective pressure-viscosity coefficients were calculated for the test fluids at different temperatures and the effects of refrigerants on pressure-viscosity properties were investigated.

  20. Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants. Final report, Part 1

    SciTech Connect (OSTI)

    Cavestri, R.C. [Imagination Resources, Inc., Dublin, OH (United States)

    1997-07-01T23:59:59.000Z

    Part one of this research provides manufacturers of components of air-conditioning and refrigeration equipment with a useful list of lubricant additives, sources, functional properties and chemical species. The list in part one is comprised of domestic lubricant additive suppliers and the results of a literature search that was specifically targeted for additives reported to be useful in polyolester chemistry.

  1. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 2

    SciTech Connect (OSTI)

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01T23:59:59.000Z

    Lubrication properties of refrigeration lubricants were investigated in high pressure nonconforming contacts under different conditions of temperature, rolling speed, and refrigerant concentration. The program was based upon the recognition that the lubrication regime in refrigeration compressors is generally elastohydrodynamic or hydrodynamic, as determined by the operating conditions of the compressor and the properties of the lubricant. Depending on the compressor design, elastohydrodynamic lubrication conditions exist in many rolling and sliding elements of refrigeration compressors such as roller element bearings, gears, and rotors. The formation of an elastohydrodynamic film separating rubbing surfaces is important in preventing the wear and failure of compressor elements. It is, therefore, important to predict the elastohydrodynamic (EHD) performance of lubricants under realistic tribocontact renditions. This is, however, difficult as the lubricant properties that control film formation are critically dependent upon pressure and shear, and cannot be evaluated using conventional laboratory instruments. In this study, the elastohydrodynamic behavior of refrigeration lubricants with and without the presence of refrigerants was investigated using the ultrathin film EHD interferometry technique. This technique enables very thin films, down to less than 5 nm, to be measured accurately within an EHD contact under realistic conditions of temperature, shear, and pressure. The technique was adapted to the study of lubricant refrigerant mixtures. Film thickness measurements were obtained on refrigeration lubricants as a function of speed, temperature, and refrigerant concentration. The effects of lubricant viscosity, temperature, rolling speed, and refrigerant concentration on EHD film formation were investigated. From the film thickness measurements, effective pressure-viscosity coefficients were calculated. The lubricants studied in this project included two naphthenic mineral oils (NMO), four polyolesters (POE), and two polyvinyl ether (PVE) fluids. These fluids represented viscosity grades of ISO 32 and ISO 68 and are shown in a table. Refrigerants studied included R-22, R-134a, and R-410A. Film thickness measurements were conducted at 23 C, 45 C, and 65 C with refrigerant concentrations ranging from zero to 60% by weight.

  2. Two-Phase Flow of Two HFC Refrigerant Mixtures Through Short Tube Orifices, Draft Final Report

    E-Print Network [OSTI]

    Payne, W. V.; O'Neal, D. L.

    1994-01-01T23:59:59.000Z

    The present study presents data for flow of two refrigerant mixtures through short tube orifices. The two mixtures were R3211251134a (23%/25%/52% on a mass percentage basis) and R321125 (50%/50%). The following presents results for the flow...

  3. Energy and global warming impacts of HFC refrigerants and emerging technologies: TEWI-III

    SciTech Connect (OSTI)

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1997-06-01T23:59:59.000Z

    The use of hydrofluorocarbons (BFCs) which were developed as alternative refrigerants and insulating foam blowing agents to replace chlorofluorocarbons (CFCs) is now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants and blowing agents on global warming. A Total Equivalent Warming Impact (TEWI) assessment analyzes the environmental affects of these halogenated working fluids in energy consuming applications by combining a direct effect resulting from the inadvertent release of HFCs to the atmosphere with an indirect effect resulting from the combustion of fossil fuels needed to provide the energy to operate equipment using these compounds as working fluids. TEWI is a more balanced measure of environmental impact because it is not based solely on the global warming potential (GWP) of the working fluid. It also shows the environmental benefit of efficient technologies that result in less CO{sub 2} generation and eventual emission to the earth`s atmosphere. The goal of TEWI is to assess total global warming impact of all the gases released to the atmosphere, including CO{sub 2} emissions from energy conversion. Alternative chemicals and technologies have been proposed as substitutes for HFCs in the vapor-compression cycle for refrigeration and air conditioning and for polymer foams in appliance and building insulations which claim substantial environmental benefits. Among these alternatives are: (1) Hydrocarbon (HC) refrigerants and blowing agents which have zero ozone depleting potential and a negligible global warming potential, (2) CO{sub 2} as a refrigerant and blowing agent, (3) Ammonia (NH{sub 3}) vapor compression systems, (4) Absorption chiller and heat pumping cycles using ammonia/water or lithium bromide/water, and (5) Evacuated panel insulations. This paper summarizes major results and conclusions of the detailed final report on the TEWI-111 study.

  4. Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    subcooling vol volumetric w water 1. Context and objectives Nowadays, global warming being a major concern and the large temperature glide at heat rejection used for DHW production. Keywords: design, simulation, heating;2 NOMENCLATURE c relative clearance volume (-) C electricity consumption (Wh) Cp specific heat (J kg-1 K-1 ) h

  5. Joint Industry/Government Research Project: Comparison of thermal aging for roof exposures and thin-specimens of experimental polyisocyanurate insulation foamed with alternative blowing agents

    SciTech Connect (OSTI)

    Graves, R.S.; Christian, J.E.; McElroy, D.L.

    1991-01-01T23:59:59.000Z

    This paper reports apparent thermal conductivity (k) values from field exposures and laboratory aging of a set of industry-produced, experimental polyisocyanurate (PIR) laminated boardstock foamed with hydrochlorofluorocarbons (HCFCs) as alternative to chlorofluorocarbons (CFCs). The k-values were determined from 0 to 50{degree}C using techniques that meet ASTM C 1114 (Thin Heater Apparatus) and ASTM C 518 (Heat Flow Meter Apparatus). The increase in k observed for field exposure in the ORNL Roof Thermal Research Apparatus (RTRA) was confirmed by independent laboratory tests. The observed laboratory increase in k was about the same, between 17 and 22%, for all three blowing agent foams for a 450 day field exposure in the RTRA. Thin specimens were planed from the industry-produced boardstock foams and aged at 24 and 65{degree}C for up to 460 days. The foams blown with alternative blowing agents exhibited long-term k-values 7 to 15% above those for CFC foams under similar conditions. Field exposures were conducted on specimens under single ply EPDM membranes in the RTRA for over 680 days. Hourly averages of panel temperature and heat flux were analyzed to obtain k as a function of mean insulation temperature on a week-by-week basis. The k-values derived from the field data provided effective diffusion coefficients for air in the foam, which were within 7% of those obtained from the thin-specimen aging procedure at 24%C except for one sample. The relative performance of test specimens of HCFC-141b under a black and under a white membrane is reported, and data suggest that differences are relatively small. 26 refs., 10 figs., 8 tabs.

