Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hazardous Waste Program (Alabama)  

Broader source: Energy.gov [DOE]

This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

2

Hazardous Waste Compliance Program Plan  

SciTech Connect (OSTI)

The Hazardous Waste Compliance Program Plan (HWCPP) describes how the Rocky Flats Plant institutes a more effective waste management program designed to achieve and maintain strict adherence to the Resource Conservation and Recovery Act (RCRA) requirements. Emphasis is given to improve integration of line operations with programmatic and functional support activities necessary to achieve physical compliance to RCRA regulated equipment, facilities and operations at the floor level. This program focuses on specific activities occurring or which need to occur within buildings containing RCRA regulated units and activities. The plan describes a new approach to achieving and maintaining compliance. This approach concentrates authority and accountability for compliance with the line operating personnel, with support provided from the programmatic functions. This approach requires a higher degree of integration and coordination between operating and program support organizations. The principal changes in emphases are; (1) increased line operations involvement, knowledge and accountability in compliance activities, (2) improved management systems to identify, correct and/or avoid deficiencies and (3) enhanced management attention and employee awareness of compliance related matters.

Potter, G.L.; Holstein, K.A.

1994-05-01T23:59:59.000Z

3

Hazardous Waste Facility Siting Program (Maryland)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level...

4

Hazardous and Radioactive Mixed Waste Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

1989-02-22T23:59:59.000Z

5

EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program  

Broader source: Energy.gov [DOE]

The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

6

Hanford Site Solid (Radioactive and Hazardous) Waste Program...  

Office of Environmental Management (EM)

Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE...

7

Georgia Hazardous Waste Management Act  

Broader source: Energy.gov [DOE]

The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

8

Hazardous Waste Remedial Actions Program annual progress report, FY 1990  

SciTech Connect (OSTI)

The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

Not Available

1990-12-01T23:59:59.000Z

9

Hazardous Waste Management (Arkansas)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7...

10

Hazardous Waste Management (Delaware)  

Broader source: Energy.gov [DOE]

The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

11

Missouri Hazardous Waste Management Law (Missouri)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

12

Order Module--self-study program: HAZARDOUS WASTE OPERATIONS...  

Energy Savers [EERE]

also help prepare you for the practice at the end of this module and for the criterion test. Before continuing, you should obtain a copy of the regulation at Hazardous waste...

13

Hazardous Waste Management (North Dakota)  

Broader source: Energy.gov [DOE]

The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and...

14

Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience  

SciTech Connect (OSTI)

The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the ``normal`` municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan`s programs. Focusing on the Plan`s household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

Not Available

1991-10-01T23:59:59.000Z

15

Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience  

SciTech Connect (OSTI)

The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the normal'' municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan's programs. Focusing on the Plan's household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

Not Available

1991-10-01T23:59:59.000Z

16

Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Washington  

SciTech Connect (OSTI)

This ''Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement'' (HSW EIS) covers three primary aspects of waste management at Hanford--waste treatment, storage, and disposal. It also addresses four kinds of solid waste--low-level waste (LLW), mixed (radioactive and chemically hazardous) low-level waste (MLLW), transuranic (TRU) waste, and immobilized low-activity waste (ILAW). It fundamentally asks the question: how should we manage the waste we have now and will have in the future? This EIS analyzes the impacts of the LLW, MLLW, TRU waste, and ILAW we currently have in storage, will generate, or expect to receive at Hanford. The HSW EIS is intended to help us determine what specific facilities we will continue to use, modify, or construct to treat, store, and dispose of these wastes (Figure S.1). Because radioactive and chemically hazardous waste management is a complex, technical, and difficult subject, we have made every effort to minimize the use of acronyms (making an exception for our four waste types listed above), use more commonly understood words, and provide the ''big picture'' in this summary. An acronym list, glossary of terms, and conversions for units of measure are provided in a readers guide in Volume 1 of this EIS.

N /A

2003-04-11T23:59:59.000Z

17

Hazardous Wastes Management (Alabama)  

Broader source: Energy.gov [DOE]

This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

18

Hazardous Waste Management Training  

E-Print Network [OSTI]

Hazardous Waste Management Training Persons (including faculty, staff and students) working with hazardous materials should receive annual training that addresses storage, use, and disposal of hazardous before handling hazardous waste. Departments are re- quired to keep records of training for as long

Dai, Pengcheng

19

Hazardous Waste Management (Oklahoma)  

Broader source: Energy.gov [DOE]

This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

20

Chemical inventory control program for mixed and hazardous waste facilities at SRS  

SciTech Connect (OSTI)

Mixed Waste (MW) and Hazardous Waste (HW) are being stored at the Savannah River Site (SRS) pending onsite and/or offsite treatment and disposal. The inventory control for these wastes has recently been brought under Technical Safety Requirements (TSR) in accordance with DOE Order 5480.22. With the TSRs was the question of the degree of rigor with which the inventory is to be tracked, considering that the variety of chemicals present, or that could be present, numbers in the hundreds. This paper describes the graded approach program to track Solid Waste (SW) inventories relative to TSRs. The approach uses a ratio of the maximum anticipated chemical inventory to the permissible inventory in accordance with Emergency Response Planning Guideline (ERPG) limits for on- and off-site receptors. A specific threshold ratio can then be determined. The chemicals above this threshold ratio are to be included in the chemical inventory control program. The chemicals that fall below the threshold ratio are managed in accordance with existing practice per State and RCRA hazardous materials requirements. Additionally, the facilities are managed in accordance with process safety management principles, specifically using process hazards analyses, which provides safety assurance for even the small quantities that may be excluded from the formal inventory control program. The method yields a practical approach to chemical inventory control, while maintaining appropriate chemical safety margins. The resulting number of specific chemicals that require inclusion in a rigorous inventory control program is greatly reduced by about 80%, thereby resulting in significant reduction in chemical data management while preserving appropriate safety margins.

Ades, M.J.; Vincent, A.M. III

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hazardous Waste Management (New Mexico)  

Broader source: Energy.gov [DOE]

The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

22

Hazardous Waste Management (Michigan)  

Broader source: Energy.gov [DOE]

A person shall not generate, dispose, store, treat, or transport hazardous waste in this state without complying with the requirements of this article. The department, in the conduct of its duties...

23

Hazardous Waste Disposal Sites (Iowa)  

Broader source: Energy.gov [DOE]

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

24

Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington  

SciTech Connect (OSTI)

The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) proposed waste management practices at the Hanford Site. The HSW EIS updates analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS) Records of Decision (RODs). Waste types considered in the HSW EIS include operational low-level radioactive waste (LLW), mixed low-level waste (MLLW), immobilized low-activity waste (ILAW), and transuranic (TRU) waste (including TRU mixed waste). MLLW contains chemically hazardous components in addition to radionuclides. Alternatives for management of these wastes at the Hanford Site, including the alternative of No Action, are analyzed in detail. The LLW, MLLW, and TRU waste alternatives are evaluated for a range of waste volumes, representing quantities of waste that could be managed at the Hanford Site. A single maximum forecast volume is evaluated for ILAW. The No Action Alternative considers continuation of ongoing waste management practices at the Hanford Site and ceasing some operations when the limits of existing capabilities are reached. The No Action Alternative provides for continued storage of some waste types. The other alternatives evaluate expanded waste management practices including treatment and disposal of most wastes. The potential environmental consequences of the alternatives are generally similar. The major differences occur with respect to the consequences of disposal versus continued storage and with respect to the range of waste volumes managed under the alternatives. DOE's preferred alternative is to dispose of LLW, MLLW, and ILAW in a single, modular, lined facility near PUREX on Hanford's Central Plateau; to treat MLLW using a combination of onsite and offsite facilities; and to certify TRU waste onsite using a combination of existing, upgraded, and mobile facilities. DOE issued the Notice of Intent to prepare the HSW EIS on October 27, 1997, and held public meetings during the scoping period that extended through January 30, 1998. In April 2002, DOE issued the initial draft of the EIS. During the public comment period that extended from May through August 2002, DOE received numerous comments from regulators, tribal nations, and other stakeholders. In March 2003, DOE issued a revised draft of the HSW EIS to address those comments, and to incorporate disposal of ILAW and other alternatives that had been under consideration since the first draft was published. Comments on the revised draft were received from April 11 through June 11, 2003. This final EIS responds to comments on the revised draft and includes updated analyses to incorporate information developed since the revised draft was published. DOE will publish the ROD(s) in the ''Federal Register'' no sooner than 30 days after publication of the Environmental Protection Agency's Notice of Availability of the final HSW EIS.

M.S. Collins C.M. Borgstrom

2004-01-01T23:59:59.000Z

25

Hazardous Waste Act (New Mexico)  

Broader source: Energy.gov [DOE]

"Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may: cause or significantly...

26

Hazardous waste management in the Pacific basin  

SciTech Connect (OSTI)

Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

1994-11-01T23:59:59.000Z

27

Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington  

SciTech Connect (OSTI)

This Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) ongoing and proposed waste management practices at the Hanford Site in Washington State. The HSW EIS updates some analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS; DOE 1997c) Records of Decision (RODs). The draft HSW EIS was initially issued in April 2002 for public comment (DOE 2002b). A revised draft HSW EIS was issued in March 2003 to address new waste management alternatives that had been proposed since the initial draft HSW EIS was prepared, and to address comments received during the public review period for the first draft (DOE 2003d). The revised draft HSW EIS also incorporated alternatives for disposal of immobilized low-activity waste (ILAW) from treatment of Hanford Site tank waste in the waste treatment plant (WTP) currently under construction, an activity that was not included in the first draft (68 FR 7110). This final HSW EIS describes the DOE preferred alternative, and in response to public comments received on the March 2003 revised draft, provides additional analyses for some environmental consequences associated with the preferred alternative, with other alternatives, and with cumulative impacts. Public comments on the revised draft HSW EIS are addressed in the comment response document (Volume III of this final EIS). This HSW EIS describes the environmental consequences of alternatives for constructing, modifying, and operating facilities to store, treat, and/or dispose of low-level (radioactive) waste (LLW), transuranic (TRU) waste, ILAW, and mixed low-level waste (MLLW) including WTP melters at Hanford. In addition, the potential long-term consequences of LLW, MLLW, and ILAW disposal on groundwater and surface water are evaluated for a 10,000-year period, although the DOE performance standards only require assessment for the first 1000 years after disposal (DOE 2001f). This document does not address non-radioactive waste that contains ''hazardous'' or ''dangerous'' waste, as defined under the Resource Conservation and Recovery Act (RCRA) of 1976 (42 USC 6901) and Washington State Dangerous Waste regulations (WAC 173-303). Following a previous National Environmental Policy Act (NEPA, 42 USC 4321) review (DOE 1997d), DOE decided to dispose of TRU waste in New Mexico at the Waste Isolation Pilot Plant (WIPP), a repository that meets the requirements of 40 CFR 191 (63 FR 3623). This HSW EIS has been prepared in accordance with NEPA, the DOE implementing procedures for NEPA 10 CFR 1021, and the Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 CFR 1500-1508).

N /A

2004-02-13T23:59:59.000Z

28

HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY  

E-Print Network [OSTI]

- Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL: Generator Building Dept. Please fill out the hazardous waste label on line and download labels on to a plainHAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non

Schaefer, Marcus

29

Nebraska Hazardous Waste Regulations (Nebraska)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal...

30

Montana Hazardous Waste Act (Montana)  

Broader source: Energy.gov [DOE]

This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental...

31

Hazardous Waste Management (North Carolina)  

Broader source: Energy.gov [DOE]

These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for...

32

Hazardous Waste Facilities Siting (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

33

Hazardous Waste Transporter Permits (Connecticut)  

Broader source: Energy.gov [DOE]

Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide information about obtaining permits and other permit...

34

Hazardous Waste Management Standards and Regulations (Kansas)  

Broader source: Energy.gov [DOE]

This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

35

Advanced Membrane Systems: Recovering Wasteful and Hazardous...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

36

UW-Approved Waste Disposal, Recycling and Treatment Sites Hazardous waste disposal at the University of Washington is coordinated by the EH&S Environmental Programs Office  

E-Print Network [OSTI]

UW-Approved Waste Disposal, Recycling and Treatment Sites Hazardous waste disposal, WA Rabanco Recycling Co Landfill Roosevelt, WA Waste Management, Columbia Ridge Landfill Arlington Refrigeration Shop Recovery Seattle, WA Fluorescent light tubes - intact Ecolights NW Recycle Seattle, WA Shop

Wilcock, William

37

Method of recycling hazardous waste  

SciTech Connect (OSTI)

The production of primary metal from ores has long been a necessary, but environmentally devastating process. Over the past 20 years, in an effort to lessen environmental impacts, the metal processing industry has developed methods for recovering metal values from certain hazardous wastes. However, these processes leave residual molten slag that requires disposal in hazardous waste landfills. A new process recovers valuable metals, metal alloys, and metal oxides from hazardous wastes, such as electric arc furnace (EAF) dust from steel mills, mill scale, spent aluminum pot liners, and wastewater treatment sludge from electroplating. At the same time, the process does not create residual waste for disposal. This new method uses all wastes from metal production processes. These hazardous materials are converted to three valuable products - mineral wool, zinc oxide, and high-grade iron.

NONE

1999-11-11T23:59:59.000Z

38

Surveillance Guide - OSS 19.5 Hazardous Waste Operations and...  

Broader source: Energy.gov (indexed) [DOE]

RL Facility Representative Program March 21, 1995 Surveillance Guide OSS 19.5 Revision 0 Hazardous Waste Operations and Emergency Response Page 6 of Error Bookmark...

39

Hazardous and Industrial Waste (Minnesota)  

Broader source: Energy.gov [DOE]

This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a...

40

Hazardous Waste Management Regulations (Mississippi)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Management Regulations follow the EPA's definitions and guidelines for the most part, which are listed in 40 CFR parts 260-282. In addition to these federal regulations the...

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CRAD, Hazardous Waste Management- December 4, 2007  

Broader source: Energy.gov [DOE]

Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

42

Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste  

E-Print Network [OSTI]

-hazardous solid chemicals may go in the trash. Have you disposed of "waste-like", legacy and unknown c Manage anyFocus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

Wilcock, William

43

Hazardous-waste analysis plan for LLNL operations  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

Roberts, R.S.

1982-02-12T23:59:59.000Z

44

Improving tamper detection for hazardous waste security  

SciTech Connect (OSTI)

After September 11, waste managers are increasingly expected to provide improved levels of security for the hazardous materials in their charge. Many low-level wastes that previously had minimal or no security must now be well protected, while high-level wastes require even greater levels of security than previously employed. This demand for improved security comes, in many cases, without waste managers being provided the necessary additional funding, personnel, or security expertise. Contributing to the problem is the fact that--at least in our experience--waste managers often fail to appreciate certain types of security vulnerabilities. They frequently overlook or underestimate the security risks associated with disgruntled or compromised insiders, or the potential legal and political liabilities associated with nonexistent or ineffective security. Also frequently overlooked are potential threats from waste management critics who could resort to sabotage, vandalism, or civil disobedience for purposes of discrediting a waste management program.

Johnston, R. G. (Roger G.); Garcia, A. R. E. (Anthony R. E.); Pacheco, A. N. (Adam N.); Trujillo, S. J. (Sonia J.); Martinez, R. K. (Ronald K.); Martinez, D. D. (Debbie D.); Lopez, L. N. (Leon N.)

2002-01-01T23:59:59.000Z

45

Hazardous Waste Management (Indiana)  

Broader source: Energy.gov [DOE]

The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental...

46

DC Hazardous Waste Management (District of Columbia)  

Broader source: Energy.gov [DOE]

This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces or eliminates waste at the source. It is the policy of...

47

Massachusetts Hazardous Waste Management Act (Massachusetts)  

Broader source: Energy.gov [DOE]

This Act contains regulations for safe disposal of hazardous waste, and establishes that a valid license is required to collect, transport, store, treat, use, or dispose of hazardous waste. Short...

48

Oklahoma Hazardous Waste Management Act (Oklahoma)  

Broader source: Energy.gov [DOE]

A hazardous waste facility permit from the Department of Environmental Quality is required to store, treat or dispose of hazardous waste materials, or to construct, own or operate any facility...

49

Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis  

SciTech Connect (OSTI)

The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

Bloom, R.R.

1996-04-01T23:59:59.000Z

50

Radiological hazards of alpha-contaminated waste  

SciTech Connect (OSTI)

The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process.

Rodgers, J.C.

1982-01-01T23:59:59.000Z

51

Energy and solid/hazardous waste  

SciTech Connect (OSTI)

This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

None

1981-12-01T23:59:59.000Z

52

Integrating Total Quality Management (TQM) and hazardous waste management  

SciTech Connect (OSTI)

The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

Kirk, N. [Colorado State Univ., Fort Collins, CO (United States)

1993-11-01T23:59:59.000Z

53

Apparatus for incinerating hazardous waste  

DOE Patents [OSTI]

An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

Chang, Robert C. W. (Martinez, GA)

1994-01-01T23:59:59.000Z

54

Apparatus for incinerating hazardous waste  

DOE Patents [OSTI]

An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

Chang, R.C.W.

1994-12-20T23:59:59.000Z

55

Hazardous and Radioactive Mixed Waste  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

1982-12-31T23:59:59.000Z

56

Hazardous Waste Management System-General (Ohio)  

Broader source: Energy.gov [DOE]

This chapter of the law establishes that the Ohio Environmental Protection Agency provides general regulations regarding hazardous waste, including landfills. Specific passages refer to the...

57

Chapter 38 Hazardous Waste Permitting Process (Kentucky)  

Broader source: Energy.gov [DOE]

This administrative regulation establishes the general provisions for storage, treatment, recycling, or disposal of hazardous waste. It provides information about permits and specific requirements...

58

Hazardous Waste Minimum Distance Requirements (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations set minimum distance requirements between certain types of facilities that generate, process, store, and dispose of hazardous waste and other land uses. The regulations require an...

59

Louisiana Hazardous Waste Control Law (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Environmental Quality is responsible for administering the Louisiana Hazardous Waste Control Law and the regulations created under that law.

60

Fire hazards analysis of central waste complex  

SciTech Connect (OSTI)

This document analyzes the fire hazards associated with operational the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

Irwin, R.M.

1996-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Improving Tamper Detection for Hazardous Waste Security  

SciTech Connect (OSTI)

Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

2003-02-26T23:59:59.000Z

62

Hazardous waste operational plan for site 300  

SciTech Connect (OSTI)

This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

Roberts, R.S.

1982-02-12T23:59:59.000Z

63

Issues related to uncertainty in projections of hazardous and mixed waste volumes in the U.S. Department of Energy`s environmental restoration program  

SciTech Connect (OSTI)

Projected volumes of contaminated media and debris at US Department of Energy (DOE) environmental restoration sites that are potentially subject to the hazardous waste provisions of the Resource Conservation and Recovery Act are needed to support programmatic planning. Such projections have been gathered in various surveys conducted under DOE`s environmental restoration and waste management programs. It is expected that reducing uncertainty in the projections through review of existing site data and process knowledge and through further site characterization will result in substantially lowered projections. If promulgated, the US Environmental Protection Agency`s Hazardous Waste Identification Rule would result in potentially even greater reductions in the projections when site conditions are reviewed under the provisions of the new rule. Reducing uncertainty in projections under current and future waste identification rules may be necessary to support effective remediation planning. Further characterization efforts that may be conducted should be designed to limit uncertainty in identifying volumes of wastes to the extent needed to support alternative selection and to minimize costs of remediation.

Picel, K.C.

1995-03-01T23:59:59.000Z

64

Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi)  

Broader source: Energy.gov [DOE]

The purpose of the Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations is to help maintain accountability and track data on the hazardous and nonhazardous waste sites in...

65

Radiation Hazards Program (Minnesota)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

66

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts)  

Broader source: Energy.gov [DOE]

This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct,...

67

Hazardous Waste Management Act (South Dakota)  

Broader source: Energy.gov [DOE]

It is the public policy of the state of South Dakota to regulate the control and generation, transportation, treatment, storage, and disposal of hazardous wastes. The state operates a comprehensive...

68

Rules and Regulations for Hazardous Waste Management (Rhode Island)  

Broader source: Energy.gov [DOE]

These regulations establish permitting and operational requirements for hazardous waste facilities. They are designed to minimize...

69

Remote vacuum compaction of compressible hazardous waste  

DOE Patents [OSTI]

A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

70

Remote vacuum compaction of compressible hazardous waste  

DOE Patents [OSTI]

A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

1998-10-06T23:59:59.000Z

71

Los Alamos National Laboratory Waste Management Program  

SciTech Connect (OSTI)

Los Alamos National Laboratory's (LANL) waste management program is responsible for disposition of waste generated by many of the LANL programs and operations. LANL generates liquid and solid waste that can include radioactive, hazardous, and other constituents. Where practical, LANL hazardous and mixed wastes are disposed through commercial vendors; low-level radioactive waste (LLW) and radioactive asbestos-contaminated waste are disposed on site at LANL's Area G disposal cells, transuranic (TRU) waste is disposed at the Waste Isolation Pilot Plant (WIPP), and high-activity mixed wastes are disposed at the Nevada Test Site (NTS) after treatment by commercial vendors. An on-site radioactive liquid waste treatment facility (RLWTF) removes the radioactive constituents from liquid wastes and treated water is released through an NPDES permitted outfall. LANL has a very successful waste minimization program. Routine hazardous waste generation has been reduced over 90% since 1993. LANL has a DOE Order 450.1-compliant environmental management system (EMS) that is ISO 14001 certified; waste minimization is integral to setting annual EMS improvement objectives. Looking forward, under the new LANL management and operating contractor, Los Alamos National Security (LANS) LLC, a Zero Liquid Discharge initiative is being planned that should eliminate flow to the RLWTF NPDES-permitted outfall. The new contractor is also taking action to reduce the number of permitted waste storage areas, to charge generating programs directly for the cost to disposition waste, and to simplify/streamline the waste system. (authors)

Lopez-Escobedo, G.M.; Hargis, K.M.; Douglass, C.R. [Los Alamos National Laboratory, NM (United States)

2007-07-01T23:59:59.000Z

72

Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York)  

Broader source: Energy.gov [DOE]

These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used...

73

Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management System (New York)  

Broader source: Energy.gov [DOE]

These regulations prescribe the management of hazardous waste facilities in New York State. They identify and list different types of hazardous wastes and describe standards for generators,...

74

M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters.

Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

1994-05-01T23:59:59.000Z

75

Hazardous Waste/Mixed Waste Treatment Building throughput study  

SciTech Connect (OSTI)

The hazardous waste/mixed waste HW/MW Treatment Building (TB) is the specified treatment location for solid hazardous waste/mixed waste at SRS. This report provides throughput information on the facility based on known and projected waste generation rates. The HW/MW TB will have an annual waste input for the first four years of approximately 38,000 ft{sup 3} and have an annual treated waste output of approximately 50,000 ft{sup 3}. After the first four years of operation it will have an annual waste input of approximately 16,000 ft{sup 3} and an annual waste output of approximately 18,000 ft. There are several waste streams that cannot be accurately predicted (e.g. environmental restoration, decommissioning, and decontamination). The equipment and process area sizing for the initial four years should allow excess processing capability for these poorly defined waste streams. A treatment process description and process flow of the waste is included to aid in understanding the computations of the throughput. A description of the treated wastes is also included.

England, J.L.; Kanzleiter, J.P.

1991-12-18T23:59:59.000Z

76

The Transboundary Movement of Hazardous Waste in the Mediterranean Regional Context  

E-Print Network [OSTI]

HAZARDOUS WASTE IN MEDITERRANEAN Moreover, the Mediterranean Protocol,Protocol Area by transboundary movements of hazardous wastes (wastes subject to this Protocol; Annex II: List of hazardous

Scovazzi, Tullio

2000-01-01T23:59:59.000Z

77

Burning hazardous waste in cement kilns  

SciTech Connect (OSTI)

The cement manufacturing process is one of the oldest in the world, having been in practice for over 2000 years. It is also one of the most energy intensive, with up to 65 percent of the cost of the product attributable to energy consumption. In addition to high energy demand, the process conditions include extremely high temperatures. Cement clinker forms when the correct mixture of raw materials is heated to 2650/sup 0/ F. This requires combustion temperatures exceeding 3000/sup 0/ F. under oxidizing conditions. To accomplish this, gas temperatures above 2000/sup 0/ F. occur for several seconds (typically five seconds), which is much longer than residence times in permitted hazardous waste incinerators. These conditions are extremely favorable to the destruction of organic compounds and have led to extensive investigation into the potential for burning hazardous waste in cement kilns. Cement kilns consuming hazardous wastes have been tested for air emissions under various operating conditions. The substantial body of information on the emissions and handling of hazardous wastes from these studies has demonstrated that effective destruction of wastes can be accomplished with the added benefits of energy conservation and no significant change in air emissions.

Chadbourne, J.F.; Helmsteller, A.J.

1983-06-01T23:59:59.000Z

78

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network [OSTI]

of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover bodies (without needles) Container: Sturdy and leakproof with Hazardous Glass label. Either: Plastic resistant, leakproof plastic carboy with green sharps label. Do not fill these containers completely. Leave

Sheridan, Jennifer

79

Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1  

SciTech Connect (OSTI)

This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

NONE

1997-07-01T23:59:59.000Z

80

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect (OSTI)

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Compliance of Hazardous Waste Satellite Accumulation Areas (SAAs)  

E-Print Network [OSTI]

through prevention, minimization, and recycling Classroom or one-on-one waste generator training, other DOE and University waste organizations Flammable waste cans, 30-gallon, 55-gallon drums (steelCompliance of Hazardous Waste Satellite Accumulation Areas (SAAs) All Hazardous waste generated

82

Hazardous waste management in the Texas construction industry  

E-Print Network [OSTI]

This pilot study reports the statewide, regulatory compliance of general construction contractors in Texas who generated regulated amounts of hazardous waste during 1990, defined by existing state and federal hazardous-waste-management regulations...

