Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Chapter 38 Hazardous Waste Permitting Process (Kentucky) | Department of  

Broader source: Energy.gov (indexed) [DOE]

8 Hazardous Waste Permitting Process (Kentucky) 8 Hazardous Waste Permitting Process (Kentucky) Chapter 38 Hazardous Waste Permitting Process (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection This administrative regulation establishes the general provisions for storage, treatment, recycling, or disposal of hazardous waste. It provides information about permits and specific requirements for containers, tanks,

2

Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky)  

Broader source: Energy.gov (indexed) [DOE]

2 Standards Applicable to Generators of Hazardous Waste 2 Standards Applicable to Generators of Hazardous Waste (Kentucky) Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection This administrative regulation establishes procedures to establish the applicable general provisions for generators of hazardous waste. It also

3

Chapter 31 Identification and Listing of Hazardous Waste (Kentucky)  

Broader source: Energy.gov [DOE]

This administrative regulation establishes the general provisions necessary for identification and listing of a hazardous waste. The regulation also establishes the criteria for identifying the...

4

Chapter 47 Solid Waste Facilities (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chapter 47 Solid Waste Facilities (Kentucky) Chapter 47 Solid Waste Facilities (Kentucky) Chapter 47 Solid Waste Facilities (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Kentucky Program Type Environmental Regulations Fees Siting and Permitting Provider Kentucky Division of Waste Management This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or

5

Hazardous Waste Management (Oklahoma)  

Broader source: Energy.gov [DOE]

This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

6

Chapter 30 Waste Management: General Administrative Procedures (Kentucky) |  

Broader source: Energy.gov (indexed) [DOE]

Chapter 30 Waste Management: General Administrative Procedures Chapter 30 Waste Management: General Administrative Procedures (Kentucky) Chapter 30 Waste Management: General Administrative Procedures (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection The waste management administrative regulations apply to the disposal of solid waste and the management of all liquid, semisolid, solid, or gaseous

7

Hazardous Waste Disposal Sites (Iowa)  

Broader source: Energy.gov [DOE]

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

8

Missouri Hazardous Waste Management Law (Missouri)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

9

Hazardous Wastes Management (Alabama) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) < Back Eligibility Commercial Construction Developer Industrial Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Safety and Operational Guidelines This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and investigations. The legislation also states responsibilities of generators and transporters of hazardous waste as well as responsibilities of hazardous waste storage and treatment facility and hazardous waste disposal site operators. There

10

Portable sensor for hazardous waste  

SciTech Connect (OSTI)

Objective was to develop a field-portable monitor for sensitive hazardous waste detection using active nitrogen energy transfer (ANET) excitation of atomic and molecular fluorescence (active nitrogen is made in a dielectric-barrier discharge in nitrogen). It should provide rapid field screening of hazardous waste sites to map areas of greatest contamination. Results indicate that ANET is very sensitive for monitoring heavy metals (Hg, Se) and hydrocarbons; furthermore, chlorinated hydrocarbons can be distinguished from nonchlorinated ones. Sensitivity is at ppB levels for sampling in air. ANET appears ideal for on-line monitoring of toxic heavy metal levels at building sites, hazardous waste land fills, in combustor flues, and of chlorinated hydrocarbon levels at building sites and hazardous waste dumps.

Piper, L.G.

1994-12-31T23:59:59.000Z

11

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network [OSTI]

Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

Sheridan, Jennifer

12

Massachusetts Hazardous Waste Management Act (Massachusetts)  

Broader source: Energy.gov [DOE]

This Act contains regulations for safe disposal of hazardous waste, and establishes that a valid license is required to collect, transport, store, treat, use, or dispose of hazardous waste. Short...

13

Kentucky State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Kentucky State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kentucky. The profile is the result of a survey of NRC licensees in Kentucky. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Kentucky.

Not Available

1981-08-01T23:59:59.000Z

14

Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products  

E-Print Network [OSTI]

be damaged when corrosive chemicals are put down the drain. Burning hazardous wastes simply distributes themHousehold Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products containing toxic chemicals. These wastes CANNOT be disposed of in regular garbage. Any

de Lijser, Peter

15

Hazardous waste management in the Pacific basin  

SciTech Connect (OSTI)

Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

1994-11-01T23:59:59.000Z

16

Hazardous Waste Management (Indiana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) < Back Eligibility Agricultural Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Environmental Management The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental Management is tasked regulating hazardous waste management facilities and practices. Provisions pertaining to permitting, site approval, construction, reporting, transportation, and remediation practices and fees are discussed in these

17

Radiological hazards of alpha-contaminated waste  

SciTech Connect (OSTI)

The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process.

Rodgers, J.C.

1982-01-01T23:59:59.000Z

18

Energy and solid/hazardous waste  

SciTech Connect (OSTI)

This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

None

1981-12-01T23:59:59.000Z

19

Hazardous Waste Management (Arkansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Transportation Utility Program Info State Arkansas Program Type Environmental Regulations Sales Tax Incentive Provider Department of Environmental Quality The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7-202.) The Hazardous Waste Program is based off of the Federal Resource Conservation and Recovery Act set forth in 40 CFR parts 260-279. Due to the great similarity to the

20

Hazardous and Radioactive Mixed Waste  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

1982-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Louisiana Hazardous Waste Control Law (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Environmental Quality is responsible for administering the Louisiana Hazardous Waste Control Law and the regulations created under that law.

22

Hazardous Waste Management System-General (Ohio)  

Broader source: Energy.gov [DOE]

This chapter of the law establishes that the Ohio Environmental Protection Agency provides general regulations regarding hazardous waste, including landfills. Specific passages refer to the...

23

Fire hazards analysis of central waste complex  

SciTech Connect (OSTI)

This document analyzes the fire hazards associated with operational the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

Irwin, R.M.

1996-05-30T23:59:59.000Z

24

Improving Tamper Detection for Hazardous Waste Security  

SciTech Connect (OSTI)

Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

2003-02-26T23:59:59.000Z

25

Appendix B: Wastes and Potential Hazards for  

E-Print Network [OSTI]

muds and other drilling wastes 01 05 05* oil-containing drilling muds and wastes M Oil-containing muds or their compounds and should be considered under the following hazards: H5 to H7, H10, H11, or H14. 01 05 drilling and wastes should be assessed on the basis of the concentration of oil present in the waste. Typically

Siddharthan, Advaith

26

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) |  

Broader source: Energy.gov (indexed) [DOE]

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) < Back Eligibility Commercial Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct, maintain, and/or operate a hazardous waste facility in a city or town is demonstrated, a local assessment committee will be established by that community. The

27

Hazardous Waste Generator Treatment Permit by Rule | Open Energy...  

Open Energy Info (EERE)

the Hazardous Waste Generator Treatment by Rule. Authors Colorado Department of Public Health and Environment and Hazardous Materials and Waste Management Division Published...

28

Hazardous Waste Compliance Program Plan  

SciTech Connect (OSTI)

The Hazardous Waste Compliance Program Plan (HWCPP) describes how the Rocky Flats Plant institutes a more effective waste management program designed to achieve and maintain strict adherence to the Resource Conservation and Recovery Act (RCRA) requirements. Emphasis is given to improve integration of line operations with programmatic and functional support activities necessary to achieve physical compliance to RCRA regulated equipment, facilities and operations at the floor level. This program focuses on specific activities occurring or which need to occur within buildings containing RCRA regulated units and activities. The plan describes a new approach to achieving and maintaining compliance. This approach concentrates authority and accountability for compliance with the line operating personnel, with support provided from the programmatic functions. This approach requires a higher degree of integration and coordination between operating and program support organizations. The principal changes in emphases are; (1) increased line operations involvement, knowledge and accountability in compliance activities, (2) improved management systems to identify, correct and/or avoid deficiencies and (3) enhanced management attention and employee awareness of compliance related matters.

Potter, G.L.; Holstein, K.A.

1994-05-01T23:59:59.000Z

29

Final Environmental Assessment for Waste Disposition Activities at the Paducah Site Paducah, Kentucky  

Broader source: Energy.gov (indexed) [DOE]

0-347(doc)/093002 0-347(doc)/093002 1 FINDING OF NO SIGNIFICANT IMPACT WASTE DISPOSITION ACTIVITIES AT THE PADUCAH SITE PADUCAH, KENTUCKY AGENCY: U.S. DEPARTMENT OF ENERGY ACTION: FINDING OF NO SIGNIFICANT IMPACT SUMMARY: The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1339), which is incorporated herein by reference, for proposed disposition of polychlorinated biphenyl (PCB) wastes, low-level radioactive waste (LLW), mixed low- level radioactive waste (MLLW), and transuranic (TRU) waste from the Paducah Gaseous Diffusion Plant Site (Paducah Site) in Paducah, Kentucky. All of the wastes would be transported for disposal at various locations in the United States. Based on the results of the impact analysis reported in the EA, DOE has determined that the proposed action is

30

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Broader source: Energy.gov (indexed) [DOE]

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

31

Lab optimizes burning of hazardous wastes  

Science Journals Connector (OSTI)

A new thermal destruction laboratory has gone into operation at Midwest Research Institute, Kansas City, Mo. The bench-scale facility, which can accommodate gram quantities of hazardous wastes in liquid, slurry, or solid forms, is used to determine ...

WARD WORTHY

1981-08-31T23:59:59.000Z

32

Rules and Regulations for Hazardous Waste Management (Rhode Island)  

Broader source: Energy.gov [DOE]

These regulations establish permitting and operational requirements for hazardous waste facilities. They are designed to minimize...

33

Remote vacuum compaction of compressible hazardous waste  

DOE Patents [OSTI]

A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

34

Remote vacuum compaction of compressible hazardous waste  

DOE Patents [OSTI]

A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

1998-10-06T23:59:59.000Z

35

Hazardous waste treatment and environmental remediation research  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

Not Available

1989-09-29T23:59:59.000Z

36

Comprehensive low-level radioactive waste management plan for the Commonwealth of Kentucky  

SciTech Connect (OSTI)

Part I of the Comprehensive Low-Level Radioactive Waste Management Plan for the Commonwealth of Kentucky discusses the alternatives that have been examined to manage the low-level radioactive waste currently generated in the state. Part II includes a history of the commercial operation of the Maxey Flats Nuclear Waste Disposal Site in Fleming County, Kentucky. The reasons for closure of the facility by the Human Resources Cabinet, the licensing agency, are identified. The site stabilization program managed by the Natural Resources and Environmental Protection Cabinet is described in Chapter VI. Future activities to be conducted at the Maxey Flats Disposal Site will include site stabilization activities, routine operations and maintenance, and environmental monitoring programs as described in Chapter VII.

Carr, R.M.; Mills, D.; Perkins, C.; Riddle, R.

1984-03-01T23:59:59.000Z

37

Improving tamper detection for hazardous waste security  

SciTech Connect (OSTI)

After September 11, waste managers are increasingly expected to provide improved levels of security for the hazardous materials in their charge. Many low-level wastes that previously had minimal or no security must now be well protected, while high-level wastes require even greater levels of security than previously employed. This demand for improved security comes, in many cases, without waste managers being provided the necessary additional funding, personnel, or security expertise. Contributing to the problem is the fact that--at least in our experience--waste managers often fail to appreciate certain types of security vulnerabilities. They frequently overlook or underestimate the security risks associated with disgruntled or compromised insiders, or the potential legal and political liabilities associated with nonexistent or ineffective security. Also frequently overlooked are potential threats from waste management critics who could resort to sabotage, vandalism, or civil disobedience for purposes of discrediting a waste management program.

Johnston, R. G. (Roger G.); Garcia, A. R. E. (Anthony R. E.); Pacheco, A. N. (Adam N.); Trujillo, S. J. (Sonia J.); Martinez, R. K. (Ronald K.); Martinez, D. D. (Debbie D.); Lopez, L. N. (Leon N.)

2002-01-01T23:59:59.000Z

38

Hazardous Waste/Mixed Waste Treatment Building throughput study  

SciTech Connect (OSTI)

The hazardous waste/mixed waste HW/MW Treatment Building (TB) is the specified treatment location for solid hazardous waste/mixed waste at SRS. This report provides throughput information on the facility based on known and projected waste generation rates. The HW/MW TB will have an annual waste input for the first four years of approximately 38,000 ft{sup 3} and have an annual treated waste output of approximately 50,000 ft{sup 3}. After the first four years of operation it will have an annual waste input of approximately 16,000 ft{sup 3} and an annual waste output of approximately 18,000 ft. There are several waste streams that cannot be accurately predicted (e.g. environmental restoration, decommissioning, and decontamination). The equipment and process area sizing for the initial four years should allow excess processing capability for these poorly defined waste streams. A treatment process description and process flow of the waste is included to aid in understanding the computations of the throughput. A description of the treated wastes is also included.

England, J.L.; Kanzleiter, J.P.