  6. Global and regional emissions of HFC-125 (CHF[subscript 2]CF[subscript 3]) from in situ and air archive atmospheric observations at AGAGE and SOGE observatories

    E-Print Network [OSTI]

    O'Doherty, S.

    High-frequency, in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and System for Observation of halogenated Greenhouse gases in Europe (SOGE) networks for the period 1998 to 2008, combined ...

  7. Trends of HF, HCl, CCl2F2, CCl3F, CHClF2 (HCFC-22), and SF6 in the lower stratosphere from Atmospheric Chemistry Experiment (ACE)

    E-Print Network [OSTI]

    Nassar, Ray

    Supplementary Material to the manuscript: 45 The global SF6 source inferred from long-term high. The non-linearity of the Univ. of Heidelberg gas chromatographic system Analysis of SF6 mixing ratios to about 3.8 fmols (1 fmol (femtomol) = 10-15 mol) SF6 detected in the case of the standard gas

  8. J. Blunden, D. S. Arndt, and M. O. Baringer, Eds. Associate Eds. K. M.Willett,A. J. Dolman, B. D. Hall, P.W.Thorne, J. M. Levy, H. J. Diamond,

    E-Print Network [OSTI]

    Composition: carbon dioxide, methane, ozone, nitrous oxide, chloro- fluorocarbons, hydrochlorofluorocarbons dioxide. · Ocean Subsurface: current, carbon. · Terrestrial: soil moisture, permafrost, glaciers and ice*. · Atmospheric Upper Air: earth radiation budget, temperature, water vapor, cloud properties. · Atmospheric

  9. STATE OF THE CLIMATE Jessica Blunden Derek S. Arndt

    E-Print Network [OSTI]

    : carbon dioxide, methane, ozone, nitrous oxide, chloro- fluorocarbons, hydrochlorofluorocarbons: long-lived green- house gases not listed as fully monitored above. Ocean Surface: carbon dioxide. Ocean Upper Air: earth radiation budget, temperature, water vapor, cloud properties. Atmospheric Composition

  10. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    E-Print Network [OSTI]

    Greenblatt, Jeffery B.

    2014-01-01T23:59:59.000Z

    decision support tool for landfill gas-to energy projects,”component of landfills to 100% HGWP gases a. HFC phase-out:

  11. Stratospheric ozone, global warming, and the principle of unintended consequences - an ongoing science and policy story

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    Naturally. 2013. The Coca-Cola Company. Prepared by Unitedwould be HFC free. In 2009, Coca-Cola announced that 100% of

  12. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01T23:59:59.000Z

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  13. Symposium on Laboratory Astrophysics at the CfA

    E-Print Network [OSTI]

    - logues Molecule # of isotopo- logues H2O 6 HCl 2 COF2 1 CO2 8 HBr 2 SF6 1 O3 5 HI 1 H2S 3 N2O 5 ClO 2;11 Molecule Name Molecule Name SF6 Sulfur hexafluoride CHClFCF3 HCFC-124 ClON2O Chlorine nitrate CH3CCl2F HCFC and cross-section files #12;22 #12;#12;24 CClF3 (CFC-13) CCl2F2 (CFC-12) CF4 (CFC-14) SF6 #12;25 #12;

  14. 206 RESONANCE March 2013 SERIES ARTICLE

    E-Print Network [OSTI]

    Kumar, Anurag

    Global warming has become a matter of concern for all living beings on earth. Electricity generation to generate electricity to contain the global warming trends. Introduction With urbanization and technological for global warming. The present levels of greenhouse gases like CO2 , NOX , methane, CFC and HCFC are much

  15. Atmos. Chem. Phys., 11, 1325913267, 2011 www.atmos-chem-phys.net/11/13259/2011/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    emissions B. R. Miller1,2 and L. J. M. Kuijpers3 1Cooperative Institute for Research in Environmental projects are examined for their impact on projected emissions and abundance, relative to the Reference Case HCFC-22 have become ubiqui- tous in the modern automobile, textile and construction ma- terial

  16. 2005 May ASSFTS12, Quebec City, Canada The EOS AURA Tropospheric Emission Spectrometer (TES)

    E-Print Network [OSTI]

    -21 CHCl2F L HCFC-22 CHClF2 L Sulphur Dioxide SO2 N L Carbonyl Sulphide OCS N L Hydrogen Sulphide H2S LAYER mixing ~ 1 day 1-3 km Source continent Ocean weak winds Fast removal of ozone, PM (deposition

  17. Thermal resistance of composite panels containing superinsulation and urethane foam

    SciTech Connect (OSTI)

    Wilkes, K.E.; Graves, R.S.; Childs, K.W.

    1996-09-01T23:59:59.000Z

    Laboratory data are presented on the thermal resistance of composite panels that incorporate superinsulation embedded in urethane foam. Composite panels were fabricated using four types of advanced insulations (three types of evacuated panel superinsulation and one type of gas-filled panel), and three foam blowing agents (CFC-11, HCFC-141b, and HCFC-142b/22 blend). Panels were also fabricated with only the urethane foam to serve as a baseline. Thermal measurements were performed using an ASTM C 518 Heat Flow Meter Apparatus. The thermal resistances of the panels were measured over a two-year period to detect whether any significant changes occurred. A computer model was used to analyze the data, adjusting for differences in size of the advanced insulations, and extrapolating to different sizes of composite panels.

  18. Thermal resistance of superinsulation/foam composite panels

    SciTech Connect (OSTI)

    Wilkes, K.E.; Graves, R.S.; Childs, K.W.

    1996-05-01T23:59:59.000Z

    Laboratory data are presented on the thermal resistance of composite panels that incorporate superinsulation embedded in urethane foam. Composite panels were fabricated using four types of advanced insulations (three types of evacuated panel superinsulation and one type of gas-filled panel), and three foam blowing agents (CFC-11, HCFC-141b, and HCFC-142b/22 blend). Panels were also fabricated with only the urethane foam to serve as a baseline. Thermal measurements were performed using an ASTM C 518 Heat Flow Meter Apparatus. The thermal resistances of the panels were measured over a two-year period to detect whether any significant changes occurred. A computer model was used to analyze the data, normalizing for differences in size of the advanced insulations, and extrapolating to different sizes of composite panels.

  19. Impact of CFC Regulations on Environmental System Design and Operation

    E-Print Network [OSTI]

    Lechtanski, J. B.

    CORPORATION. SYRACUSE. NY since not all refrigerants are classified as CFC's. There is another group of refrigerants that we'll be discussing later on that are referred to as HCFC's that are only partially halogenated and still contain one or more... hydrogen atoms in their molecular structure. Where are CFC's most commonly found? Everyone who owns a refrigerator is using CFC's to keep their food fresh. Supermarkets and restaurants use CFC refrigeration systems to keep meat cold and ice cream...

  20. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  1. In-situ aging of roof systems containing polyisocyanurate roof insulation foamed with alternative blowing agents

    SciTech Connect (OSTI)

    Desjarlais, A.O.; Christian, J.E.; Graves, R.S.