Sprinkle, Donald Lee

1991-01-01T23:59:59.000Z

83

Permit Fees for Hazardous Waste Material Management (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe applicable fees for permit application, modification, and transfer for permits related to hazardous waste management.

84

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect (OSTI)

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-01-01T23:59:59.000Z

85

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect (OSTI)

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy`s (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency`s (EPA`s) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-12-31T23:59:59.000Z

86

Management of hazardous medical waste in Croatia  

SciTech Connect (OSTI)

This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

Marinkovic, Natalija [Medical School University of Zagreb, Department for Chemistry and Biochemistry, Salata 3b, 10 000 Zagreb (Croatia)], E-mail: nmarinko@snz.hr; Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar ['Andrija Stampar' School of Public Health, Medical School University of Zagreb, Rockefellerova 4, 10 000 Zagreb (Croatia); Pavic, Tomo [Ministry of Health and Social Welfare, Ksaver 200, 10 000 Zagreb (Croatia)

2008-07-01T23:59:59.000Z

87

Method and apparatus for incinerating hazardous waste  

DOE Patents [OSTI]

An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

Korenberg, Jacob (York, PA)

1990-01-01T23:59:59.000Z

88

Waste Management Program management plan. Revision 1  

SciTech Connect (OSTI)

As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

NONE

1997-02-01T23:59:59.000Z

89

Staged mold for encapsulating hazardous wastes  

DOE Patents [OSTI]

A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

1990-01-01T23:59:59.000Z

90

Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning  

SciTech Connect (OSTI)

This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also.

Tonn, B.; Hwang, Ho-Ling; Elliot, S. [Oak Ridge National Lab., TN (United States); Peretz, J.; Bohm, R.; Hendrucko, B. [Univ. of Tennessee, Knoxville, TN (United States)

1994-04-01T23:59:59.000Z

91

WIPP Hazardous Waste Facility Permit Update  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) was issued on October 27, 1999 [1]. Since that time, the WIPP has sought modifications to clarify the permit language, provide alternative methods for meeting permit requirements and to update permit conditions. Significant advancements have been made in transuranic (TRU) waste management as the result of modifications to the HWFP. Among these advancements is a modification to obtain a drum age criteria (DAC) value to perform headspace gas sampling on drums to be super-compacted and placed in a 100-gallon overpack drum. In addition, the Section 311 permit modification request that would allow for more efficient waste characterization, and the modification to authorize the shipment and disposal of Remote-Handled (RH) TRU waste were merged together and submitted to the regulator as the Consolidated Permit Modification Request (PMR). The submittal of the Consolidated PMR came at the request of the regulator as part of responses to Notices of Deficiency (NODs) for the separate PMRs which had been submitted in previous years. Section 311 of the fiscal year 2004 Energy and Water Developments Appropriations Act (Public Law 108-137) [2] directs the Department of Energy to submit a permit modification that limits waste confirmation to radiography or visual examination of a statistical subpopulation of containers. Section 311 also specifically directs that disposal room performance standards be to be met by monitoring for volatile organic compounds in the underground disposal rooms. This statute translates into the elimination of other waste confirmation methods such as headspace gas sampling and analysis and solids sampling and analysis. These methods, as appropriate, will continue to be used by the generator sites during hazardous waste determinations or characterization activities. This modification is expected to reduce the overall cost of waste analysis by hundreds of millions of dollars [3]. Combining both the chap. 311 and RH TRU waste permit modification requests allows for both the regulator and DOE to expedite action on the modification requests. The Combined PMR reduces costs by having only one administrative process for both modification requests. (authors)

Kehrman, B.; Most, W. [Washington Regulatory and Environmental Services, 4021 National Parks Highway, Carlsbad, NM 88220 (United States)

2006-07-01T23:59:59.000Z

92

Sorting and disposal of hazardous laboratory Radioactive waste  

E-Print Network [OSTI]

Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste or in a Perspex box. Liquid radioactive waste collect in a screw-cap plastic bottle, ½ or 1 L size. Place bottles in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel

Maoz, Shahar

93

UNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all students, staff, and  

E-Print Network [OSTI]

chemical waste, hazardous solid chemical waste (i.e. items that have been contaminated with hazardous are preferred for all hazardous liquid chemical waste. - Plastic bags are preferred for all hazardous solidUNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all

Northern British Columbia, University of

94

Shedding a new light on hazardous waste  

SciTech Connect (OSTI)

The sun's ability to detoxify waterborne chemicals has long been known; polluted streams, for example, become cleaner as they flow through sunlit areas. Solar detoxification harnesses this natural degradation process for beneficial ends, producing simple, nonhazardous substances from hazardous organic chemicals. Solar detoxification systems now being developed break down these chemicals without using the fossil fuels required by conventional technologies. Sunlight destroys hazardous waste because of the distinctive properties of photons, the packets of energy that make up sunlight. Low-energy photons add thermal energy that will heat toxic chemicals; high-energy photons add the energy needed to break the chemical bonds of these chemicals. The detoxification process discussed here takes advantage of this latter group of photons found in the ultraviolet portion of the solar spectrum. 4 figs.

Reece, N.

1991-02-01T23:59:59.000Z

95

Solid Waste Management Written Program  

E-Print Network [OSTI]

Solid Waste Management Program Written Program Cornell University 8/28/2012 #12;Solid Waste.................................................................... 4 4.2.1 Compost Solid Waste Treatment Facility.................................................................... 4 4.2.2 Pathological Solid Waste Treatment Facility

Pawlowski, Wojtek

96

Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...  

Broader source: Energy.gov (indexed) [DOE]

M.; Im, J.; Tullis, J. A remote sensing and GIS-assisted spatial decision support system for hazardous waste site monitoring. Photogramm. Eng. Remote Sensing 2009, 75,...

97

Fees For Disposal Of Hazardous Waste Or Substances (Alabama)  

Broader source: Energy.gov [DOE]

The article lists annual payments to be made to counties, restrictions on disposal of hazardous waste, additional fees collected by counties and penalties.

98

Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky)  

Broader source: Energy.gov [DOE]

This administrative regulation establishes procedures to establish the applicable general provisions for generators of hazardous waste. It also establishes recordkeeping and reporting standards....

99

Chapter 31 Identification and Listing of Hazardous Waste (Kentucky)  

Broader source: Energy.gov [DOE]

This administrative regulation establishes the general provisions necessary for identification and listing of a hazardous waste. The regulation also establishes the criteria for identifying the...

100

South Carolina Hazardous Waste Management Act (South Carolina)  

Broader source: Energy.gov [DOE]

The Department of Health and Environmental Control is authorized to promulgate rules and regulations to prevent exposure of persons, animals, or the environment to hazardous waste. The construction...

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NEW MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA MARTINEZ Governor 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 875056303 Phone (50S) 476-6000 Fax...

102

ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY  

SciTech Connect (OSTI)

The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

Romano, Stephen; Welling, Steven; Bell, Simon

2003-02-27T23:59:59.000Z

103

TRU waste-sampling program  

SciTech Connect (OSTI)

As part of a TRU waste-sampling program, Los Alamos National Laboratory retrieved and examined 44 drums of /sup 238/Pu- and /sup 239/Pu-contaminated waste. The drums ranged in age from 8 months to 9 years. The majority of drums were tested for pressure, and gas samples withdrawn from the drums were analyzed by a mass spectrometer. Real-time radiography and visual examination were used to determine both void volumes and waste content. Drum walls were measured for deterioration, and selected drum contents were reassayed for comparison with original assays and WIPP criteria. Each drum tested at atmospheric pressure. Mass spectrometry revealed no problem with /sup 239/Pu-contaminated waste, but three 8-month-old drums of /sup 238/Pu-contaminated waste contained a potentially hazardous gas mixture. Void volumes fell within the 81 to 97% range. Measurements of drum walls showed no significant corrosion or deterioration. All reassayed contents were within WIPP waste acceptance criteria. Five of the drums opened and examined (15%) could not be certified as packaged. Three contained free liquids, one had corrosive materials, and one had too much unstabilized particulate. Eleven drums had the wrong (or not the most appropriate) waste code. In many cases, disposal volumes had been inefficiently used. 2 refs., 23 figs., 7 tabs.

Warren, J.L.; Zerwekh, A.

1985-08-01T23:59:59.000Z

104

Solid Waste Program Fiscal Year 1996 Multi-Year Program Plan WBS 1.2.1, Revision 1  

SciTech Connect (OSTI)

This document contains the Fiscal Year 1996 Multi-Year Program Plan for the Solid Waste Program at the Hanford Reservation in Richland, Washington. The Solid Waste Program treats, stores, and disposes of a wide variety of solid wastes consisting of radioactive, nonradioactive and hazardous material types. Solid waste types are typically classified as transuranic waste, low-level radioactive waste, low-level mixed waste, and non-radioactive hazardous waste. This report describes the mission, goals and program strategies for the Solid Waste Program for fiscal year 1996 and beyond.

NONE

1995-09-01T23:59:59.000Z

105

Fire hazards analysis for solid waste burial grounds  

SciTech Connect (OSTI)

This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

McDonald, K.M.

1995-09-28T23:59:59.000Z

106

Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation  

SciTech Connect (OSTI)

The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included.

Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

1986-11-01T23:59:59.000Z

107

Waste Encapsulation and Storage Facility (WESF) Hazards Assessment  

SciTech Connect (OSTI)

This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

COVEY, L.I.

2000-11-28T23:59:59.000Z

108

Waste certification program plan for Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This document defines the waste certification program being developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the waste certification program is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements outlined in U.S. Department of Energy (DOE) Order 5820.2A, Radioactive Waste Management, and ensures that 40 CFR documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls) waste. Program activities will be conducted according to ORNL Level 1 document requirements.

Kornegay, F.C.

1996-09-01T23:59:59.000Z

109

Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste  

SciTech Connect (OSTI)

The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes.

NONE

1998-03-01T23:59:59.000Z

110

Hazardous waste research and development in the Pacific Basin  

SciTech Connect (OSTI)

The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste.

Cirillo, R.R.; Carpenter, R.A. (Argonne National Lab., IL (USA); Environment and Policy Inst., Honolulu, HI (USA))

1989-01-01T23:59:59.000Z

111

Overview of hazardous-waste regulation at federal facilities  

SciTech Connect (OSTI)

This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

Tanzman, E.; LaBrie, B.; Lerner, K.

1982-05-01T23:59:59.000Z

112

Containment and stabilization technologies for mixed hazardous and radioactive wastes  

SciTech Connect (OSTI)

A prevalent approach to the cleanup of waste sites contaminated with hazardous chemicals and radionuclides is to contain and/or stabilize wastes within the site. Stabilization involves treating the wastes in some fashion, either in situ or above ground after retrieval, to reduce the leachability and release rate of waste constituents to the environment. This approach is generally reserved for radionuclide contaminants, inorganic hazardous contaminants such as heavy metals, and nonvolatile organic contaminants. This paper describes the recent developments in the technical options available for containing and stabilizing wastes. A brief description of each technology is given along with a discussion of the most recent developments and examples of useful applications.

Buelt, J.L.

1993-05-01T23:59:59.000Z

113

Hazardous Waste Management: The Role of Journalists in Decision Making Process  

SciTech Connect (OSTI)

The journalists are crucial for informing and education of general public about facts related to hazardous and radioactive waste management. Radio programs, TV and newspapers are daily reporting on relevant facts and news. In general, it is true that the majority of journalists are interested more in so called daily politics than in educating general public on certain technical or scientific topics. Therefore, hazardous and radioactive waste management was introduced to Croatian general public in last ten years mainly through various news on site selection of radioactive waste disposal facilities and some problems related to hazardous waste management. This paper presents APO's experience with journalists in last ten years includes program and activities referring informing and educating of journalists from all media.

Eerskov-Klika, M.; Lokner, V.; Subasiae, D.; Schaller, A.

2002-02-28T23:59:59.000Z

114

The WIPP Hazardous Waste Facility Permit Improvements--2007 Update  

SciTech Connect (OSTI)

The most significant changes to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit to date were completed during the past year with the implementation of significant revisions to the Waste Analysis Plan and the authorization to dispose of remote-handled transuranic waste. The modified Permit removes the requirement for reporting headspace gas sampling and analysis results for every container of transuranic mixed waste and provides for the use of radiography and visual examination to confirm a statistically representative subpopulation of the waste stream in each waste shipment as well as other changes that streamline the analytical data management process. Implementation began on November 17, 2006. (authors)

Kehrman, R.; Most, W. [Washington Regulatory and Environmental Services, Carlsbad, NM (United States)

2007-07-01T23:59:59.000Z

115

Organic and inorganic hazardous waste stabilization using combusted oil shale  

SciTech Connect (OSTI)

A laboratory study was conducted at the Western Research Institute to evaluate the ability of combusted oil shale to stabilize organic and inorganic constituents of hazardous wastes. The oil shale used in the research was a western oil shale retorted in an inclined fluidized-bed reactor. Two combustion temperatures were used, 1550{degrees}F and 1620{degrees}F (843{degrees}C and 882{degrees}C). The five wastes selected for experimentation were an API separator sludge, creosote-contaminated soil, mixed metal oxide/hydroxide waste, metal-plating sludge, and smelter dust. The API separator sludge and creosote-contaminated soil are US EPA-listed hazardous wastes and contain organic contaminants. The mixed metal oxide/hydroxide waste, metal-plating sludge (also an EPA-listed waste), and smelter dust contain high concentrations of heavy metals. The smelter dust and mixed metal oxide/hydroxide waste fail the Toxicity Characteristic Leaching Procedure (TCLP) for cadmium, and the metalplating sludge fails the TCLP for chromium. To evaluate the ability of the combusted oil shales to stabilize the hazardous wastes, mixtures involving varying amounts of each of the shales with each of the hazardous wastes were prepared, allowed to equilibrate, and then leached with deionized, distilled water. The leachates were analyzed for the hazardous constituent(s) of interest.

Sorini, S.S.; Lane, D.C.

1991-04-01T23:59:59.000Z

116

A mathematical model to predict leaching of hazardous inorganic wastes from solidified/stabilized waste forms  

E-Print Network [OSTI]

and Reauthorization Act (SARA). The other important law dealing with hazardous wastes is the Resource Conservation and Recovery Act (RCRA), enacted in 1976 and significantly amended by the Hazardous and Solid Waste Amendments of 1984, RCRA provides "cradle... in 1980 to provide funding and enforcement authority to the EPA for cleaning up the numerous hazardous waste sites existing in the United States. In 1986, the act was made more comprehensive with the addition of the Superfund Amendments...

Sabharwal, Krishan

1993-01-01T23:59:59.000Z

117

Iron phosphate compositions for containment of hazardous metal waste  

DOE Patents [OSTI]

An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

Day, D.E.

1998-05-12T23:59:59.000Z

118

Iron phosphate compositions for containment of hazardous metal waste  

DOE Patents [OSTI]

An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

Day, Delbert E. (Rolla, MO)

1998-01-01T23:59:59.000Z

119

EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to construct the Hazardous Waste Staging Facility that would help to alleviate capacity problems as well as provide a single compliant...

120

Trends and Opportunities in Industrial Hazardous Waste Minimization  

E-Print Network [OSTI]

This paper describes trends and opportunities in Resource Conservation and Recovery Act hazardous waste minimization. It uses U.S. Environmental Protection Agency data gathered since 1989 from over 20,000 facilities that account for almost all...

Atlas, M.

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

RCRA Hazardous Waste Part A Permit Application: Instructions...  

Open Energy Info (EERE)

Part A Permit Application: Instructions and Form (EPA Form 8700-23) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RCRA Hazardous Waste Part A Permit...

122

The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012 Greenbuy Program. | DepartmentManagementLasSavings

123

Putting It Down: Hazardous-Waste Management in the Throwaway Culture  

E-Print Network [OSTI]

protocols existed for these indicators. 68 Even granting that EPA's testing criteria for hazardous waste

Stockton, Wendy

1981-01-01T23:59:59.000Z

124

Chemical Applications of Electrohydraulic Cavitation for Hazardous Waste Control  

E-Print Network [OSTI]

to the destruction or transformation of hazardous chemical substances such as high-temperature incineration, amended activated sludge digestion, anaerobic digestion and conventional physicochemical treatment. Pulsed-power plasma discharge technology may have.... Current approaches to the treatment of hazardous chemical wastes include high temperature incineration, chemical oxidation with and UV light, membrane separation, activated carbon adsorption, substrate-specific biodegration, electron beam bombardment...

Hoffmann, M. R.

125

WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carlsbad, New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1...

126

Freeze Concentration Applied to Hazardous Waste Management  

E-Print Network [OSTI]

steps to remove or destroy the hazardous components prior to discharge. Incineration is widely used to destroy a broad range of these hazardous components. Its disposal efficiency is often used when defining the Best Available Technology for EPA... standards. However, high water content streams are expensive to incinerate since the incinerator must be designed to handle the feed volume even though the water in the feed is in itself harmless. Some hazardous components require operating temperatures...

Ruemekorf, R.

127

Removal of radioactive and other hazardous material from fluid waste  

DOE Patents [OSTI]

Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

2006-10-03T23:59:59.000Z

128

Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes  

DOE Patents [OSTI]

The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

Lewis, Michele A. (Naperville, IL); Johnson, Terry R. (Wheaton, IL)

1993-01-01T23:59:59.000Z

129

Environmental Hazards Assessment Program. Quarterly report, July--September 1993  

SciTech Connect (OSTI)

The objectives of the EHAP program stated in the proposal to DOE are to: (1) develop a holistic, national basis for risk assessment, risk management, and risk communication which recognizes the direct impact of environmental hazards on the health and well-being of all, (2) develop a pool of talented scientists and experts in cleanup activities, especially in human health aspects, and (3) identify needs and develop programs addressing the critical shortage of well-educated, highly-skilled technical and scientific personnel to address the health oriented aspects of environmental restoration and waste management.

Not Available

1993-12-01T23:59:59.000Z

130

RCRA, superfund and EPCRA hotline training module. Introduction to: Solid and hazardous waste exclusions (40 cfr section 261.4) updated July 1996  

SciTech Connect (OSTI)

The Resources Conservation and Recovery Act`s (RCRA) Subtitle C hazardous waste management program is a comprehensive and carefully constructed system to ensure wastes are managed safely and lawfully. This program begins with a very specific, formal process to categorize wastes accurately and appropriately called waste identification. The module explains each waste exclusion and its scope, so you can apply this knowledge in determining whether a given waste is or is not regulated under RCRA Subtitle C.

NONE

1996-07-01T23:59:59.000Z

131

Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary  

SciTech Connect (OSTI)

This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

Not Available

1990-06-01T23:59:59.000Z

132

Hazardous Waste Management Implementation Inspection Criteria...  

Broader source: Energy.gov (indexed) [DOE]

focus area. Attention will be given to on-site activities governed by 40 Subchapter I (Solid Waste) and state regulations where delegated authority exists, excluding landfill...

133

H-Area Hazardous Waste Management Facility Corrective Action Report, Third and Fourth Quarter 1998, Volumes I and II  

SciTech Connect (OSTI)

The groundwater in the uppermost aquifer beneath the H-Area Hazardous Waste Management Facility (HWMF), also known as the H-Area Seepage Basins, at the Savannah Site (SRS) is monitored periodically for selected hazardous and radioactive constituents. This report presents the results of the required groundwater monitoring program.

Chase, J.

1999-04-23T23:59:59.000Z

134

RCRA, superfund and EPCRA hotline training module. Introduction to: Hazardous waste identification (40 cfr part 261) updated July 1996  

SciTech Connect (OSTI)

The module introduces a specific hazardous waste identification process, which involves asking and analyzing a series of questions about any waste being evaluated. It analyzes in detail the Resource Conservation and Recovery Act (RCRA) definition of `hazardous waste.` It explains concepts that are essential to identifying a RCRA hazardous waste: hazardous waste listing, hazardous waste characteristics, the `mixture` and `derived-from` rules, the `contained-in` policy, and the hazardous waste identification rules (HWIR).

NONE

1996-07-01T23:59:59.000Z

135

Solid Waste Management Program (Missouri)  

Broader source: Energy.gov [DOE]

The Solid Waste Management Program in the Department of Natural Resources regulates the management of solid waste in the state of Missouri. A permit is required prior to the construction or...

136

Health and Safety Procedures Manual for hazardous waste sites  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

Thate, J.E.

1992-09-01T23:59:59.000Z

137

Stabilization solutions to hazardous metals laden waste  

SciTech Connect (OSTI)

This paper is limited to treatment of bottom and fly ash waste resulting from WTE and RTE Cogeneration plants, commonly known as trash burners. The body of the paper defines waste generation and conventional treatment schemes. This paper does not identify a best treatment, however, it does offer a general perspective of the treatments to lead the reader to further investigation. Advantages and disadvantages of the ash treatments is discussed in each treatment section. 29 refs., 1 fig.

Kramer, M. [Ashland Chemical Co., Boonton, NJ (United States)

1996-12-31T23:59:59.000Z

138

Waste certification program plan for Oak Ridge National Laboratory. Revision 2  

SciTech Connect (OSTI)

This document defines the waste certification program (WCP) developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the WCP is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements for mixed (both radioactive and hazardous) and hazardous [including polychlorinated biphenyls (PCB)] waste. Program activities will be conducted according to ORNL Level 1 document requirements.

Not Available

1997-09-01T23:59:59.000Z

139

Hanford site waste minimization and pollution prevention awareness program  

SciTech Connect (OSTI)

This plan documents the requirements of the Hanford Site Waste Minimization/Pollution Prevention (WMin/P2) Program. The plan specifies requirements for Hanford contractors to prevent pollution from entering the environment, to conserve resources and energy, and to reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary waste generated at Hanford. The Pollution Prevention Awareness Program required by DOE 5400.1 (DOE 1988A) is included in the Hanford WMin/P2 Program.

Kirkendall, J.R.

1996-09-23T23:59:59.000Z

140

The effects of hazardous waste taxes on generation and disposal of chlorinated solvent waste  

E-Print Network [OSTI]

In 1989, 30 states levied taxes on e generation or management of hazardous waste. These taxes constitute one of the broadest applications of an emissions tax in U.S. environmental policy and provide a natural experiment ...

Sigman, Hilary

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Federal Agency Hazardous Waste Compliance Docket (docket). Revision 1  

SciTech Connect (OSTI)

The Federal Facilities Hazardous Waste Compliance Docket (``docket``) identifies Federal facilities that may be contaminated with hazardous substances and that must be evaluated to determine if they pose a risk to public health or the environment The docket, required by Section 120(c) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), also provides a vehicle for making information about potentially contaminated facilities available to the public. Facilities listed on the docket must complete site assessments that provide the Environmental Protection Agency (EPA) with information needed to determine whether or not the facility should be included on he National Priorities List (NPL). This Information Brief, which revises the previous Federal Agency Hazardous Waste Compiliance Docket Information Brief, provides updated information on the docket listing process, the implications of listing, and facility status after listing.

Not Available

1994-01-01T23:59:59.000Z

142

24.01.01.V1.11 HAZARDOUS CHEMICAL WASTE Supplements System Policy 24.01 and System Regulation 24.01.01  

E-Print Network [OSTI]

24.01.01.V1.11 HAZARDOUS CHEMICAL WASTE DISPOSAL Supplements System Policy 24.01 and System, and federal regulations, and is enforced by the Texas Commission on Environmental Quality (TCEQ) and the United States Environmental Protection Agency (EPA). A hazardous waste management program shall

143

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect (OSTI)

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-01-01T23:59:59.000Z

144

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect (OSTI)

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-12-31T23:59:59.000Z

145

The evaluation of an analytical protocol for the determination of substances in waste for hazard classification  

E-Print Network [OSTI]

1 The evaluation of an analytical protocol for the determination of substances in waste for hazard The classification of waste as hazardous could soon be assessed in Europe using largely the hazard properties of its knowledge of the component constituents of a given waste will therefore be necessary. An analytical protocol

Boyer, Edmond

146

Solid Waste Management Program (South Dakota)  

Broader source: Energy.gov [DOE]

South Dakota's Solid Waste Management Program offers loans and grants for solid waste disposal, recycling, and waste tire projects. Funds are available for private or public projects, and...

147

Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes  

SciTech Connect (OSTI)

This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

Dominick, J

2008-12-18T23:59:59.000Z

148

The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 1999  

SciTech Connect (OSTI)

This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 1999. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 199a). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 1999, these CY 1999 goals were extended to CY 2000 for all waste streams that generated waste in 1999. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 51 waste streams met or exceeded their reduction goal based on the CY 1999 data.

Bechtel Jacobs Company LLC

2000-03-01T23:59:59.000Z

149

The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 2000  

SciTech Connect (OSTI)

This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 2000. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 2000). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 2000, these goals were extended to CY 2001 for all waste streams that generated waste in 2000. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 50 waste streams met or exceeded their reduction goal based on the CY 2000 data.