1991-12-18T23:59:59.000Z

39

Montana Hazardous Waste Act (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Montana Hazardous Waste Act (Montana) Montana Hazardous Waste Act (Montana) Montana Hazardous Waste Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental Quality is authorized to enact regulations pertaining to all aspects of hazardous waste storage and disposal, and the Act addresses permitting requirements for disposal

40

Burning hazardous waste in cement kilns  

SciTech Connect (OSTI)

The cement manufacturing process is one of the oldest in the world, having been in practice for over 2000 years. It is also one of the most energy intensive, with up to 65 percent of the cost of the product attributable to energy consumption. In addition to high energy demand, the process conditions include extremely high temperatures. Cement clinker forms when the correct mixture of raw materials is heated to 2650/sup 0/ F. This requires combustion temperatures exceeding 3000/sup 0/ F. under oxidizing conditions. To accomplish this, gas temperatures above 2000/sup 0/ F. occur for several seconds (typically five seconds), which is much longer than residence times in permitted hazardous waste incinerators. These conditions are extremely favorable to the destruction of organic compounds and have led to extensive investigation into the potential for burning hazardous waste in cement kilns. Cement kilns consuming hazardous wastes have been tested for air emissions under various operating conditions. The substantial body of information on the emissions and handling of hazardous wastes from these studies has demonstrated that effective destruction of wastes can be accomplished with the added benefits of energy conservation and no significant change in air emissions.

Chadbourne, J.F.; Helmsteller, A.J.

1983-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect (OSTI)

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

42

EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program  

Broader source: Energy.gov [DOE]

The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

43

Title 40 CFR 261 Identification and Listing of Hazardous Waste...  

Open Energy Info (EERE)

Waste (2014). Retrieved from "http:en.openei.orgwindex.php?titleTitle40CFR261IdentificationandListingofHazardousWaste&oldid793417" Categories: References...

44

ARM 17-53 - Hazardous Waste | Open Energy Information  

Open Energy Info (EERE)

Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 17-53 - Hazardous WasteLegal Abstract Sets forth rules...

45

EPA Citizens Guide to Hazardous Waste Permitting Process | Open...  

Open Energy Info (EERE)

Citizens Guide to Hazardous Waste Permitting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Citizens Guide to Hazardous Waste Permitting...

46

Hazardous Waste Facility Permit Fact Sheet | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Hazardous Waste Facility Permit Fact SheetLegal Abstract Hazardous Waste Facility Permit Fact Sheet,...

47

6 CCR 1007-3: Hazardous Waste | Open Energy Information  

Open Energy Info (EERE)

1007-3: Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 6 CCR 1007-3: Hazardous WasteLegal Abstract This...

48

ADEQ Managing Hazardous Waste Handbook | Open Energy Information  

Open Energy Info (EERE)

Hazardous Waste Handbook Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Managing Hazardous Waste HandbookLegal Abstract...

49

EPA Hazardous Waste TSDF Guide | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: EPA Hazardous Waste TSDF GuideLegal Abstract Guidance document prepared by the EPA for hazardous waste...

50

Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous  

Broader source: Energy.gov (indexed) [DOE]

1: Siting of Industrial 1: Siting of Industrial Hazardous Waste Facilities (New York) Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York) < Back Eligibility Commercial Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility State/Provincial Govt Tribal Government Utility Program Info State New York Program Type Siting and Permitting Provider NY Department of Environmental Conservation These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used for the purpose of treating, storing, compacting, recycling, exchanging or disposing of industrial hazardous waste materials, including treatment, compacting,

51

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect (OSTI)

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-01-01T23:59:59.000Z

52

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect (OSTI)

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy`s (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency`s (EPA`s) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-12-31T23:59:59.000Z

53

Method and apparatus for incinerating hazardous waste  

DOE Patents [OSTI]

An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

Korenberg, Jacob (York, PA)

1990-01-01T23:59:59.000Z

54

Hazardous Waste Management Act (South Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Waste Management Act (South Dakota) Hazardous Waste Management Act (South Dakota) Hazardous Waste Management Act (South Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources It is the public policy of the state of South Dakota to regulate the control and generation, transportation, treatment, storage, and disposal of hazardous wastes. The state operates a comprehensive regulatory program of hazardous waste management, and the South Dakota Department of Environment

55

Oklahoma Hazardous Waste Management Act (Oklahoma) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oklahoma Hazardous Waste Management Act (Oklahoma) Oklahoma Hazardous Waste Management Act (Oklahoma) Oklahoma Hazardous Waste Management Act (Oklahoma) < Back Eligibility Agricultural Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality A hazardous waste facility permit from the Department of Environmental Quality is required to store, treat or dispose of hazardous waste materials, or to construct, own or operate any facility engaged in the operation of storing, treating or disposing of hazardous waste or storing recyclable materials. The Department shall not issue a permit for the treatment, disposal or temporary storage of any liquid hazardous waste in a

56

Staged mold for encapsulating hazardous wastes  

DOE Patents [OSTI]

A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

1990-01-01T23:59:59.000Z

57

ENVIRONMENTAL ASSESSMENT FOR HAZARDOUS WASTE STAGING FACILITY  

Broader source: Energy.gov (indexed) [DOE]

HAZARDOUS WASTE STAGING FACILITY HAZARDOUS WASTE STAGING FACILITY Project 39GF71024-GPDI21000000 . PANTEX PLANT AMARILLO, TEXAS DOE/EA-0688 JUNE 1993 MASTER DiSTRiBUTiON OF THIS DOCUMENT IS UNLIMITEI) ffrl TABLE OF CONTENTS Section Page 1.0 Need for Action 1 2.0 Description of Proposed Facility Action 3.0 Location of the Action 8 4.0 Alternatives to Proposed Action 9 4.1 No Action 9 4.2 Redesign and Modify Existing staging Facilities 9 4.3 Use Other Existing Space at Pantex Plant 9 4.4 Use Temporary Structures 9 4.5 Stage Waste at Other Sites 10 4.6 Stage Wastes Separately 10 5.0 Environmental Impacts of Proposed Action 10 5.1 Archeology 10 5.2 FloodplainlW etlands 10 5.3 Threatened and Endangered Species 10 5.4 Surrounding La,nd Use 11 5.5 Construction 11 5.6 Air Emissions 11

58

EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas |  

Broader source: Energy.gov (indexed) [DOE]

688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, 688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas SUMMARY This EA evaluates the environmental impacts of a proposal to construct the Hazardous Waste Staging Facility that would help to alleviate capacity problems as well as provide a single compliant facility to stage wastes at the U.S. Department of Energy's Pantex Plant in Amarillo, Texas. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD January 29, 1993 EA-0688: Finding of No Significant Impact Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas January 29, 1993 EA-0688: Final Environmental Assessment Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas

59

WIPP Hazardous Waste Facility Permit Update  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) was issued on October 27, 1999 [1]. Since that time, the WIPP has sought modifications to clarify the permit language, provide alternative methods for meeting permit requirements and to update permit conditions. Significant advancements have been made in transuranic (TRU) waste management as the result of modifications to the HWFP. Among these advancements is a modification to obtain a drum age criteria (DAC) value to perform headspace gas sampling on drums to be super-compacted and placed in a 100-gallon overpack drum. In addition, the Section 311 permit modification request that would allow for more efficient waste characterization, and the modification to authorize the shipment and disposal of Remote-Handled (RH) TRU waste were merged together and submitted to the regulator as the Consolidated Permit Modification Request (PMR). The submittal of the Consolidated PMR came at the request of the regulator as part of responses to Notices of Deficiency (NODs) for the separate PMRs which had been submitted in previous years. Section 311 of the fiscal year 2004 Energy and Water Developments Appropriations Act (Public Law 108-137) [2] directs the Department of Energy to submit a permit modification that limits waste confirmation to radiography or visual examination of a statistical subpopulation of containers. Section 311 also specifically directs that disposal room performance standards be to be met by monitoring for volatile organic compounds in the underground disposal rooms. This statute translates into the elimination of other waste confirmation methods such as headspace gas sampling and analysis and solids sampling and analysis. These methods, as appropriate, will continue to be used by the generator sites during hazardous waste determinations or characterization activities. This modification is expected to reduce the overall cost of waste analysis by hundreds of millions of dollars [3]. Combining both the chap. 311 and RH TRU waste permit modification requests allows for both the regulator and DOE to expedite action on the modification requests. The Combined PMR reduces costs by having only one administrative process for both modification requests. (authors)

Kehrman, B.; Most, W. [Washington Regulatory and Environmental Services, 4021 National Parks Highway, Carlsbad, NM 88220 (United States)

2006-07-01T23:59:59.000Z

60

Nebraska Hazardous Waste Regulations (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nebraska Hazardous Waste Regulations (Nebraska) Nebraska Hazardous Waste Regulations (Nebraska) Nebraska Hazardous Waste Regulations (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Environmental Quality These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal restrictions

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hazardous-waste analysis plan for LLNL operations  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

Roberts, R.S.

1982-02-12T23:59:59.000Z

62

CRAD, Hazardous Waste Management - December 4, 2007 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Hazardous Waste Management - December 4, 2007 CRAD, Hazardous Waste Management - December 4, 2007 CRAD, Hazardous Waste Management - December 4, 2007 December 4, 2007 Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30) Line management ensures that the requirements for generating, storing, treating, transporting, and disposing of hazardous waste, universal waste, and used oil, established under 40 CFR Subchapter I, applicable permits, and DOE requirements have been effectively implemented for federal and contractor employees, including subcontractors. Written programs and plans are in place and updated when conditions or requirements change. Employees have been properly trained for the wastes they handle. Documentation of waste characterizations, manifests, land disposal restrictions,

63

Sorting and disposal of hazardous laboratory Radioactive waste  

E-Print Network [OSTI]

Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste or in a Perspex box. Liquid radioactive waste collect in a screw-cap plastic bottle, ½ or 1 L size. Place bottles in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel

Maoz, Shahar

64

Mr. James Bearzi, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carlsbad Carlsbad , New Mexico 88221 October 12, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Results of Evaluation of Sampling Line Loss, Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number NM4890139088 - TSDF Dear Mr. Bearzi: As required under Permit Condition IV.F.5.e, the Permittees are hereby notifying the New Mexico Environment Department (NMED) of the results of the evaluation of the loss of two hydrogen and methane monitoring sampling lines. The sampling lines involved were in Panel 3 Rooms 7 and 6. These lines are identified as 7E (exhaust side) and 61 (inlet side). These line losses were previously reported to the NMED on September 2, 2010 and September 28, 2010, respectively.

65

Hazardous and Industrial Waste (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous and Industrial Waste (Minnesota) Hazardous and Industrial Waste (Minnesota) Hazardous and Industrial Waste (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a facility. The statute also

66

Hazardous Waste Transporter Permits (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide

67

Georgia Hazardous Waste Management Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Waste Management Act Hazardous Waste Management Act Georgia Hazardous Waste Management Act < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Hazardous Waste Management Act (HWMA) describes a

68

DC Hazardous Waste Management (District of Columbia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DC Hazardous Waste Management (District of Columbia) DC Hazardous Waste Management (District of Columbia) DC Hazardous Waste Management (District of Columbia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State District of Columbia Program Type Environmental Regulations Provider District Department of the Environment This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces

69

Hazardous Waste Management (North Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Hazardous Waste Management (North Dakota) Hazardous Waste Management (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and treatment as

70

South Carolina Hazardous Waste Management Act (South Carolina)  

Broader source: Energy.gov [DOE]

The Department of Health and Environmental Control is authorized to promulgate rules and regulations to prevent exposure of persons, animals, or the environment to hazardous waste. The construction...

71

Fees For Disposal Of Hazardous Waste Or Substances (Alabama)  

Broader source: Energy.gov [DOE]

The article lists annual payments to be made to counties, restrictions on disposal of hazardous waste, additional fees collected by counties and penalties.

72

CRAD, Hazardous Waste Management - December 4, 2007 | Department...  

Broader source: Energy.gov (indexed) [DOE]

4, 2007 Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30) This Criteria Review and Approach Document (HSS CRAD...

73

EPA Hazardous Waste Generators Website | Open Energy Information  

Open Energy Info (EERE)

Generators Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Hazardous Waste Generators Website Abstract This webpage provides general...

74

Consumer perspectives on household hazardous waste management in Japan  

Science Journals Connector (OSTI)

We give an overview of the management systems of household hazardous waste (HHW) in Japan and discuss the management systems and their...

Misuzu Asari; Shin-ichi Sakai

2011-02-01T23:59:59.000Z

75

A Multimedia Study of Hazardous Waste Landfill Gas Migration  

Science Journals Connector (OSTI)

Hazardous waste landfills pose uniquely challenging environmental problems which arise as a result of the chemical complexity of waste sites, their involvement of many environmental media, and their very size ...