    1993-10-01T23:59:59.000Z

    Experimental polyisocyanurate (PIR) foam roof insulations with permeable facers were installed in roofing systems and continuously monitored for thermal performance for four years. The foams were produced using a specific formulation that represented current technology in 1989 and were blown with CFC-11, HCFC-123, and HCFC-141b. These foams were installed in roof systems comprised of loosely-laid insulation boards covered by either a loosely-laid single ply white or black membrane. The in-situ testing was carried out on an outdoor test facility, the Roof Thermal Research Apparatus (RTRA). Additional specimens of these foams were aged in the laboratory and periodically evaluated using laboratory measurement equipment. This paper summarizes the in-situ data compiled to date, compares these data with the laboratory results, and examines whether the proposed laboratory procedure for accelerating the aging of foams by the slicing and scaling method accurately predicts the aging characteristics of these materials installed in roof systems. These experiments are part of a joint industry/government project established to evaluate the technical viability of alternative HCFC blowing agents for rigid closed-cell polyisocyanurate foam roof insulations. Members of the project are the US Department of Energy (DOE)/Oak Ridge National Laboratory (ORNL), the US Environmental Protection Agency (EPA), the Society of the Plastics Industry-Polyurethane Division (SPI), the Polyisocyanurate Insulation Manufacturers Association (PIMA), and the National Roofing Contractors Association (NRCA).

  2. Performance Evaluation of A Household Refrigerator Using Cuo Nanoparticle Lubricant Mixture and Various Other Compressor Oils with Different Condenser Modes

    E-Print Network [OSTI]

    Sreejith. K

    Abstract:- The objective of this paper was to study the performance of household refrigerator having both air and water-cooled condenser, with 0.06 % mass fraction CuO nanoparticle-lubricant mixture and different types of compressor oils. The experiment was done using HFC134a as the refrigerant, CuO nanoparticles, Polyol-ester oil (POE) oil which is used as the conventional lubricant in the household refrigerator and SUNISO 3GS mineral oil as the lubricant alternatively. The result indicates that the refrigerator performance had improved while using CuO nanoparticle-lubricant mixture. The performance was also improved when HFC134a/SUNISO 3GS mineral oil system was used instead of HFC134a/POE oil system and there was also an enhancement when water-cooled condenser was used instead of the conventional air-cooled condenser on all load conditions. The HFC134a/CuO/SUNISO 3GS mineral oil system works normally and safely in the refrigerator. HFC134a/CuO/SUNISO 3GS mineral oil system reduced the energy consumption between 12 % and 19 % when compared with the HFC134a/POE oil system and between 9 % and 14 % while working with water-cooled condenser on various load conditions. There was also an enhancement in coefficient of performance (COP) when CuO nanoparticle-lubricant mixture was used instead of POE oil as the lubricant. The water cooled heat exchanger was designed and the system was modified by retrofitting it, along with the conventional air-cooled condenser by making a bypass line and thus the system can be utilized as a waste heat recovery unit. Experimental result shows that about 200 litres of hot water at a temperature of about 58ºC over a day can be generated. Techno economic analysis shows that the installation cost and running cost of the waste heat recovery system for a day is much lower than that of a conventional

  3. Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options

    SciTech Connect (OSTI)

    Fricke, Brian A [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerants for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.

  4. Shrink-Swell Dynamics of Vertisol Catenae under Different Land Uses

    E-Print Network [OSTI]

    Dinka, Takele Mitiku

    2012-02-14T23:59:59.000Z

    NOMENCLATURE b Surface shrinkage ratio COLE Coefficient of Linear Extensibility h Thickness of a soil layer hfc Maximum thickness of a soil layer kPa Killo pascal mw,i Mass of water at a given water potential mt,i Total mass....2 The relationship between COLE with CaCO3 and fine clay content of soils. ........................................................................................................ 44 3.3 The soil subsidence (?Z) between a monument and rod installed...

  5. Low GWP Working Fluid for High Temperature Heat Pumps

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Low GWP Working Fluid for High Temperature Heat Pumps: DR-2 Chemical Stability at High Temperatures Temp Heat Pumps: DR-2 Very Low GWP AND Non-Flammable HFC-245fa DR-2 Chemical Formula CF3CH2CHF2 HFO 171.3 Pcr [MPa] 3.65 2.9 Kontomaris-DuPont; European Heat Pump Summit, Nuremberg, October 15th, 2013

  6. Comparison of global warming impacts of automobile air-conditioning concepts

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The global warming impacts of conventional vapor compression automobile air conditioning using HFC-134a are compared with the potential impacts of four alternative concepts. Comparisons are made on the basis of total equivalent warming impact (TEWI) which accounts for the effects of refrigerant emissions, energy use to provide comfort cooling, and fuel consumed to transport the weight of the air conditioning system. Under the most favorable assumptions on efficiency and weight, transcritical compression using CO{sub 2} as the refrigerant and adsorption cooling with water and zeolite beds could reduce TEWI by up to 18%rlative to HFC-134a compression air conditioning. Other assumptions on weight and efficiency lead to significant increases in TEWI relative to HFC-134a, and it is impossible to determine which set of assumptios is valid from existing data, Neither Stirling cycle or thermoelectric cooling will reduce TEWI relative to EFC-134a. Brief comments are also made concerning technical barriers that must be overcome for succesful development of the new technologies.

  7. United States Department of Energy large commercial absorption chiller development program

    SciTech Connect (OSTI)

    Garland, P.W.; DeVault, R.C.; Zaltash, A.

    1998-11-01T23:59:59.000Z

    The US Department of Energy (DOE) is working with partners from the gas cooling industry to improve energy efficiency and US competitiveness by using advanced absorption technologies that eliminate the use of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), refrigerants that contribute to ozone depletion and global warming. Absorption cooling uses natural gas as the heat source, which produces much lower NO{sub x} emissions than oil- or coal-generated electricity. Gas-fired chillers also have the advantage of helping reduce peak electrical usage during summer months. To assist industry in developing advanced absorption cooling technologies, DOE sponsors the Large Commercial Chiller Development Program. The goal of the program is to improve chiller cooling efficiency by 30--50% compared with the best currently available absorption systems.

  8. Coolant controversy heats up

    SciTech Connect (OSTI)

    Shanley, A.

    1997-11-01T23:59:59.000Z

    In 1987, nations of the world banded together under the Montreal Protocol to help protect the earth`s ozone layer. Now, ten years and $2.4 billion in new fluorocarbon R and D later, the ozone hole is still with us, as a black market in illegal chlorofluorocarbons thrives and legal trade in recycled CFCs continues. Unfortunately, each alternative to CFCs poses tradeoffs. Some hydrochlorofluorocarbons present lubricant compatibility problems, and, because they are also somewhat ozone depleting, they`ll be phased out in the US between 2010 and 2030, and earlier in Europe. Chlorine-free hydrofluorocarbons contribute to global warming and some require lubricant changes and retooling, while the processes that make them emit halogenated organics. This paper discusses compatibility, flammability, global warming, and supply problems.