Bechtel Jacobs Company LLC

2001-03-01T23:59:59.000Z

150

Method for solidification of radioactive and other hazardous waste  

DOE Patents [OSTI]

Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana A. (Krasnoyarsk, RU); Voskresenskaya, Elena N. (Krasnoyarsk, RU); Kostin, Eduard M. (Zheleznogorsk, RU); Pavlov, Vyacheslav F. (Krasnoyarsk, RU); Revenko, Yurii A. (Zheleznogorsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Sharonova, Olga M. (Krasnoyarsk, RU); Aloy, Albert S. (Saint-Petersburg, RU); Sapozhnikova, Natalia V. (Saint-Petersburg, RU); Knecht, Dieter A. (Idaho Falls, ID); Tranter, Troy J. (Idaho Falls, ID); Macheret, Yevgeny (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

151

Inter-relation between technical and jurisdictional aspects of hazardous waste management in Houston  

E-Print Network [OSTI]

of hazardous waste such as dump sites, landfills, hazardous material spills, underground storage tanks and others come from journals and reports. This literature is used for background information and for evaluating the Hazardous Waste Issues Groundwater... related Transport, ation related Wastewater related Spills Transportation Pretreatment Small quantity Generators Dump sites Landfi 1 Is Plant-site contamination Underground storage tanks Figure I-Hazardous waste ismm classification current...

Vasavada, Nishith Maheshbhai

1987-01-01T23:59:59.000Z

152

Method for encapsulating hazardous wastes using a staged mold  

DOE Patents [OSTI]

A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

1989-01-01T23:59:59.000Z

153

Method and apparatus for using hazardous waste form non-hazardous aggregate  

SciTech Connect (OSTI)

This patent describes an apparatus for converting hazardous waste into non-hazardous, non-leaching aggregate, the apparatus. It comprises: a source of particulate solid materials, volatile gases and gaseous combustion by-products; oxidizing means comprising at least one refractory-lined, water-cooled, metal-walled vessel; means for introducing the particulate solid material, volatile gases and gaseous combustion by-products to the oxidizing means; means for inducing combustion in the oxidizing means, the heat of combustion forming molten slag and noncombustible fines from noncombustible material; means for accumulating the slag; means for introducing the noncombustible fines to the molten slag; means for removing the mixture from the apparatus; and means for cooling the mixture to form the non-hazardous, non-leaching aggregates.

Kent, J.M.; Robards, H.L. Jr.

1992-07-28T23:59:59.000Z

154

Waste certification program plan for Oak Ridge National Laboratory. Revision 1  

SciTech Connect (OSTI)

This document defines the waste certification program developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the waste certification program is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements outlined in US Department of Energy (DOE) Order 5820.2A, Radioactive Waste Management, and ensures that 40 CFR documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls) waste. Program activities will be conducted according to ORNL Level 1 document requirements.

Orrin, R.C.

1997-05-01T23:59:59.000Z

155

Mr. James Bearzi Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1 EEnergy,Moving

156

Mr. James Bearzi, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1 EEnergy,MovingDepartment of8, 2010

157

Mr. James Bearzi, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1 EEnergy,MovingDepartment of8,

158

Mr. James Bearzi, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1 EEnergy,MovingDepartment

159

Mr. James Bearzi, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1 EEnergy,MovingDepartment28, 2010

160

3Q/4Q00 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 2000 - Volumes I, II, and II  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 2000. This program is required by South Carolina Resource Conservation and Recovery Act (RCRA) Hazardous Waste Permit SC1890008989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations.

Cole, C.M. Sr.

2001-04-17T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwate Monitoring and Corrective-Action Report, First and Second Quarters 1998, Volumes I, II, & III  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah river Site (SRS) during first and second quarters 1998. This program is required by South Carolina Hazardous Waste Permit SC1-890-008-989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. Report requirements are described in the 1995 RCRA Renewal Permit, effective October 5, 1995, Section IIIB.H.11.b for the M-Area HWMF and Section IIIG.H.11.b for the Met Lab HWMF.

Chase, J.

1998-10-30T23:59:59.000Z

162

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

NONE

1997-03-01T23:59:59.000Z

163

Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks  

SciTech Connect (OSTI)

This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

T. M. Blakley; W. D. Schofield

2007-09-10T23:59:59.000Z

164

Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)  

SciTech Connect (OSTI)

This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

Fatell, L.B.; Woolsey, G.B.

1993-04-15T23:59:59.000Z

165

Sandia National Laboratories, California Hazardous Materials Management Program annual report.  

SciTech Connect (OSTI)

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

Brynildson, Mark E.

2011-02-01T23:59:59.000Z

166

Program Review, Workplace Inspections, Hazards Analysis And Abatement  

Broader source: Energy.gov [DOE]

This document provides guidance information and suggested procedures for performing program review, workplace inspections, hazards analysis, and abatement, successfully at DOE Federal employee worksites.

167

Citrus Waste Biomass Program  

SciTech Connect (OSTI)

Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

Karel Grohman; Scott Stevenson

2007-01-30T23:59:59.000Z

168

A model for determining the fate of hazardous constituents in waste during in-vessel composting  

E-Print Network [OSTI]

Composting is one of the techniques that has evolved as a safe disposal and predisposal alternative to the stringent regulations on hazardous waste disposal. The implementation of this technique needs careful evaluation of the processes a hazardous...

Bollineni, Prasanthi

1994-01-01T23:59:59.000Z

169

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1998-05-12T23:59:59.000Z

170

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

171

Tank Waste Disposal Program redefinition  

SciTech Connect (OSTI)

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

172

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

or otherwise restricted information Project ID ace47lagrandeur Automotive Waste Heat Conversion to Power Program- 2009 Hydrogen Program and Vehicle Technologies Program...

173

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

Start Date: Oct '04 Program End date: Oct '10 Percent Complete: 80% 2 Automotive Waste Heat Conversion to Power Program- Vehicle Technologies Program Annual Merit Review- June...

174

Hazardous Waste Facility Permit Public Comments to Community Relations Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960OptionsHazardous Waste

175

Hazardous Waste Facility Permit Public Comments to Community Relations Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960OptionsHazardous Waste

176

Voluntary Protection Program Onsite Review, Transuranic Waste...  

Energy Savers [EERE]

Transuranic Waste Processing Center - September 2012 Voluntary Protection Program Onsite Review, Transuranic Waste Processing Center - September 2012 September 2012 Evaluation to...

177

Solid Waste Management Program Plan  

SciTech Connect (OSTI)

The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

Duncan, D.R.

1990-08-01T23:59:59.000Z

178

Method and apparatus for the management of hazardous waste material  

DOE Patents [OSTI]

A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

Murray, Jr., Holt (Hopewell, NJ)

1995-01-01T23:59:59.000Z

179

Method and apparatus for the management of hazardous waste material  

DOE Patents [OSTI]

A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

Murray, H. Jr.

1995-02-21T23:59:59.000Z

180

M-Area Hazardous Waste Management Facility groundwater monitoring and corrective-action report. Second quarter 1995, Volume 1  

SciTech Connect (OSTI)

This report describes the corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site during second quarter 1995. Topics include: changes in sampling, analysis, and reporting; water levels; remedial action of groundwater; and hydrology of the affected aquifer zones.

NONE

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

OSS 19.5 Hazardous Waste Operations and Emergency Response 3/21/95  

Broader source: Energy.gov [DOE]

The objective of this surveillance is to ensure that workers who are performing activities associated with characterizing, handling, processing, storing or transporting hazardous wastes are...

182

RSP WASTE UNIVERSITY OF HAWAII RADIOACTIVE WASTE PICKUP REQUEST FORM Revision 06/07 (WASTE WHICH CONTAINS RADIOISOTOPES BUT NO HAZARDOUS CHEMICALS)  

E-Print Network [OSTI]

RSP WASTE UNIVERSITY OF HAWAII RADIOACTIVE WASTE PICKUP REQUEST FORM Revision 06/07 (WASTE WHICH CONTAINS RADIOISOTOPES BUT NO HAZARDOUS CHEMICALS) INSTRUCTIONS : 1. *NO ISOTOPES MAY BE MIXED IN THE WASTE BOX! One type of isotope per waste box - Except C-14 AND H-3 WHICH MAY BE DISPOSED OF TOGETHER. 2

Browder, Tom

183

Fire hazard analysis of the radioactive mixed waste trenchs  

SciTech Connect (OSTI)

This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation`s activity. Transient flammables and combustibles present that support the operation`s activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0.

McDonald, K.M. [Westinghouse Hanford Co., Richland, WA (United States)

1995-04-27T23:59:59.000Z

184

RCRA/UST, superfund and EPCRA hotline training module. Introduction to: Hazardous waste identification (40 CFR part 261) updated as of July 1995  

SciTech Connect (OSTI)

This module introduces a specific hazardous waste identification process, which involves asking and analyzing a series of questions about any waste being evaluated. Analyzes in detail the Resource Conservation and Recovery Act (RCRA) definition of hazardous waste. It explains the following concepts that are essential to identifying a RCRA hazardous waste: hazardous waste listing, hazardous waste characteristics, the mixture and derived-from rules, the contained-in policy, and the Hazardous Waste Identification Rule (HWIR).

NONE

1995-11-01T23:59:59.000Z

185

Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials  

DOE Patents [OSTI]

The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

1999-01-01T23:59:59.000Z

186

Portable sensor for hazardous waste. Final report, March 31, 1995--May 31, 1997  

SciTech Connect (OSTI)

This report summarizes accomplishments for the second phase of a 5-year program designed to develop a portable monitor for sensitive hazardous waste detection. The approach is to excite atomic fluorescence by the technique of Spark-Induced Breakdown Spectroscopy (SIBS). The principal goals for this second phase of the program were to demonstrate sensitive detection of additional species, both RCRA metals (Sb, Be, Cd, Cr, Pb, As, Hg) and radionuclides (U, Th, Tc); to identify potential applications and develop instrument component processes, including, sample collection and excitation, measurement and test procedures, and calibration procedures; and to design a prototype instrument. Successful completion of these task results in being able to fabricate and field test a prototype of the instrument during the program`s third phase.

Piper, L.G.; Hunter, A.J.R.; Fraser, M.E.; Davis, S.H.; Finson, M.L.

1997-12-31T23:59:59.000Z

187

Hazardous materials transportation and emergency response programs  

SciTech Connect (OSTI)

This presentation consists of the following visual aids; (1) detailed routing capabilities of truck, rail, barge; (2) legislative data base for hazardous materials; and (3) emergency response of accident site Eddyville, Kentucky (airports in vicinity of Eddyville, KY).

Joy, D.S.; Fore, C.S.

1983-01-01T23:59:59.000Z

188

TRU Waste Sampling Program: Volume I. Waste characterization  

SciTech Connect (OSTI)

Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies.

Clements, T.L. Jr.; Kudera, D.E.

1985-09-01T23:59:59.000Z

189

H-Area Hazardous Waste Management Facility groundwater monitoring report. Third and fourth quarters 1996, Volume 1  

SciTech Connect (OSTI)

The groundwater in the uppermost aquifer beneath the H-Area Hazardous Waste Management Facility (HWMF), also known as the H-Area Seepage Basins, at the Savannah River Site (SRS) is monitored periodically for various hazardous and radioactive constituents as required by Module III, Section D, of the 1995 Resource Conservation and Recovery ACT (RCRA) Renewal Permit (South Carolina Hazardous and Mixed Waste Permit SC1-890-008-989), effective October 5, 1995. Currently, the H-Area HWMF monitoring network consists of 130 wells of the HSB series and 8 wells of the HSL series screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the H-Area HWMF. This report presents the results of the required groundwater monitoring program as identified in provision IIIDH.11.c

NONE

1997-03-01T23:59:59.000Z

190

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

1998-03-24T23:59:59.000Z

191

Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

Kalb, P.D.; Colombo, P.

1997-07-15T23:59:59.000Z

192

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

Kalb, P.D.; Colombo, P.

1998-03-24T23:59:59.000Z

193

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

Kalb, P.D.; Colombo, P.

1999-07-20T23:59:59.000Z

194

Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

Kalb, Paul D. (21 Barnes Road, Wading River, NY 11792); Colombo, Peter (44 N. Pinelake Dr., Patchogue, NY 11772)

1997-01-01T23:59:59.000Z

195

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

1999-07-20T23:59:59.000Z

196

The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment  

SciTech Connect (OSTI)

This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency's (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity.

Ross, W.A.; Kindle, C.H.

1992-06-01T23:59:59.000Z

197

The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment  

SciTech Connect (OSTI)

This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency`s (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity.

Ross, W.A.; Kindle, C.H.

1992-06-01T23:59:59.000Z

198

Animal Waste Treatment System Loan Program (Missouri)  

Broader source: Energy.gov [DOE]

The purpose of the Animal Waste Treatment System Loan Program is to finance animal waste treatment systems for independent livestock and poultry producers at below conventional interest rates. Loan...

199

Options for improving hazardous waste cleanups using risk-based criteria  

SciTech Connect (OSTI)

This paper explores how risk- and technology-based criteria are currently used in the RCRA and CERCLA cleanup programs. It identifies ways in which risk could be further incorporated into RCRA and CERCLA cleanup requirements and the implications of risk-based approaches. The more universal use of risk assessment as embodied in the risk communication and risk improvement bills before Congress is not addressed. Incorporating risk into the laws and regulations governing hazardous waste cleanup, will allow the use of the best scientific information available to further the goal of environmental protection in the United States while containing costs. and may help set an example for other countries that may be developing cleanup programs, thereby contributing to enhanced global environmental management.

Elcock, D.

1995-06-01T23:59:59.000Z

200

A Regulatory Analysis and Reassessment of U.S. Environmental Protection Agency Listed Hazardous Waste Numbers for Applicability to the INTEC Liquid Waste System  

SciTech Connect (OSTI)

This report concludes that there are four listed hazardous waste numbers (F001, F002, F005, and U134) applicable to the waste in the Process Equipment Waste Evaporator (PEWE) liquid waste system at the Idaho National Engineering and Environmental Laboratory. The chemical constituents associated with these listed hazardous waste numbers, including those listed only for ignitability are identified. The RCRA Part A permit application hazardous waste numbers identify chemical constituents that may be treated or stored by the PEWE liquid waste system either as a result of a particular characteristic (40 CFR, Subpart C) or as a result of a specific process (40 CFR 261, Subpart D). The RCRA Part A permit application for the PEWE liquid waste system identifies the universe of Environmental Protection Agency (EPA) hazardous waste numbers [23 characteristic (hazardous waste codes) numbers and 105 listed numbers (four F-listed hazardous waste numbers, 20 P-listed hazardous waste numbers, and 81 U-listed hazardous waste numbers)] deemed acceptable for storage and treatment. This evaluation, however, identifies only listed wastes (and their chemical constituents) that have actually entered the PEWE liquid waste system and would, therefore, be assigned to the PEWE liquids and treatment residuals.

Gilbert, K.L.; Venneman, T.E.

1998-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Chemical Disposal The Office of Environmental Health & Safety operates a Chemical Waste Disposal Program  

E-Print Network [OSTI]

Chemical Disposal Dec, 2011 Chemicals: The Office of Environmental Health & Safety operates a Chemical Waste Disposal Program where all University chemical waste is picked up and sent out for proper disposal. (There are some chemicals that they will not take because of their extreme hazards

Machel, Hans

202

Technological options for management of hazardous wastes from US Department of Energy facilities  

SciTech Connect (OSTI)

This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

1982-08-01T23:59:59.000Z

203

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

204

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

205

340 Waste handling Facility Hazard Categorization and Safety Analysis  

SciTech Connect (OSTI)

The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

T. J. Rodovsky

2010-10-25T23:59:59.000Z

206

Stabilization of hazardous/mixed K061 wastes  

SciTech Connect (OSTI)

The K061 Stabilization Program is an ongoing testing and treatment program jointly conducted between Envirocare of Utah, Inc., and Fluid Tech, Inc. (FTI). This program is comprised of a series of treatability testing projects, each of which is individually developed to optimize the treatment conditions for stabilization of Electric Arc Furnace (EAF) dust which has become accidentally contaminated with Cs-137 sources. EAF dust is the aerial effluent collected above the vats of molten scrap steel heated to 3000{degrees} C at steel plants. The EAF dust is pulled off into the dust evacuation vents and collected in the baghouse. Most steel mills ship EAF dust to other smelters, such as Horsehead, which process the EAF dust to separate the various metals, such as iron, zinc, magnesium, manganese, lead, cadmium, chromium and copper. Occasionally during the melting of recycled steel a smokestack emission density gauge containing radioactive Cs-137 will be included with the steel being reprocessed. During melting, the gauge casing is breached, releasing Cs-137 into the vat. This report describes the program to stabilize the mixed K061 wastes.

Brimley, R. [Envirocare of Utah, Inc., Salt Lake City, UT (United States); Murarik, T.M. [Fluid Tech, Inc., Las Vegas, NV (United States)

1995-09-01T23:59:59.000Z

207

Results of Hazardous and Mixed Waste Excavation from the Chemical Waste Landfill  

SciTech Connect (OSTI)

This paper describes the results of the excavation of a 1.9-acre hazardous and mixed waste landfill operated for 23 years at Sandia National Laboratories, Albuquerque, New Mexico. Excavation of the landfill was completed in 2 1/2 years without a single serious accident or injury. Approximately 50,000 cubic yards of soil contaminated with volatile and semi-volatile organics, metals, polychlorinated biphenyl compounds, and radioactive constituents was removed. In addition, over 400 cubic yards of buried debris was removed, including bulk debris, unknown chemicals, compressed gas cylinders, thermal and chemical batteries, explosive and ordnance debris, pyrophoric materials and biohazardous waste. Removal of these wastes included negotiation of multiple regulations and guidances encompassed in the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), and risk assessment methodology. RCRA concepts that were addressed include the area of contamination, permit modification, emergency treatment provision, and listed waste designation. These regulatory decisions enabled the project to overcome logistical and programmatic needs such as increased operational area, the ability to implement process improvements while maintaining a record of decisions and approvals.

Young, S. G.; Schofield, D. P.; Kwiecinski, D.; Edgmon, C. L.; Methvin, R.

2002-02-27T23:59:59.000Z

208

The mutagenic potential of soil and runoff water from land treatment of three hazardous industrial wastes  

E-Print Network [OSTI]

of agricultural chemicals and the performance of hazardous waste land treatment facilities. This study used a bioassay directed chemical analysis protocol to monitor the environmental fate of mutagenic constituents from a simulated land treatment demonstration...THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAYOL Submitted to the Graduate College of Te xa s ASM Un i ver s i ty in partial fulfillment of the requirement...

Davol, Phebe

1987-01-01T23:59:59.000Z

209

Determining the effective diffusivity of ions in hazardous wastes solidified by portland cement  

E-Print Network [OSTI]

DETERMINING THE EFFECTIVE DIFFUSIVITY OF TONS IN HAZARDOUS WASTES SOLIDIFIED BY PORTLAND CEMENT A Thesis by GLEN GREGORY TAFFINDER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1991 Major Subject: Civil Engineering DETERMINING THE EFFECTIVE DIFFUSIVITY OF TONS IN HAZARDOUS WASTES SOLIDIFIED BY PORTLAND CEMENT A Thesis by GLEN GREGORY TAFFINDER Approved as to scyle and content by: Bill...

Taffinder, Glen Gregory

1991-01-01T23:59:59.000Z

210

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

Emissions Reduction (DEER) Conference (presentation) - "Status of a Cylindrical Waste Heat Power Generator for Vehicles Development Program", J. LaGrandeur, L. Bell, D. Crane *...

211

Environmental Hazards Assessment Program annual report, July 1, 1993--June 30, 1994  

SciTech Connect (OSTI)

On June 23, 1992, the US Department of Energy (DOE) signed Assistance Instrument Number DE-FG01-92EW50625 with the Medical University of South Carolina (MUSC) to support the Environmental Hazards Assessment Program (EHAP). The objectives of the EHAP program stated in the proposal to DOE are to: (1) Develop a holistic, national basis for risk assessment, risk management, and risk communication which recognizes the direct impact of environmental hazards on the health and well-being of all. (2) Develop a pool of talented scientists and experts in cleanup activities, especially in human health aspects; and (3) Identify needs and develop programs addressing the critical shortage of well-educated, highly-skilled technical and scientific personnel to address the health oriented aspects of environmental restoration and waste management. This report describes activities and reports on progress for the second year of the grant.

Not Available

1994-08-17T23:59:59.000Z

212

Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102  

SciTech Connect (OSTI)

Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

SHULTZ, M.V.

1999-04-05T23:59:59.000Z

213

Iraq liquid radioactive waste tanks maintenance and monitoring program plan.  

SciTech Connect (OSTI)

The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad (Iraq Ministry of Science and Technology)

2011-10-01T23:59:59.000Z

214

Hazard screening application guide. Safety Analysis Report Update Program  

SciTech Connect (OSTI)

The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

none,

1992-06-01T23:59:59.000Z

215

Virginia Waste Management Act (Virginia)  

Broader source: Energy.gov [DOE]

Solid waste and hazardous waste are regulated under a number of programs at the Department of Environmental Quality. These programs are designed to encourage the reuse and recycling of solid waste...

216

Solar detoxification technology: Using energy from the sun to destroy hazardous waste  

SciTech Connect (OSTI)

Solar energy is being applied to one of the most difficult environmental problems our country faces in the coming decades: the destruction of hazardous waste. DOE Researchers are developing two separate technologies -- solar detoxification of water and solar decontamination of soil -- that could revolutionize the way toxic wastes are removed from the environment. Unlike many remediation techniques in use today, these solar-based processes actually destroy hazardous contaminants; the wastes are not transferred to other media for disposal. Solar detoxification of water uses solar energy to power a reaction that eliminates organic contaminants from polluted surface water and groundwater. The process uses a solar-activated photocatalyst, such as titanium dioxide, to break the bonds holding organic compounds together. Researchers are currently working to increase the efficiency and reduce the costs of the process to make it economically competitive with traditional remediation methods. In a related program researchers are investigating the ability of high solar flux (upwards of 300 times the sun's normal intensity) to decontaminate polluted solids such as soils. The solar decontamination of soil is a two-step process: in the first step contaminants are desorbed from the solid either by solar thermal energy or by conventional means (such as heating or vacuum extraction); in the second step the desorbed contaminants are destroyed. The contaminants can be destroyed by using either a high-flux photolytic process or a low-flux process that employs a photocatalyst. SERI's state-of-the-art high-flux solar furnace is home to a large portion of the soil decontamination research. 4 figs.

Anderson, J.V.; Clyne, R.J.

1991-08-01T23:59:59.000Z

217

Waste management facilities cost information for transportation of radioactive and hazardous materials  

SciTech Connect (OSTI)

This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

Feizollahi, F.; Shropshire, D.; Burton, D.

1995-06-01T23:59:59.000Z

218

Mission Plan for the Civilian Radioactive Waste Management Program...  

Broader source: Energy.gov (indexed) [DOE]

Waste Management Program Summary In response to the the requirement of the Nuclear Waste Policy Act of 1982, the Office of Civilian Radioactive Waste Management in the...

219

Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect (OSTI)

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

NONE

1995-01-10T23:59:59.000Z

220

Globalization and Hazardous Waste Management: From Brown to Green?  

E-Print Network [OSTI]

by the international scrap metal industry and its national/73 The waste and scrap metal industries have been heavily

O'Neill, Kate

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Chemical hazards associated with treatment of waste electrical and electronic equipment  

SciTech Connect (OSTI)

This review paper summarizes the existing knowledge on the chemical hazards associated with recycling and other end-of-life treatment options of waste electrical and electronic equipment (e-waste). The hazards arise from the presence of heavy metals (e.g., mercury, cadmium, lead, etc.), flame retardants (e.g., pentabromophenol, polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol-A (TBBPA), etc.) and other potentially harmful substances in e-waste. If improperly managed, the substances may pose significant human and environmental health risks. The review describes the potentially hazardous content of e-waste, examines the existing e-waste management practices and presents scientific data on human exposure to chemicals, workplace and environmental pollution associated with the three major e-waste management options, i.e., recycling, incineration and landfilling. The existing e-waste management practices and associated hazards are reviewed separately for developed and developing countries. Finally, based on this review, the paper identifies gaps in the existing knowledge and makes some recommendations for future research.

Tsydenova, Oyuna [Institute for Global Environmental Strategies, 2108-11 Kamiyamaguchi, Hayama, Kanagawa 240-0115 (Japan); Bengtsson, Magnus, E-mail: bengtsson@iges.or.jp [Institute for Global Environmental Strategies, 2108-11 Kamiyamaguchi, Hayama, Kanagawa 240-0115 (Japan)

2011-01-15T23:59:59.000Z

222

Standard guide for characterization of radioactive and/or hazardous wastes for thermal treatment  

E-Print Network [OSTI]

1.1 This guide identifies methods to determine the physical and chemical characteristics of radioactive and/or hazardous wastes before a waste is processed at high temperatures, for example, vitrification into a homogeneous glass ,glass-ceramic, or ceramic waste form. This includes waste forms produced by ex-situ vitrification (ESV), in-situ vitrification (ISV), slagging, plasma-arc, hot-isostatic pressing (HIP) and/or cold-pressing and sintering technologies. Note that this guide does not specifically address high temperature waste treatment by incineration but several of the analyses described in this guide may be useful diagnostic methods to determine incinerator off-gas composition and concentrations. The characterization of the waste(s) recommended in this guide can be used to (1) choose and develop the appropriate thermal treatment methodology, (2) determine if waste pretreatment is needed prior to thermal treatment, (3) aid in development of thermal treatment process control, (4) develop surrogate wa...

American Society for Testing and Materials. Philadelphia

2003-01-01T23:59:59.000Z

223

Waste Isolation Pilot Plant, National Transuranic Program Have...  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year in 2013 Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year in 2013 December 24,...

224

2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program...  

Broader source: Energy.gov (indexed) [DOE]

Documents & Publications Automotive Waste Heat Conversion to Power Program Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Development of a 100-Watt High...

225

Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8,...