Robert D. Stephens; Nancy B. Ball; Danny M. Mar

1986-01-01T23:59:59.000Z

76

Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Waste  

Broader source: Energy.gov (indexed) [DOE]

Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Waste Harmless Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Waste Harmless April 2, 2012 - 12:00pm Addthis Neil Smith puts a trained eye on the pressure and flow of a food-grade com¬pound being injected into an under¬ground plume of hazardous waste near the X-720 Maintenance Facility at the DOE Piketon Site. The sodium lactate compound promotes bacterial growth in the groundwater that turns hazardous waste into harmless end-products. Neil Smith puts a trained eye on the pressure and flow of a food-grade com¬pound being injected into an under¬ground plume of hazardous waste near the X-720 Maintenance Facility at the DOE Piketon Site. The sodium lactate compound promotes bacterial growth in the groundwater that turns

77

Hazardous Waste Management (North Carolina) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

(North Carolina) (North Carolina) Hazardous Waste Management (North Carolina) < Back Eligibility Commercial Industrial Construction Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Environmental Regulations Safety and Operational Guidelines Siting and Permitting Provider Department of Environment and Natural Resources These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for surface impoundments and location standards for facilities. An applicant applying for a permit for a hazardous waste facility shall

78

Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill  

E-Print Network [OSTI]

Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill Jorge G. Zornberg, M, Inc. OII Superfund landfill in southern California. This cover system constitutes the first ET cover:6 427 CE Database subject headings: Evapotranspiration; Coating; Landfills; Hazardous waste; Design

Zornberg, Jorge G.

79

Safety Analysis, Hazard and Risk Evaluations [Nuclear Waste Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Analysis, Hazard Safety Analysis, Hazard and Risk Evaluations Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Safety Analysis, Hazard and Risk Evaluations Bookmark and Share NE Division personnel had a key role in the creation of the FCF Final Safety Analysis Report (FSAR), FCF Technical Safety Requirements (TSR)

80

Hazardous Waste Facility Siting Program (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facility Siting Program (Maryland) Facility Siting Program (Maryland) Hazardous Waste Facility Siting Program (Maryland) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Transportation Utility Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of the Environment The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level nuclear waste facilities. This legislation describes the factors considered by the Board in making siting decisions. The Board is authorized to enact rules and regulations pertaining to the siting of hazardous and low-level nuclear

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hazardous waste research and development in the Pacific Basin  

SciTech Connect (OSTI)

The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste.

Cirillo, R.R.; Carpenter, R.A. (Argonne National Lab., IL (USA); Environment and Policy Inst., Honolulu, HI (USA))

1989-01-01T23:59:59.000Z

82

Hazardous Waste: Resource Pack for Trainers and Communicators | Open Energy  

Open Energy Info (EERE)

Hazardous Waste: Resource Pack for Trainers and Communicators Hazardous Waste: Resource Pack for Trainers and Communicators Jump to: navigation, search Tool Summary Name: Hazardous Waste: Resource Pack for Trainers and Communicators Agency/Company /Organization: International Solid Waste Association (ISWA), United Nations Development Programme (UNDP), United Nations Industrial Development Organization (UNIDO) Sector: Energy, Land, Water Focus Area: Renewable Energy, - Waste to Energy Phase: Evaluate Options Topics: Adaptation, Implementation, Low emission development planning, -LEDS Resource Type: Guide/manual, Training materials Website: www.trp-training.info/ Cost: Paid Language: English References: Training Resource Pack[1] "The new TRP+ provides a structured package of notes, technical summaries, visual aids and other training material concerning the (hazardous) waste

83

Hillslope erosion at the Maxey Flats radioactive waste disposal site, northeastern Kentucky. Water Resources Investigation  

SciTech Connect (OSTI)

Maxey Flats, a disposal site for low-level radioactive waste, is on a plateau that rises 300 to 400 feet above the surrounding valleys in northeastern Kentucky. Hillslope gradients average 30 to 40 percent on three sides of the plateau. The shortest distance from a hillslope to a burial trench is 140 feet on the west side of the site. The report presents the results of a 2-year study of slope erosion processes at the Maxey Flats disposal site, and comments on the long-term integrity of the burial trenches with respect to slope retreat. Thus, the report is of much broader scope in terms of earth-surface processes than the period of data collection would suggest. As such, the discussion and emphasis is placed on infrequent, large-magnitude events that are known to occur over the time scale of interest but have not been specifically documented at the site.

Carey, W.P.; Lyverse, M.A.; Hupp, C.R.

1990-01-01T23:59:59.000Z

84

H.A.R. 11-261 - Hazardous Waste Management | Open Energy Information  

Open Energy Info (EERE)

11-261 - Hazardous Waste ManagementLegal Abstract The State of Hawaii Department of Health regulates hazardous waste management under this chapter of the administrative rules....

85

Containment and stabilization technologies for mixed hazardous and radioactive wastes  

SciTech Connect (OSTI)

A prevalent approach to the cleanup of waste sites contaminated with hazardous chemicals and radionuclides is to contain and/or stabilize wastes within the site. Stabilization involves treating the wastes in some fashion, either in situ or above ground after retrieval, to reduce the leachability and release rate of waste constituents to the environment. This approach is generally reserved for radionuclide contaminants, inorganic hazardous contaminants such as heavy metals, and nonvolatile organic contaminants. This paper describes the recent developments in the technical options available for containing and stabilizing wastes. A brief description of each technology is given along with a discussion of the most recent developments and examples of useful applications.

Buelt, J.L.

1993-05-01T23:59:59.000Z

86

Kentucky State Regulations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kentucky Kentucky State Regulations: Kentucky State of Kentucky The Division of Oil and Gas (DOG) in the Department of Natural Resources (DNR) fosters conservation of all mineral resources, encourages exploration of such resources, protects the correlative rights of land and mineral owners, prohibits waste and unnecessary surface loss and damage, and encourages the maximum recovery of oil and gas from all deposits. The Energy and Environment Cabinet brings together various Kentucky agencies. It is tasked with protecting and enhancing Kentucky's natural resources. The Department for Environmental Protection (DEP) administers the major environmental protection laws. The U.S. Environmental Protection Agency (EPA) Region 4 administers Class II underground injection control (UIC) programs in Kentucky in direct implementation.

87

Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations  

Broader source: Energy.gov (indexed) [DOE]

Hazardous and Nonhazardous Solid Waste Applicant Disclosure Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi) Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type

88

The WIPP Hazardous Waste Facility Permit Improvements--2007 Update  

SciTech Connect (OSTI)

The most significant changes to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit to date were completed during the past year with the implementation of significant revisions to the Waste Analysis Plan and the authorization to dispose of remote-handled transuranic waste. The modified Permit removes the requirement for reporting headspace gas sampling and analysis results for every container of transuranic mixed waste and provides for the use of radiography and visual examination to confirm a statistically representative subpopulation of the waste stream in each waste shipment as well as other changes that streamline the analytical data management process. Implementation began on November 17, 2006. (authors)

Kehrman, R.; Most, W. [Washington Regulatory and Environmental Services, Carlsbad, NM (United States)

2007-07-01T23:59:59.000Z

89

Handbook of industrial and hazardous wastes treatment. 2nd ed.  

SciTech Connect (OSTI)

This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis (eds.)

2004-06-15T23:59:59.000Z

90

Integrating Total Quality Management (TQM) and hazardous waste management  

SciTech Connect (OSTI)

The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

Kirk, N. [Colorado State Univ., Fort Collins, CO (United States)

1993-11-01T23:59:59.000Z

91

Iron phosphate compositions for containment of hazardous metal waste  

DOE Patents [OSTI]

An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

Day, Delbert E. (Rolla, MO)

1998-01-01T23:59:59.000Z

92

Trends and Opportunities in Industrial Hazardous Waste Minimization  

E-Print Network [OSTI]

This paper describes trends and opportunities in Resource Conservation and Recovery Act hazardous waste minimization. It uses U.S. Environmental Protection Agency data gathered since 1989 from over 20,000 facilities that account for almost all...

Atlas, M.

93

Order Module--self-study program: HAZARDOUS WASTE OPERATIONS...  

Energy Savers [EERE]

also help prepare you for the practice at the end of this module and for the criterion test. Before continuing, you should obtain a copy of the regulation at Hazardous waste...

94

ADEQ Hazardous Waste Management website | Open Energy Information  

Open Energy Info (EERE)

OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Hazardous Waste Management websiteLegal Abstract The ADEQ provides links and information related to...

95

Title 40 CFR 270: EPA Administered Programs: The Hazardous Waste...  

Open Energy Info (EERE)

: EPA Administered Programs: The Hazardous Waste Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 40 CFR 270:...

96

RCRA Hazardous Waste Part A Permit Application: Instructions...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RCRA Hazardous Waste Part A Permit Application: Instructions and Form (EPA Form 8700-23) Abstract This...

97

Hazardous Waste Part A Permit Application | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Hazardous Waste Part A Permit ApplicationLegal Abstract Detailed instructions for filing a RCRA...

98

Hawaii DOH Hazardous Waste Section Webpage | Open Energy Information  

Open Energy Info (EERE)

Section Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii DOH Hazardous Waste Section Webpage Abstract This webpage provides an overview...

99

Chemical Applications of Electrohydraulic Cavitation for Hazardous Waste Control  

E-Print Network [OSTI]

to the destruction or transformation of hazardous chemical substances such as high-temperature incineration, amended activated sludge digestion, anaerobic digestion and conventional physicochemical treatment. Pulsed-power plasma discharge technology may have.... Current approaches to the treatment of hazardous chemical wastes include high temperature incineration, chemical oxidation with and UV light, membrane separation, activated carbon adsorption, substrate-specific biodegration, electron beam bombardment...

Hoffmann, M. R.

100

Technologies for environmental cleanup: Toxic and hazardous waste management  

SciTech Connect (OSTI)

This is the second in a series of EUROCOURSES conducted under the title, ``Technologies for Environmental Cleanup.`` To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste.

Ragaini, R.C.

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A mathematical model to predict leaching of hazardous inorganic wastes from solidified/stabilized waste forms  

E-Print Network [OSTI]

A MATHEMATICAL MODEL TO PREDICT LEACHING OF HAZARDOUS INORGANIC WASTES FROM SOLIDIFIED/STABILIZED WASTE FORMS A Thesis by KRISHAN SABHARWAL Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment...A MATHEMATICAL MODEL TO PREDICT LEACHING OF HAZARDOUS INORGANIC WASTES FROM SOLIDIFIED/STABILIZED WASTE FORMS A Thesis by KRISHAN SABHARWAL Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment...

Sabharwal, Krishan

2012-06-07T23:59:59.000Z

102

Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management  

Broader source: Energy.gov (indexed) [DOE]

Parts 370-376: Hazardous Waste Parts 370-376: Hazardous Waste Management System (New York) Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management System (New York) < Back Eligibility Commercial Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Program Info State New York Program Type Safety and Operational Guidelines Provider NY Department of Environmental Conservation These regulations prescribe the management of hazardous waste facilities in New York State. They identify and list different types of hazardous wastes and describe standards for generators, transporters, as well as treatment, storage and disposal facilities. The regulations also define specific types

103

Freeze Concentration Applied to Hazardous Waste Management  

E-Print Network [OSTI]

steps to remove or destroy the hazardous components prior to discharge. Incineration is widely used to destroy a broad range of these hazardous components. Its disposal efficiency is often used when defining the Best Available Technology for EPA... standards. However, high water content streams are expensive to incinerate since the incinerator must be designed to handle the feed volume even though the water in the feed is in itself harmless. Some hazardous components require operating temperatures...

Ruemekorf, R.

104

Removal of radioactive and other hazardous material from fluid waste  

DOE Patents [OSTI]

Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

2006-10-03T23:59:59.000Z

105

Incineration of hazardous wastes from the petroleum industry in Nigeria  

Science Journals Connector (OSTI)

Persistent hazardous wastes are produced in the recovery, processing and upgrading of crude petroleum in Nigeria. However, recent developments in environmental pollution control are drawing increasing attention to the problems of hazardous wastes. The ever-increasing need to control these wastes from the petroleum industry often compels the chemical engineer to specify methods of treatment and disposal. Present methods for disposal are becoming increasingly undesirable for a number of reasons, and incineration is being considered as an alternative. This paper reviews the extent of hazardous waste generation from the Nigerian petroleum industry and its environmental implications. It also examines the current disposal methods and the incineration technology option. The major chemical engineering concepts of the incineration process and the principles guiding their operations are discussed. The potential for the use of incineration is examined, as well as information that would aid the choice of incineration system for new applications.

O.O. Bello; J.A. Sonibare; S.R.A. Macaulay; A.O. Okelana; A.O. Durojaiye

2004-01-01T23:59:59.000Z

106

Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes  

DOE Patents [OSTI]

The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

Lewis, Michele A. (Naperville, IL); Johnson, Terry R. (Wheaton, IL)

1993-01-01T23:59:59.000Z

107

WIPP Hazardous Waste Permit - Approved Modifications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modification to Add South Access Road for Transportation of TRU Mixed Waste dated March 17, 2011 Class 1 Permit Modification Notification to Revise TRU-Pact III Management...

108

UNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all students, staff, and  

E-Print Network [OSTI]

treatment of hazardous waste can also cause long-term environmental effects, such as contaminated ground by the Radiation Safety Officer. #12;Storage of Waste Each lab must decide on an appropriate location for wasteUNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all

Northern British Columbia, University of

109

Method of recovering hazardous waste from phenolic resin filters  

DOE Patents [OSTI]

The invention is a process for the recovery of hazardous wastes such as heavy metals and radioactive elements from phenolic resin filter by a circulating a solution of 8 to 16 molar nitric acid at a temperature of 110 to 190 degrees F. through the filter. The hot solution dissolves the filter material and releases the hazardous material so that it can be recovered or treated for long term storage in an environmentally safe manner.