  9. Supermarket with Ground Coupled Carbon Dioxide Refrigeration Plant

    E-Print Network [OSTI]

    Rehault, N.

    2012-01-01T23:59:59.000Z

    are massive energy consumers [4] EnOB [5] Kauffeld 2009 ? Fraunhofer ISE 4 Global emissions of fluorinated greenhouse gases Source: UBA ? 12.2010 1,1% 7,9% F-gas contribution to greenhouse effect 1. Backgrounds ? Fraunhofer ISE 5 Energy breakdown... refrigeration remains the last big subsector and the strongest emission source of the fluorinated hydrocarbons (HFC) in Germany? - Kauffeld [4] About 65 % of the cooling needs in Germany for frozen and refrigerated food products ? over 50.000 GWh...

  10. Geology of the Doss-North area, Mason and Gillespie Counties, Texas

    E-Print Network [OSTI]

    Coughran, Theodore

    1959-01-01T23:59:59.000Z

    Subuttted to the Oruguute Sohool of ihe igrioultaral end Weohautoal Solfege of %slue M purtfel falfilluent of the reqafroueute for ihe degree of tuguet ~ l~ S'upon Suh~ jK5r'. '-"'. "V~C4~4m&~;. '. % 'f 84i ' ~'i' $gfg, ( 1', 1 'p Qg ":Wth...~ll) '$, HA . Xi*: '-. ' ' . '. . . . '&Clif '. :Q9 'f/% ' +6 fWLO &&Q LC+&&4ii'aal. ? ~;g:, AQUA'Cli ~f gt OSOLOOV OF TIS SOSS-ARTS JIBE, lIAMS ANI GTLLSSPIR COQSFKS4& TSS44 A Thesis August, l400 kyytsrel as se etF14. ae4 ?safest hFc seas...

  11. The LiveWire Project final report

    SciTech Connect (OSTI)

    Brown, C.D.; Nelson, T.T. [Enova Technology, San Diego, CA (United States); Kelly, J.C.; Dominguez, H.A. [Paragon Consulting Services, La Verne, CA (United States)

    1997-10-01T23:59:59.000Z

    Utilities across the US have begun pilot testing a variety of hardware and software products to develop a two-way communications system between themselves and their customers. Their purpose is to reduce utility operating costs and to provide new and improved services for customers in light of pending changes in the electric industry being brought about by deregulation. A consortium including utilities, national labs, consultants, and contractors, with the support of the Department of Energy (DOE) and the Electric Power Research Institute (EPRI), initiated a project that utilized a hybrid fiber-coax (HFC) wide-area network integrated with a CEBus based local area network within the customers home. The system combined energy consumption data taken within the home, and home automation features to provide a suite of energy management services for residential customers. The information was transferred via the Internet through the HFC network, and presented to the customer on their personal computer. This final project report discusses the design, prototype testing, and system deployment planning of the energy management system.

  12. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    SciTech Connect (OSTI)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01T23:59:59.000Z

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  13. Simulating a 4-effect absorption chiller

    SciTech Connect (OSTI)

    Grossman, G. [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Mechanical Engineering; Zaltash, A.; Adcock, P.W.; DeVault, R.C. [Oak Ridge National Lab., TN (United States). Energy Div.

    1995-06-01T23:59:59.000Z

    Absorption chillers are heat-operated refrigeration machines that operate on one of the earliest known principles of refrigeration. Current absorption chillers typically use either steam or a gas-fired burner as the energy source. All current gas-fired absorption cooling systems are based on the well known single-effect or double-effect cycles. To further improve utilization of the high temperature heat available from natural gas, a variety of triple-effect cycles have been proposed and are being developed that are capable of substantial performance improvement over equivalent double-effect cycles. This article describes a study that investigated the possibility of even further improving utilization of the high temperature heat available from natural gas combustion. During the study, performance simulation was conducted for a 4-effect lithium bromide/water cycle. From an environmental perspective, absorption chillers provide several benefits. They use absorption pairs (such as lithium bromide/water) as the working fluids, rather than chlorofluorocarbons or hydrochlorofluorocarbons, which contribute to ozone depletion and global warming.

  14. Plant Maintenance and Improvement Experiences for Control System in UCN 5 and 6

    SciTech Connect (OSTI)

    Choi, D.R.; Lee, K.B.; Kim, C.J.; Chung, Y.M. [Korea Hydro and Nuclear Power Co., Ltd., no. 84-1, Bugu-ri, Buk-Myeon, Ulchin-gun, Kyong-buk (Korea, Republic of)

    2006-07-01T23:59:59.000Z

    The Plant Control System (PCS) in Korean Standard Nuclear Power Plant (KSNP) is designed to perform data acquisition and transfer function via communication data links to control most of the field components such as pumps, fans, valves, dampers and circuit breakers. The PCS installed at UCN 5 and 6 for both safety related and non -safety related functions is microprocessor based system supplied by HF Controls. Safety related functions are provided by redundant trains of microprocessor based single loop controllers with direct connections to the field input/output instruments but non-safety related functions utilize a similar construction with the input/output boards to be remotely located in cabinet arrangements near the field components. Whatever the functions, the signals to control and monitor field devices are processed through communication master (CM), HFC distributed control system, which uses Multibus I back-plane design to accommodate the requirement of multiple processors. The complex programmable logic device (CPLD) mounted on the A233 back-plane of the CM controls the processors for an adequate access to the bus so that 16 microprocessor based circuitries acting as bus masters share the public memory properly through the common bus. The bus occupation of each processor should not affect overall system response time to keep appropriate system performance. This paper discusses the comparison evaluation between the difference priority techniques and hardware change on A233 back-plane to improve the communication methods, etc., as to the bus arbitration schemes of communication master(CM) applied to UCN site based on the waveform data acquired from A233 CPLD and HFC bus design specification. (authors)

  15. An assessment of alternatives for replacing Freon 113 in bench type electrical circuit board cleaning at Fermi National Accelerator Laboratory

    SciTech Connect (OSTI)

    Isakson, K.; Vessell, A.L.

    1994-07-01T23:59:59.000Z

    Fermilab is presently phasing out all solvents containing Freon-113 (CFC-113) as part of the continuing Waste Minimization Program. These solvents are used primarily in cleaning the flux off of electronic circuit boards after soldering, specifically in bench type work. Title VI of the Clean Air Act mandates a production phase-out for ozone depleting substances, like CFC-113, by the year 2000. Our study addresses this issue by evaluating and choosing alternative non-CFC solvents to replace the CFC-1 13 solvents at Fermilab. Several potential non-CFC cleaning solvents were tested. The evaluation took place in three parts: controlled experimental evaluation, chemical composition evaluation, and employee performed evaluation. First, we performed a controlled nine-step procedure with the potential solvents where each was evaluated in categories such as cleaning effectiveness, odor, residue, type of output and drying time. Next, we listed the chemical composition of each solvent. We noted which solvents contained hydrochlorofluorocarbons because they are targeted for phase-out in the future and will be recognized as interim solutions only. Finally, after preliminary testing, five solvents were chosen as the best options. These solvents were sent to be tested by Fermilab employees who use such materials. Their opinions are valuable not only because they are knowledgeable in this field, but also because they will be using the solvents chosen to replace the CFC-113 solvents. The results favored two ``best alternatives``: Safezone Solvent Flux Remover by Miller-Stephenson and E-Series CFC Free Flux-Off 2000 by Chemtech. Another possible solution also pursued is the no-clean solder option. In our study, we were not able to thoroughly investigate the many types of no-clean solders because of time and financial constraints. The testing that was done, however, showed that no-clean solder was a viable alternative in many cases.