226

Assessment of External Hazards at Radioactive Waste and Used Fuel Management Facilities - 13505  

SciTech Connect (OSTI)

One of the key lessons from the Fukushima accident is the importance of having a comprehensive identification and evaluation of risks posed by external events to nuclear facilities. While the primary focus has been on nuclear power plants, the Canadian nuclear industry has also been updating hazard assessments for radioactive waste and used fuel management facilities to ensure that lessons learnt from Fukushima are addressed. External events are events that originate either physically outside the nuclear site or outside its control. They include natural events, such as high winds, lightning, earthquakes or flood due to extreme rainfall. The approaches that have been applied to the identification and assessment of external hazards in Canada are presented and analyzed. Specific aspects and considerations concerning hazards posed to radioactive waste and used fuel management operations are identified. Relevant hazard identification techniques are described, which draw upon available regulatory guidance and standard assessment techniques such as Hazard and Operability Studies (HAZOPs) and 'What-if' analysis. Consideration is given to ensuring that hazard combinations (for example: high winds and flooding due to rainfall) are properly taken into account. Approaches that can be used to screen out external hazards, through a combination of frequency and impact assessments, are summarized. For those hazards that cannot be screened out, a brief overview of methods that can be used to conduct more detailed hazard assessments is also provided. The lessons learnt from the Fukushima accident have had a significant impact on specific aspects of the approaches used to hazard assessment for waste management. Practical examples of the effect of these impacts are provided. (authors)

Gerchikov, Mark; Schneider, Glenn; Khan, Badi; Alderson, Elizabeth [AMEC NSS, 393 University Ave., Toronto, ON (Canada)] [AMEC NSS, 393 University Ave., Toronto, ON (Canada)

2013-07-01T23:59:59.000Z

227

Biological treatment of concentrated hazardous, toxic, andradionuclide mixed wastes without dilution  

SciTech Connect (OSTI)

Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel.

Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

2004-06-15T23:59:59.000Z

228

State of Tennessee Hazardous Waste Management Permit, TNHW-122  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

refuse, sludge from a waste treatment plant, water supply treatment plant, or air pollution control facility and other discarded material, including solid, liquid, semisolid,...

229

State of Tennessee Hazardous Waste Management Permit, TNHW-127  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

refuse, sludge from a waste treatment plant, water supply treatment plant, or air pollution control facility and other discarded material, including solid, liquid, semisolid,...

230

Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LLC (NWP), collectively referred to as the Permittees. The Order, at paragraph 17(b), requires the Permittees to submit an Underground Derived Waste Storage Plan (Plan)...

231

M-area hazardous waste management facility groundwater monitoring and corrective-action report, First quarter 1995, Volume 1  

SciTech Connect (OSTI)

This report, in three volumes, describes the ground water monitoring and c corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during the fourth quarter 1994 and first quarter 1995. Concise description of the program and considerable data documenting the monitoring and remedial activities are included in the document. This is Volume 1 covering the following topics: sampling and results; hydrogeologic assessment; water quality assessment; effectiveness of the corrective-action program; corrective-action system operation and performance; monitoring and corrective-action program assessment; proposed monitoring and corrective-action program modifications. Also included are the following appendicies: A-standards; B-flagging criteria; C-figures; D-monitoring results tables; E-data quality/usability assessment.

NONE

1995-05-01T23:59:59.000Z

232

Modified hazard ranking system for sites with mixed radioactive and hazardous wastes. User manual.  

SciTech Connect (OSTI)

This document describes both the original Hazard Ranking System and the modified Hazard Ranking System as they are to be used in evaluating the relative potential for uncontrolled hazardous substance facilities to cause human health or safety problems or ecological or environmental damage. Detailed instructions for using the mHRS/HRS computer code are provided, along with instructions for performing the calculations by hand. Uniform application of the ranking system will permit the DOE to identify those releases of hazardous substances that pose the greatest hazard to humans or the environment. However, the mHRS/HRS by itself cannot establish priorities for the allocation of funds for remedial action. The mHRS/HRS is a means for applying uniform technical judgment regarding the potential hazards presented by a facility relative to other facilities. It does not address the feasibility, desirability, or degree of cleanup required. Neither does it deal with the readiness or ability of a state to carry out such remedial action, as may be indicated, or to meet other conditions prescribed in CERCLA. 13 refs., 13 figs., 27 tabs.

Hawley, K.A.; Peloquin, R.A.; Stenner, R.D.

1986-04-01T23:59:59.000Z

233

Process and material that encapsulates solid hazardous waste  

DOE Patents [OSTI]

A method of encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150.degree. C. and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200.degree. C. and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.

O'Brien, Michael H. (Idaho Falls, ID); Erickson, Arnold W. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

234

Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program  

SciTech Connect (OSTI)

Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

Stapp, D.C.

1993-01-01T23:59:59.000Z

235

Grout formulation for disposal of low-level and hazardous waste streams containing fluoride  

DOE Patents [OSTI]

A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

1987-06-02T23:59:59.000Z

236

Measurements and models for hazardous chemical and mixed wastes. 1998 annual progress report  

SciTech Connect (OSTI)

'Aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the US. A large quantity of the waste generated by the US chemical process industry is waste water. In addition, the majority of the waste inventory at DoE sites previously used for nuclear weapons production is aqueous waste. Large quantities of additional aqueous waste are expected to be generated during the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical property information is paramount. This knowledge will lead to huge savings by aiding in the design and optimization of treatment and disposal processes. The main objectives of this project are: Develop and validate models that accurately predict the phase equilibria and thermodynamic properties of hazardous aqueous systems necessary for the safe handling and successful design of separation and treatment processes for hazardous chemical and mixed wastes. Accurately measure the phase equilibria and thermodynamic properties of a representative system (water + acetone + isopropyl alcohol + sodium nitrate) over the applicable ranges of temperature, pressure, and composition to provide the pure component, binary, ternary, and quaternary experimental data required for model development. As of May, 1998, nine months into the first year of a three year project, the authors have made significant progress in the database development, have begun testing the models, and have been performance testing the apparatus on the pure components.'

Holcomb, C.; Watts, L.; Outcalt, S.L.; Louie, B. [National Inst. of Standards and Technology, Boulder, CO (US); Mullins, M.E.; Rogers, T.N. [Michigan Technological Univ., Houghton, MI (US)

1998-06-01T23:59:59.000Z

237

Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement  

SciTech Connect (OSTI)

Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs.

Kalb, P.D.; Heiser, J.H. III; Colombo, P.

1990-01-01T23:59:59.000Z

238

Measurements and Models for Hazardous chemical and Mixed Wastes  

SciTech Connect (OSTI)

Mixed solvent aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the United States. Not only does the chemical process industry create large quantities of aqueous waste, but the majority of the waste inventory at the DOE sites previously used for nuclear weapons production is mixed solvent aqueous waste. In addition, large quantities of waste are expected to be generated in the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical properties is essential. The goal of this work is to develop a phase equilibrium model for mixed solvent aqueous solutions containing salts. An equation of state was sought for these mixtures that (a) would require a minimum of adjustable parameters and (b) could be obtained from a available data or data that were easily measured. A model was developed to predict vapor composition and pressure given the liquid composition and temperature. It is based on the Peng-Robinson equation of state, adapted to include non-volatile and salt components. The model itself is capable of predicting the vapor-liquid equilibria of a wide variety of systems composed of water, organic solvents, salts, nonvolatile solutes, and acids or bases. The representative system o water + acetone + 2-propanol + NaNo3 was selected to test and verify the model. Vapor-liquid equilibrium and phase density measurements were performed for this system and its constituent binaries.

Laurel A. Watts; Cynthia D. Holcomb; Stephanie L. Outcalt; Beverly Louie; Michael E. Mullins; Tony N. Rogers

2002-08-21T23:59:59.000Z

239

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

James T. Cobb, Jr.

2003-09-12T23:59:59.000Z

240

Resource recovery - a byproduct of hazardous waste incineration  

SciTech Connect (OSTI)

Three principal areas of a chlorinated hydrocarbon waste disposal system for a typical vinyl chloride monomer (VCM) facility are described: the incinerator, the energy-recovery system, and the byproduct-recovery system. The overall efficiency of the energy- and *byproduct-recovery systems is dependent on the optimization of the primary combustor. An example is presented in table form which lists typical waste quantities for the plant and operating costs, including utility requirements for the incinerator system, the quench, absorber and scrubber. Savings that can result by the addition of the energy- and acid-recovery systems can pay for the waste disposal system and return money to the plant.

Santoleri, J.J.

1982-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CHARACTERIZATION OF DEFENSE NUCLEAR WASTE USING HAZARDOUS WASTE GUIDANCE. APPLICATIONS TO HANFORD SITE ACCELERATED HIGH-LEVEL WASTE TREATMENT AND DISPOSAL MISSION0  

SciTech Connect (OSTI)

Federal hazardous waste regulations were developed for management of industrial waste. These same regulations are also applicable for much of the nation's defense nuclear wastes. At the U.S. Department of Energy's (DOE) Hanford Site in southeast Washington State, one of the nation's largest inventories of nuclear waste remains in storage in large underground tanks. The waste's regulatory designation and its composition and form constrain acceptable treatment and disposal options. Obtaining detailed knowledge of the tank waste composition presents a significant portion of the many challenges in meeting the regulatory-driven treatment and disposal requirements for this waste. Key in applying the hazardous waste regulations to defense nuclear wastes is defining the appropriate and achievable quality for waste feed characterization data and the supporting evidence demonstrating that applicable requirements have been met at the time of disposal. Application of a performance-based approach to demonstrating achievable quality standards will be discussed in the context of the accelerated high-level waste treatment and disposal mission at the Hanford Site.

Hamel, William; Huffman, Lori; Lerchen, Megan; Wiemers, Karyn

2003-02-27T23:59:59.000Z

242

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fe, NM 87508-6303 Subject: Notification of the Use of Surge Storage in the Waste Handling Building Reference: DOE Memorandum CBFO:OESH:GB:MN:14-1427;UFC:5487 from Mr. Jose R....

243

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to enhance waste stream collection. The cost ofthe bins was 2,717. 70. * Light-emitting diode (LED) task lights were purchased to replace fluorescent units with the purpose...

244

agency hazardous waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and 9,117 tpa scrap metals (2 Columbia University 87 United States Office of Office of Solid EPA540S-96500 Environmental Protection Research and Waste and December 1995...

245

Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York  

SciTech Connect (OSTI)

A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

Weaver, Phyllis C.

2012-08-29T23:59:59.000Z

246

Upgrades to meet LANL SF, 121-2011, hazardous waste facility permit requirements  

SciTech Connect (OSTI)

Members of San IIdefonso have requested information from LANL regarding implementation of the revision to LANL's Hazardous Waste Facility Permit (the RCRA Permit). On January 26, 2011, LANL staff from the Waste Disposition Project and the Environmental Protection Division will provide a status update to Pueblo members at the offices of the San IIdefonso Department of Environmental and Cultural Preservation. The Waste Disposition Project presentation will focus on upgrades and improvements to LANL waste management facilities at TA-50 and TA-54. The New Mexico Environment Department issued LANL's revised Hazardous Waste Facility permit on November 30, 2010 with a 30-day implementation period. The Waste Disposition Project manages and operates four of LANL's permitted facilities; the Waste Characterization, Reduction and Repackaging Facility (WCRRF) at TA-SO, and Area G, Area L and the Radioassay and Nondestructive Testing facility (RANT) at TA-54. By implementing a combination of permanent corrective action activities and shorter-term compensatory measures, WDP was able to achieve functional compliance on December 30, 2010 with new Permit requirements at each of our facilities. One component of WOP's mission at LANL is centralized management and disposition of the Laboratory's hazardous and mixed waste. To support this mission objective, WOP has undertaken a project to upgrade our facilities and equipment to achieve fully compliant and efficient waste management operations. Upgrades to processes, equipment and facilities are being designed to provide defense-in-depth beyond the minimum, regulatory requirements where worker safety and protection of the public and the environment are concerned. Upgrades and improvements to enduring waste management facilities and operations are being designed so as not to conflict with future closure activities at Material Disposal Area G and Material Disposal Area L.

French, Sean B [Los Alamos National Laboratory; Johns - Hughes, Kathryn W [Los Alamos National Laboratory

2011-01-21T23:59:59.000Z

247

Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work-  

E-Print Network [OSTI]

Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work- ing with hazardous materials should receive annual training that address- es lab safety, and other safety topics spe- cific to their workplace. Personnel must be thoroughly familiar with waste

Tennessee, University of

248

The strategy of APO-Hazardous Waste Management Agency in forming the model of public acceptance of Croatian Waste Management Facility  

SciTech Connect (OSTI)

Some of basic elements related to public participation in hazardous and radioactive waste management in Croatia are underlined in the paper. Most of them are created or led by the APO-Hazardous Waste Management Agency. Present efforts in improvement of public participation in the field of hazardous and radioactive waste management are important in particular due to negligible role of public in environmentally related issues during former Yugoslav political system. For this reason it is possible to understand the public fearing to be deceived or neglected again. Special attention is paid to the current APO editions related to public information and education in the field of hazardous and radioactive waste management. It is important because only the well-informed public can present an active and respectful factor in hazardous and radioactive waste management process.

Klika, M.C.; Kucar-Dragicevic, S.; Lokner, V. [APO, Zagreb (Croatia)] [and others

1996-12-31T23:59:59.000Z

249

Measurement and Model for Hazardous Chemical and Mixed Waste  

SciTech Connect (OSTI)

Mixed solvent aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the United States. Not only does the chemical process industry create large quantities of aqueous waste, but the majority of the waste inventory at the Department of Energy (DOE) sites previously used for nuclear weapons production is mixed solvent aqueous waste. In addition, large quantities of waste are expected to be generated in the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical properties is essential. The goal of this work is to develop a phase equilibrium model for mixed solvent aqueous solutions containing salts. An equation of state was sought for these mixtures that (a) would require a minimum of adjustable parameters and (b) could be obtained from a available data or data that were easily measured. A model was developed to predict vapor composition and pressure given the liquid composition and temperature. It is based on the Peng-Robinson equation of state, adapted to include non-volatile and salt components. The model itself is capable of predicting the vapor-liquid equilibria of a wide variety of systems composed of water, organic solvents, salts, nonvolatile solutes, and acids or bases. The representative system of water + acetone + 2-propanol + NaNO3 was selected to test and verify the model. Vapor-liquid equilibrium and phase density measurements were performed for this system and its constituent binaries.

Michael E. Mullins; Tony N. Rogers; Stephanie L. Outcalt; Beverly Louie; Laurel A. Watts; Cynthia D. Holcomb

2002-07-30T23:59:59.000Z

250

Flood Assessment at the Area 5 Radioactive Waste Management Site and the Proposed Hazardous Waste Storage Unit, DOE/Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

A flood assessment at the Radioactive Waste Management Site (RWMS) and the proposed Hazardous Waste Storage Unit (HWSU) in Area 5 of the Nevada Test Site (NTS) was performed to determine the 100-year flood hazard at these facilities. The study was conducted to determine whether the RWMS and HWSU are located within a 100-year flood hazard as defined by the Federal Emergency Management Agency, and to provide discharges for the design of flood protection.

Schmeltzer, J. S., Millier, J. J., Gustafson, D. L.

1993-01-01T23:59:59.000Z

251

Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats  

SciTech Connect (OSTI)

Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

1990-09-18T23:59:59.000Z

252

Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL1A, NPFPDL1B, NPFPDL1C and NPFPDL1D  

SciTech Connect (OSTI)

This Hazardous Waste Determination Report is intended to satisfy the terms of a Memorandum of Agreement (Agreement signed on June 16, 1999) between the U.S. Department of Energy and the New Mexico Environment Department. The Agreement pertains to the exchange of information before a final decision is made on the Waste Isolation Pilot Plant application for a permit under the ''New Mexico Hazardous Waste Act''. The Agreement will terminate upon the effective date of a final ''New Mexico Hazardous Waste Act'' permit for the Waste Isolation Pilot Plant. In keeping with the principles and terms of the Agreement, this report describes the waste stream data and information compilation process, and the physical and chemical analyses that the U.S. Department of Energy has performed on selected containers of transuranic debris waste to confirm that the waste is nonhazardous (non-mixed). This also summarizes the testing and analytical results that support the conclusion that the selected transuranic debris waste is not hazardous and thus, not subject to regulation under the ''Resource Conservation and Recovery Act'' or the ''New Mexico Hazardous Waste Act''. This report will be submitted to the New Mexico Environment Department no later than 45 days before the first shipment of waste from the Hanford Site to the Waste Isolation Pilot Plant, unless the parties mutually agree in writing to a shorter time. The 52 containers of transuranic debris waste addressed in this report were generated, packaged, and placed into storage between 1995 and 1997. Based on reviews of administrative documents, operating procedures, waste records, generator certifications, and personnel interviews, this transuranic debris waste was determined to be nonhazardous. This determination is supported by the data derived from nondestructive examination, confirmatory visual examination, and the results of container headspace gas sampling and analysis. Therefore, it is concluded that this transuranic debris waste, which consists of 52 containers from waste streams NPFPDLIA, NPFPDLIB, NPFPDLIC, and NPFPDLID, is not hazardous waste, and no hazardous waste numbers specified in Title 40 Code of Federal Regulations, Part 261, have been assigned. Accordingly, the 52 containers of transuranic debris waste addressed in this report meet the requirements for transuranic waste as defined by the Department of Energy Waste Acceptance Criteria for the Waste Isolation Pilot Plant. The 52 containers are acceptable for disposal at the Waste Isolation Pilot Plant as nonhazardous transuranic waste.

WINTERHALDER, J.A.

1999-09-29T23:59:59.000Z

253

DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary  

SciTech Connect (OSTI)

This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis.

DeMuth, S.F.

1996-10-01T23:59:59.000Z

254

Pressure Vessel Burst Program: Automated hazard analysis for pressure vessels  

SciTech Connect (OSTI)

The design, development, and use of a Windows based software tool, PVHAZARD, for pressure vessel hazard analysis is presented. The program draws on previous efforts in pressure vessel research and results of a Pressure Vessel Burst Test Study. Prior papers on the Pressure Vessel Burst Test Study have been presented to the ASME, AIAA, JANNAF, NASA Pressure Systems Seminar, and to a DOD Explosives Safety Board subcommittee meeting. Development and validation is described for simplified blast (overpressure/impulse) and fragment (velocity and travel distance) hazard models. The use of PVHAZARD in making structural damage and personnel injury estimates is discussed. Efforts in-progress are reviewed including the addition of two-dimensional and three-dimensional (2D and 3D) hydrodynamic code analyses to supplement the simplified models, and the ability to assess barrier designs for protection from fragmentation.

Langley, D.R. [Aerospace Corp., Kennedy Space Center, FL (United States); Chrostowski, J.D. [ACTA Inc., Torrance, CA (United States); Goldstein, S. [Aerospace Corp., El Segundo, CA (United States); Cain, M. [General Physics Corp., Titusville, FL (United States)

1996-12-31T23:59:59.000Z

255

Solid Waste Program technical baseline description  

SciTech Connect (OSTI)

The system engineering approach has been taken to describe the technical baseline under which the Solid Waste Program is currently operating. The document contains a mission analysis, function analysis, system definition, documentation requirements, facility and project bases, and uncertainties facing the program.

Carlson, A.B.

1994-07-01T23:59:59.000Z

256

Introduction to NIH Hazard Communication Program The National Institutes of Health's comprehensive Occupational Safety and Health  

E-Print Network [OSTI]

Introduction to NIH Hazard Communication Program The National Institutes of Health's comprehensive Occupational Safety and Health Program has been established to provide NIH employees with places and conditions of employment in which the risk of exposures to potential hazards is minimized. The NIH Hazard Communication

Bandettini, Peter A.

257

Hazardous Waste Facility Permit Public Comments to Community...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 SECTION COMMENT POST? 2.0 & 4.0 1. Fix broken links on pages 3 and 4 for the HWA permit. Yes 2.0 2. Revise a sentence on page 4 to: "Limits on LANL waste facilities may be...

258

Hazardous-waste combustion in industrial processes: cement and lime kilns  

SciTech Connect (OSTI)

This report summarizes the results of several studies relating to hazardous-waste combustion in cement and lime kilns. The tests included in the study are four kilns tested by the U.S. Environmental Protection Agency, four kilns tested by State agencies or the kiln operator, two Canadian tests, and one Swedish test. The predominant types of wastes tested included chlorinated organic compounds, aromatic compounds, and metal-contaminated waste oil. The kiln types include lime kilns and cement kilns, which included the dry, wet, and preheated processes. Fabric filters and electrostatic precipitators (ESPs) were the pollution-control devices used in these processes, and the primary fuels included coal, coke, coal/coke, fuel oil, and natural gas/coke. The parameters examined in the report were Destruction and Removal Efficiency (DRE) of the Principal Organic Hazardous Constitutents, particulate and HCl emissions, metals, and the effect of burning hazardous waste on SO/sub 2/, NOx, and CO emissions. The primary conclusion of the study is that DRE's of 99.99% or greater can be obtained in properly-operated calcining kilns. Particulate matter can increase when chlorinated wastes are burned in a kiln equipped with an electrostatic precipitator. Those kilns equipped with fabric filters showed no change in emissions.

Mournighan, R.E.; Branscome, M.

1987-11-01T23:59:59.000Z

259

Waste Management Program. Technical progress report, Aporil-June 1983  

SciTech Connect (OSTI)

This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant. The studies on environmental and safety assessments, process and equipment development, TRU waste, and low-level waste are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

None

1984-02-01T23:59:59.000Z

260

Voluntary Protection Program Onsite Review, Waste Treatment Plant...  

Office of Environmental Management (EM)

Construction Project - June 2010 Voluntary Protection Program Onsite Review, Waste Treatment Plant Construction Project - June 2010 June 2010 Evaluation to determine whether Waste...

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Voluntary Protection Program Onsite Review, Salt Waste Processing...  

Broader source: Energy.gov (indexed) [DOE]

Salt Waste Processing Facility Construction Project - February 2013 Voluntary Protection Program Onsite Review, Salt Waste Processing Facility Construction Project - February 2013...

262

Voluntary Protection Program Onsite Review, Intermech Inc., Waste...  

Office of Environmental Management (EM)

Intermech Inc., Waste Treatment Plant Construction Site - November 2013 Voluntary Protection Program Onsite Review, Intermech Inc., Waste Treatment Plant Construction Site -...

263

Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

Not Available

1992-09-01T23:59:59.000Z

264

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

West, B.; Waltz, R.

2010-06-21T23:59:59.000Z

265

Phosphate glasses for radioactive, hazardous and mixed waste immobilization  

DOE Patents [OSTI]

Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

1999-03-09T23:59:59.000Z

266

Phosphate glasses for radioactive, hazardous and mixed waste immobilization  

DOE Patents [OSTI]

Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

1998-11-24T23:59:59.000Z

267

Phosphate glasses for radioactive, hazardous and mixed waste immobilization  

DOE Patents [OSTI]

Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

Cao, H.; Adams, J.W.; Kalb, P.D.

1999-03-09T23:59:59.000Z

268

Phosphate glasses for radioactive, hazardous and mixed waste immobilization  

DOE Patents [OSTI]

Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

Cao, H.; Adams, J.W.; Kalb, P.D.

1998-11-24T23:59:59.000Z

269

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

West, B.; Waltz, R.

2012-06-21T23:59:59.000Z

270

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

West, B.; Waltz, R.

2011-06-23T23:59:59.000Z

271

Payment Of the New Mexico Environment Department- Hazardous Waste Bureau Annual Business and Generation Fees Calendar Year 2011  

SciTech Connect (OSTI)

The purpose of this letter is to transmit to the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB), the Los alamos National Laboratory (LANL) Annual Business and Generation Fees for calendar year 2011. These fees are required pursuant to the provisions of New Mexico Hazardous Waste Act, Chapter 74, Article 4, NMSA (as amended). The Laboratory's Fenton Hill Facility did not generate any hazardous waste during the entire year, and is not required to pay a fee for calendar year 2011. The enclosed fee represents the amount for a single facility owned by the Department of Energy and co-operated by the Los Alamos National Security, LLC (LANS).

Juarez, Catherine L. [Los Alamos National Laboratory

2012-08-31T23:59:59.000Z

272

Impact assessment of draft DOE Order 5820.2B. Radioactive Waste Technical Support Program  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared a revision to DOE Order 5820.2A, entitled ``Radioactive Waste Management.`` DOE issued DOE Order 5820.2A in September 1988 and, as the title implies, it covered only radioactive waste forms. The proposed draft order, entitled ``Waste Management,`` addresses the management of both radioactive and nonradioactive waste forms. It also includes spent nuclear fuel, which DOE does not consider a waste. Waste forms covered include hazardous waste, high-level waste, transuranic (TRU) waste, low-level radioactive waste, uranium and thorium mill tailings, mixed waste, and sanitary waste. The Radioactive Waste Technical Support Program (TSP) of Leached Idaho Technologies Company (LITCO) is facilitating the revision of this order. The EM Regulatory Compliance Division (EM-331) has requested that TSP estimate the impacts and costs of compliance with the revised order. TSP requested Dames & Moore to aid in this assessment by comparing requirements in Draft Order 5820.2B to ones in DOE Order 5820.2A and other DOE orders and Federal regulations. The assessment started with a draft version of 5820.2B dated January 14, 1994. DOE has released three updated versions of the draft order since then (dated May 20, 1994; August 26, 1994; and January 23, 1995). Each time DOE revised the order, Dames and Moore updated the assessment work to reflect the text changes. This report reflects the January 23, 1995 version of the draft order.

NONE

1995-04-01T23:59:59.000Z

273

Does hazardous water matter? : evidence from the housing market and the Superfund program  

E-Print Network [OSTI]

This paper uses the housing market to develop estimates of the local welfare impacts of Superfund sponsored clean-ups of hazardous waste sites. We show that if consumers value the clean-ups, then the hedonic model predicts ...