Meikrantz, David H. (Idaho Falls, ID); Bourne, Gary L. (Idaho Falls, ID); McFee, John N. (Albuquerque, NM); Burdge, Bradley G. (Idaho Falls, ID); McConnell, Jr., John W. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

110

Hillslope erosion at the Maxey Flats Radioactive Waste Disposal Site, northeastern Kentucky  

SciTech Connect (OSTI)

Maxey Flats, a disposal site for low level radioactive waste, is on a plateau that rises 300 to 400 ft above the surrounding valleys in northeastern Kentucky. Rates of hillslope retreat were determined through a combination of direct erosion measurements during the 2-year study and through dendrogeomorphic techniques. Rates of hillslope retreats were determined through a combination of direction erosion measurements during the 2-year study and through dendrogeomorphic techniques. Rates of hillslope retreat determined from dendrogeomorphic evidence rate from 3.8 to 9.1 in/century, so that time to exposure of the trenches ranges from 35,000 to 65,000 years. The minimum estimate of 35,000 years is for the most actively eroding southern slope. Throughout tens of thousands of years, the rate of hillslope retreat is determined more by the occurrence of infrequent extreme events such as slope failure than by the continuous processes of slope wash observed in this study. These slope failures cause as much erosion in one event as hundreds or even thousands of years of slope wash. Periods of tens of thousands of years are also sufficiently long for significant changes in climate and tectonic activity to occur. Rates of erosion observed during this 2-year study are highly unlikely to be indicative of rates averaged over periods of tens of thousands of years during which many extreme events can occur. Thus, the long-term geomorphic stability of the Maxey Flats disposal site will be highly dependent upon the magnitude and frequency of extreme erosive events and upon trends in climate change and tectonic activity.

Carey, W.P., Lyverse, M.A.; Hupp, C.R.

1990-01-01T23:59:59.000Z

111

Hazardous Waste Management Regulations (Mississippi) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Regulations (Mississippi) Regulations (Mississippi) Hazardous Waste Management Regulations (Mississippi) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Sales Tax Incentive Provider Department of Environmental Quality The Hazardous Waste Management Regulations follow the EPA's definitions and guidelines for the most part, which are listed in 40 CFR parts 260-282. In addition to these federal regulations the Mississippi Department of Environmental Quality requires that each generator of greater than 220

112

Hazardous Waste Minimum Distance Requirements (Connecticut) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Minimum Distance Requirements (Connecticut) Minimum Distance Requirements (Connecticut) Hazardous Waste Minimum Distance Requirements (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection These regulations set minimum distance requirements between certain types of facilities that generate, process, store, and dispose of hazardous waste

113

Hazardous Waste Facilities Siting (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facilities Siting (Connecticut) Facilities Siting (Connecticut) Hazardous Waste Facilities Siting (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure,

114

Ground-penetrating radar survey of the Maxey Flats Low-Level Nuclear Waste Disposal Site, Fleming County, Kentucky  

SciTech Connect (OSTI)

A ground-penetrating radar survey was conducted at the Maxey Flats Low-Level Nuclear Waste Disposal Site, Kentucky, to more accurately determine the location of burial trenches and pits, and to identify locations and depths of any prominent subsurface features. A geologic/electromagnetic model of the site was developed and utilized for analysis of the acquired data. Depths of penetration derived from radar records correlate well with those calculated from the model. A final interpretation of the radar data is presented.

Horton, K.A.; Morey, R.M.

1982-06-01T23:59:59.000Z

115

E-Print Network 3.0 - agency hazardous waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ash Memorandum Conrad Simon Summary: water monitoring comparable to those required for handling hazardous wastes under Subtitle C, the Agency... waste from classification and...

116

AAC R-18-8-260 Hazardous Waste Management System | Open Energy...  

Open Energy Info (EERE)

R-18-8-260 Hazardous Waste Management System Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: AAC R-18-8-260 Hazardous Waste...

117

I.C. 39-44 - Idaho Hazardous Waste Management Act | Open Energy...  

Open Energy Info (EERE)

- Idaho Hazardous Waste Management Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: I.C. 39-44 - Idaho Hazardous Waste...

118

Reliability analysis of common hazardous waste treatment processes  

SciTech Connect (OSTI)

Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

Waters, R.D. [Vanderbilt Univ., Nashville, TN (United States)

1993-05-01T23:59:59.000Z

119

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect (OSTI)

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-01-01T23:59:59.000Z

120

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect (OSTI)

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Emerging technologies in hazardous waste management  

SciTech Connect (OSTI)

The meeting was divided into two parts: Waste water management technologies and Soils, residues, and recycle techniques. Technologies included: photocatalytic oxidation; water treatment with hydrogen peroxide; ultraviolet destruction of pollutants; biodegradation; adsorption; affinity dialysis; and proton transfer. Other papers described evaluation of land treatment techniques; mobility of toxic metals in landfills; sorptive behavior in soils; artificial reef construction; and treatment and disposal options for radioactive metals (technetium 99, strontium, and plutonium). Papers have been processed separately for inclusion on the data base.

Tedder, D.W.; Pohland, F.G. (eds.)

1990-01-01T23:59:59.000Z

122

Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes  

SciTech Connect (OSTI)

This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

Dominick, J

2008-12-18T23:59:59.000Z

123

Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

SciTech Connect (OSTI)

DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

NONE

1994-06-01T23:59:59.000Z

124

Method for solidification of radioactive and other hazardous waste  

DOE Patents [OSTI]

Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana A. (Krasnoyarsk, RU); Voskresenskaya, Elena N. (Krasnoyarsk, RU); Kostin, Eduard M. (Zheleznogorsk, RU); Pavlov, Vyacheslav F. (Krasnoyarsk, RU); Revenko, Yurii A. (Zheleznogorsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Sharonova, Olga M. (Krasnoyarsk, RU); Aloy, Albert S. (Saint-Petersburg, RU); Sapozhnikova, Natalia V. (Saint-Petersburg, RU); Knecht, Dieter A. (Idaho Falls, ID); Tranter, Troy J. (Idaho Falls, ID); Macheret, Yevgeny (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

125

State of Tennessee Hazardous Waste Management Permit, TNHW-127  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Class 1 1 Modification, Dated: 10/20/06 TABLE OF CONTENTS U.S. DEPARTMENT OF ENERGY, Y-12 NATIONAL SECURITY COMPLEX OAK RIDGE, TENNESSEE HAZARDOUS WASTE CONTAINER STORAGE AND TREATMENT UNITS BUILDINGS 9206, 9212, 9720-12, 9811-9, AND 9812 AND THE ORGANIC HANDLING UNIT EPA ID NUMBER: TN3 89 009 0001 Page Number I. STANDARD CONDITIONS A. EFFECT OF PERMIT I-1 B. SEVERABILITY I-1 C. DEFINITIONS I-2 D. GENERAL DUTIES AND REQUIREMENTS I-4 E. CONFIDENTIAL INFORMATION I-10 F. DOCUMENTS TO BE MAINTAINED AT THE FACILITY I-10 G. ANNUAL MAINTENANCE FEE I-10 H. REQUIRED NOTICES I-10 I. ORDER OF PRECEDENCE I-11 J. PERMIT STRUCTURE I-11 II. GENERAL FACILITY CONDITIONS A. HAZARDOUS WASTES TO BE MANAGED II-1 B. MAINTENANCE OF THE FACILITY II-1

126

State of Tennessee Hazardous Waste Management Permit, TNHW-122  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Class 1 1 Modification, Dated: 12/18/06 TABLE OF CONTENTS U.S. DEPARTMENT OF ENERGY, Y-12 NATIONAL SECURITY COMPLEX OAK RIDGE, TENNESSEE HAZARDOUS WASTE CONTAINER STORAGE AND TREATMENT UNITS BUILDINGS 9720-9, 9720-25, AND 9720-31 EPA ID NUMBER: TN3 89 009 0001 Page Number I. STANDARD CONDITIONS A. EFFECT OF PERMIT I-1 B. SEVERABILITY I-1 C. DEFINITIONS I-2 D. GENERAL DUTIES AND REQUIREMENTS I-4 E. CONFIDENTIAL INFORMATION I-10 F. DOCUMENTS TO BE MAINTAINED AT THE FACILITY I-10 G. ANNUAL MAINTENANCE FEE I-10 H. REQUIRED NOTICES I-10 I. ORDER OF PRECEDENCE I-11 J. PERMIT STRUCTURE I-11 II. GENERAL FACILITY CONDITIONS A. HAZARDOUS WASTES TO BE MANAGED II-1 B. MAINTENANCE OF THE FACILITY II-1 C. SAMPLING, ANALYSIS, AND MONITORING II-1

127

GRR/Section 18-UT-b - Hazardous Waste Permit Process | Open Energy  

Open Energy Info (EERE)

UT-b - Hazardous Waste Permit Process UT-b - Hazardous Waste Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-UT-b - Hazardous Waste Permit Process 18UTBHazardousWastePermitProcess (1).pdf Click to View Fullscreen Contact Agencies Utah Department of Environmental Quality Regulations & Policies Hazardous Waste Rules R315-1 et seq Triggers None specified Click "Edit With Form" above to add content 18UTBHazardousWastePermitProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A hazardous waste is specifically listed by the Utah Solid and Hazardous Waste Rules or exhibits a characteristic such as ignitability, corrosivity,

128

Method for encapsulating hazardous wastes using a staged mold  

DOE Patents [OSTI]

A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

1989-01-01T23:59:59.000Z

129

Method and apparatus for using hazardous waste form non-hazardous aggregate  

SciTech Connect (OSTI)

This patent describes an apparatus for converting hazardous waste into non-hazardous, non-leaching aggregate, the apparatus. It comprises: a source of particulate solid materials, volatile gases and gaseous combustion by-products; oxidizing means comprising at least one refractory-lined, water-cooled, metal-walled vessel; means for introducing the particulate solid material, volatile gases and gaseous combustion by-products to the oxidizing means; means for inducing combustion in the oxidizing means, the heat of combustion forming molten slag and noncombustible fines from noncombustible material; means for accumulating the slag; means for introducing the noncombustible fines to the molten slag; means for removing the mixture from the apparatus; and means for cooling the mixture to form the non-hazardous, non-leaching aggregates.

Kent, J.M.; Robards, H.L. Jr.

1992-07-28T23:59:59.000Z

130

Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks  

SciTech Connect (OSTI)

This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

T. M. Blakley; W. D. Schofield

2007-09-10T23:59:59.000Z

131

COUPON IMMERSION TESTING IN SIMULATED HAZARDOUS LOW LEVEL WASTE  

SciTech Connect (OSTI)

AISI Type 304L (304L) stainless steel was recommended as a suitable material of construction for the new Hazardous Low Level Waste Processing Tanks (HLLWPT). This report documents the second phase of a coupon immersion test program to determine the susceptibility of 304L to localized attack in a variety of simulated wastes. The coupon test results confirmed the conclusions that were made from the first phase of the test program. First, 304L is a suitable material of construction for the new waste tanks. Second, the agreement between the cyclic polarization tests and the coupon immersion tests demonstrates that cyclic polarization can be used to predict the susceptibility of a material to localized corrosion in these wastes. In addition to the tests performed on 304L, tests were performed on ASTM A537 carbon steel (A537) and Incoloy 825 (I825). Neither 304L nor I825 was susceptible to attack, while A537 experienced varying degrees of attack in the different wastes. Observations on the surface attack and corrosion products on A537 were used to elucidate the mechanism by which A537 corrodes in these wastes.

Wiersma, B.

1991-08-22T23:59:59.000Z

132

GRR/Section 18-ID-b - Hazardous Waste Permit Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-ID-b - Hazardous Waste Permit Process GRR/Section 18-ID-b - Hazardous Waste Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-ID-b - Hazardous Waste Permit Process 18IDBHazardousWastePermitProcess.pdf Click to View Fullscreen Contact Agencies Idaho Department of Environmental Quality Regulations & Policies Idaho Hazardous Waste Management Act IDAPA 58.01.05 Rules and Standards for Hazardous Waste 40 CFR 124.31 Pre-application public meeting and notice 40 CRF 124.10 Public notice of permit actions and public comment period 40 CFR 124.12 Public hearings 40 CFR 270.13 Contents of Part A of the permit application Triggers None specified Click "Edit With Form" above to add content 18IDBHazardousWastePermitProcess.pdf 18IDBHazardousWastePermitProcess.pdf

133

GRR/Section 18-CO-b - Hazardous Waste Permit Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-CO-b - Hazardous Waste Permit Process GRR/Section 18-CO-b - Hazardous Waste Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-CO-b - Hazardous Waste Permit Process 18COBHazardousWastePermitProcess.pdf Click to View Fullscreen Contact Agencies Colorado Department of Public Health and Environment Regulations & Policies Colorado Hazardous Waste Regulations Part 260 Triggers None specified Click "Edit With Form" above to add content 18COBHazardousWastePermitProcess.pdf 18COBHazardousWastePermitProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Hazardous waste is a regulated substance and facilities that treat, store

134

Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL  

SciTech Connect (OSTI)

In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste.