  16. Compliance with the Clean Air Act Title VI Stratospheric Ozone Protection Program requirements at U.S. DOE Oak Ridge Reservation Facilities

    SciTech Connect (OSTI)

    Humphreys, M.P.; Atkins, E.M.

    1999-07-01T23:59:59.000Z

    The Title VI Stratospheric Ozone Protection Program of the Clean Air Act (CAA) requires promulgation of regulations to reduce and prevent damage to the earth's protective ozone layer. Regulations pursuant to Title VI of the CAA are promulgated in the Code of Federal Regulations (CFR) at Title 40 CFR, Part 822. The regulations include ambitious production phaseout schedules for ozone depleting substances (ODS) including chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), halons, carbon tetrachloride, and methyl chloroform under 40 CFR 82, Subpart A. The regulations also include requirements for recycling and emissions reduction during the servicing of refrigeration equipment and technician certification requirements under Subpart F; provisions for servicing of motor vehicle air conditioners under Subpart B; a ban on nonessential products containing Class 1 ODS under Subpart C; restrictions on Federal procurement of ODS under Subpart D; labeling of products using ODS under Subpart E; and the Significant New Alternatives Policy Program under Subpart G. This paper will provide details of initiatives undertaken at US Department of Energy (DOE) Oak Ridge Reservation (ORR) Facilities for implementation of requirements under the Title VI Stratospheric Ozone Protection Program. The Stratospheric Ozone Protection Plans include internal DOE requirements for: (1) maintenance of ODS inventories; (2) ODS procurement practices; (3) servicing of refrigeration and air conditioning equipment; (4) required equipment modifications or replacement; (5) technician certification training; (6) labeling of products containing ODS; (7) substitution of chlorinated solvents; and (8) replacement of halon fire protection systems. The plans also require establishment of administrative control systems which assure that compliance is achieved and maintained as the regulations continue to develop and become effective.

  17. Toxicity of trifluoroacetate to aquatic organisms

    SciTech Connect (OSTI)

    Berends, A.G.; Rooij, C.G. de [Solvay S.A., Brussels (Belgium); Boutonnet, J.C. [Elf Atochem, Levallois-Perret (France); Thompson, R.S. [Zeneca Ltd., Devon (United Kingdom). Brixham Environmental Lab.

    1999-05-01T23:59:59.000Z

    As a result of the atmospheric degradation of several hydrofluorocarbons and hydrochlorofluorocarbons, trifluoroacetate (TFA) will be formed. Through precipitation, TFA will enter aquatic ecosystems. To evaluate the impact on the aquatic environment, an aquatic toxicity testing program was carried out with sodium trifluoroacetate (NaTFA). During acute toxicity tests, no effects of NaTFA on water fleas (Daphnia magna) and zebra fish (Danio retrio) were found at a concentration of 1,200 mg/L. A 7-d study with duckweed (Lemna gibba Ge) revealed a NOEC of 300 mg/L. On the basis of the results of five toxicity tests with Selenastrum capricornutum, they determined a NOEC of 0.12 mg/L. However, algal toxicity tests with NaTFA and Chlorella vulgaris, Scenedesmus subspicatus, Chlamydomonas reinhardtii, Dunaliella tertiolecta, Eugelan gracilis, Phaeodactylum tricornutum, Navicula pelliculosa, Skeletonema costatum, Anabaena flos-aquae, and Microcystis aeruginosa resulted in EC50 values that were all higher than 100 mg/L. The toxicity of TFA to S. capricornutum could be due to metabolic defluorination to monofluoroacetate (MFA), which is known to inhibit the citric acid cycle. A toxicity test with MFA and S. capricornutum revealed it to be about three orders of magnitude more toxic than TFA. However, a bioactivation study revealed that defluorination of TFA was less than 4%. On the other hand, S. capricornutum exposed to a toxic concentration of NaTFA showed a recovery of growth when citric acid was added, suggesting that TFA (or a metabolite of TFA) interferes with the citric acid cycle. A recovery of the growth of S. capricornutum was also found when TFA was removed from the test solutions. Therefore, TFA should be considered algistatic and not algicidic for S. capricornutum. On the basis of the combined results of the laboratory tests and a previously reported semi-field study, they can consider a TFA concentration of 0.10 mg/L as safe for the aquatic ecosystem.

  18. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 1: Refrigerant Properties

    SciTech Connect (OSTI)

    Mark O. McLinden; Arno Laesecke; Eric W. Lemmon; Joseph W. Magee; Richard A. Perkins

    2002-08-30T23:59:59.000Z

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of measuring thermodynamic properties R125, R410A and R507A, measuring viscosity and thermal conductivity of R410A and R507A and comparing data to mixture models in NIST REFPROP database. For R125, isochoric (constant volume) heat capacity was measured over a temperature range of 305 to 397 K (32 to 124 C) at pressures up to 20 MPa. For R410A, isochoric heat capacity was measured along 8 isochores with a temperature range of 303 to 397 K (30 to 124 C) at pressures up to 18 MPa. Pressure-density-temperature was also measured along 14 isochores over a temperature range of 200 to 400 K (-73 to 127 C) at pressures up to 35 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. For R507A, viscosity was measured along 5 isotherms over a temperature range of 301 to 421 K (28 to 148 C) at pressures up to 83 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. Mixture models were developed to calculate the thermodynamic properties of HFC refrigerant mixtures containing R32, R125, R134a and/or R125. The form of the model is the same for all the blends considered, but blend-specific mixing functions are required for the blends R32/125 (R410 blends) and R32/134a (a constituent binary of R407 blends). The systems R125/134a, R125/143a, R134a/143a, and R134a/152a share a common, generalized mixing function. The new equation of state for R125 is believed to be the most accurate and comprehensive formulation of the properties for that fluid. Likewise, the mixture model developed in this work is the latest state-of-the-art for thermodynamic properties of HFC refrigerant blends. These models were incorporated into version 7 of NIST REFPROP database.