Greenstone, Michael

2006-01-01T23:59:59.000Z

274

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee)  

Broader source: Energy.gov [DOE]

The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division...

275

Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

Colombo, Peter (Patchogue, NY); Kalb, Paul D. (Wading River, NY); Heiser, III, John H. (Bayport, NY)

1997-11-14T23:59:59.000Z

276

Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste  

SciTech Connect (OSTI)

A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

1997-05-01T23:59:59.000Z

277

Mr. James Bearzi, Bureau Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1 EEnergy,MovingDepartment of Energy

278

Mr. James Bearzi, Bureau Chief Hazardous Waste Bureau Departmen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1 EEnergy,MovingDepartment of

279

Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1 EEnergy,MovingDepartment28,.O.

280

Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1 EEnergy,MovingDepartment28,.O.APR

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1 EEnergy,MovingDepartment28,.O.APR0

282

Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1

283

Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New Mexico Environment

284

Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New Mexico

285

Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP 1 7 2014

286

Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP 1 7

287

Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP 1 7OCT 3

288

Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP 1 7OCT 3

289

Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP 1 7OCT

290

Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP 1 7OCT

291

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP 1

292

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP 1AUG 2 6

293

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP 1AUG 2

294

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP 1AUG

295

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP 1AUG7

296

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP 1AUG7OCT

297

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP

298

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP8 2014

299

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP8 2014

300

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP8 2014FEB

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP8

302

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP8OCT 2 9

303

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP8OCT 2 9A

304

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP8OCT 2

305

Mr. John E. Kieling, Chief Hazardous Waste Bureau Departmen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 New MexicoSEP8OCT

306

Mr. John Kieling, Acting Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 NewKielHaza rdP. O.

307

Mr. John Kieling, Acting Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 NewKielHaza rdP. O.P

308

Mr. John Kieling, Acting Chief Hazardous Waste Bureau Depa  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 NewKielHaza rdP.

309

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, November 1994--February 1995  

SciTech Connect (OSTI)

This second quarterly report describes work during the second three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSI) and the Center for Hazardous Materials Research (CHMR). The report describes the activities of the project team during the reporting period. The principal work has focussed upon the acquisition of by-product samples and their initial analysis. Other efforts during the second quarter have been directed toward identifying the first hazardous waste samples and preparing for their treatment and analysis. Relatively little data has yet been collected. Major presentation of technical details and data will appear for the first time in the third quarterly report. The activity on the project during the second quarter of Phase One, as presented in the following sections, has fallen into seven areas: (1) Acquiring by-products, (2) Analyzing by-products, (3) Identifying, analyzing and treating suitable hazardous wastes, (4) Carrying out the quality assurance/quality control program, (5) Developing background, and (6) Initiating public relations

NONE

1995-03-01T23:59:59.000Z

310

A systematic assessment of the state of hazardous waste clean-up technologies. Quarterly technical progress report, April 1--June 30, 1993  

SciTech Connect (OSTI)

West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.

Berg, M.T.; Reed, B.E.; Gabr, M.

1993-07-01T23:59:59.000Z

311

Recycling non-hazardous industrial wastes and petroleum contaminated soils into structural clay ceramics  

SciTech Connect (OSTI)

Cherokee Environmental Group (CEG)--a subsidiary of the Cherokee Sanford Group, Inc. (CSG)--has developed a system to beneficially reuse non-hazardous industrial wastes and petroleum contaminated soils into the recycling process of CSG`s structural clay ceramics manufacturing operation. The wastes and soils are processed, screened, and blended with brickmaking raw materials. The resulting material is formed and fired in such a way that the bricks still exceed American Society for Testing and Materials (ASTM) quality standards. Prior to usage, recycled materials are rigorously tested for ceramic compatibility and environmental compliance. Ceramic testing includes strength, shrinkage, and aesthetics. Environmental compliance is insured by testing for both organic and inorganic constituents. This recycling process has been fully permitted by all required state regulatory agencies in North Carolina, Maryland, and South Carolina where facilities are located. This inter-industrial synergy has eliminated landfill reliance and liability for many companies and property owners. The recycling volume of wastes and soils is high because CSG is one of the largest brick manufacturers in the nation. Together, CEG and CSG have eliminated more than 1 billion pounds of material from landfills by beneficially reusing the non-hazardous wastes.

MacRunnels, Z.D.; Miller, H.B. Jr. [Cherokee Environmental Group, Sanford, NC (United States)

1994-12-31T23:59:59.000Z

312

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-05-01T23:59:59.000Z

313

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-10-01T23:59:59.000Z

314

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-02-01T23:59:59.000Z

315

Ceramic stabilization of hazardous wastes: a high performance room temperature process  

SciTech Connect (OSTI)

ANL has developed a room-temperature process for converting hazardous materials to a ceramic structure. It is similar to vitrification but is achieved at low cost, similar to conventional cement stabilization. The waste constituents are both chemically stabilized and physically encapsulated, producing very low leaching levels and the potential for delisting. The process, which is pH-insensitive, is ideal for inorganic sludges and liquids, as well as mixed chemical-radioactive wastes, but can also handle significant percentages of salts and even halogenated organics. High waste loadings are possible and densification occurs,so that volumes are only slightly increased and in some cases (eg, incinerator ash) are reduced. The ceramic product has strength and weathering properties far superior to cement products.

Maloney, M.D.

1996-10-01T23:59:59.000Z

316

A New Concept: Use of Negotiations in the Hazardous Waste Facility Permitting Process in New Mexico  

SciTech Connect (OSTI)

This paper describes a unique negotiation process leading to authorization of the U.S. Department of Energy (DOE) to manage and dispose remote-handled (RH) transuranic (TRU) mixed wastes at the Waste Isolation Pilot Plant (WIPP). The negotiation process involved multiple entities and individuals brought together under authority of the New Mexico Environment Department (NMED) to discuss and resolve technical and facility operational issues flowing from an NMED-issued hazardous waste facility Draft Permit. The novel negotiation process resulted in numerous substantive changes to the Draft Permit, which were ultimately memorialised in a 'Draft Permit as Changed'. This paper discusses various aspects of the negotiation process, including events leading to the negotiations, regulatory basis for the negotiations, negotiation participants, and benefits of the process. (authors)

Johnson, G.J. [Washington TRU Solutions, LLC, Waste Isolation Pilot Plant, New Mexico (United States); Rose, W.M. [U.S. Department of Energy, Carlsbad Field Office, Waste Isolation Pilot Plant, New Mexico (United States); Domenici, P.V.; Hollingsworth, L. [Domenici Law Firm PC, Albuquerque, New Mexico (United States)

2007-07-01T23:59:59.000Z

317

Annual radioactive waste tank inspection program -- 1993  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1993 to evaluate these vessels, and evaluations based on data accrued by inspections made since the tanks were constructed, are the subject of this report. The 1993 inspection program revealed that the condition of the Savannah River Site waste tanks had not changed significantly from that reported in the previous annual report. No new leaksites were observed. No evidence of corrosion or materials degradation was observed in the waste tanks. However, degradation was observed on covers of the concrete encasements for the out-of-service transfer lines to Tanks 1 through 8.

McNatt, F.G. Sr.

1994-05-01T23:59:59.000Z

318

Transport and transportation pathways of hazardous chemicals from solid waste disposal. Environ. Health Perspect  

E-Print Network [OSTI]

To evaluate the impact of hazardous chemicals in solid wastes on man and other organisms, it is necessary to have information about amounts of chemical present, extent of exposure, and chemical toxicity. This paper addresses the question of organism exposure by considering the major physical and biological transport pathways and the physicochemical and biochemical transformations that may occur in sediments, soils, and water. Disposal of solid wastes in both terrestrial and oceank environments is considered. Atmospheric transport is considered for emissions from incineration of solid wastes and for wind resuspension of particulates from surface waste deposits. Solid wastes deposited in terrestrial environments are subject to leaching by surface and ground waters. Leachates may then be transported to other surface waters and drinking water aquifers through hydrologic transport. Leachates also interact with natural organic matter, clays, and microorganisms in soils and sediments. These interactions may render chemical constituents in leachates more or less mobile, possibly change chemical and physical forms, and alter their biological activity. Oceanic waste disposal practices result in migration through diffusion and ocean currents. Surface area-to-volume ratios play a major role in the initial distributions of chemicals in the aquatic environment. Sediments serve as major sources and sinks of chemical contaminants. Food chain transport in both aquatic and terrestrial environments results in the movement of hazardous chemicals from lower to higher positions in the food web. Bioconcentration is observed in both terrestrial and aquatic food chains with certain elements and synthetic organics. Bioconcentration factors tend to be higher for synthetic organics, and higher in aquatic than in terrestrial systems. Biodilution is not atypical in terrestrial environments. Synergistic and antagonistic actions are common occurrences among chemical contaminants and can be particularly important toxicity considerations in aquatic environments receiving runoff from several terrestrial sources.

Robert Van Hook

1978-01-01T23:59:59.000Z

319

Rethinking the Hanford Tank Waste Program  

SciTech Connect (OSTI)

The program to treat and dispose of the highly radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford site has been studied. A strategy/management approach to achieve an acceptable (technically sound) end state for these wastes has been developed in this study. This approach is based on assessment of the actual risks and costs to the public, workers, and the environment associated with the wastes and storage tanks. Close attention should be given to the technical merits of available waste treatment and stabilization methodologies, and application of realistic risk reduction goals and methodologies to establish appropriate tank farm cleanup milestones. Increased research and development to reduce the mass of non-radioactive materials in the tanks requiring sophisticated treatment is highly desirable. The actual cleanup activities and milestones, while maintaining acceptable safety standards, could be more focused on a risk-to-benefit cost effectiveness, as agreed to by the involved stakeholders and in accordance with existing regulatory requirements. If existing safety standards can be maintained at significant cost savings under alternative plans but with a change in the Tri-Party Agreement (a regulatory requirement), those plans should be carried out. The proposed strategy would also take advantage of the lessons learned from the activities and efforts in the first phase of the two-phased cleanup of the Hanford waste tank farms.

Parker, F. L.; Clark, D. E.; Morcos, N.

2002-02-26T23:59:59.000Z

320

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO's). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the drummed waste PDP, a simulated waste container consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Drum PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix conditions and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

DOE Carlsbad Field Office

2001-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Vitrification of M-Area Mixed (Hazardous and Radioactive) F006 Wastes: I. Sludge and Supernate Characterization  

SciTech Connect (OSTI)

Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert low-level and mixed (hazardous and radioactive) wastes to a solid stabilized waste form for permanent disposal. One of the alternative technologies is vitrification into a borosilicate glass waste form. The Environmental Protection Agency (EPA) has declared vitrification the Best Demonstrated Available Technology (BDAT) for high-level radioactive mixed waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The DOE Office of Technology Development (OTD) has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Stabilization of low level and hazardous wastes in glass are in accord with the 1988 Savannah River Technology Center (SRTC), then the Savannah River Laboratory (SRL), Professional Planning Committee (PPC) recommendation that high nitrate containing (low-level) wastes be incorporated into a low temperature glass (via a sol-gel technology). The investigation into this new technology was considered timely because of the potential for large waste volume reduction compared to solidification into cement.

Jantzen, C.M.

2001-10-05T23:59:59.000Z

322

Guidelines for generators to meet HWHF acceptance requirements for hazardous, radioactive, and mixed wastes at Berkeley Lab. Revision 3  

SciTech Connect (OSTI)

This document provides performance standards that one, as a generator of hazardous chemical, radioactive, or mixed wastes at the Berkeley Lab, must meet to manage their waste to protect Berkeley Lab staff and the environment, comply with waste regulations and ensure the continued safe operation of the workplace, have the waste transferred to the correct Waste Handling Facility, and enable the Environment, Health and Safety (EH and S) Division to properly pick up, manage, and ultimately send the waste off site for recycling, treatment, or disposal. If one uses and generates any of these wastes, one must establish a Satellite Accumulation Area and follow the guidelines in the appropriate section of this document. Topics include minimization of wastes, characterization of the wastes, containers, segregation, labeling, empty containers, and spill cleanup and reporting.

Albert, R.

1996-06-01T23:59:59.000Z

323

Long-term durability of polyethylene for encapsulation of low-level radioactive, hazardous, and mixed wastes  

SciTech Connect (OSTI)

The durability of polyethylene waste forms for treatment of low-level radioactive, hazardous, and mixed wastes is examined. Specific potential failure mechanisms investigated include biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation. These data are supported by results from waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. Polyethylene was found to be extremely resistant to each of these potential failure modes under anticipated storage and disposal conditions. 16 refs., 3 figs., 1 tab.

Kalb, P.D.; Heiser, J.H.; Colombo, P.

1991-01-01T23:59:59.000Z

324

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1999-03-16T23:59:59.000Z

325

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1999-03-16T23:59:59.000Z

326

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) is a test program designed to yield data on measurement system capability to characterize drummed transuranic (TRU) waste generated throughout the Department of Energy (DOE) complex. The tests are conducted periodically and provide a mechanism for the independent and objective assessment of NDA system performance and capability relative to the radiological characterization objectives and criteria of the Office of Characterization and Transportation (OCT). The primary documents requiring an NDA PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC), which requires annual characterization facility participation in the PDP, and the Quality Assurance Program Document (QAPD). This NDA PDP implements the general requirements of the QAPD and applicable requirements of the WAC. Measurement facilities must demonstrate acceptable radiological characterization performance through measurement of test samples comprised of pre-specified PDP matrix drum/radioactive source configurations. Measurement facilities are required to analyze the NDA PDP drum samples using the same procedures approved and implemented for routine operational waste characterization activities. The test samples provide an independent means to assess NDA measurement system performance and compliance per criteria delineated in the NDA PDP Plan. General inter-comparison of NDA measurement system performance among DOE measurement facilities and commercial NDA services can also be evaluated using measurement results on similar NDA PDP test samples. A PDP test sample consists of a 55-gallon matrix drum containing a waste matrix type representative of a particular category of the DOE waste inventory and nuclear material standards of known radionuclide and isotopic composition typical of DOE radioactive material. The PDP sample components are made available to participating measurement facilities as designated by the Carlsbad Field Office (CBFO). The nuclear material type, mass and associated alpha activity of the NDA PDP radioactive standard sets have been specified and fabricated to allow assembly of PDP samples that simulate TRU alpha activity concentrations, radionuclidic/isotopic distributions and physical forms typical of the DOE TRU waste inventory. The PDP matrix drum waste matrix types were derived from an evaluation of information contained in the Transuranic Waste Baseline Inventory Report (TWBIR) to ensure representation of prevalent waste types and their associated matrix characteristics in NDA PDP testing. NDA drum analyses required by the Waste Isolation Pilot Plant (WIPP) may only be performed by measurement facilities that comply with the performance criteria as set forth in the NDA PDP Plan. In this document, these analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes.

Carlsbad Field Office

2005-08-03T23:59:59.000Z

327

Environmental management 1994. Progress and plans of the environmental restoration and waste management program  

SciTech Connect (OSTI)

The Department of Energy currently faces one of the largest environmental challenges in the world. The Department`s Environmental Restoration and Waste Management program is responsible for identifying and reducing risks and managing waste at 137 sites in 34 States and territories where nuclear energy or weapons research and production resulted in radioactive, hazardous, and mixed waste contamination. The number of sites continues to grow as facilities are transferred to be cleaned up and closed down. The program`s main challenge is to balance technical and financial realities with the public`s expectations and develop a strategy that enables the Department to meet its commitments to the American people. This document provides a closer look at what is being done around the country. Included are detailed discussions of the largest sites in the region, followed by site activities organized by state, and a summary of activities at FUSRAP and UMTRA sites in the region.

Not Available

1994-02-01T23:59:59.000Z

328

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-06-01T23:59:59.000Z

329

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-05-11T23:59:59.000Z

330

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-01-01T23:59:59.000Z

331

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-05-10T23:59:59.000Z

332

Hazardous Waste Acceptance and Pick-up Guide | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960OptionsHazardous Waste

333

Waste certification review program at the Savannah River Site  

SciTech Connect (OSTI)

After approving the waste certification programs for 45 generators of low-level radioactive and mixed waste, Westinghouse Savannah River Company (WSRC) moved forward to implement a performance-based approach for assuring that approved waste generators maintain their waste certification programs. WSRC implemented the Waste Certification Review Program, which is comprised of two sitewide programs, waste generator self-assessments and Facility Evaluation Board reviews, integrated with the WSRC Solid Waste Management Department Waste Verification Program Evaluations. The waste generator self-assessments ensure compliance with waste certification requirements, and Facility Evaluation Board reviews provide independent oversight of generators` waste certification programs. Waste verification evaluations by the TSD facilities serve as the foundation of the program by confirming that waste contents and generator performance continue to meet waste acceptance criteria (WSRC 1994) prior to shipment to treatment, storage, and disposal facilities. Construction of the Savannah River Site (SRS) was started by the US Government in 1950. The site covers approximately 300 square miles located along the Savannah River near Aiken, South Carolina. It is operated by the US Department of Energy (DOE). Operations are conducted by managing and operating contractors, including the Westinghouse Savannah River Company (WSRC). Historically, the primary purpose of the SRS was to produce special nuclear materials, primarily plutonium and tritium. In general, low-level radioactive and mixed waste is generated through activities in operations. Presently, 47 SRS facilities generate low-level radioactive and mixed waste. The policies, guidelines, and requirements for managing these wastes are determined by DOE and are reflected in DOE Order 5820.2A (US DOE 1988).

Faulk, G.W.; Kinney, J.C. [Westinghouse Savannah River Co., Aiken, SC (United States); Knapp, D.C. [Bechtel Savannah River Inc., Aiken, SC (United States); Burdette, T.E. [Science Applications International Corp., Oak Ridge, TN (United States)

1996-02-01T23:59:59.000Z

334

1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000.

Chase, J.

2000-10-24T23:59:59.000Z

335

Guidelines for developing certification programs for newly generated TRU waste  

SciTech Connect (OSTI)

These guidelines were prepared with direction from the US Department of Energy (DOE) Transuranic (TRU) Waste Management Program in support of the DOE effort to certify that newly generated TRU wastes meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria. The guidelines provide instructions for generic Certification Program preparation for TRU-waste generators preparing site-specific Certification Programs in response to WIPP requirements. The guidelines address all major aspects of a Certification Program that are necessary to satisfy the WIPP Waste Acceptance Criteria and their associated Compliance Requirements and Certification Quality Assurance Requirements. The details of the major element of a Certification Program, namely, the Certification Plan, are described. The Certification Plan relies on supporting data and control documentation to provide a traceable, auditable account of certification activities. Examples of specific parts of the Certification Plan illustrate the recommended degree of detail. Also, a brief description of generic waste processes related to certification activities is included.

Whitty, W.J.; Ostenak, C.A.; Pillay, K.K.S.; Geoffrion, R.R.

1983-05-01T23:59:59.000Z

336

Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAOs). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWBs will be used to package a substantial volume of the TRU waste for disposal. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Box PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix configurations and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

Carlsbad Field Office

2001-01-31T23:59:59.000Z

337

Lessons learned from the EG&G consolidated hazardous waste subcontract and ESH&Q liability assessment process  

SciTech Connect (OSTI)

Hazardous waste transportation, treatment, recycling, and disposal contracts were first consolidated at the Idaho National Engineering Laboratory in 1992 by EG&G Idaho, Inc. At that time, disposition of Resource, Conservation and Recovery Act hazardous waste, Toxic Substance Control Act waste, Comprehensive Environmental Response, Compensation, and Liability Act hazardous substances and contaminated media, and recyclable hazardous materials was consolidated under five subcontracts. The wastes were generated by five different INEL M&O contractors, under the direction of three different Department of Energy field offices. The consolidated contract reduced the number of facilities handling INEL waste from 27 to 8 qualified treatment, storage, and disposal facilities, with brokers specifically prohibited. This reduced associated transportation costs, amount and cost of contractual paperwork, and environmental liability exposure. EG&G reviewed this approach and proposed a consolidated hazardous waste subcontract be formed for the major EG&G managed DOE sites: INEL, Mound, Rocky Flats, Nevada Test Site, and 10 satellite facilities. After obtaining concurrence from DOE Headquarters, this effort began in March 1992 and was completed with the award of two master task subcontracts in October and November 1993. In addition, the effort included a team to evaluate the apparent awardee`s facilities for environment, safety, health, and quality (ESH&Q) and financial liability status. This report documents the evaluation of the process used to prepare, bid, and award the EG&G consolidated hazardous waste transportation, treatment, recycling, and/or disposal subcontracts and associated ESH&Q and financial liability assessments; document the strengths and weaknesses of the process; and propose improvements that would expedite and enhance the process for other DOE installations that used the process and for the re-bid of the consolidated subcontract, scheduled for 1997.

Fix, N.J.

1995-03-01T23:59:59.000Z

338

Evaluation of alternative nonflame technologies for destruction of hazardous organic waste  

SciTech Connect (OSTI)

The US Department of Energy`s Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associated contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX{sup SM}, Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis.

Schwinkendorf, W.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Musgrave, B.C. [BC Musgrave, Inc. (United States); Drake, R.N. [Drake Engineering, Inc. (United States)

1997-04-01T23:59:59.000Z

339

2014 Bloodborne Pathogen Program and Biomedical Waste Training  

E-Print Network [OSTI]

2014 Bloodborne Pathogen Program and Biomedical Waste Training Compliance Receipt Acknowledgement and Training Coordinator Designation I have received the 2014 Bloodborne Pathogen Program and Biomedical Waste Training notification. I understand that this program is intended to ensure that those in my department

Slatton, Clint

340

Performance evaluation of the PITBULL{trademark} pump for the removal of hazardous waste  

SciTech Connect (OSTI)

One objective of the Waste Removal Project at the Department of Energy`s Savannah River Site (SRS) is to explore methods to successfully remove waste heels that will remain in the high-level waste tanks after bulk waste removal has been completed. Tank closure is not possible unless this residue is removed. As much as 151,000 liters of residue can remain after a conventional waste removal campaign. The waste heels can be comprised of sludge, zeolite, and silica. The heels are generally hardened or compacted insoluble particulate with relatively rapid settling velocities. A PITBULL{trademark} pump is being considered by SRS to retrieve sludge-type waste from Tank 19. Sections 1 through 4 of this report present the scope and objectives of the test program, describe the principles of operation of the PITBULL, and present the test approach, set-up, and instrumentation. Test results, including pumping rates with water and slurry, are provided in Section 5, along with considerations for remote operation. Conclusions and recommendations are provided in Section 6.

Hatchell, B.K.; Combs, W.H.; Hymas, C.R.; Powell, M.R.; Rinker, M.W.; White, M.

1998-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Heat strain and heat stress for workers wearing protective suits at a hazardous waste site  

SciTech Connect (OSTI)

In order to evaluate the effects of heat stress when full body protective suits are worn, heart rates, oral temperatures and environmental parameters were measured for five unacclimatized male workers (25-33 years of age) who performed sampling activities during hazardous waste clean-up operations. The protective ensembles included laminated PVC-Tyvec chemical resistant hood suits with rubber boots, gloves, full facepiece dual cartridge respirators and hard hats. For comparison, measurements also were performed when the men worked at a similar level of activity while they wore ordinary work clothes. A comparison of the heart rates for the men working with and without suits indicated that wearing the suits imposed a heat stress equivalent to adding 6/sup 0/ to 11/sup 0/C (11/sup 0/ to 20/sup 0/F) to the ambient WBGT index. A similar result was obtained by calculating the WBGT in the microclimate inside the suits and comparing it to the ambient WBGT. These results indicate the following: 1) there exists a significant risk of heat injury during hazardous waste work when full body protective clothing is worn, and 2) threshold limit values for heat stress established by the ACGIH must be lowered substantially before extending them to cover workers under these conditions.

Paull, J.M.; Rosenthal, F.S.

1987-05-01T23:59:59.000Z

342

Emergence of interest groups on hazardous waste siting: how do they form and survive  

SciTech Connect (OSTI)

This paper discusses the two components of the facilitative setting that are important for group formation. The first component, the ideological component, provides the basic ideas that are adopted by the emerging group. The ideological setting for group formation is produced by such things as antinuclear news coverage and concentration of news stories on hazardous waste problems, on ideas concerning the credibility of the federal government, and on the pervasivensee of ideas about general environmental problems. The organizational component of the facilitative setting provides such things as leadership ability, flexible time, resources, and experience. These are important for providing people, organization, and money to achieve group goals. By and large, the conditions conducive to group formation, growth, and survival are outside the control of decision-makers. Agencies and project sponsors are currently caught in a paradox. Actively involving the public in the decision-making process tends to contribute to the growth and survival of various interest groups. Not involving the public means damage to credibility and conflict with values concerning participatory democracy. Resolution in this area can only be achieved when a comprehensive, coordinated national approach to hazardous waste management emerges. 26 refs.

Williams, R.G.; Payne, B.A.