Not Available

1991-09-01T23:59:59.000Z

135

A model for determining the fate of hazardous constituents in waste during in-vessel composting  

E-Print Network [OSTI]

Composting is one of the techniques that has evolved as a safe disposal and predisposal alternative to the stringent regulations on hazardous waste disposal. The implementation of this technique needs careful evaluation of the processes a hazardous...

Bollineni, Prasanthi

1994-01-01T23:59:59.000Z

136

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

137

OSS 19.5 Hazardous Waste Operations and Emergency Response 3/21/95 |  

Broader source: Energy.gov (indexed) [DOE]

5 Hazardous Waste Operations and Emergency Response 3/21/95 5 Hazardous Waste Operations and Emergency Response 3/21/95 OSS 19.5 Hazardous Waste Operations and Emergency Response 3/21/95 The objective of this surveillance is to ensure that workers who are performing activities associated with characterizing, handling, processing, storing or transporting hazardous wastes are adequately protected. The surveillance also evaluates the effectiveness of programs implemented to protect the health and safety of emergency response personnel who may be called upon to mitigate upset conditions at a facility where hazardous waste operations are conducted. Finally, the surveillance includes evaluations of the contractor's compliance with specific requirements regarding hazardous waste operations and emergency response. OSS19-05.doc

138

M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters.

Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

1994-05-01T23:59:59.000Z

139

GRR/Elements/18-CA-c.1 - What Level of Hazardous Waste Facility Permit Does  

Open Energy Info (EERE)

GRR/Elements/18-CA-c.1 - What Level of Hazardous Waste Facility Permit Does GRR/Elements/18-CA-c.1 - What Level of Hazardous Waste Facility Permit Does the Facility Require < GRR‎ | Elements Jump to: navigation, search Edit 18-CA-b.1 - What Level of Hazardous Waste Facility Permit Does the Facility Require California employs a five-tier permitting program which imposes regulatory requirements matching the degree of risk posed by the level of hazardous waste: * The Full Permit Tier includes all facilities requiring a RCRA permit as well as selected non-RCRA activities under Title 22 California Code of Regulations. * The Standardized Permit Tier includes facilities that manage waste not regulated by RCRA, but regulated as hazardous waste in California. * Onsite Treatment Permits (3-Tiered) includes onsite treatment of non-RCRA waste regulated in California.

140

Method and apparatus for the management of hazardous waste material  

DOE Patents [OSTI]

A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

Murray, H. Jr.

1995-02-21T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

OSS 19.5 Hazardous Waste Operations and Emergency Response 3/21/95  

Broader source: Energy.gov [DOE]

The objective of this surveillance is to ensure that workers who are performing activities associated with characterizing, handling, processing, storing or transporting hazardous wastes are...

142

Property-close source separation of hazardous waste and waste electrical and electronic equipment - A Swedish case study  

SciTech Connect (OSTI)

Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems.

Bernstad, Anna, E-mail: anna.bernstad@chemeng.lth.se [Dep. of Chem. Eng., Faculty of Eng., Lund University, Lund (Sweden); Cour Jansen, Jes la [Dep. of Chem. Eng., Faculty of Eng., Lund University, Lund (Sweden); Aspegren, Henrik [VA SYD, City of Malmoe (Sweden)

2011-03-15T23:59:59.000Z

143

RSP WASTE UNIVERSITY OF HAWAII RADIOACTIVE WASTE PICKUP REQUEST FORM Revision 06/07 (WASTE WHICH CONTAINS RADIOISOTOPES BUT NO HAZARDOUS CHEMICALS)  

E-Print Network [OSTI]

RSP WASTE UNIVERSITY OF HAWAII RADIOACTIVE WASTE PICKUP REQUEST FORM Revision 06/07 (WASTE WHICH CONTAINS RADIOISOTOPES BUT NO HAZARDOUS CHEMICALS) INSTRUCTIONS : 1. *NO ISOTOPES MAY BE MIXED IN THE WASTE BOX! One type of isotope per waste box - Except C-14 AND H-3 WHICH MAY BE DISPOSED OF TOGETHER. 2

Browder, Tom

144

Fire hazard analysis of the radioactive mixed waste trenchs  

SciTech Connect (OSTI)

This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation`s activity. Transient flammables and combustibles present that support the operation`s activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0.

McDonald, K.M. [Westinghouse Hanford Co., Richland, WA (United States)

1995-04-27T23:59:59.000Z

145

GRR/Section 18 - Waste and Hazardous Material Assessment Process | Open  

Open Energy Info (EERE)

- Waste and Hazardous Material Assessment Process - Waste and Hazardous Material Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18 - Waste and Hazardous Material Assessment Process 18 - WasteAndHazardousMaterialAssessmentProcess.pdf Click to View Fullscreen Contact Agencies Environmental Protection Agency Regulations & Policies RCRA CERCLA 40 CFR 261 Triggers None specified Click "Edit With Form" above to add content 18 - WasteAndHazardousMaterialAssessmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The use of underground and above ground storage tanks, discovery of waste

146

GRR/Section 18-AK-b - Hazardous Waste Permit Process | Open Energy  

Open Energy Info (EERE)

8-AK-b - Hazardous Waste Permit Process 8-AK-b - Hazardous Waste Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-AK-b - Hazardous Waste Permit Process 18AKB - HazardousWastePermitProcess (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation United States Environmental Protection Agency Regulations & Policies AS 46.03.302 18 AAC 60.020 Triggers None specified Click "Edit With Form" above to add content 18AKB - HazardousWastePermitProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Department of Environmental Conservation defers to the federal

147

Order Module--self-study program: HAZARDOUS WASTE OPERATIONS AND EMERGENCY  

Broader source: Energy.gov (indexed) [DOE]

self-study program: HAZARDOUS WASTE OPERATIONS AND self-study program: HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE Order Module--self-study program: HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE This module will discuss the objectives and requirements associated with this rule from the code of federal regulations. We have provided an example to help familiarize you with the material. The example will also help prepare you for the practice at the end of this module and for the criterion test. Before continuing, you should obtain a copy of the regulation at Hazardous waste operations and emergency response or through the course manager. You may need to refer to these documents to complete the example, practice, and criterion test. DOE Order Self Study Modules - 29 CFR 1910.120 Hazardous Waste Operations

148

Surveillance Guide - OSS 19.5 Hazardous Waste Operations and Emergency Response  

Broader source: Energy.gov (indexed) [DOE]

HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE 1.0 Objective The objective of this surveillance is to ensure that workers who are performing activities associated with characterizing, handling, processing, storing or transporting hazardous wastes are adequately protected. The surveillance also evaluates the effectiveness of programs implemented to protect the health and safety of emergency response personnel who may be called upon to mitigate upset conditions at a facility where hazardous waste operations are conducted. Finally, the surveillance includes evaluations of the contractor's compliance with specific requirements regarding hazardous waste operations and emergency response. 2.0 References 2.1 DOE 5483.1A, Occupational Safety and Health Program

149

GRR/Section 18-OR-b - Hazardous Waste Permit Process | Open Energy  

Open Energy Info (EERE)

OR-b - Hazardous Waste Permit Process OR-b - Hazardous Waste Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-OR-b - Hazardous Waste Permit Process 18ORBHazardousWastePermitProcess (1).pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Oregon Department of Environmental Quality Oregon Public Health Division Oregon Public Utility Commission Oregon Department of Fish and Wildlife Oregon Water Resources Department Regulations & Policies OAR 340-105: Management Facility Permits OAR 340-120: Hazardous Waste Management ORS 466: Storage, Treatment, and Disposal Triggers None specified Click "Edit With Form" above to add content 18ORBHazardousWastePermitProcess (1).pdf

150

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

1998-03-24T23:59:59.000Z

151

Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

Kalb, P.D.; Colombo, P.

1997-07-15T23:59:59.000Z

152

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

Kalb, P.D.; Colombo, P.

1998-03-24T23:59:59.000Z

153

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

Kalb, P.D.; Colombo, P.

1999-07-20T23:59:59.000Z

154

Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

Kalb, Paul D. (21 Barnes Road, Wading River, NY 11792); Colombo, Peter (44 N. Pinelake Dr., Patchogue, NY 11772)

1997-01-01T23:59:59.000Z

155

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

1999-07-20T23:59:59.000Z

156

Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience  

SciTech Connect (OSTI)

The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the normal'' municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan's programs. Focusing on the Plan's household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

Not Available

1991-10-01T23:59:59.000Z

157

Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience  

SciTech Connect (OSTI)

The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the ``normal`` municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan`s programs. Focusing on the Plan`s household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

Not Available

1991-10-01T23:59:59.000Z

158

GRR/Section 18-HI-b - RCRA - Hazardous Waste Treatment, Storage, and  

Open Energy Info (EERE)

8-HI-b - RCRA - Hazardous Waste Treatment, Storage, and 8-HI-b - RCRA - Hazardous Waste Treatment, Storage, and Disposal Permit (TSD) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-HI-b - RCRA - Hazardous Waste Treatment, Storage, and Disposal Permit (TSD) 18HIB - RCRAHazardousWasteTreatmentStorageAndDisposalPermitTSD.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Solid and Hazardous Waste Branch United States Environmental Protection Agency Regulations & Policies Resource Conversation and Recovery Act (42 U.S.C. 6901, et seq.) 40 CFR 270 Hawaii Administrative Rules Title 11, Chapter 261 Hawaii Administrative Rules Title 11, Chapter 265 Triggers None specified Click "Edit With Form" above to add content

159

Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning  

SciTech Connect (OSTI)

This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also.

Tonn, B.; Hwang, Ho-Ling; Elliot, S. [Oak Ridge National Lab., TN (United States); Peretz, J.; Bohm, R.; Hendrucko, B. [Univ. of Tennessee, Knoxville, TN (United States)

1994-04-01T23:59:59.000Z

160

GRR/Section 18-MT-b - Hazardous Waste Facility Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-MT-b - Hazardous Waste Facility Permit GRR/Section 18-MT-b - Hazardous Waste Facility Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-MT-b - Hazardous Waste Facility Permit 18MTBHazardousWasteFacilityPermit.pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated Title 75, Chapter 10, Part 4 Administrative Rules of Montana Title 17, Chapter 53 40 CFR 260 through 40 CFR 270 40 CFR 124 Triggers None specified Click "Edit With Form" above to add content 18MTBHazardousWasteFacilityPermit.pdf 18MTBHazardousWasteFacilityPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste  

SciTech Connect (OSTI)

The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes.

NONE

1998-03-01T23:59:59.000Z

162

Alternate airborne release fraction determination for hazardous waste management storage repository hazard categorization at the Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

Hazardous Waste Management (HWM) facilities are used in the handling and processing of solid and liquid radioactive, hazardous, mixed, and medical wastes generated at Lawrence Livermore National Laboratory (LLNL). Waste may be treated or stored in one of the HWM facility units prior to shipment off site for treatment or disposal. Planned facilities such as the Decontamination and Waste Treatment Facility (DWTF) and the Building 280 Container Storage Unit are expected to handle similar waste streams. A hazard classification was preformed in each facility safety analysis report (SAR) according to the DOE Standard 1027-92 `Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports.` The general methodology practiced by HWM to determine alternate airborne release fractions (ARFs) in those SARs was based upon a beyond evaluation basis earthquake accident scenario characterized by the release of the largest amount of respirable, airborne radioactive material. The alternate ARF was calculated using a three-factor formula consisting of the fraction of failed waste containers, fraction of material released from failed waste containers,and the fraction of material entrained to the environment. Recently, in deliberation with DOE-Oakland representatives, HWM decided to modify this methodology. In place of the current detailed analysis, a more straightforward process was proposed based upon material form, credible accident environments, and empirical data. This paper will discuss the methodology and derivation of ARFs specific to HWM treatment and storage facilities that are alternative to those presented in DOE-STD-1027-92.

Brumburgh, G.P.

1998-05-01T23:59:59.000Z

163

Hydrogeologic investigation of the Maxey Flats radioactive waste burial site, Fleming County, Kentucky  

SciTech Connect (OSTI)

Part of a hilltop named Maxey Flats was used as a commercial radioactive waste burial site from 1963 to 1977. The hill is about 9 miles from the city of Morehead. The climate of the area is humid, with normal annual precipitation 44.30 in. for the period 1941 through 1970. Most of the 47 burial trenches on the site are completed in weathered shale. They are covered with clay and crushed shale, but water infiltrates the covers and accumulates in the waste. The contaminated trench water is later removed and evaporated. Assuming water in trenches would not overflow onto the ground surface, flow through fractured rocks would be the principal means of contaminated-water transport if trench water were to move from the burial site. The bases of most trenches consist of a 1.5-ft-thick sandstone bed, at a depth of about 25 ft below ground level. Radionuclides have moved laterally through fractures in the bed as much as 270 feet from the nearest burial trench. Rocks underlying the burial site are of Mississippian, Devonian, and Silurian age, about 80% of which are shale. The bedrock has poor water-transmitting capability, and virtually all flow is through fractures. The spacing between most fractures is several feet, although it ranges from a few inches to more than 100 ft. Most fractures terminate, or are offset, at bedding planes. The ground-water system is therefore very nonuniform, and more permeable in the horizontal direction. At least eight hydrologic units underlie the burial site.