  19. DOE Hanford Network Upgrades and Disaster Recovery Exercise Support the Cleanup Mission Now and into the Future

    SciTech Connect (OSTI)

    Eckman, Todd J. [Mission Support Alliance, Richland, WA (United States); Hertzel, Ali K. [Lockheed Martin Services, Inc. (United States); Lane, James J. [Lockheed Martin - Information Systems and Global Solutions (United States)

    2013-11-07T23:59:59.000Z

    In 2013, the U.S. Department of Energy's (DOE) Hanford Site, located in Washington State, funded an update to the critical network infrastructure supporting the Hanford Federal Cloud (HFC). The project, called ET-50, was the final step in a plan that was initiated five years ago called "Hanford's IT Vision, 2015 and Beyond." The ET-50 project upgraded Hanford's core data center switches and routers along with a majority of the distribution layer switches. The upgrades allowed HFC the network intelligence to provide Hanford with a more reliable and resilient network architecture. The culmination of the five year plan improved network intelligence and high performance computing as well as helped to provide 10 Gbps capable links between core backbone devices (10 times the previous bandwidth). These improvements allow Hanford the ability to further support bandwidth intense applications, such as video teleconferencing. The ET-50 switch upgrade, along with other upgrades implemented from the five year plan, have prepared Hanford's network for the next evolution of technology in voice, video, and data. Hand-in-hand with ET-50's major data center outage, Mission Support Alliance's (MSA) Information Management (IM) organization executed a disaster recovery (DR) exercise to perform a true integration test and capability study. The DR scope was planned within the constraints of ET-50's 14 hour datacenter outage window. This DR exercise tested Hanford's Continuity of Operations (COOP) capability and failover plans for safety and business critical Hanford Federal Cloud applications. The planned suite of services to be tested was identified prior to the outage and plans were prepared to test the services ability to failover from the primary Hanford data center to the backup data center. The services tested were: Core Network (backbone, firewall, load balancers); Voicemail; Voice over IP (VoIP); Emergency Notification; Virtual desktops; and, Select set of production applications and data. The primary objective of the exercise was to test COOP around the emergency operations at Hanford to provide information on capabilities and dependencies of the current system to insure improved focus of emergency, safety and security capacity in a disaster situation. The integration of the DR test into the ET-50 project allowed the testing of COOP at Hanford and allowed the lessons learned to be defined. These lessons learned have helped improve the understanding of Hanford's COOP capabilities and will be critical for future planning. With the completion of the Hanford Federal Cloud network upgrades and the disaster recovery exercise, the MSA has a clearer path forward for future technology implementations as well as network improvements to help shape the usability and reliability of the Hanford network in support of the cleanup mission.

  20. Convective heat transfer to CO{sub 2} at a supercritical pressure flowing vertically upward in tubes and an annular channel

    SciTech Connect (OSTI)

    Bae, Yoon-Yeong; Kim, Hwan-Yeol [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea)

    2009-01-15T23:59:59.000Z

    The Super-Critical Water-Cooled Reactor (SCWR) has been chosen by the Generation IV International Forum as one of the candidates for the next generation nuclear reactors. Heat transfer to water from a fuel assembly may deteriorate at certain supercritical pressure flow conditions and its estimation at degraded conditions as well as in normal conditions is very important to the design of a safe and reliable reactor core. Extensive experiments on a heat transfer to a vertically upward flowing CO{sub 2} at a supercritical pressure in tubes and an annular channel have been performed. The geometries of the test sections include tubes of an internal diameter (ID) of 4.4 and 9.0 mm and an annular channel (8 x 10 mm). The heat transfer coefficient (HTC) and Nusselt numbers were derived from the inner wall temperature converted by using the outer wall temperature measured by adhesive K-type thermocouples and a direct (tube) or indirect (annular channel) electric heating power. From the test results, a correlation, which covers both a deteriorated and a normal heat transfer regime, was developed. The developed correlation takes different forms in each interval divided by the value of parameter Bu. The parameter Bu (referred to as Bu hereafter), a function of the Grashof number, the Reynolds number and the Prandtl number, was introduced since it is known to be a controlling factor for the occurrence of a heat transfer deterioration due to a buoyancy effect. The developed correlation predicted the HTCs for water and HCFC-22 fairly well. (author)

  1. Final Scientific Report

    SciTech Connect (OSTI)

    Suzanne Lutwick; Helen Cunning

    2011-05-25T23:59:59.000Z

    Hackensack University Medical Center's major initiative to create a cleaner healthier and safer environment for patients, employees and the community served by the medical center is built on its commitment to protect the environment and conserve precious energy resources. Since 2004 the Medical Center launched a long term campaign to temper the negative environmental impact of proposed and existing new construction at the medical center and to improve campus wide overall energy efficiency. The plan was to begin by implementing a number of innovative and eco-friendly enhancements to the Gabrellian Women's and Children's Pavilion, in construction at the time, which would lead to Certification by the US Green Building Councils Leadership & Environmental Design (LEED) program. In addition the medical center would evaluate the feasibility of implementing a photovoltaic system in the new construction (in development and planned) to provide clean pollution free electricity. The steps taken to achieve this included conducting a feasibility study complete with architectural and engineering assessments to determine the potential for implementation of a photovoltaic system on the campus and also to conduct an energy survey that would focus on determining specific opportunities and upgrades that would lead to a healthier energy efficient interior environment at the medical center. The studies conducted by the medical center to determine the viability of installing a photovoltaic system identified two key issues that factored into leaderships decision not to implement the solar powered system. These factors were related to the advanced phase of construction of the women's and children's pavilion and the financial considerations to redesign and implement in the ambulatory cancer center. The medical center, in spite of their inability to proceed with the solar aspect of the project upheld their commitment to create a healthier environment for the patients and the community. To achieve a healthier energy efficient interior environment the medical center made substantive upgrades and improvements to the HVAC, plumbing electrical and other operating systems. Measures that were implemented range from use of lighting and plumbing fixture sensors, to reduce electrical and water usage, to use of refrigerants containing hydrochlorofluorocarbons (HCFCs) which cause significantly less depletion of the ozone layer than the refrigerants more commonly used. Additional appropriate energy efficiency component upgrades include the installation of Chiller plants with variable frequency drives (VFDs) and harmonic filters, high efficiency motors, solar window glazing, and lighting/motion sensors.

  2. Final Technical Report

    SciTech Connect (OSTI)

    Helen Cunning

    2012-05-08T23:59:59.000Z

    Hackensack University Medical Center's major initiative to create a cleaner healthier and safer environment for patients, employees and the community served by the medical center is built on its commitment to protect the environment and conserve precious energy resources. Since 2004 the Medical Center launched a long term campaign to temper the negative environmental impact of proposed and existing new construction at the medical center and to improve campus wide overall energy efficiency. The plan was to begin by implementing a number of innovative and eco-friendly enhancements to the Gabrellian Women's and Children's Pavilion, in construction at the time, which would lead to Certification by the US Green Building Councils Leadership & Environmental Design (LEED) program. In addition the medical center would evaluate the feasibility of implementing a photovoltaic system in the new construction (in development and planned) to provide clean pollution free electricity. The steps taken to achieve this included conducting a feasibility study complete with architectural and engineering assessments to determine the potential for implementation of a photovoltaic system on the campus and also to conduct an energy survey that would focus on determining specific opportunities and upgrades that would lead to a healthier energy efficient interior environment at the medical center. The studies conducted by the medical center to determine the viability of installing a photovoltaic system identified two key issues that factored into leaderships decision not to implement the solar powered system. These factors were related to the advanced phase of construction of the women's and children's pavilion and the financial considerations to redesign and implement in the ambulatory cancer center. The medical center, in spite of their inability to proceed with the solar aspect of the project upheld their commitment to create a healthier environment for the patients and the community. To achieve a healthier energy efficient interior environment the medical center made substantive upgrades and improvements to the HVAC, plumbing electrical and other operating systems. Measures that were implemented range from use of lighting and plumbing fixture sensors , to reduce electrical and water usage, to use of refrigerants containing hydrochlorofluorocarbons (HCFCs) which cause significantly less depletion of the ozone layer than the refrigerants more commonly used. Additional appropriate energy efficiency component upgrades include the installation of Chiller plants with variable frequency drives (VFDs) and harmonic filters, high efficiency motors, solar window glazing, and lighting/motion sensors.