1985-10-30T23:59:59.000Z

343

A model for a national low level waste program  

SciTech Connect (OSTI)

A national program for the management of low level waste is essential to the success of environmental clean-up, decontamination and decommissioning, current operations and future missions. The value of a national program is recognized through procedural consistency and a shared set of resources. A national program requires a clear waste definition and an understanding of waste characteristics matched against available and proposed disposal options. A national program requires the development and implementation of standards and procedures for implementing the waste hierarchy, with a specitic emphasis on waste avoidance, minimization and recycling. It requires a common set of objectives for waste characterization based on the disposal facility's waste acceptance criteria, regulatory and license requirements and performance assessments. Finally, a national waste certification program is required to ensure compliance. To facilitate and enhance the national program, a centralized generator services organization, tasked with providing technical services to the generators on behalf of the national program, is necessary. These subject matter experts are the interface between the generating sites and the disposal facility(s). They provide an invaluable service to the generating organizations through their involvement in waste planning prior to waste generation and through championing implementation of the waste hierarchy. Through their interface, national treatment and transportation services are optimized and new business opportunities are identified. This national model is based on extensive experience in the development and on-going management of a national transuranic waste program and management of the national repository, the Waste Isolation Pilot Plant. The Low Level Program at the Savannah River Site also successfully developed and implemented the waste hierarchy, waste certification and waste generator services concepts presented below. The Savannah River Site services over forty generators and has historically managed over 12,000 cubic meters of low level waste annually. The results of the waste minimization program at the site resulted in over 900 initiatives, avoiding over 220,000 cubic meters of waste for a life cycle cost savings of $275 million. At the Los Alamos National Laboratory, the low level waste program services over 20 major generators and several hundred smaller generators that produce over 4,000 cubic meters of low level waste annually. The Los Alamos National Laboratory low level waste program utilizes both on-site and off-site disposal capabilities. Off-site disposal requires the implementation of certification requirements to utilize both federal and commercial options. The Waste Isolation Pilot Plant is the US Department of Energy's first deep geological repository for the permanent disposal of Transuanic waste. Transuranic waste was generated and retrievably stored at 39 sites across the US. Transuranic waste is defined as waste with a radionuclide concentration equal to or greater than 100 nCi/g consisting of radionuclides with half-lives greater than 20 years and with an atomic mass greater than uranium. Combining the lessons learned from the national transuranic waste program, the successful low level waste program at Savannah River Site and the experience of off-site disposal options at Los Alamos National Laboratory provides the framework and basis for developing a viable national strategy for managing low level waste.

Blankenhorn, James A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

344

Hazard ranking system evaluation of CERCLA inactive waste sites at Hanford: Volume 2: Engineered-facility sites (HISS data base)  

SciTech Connect (OSTI)

The purpose of this report is to formally document the assessment activities at the US Department of Energy (DOE) Hanford Site. These activities were carried out pursuant to the DOE orders that address the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Program for the cleanup of inactive waste sites. The DOE orders incorporate the US Environmental Protection Agency methodology, which is based on the Superfund Amendments and Reauthorization Act of 1986. This methodology includes: PA/SI, remedial investigation/feasibility study, record of decision, design and implementation of remedial action, operation and monitoring, and verification monitoring. Volume 1 of this report discusses the CERCLA inactive waste-site evaluation process, assumptions, and results of the Hazard Ranking System methodology employed. Volume 2 presents the data on the individual CERCLA engineered-facility sites at Hanford, as contained in the Hanford Inactive Site Surveillance (HISS) Data Base. Volume 3 presents the data on the individual CERCLA unplanned-release sites at Hanford, as contained in the HISS Data Base. 13 refs.

Jette, S.J.; Lamar, D.A.; McLaughlin, T.J.; Sherwood, D.R.; Van Houten, N.C.; Stenner, R.D.; Cramer, K.H.; Higley, K.A.

1988-10-01T23:59:59.000Z

345

Systems engineering programs for geologic nuclear waste disposal  

SciTech Connect (OSTI)

The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

1980-06-01T23:59:59.000Z

346

SRNL PHASE 1 ASSESSMENT OF THE WTP WASTE QUALIFICATION PROGRAM  

SciTech Connect (OSTI)

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Project is currently transitioning its emphasis from an engineering design and construction phase toward facility completion, start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements that must be met during the actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program. In general, the waste qualification program involves testing and analysis to demonstrate compliance with waste acceptance criteria, determine waste processability, and demonstrate laboratory-scale unit operations to support WTP operations. The testing and analysis are driven by data quality objectives (DQO) requirements necessary for meeting waste acceptance criteria for transfer of high-level wastes from the tank farms to the WTP, and for ensuring waste processability including proper glass formulations during processing within the WTP complex. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS) which were based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested subject matter experts (SMEs) from SRNL to support a technology exchange with respect to waste qualification programs in which a critical review of the WTP program could be initiated and lessons learned could be shared. The technology exchange was held on July 18-20, 2011 in Richland, Washington, and was the initial step in a multi-phased approach to support development and implementation of a successful waste qualification program at the WTP. The 3-day workshop was hosted by WTP with representatives from the Tank Operations Contractor (TOC) and SRNL in attendance as well as representatives from the US DOE Office of River Protection (ORP) and the Defense Nuclear Facility Safety Board (DNFSB) Site Representative office. The purpose of the workshop was to share lessons learned and provide a technology exchange to support development of a technically defensible waste qualification program. The objective of this report is to provide a review, from SRNL's perspective, of the WTP waste qualification program as presented during the workshop. In addition to SRNL's perspective on the general approach to the waste qualification program, more detailed insight into the specific unit operations presented by WTP during the workshop is provided. This report also provides a general overview of the SRS qualification program which serves as a basis for a comparison between the two programs. Recommendations regarding specific steps are made based on the review and SRNL's lessons learned from qualification of SRS low-activity waste (LAW) and high-level waste (HLW) to support maturation of the waste qualification program leading to WTP implementation.

Peeler, D.; Hansen, E.; Herman, C.; Marra, S.; Wilmarth, B.

2012-03-06T23:59:59.000Z

347

Audit of Selected Hazardous Waste Remedial Actions Program Costs,  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical5/08 Attendance List1-02Evaluation Report TheU.S. DEPARTMENT,

348

Optimizing the National TRU waste system transportation program.  

SciTech Connect (OSTI)

The goal of the National TRU Waste Program (NTP) is to operate the system safely and cost-effectively, in compliance with applicable regulations and agreements, and at full capacity in a fully integrated mode. One of the objectives of the Department of Energy's Carlsbad Field Office (DOE/CBFO) is to complete the current Waste Isolation Pilot Plant (WIPP) mission for the disposal of the nation's legacy transuranic (TRU) waste at least IO years earlier thus saving approximately %7B. The National TRU Waste Optimization Plan (1) recommends changes to accomplish this. This paper discusses the optimization of the National TRU Waste System Transportation Program.

Lott, S. A. (Sheila A.); Countiss, S. (Sue)

2002-01-01T23:59:59.000Z

349

Solid Waste Management Policy and Programs (Minnesota)  

Broader source: Energy.gov [DOE]

These statutes encourage the State and local governments to develop waste management strategies to achieve the maximum possible reduction in waste generation, eliminate or reduce adverse...

350

RCRA/UST, superfund and EPCRA hotline training module. Introduction to: Strategy for hazardous waste minimization and combustion, updated as of July 1995  

SciTech Connect (OSTI)

The module presents a general overview of the issues EPA has addressed in the hazardous waste minization and combustion strategy. It provides a detailed description of the history and goals of the strategy. It presents an in-depth discussion of hazardous waste minimization and combustion issues and includes a section on environmental justice.

NONE

1995-11-01T23:59:59.000Z

351

Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114  

SciTech Connect (OSTI)

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G. [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States)] [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States); Adamson, Duane J.; Herman, Connie C.; Peeler, David K. [Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

352

Hazardous Sites Cleanup Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

This Act tasks the Pennsylvania Department of Environmental Protection with regulating hazardous waste. The department is charged with siting, review, permitting and development of hazardous waste...

353

Mobile/Modular Deployment Project-Enhancing Efficiencies within the National Transuranic Waste Program.  

SciTech Connect (OSTI)

In 1999, the National Transuranic (TRU) Waste Program (NTP) achieved two significant milestones. First, the Waste Isolation Plant (WIPP) opened in March for the permanent disposal of TRU waste generated by, and temporarily stored at, various sites supporting the nation's defense programs. Second, the Hazardous Waste Facility Permit, issued by the New Mexico Environment Department, for WIPP became effective in November. While the opening of WIPP brought to closure a number of scientific, engineering, regulatory, and political challenges, achieving this major milestone led to a new set of challenges-how to achieve the Department of Energy's (DOE's) NTP end-state vision: All TRU waste from DOE sites scheduled for closure is removed All legacy TRU waste from DOE sites with an ongoing nuclear mission is disposed 0 All newly generated TRU waste is disposed as it is generated The goal is to operate the national TRU waste program safely, cost effectively, in compliance with applicable regulations and agreements, and at full capacity in a fully integrated mode. The existing schedule for TRU waste disposition would achieve the NTP vision in 2034 at an estimated life-cycle cost of $16B. The DOE's Carlsbad Field Office (CBFO) seeks to achieve this vision early-by at least 10 years- while saving the nation an estimated $48 to $6B. CBFO's approach is to optimize, or to make as functional as possible, TRU waste disposition. That is, to remove barriers that impede waste disposition, and increase the rate and cost efficiency of waste disposal at WIPP, while maintaining safety. The Mobile/Modular Deployment Project (MMDP) is the principal vehicle for implementing DOE's new commercial model of using best business practices of national authorization basis, standardization, and economies of scale to accelerate the completion of WIPP's mission. The MMDP is one of the cornerstones of the National TRU Waste System Optimization Project (1). The objective of the MMDP is to increase TRU waste shipment and disposal rates from currently certified sites as well as to provide a means to remove TRU waste from sites that have no characterization capability.

Triay, I. R. (Ines R.); Basabilvazo, G. B. (George B.); Countiss, S. (Sue); Moody, D. C. (David C.); Behrens, R. G. (Robert G.); Lott, S. A. (Sheila A.)

2002-01-01T23:59:59.000Z

354

Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995  

SciTech Connect (OSTI)

During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters.

NONE

1995-06-01T23:59:59.000Z

355

Multiattribute utility analysis as a framework for public participation siting a hazardous waste facility  

SciTech Connect (OSTI)

How can the public play a role in decisions involving complicated scientific arguments? This paper describes a public participation exercise in which stakeholders used multiattribute utility analysis to select a site for a hazardous waste facility. Key to success was the ability to separate and address the two types of judgements inherent in environmental decisions: technical judgements on the likely consequences of alternative choices and value judgements on the importance or seriousness of those consequences. This enabled technical specialists to communicate the essential technical considerations and allowed stakeholders to establish the value judgements for the decision. Although rarely used in public participation, the multiattribute utility approach appears to provide a useful framework for the collaborative resolution of many complex environmental decision problems.

Merkhofer, M.W. [Applied Decision Analysis, Inc., Menlo Park, CA (United States); Conway, R. [Sandia National Labs., Albuquerque, NM (United States); Anderson, R.G. [Los Alamos National Lab., NM (United States)

1996-05-01T23:59:59.000Z

356

Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.

NONE

1996-03-01T23:59:59.000Z

357

VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING  

SciTech Connect (OSTI)

Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

2012-01-17T23:59:59.000Z

358

Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran  

SciTech Connect (OSTI)

The evaluation of a hazardous waste disposal site is a complicated process because it requires data from diverse social and environmental fields. These data often involve processing of a significant amount of spatial information which can be used by GIS as an important tool for land use suitability analysis. This paper presents a multi-criteria decision analysis alongside with a geospatial analysis for the selection of hazardous waste landfill sites in Kurdistan Province, western Iran. The study employs a two-stage analysis to provide a spatial decision support system for hazardous waste management in a typically under developed region. The purpose of GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of a multi-criteria decision analysis (MCDA) to identify the most suitable sites using the information provided by the regional experts with reference to new chosen criteria. Using 21 exclusionary criteria, as input layers, masked maps were prepared. Creating various intermediate or analysis map layers a final overlay map was obtained representing areas for hazardous waste landfill sites. In order to evaluate different landfill sites produced by the overlaying a landfill suitability index system was developed representing cumulative effects of relative importance (weights) and suitability values of 14 non-exclusionary criteria including several criteria resulting from field observation. Using this suitability index 15 different sites were visited and based on the numerical evaluation provided by MCDA most suitable sites were determined.

Sharifi, Mozafar [Razi University Center for Environmental Studies, Faculty of Science, Baghabrisham 67149, Kermanshah (Iran, Islamic Republic of)], E-mail: sharifimozafar@gmail.com; Hadidi, Mosslem [Academic Center for Education, Culture and Research, Kermanshah (Iran, Islamic Republic of)], E-mail: hadidi_moslem@yahoo.com; Vessali, Elahe [Paradise Ave, Azad University, School of Agriculture, Shiraz (Iran, Islamic Republic of)], E-mail: elahe_vesali@yahoo.com; Mosstafakhani, Parasto [Razi University Centre for Environmental Studies, Faculty of Science, Baghabrisham 67149, Kermanshah (Iran, Islamic Republic of)], E-mail: mostafakhany2003@yahoo.com; Taheri, Kamal [Regional office of Water Resource Management, Zan Boulevard, Kermanshah (Iran, Islamic Republic of)], E-mail: taheri.kamal@gmail.com; Shahoie, Saber [Department of Soil Science, Faculty of Agriculture, Kurdistan University, University Boulevard, Sanandadj (Iran, Islamic Republic of)], E-mail: shahoei@yahoo.com; Khodamoradpour, Mehran [Regional office of Climatology, Sanandaj (Iran, Islamic Republic of)], E-mail: mehrankhodamorad@yahoo.com

2009-10-15T23:59:59.000Z

359

Oak Ridge National Laboratory Transuranic Waste Certification Program  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has requested that all DOE facilities handling defense transuranic (TRU) waste develop and implement a program whereby all TRU waste will be contained, stored, and shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in the DOE certification documents WIPP-DOE-069, 114, 120, 137, 157, and 158. The program described in this report describes how Oak Ridge National Laboratory (ORNL) intends to comply with these requirements and the techniques and procedures used to ensure that ORNL TRU wastes are certifiable for shipment to WIPP. This document describes the program for certification of newly generated (NG) contact-handled transuranic (CH-TRU) waste. Previsions have been made for addenda, which will extend the coverage of this document to include certification of stored CH-TRU and NG and stored remote-handled transuranic (RH-TRU) waste, as necessary. 24 refs., 11 figs., 4 tabs.

Smith, J.H.; Bates, L.D.; Box, W.D.; Aaron, W.S.; Setaro, J.A.

1988-08-01T23:59:59.000Z

360

Microwave-assisted chemical process for treatment of hazardous waste: Annual report  

SciTech Connect (OSTI)

Microwave energy provides rapid in situ uniform heating and can be used to initiate chemical processes at moderate temperatures. We investigate the technical feasibility of microwave-assisted chemical processes for detoxification of liquid hazardous waste. Trichloroethylene, a major constituent of waste streams, was selected for this detoxification study. Experiments were performed to investigate the oxidative degradation of trichloroethylene over active carbons (with and without catalysts) in air streams with microwave in situ heating, and to examine the feasibility of regenerating the used carbons. This study established that trichloroethylene in a vapor stream can be adsorbed at room temperature on active carbon beds that are loaded with Cu and Cr catalysts. When the bed is heated by a microwave radiation to moderate temperatures (<400/sup 0/C) while a moist air stream is passed through it, the trichloroethylene is readily converted into less-noxious products such as HCl, CO, CO/sub 2/ and C/sub 2/H/sub 2/Cl/sub 2/. Conversion higher than 80% was observed. Furthermore, the used carbon bed can be conveniently regenerated by microwave heating while a moist-N/sub 2/ or moist-air stream is passed through the bed. 4 refs., 5 figs., 10 tabs.

Varma, R.; Nandi, S.P.; Cleaveland, D.C.

1987-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation  

SciTech Connect (OSTI)

This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

Testoni, A. L.

2011-10-19T23:59:59.000Z

362

Civilian radioactive waste management program plan. Revision 2  

SciTech Connect (OSTI)

This revision of the Civilian Radioactive Waste Management Program Plan describes the objectives of the Civilian Radioactive Waste management Program (Program) as prescribed by legislative mandate, and the technical achievements, schedule, and costs planned to complete these objectives. The Plan provides Program participants and stakeholders with an updated description of Program activities and milestones for fiscal years (FY) 1998 to 2003. It describes the steps the Program will undertake to provide a viability assessment of the Yucca Mountain site in 1998; prepare the Secretary of Energy`s site recommendation to the President in 2001, if the site is found to be suitable for development as a repository; and submit a license application to the Nuclear Regulatory Commission in 2002 for authorization to construct a repository. The Program`s ultimate challenge is to provide adequate assurance to society that an operating geologic repository at a specific site meets the required standards of safety. Chapter 1 describes the Program`s mission and vision, and summarizes the Program`s broad strategic objectives. Chapter 2 describes the Program`s approach to transform strategic objectives, strategies, and success measures to specific Program activities and milestones. Chapter 3 describes the activities and milestones currently projected by the Program for the next five years for the Yucca Mountain Site Characterization Project; the Waste Acceptance, Storage and Transportation Project; ad the Program Management Center. The appendices present information on the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992; the history of the Program; the Program`s organization chart; the Commission`s regulations, Disposal of High-Level Radioactive Wastes in geologic Repositories; and a glossary of terms.

NONE

1998-07-01T23:59:59.000Z

363

RCRA/UST, superfund and EPCRA hotline training module. Introduction to: Definition of solid waste and hazardous waste recycling (40 CFR sections 261.2 and 261.9) updated as of July 1995  

SciTech Connect (OSTI)

The module explains the statutory and regulatory definitions of solid waste, including the standards governing the recycling and management of specific types of wastes. It lists and cites three use/reuse scenarios where the materials are not solid wastes and states the requirements for documentation. It lists examples of sham recycling and describes the conditions under which hazardous waste-derived products may be excluded from regulation. It cites the provisions for precious metal recovery and discusses potential regulatory developments affecting the definition of solid waste and hazardous waste recycling.

NONE

1995-11-01T23:59:59.000Z

364

Transuranic Waste Characterization Quality Assurance Program Plan  

SciTech Connect (OSTI)

This quality assurance plan identifies the data necessary, and techniques designed to attain the required quality, to meet the specific data quality objectives associated with the DOE Waste Isolation Pilot Plant (WIPP). This report specifies sampling, waste testing, and analytical methods for transuranic wastes.

NONE

1995-04-30T23:59:59.000Z

365

Quality Assurance Program Plan (QAPP) Waste Management Project  

SciTech Connect (OSTI)

This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

VOLKMAN, D.D.

1999-10-27T23:59:59.000Z

366

Application of United States Department of Transportation regulations to hazardous material and waste shipments on the Hanford Site  

SciTech Connect (OSTI)

All hazardous material and waste transported over roadways open to the public must be in compliance with the US Department of Transportation (DOT) regulations. The DOT states that the hazardous material regulations (HMR) also apply to government-owned, contractor-operated (GOCO) transportation operations over any US Department of Energy (DOE) site roadway where the public has free and unrestricted access. Hazardous material and waste in packages that do not meet DOE regulations must be transported on DOE site roadways in a manner that excludes the public and nonessential workers. At the DOE Richland Field Office (the Hanford Site), hazardous material and waste movements that do not meet DOE requirements are transported over public access roadways during off-peak hours with the roadways barricaded. These movements are accomplished using a transportation plan that involves the DOE, DOE contractors, and private utilities who operate on or near the Hanford Site. This method, which is used at the Hanford Site to comply with DOE regulations onsite, can be communicated to other DOE sites to provide a basis for achieving consistency in similar transportation operations.

Burnside, M.E.

1992-01-01T23:59:59.000Z

367

Environmental hazards assessment program. Annual report, July 1, 1994--June 30, 1995  

SciTech Connect (OSTI)

This report describes activities and reports on progress for the third year of the DOE grant to support the Environmental Hazards Assessment Program (EHAP). It reports progress against grant objectives and the Program Implementation Plan published at the end of the first year of the grant. As the program has evolved, more projects have been funded and many existing projects have become more complex. Thus, to accomplish better the objectives over the years and retain a solid focus on the total mission, we have reorganized the grant effort from three to five majoe elements: Public and professional outreach; Clinical programs; Science programs; Information systems; and, Program management.

NONE

1995-07-31T23:59:59.000Z

368

Organic tanks safety program FY96 waste aging studies  

SciTech Connect (OSTI)

Uranium and plutonium production at the Hanford Site produced large quantities of radioactive by-products and contaminated process chemicals, which are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of salt cakes, metal oxide sludges, and partially saturated aqueous brine solutions. The tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes may be at risk for fuel- nitrate combustion accidents. The purpose of the Waste Aging Task is to elucidate how chemical and radiological processes will have aged or degraded the organic compounds stored in the tanks. Ultimately, the task seeks to develop quantitative measures of how aging changes the energetic properties of the wastes. This information will directly support efforts to evaluate the hazard as well as to develop potential control and mitigation strategies.

Camaioni, D.M.; Samuels, W.D.; Linehan, J.C.; Clauss, S.A.; Sharma, A.K.; Wahl, K.L.; Campbell, J.A.

1996-10-01T23:59:59.000Z

369

RCRA, superfund and EPCRA hotline training module. Introduction to: Solid waste programs updated July 1996  

SciTech Connect (OSTI)

The module focuses on EPA`s efforts in two areas: municipal and industrial solid waste. The garbage that is managed by the local governments is known as municipal solid waste (MSW). Garbage excluded from hazardous waste regulation but not typically collected by local governments is commonly known as industrial solid waste. This category includes domestic sewage and other wastewater treatment sludge, demolition and construction wastes, agricultural and mining residues, combustion ash, and industrial process wastes.

NONE

1996-07-01T23:59:59.000Z

370

Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation  

SciTech Connect (OSTI)

Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities.

Goranson, C.

1992-09-01T23:59:59.000Z

371

Fiscal year 1986 program plan for the Defense Transuranic Waste Program (DTWP)  

SciTech Connect (OSTI)

The Defense TRU Waste Program (DTWP) is the focal point for the Department of Energy is national planning, integration, and technical development for TRU waste management. The scope of this program extends from the point of TRU waste generation through delivery to a permanent repository. The TRU program maintains a close interface with repository development to ensure program compatibility and coordination. The defense TRU program does not directly address commercial activities that generate TRU waste. Instead, it is concerned with providing alternatives to manage existing and future defense TRU wastes. The FY 86 Program Plan is consistent with the Defense TRU Waste Program goals and objectives stated in the Defense Transuranic Waste Program Strategy Document, January 1984. The roles of participants, the responsibilities and authorities for Research Development (R D), the organizational interfaces and communication channels for R D and the establishment of procedures for planning, reporting, and budgeting of all R D activities meet requirements tated in the Technical Management Plan for the Transuranic Waste Management Program. The Program Plan is revised as needed. Detailed budget planning (i.e., programmatic funding and capital equipment) is presented for FY 86; outyear budget projections are presented for future years.

Not Available

1985-11-01T23:59:59.000Z

372

Hazard Analysis Database report  

SciTech Connect (OSTI)

This document describes and defines the Hazard Analysis Database for the Tank Waste Remediation System Final Safety Analysis Report.

Niemi, B.J.

1997-08-12T23:59:59.000Z

373

Hazard analysis results report  

SciTech Connect (OSTI)

This document describes and defines the Hazard Analysis Results for the Tank Waste Remediation System Final Safety Analysis Report.

Niemi, B.J., Westinghouse Hanford

1996-09-30T23:59:59.000Z

374

Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

J. D. Ludowise

2006-12-12T23:59:59.000Z

375

Adaption of the Magnetometer Towed Array geophysical system to meet Department of Energy needs for hazardous waste site characterization  

SciTech Connect (OSTI)

This report documents US Department of Energy (DOE)-funded activities that have adapted the US Navy`s Surface Towed Ordnance Locator System (STOLS) to meet DOE needs for a ``... better, faster, safer and cheaper ...`` system for characterizing inactive hazardous waste sites. These activities were undertaken by Sandia National Laboratories (Sandia), the Naval Research Laboratory, Geo-Centers Inc., New Mexico State University and others under the title of the Magnetometer Towed Array (MTA).

Cochran, J.R. [Sandia National Labs., Albuquerque, NM (United States); McDonald, J.R. [Naval Research Lab., Washington, DC (United States); Russell, R.J. [Geo-Centers, Inc., Newton, MA (United States); Robertson, R. [Hughes Associates, Inc., Washington, DC (United States); Hensel, E. [New Mexico State Univ., Las Cruces, NM (United States). Dept. of Mechanical Engineering

1995-10-01T23:59:59.000Z

376

Nuclear waste treatment program. Annual report for FY 1985  

SciTech Connect (OSTI)

Two of the US Department of Energy's (DOE) nuclear waste management-related goals are: (1) to ensure that waste management is not an obstacle to the further deployment of light-water reactors (LWR) and the closure of the nuclear fuel cycle and (2) to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Terminal Waste Disposal and Remedial Action of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory (PNL) during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide (1) documented technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and (2) problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required, to treat existing wastes. This annual report describes progress during FY 1985 toward meeting these two objectives. The detailed presentation is organized according to the task structure of the program.

Powell, J.A. (ed.)

1986-04-01T23:59:59.000Z

377

RCRA Permit for a Hazardous Waste Management Facility, Permit Number NEV HW0101, Annual Summary/Waste Minimization Report  

SciTech Connect (OSTI)

This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

Arnold, Patrick [NSTec] [NSTec

2014-02-14T23:59:59.000Z

378

The Hazardous Material Technician Apprenticeship Program at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

This document describes an apprenticeship training program for hazardous material technician. This entry-level category is achieved after approximately 216 hours of classroom and on-the-job training. Procedures for evaluating performance include in-class testing, use of on-the-job checks, and the assignment of an apprentice mentor for each trainee. (TEM)

Steiner, S.D.