Zehner, H.H.

1983-01-01T23:59:59.000Z

164

Technological options for management of hazardous wastes from US Department of Energy facilities  

SciTech Connect (OSTI)

This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

1982-08-01T23:59:59.000Z

165

IDAPA 58.01.05 - Rules and Standards for Hazardous Waste | Open...  

Open Energy Info (EERE)

and Standards for Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: IDAPA 58.01.05 - Rules and Standards for...

166

Studies of transport of waste radionuclides, through soil at the Maxey Flats, Kentucky, waste-burial site  

SciTech Connect (OSTI)

Two areas at the waste-burial site are being used to study the interaction of soil with liquid waste - one near Trench 19S and the other between an experimental trench and Trench 27. Analyses of soil solutions near Trench 19S indicate that radionuclides have migrated from the waste-burial trench. The observed distribution of radionuclides in that area suggests that /sup 3/H, as tritiated water, has moved the greatest distance. Movement of /sup 137/Cs is essentially nonexistent. The migration of /sup 238/Pu and /sup 60/Co lies between those two extremes. The distance that /sup 3/H has moved, at an approximated depth of 4 m, is about 9 m. Additional porous cup samplers were installed at depths to 8 m to better evaluate the distribution of radionuclides near Trench 19S. Results from soil moisture measurements by R.K. Schulz of the University of California at Berkeley indicate a preferential movement of water into the waste trench through its cap. Our study of the /sup 3/H in surface soils outside the perimeter fence of the burial site suggests that contamination of the near-surface soil water occurs and could be from an airborne source, possible originating from the site evaporator. Another localized source could be associated with underflow from a burial trench that surfaces outside the perimeter fence. The /sup 3/H content in some soil solutions near an experimental trench suggest a preferential movement of water along an interface of an original soil profile and the overlying landfill. If such an interface were to intercept a burial trench and also outcrop off site, it could act as a preferential pathway for transport of radionuclides off site. The nonsorptive behavior of a small fraction of /sup 238/Pu in the Maxey Flats waste was interpreted as having been caused by an organic complex that is very slowly biodegradable. Organic constituents in the Maxey Flats soil, Tilsit Ap, may complex some of the /sup 238/Pu, making it mobile for some period of time.

Fowler, E.B.; Polzer, W.L.; Essington, E.H.

1983-01-01T23:59:59.000Z

167

Results of Hazardous and Mixed Waste Excavation from the Chemical Waste Landfill  

SciTech Connect (OSTI)

This paper describes the results of the excavation of a 1.9-acre hazardous and mixed waste landfill operated for 23 years at Sandia National Laboratories, Albuquerque, New Mexico. Excavation of the landfill was completed in 2 1/2 years without a single serious accident or injury. Approximately 50,000 cubic yards of soil contaminated with volatile and semi-volatile organics, metals, polychlorinated biphenyl compounds, and radioactive constituents was removed. In addition, over 400 cubic yards of buried debris was removed, including bulk debris, unknown chemicals, compressed gas cylinders, thermal and chemical batteries, explosive and ordnance debris, pyrophoric materials and biohazardous waste. Removal of these wastes included negotiation of multiple regulations and guidances encompassed in the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), and risk assessment methodology. RCRA concepts that were addressed include the area of contamination, permit modification, emergency treatment provision, and listed waste designation. These regulatory decisions enabled the project to overcome logistical and programmatic needs such as increased operational area, the ability to implement process improvements while maintaining a record of decisions and approvals.

Young, S. G.; Schofield, D. P.; Kwiecinski, D.; Edgmon, C. L.; Methvin, R.

2002-02-27T23:59:59.000Z

168

Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102  

SciTech Connect (OSTI)

Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

SHULTZ, M.V.

1999-04-05T23:59:59.000Z

169

DOE Awards Grant to the Commonwealth of Kentucky, Energy and...  

Office of Environmental Management (EM)

the duty of enforcing the environmental lawsregulations of Kentucky relating to waste management, water and air quality, and protection of human health and environment that are...

170

Hazardous Waste Management: The Role of Journalists in Decision Making Process  

SciTech Connect (OSTI)

The journalists are crucial for informing and education of general public about facts related to hazardous and radioactive waste management. Radio programs, TV and newspapers are daily reporting on relevant facts and news. In general, it is true that the majority of journalists are interested more in so called daily politics than in educating general public on certain technical or scientific topics. Therefore, hazardous and radioactive waste management was introduced to Croatian general public in last ten years mainly through various news on site selection of radioactive waste disposal facilities and some problems related to hazardous waste management. This paper presents APO's experience with journalists in last ten years includes program and activities referring informing and educating of journalists from all media.

Eerskov-Klika, M.; Lokner, V.; Subasiae, D.; Schaller, A.

2002-02-28T23:59:59.000Z

171

Hazardous waste assessment and reduction options in an auto service station  

SciTech Connect (OSTI)

A hazardous waste assessment was performed and options for reduction of waste antifreeze and car wash wastewater were studied for Thompson`s Freeway Amoco, a gasoline station with a small repair shop and car wash, located in Duluth, Minnesota. In 1992, 1,310 gallons of waste aqueous antifreeze solution (50 vol% ethylene glycol, 50 vol% water), 6,580 gallons of waste oil, 138 gallons of waste parts washer solvent, and 2,702 lbs of waste oil filters, all classified as hazardous waste, were generated by this and three other sister stations of similar size under the same ownership. In addition, 779,810 gallons of car wash wastewater, not classified as hazardous waste, were also produced and discharged into the sewer. Various options were studied for reductions in waste antifreeze and car was wastewater by recycling and reuse. The economic evaluations are presented with the conclusions that on-site recycling of antifreeze is viable but not car wash wastewater recycling.

Baria, D.N.; Dorland, D.; Miller, K.C. [Univ. of Minnesota, Duluth, MN (United States). Dept. of Chemical Engineering

1994-12-31T23:59:59.000Z

172

Standard guide for characterization of radioactive and/or hazardous wastes for thermal treatment  

E-Print Network [OSTI]

1.1 This guide identifies methods to determine the physical and chemical characteristics of radioactive and/or hazardous wastes before a waste is processed at high temperatures, for example, vitrification into a homogeneous glass ,glass-ceramic, or ceramic waste form. This includes waste forms produced by ex-situ vitrification (ESV), in-situ vitrification (ISV), slagging, plasma-arc, hot-isostatic pressing (HIP) and/or cold-pressing and sintering technologies. Note that this guide does not specifically address high temperature waste treatment by incineration but several of the analyses described in this guide may be useful diagnostic methods to determine incinerator off-gas composition and concentrations. The characterization of the waste(s) recommended in this guide can be used to (1) choose and develop the appropriate thermal treatment methodology, (2) determine if waste pretreatment is needed prior to thermal treatment, (3) aid in development of thermal treatment process control, (4) develop surrogate wa...

American Society for Testing and Materials. Philadelphia

2003-01-01T23:59:59.000Z

173

GRR/Elements/18-CA-a.5 to 18-CA-a.9 - Is the Hazardous Waste Discovered at  

Open Energy Info (EERE)

GRR/Elements/18-CA-a.5 to 18-CA-a.9 - Is the Hazardous Waste Discovered at GRR/Elements/18-CA-a.5 to 18-CA-a.9 - Is the Hazardous Waste Discovered at Site or will Site Produce Hazardous Waste < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 18-CA-a.5 to 18-CA-a.9 - Is the Hazardous Waste Discovered at Site or will Site Produce Hazardous Waste Delete Logic Chain No Parents \V/ GRR/Elements/18-CA-a.5 to 18-CA-a.9 - Is the Hazardous Waste Discovered at Site or will Site Produce Hazardous Waste (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/18-CA-a.5_to_18-CA-a.9_-_Is_the_Hazardous_Waste_Discovered_at_Site_or_will_Site_Produce_Hazardous_Waste&oldid=487194"

174

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

175

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

Broader source: Energy.gov (indexed) [DOE]

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

176

Assessment of External Hazards at Radioactive Waste and Used Fuel Management Facilities - 13505  

SciTech Connect (OSTI)

One of the key lessons from the Fukushima accident is the importance of having a comprehensive identification and evaluation of risks posed by external events to nuclear facilities. While the primary focus has been on nuclear power plants, the Canadian nuclear industry has also been updating hazard assessments for radioactive waste and used fuel management facilities to ensure that lessons learnt from Fukushima are addressed. External events are events that originate either physically outside the nuclear site or outside its control. They include natural events, such as high winds, lightning, earthquakes or flood due to extreme rainfall. The approaches that have been applied to the identification and assessment of external hazards in Canada are presented and analyzed. Specific aspects and considerations concerning hazards posed to radioactive waste and used fuel management operations are identified. Relevant hazard identification techniques are described, which draw upon available regulatory guidance and standard assessment techniques such as Hazard and Operability Studies (HAZOPs) and 'What-if' analysis. Consideration is given to ensuring that hazard combinations (for example: high winds and flooding due to rainfall) are properly taken into account. Approaches that can be used to screen out external hazards, through a combination of frequency and impact assessments, are summarized. For those hazards that cannot be screened out, a brief overview of methods that can be used to conduct more detailed hazard assessments is also provided. The lessons learnt from the Fukushima accident have had a significant impact on specific aspects of the approaches used to hazard assessment for waste management. Practical examples of the effect of these impacts are provided. (authors)

Gerchikov, Mark; Schneider, Glenn; Khan, Badi; Alderson, Elizabeth [AMEC NSS, 393 University Ave., Toronto, ON (Canada)] [AMEC NSS, 393 University Ave., Toronto, ON (Canada)

2013-07-01T23:59:59.000Z

177

Kentucky Department of Agriculture  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Kentucky Department Kentucky Department of Agriculture of Agriculture Motor Fuel and Pesticide Motor Fuel and Pesticide Testing Laboratory Testing Laboratory Introduction...

178

Mr. John Kieling, Acting Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

elements, and the grinding, mounting, and polishing of metallographic specimens at Bettis Atomic Power Laboratory (BAPL). This waste was shipped from BAPL to the Idaho National...

179

Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees. The Order, at paragraph 22, requires the Permittees to submit an isolation plan for identified...

180

DOE Order Self Study Modules - 29 CFR 1910.120 Hazardous Waste Operations and Emergency Response  

Broader source: Energy.gov (indexed) [DOE]

29 CFR 1910.120 29 CFR 1910.120 HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE NATIONAL NUCLEAR SECURITY ADMINISTRATION SERVICE CENTER Change No: 0 29 CFR 1910.120 Level: Familiar Date: 3/14/05 1 29 CFR 1910.120 HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE FAMILIAR LEVEL _________________________________________________________________________ OBJECTIVES Given the familiar level of this module and the resources, you will be able to perform the following: 1. Discuss clean-up operations required by the regulation. 2. Discuss corrective actions during clean-up operations covered by the resource conservation and recovery act (RCRA). 3. Discuss operations involving hazardous wastes that are conducted at treatment, storage, and disposal (TSD) facilities.

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hawaii Department of Health Solid and Hazardous Waste Branch | Open Energy  

Open Energy Info (EERE)

and Hazardous Waste Branch and Hazardous Waste Branch Jump to: navigation, search Name Hawaii Department of Health Solid and Hazardous Waste Branch Address 919 Ala Moana Boulevard #212 Place Honolulu, Hawaii Zip 96814 Website http://hawaii.gov/health/envir Coordinates 21.294755°, -157.858979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.294755,"lon":-157.858979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

GRR/Section 18-CA-b - RCRA Process (Hazardous Waste Facility Permit) | Open  

Open Energy Info (EERE)

18-CA-b - RCRA Process (Hazardous Waste Facility Permit) 18-CA-b - RCRA Process (Hazardous Waste Facility Permit) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-CA-b - RCRA Process (Hazardous Waste Facility Permit) 18CABRCRAProcess (2).pdf Click to View Fullscreen Contact Agencies California Environmental Protection Agency Department of Toxic Substances Control Regulations & Policies Resource Conservation and Recovery Act 40 CRF 261 Title 22, California Code of Regulations, Division 4.5 Triggers None specified Click "Edit With Form" above to add content 18CABRCRAProcess (2).pdf 18CABRCRAProcess (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

183

Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary  

SciTech Connect (OSTI)

This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

Not Available

1990-06-01T23:59:59.000Z

184

The mutagenic potential of soil and runoff water from land treatment of three hazardous industrial wastes  

E-Print Network [OSTI]

THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAYOL Submitted to the Graduate College of Te xa s ASM Un i ver s i ty in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1987 Major Subject: Soil Science THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAVDL Approved. s to style and content by: Kirk W...

Davol, Phebe

2012-06-07T23:59:59.000Z

185

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

James T. Cobb, Jr.