  3. Performance characteristics of a turbo expander substituted for expansion valve on air-conditioner

    SciTech Connect (OSTI)

    Cho, Soo-Yong [Department of Mechanical and Aerospace Engineering (ReCAPT), Gyeongsang National University, 900 Gajoa-dong, Jinju 660-701 (Korea); Cho, Chong-Hyun [School of Mechanical and Aerospace Engineering, Gyeongsang National University, 900 Gajoa-dong, Jinju 660-701 (Korea); Kim, Chaesil [Department of Mechanical Engineering, Changwon National University, 9 Sarim-dong, Changwon 641-773 (Korea)

    2008-09-15T23:59:59.000Z

    An experimental study is conducted on a small turbo expander which could be applied to the expansion process in place of expansion valves in refrigerator or air-conditioner to improve the cycle efficiency by recovering energy from the throttling process. The operating gas is HFC134a and the maximum cooling capacity of experiment apparatus is 32.7 kW. Four different turbo expanders are tested to find the performance characteristics of the turbo expander when they operate at a low partial admission rate. The partial admission rate is 1.70% or 2.37, and expanders are operated in the supersonic flow. In the experiment, pressure and temperature are measured at 10 different locations in the experimental apparatus. In addition to these measurements, output power at the turbo expander is measured through a generator installed on a rotor shaft with the rotational speed. Performance data of the turbo expander are obtained at many part load operations by adjusting the output power of the generator. A maximum of 15.8% total-to-static efficiency is obtained when the pressure ratio and the partial admission ratio are 2.37 and 1.70%, respectively. Experimental results show that the optimal velocity ratio decreases when the pressure ratio is decreased, and peak efficiencies, which are obtained at locally maximized efficiency depending on the operating condition, vary linearly against the subcooling temperature or the pressure ratio. (author)

  4. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T.

    2008-03-30T23:59:59.000Z

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  5. Overview of CFC replacement issues for household refrigeration

    SciTech Connect (OSTI)

    Vineyard, E.A. [Oak Ridge National Lab., TN (United States); Roke, L. [Fisher and Paykel, Auckland (New Zealand); Hallett, F. [Frigidaire, Washington, DC (United States)

    1991-12-31T23:59:59.000Z

    In 1974, the famous ozone depletion theory of Rowland and Molina claimed that chlorofluorocarbons (CFCs) diffuse into the stratosphere where they are broken down by photolysis to release chlorine atoms that catalytically destroy ozone. Although the understanding of the science is still imperfect, there is little doubt that CFCs play a major role in the Antarctic ozone hole phenomenon and the decline in ozone observed in the rest of the world. Another issue that has become increasingly important is the potential of CFCs to change the earth`s temperature and to modify the climate. While the main impact in global warming is made by increased concentrations of carbon dioxide, CFCs and other trace gases also contribute to this effect. In an effort to respond to the global environmental threat, a CFC protocol was adopted during a diplomatic conference in Montreal. This document, known as the Montreal Protocol, was ratified in 1988 and put into effect on January 1, 1989. In accordance with Article 6 of the Montreal Protocol, the countries that signed the agreement shall periodically assess the control measures provided for in the Protocol. As part of that assessment process, household refrigeration was investigated to determine the status of CFC-12 replacements. The conclusion was that much progress has been made towards finding a suitable replacement. Compressors designed for HFC-134a have efficiencies comparable to those for CFC-12 and acceptable reliability tests have been obtained with ester lubricants. In addition, other replacements such as R-152a and refrigerant mixtures exist, but will require more study. Cycle options, such as the Stirling cycle, may be viable, but are further out in the future. The impact of new refrigerants is expected to result in elimination of CFC-12 consumption in developed countries by 1997 and in developing countries by 2005.

  6. Development of single crystal filaments. Final report

    SciTech Connect (OSTI)

    Milewski, J.V.; Shoultz, R.A.; Bourque-McConnell, M.M.

    1995-04-01T23:59:59.000Z

    The program just completed addresses a route to a more efficient longer-lasting electric light bulb filament. All current filaments for light bulbs are metallic in nature. They are subject to embrittlement with age (large grain growth) and relatively high vapor pressures which limits their operating temperature. There is evidence which suggests advantages to using high temperature refractory single crystal fibers as a filament for a light bulb. These refractory materials may include materials such as hafnium or tantalum carbide which have melting points about 500{degrees}C higher than tungsten. Another advantage is that single crystal fibers have a very high degree of crystalline perfection with very few voids and dislocations. Without these imperfections, the atomic mobility at high temperatures is highly restricted. Thus single crystal fibers are very stable at high temperature and will last longer. The efficiencies result from running these single crystal ceramic fiber filaments at higher temperatures and the higher emissivity of the carbide filaments compared to tungsten. The amount of visible light is proportional to the 4the power of the temperature thus a 500{degrees}C higher operating give about a 3-fold increase in radiation in the visible range. The program accomplishments can be summarized as follows: (1) Single crystal fibers of JfC sufficient crystal quality for light bulb filament applications were made. (2) The HfC fiber furnace growth chamber, power control and data collection system was developed for the laboratory scale plant. (3) method for mounting and apparatuses for testing the single crystal fiber filaments were developed and built.

  7. Evaluation of design options for improving the energy efficiency of an environmentally safe domestic refrigerator-freezer

    SciTech Connect (OSTI)

    Vineyard, E.A.; Sand, J.R. [Oak Ridge National Lab., TN (United States); Bohman, R.H.

    1995-03-01T23:59:59.000Z

    In order to reduce greenhouse emissions from power plants and respond to regulatory actions arising from the National Appliance Energy Conservation Act (NAECA), several design options were investigated for improving the energy efficiency of a conventionally designed, domestic refrigerator-freezer. The options, such as improved cabinet insulation and high-efficiency compressor and fans, were incorporated into a prototype refrigerator-freezer cabinet and refrigeration system to produce a unit that is superior from an environmental viewpoint due to its lower energy consumption and the use of refrigerant HFC-134a as a replacement for CFC-12. Baseline energy performance of the original 1993 production refrigerator-freezer, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. A detailed refrigerator system computer model was used to evaluate the energy savings for several design modifications that, collectively, could achieve a targeted energy consumption of 1.00 kWh/d for a 20 ft{sup 3} (570 l) top-mount, automatic-defrost, refrigerator-freezer. The energy consumption goal represents a 50% reduction in the 1993 NAECA standard for units of this size. Following the modeling simulation, laboratory prototypes were fabricated and tested to experimentally verify the analytical results and aid in improving the model in those areas where discrepancies occurred. While the 1.00 kWh/d goal was not achieved with the modifications, a substantial energy efficiency improvement of 22% (1.41 kWh/d) was demonstrated using near-term technologies. It is noted that each improvement exacts a penalty in terms of increased cost or system complexity/reliability. Further work on this project will analyze cost-effectiveness of the design changes and investigate alternative, more-elaborate, refrigeration system changes to further reduce energy consumption.