1987-07-01T23:59:59.000Z

379

RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Solid and hazardous waste exclusions (40 CFR section 261.4) updated as of July 1995  

SciTech Connect (OSTI)

This module explains each waste exclusion and its scope, so one can apply this knowledge in determining wheather a given waste is or is not regulated under RCRA Subtitle C. It cites the regulatory section for exclusions and identifies materials that are not solid wastes and solid wastes that are not hazardous wastes. It locates the manufacturing process unit exclusion and identifies the sample and treatability study exclusions and their applicability. It outlines and specifies the conditions for meeting the exclusions for household wastes and mixtures of domestic sewage.

NONE

1995-11-01T23:59:59.000Z

380

Progress of the High Level Waste Program at the Defense Waste Processing Facility - 13178  

SciTech Connect (OSTI)

The Defense Waste Processing Facility at the Savannah River Site treats and immobilizes High Level Waste into a durable borosilicate glass for safe, permanent storage. The High Level Waste program significantly reduces environmental risks associated with the storage of radioactive waste from legacy efforts to separate fissionable nuclear material from irradiated targets and fuels. In an effort to support the disposition of radioactive waste and accelerate tank closure at the Savannah River Site, the Defense Waste Processing Facility recently implemented facility and flowsheet modifications to improve production by 25%. These improvements, while low in cost, translated to record facility production in fiscal years 2011 and 2012. In addition, significant progress has been accomplished on longer term projects aimed at simplifying and expanding the flexibility of the existing flowsheet in order to accommodate future processing needs and goals. (authors)

Bricker, Jonathan M.; Fellinger, Terri L.; Staub, Aaron V.; Ray, Jeff W.; Iaukea, John F. [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)] [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternatives for management of wastes generated by the formerly utilized sites remedial action program and supplement  

SciTech Connect (OSTI)

Alternatives for disposal or stabilization of the wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP) are identified and compared, with emphasis on the long-term aspects. These wastes consist of soil material and rubble containing trace amounts of radionuclides. A detailed pathway analysis for the dose to the maximally exposed individual is carried out using an adaptation of the natural analogue method. Comparisons of the different alternatives, based on the results of the pathway analysis and qualitative cost considerations, indicate that, if the hazard is such that the wastes must be removed and disposed of rather than stabilized in place, disposal by immediate dispersal is preferable to containment, and containment followed by slow planned dispersal is preferable to containment without dispersal. The Supplement presents refinements of work that was reported at the 1982 International Decommissioning Symposium. The new material consists of revisions of the estimates of the predicted potential dose to the maximally exposed individual and a more detailed comparative assessment of the radiological impacts of alternatives for management of wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP).

Gilbert, T.L.; Peterson, J.M.; Vocke, R.W.; Alexander, J.K.

1983-03-01T23:59:59.000Z

382

Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program  

SciTech Connect (OSTI)

This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance. Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.

Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

1995-03-01T23:59:59.000Z

383

E-Print Network 3.0 - agency listed hazardous Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Listing of Hazardous Waste 40 CFR... Hazardous Waste Management Regulations 6 NYCRR 371 Identification and Listing of Hazardous Waste 6 NYCRR 372... Substance Bulk Storage...

384

Nuclear waste treatment program: Annual report for FY 1987  

SciTech Connect (OSTI)

Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs.

Brouns, R.A.; Powell, J.A. (comps.)

1988-09-01T23:59:59.000Z

385

Treatability study on the use of by-product sulfur in Kazakhstan for the stabilization of hazardous and radioactive wastes  

SciTech Connect (OSTI)

The Republic of Kazakhstan generates significant quantities of excess elemental sulfur from the production and refining of petroleum reserves. In addition, the country also produces hazardous, and radioactive wastes which require treatment/stabilization. In an effort to find secondary uses for the elemental sulfur, and simultaneously produce a material which could be used to encapsulate, and reduce the dispersion of harmful contaminants into the environment, BNL evaluated the use of the sulfur polymer cement (SPC) produced from by-product sulfur in Kazakhstan. This thermoplastic binder material forms a durable waste form with low leaching properties and is compatible with a wide range of waste types. Several hundred kilograms of Kazakhstan sulfur were shipped to the US and converted to SPC (by reaction with 5 wt% organic modifiers) for use in this study. A phosphogypsum sand waste generated in Kazakhstan during the purification of phosphate fertilizer was selected for treatment. Waste loadings of 40 wt% were easily achieved. Waste form performance testing included compressive strength, water immersion, and Accelerated Leach Testing.

Kalb, P.D.; Milian, L.W. [Brookhaven National Lab., Upton, NY (United States). Environmental and Waste Technology Center; Yim, S.P. [Korea Atomic Energy Research Inst. (Korea, Republic of); Dyer, R.S.; Michaud, W.R. [Environmental Protection Agency (United States)

1997-12-01T23:59:59.000Z

386

Treatability study on the use of by-product sulfur in Kazakhstan for the stabilization of hazardous and radioactive wastes  

SciTech Connect (OSTI)

The Republic of Kazakhstan generates significant quantities of excess sulfur from the production and refining of petroleum reserves. In addition, the country also produces hazardous, and radioactive wastes which require treatment/stabilization. In an effort to find secondary uses for the elemental sulfur, and simultaneously produce a material which could be used to encapsulate, and reduce the dispersion of harmful contaminants into the environment, BNL evaluated the use of the sulfur polymer cement (SPC) produced from by-product sulfur in Kazakhstan. This thermoplastic binder material forms a durable waste form with low leaching properties and is compatible with a wide range of waste types. Several hundred kilograms of Kazakhstan sulfur were shipped to the U.S. and converted to SPC (by reaction with 5 wt% organic modifiers) for use in this study. A phosphogypsum sand waste generated in Kazakhstan during the purification of phosphate fertilizer was selected for treatment. Waste loading of 40 wt% were easily achieved. Waste form performance testing included compressive strength, water immersion, and Accelerated Leach Testing. 14 refs., 7 figs., 6 tabs.

Yim, Sung Paal; Kalb, P.D.; Milian, L.W.

1997-08-01T23:59:59.000Z

387

Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Second quarter 1995  

SciTech Connect (OSTI)

During second quarter 1995, samples from seven new AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for a comprehensive list of constituents. Two parameters exceeded standards during the quarter. Lead and nickel appear to exceed final Primary Drinking Water Standards (PDWS) in AMB-18A. These data were suspect and a rerun of the samples showed levels below flagging criteria. This data will be monitored in 3Q95. Aluminum, iron, manganese, boron, silver and total organic halogens exceeded Flag 2 criteria in at least one well each during second quarter 1995. This data, as well, will be confirmed by 3Q95 testing. Groundwater flow directions in the M-Area Aquifer Zone were similar to previous quarters; the flow rate estimate, however, differs because of an error noted in the scales of measurements used for previous estimates. The estimate was 470 ft/year during second quarter 1995. Reliable estimates of flow directions and rates in the Upper Lost Lake Aquifer Zone could not be determined in previous quarters because data were insufficient. The first estimate from second quarter 1995 shows a 530 ft/year rate. Reliable estimates of flow directions and rates in the Lower Lost Lake Aquifer Zone and in the Middle Sand Aquifer Zone of the CBCU could not be calculated because of the low horizontal gradient and the near-linear distribution of the monitoring wells. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and was completed in March of this year. Analytical data from these wells are presented in this report for the first time.

Chase, J.A.

1995-09-01T23:59:59.000Z

388

Reducing hazardous waste incinerator emissions through blending: A study of 1,1,1-trichloroethane injection  

SciTech Connect (OSTI)

We investigate whether blending liquid hazardous wastes with hydrocarbons such as alkanes can improve the destruction efficiency and reduce the combustion byproduct levels in the post-flame region of a laboratory scale combustor. Outlet species concentrations are measured with an FTIR spectrometer for mixtures of 1,1,1-trichloroethane and 25% (by volume) dodecane or heptane injected as a spray of droplets. We also inject sprays of liquid pure 1,1,1-trichloroethane, gaseous pure 1,1,1-trichloroethane, and gaseous 1,1,1-trichloroethane with 25% (by volume) heptane. Once vaporized, the 1,1,1-trichloroethane decomposes to form CO{sub 2} and HCl through the intermediates 1,1-dichloroethylene, phosgene, acetylene, and carbon monoxide. The 1,1,1-trichloroethane/alkane mixtures also form the intermediate ethylene. No significant differences are observed between injecting the compounds as a droplet spray or as a gaseous jet, not as unexpected result as the mixing time of the gas jet is longer than the vaporization time of the droplets. The addition of heptane or dodecane to 1,1,1-trichloroethane produces two principal effects: an increase in ethylene, acetylene and carbon monoxide levels for injection temperatures between 950 to 1040 K, and a decrease in 1,1-dichloroethylene, phosgene, acetylene, and carbon monoxide levels for injection temperatures greater than 1050 K. Reaction of the injected alkane causes the former effect, while the additional heat of combustion of the alkane additives causes the latter. 17 refs., 6 figs., 3 tabs.

Thomson, M.; Koshland, C.P.; Sawyer, R.F. [Univ. of California, Berkeley, CA (United States)] [and others

1996-12-31T23:59:59.000Z

389

The PERC{trademark} process: Existing and potential applications for induction coupled plasma technology in hazardous and radioactive waste treatment  

SciTech Connect (OSTI)

Plasma Technology, Inc. (PTI), a Santa Fe, New Mexico corporation has developed the Plasma Energy Recycle and Conversion (PERC){trademark} treatment process as a safe and environmentally clean alternative to conventional thermal destruction technologies. The PERC{trademark} treatment process uses as its heat source an advanced Induction Coupled Plasma (ICP) torch connected to a reaction chamber system with an additional emission control system. For example, organic-based gas, liquid, slurry, and/or solid waste streams can be converted into usable or even salable products while residual emissions are reduced to an absolute minimum. In applications for treatment of hazardous and radioactive waste streams, the PERC system could be used for destruction of the hazardous organic constituents and/or significant waste volume reduction while capturing the radioactive fraction in a non-leachable form. Like Direct Current (DC) and Alternating Current (AC) arc plasma systems, ICP torches offer sufficient energy to decompose, melt and/or vitrify any waste stream. The decision for an arc plasma or an IC plasma system has to be made on a case by case evaluation and is highly dependent on the specific waste stream`s form and composition. Induction coupled plasma technology offers one simple, but significant difference compared to DC or AC arc plasma systems: the ICP torch is electrodeless. To date, enormous research effort has been spent to improve the lifetime of electrodes and the effectiveness of related cooling systems. Arc plasma systems are established in research laboratories worldwide and are approaching a broad use in commercial applications. ICP technology has been improved relatively recently, but nowadays offers complete new and beneficial approaches in the field of waste conversion and treatment.

Blutke, A.S.; Vavruska, J.S.; Serino, J.F. [Plasma Technology, Inc., Santa Fe, NM (United States)

1996-12-31T23:59:59.000Z

390

JABSOM EHSO E-WASTE Recycling Program Created: May 13, 2010 Revised: January 6, 2013  

E-Print Network [OSTI]

JABSOM EHSO ­ E-WASTE Recycling Program Created: May 13, 2010 ­ Revised: January 6, 2013 Page 1 of 2 UH eWaste Recycling Program at JABSOM Kaka'ako The University of Hawaii has established a long-term, free-of-charge quarterly recycling program of UH electronic waste (eWaste), compliments of APPLE

Olsen, Stephen L.

391

Performance Demonstration Program Plan for RCRA Constituent Analysis of Solidified Wastes  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for Resource Conservation and Recovery Act (RCRA) constituents distributes test samples for analysis of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals in solid matrices. Each distribution of test samples is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD; DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department. The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the RCRA PDP. Participating laboratories demonstrate acceptable performance by successfully analyzing single- blind performance evaluation samples (subsequently referred to as PDP samples) according to the criteria established in this plan. PDP samples are used as an independent means to assess laboratory performance regarding compliance with the WAP quality assurance objectives (QAOs). The concentrations of analytes in the PDP samples address levels of regulatory concern and encompass the range of concentrations anticipated in waste characterization samples. The WIPP requires analyses of homogeneous solid wastes to demonstrate compliance with regulatory requirements. These analyses must be performed by laboratories that demonstrate acceptable performance in this PDP. These analyses are referred to as WIPP analyses, and the samples on which they are performed are referred to as WIPP samples. Participating laboratories must analyze PDP samples using the same procedures used for WIPP samples.

Carlsbad Field Office

2006-09-21T23:59:59.000Z

392

Annual radioactive waste tank inspection program - 1996  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1996 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

McNatt, F.G.

1997-04-01T23:59:59.000Z

393

Annual Radioactive Waste Tank Inspection Program - 1998  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Inspections made during 1998 to evaluate these vessels and auxiliary appurtenances, along with evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

McNatt, F.G.

1999-10-27T23:59:59.000Z

394

Annual radioactive waste tank inspection program - 1999  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

Moore, C.J.

2000-04-14T23:59:59.000Z

395

TRU Waste Management Program. Cost/schedule optimization analysis  

SciTech Connect (OSTI)

This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office Rockwell International (JIO/RI) during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, task guidance development, task monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short-term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. Systems models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions.

Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.; Hastings, G.A.

1985-10-01T23:59:59.000Z

396

TRU Waste Management Program cost/schedule optimization analysis  

SciTech Connect (OSTI)

The cost/schedule optimization task is a necessary function to insure that program goals and plans are optimized from a cost and schedule aspect. Results of this study will offer DOE information with which it can establish, within institutional constraints, the most efficient program for the long-term management and disposal of contact handled transuranic waste (CH-TRU). To this end, a comprehensive review of program cost/schedule tradeoffs has been made, to identify any major cost saving opportunities that may be realized by modification of current program plans. It was decided that all promising scenarios would be explored, and institutional limitations to implementation would be described. Since a virtually limitless number of possible scenarios can be envisioned, it was necessary to distill these possibilities into a manageable number of alternatives. The resultant scenarios were described in the cost/schedule strategy and work plan document. Each scenario was compared with the base case: waste processing at the originating site; transport of CH-TRU wastes in TRUPACT; shipment of drums in 6-Packs; 25 year stored waste workoff; WIPP operational 10/88, with all sites shipping to WIPP beginning 10/88; and no processing at WIPP. Major savings were identified in two alternate scenarios: centralize waste processing at INEL and eliminate rail shipment of TRUPACT. No attempt was made to calculate savings due to combination of scenarios. 1 ref., 5 figs., 1 tab. (MHB)

Detamore, J.A. (Rockwell International Corp., Albuquerque, NM (United States). Joint Integration Office); Raudenbush, M.H.; Wolaver, R.W.; Hastings, G.A. (Stoller (S.M.) Corp., Boulder, CO (United States))

1985-10-01T23:59:59.000Z

397

Preliminary fire hazard analysis for the PUTDR and TRU trenches in the Solid Waste Burial Ground  

SciTech Connect (OSTI)

This document represents the Preliminary Fire Hazards Analysis for the Pilot Unvented TRU Drum Retrieval effort and for the Transuranic drum trenches in the low level burial grounds. The FHA was developed in accordance with DOE Order 5480.7A to address major hazards inherent in the facility.

Gaschott, L.J.

1995-06-16T23:59:59.000Z

398

H-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1  

SciTech Connect (OSTI)

Groundwater at the H-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental control (SCDHEC) Groundwater Protection Standard (GWPS). Historically as well as currently, nitrate-nitrite as nitrogen, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constituents also exceeded the GWPS in the second half of 1995. Elevated constituents were found primarily in the water table (Aquifer Zone IIB{sub 2}), however, constitutents exceeding standards also occurred in several different aquifer zones monitoring wells. Water-level maps indicate that the groundwater flow rates and directions at the H-Area HWMF have remained relatively constant since the basins ceased to be active in 1988.

NONE

1996-03-01T23:59:59.000Z

399

Process hazards analysis (PrHA) program, bridging accident analyses and operational safety  

SciTech Connect (OSTI)

Recently the Final Safety Analysis Report (FSAR) for the Plutonium Facility at Los Alamos National Laboratory, Technical Area 55 (TA-55) was revised and submitted to the US. Department of Energy (DOE). As a part of this effort, over seventy Process Hazards Analyses (PrHAs) were written and/or revised over the six years prior to the FSAR revision. TA-55 is a research, development, and production nuclear facility that primarily supports US. defense and space programs. Nuclear fuels and material research; material recovery, refining and analyses; and the casting, machining and fabrication of plutonium components are some of the activities conducted at TA-35. These operations involve a wide variety of industrial, chemical and nuclear hazards. Operational personnel along with safety analysts work as a team to prepare the PrHA. PrHAs describe the process; identi fy the hazards; and analyze hazards including determining hazard scenarios, their likelihood, and consequences. In addition, the interaction of the process to facility systems, structures and operational specific protective features are part of the PrHA. This information is rolled-up to determine bounding accidents and mitigating systems and structures. Further detailed accident analysis is performed for the bounding accidents and included in the FSAR. The FSAR is part of the Documented Safety Analysis (DSA) that defines the safety envelope for all facility operations in order to protect the worker, the public, and the environment. The DSA is in compliance with the US. Code of Federal Regulations, 10 CFR 830, Nuclear Safety Management and is approved by DOE. The DSA sets forth the bounding conditions necessary for the safe operation for the facility and is essentially a 'license to operate.' Safely of day-to-day operations is based on Hazard Control Plans (HCPs). Hazards are initially identified in the PrI-IA for the specific operation and act as input to the HCP. Specific protective features important to worker safety are incorporated so the worker can readily identify the safety parameters of the their work. System safety tools such as Preliminary Hazard Analysis, What-If Analysis, Hazard and Operability Analysis as well as other techniques as necessary provide the groundwork for both determining bounding conditions for facility safety, operational safety, and day-to-clay worker safety.

Richardson, J. A. (Jeanne A.); McKernan, S. A. (Stuart A.); Vigil, M. J. (Michael J.)

2003-01-01T23:59:59.000Z

400

Organic Tanks Safety Program: Waste aging studies  

SciTech Connect (OSTI)

The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year`s findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to {gamma} radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H{sub 2}. Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs.

Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Medical University of South Carolina Environmental Hazards Assessment Program. Deliverables: Volume 3, Annual report, July 1, 1993--June 30, 1994  

SciTech Connect (OSTI)

This reference is concerned with the Crossroads of Humanity workshop which is part of the Environmental Hazards Assessment Program at the Medical University of South Carolina. This workshop was held during the month of June and July 1994. Topics discussed include: Perceived Risk Advisory Committee Meeting, surveys of public opinion about hazardous and radioactive materials, genetics,antibodies, and regulatory agencies.

Not Available

1994-08-18T23:59:59.000Z

402

Waste immobilization demonstration program for the Hanford Site`s Mixed Waste Facility  

SciTech Connect (OSTI)

This paper presents an overview of the Waste Receiving and Processing facility, Module 2A> waste immobilization demonstration program, focusing on the cooperation between Hanford Site, commercial, and international participants. Important highlights of the development and demonstration activities is discussed from the standpoint of findings that have had significant from the standpoint of findings that have had significant impact on the evolution of the facility design. A brief description of the future direction of the program is presented, with emphasis on the key aspects of the technologies that call for further detailed investigation.

Burbank, D.A.; Weingardt, K.M.

1994-05-01T23:59:59.000Z

403

National Low-Level Waste Management Program Radionuclide Report Series  

SciTech Connect (OSTI)

This volume serves as an introduction to the National Low-Level Radioactive Waste Management Program Radionuclide Report Series. This report includes discussions of radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha-emitting transuranics with half-lives greater than five years). Each report includes information regarding radiological and chemical characteristics of specific radionuclides. Information is also included discussing waste streams and waste forms that may contain each radionuclide, and radionuclide behavior in the environment and in the human body. Not all radionuclides commonly found at low-level radioactive waste sites are included in this report. The discussion in this volume explains the rationale of the radionuclide selection process.

Rudin, M.J.; Garcia, R.S.

1992-02-01T23:59:59.000Z

404

HIGH LEVEL WASTE (HLW) VITRIFICATION EXPERIENCE IN THE US: APPLICATION OF GLASS PRODUCT/PROCESS CONTROL TO OTHERHLW AND HAZARDOUS WASTES  

SciTech Connect (OSTI)

Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. At the Savannah River Site (SRS) actual HLW tank waste has successfully been processed to stringent product and process constraints without any rework into a stable borosilicate glass waste since 1996. A unique 'feed forward' statistical process control (SPC) has been used rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. In SQC, the glass product is sampled after it is vitrified. Individual glass property models form the basis for the 'feed forward' SPC. The property models transform constraints on the melt and glass properties into constraints on the feed composition. The property models are mechanistic and depend on glass bonding/structure, thermodynamics, quasicrystalline melt species, and/or electron transfers. The mechanistic models have been validated over composition regions well outside of the regions for which they were developed because they are mechanistic. Mechanistic models allow accurate extension to radioactive and hazardous waste melts well outside the composition boundaries for which they were developed.

Jantzen, C; James Marra, J

2007-09-17T23:59:59.000Z

405

Waste and Water Top 2013 Accomplishments for Los Alamos EM Program...  

Office of Environmental Management (EM)

Waste and Water Top 2013 Accomplishments for Los Alamos EM Program Waste and Water Top 2013 Accomplishments for Los Alamos EM Program December 24, 2013 - 12:00pm Addthis Unusually...

406

DOE complex buried waste characterization assessment. Buried Waste Integrated Demonstration Program  

SciTech Connect (OSTI)

The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m{sup 3} of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

1993-01-01T23:59:59.000Z

407

The waste isolation pilot plant regulatory compliance program  

SciTech Connect (OSTI)

The passage of the WIPP Land Withdrawal Act of 1992 (LWA) marked a turning point for the Waste Isolation Pilot Plant (WIPP) program. It established a Congressional mandate to open the WIPP in as short a time as possible, thereby initiating the process of addressing this nation`s transuranic (TRU) waste problem. The DOE responded to the LWA by shifting the priority at the WIPP from scientific investigations to regulatory compliance and the completion of prerequisites for the initiation of operations. Regulatory compliance activities have taken four main focuses: (1) preparing regulatory submittals; (2) aggressive schedules; (3) regulator interface; and (4) public interactions

Mewhinney, J.A. [U.S. Dept. of Energy, Carlsbad, NM (United States); Kehrman, R.F. [Westinghouse Electric Corp., Carlsbad, NM (United States)

1996-06-01T23:59:59.000Z

408

DOE high-level waste tank safety program. Final report  

SciTech Connect (OSTI)

The overall objective of the work was to provide LANL with support to the DOE High-Level Waste Tank Safety Program. This effort included direct support to the DOE High-Level Waste Tank Working Groups, development of a database to track all identified safety issues, development of requirements for waste tank modernization, evaluation of external comments regarding safety-related guidance/instruction developed previously, examination of current federal and state regulations associated with DOE Tank farm operations, and performance of a conduct of operations review. All tasks which were assigned under this Task Order were completed. Descriptions of the objectives of each task and effort performed to complete each objective is provided.

NONE

1998-11-01T23:59:59.000Z

409

Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 2, Chapter C, Appendix C1--Chapter C, Appendix C3 (beginning), Revision 3  

SciTech Connect (OSTI)

This volume contains appendices for the following: Rocky Flats Plant and Idaho National Engineering Laboratory waste process information; TRUPACT-II content codes (TRUCON); TRUPACT-II chemical list; chemical compatibility analysis for Rocky Flats Plant waste forms; chemical compatibility analysis for waste forms across all sites; TRU mixed waste characterization database; hazardous constituents of Rocky Flats Transuranic waste; summary of waste components in TRU waste sampling program at INEL; TRU waste sampling program; and waste analysis data.

Not Available

1993-03-01T23:59:59.000Z

410

M-Area Hazardous Waste Management Facility. Fourth Quarter 1994, Groundwater Monitoring Report  

SciTech Connect (OSTI)

The unlined settling basin operated from 1958 until 1985, receiving waste water that contained volatile organic solvents used for metal degreasing and chemical constituents and depleted uranium from fuel fabrication process in M Area. The underground process sewer line transported M-Area process waste waters to the basin. Water periodically overflowed from the basin through the ditch to the seepage area adjacent to the ditch and to Lost Lake.

Chase, J.A.

1995-04-20T23:59:59.000Z

411

Hanford site solid waste management environmental impact statement technical information document [SEC 1 THRU 4  

SciTech Connect (OSTI)

This Technical Information Document (TID) provides engineering data to support DOE/EIS-0286, ''Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement,'' including assumptions and waste volumes calculation data.

FRITZ, L.L.

2003-04-01T23:59:59.000Z

412

Waste Disposal (Illinois)  

Broader source: Energy.gov [DOE]

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

413

Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 112: Area 23 Hazardous Waste Trenches, Nevada Test Site, Nevada, for the Period October 1999-October 2000  

SciTech Connect (OSTI)

This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the Area 23 Hazardous Waste Trenches Resource Conservation and Recovery Act (RCRA) unit, located in Area 23 of the Nevada Test Site, Nye County, Nevada, during the October 1999-October 2000 period. Inspections of the Area 23 Hazardous Waste Trenches RCRA unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. Physical inspections of the closure were completed quarterly and indicated that the site is in good condition with no significant findings noted. An annual subsidence survey of the elevation markers was conducted in August 2000. There has been no subsidence at any of the markers since monitoring began seven years ago. The objective of the neutron logging program is to monitor the soil moisture conditions along 30 neutron access tubes and detect changes that maybe indicative of moisture movement at a point located directly beneath each trench. Precipitation for the period October 1999 through October 2000 was 10.44 centimeters (cm) (4.11 inches [in.]) (U.S. National Weather Service, 2000). The prior year annual rainfall (January 1999 through December 1999) was 10.13cm (3.99 in.). The highest 30-day cumulative rainfall occurred on March 8, 2000, with a total of 6.63 cm (2.61 in.). The heaviest daily precipitation occurred on February 23,2000, with a total of 1.70 cm (0.67 in.) falling in that 24-hour period. The recorded average annual rainfall for this site, from 1972 to January 1999, is 15.06 cm (5.93 in.). All monitored access tubes are within the compliance criteria of less than 5 percent residual volumetric moisture content at the compliance point directly beneath each respective trench. Soil conditions remain dry and stable underneath the trenches.