2003-09-12T23:59:59.000Z

186

Resource recovery - a byproduct of hazardous waste incineration  

SciTech Connect (OSTI)

Three principal areas of a chlorinated hydrocarbon waste disposal system for a typical vinyl chloride monomer (VCM) facility are described: the incinerator, the energy-recovery system, and the byproduct-recovery system. The overall efficiency of the energy- and *byproduct-recovery systems is dependent on the optimization of the primary combustor. An example is presented in table form which lists typical waste quantities for the plant and operating costs, including utility requirements for the incinerator system, the quench, absorber and scrubber. Savings that can result by the addition of the energy- and acid-recovery systems can pay for the waste disposal system and return money to the plant.

Santoleri, J.J.

1982-11-01T23:59:59.000Z

187

Public invited to comment on additional proposed modications to WIPP hazardous waste permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Public Invited to Comment on Additional Proposed Modifications Public Invited to Comment on Additional Proposed Modifications To WIPP Hazardous Waste Permit CARLSBAD, N.M., April 26, 2000 - The public is invited to comment on additional proposed modifications to the hazardous waste facility permit for the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). Earlier this month, DOE and the Westinghouse Waste Isolation Division requested -- through three Class 2 permit modification submittals -- that the New Mexico Environment Department (NMED) change certain provisions of the state permit. On April 20, DOE and Westinghouse submitted to NMED three additional Class 2 permit modifications. The Class 2 submittals begin a formal review process that includes a 60-day public comment period and two separate public meetings. Written comments will be accepted by

188

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carlsbad Carlsbad , New Mexico 88221 NOV 1 4 2013 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Sa nta Fe, New Mexico 87505-6303 Subject: Transm ittal of the Waste Isolation Pilot Pl ant Annua l Waste Minimization Report Dea r Mr. Kieling : The purpose of this letter is to provide you wi th the Waste Isola lion Pilot Plant (W IPP) Annua l Waste Minimi za tion Report. This report is required by and has bee n prepared in accordance with the W IPP Haza rdou s Was te Faci lity Permit Part 2, Perm it Condition 2.4. We certify under penalty of law that this document and all attachmen ts were prepared under our direction or supervision according to a system designed to assure that qualified personnel properly gather and eval uate the information submitted. Based on ou

189

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fe, NM 87508-6303 Subject: Notification of the Use of Surge Storage in the Waste Handling Building Reference: DOE Memorandum CBFO:OESH:GB:MN:14-1427;UFC:5487 from Mr. Jose R....

190

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to enhance waste stream collection. The cost ofthe bins was 2,717. 70. * Light-emitting diode (LED) task lights were purchased to replace fluorescent units with the purpose...

191

Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

drums, 85-gallon drums, 100-gallon drums, Standard Waste Boxes, Standard Large Boxes, and Ten Drum Overpacks (TDOPs). The containers will be standard DOT Type 7A, or equivalent,...

192

Upgrades to meet LANL SF, 121-2011, hazardous waste facility permit requirements  

SciTech Connect (OSTI)

Members of San IIdefonso have requested information from LANL regarding implementation of the revision to LANL's Hazardous Waste Facility Permit (the RCRA Permit). On January 26, 2011, LANL staff from the Waste Disposition Project and the Environmental Protection Division will provide a status update to Pueblo members at the offices of the San IIdefonso Department of Environmental and Cultural Preservation. The Waste Disposition Project presentation will focus on upgrades and improvements to LANL waste management facilities at TA-50 and TA-54. The New Mexico Environment Department issued LANL's revised Hazardous Waste Facility permit on November 30, 2010 with a 30-day implementation period. The Waste Disposition Project manages and operates four of LANL's permitted facilities; the Waste Characterization, Reduction and Repackaging Facility (WCRRF) at TA-SO, and Area G, Area L and the Radioassay and Nondestructive Testing facility (RANT) at TA-54. By implementing a combination of permanent corrective action activities and shorter-term compensatory measures, WDP was able to achieve functional compliance on December 30, 2010 with new Permit requirements at each of our facilities. One component of WOP's mission at LANL is centralized management and disposition of the Laboratory's hazardous and mixed waste. To support this mission objective, WOP has undertaken a project to upgrade our facilities and equipment to achieve fully compliant and efficient waste management operations. Upgrades to processes, equipment and facilities are being designed to provide defense-in-depth beyond the minimum, regulatory requirements where worker safety and protection of the public and the environment are concerned. Upgrades and improvements to enduring waste management facilities and operations are being designed so as not to conflict with future closure activities at Material Disposal Area G and Material Disposal Area L.

French, Sean B [Los Alamos National Laboratory; Johns - Hughes, Kathryn W [Los Alamos National Laboratory

2011-01-21T23:59:59.000Z

193

Savannah River Site offsite hazardous waste shipment data validation report. Revision 1  

SciTech Connect (OSTI)

The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean.

Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

1995-05-01T23:59:59.000Z

194

Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL1A, NPFPDL1B, NPFPDL1C and NPFPDL1D  

SciTech Connect (OSTI)

This Hazardous Waste Determination Report is intended to satisfy the terms of a Memorandum of Agreement (Agreement signed on June 16, 1999) between the U.S. Department of Energy and the New Mexico Environment Department. The Agreement pertains to the exchange of information before a final decision is made on the Waste Isolation Pilot Plant application for a permit under the ''New Mexico Hazardous Waste Act''. The Agreement will terminate upon the effective date of a final ''New Mexico Hazardous Waste Act'' permit for the Waste Isolation Pilot Plant. In keeping with the principles and terms of the Agreement, this report describes the waste stream data and information compilation process, and the physical and chemical analyses that the U.S. Department of Energy has performed on selected containers of transuranic debris waste to confirm that the waste is nonhazardous (non-mixed). This also summarizes the testing and analytical results that support the conclusion that the selected transuranic debris waste is not hazardous and thus, not subject to regulation under the ''Resource Conservation and Recovery Act'' or the ''New Mexico Hazardous Waste Act''. This report will be submitted to the New Mexico Environment Department no later than 45 days before the first shipment of waste from the Hanford Site to the Waste Isolation Pilot Plant, unless the parties mutually agree in writing to a shorter time. The 52 containers of transuranic debris waste addressed in this report were generated, packaged, and placed into storage between 1995 and 1997. Based on reviews of administrative documents, operating procedures, waste records, generator certifications, and personnel interviews, this transuranic debris waste was determined to be nonhazardous. This determination is supported by the data derived from nondestructive examination, confirmatory visual examination, and the results of container headspace gas sampling and analysis. Therefore, it is concluded that this transuranic debris waste, which consists of 52 containers from waste streams NPFPDLIA, NPFPDLIB, NPFPDLIC, and NPFPDLID, is not hazardous waste, and no hazardous waste numbers specified in Title 40 Code of Federal Regulations, Part 261, have been assigned. Accordingly, the 52 containers of transuranic debris waste addressed in this report meet the requirements for transuranic waste as defined by the Department of Energy Waste Acceptance Criteria for the Waste Isolation Pilot Plant. The 52 containers are acceptable for disposal at the Waste Isolation Pilot Plant as nonhazardous transuranic waste.

WINTERHALDER, J.A.

1999-09-29T23:59:59.000Z

195

DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary  

SciTech Connect (OSTI)

This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis.

DeMuth, S.F.

1996-10-01T23:59:59.000Z

196

Plasma chemical process for treatment of hazardous wastes  

Science Journals Connector (OSTI)

The conventional methods of combustion are not always effective. One of the new methods for waste treatment is the destruction in plasma jet of chemical reactive gases. An unit with plasmotron power up to 50 kW is constructed for the investigations. Sulphur, chlorine and nitrogen containing organic toxic wastes are subjected to destruction. Water steam, air and their mixture are used as plasma generating gas and chemical reagent. The studies are carried out at a different ratio of plasma generating gasltoxic wastes at temperatures to 2000C. The products are analysed by gas mass spectroscopy. The released gas is composed of Co, H2 and CO2. There were found no hydrocarbons, dioxine and furan. Gas heat value is good for its burning without environment pollution.

Iv. Georgiev; Zh. Bulgaranova; B. Kumanova

1995-01-01T23:59:59.000Z

197

Evaluation of HC1 measurement techniques at municipal and hazardous-waste incinerators  

SciTech Connect (OSTI)

Hydrogen chloride (HC1) emissions from hazardous waste incinerators are regulated by the EPA, and the Agency is considering HC1 regulations for municipal waste combustors. Until recently, techniques to adequately quantify these emissions using either instrumentation or wet-chemistry sampling methods have not been evaluated. The EPA has sponsored several field tests to assess the performance of commercially-available HC1 continuous emission monitoring systems (CEMS's) and a proposed manual sampling and analysis methodology for use at municipal and hazardous waste incinerators. Tests were performed (1) to determine the capability of HC1 CEMS's to provide valid measurement data, (2) to develop HC1 CEMS performance specifications, and (3) to develop a suitable performance test method.

Shanklin, S.A.; Steinsberger, S.C.; Logan, T.J.; Rollins, R.

1990-01-01T23:59:59.000Z

198

Phosphate glasses for radioactive, hazardous and mixed waste immobilization  

DOE Patents [OSTI]

Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

1999-03-09T23:59:59.000Z

199

Phosphate glasses for radioactive, hazardous and mixed waste immobilization  

DOE Patents [OSTI]

Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

1998-11-24T23:59:59.000Z

200

Evaluation of the hazardous waste landfill cap system design and clay layer thickness criteria of the Turkish Regulation on the Control of Hazardous Waste (RCHW) using the Hydrological Evaluation of Landfill Performance (HELP) model  

Science Journals Connector (OSTI)

The hazardous waste landfill design criteria of the Turkish Regulation on the Control of Hazardous Waste (RCHW) was evaluated in this study. In the first part of the study, Hydrologic Evaluation of Landfill Performance (HELP) model was used to determine the significance of different components of the hazardous waste landfill cap system as required by the Turkish RCHW. In the second part of the study, the top and bottom clay layer thickness requirement of the Turkish RCHW was evaluated by running the HELP model for different top/bottom clay different layer thicknesses and comparing the corresponding leachate amounts produced.

F. Yalcin Piskin; G.N. Demirer

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Payment Of the New Mexico Environment Department- Hazardous Waste Bureau Annual Business and Generation Fees Calendar Year 2011  

SciTech Connect (OSTI)

The purpose of this letter is to transmit to the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB), the Los alamos National Laboratory (LANL) Annual Business and Generation Fees for calendar year 2011. These fees are required pursuant to the provisions of New Mexico Hazardous Waste Act, Chapter 74, Article 4, NMSA (as amended). The Laboratory's Fenton Hill Facility did not generate any hazardous waste during the entire year, and is not required to pay a fee for calendar year 2011. The enclosed fee represents the amount for a single facility owned by the Department of Energy and co-operated by the Los Alamos National Security, LLC (LANS).

Juarez, Catherine L. [Los Alamos National Laboratory

2012-08-31T23:59:59.000Z

202

,"Kentucky Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050KY3","N3010KY3","N3020KY3","N3035KY3","N3045KY3" "Date","Natural Gas Citygate Price in Kentucky (Dollars per Thousand Cubic Feet)","Kentucky Price...

203

Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

Colombo, Peter (Patchogue, NY); Kalb, Paul D. (Wading River, NY); Heiser, III, John H. (Bayport, NY)

1997-11-14T23:59:59.000Z

204

Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04  

Broader source: Energy.gov (indexed) [DOE]

U.S. DEPARTMENT OF ENERGY U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL AUDIT OF SELECTED HAZARDOUS WASTE REMEDIAL ACTIONS PROGRAM COSTS The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible. Therefore, this report will be available electronically through the Internet at the following alternative addresses: Department of Energy Headquarters Gopher gopher.hr.doe.gov Department of Energy Headquarters Anonymous FTP vm1.hqadmin.doe.gov

205

Categorical Exclusion Determinations: Kentucky | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 11, 2011 April 11, 2011 CX-005602: Categorical Exclusion Determination Jet Drilling With Energized Fluids CX(s) Applied: B3.6, B3.7 Date: 04/11/2011 Location(s): Bowling Green, Kentucky Office(s): Fossil Energy, National Energy Technology Laboratory March 25, 2011 CX-005559: Categorical Exclusion Determination Heating, Ventilation, and Air Conditioning Efficiency and Replacement Project CX(s) Applied: B1.4, B2.2, B2.5, B5.1 Date: 03/25/2011 Location(s): Oldham County, Kentucky Office(s): Civilian Radioactive Waste Management, Energy Efficiency and Renewable Energy February 10, 2011 CX-005220: Categorical Exclusion Determination Kentucky Farm Energy Efficiency and Renewable Energy Partnership Market Title CX(s) Applied: B5.1 Date: 02/10/2011 Location(s): Goshen, Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy

206

Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL. Revision 1  

SciTech Connect (OSTI)

In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL`s Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL`s acceptance criteria for radioactive and mixed waste.