  8. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01T23:59:59.000Z

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.

  9. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 2: Air Conditioner System Study

    SciTech Connect (OSTI)

    Piotr A. Domanski; W. Vance Payne

    2002-10-31T23:59:59.000Z

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-ton R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The performance degradation of R410A at higher temperatures was greater than R22. However, the R22 and R410A systems both operated normally during all tests. Visual observations of the R410A system provided no indication of vibrations or TXV hunting at high ambient outdoor test conditions with the compressor operating in the transcritical regime.

  10. DOE/AHAM advanced refrigerator technology development project

    SciTech Connect (OSTI)

    Vineyard, E.A.; Sand, J.R.; Rice, C.K.; Linkous, R.L.; Hardin, C.V.; Bohman, R.H.

    1997-03-01T23:59:59.000Z

    As part of the effort to improve residential energy efficiency and reduce greenhouse emissions from power plants, several design options were investigated for improving the energy efficiency of a conventionally designed domestic refrigerator-freezer. The program goal was to reduce the energy consumption of a 20-ft{sup 3} (570-L) top-mount refrigerator-freeze to 1.00 kWh/d, a 50% reduction from the 1993 National Appliance Energy Conservation Act (NAECA) standard. The options--such as improved cabinet and door insulation, a high-efficiency compressor, a low-wattage fan, a large counterflow evaporator, and adaptive defrost control--were incorporated into prototype refrigerator-freezer cabinets and refrigeration systems. The refrigerant HFC-134a was used as a replacement for CFC-12. The baseline energy performance of the production refrigerator-freezers, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. The project consisted of three main phases: (1) an evaluation of energy-efficient design options using computer simulation models and experimental testing, (2) design and testing of an initial prototype unit, and (3) energy and economic analyses of a final prototype. The final prototype achieved an energy consumption level of 0.93 kWh/d--an improvement of 45% over the baseline unit and 54% over the 1993 NAECA standard for 20-fg{sup 3} (570-L) units. The manufacturer`s cost for those improvements was estimated at $134; assuming that cost is doubled for the consumer, it would take about 11.4 years to pay for the design changes. Since the payback period was thought to be unfeasible, a second, more cost-effective design was also tested. Its energy consumption level was 1.16 kWh/d, a 42% energy savings, at a manufacturer`s cost increase of $53. Again assuming a 100% markup, the payback for this unit would be 6.6 years.

  11. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    SciTech Connect (OSTI)

    Li, Shiguang; Shou, S.; Pyrzynski, Travis; Makkuni, Ajay; Meyer, Howard

    2013-12-31T23:59:59.000Z

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (? 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at least 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ? 1,000 membrane intrinsic CO2 permeance, ? 90% CO2 removal in one stage, ? 2 psi gas side pressure drop, and ? 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97% CO2 product purity was achieved throughout the test. Membrane contactor modules have been scaled from bench scale 2-inch diameter by 12-inch long (20 ft2 membrane surface area) modules to 4-inch diameter by 60-inch long pilot scale modules (165 ft2 membrane surface area). Pilot scale modules were tested in an integrated absorption/regeneration system for CO2 capture field tests at a coal-fired power plant (Midwest Generation’s Will County Station located in Romeoville, IL). Absorption and regeneration contactors were constructed utilizing high performance super-hydrophobic, nano-porous PEEK membranes with CO2 gas permeance of 2,000 GPU and a 1,000 GPU, respectively. Field tests using aMDEA solvent achieved greater than 90% CO2 removal in a single stage. The absorption mass transfer coefficient was 1.2 (sec)-1, exceeding the initial target of 1.0 (sec)-1. This mass transfer coefficient is over one order of magnitude greater than that of conventional gas/liquid contacting equipment. The economic evaluation based on field tests data indicates that the CO2 capture cost associated with membrane contactor technology is $54.69 (Yr 2011$)/tonne of CO2 captured when using aMDEA as a solvent. It is projected that the DOE’s 2025 cost goal of $40 (Yr 2011$)/tonne of CO2 captured can be met by decreasing membrane module cost and by utilizing advanced CO2 capture solvents. In the second stage of the field test, an advanced solvent, Hitachi’s H3-1 was utilized. The use of H3-1 solvent increased mass transfer coefficient by 17% as compared to aMDEA solvent. The high mass transfer coefficient of H3-1 solvent combined with much more favorable solvent regeneration requirements, indicate that the projected savings achievable with membrane contactor process can be further improved. H3-1 solvent will be used in the next pilot-scale development phase. The integrated absorption/regeneration process design and high performance membrane contactors developed in the current bench-scale program will be used as the base technology for future pilot-scale development.

  12. Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect (OSTI)

    Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL; Craddick, William G [ORNL

    2007-09-01T23:59:59.000Z

    The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 depending on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water heating. With the greater energy savings the cost of the more energy efficient components required for the IHP can be recovered more quickly than if they were applied to individual pieces of equipment to meet each individual energy service need. An IHP can be designed to use either outdoor air or geothermal resources (e.g., ground, ground water, surface water) as the environmental energy source/sink. Based on a scoping study of a wide variety of possible approaches to meeting the energy service needs for a ZEH, DOE selected the IHP concept as the most promising and has supported research directed toward the development of both air- and ground-source versions. This report describes the ground-source IHP (GS-IHP) design and includes the lessons learned and best practices revealed by the research and development (R&D) effort throughout. Salient features of the GS-IHP include a variable-speed rotary compressor incorporating a brushless direct current permanent magnet motor which provides all refrigerant compression, a variable-speed fan for the indoor section, a multiple-speed ground coil circuit pump, and a single-speed pump for water heating operation. Laboratory IHP testing has thus far used R-22 because of the availability of the needed components that use this refrigerant. It is expected that HFC R-410A will be used for any products arising from the IHP concept. Data for a variable-speed compressor that uses R-410A has been incorporated into the DOE/ORNL Mark VI Heat Pump Design Model (HPDM). HPDM was then linked to TRNSYS, a time-series-dependent simulation model capable of determining the energy use of building cooling and heating equipment as applied to a defined house on a sub-hourly basis. This provided a highly flexible design analysis capability for advanced heat pump equipment; however, the program also took a relatively long time to run. This approach was used with the initial prototype design reported in Murphy et al. (2007a) and in the business case analysis of Baxter (2007).