D. F. Emer

2001-03-01T23:59:59.000Z

414

Experimental program plan for the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The US Department of Energy has prepared this Experimental Program Plan for the Waste Isolation Pilot Plant (EPP) to provide a summary of the DOE experimental efforts needed for the performance assessment process for the WIPP, and of the linkages of this process to the appropriate regulations. The Plan encompasses a program of analyses of the performance of the planned repository based on scientific studies, including tests with transuranic waste at laboratory sites, directed at evaluating compliance with the principal regulations governing the WIPP. The Plan begins with background information on the WIPP project, the requirements of the LWA (Land Withdrawal Act), and its objective and scope. It then presents an overview of the regulatory requirements and the compliance approach. Next are comprehensive discussions of plans for compliance with disposal regulations, followed by the SWDA (Solid Waste Disposal Act) and descriptions of activity programs designed to provide information needed for determining compliance. Descriptions and justifications of all currently planned studies designed to support regulatory compliance activities are also included.

Not Available

1994-01-01T23:59:59.000Z

415

Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility  

SciTech Connect (OSTI)

The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

1998-03-01T23:59:59.000Z

416

Nye County, Nevada 1992 nuclear waste repository program: Program overview. Final report  

SciTech Connect (OSTI)

The purpose of this document is to provide an overview of the Nye County FY92 Nuclear Waste Repository Program (Program). Funds to pay for Program costs will come from the Federal Nuclear Waste Fund, which was established under the Nuclear Waste Policy Act of 1982 (NWPA). In early 1983, the Yucca Mountain was identified as a potentially suitable site for the nation`s first geologic repository for spent reactor fuel and high-level radioactive waste. Later that year, the Nye County Board of County Commissioners (Board) established the capability to monitor the Federal effort to implement the NWPA and evaluate the potential impacts of repository-related activities on Nye County. Over the last eight years, the County`s program has grown in complexity and cost in order to address DOE`s evolving site characterization studies, and prepare for the potential for facility construction and operation. Changes were necessary as well, in response to Congress`s redirection of the repository program specified in the amendments, to the NWPA approved in 1987. In early FY 1991, the County formally established a project office to plan and implement its program of work. The Repository Project Office`s (RPO) mission and functions are provided in Section 2.0. The RPO organization structure is described in Section 3.0.

NONE

1998-07-01T23:59:59.000Z

417

Mineralogical characterization of steel industry hazardous waste and refractory sulfide ores for zinc and gold recovery processing  

SciTech Connect (OSTI)

The steel industry generates dust as a waste product from high temperature electric arc furnaces (EAF), which is a major step in processing scrap metal into steel. The Environmental Protection Agency (EPA) has classified EAF dust as KO61 hazardous waste, due to its lead, cadmium, and chromium content. The dust also contains valuable zinc, averaging 19%. Detailed mineralogical characterization show the zinc is present as crystals of franklinite-magnetite-jacobsite solid solutions in calcium-iron-silicate glass spheres and as zincite mostly as very small individual spheres. Much of the chromium is present in an insoluble form in solid solution in the iron spinels. This microscopic research is a valuable tool in determining treatment processes for the 600,000 tons of dust generated annually in the US. Refractory gold ores, pyrite and arsenopyrite, have been studied to determine additional, cost-effective methods of processing. One technique under investigation involves roasting sulfide mineral particles to hematite to create porosity through which a leach can permeate to recover the gold. Portlandite, Ca(OH)[sub 2], is added to the roast for retention of hazardous sulfur and arsenic. Modern microscopic and spectroscopic techniques, such electron spectroscopy for chemical analysis, cathodoluminescence microscopy, and electron microprobe, have been applied, as well as reflected light and dark field microscopy, and scanning electron microscopy to determine the mineralogy of the sulfur, arsenic, and iron phases, and the extent of porosity, permeability, and oxidation state of the ore particles at various roasting temperatures. It is concluded that mineralogical techniques can be effectively applied to the solution of environmental problems.

Hagni, A.M.; Hagni, R.D. (Univ. of Missouri, Rolla, MO (United States). Geology Geophysics Dept.)

1994-04-01T23:59:59.000Z

418

Maine Department of Environmental Protection Washington State Department of Ecology California Environmental Protection Agency State House Station 17 Hazardous Waste & Toxics Reduction 1001 I Street  

E-Print Network [OSTI]

Maine Department of Environmental Protection Washington State Department of Ecology California Environmental Protection Agency State House Station 17 Hazardous Waste & Toxics Reduction 1001 I Street Augusta, said Ted Sturdevant, Director of the Washington State Department of Ecology. We need a federal law

419

EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs  

Broader source: Energy.gov [DOE]

Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

420

Disposal of Hazardous Medical Waste Policy and Procedures Commencement Date: 27 November, 1996  

E-Print Network [OSTI]

Manipulation Advisory Committee's publication, Guidelines for the Storage, Transport and Disposal of Medical" and must comply with the Guidelines for the Storage, Transport and Disposal of Medical Waste issued of their chemical, biological or physical properties. Sharps Means objects or devices having acute rigid corners

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hazardous Waste Pick-up DEPARTMENT of ENVIRONMENTAL HEALTH and SAFETY  

E-Print Network [OSTI]

chemicals and concentrations Volume (L) or Weight (Kg) # of Containers Type of Container 1. Glass Plastic Metal Box 2. Glass Plastic Metal Box 3. Glass Plastic Metal Box 4. Glass Plastic Metal Box 5. Glass Plastic Metal Box 6. Glass Plastic Metal Box Please note that each item of waste must have an attached

Emmons, Scott

422

AISI waste oxide recycling program. Final technical report  

SciTech Connect (OSTI)

In March 1995 AISI completed a five-year, $60 million collaborative development program on Direct Steelmaking cost-shared by DOE under the Metals Initiative. This program defined an energy-efficient and environmentally-friendly technology to produce hot metal for steelmaking directly from coal and iron ore pellets without incurring the high capital costs and environmental problems associated with traditional coke oven and blast furnace technology. As it becomes necessary to replace present capacity, this new technology will be favored because of reduced capital costs, higher energy efficiency, and lower operating costs. In April 1994, having failed to move forward with a demonstration plant for direct ironmaking, despite substantial efforts by both Stelco and Geneva Steel, an alternative opportunity was sought to commercialize this new technology without waiting until existing ironmaking capacity needed to be replaced. Recycling and resource recovery of steel plant waste oxides was considered an attractive possibility. This led to approval of a ten-month, $8.3 million joint program with DOE on recycling steel plant waste oxides utilizing this new smelting technology. This highly successful trial program was completed in December 1994. The results of the pilot plant work and a feasibility study for a recycling demonstration plant are presented in this final technical report.

Aukrust, E.; Downing, K.B.; Sarma, B.

1995-08-01T23:59:59.000Z

423

Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)  

SciTech Connect (OSTI)

Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

Estrella, R.

1994-10-01T23:59:59.000Z

424

State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site  

SciTech Connect (OSTI)

This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 {times} 10{sup {minus}7} cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to ``self-heal`` if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

1992-12-31T23:59:59.000Z

425

State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site  

SciTech Connect (OSTI)

This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 [times] 10[sup [minus]7] cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to self-heal'' if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

1992-01-01T23:59:59.000Z

426

Sandia National Laboratories California Waste Management Program Annual Report February 2008.  

SciTech Connect (OSTI)

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

Brynildson, Mark E.

2008-02-01T23:59:59.000Z

427

Title 40 CFR 270: EPA Administered Programs: The Hazardous Waste Program |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl.,Information EPASites for Dredged or

428

Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste  

SciTech Connect (OSTI)

This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

NONE

1994-12-31T23:59:59.000Z

429

Tank waste remediation system vadose zone program plan  

SciTech Connect (OSTI)

The objective of the vadose zone characterization under this program is to develop a better conceptual geohydrologic model of identified tank farms which will be characterized so that threats to human health and the environment from past leaks and spills, intentional liquid discharges, potential future leaks during retrieval, and from residual contaminants that may remain in tank farms at closure can be explicitly addressed in decision processes. This model will include geologic, hydrologic, and hydrochemical parameters as defined by the requirements of each of the TWRS programs identified here. The intent of this TWRS Vadose Zone Program Plan is to provide justification and an implementation plan for the following activities: Develop a sufficient understanding of subsurface conditions and transport processes to support decisions on management, cleanup, and containment of past leaks, spills, and intentional liquid discharges; Develop a sufficient understanding of transport processes to support decisions on controlling potential retrieval leaks; Develop a sufficient understanding of transport processes to support decisions on tank farm closure, including allowable residual waste that may remain at closure; and Provide new information on geotechnical properties in the 200 Area to supplement data used for design and performance assessment for immobilized low-activity waste disposal facilities.

Fredenburg, E.A.

1998-07-27T23:59:59.000Z

430

Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes  

SciTech Connect (OSTI)

The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

Harmon, K.M.; Johnson, A.B. Jr.

1984-04-01T23:59:59.000Z

431

Environmental Hazards Assessment Program. Volume 4: Annual report, July 1, 1993--June 30, 1994  

SciTech Connect (OSTI)

The Medical University of South Carolina`s (MUSC) vision is to become the premier national resource for medical information and for environmental/health risk assessment. A key component to the success of the many missions of the Environmental Hazards Assessment Program (EHAP) is timely access to large volumes of data. The significant growth in the number of environmental/health information systems that has occurred over the past few years has made data access challenging. This study documents the results of the needs assessment effort conducted to determine the information access and processing requirements of EHAP. The following topics are addressed in this report: immunological consequences of beryllium exposure; assessment of genetic risks to environmental diseases; low dose-rate radiation health effects; environmental risk perception in defined populations; information support and access systems; and environmental medicine and risk communication: curriculum and a professional support network-Department of Family Medicine.

Not Available

1994-09-01T23:59:59.000Z

432

The French national program for spent fuel and high-level waste management  

SciTech Connect (OSTI)

From its very beginning, the French national program for spent fuel and HLW management is aimed at the recycling of energetic materials and the safe disposal of nuclear waste. Spent fuel reprocessing is the cornerstone of this program, since it directly opens the way to energetic material recycling, waste minimization and safe conditioning. It is complemented by the HLW management program which is defined by the HLW disposal regulation and the Waste Act issued in 1991.

Giraud, J.P.; Demontalembert, J.A. [COGEMA, Velizy-Villacoublay (France)

1993-12-31T23:59:59.000Z

433

RCRA, superfund and EPCRA hotline training module. Introduction to: Hazardous waste incinerators (40 cfr parts 264/265, subpart o) updated July 1996  

SciTech Connect (OSTI)

The module introduces the concept of burning hazardous wastes in units regulated under RCRA and outlines the requirements for one type of device - the incinerator. It explains what an incinerator is and how incinerators are regulated, and states the conditions under which an owner/operator may be exempt from subpart O. It defines principal organic hazardous constituent (POHC) and describes the criteria under which a POHC is selected. It defines destruction and removal efficiency (DRE) and describes the interaction between compliance with performance standards and compliance with incinerator operating conditions established in the permit. It defines and explains the purpose of a `trial burn`.

NONE

1996-07-01T23:59:59.000Z

434

RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Hazardous waste incinerators (40 CFR parts 264/265, subpart O) updated as of July 1995  

SciTech Connect (OSTI)

The module introduces the concept of burning hazardous wastes in units regulated under RCRA and outlines the requirements for one type of device - the incinerator. It explains what an incinerator is and how incinerators are regulated and states the conditions under which an owner/operator may be exempt from Subpart O. It defines principal organic hazardous constituent (POHC) and describes the criteria under which a POHC is selected and defines destruction and removal efficiency (DRE). It describes the interaction between compliance with performance standards and compliance with incinerator operating conditions established in the permit. It also defines and explains the purpose of a trial burn.

NONE

1995-11-01T23:59:59.000Z

435

Defense High-Level Waste Leaching Mechanisms Program. Final report  

SciTech Connect (OSTI)

The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90/sup 0/C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations.

Mendel, J.E. (compiler)

1984-08-01T23:59:59.000Z

436

Selection of Steady-State Process Simulation Software to Optimize Treatment of Radioactive and Hazardous Waste  

SciTech Connect (OSTI)

The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from ''road tests'' that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment.

Nichols, T. T.; Barnes, C. M.; Lauerhass, L.; Taylor, D. D.

2001-06-01T23:59:59.000Z

437

Solid waste program fiscal year 1997 multi-year work plan WBS 1.2.1  

SciTech Connect (OSTI)

This document provides the technical baseline, work breakdown structure, schedule baseline, cost baseline, and execution year for the solid waste program.

Riddelle, J.G.

1996-09-30T23:59:59.000Z

438

[Environmental Hazards Assessment Program annual report, June 1992--June 1993]. Summer undergraduate research program: Environmental studies  

SciTech Connect (OSTI)

The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. Ten students from throughout the midwestern and eastern areas of the country were accepted into the program. These students selected projects in the areas of marine sciences, biostatistics and epidemiology, and toxicology. The research experience for all these students and their mentors was very positive. The seminars were well attended and the students showed their interest in the presentations and environmental sciences as a whole by presenting the speakers with thoughtful and intuitive questions. This report contains the research project written presentations prepared by the student interns.

McMillan, J. [ed.

1993-12-01T23:59:59.000Z

439

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect (OSTI)

U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

Washington TRU Solutions

2002-09-24T23:59:59.000Z

440

Medical University of South Carolina Environmental Hazards Assessment Program. Deliverables: Volume 2, Annual report, July 1, 1993--June 30, 1994  

SciTech Connect (OSTI)

This reference is concerned with the Crossroads of Humanity workshop which is part of the Environmental Hazards Assessment Program at the Medical University of South Carolina. This workshop was held during the months of June and July 1994. Topics discussed include: Radioactive contamination, aging, medical ethics, and environmental risk analysis.

Not Available

1994-08-18T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

National Low-Level Waste Management Program Radionuclide Report Series, Volume 17: Plutonium-239  

SciTech Connect (OSTI)

This report, Volume 17 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of plutonium-239 (Pu-239). This report also discusses waste types and forms in which Pu-239 can be found, waste and disposal information on Pu-239, and Pu-239 behavior in the environment and in the human body.

J. P. Adams; M. L. Carboneau

1999-03-01T23:59:59.000Z

442

Environmental, safety, and health plan for the remedial investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

This document outlines the environmental, safety, and health (ES&H) approach to be followed for the remedial investigation of Waste Area Grouping (WAG) 10 at Oak at Ridge National Laboratory. This ES&H Plan addresses hazards associated with upcoming Operable Unit 3 field work activities and provides the program elements required to maintain minimal personnel exposures and to reduce the potential for environmental impacts during field operations. The hazards evaluation for WAG 10 is presented in Sect. 3. This section includes the potential radiological, chemical, and physical hazards that may be encountered. Previous sampling results suggest that the primary contaminants of concern will be radiological (cobalt-60, europium-154, americium-241, strontium-90, plutonium-238, plutonium-239, cesium-134, cesium-137, and curium-244). External and internal exposures to radioactive materials will be minimized through engineering controls (e.g., ventilation, containment, isolation) and administrative controls (e.g., procedures, training, postings, protective clothing).

Not Available

1993-10-01T23:59:59.000Z

443

National low-level waste management program radionuclide report series, Volume 15: Uranium-238  

SciTech Connect (OSTI)

This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.

Adams, J.P.

1995-09-01T23:59:59.000Z

444

Reduction of COD in leachate from a hazardous waste landfill adjacent to a coke-making facility  

SciTech Connect (OSTI)

A hazardous waste landfill adjacent to a coke manufacturing facility was in operation between July 1990 and December 1991. A system was constructed to collect and treat the leachate from the landfill prior to discharge to the river. Occasionally, the discharge from the treatment facility exceeded the permit limitations for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), and Total Organic Carbon (TOC). The objectives of this study were to determine treatment methods which would enable compliance with the applicable discharge limits; to establish the desired operating conditions of the process; and to investigate the effect of various parameters such as pH, catalyst dosage, and reaction time on the COD destruction efficiency. The characteristics of the landfill leachate in question were significantly variable in terms of chemical composition. A review of the influent quality data suggests that the COD concentration ranges between 80 and 390 mg/l. The oxidation processes using Fenton`s reagent or a combination of UV/hydrogen peroxide/catalyst are capable of reducing the COD concentration of the leachate below the discharge limitation of 35 mg/l. The estimated capital cost associated with the Fenton`s reagent process is approximately $525,000, and the annual operating and maintenance cost is $560,000. The estimated capital cost for the UV/hydrogen peroxide/catalyst treatment system is $565,000. The annual operating and maintenance cost of this process would be approximately $430,000.

Banerjee, K.; O`Toole, T.J. [Chester Environmental, Moon Township, PA (United States)

1995-12-01T23:59:59.000Z

445

DOE Order Self Study Modules - 29 CFR 1910.120 Hazardous Waste Operations and Emergency Response  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOEInfrastructure Working GroupEnergyUpdate29

446

RSP-MW UNIVERSITY OF HAWAII RADIOACTIVE MIXED WASTE PICKUP REQUEST FORM Revision, 4/04 (WASTE CONTAINING BOTH RADIOISOTOPES AND HAZARDOUS CHEMICALS)  

E-Print Network [OSTI]

RSP-MW UNIVERSITY OF HAWAII RADIOACTIVE MIXED WASTE PICKUP REQUEST FORM Revision, 4/04 (WASTE AND UNDERSTAND ALL CONDITIONS ON THIS FORM. GENERATOR CERTIFICATION: I certify the above waste contains

Browder, Tom

447

__________________________________ Environment, Health, & Safety ________________________________ Training Program  

E-Print Network [OSTI]

commercial drivers license endorsement to transport radioactive or hazardous waste. Course Objectives: After ________________________________ Training Program EHS0476~ Radioactive Materials Driver Training Subject Category: Radioactive Materials function specific drivers training for LBNL personnel who transport radioactive materials, via government

Eisen, Michael

448

Compliance of SLAC_s Laser Safety Program with OSHA Requirements for the Control of Hazardous Energy  

SciTech Connect (OSTI)

SLAC's COHE program requires compliance with OSHA Regulation 29CFR1910.147, 'The control of hazardous energy (lockout/tagout)'. This regulation specifies lockout/tagout requirements during service and maintenance of equipment in which the unexpected energization or start up of the equipment, or release of stored energy, could cause injury to workers. Class 3B and Class 4 laser radiation must be considered as hazardous energy (as well as electrical energy in associated equipment, and other non-beam energy hazards) in laser facilities, and therefore requires careful COHE consideration. This paper describes how COHE is achieved at SLAC to protect workers against unexpected Class 3B or Class 4 laser radiation, independent of whether the mode of operation is normal, service, or maintenance.

Woods, Michael; /SLAC

2009-01-15T23:59:59.000Z

449

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect (OSTI)

The DOE has mandated in DOE Order 5400.1 that its operations will be conducted in an environmentally safe manner. The Waste Isolation Pilot Plant (WIPP) will comply with DOE Order 5400.1 and will conduct its operations in a manner that ensures the safety of the environment and the public. This document outlines how the WIPP will protect and preserve groundwater within and surrounding the WIPP facility. Groundwater protection is just one aspect of the WIPP environmental protection effort. The WIPP groundwater surveillance program is designed to determine statistically if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will be determined and appropriate corrective action initiated.

Not Available

1993-12-31T23:59:59.000Z

450

Identification of permit and waste acceptance criteria provisions requiring modification for acceptance of commercial mixed waste. National Low-Level Waste Management Program  

SciTech Connect (OSTI)

In October 1990, representatives of States and compact regions requested that the US Department of Energy (DOE) explore an agreement with host States and compact regions under which DOE would accept commercial mixed low-level radioactive waste (LLW) at DOE`s own treatment and disposal facilities. A program for DOE management of commercial mixed waste is made potentially more attractive in light of the low commercial mixed waste volumes, high regulatory burdens, public opposition to new disposal sites, and relatively high cost of constructing commercial disposal facilities. Several studies were identified as essential in determining the feasibility of DOE accepting commercial mixed waste for disposal. The purpose of this report is to identify any current or proposed waste acceptance criteria (WAC) or Resource Conservation and Recovery Act (RCRA) provisions that would have to be modified for commercial mixed waste acceptance at specified DOE facilities. Following the introduction, Section 2 of this report (a) provides a background summary of existing and proposed mixed waste disposal facilities at each DOE site, and (b) summarizes the status of any RCRA Part B permit and WAC provisions relating to the disposal of mixed waste, including provisions relating to acceptance of offsite waste. Section 3 provides overall conclusions regarding the current status and permit modifications that must be implemented in order to grant DOE sites authority under their permits to accept commercial mixed waste for disposal. Section 4 contains a list of references.

Not Available

1994-03-01T23:59:59.000Z

451

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect (OSTI)

The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR 264.90 through 264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] 6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

Washington Regulatory and Environmental Services

2005-07-01T23:59:59.000Z

452

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, February--May 1995  

SciTech Connect (OSTI)

This report describes the activities of the project team during the reporting period. The principal work has focused upon the laboratory treatment of six wastes with three by-products and the evaluation of the stability of the resulting eighteen materials. Other efforts during the third quarter have been directed toward completion of the collection and analysis of by-products, the identification of a suitable fourth by-product, and the definition of the approach to the solidification tests. The activity on the project during the third quarter of Phase One has fallen into three major areas: acquiring and analyzing by-products; treating hazardous wastes with by-products in the laboratory and analyzing the results; and conducting administrative activities, including public relations and personnel additions. The hazardous wastes that are used include industrial wastewater treatment residue from battery manufacturing plant; contaminated soil from a remediation project conducted at a munitions depot; contaminated soil from a remediation project conducted at an abandoned industrial site; contaminated soil from a remediation project conducted at a former sewage treatment plant; air pollution control dust from basic oxygen furnace steel production; and air pollution control ash from municipal waste incineration.

NONE

1995-07-01T23:59:59.000Z

453

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

454

Environmental Restoration Program waste minimization and pollution prevention self-assessment  

SciTech Connect (OSTI)

The Environmental Restoration (ER) Program within Martin Marietta Energy Systems, Inc. is currently developing a more active waste minimization and pollution prevention program. To determine areas of programmatic improvements within the ER Waste Minimization and Pollution Prevention Awareness Program, the ER Program required an evaluation of the program across the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, the Paducah Environmental Restoration and Waste Minimization Site, and the Portsmouth Environmental Restoration and Waste Minimization Site. This document presents the status of the overall program as of fourth quarter FY 1994, presents pollution prevention cost avoidance data associated with FY 1994 activities, and identifies areas for improvement. Results of this assessment indicate that the ER Waste Minimization and Pollution Prevention Awareness Program is firmly established and is developing rapidly. Several procedural goals were met in FY 1994 and many of the sites implemented ER waste minimization options. Additional growth is needed, however, for the ER Waste Minimization and Pollution Prevention Awareness Program.

Not Available

1994-10-01T23:59:59.000Z

455

Addressing Control of Hazardous Energy (COHE) Requirements in a Laser Safety Program  

SciTech Connect (OSTI)

OSHA regulation 29CFR1910.147 specifies control of hazardous energy requirements for 'the servicing and maintenance of machines and equipment in which the unexpected energization or start up of the machines or equipment, or release of stored energy could cause injury to employees.' Class 3B and Class 4 laser beams must be considered hazardous energy sources because of the potential for serious eye injury; careful consideration is therefore needed to safely de-energize these lasers. This paper discusses and evaluates control of hazardous energy principles in this OSHA regulation, in ANSI Z136.1 ''Safe Use of Lasers,'' and in ANSI Z244.1 ''Control of Hazardous Energy, Lockout/Tagout and Alternative Methods.'' Recommendations are made for updating and improving CoHE (control of hazardous energy) requirements in these standards for their applicability to safe laser operations.

Woods, Michael; /SLAC

2012-02-15T23:59:59.000Z

456

Organic tanks safety program waste aging studies. Final report, Revision 1  

SciTech Connect (OSTI)

Uranium and plutonium production at the Hanford Site produced large quantities of radioactive byproducts and contaminated process chemicals that are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of saltcakes, metal oxide sludges, and aqueous brine solutions. Tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes might be at risk for fuel-nitrate combustion accidents. This project started in fiscal year 1993 to provide information on the chemical fate of stored organic wastes. While historical records had identified the organic compounds originally purchased and potentially present in wastes, aging experiments were needed to identify the probable degradation products and evaluate the current hazard. The determination of the rates and pathways of degradation have facilitated prediction of how the hazard changes with time and altered storage conditions. Also, the work with aged simulated waste contributed to the development of analytical methods for characterizing actual wastes. Finally, the results for simulants provide a baseline for comparing and interpreting tank characterization data.

Camaioni, D.M.; Samuels, W.D.; Linehan, J.C. [and others

1998-09-01T23:59:59.000Z

457

Medical University of South Carolina Environmental Hazards Assessment Program. Volume 5: Annual report, July 1, 1993--June 30, 1994 deliverables  

SciTech Connect (OSTI)

The Medical University of South Carolina`s vision is to become the premier national resource for medical information and for environmental/health risk assessment. A key component to the success of the many missions of the Environmental Hazards Assessment Program (EHAP) is timely access to large volumes of data. This study documents the results of the needs assessment effort conducted to determine the information access and processing requirement of EHAP. The following topics are addressed in this report: environmental medicin