Not Available

1991-09-01T23:59:59.000Z

207

Recycling non-hazardous industrial wastes and petroleum contaminated soils into structural clay ceramics  

SciTech Connect (OSTI)

Cherokee Environmental Group (CEG)--a subsidiary of the Cherokee Sanford Group, Inc. (CSG)--has developed a system to beneficially reuse non-hazardous industrial wastes and petroleum contaminated soils into the recycling process of CSG`s structural clay ceramics manufacturing operation. The wastes and soils are processed, screened, and blended with brickmaking raw materials. The resulting material is formed and fired in such a way that the bricks still exceed American Society for Testing and Materials (ASTM) quality standards. Prior to usage, recycled materials are rigorously tested for ceramic compatibility and environmental compliance. Ceramic testing includes strength, shrinkage, and aesthetics. Environmental compliance is insured by testing for both organic and inorganic constituents. This recycling process has been fully permitted by all required state regulatory agencies in North Carolina, Maryland, and South Carolina where facilities are located. This inter-industrial synergy has eliminated landfill reliance and liability for many companies and property owners. The recycling volume of wastes and soils is high because CSG is one of the largest brick manufacturers in the nation. Together, CEG and CSG have eliminated more than 1 billion pounds of material from landfills by beneficially reusing the non-hazardous wastes.

MacRunnels, Z.D.; Miller, H.B. Jr. [Cherokee Environmental Group, Sanford, NC (United States)

1994-12-31T23:59:59.000Z

208

Ceramic stabilization of hazardous wastes: a high performance room temperature process  

SciTech Connect (OSTI)

ANL has developed a room-temperature process for converting hazardous materials to a ceramic structure. It is similar to vitrification but is achieved at low cost, similar to conventional cement stabilization. The waste constituents are both chemically stabilized and physically encapsulated, producing very low leaching levels and the potential for delisting. The process, which is pH-insensitive, is ideal for inorganic sludges and liquids, as well as mixed chemical-radioactive wastes, but can also handle significant percentages of salts and even halogenated organics. High waste loadings are possible and densification occurs,so that volumes are only slightly increased and in some cases (eg, incinerator ash) are reduced. The ceramic product has strength and weathering properties far superior to cement products.

Maloney, M.D.

1996-10-01T23:59:59.000Z

209

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

Comments Comments Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement Clark County Public Library Winchester, KY Page 1 of 5 D-1 Comment No. 1 Issue Code: 11 Gasification is different from incineration. It is a better, more environmentally responsible approach to generating energy from the use of fossil fuels and refuse derived fuel (RDF). Incineration produces criteria pollutants, semi-volatile and volatile organic compounds and dioxin/furan compounds. Ash from hazardous waste incinerators is considered a hazardous waste under the Resource Conservation and Recovery Act (RCRA). In contrast, gasification, which occurs at high temperatures and pressures, produces no air emissions, only small amounts of wastewater containing salts. Synthesis gas (syngas)

210

Vitrification of M-Area Mixed (Hazardous and Radioactive) F006 Wastes: I. Sludge and Supernate Characterization  

SciTech Connect (OSTI)

Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert low-level and mixed (hazardous and radioactive) wastes to a solid stabilized waste form for permanent disposal. One of the alternative technologies is vitrification into a borosilicate glass waste form. The Environmental Protection Agency (EPA) has declared vitrification the Best Demonstrated Available Technology (BDAT) for high-level radioactive mixed waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The DOE Office of Technology Development (OTD) has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Stabilization of low level and hazardous wastes in glass are in accord with the 1988 Savannah River Technology Center (SRTC), then the Savannah River Laboratory (SRL), Professional Planning Committee (PPC) recommendation that high nitrate containing (low-level) wastes be incorporated into a low temperature glass (via a sol-gel technology). The investigation into this new technology was considered timely because of the potential for large waste volume reduction compared to solidification into cement.

Jantzen, C.M.

2001-10-05T23:59:59.000Z

211

Kentucky Economic Opportunity Zone Program (KEOZ) (Kentucky) | Department  

Broader source: Energy.gov (indexed) [DOE]

Economic Opportunity Zone Program (KEOZ) (Kentucky) Economic Opportunity Zone Program (KEOZ) (Kentucky) Kentucky Economic Opportunity Zone Program (KEOZ) (Kentucky) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Corporate Tax Incentive Provider Kentucky Cabinet for Economic Development Department of Financial Incentives The Kentucky Economic Opportunity Zone Program (KEOZ) focuses on the development of areas with high unemployment and poverty levels. The program provides an income tax credit of up to 100% of the Kentucky income tax liability on income generated by or arising out of the project. The approved company may require each qualified statewide employee, as

212

Constant extension rate tensile tests on 304L stainless steel in simulated hazardous low-level waste  

SciTech Connect (OSTI)

New waste tanks which handle hazardous low-level waste were proposed to be constructed in H-area. The candidate material for the tanks is AISI Type 304L (304L) stainless steel. Constant extension rate tensile (CERT) tests were conducted to assess the susceptibility of 304L to stress-corrosion cracking (SCC) in these waste solutions. The tests demonstrated that 304L was not susceptible to SCC in simulated wastes. Based on these tests and previous pitting corrosion studies 304L is a suitable material of construction for the new tanks. Comparison tests in the same simulants were performed on A537 carbon steel (A537), a material that is similar to material of construction for the current tanks. Stress-corrosion cracking was indicated in two of the simulants. If carbon steel tanks are utilized to handle the hazardous low-level wastes, inhibitors such as nitrite or hydroxide will be necessary to prevent corrosion.

Wiersma, B.J.

1992-04-01T23:59:59.000Z

213

Lessons learned from the EG&G consolidated hazardous waste subcontract and ESH&Q liability assessment process  

SciTech Connect (OSTI)

Hazardous waste transportation, treatment, recycling, and disposal contracts were first consolidated at the Idaho National Engineering Laboratory in 1992 by EG&G Idaho, Inc. At that time, disposition of Resource, Conservation and Recovery Act hazardous waste, Toxic Substance Control Act waste, Comprehensive Environmental Response, Compensation, and Liability Act hazardous substances and contaminated media, and recyclable hazardous materials was consolidated under five subcontracts. The wastes were generated by five different INEL M&O contractors, under the direction of three different Department of Energy field offices. The consolidated contract reduced the number of facilities handling INEL waste from 27 to 8 qualified treatment, storage, and disposal facilities, with brokers specifically prohibited. This reduced associated transportation costs, amount and cost of contractual paperwork, and environmental liability exposure. EG&G reviewed this approach and proposed a consolidated hazardous waste subcontract be formed for the major EG&G managed DOE sites: INEL, Mound, Rocky Flats, Nevada Test Site, and 10 satellite facilities. After obtaining concurrence from DOE Headquarters, this effort began in March 1992 and was completed with the award of two master task subcontracts in October and November 1993. In addition, the effort included a team to evaluate the apparent awardee`s facilities for environment, safety, health, and quality (ESH&Q) and financial liability status. This report documents the evaluation of the process used to prepare, bid, and award the EG&G consolidated hazardous waste transportation, treatment, recycling, and/or disposal subcontracts and associated ESH&Q and financial liability assessments; document the strengths and weaknesses of the process; and propose improvements that would expedite and enhance the process for other DOE installations that used the process and for the re-bid of the consolidated subcontract, scheduled for 1997.

Fix, N.J.

1995-03-01T23:59:59.000Z

214

Evaluation of alternative nonflame technologies for destruction of hazardous organic waste  

SciTech Connect (OSTI)

The US Department of Energy`s Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associated contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX{sup SM}, Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis.

Schwinkendorf, W.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Musgrave, B.C. [BC Musgrave, Inc. (United States); Drake, R.N. [Drake Engineering, Inc. (United States)

1997-04-01T23:59:59.000Z

215

Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ecological Assessment of Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference U.S. Environmental Protection Agency Environmental Research Laboratory 200 S. W. 35th Street Corvallis, OR 97333 ECOLOGICAL ASSESSMENTS OF HAZARDOUS WASTE SITES: A FIELD AND LABORATORY REFERENCE DOCUMENT Edited By William Warren-Hicks l Benjamin R. Parkhurst 2 Samuel S. Baker, Jr. 1 1 Kilkelly Environmental Associates Highway 70 West - The Water Garden Raleigh, NC 27622 2 Western Aquatics, Inc. P.O. BOX 546 203 Grand Avenue Laramie, WY 82070 DISCLAIMER T h e i n f o r m a t i o n i n t h i s d o c u m e n t h a s b e e n f u n d e d b y t h e U n i t e d S t a t e s Environmental Protection Agent h by Contract Number 68-03-3439 to Kilkelly Environmenta] Associates, Raleig , NC 27622. It has been subject to the Agency's peer and administrative review, and it has been approved for publication as an EPA

216

Emergence of interest groups on hazardous waste siting: how do they form and survive  

SciTech Connect (OSTI)

This paper discusses the two components of the facilitative setting that are important for group formation. The first component, the ideological component, provides the basic ideas that are adopted by the emerging group. The ideological setting for group formation is produced by such things as antinuclear news coverage and concentration of news stories on hazardous waste problems, on ideas concerning the credibility of the federal government, and on the pervasivensee of ideas about general environmental problems. The organizational component of the facilitative setting provides such things as leadership ability, flexible time, resources, and experience. These are important for providing people, organization, and money to achieve group goals. By and large, the conditions conducive to group formation, growth, and survival are outside the control of decision-makers. Agencies and project sponsors are currently caught in a paradox. Actively involving the public in the decision-making process tends to contribute to the growth and survival of various interest groups. Not involving the public means damage to credibility and conflict with values concerning participatory democracy. Resolution in this area can only be achieved when a comprehensive, coordinated national approach to hazardous waste management emerges. 26 refs.

Williams, R.G.; Payne, B.A.

1985-10-30T23:59:59.000Z

217

Heat strain and heat stress for workers wearing protective suits at a hazardous waste site  

SciTech Connect (OSTI)

In order to evaluate the effects of heat stress when full body protective suits are worn, heart rates, oral temperatures and environmental parameters were measured for five unacclimatized male workers (25-33 years of age) who performed sampling activities during hazardous waste clean-up operations. The protective ensembles included laminated PVC-Tyvec chemical resistant hood suits with rubber boots, gloves, full facepiece dual cartridge respirators and hard hats. For comparison, measurements also were performed when the men worked at a similar level of activity while they wore ordinary work clothes. A comparison of the heart rates for the men working with and without suits indicated that wearing the suits imposed a heat stress equivalent to adding 6/sup 0/ to 11/sup 0/C (11/sup 0/ to 20/sup 0/F) to the ambient WBGT index. A similar result was obtained by calculating the WBGT in the microclimate inside the suits and comparing it to the ambient WBGT. These results indicate the following: 1) there exists a significant risk of heat injury during hazardous waste work when full body protective clothing is worn, and 2) threshold limit values for heat stress established by the ACGIH must be lowered substantially before extending them to cover workers under these conditions.

Paull, J.M.; Rosenthal, F.S.

1987-05-01T23:59:59.000Z

218

Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

Boyd D. Christensen

2012-05-01T23:59:59.000Z

219

,"Kentucky Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050KY3","N3010KY3","N3020KY3","N3035KY3","NA1570SKY3","N3045KY3" "Date","Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Kentucky Natural Gas...

220

Kentucky Power Co (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Kentucky Power Co Kentucky Power Co Place Kentucky Utility Id 22053 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LGS - Large General Service Secondary Commercial LGS-TOD - Large General Service Time of Day Commercial MGS - Medium General Service Secondary Commercial MGSTOD - Medium General Service Time of Day Commercial QP - Quantity Power Secondary Commercial RS - Residential Service Residential RS-LM-TOD - Residential Service Load management Time of Day Residential RS-TOD - Residential Service Time of Day Residential RS-TOD2 - Residential Service Time of Day 2 Residential

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

KRS Chapter 278: Nuclear Power Facilities (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

KRS Chapter 278: Nuclear Power Facilities (Kentucky) KRS Chapter 278: Nuclear Power Facilities (Kentucky) KRS Chapter 278: Nuclear Power Facilities (Kentucky) < Back Eligibility Commercial Construction Developer Investor-Owned Utility Municipal/Public Utility Utility Program Info State Kentucky Program Type Environmental Regulations Safety and Operational Guidelines Provider Kentucky Public Service Commission No construction shall commence on a nuclear power facility in the Commonwealth until the Public Service Commission finds that the United States government, through its authorized agency, has identified and approved a demonstrable technology or means for the disposal of high-level nuclear waste. The provisions of this section shall not be construed as applying to or precluding the following nuclear-based technologies,

222

CORROSION STUDY OF REPLACEMENT MATERIALS FOR HAZARDOUS LOW LEVEL WASTE PROCESSING TANKS  

SciTech Connect (OSTI)

New waste tanks are to be constructed in H-area to store hazardous low level wastes. AISI Type 304L (304L) stainless steel was recommended as a suitable material of construction for these tanks. Cyclic polarization and coupon tests were performed to evaluate the corrosion resistance of 304L over a wide range of waste tank environments. The results of both tests indicated that 304L was not susceptible to attack under any of these conditions. Comparison tests were also performed with ASTM A537 carbon steel (A537) and Incoloy 825. The carbon steel corroded severely in some of the environments, while Incoloy 825 did not corrode. These tests, along with those for 304L, verified the correlation between cyclic polarization and coupon tests. Electrochemical Impedance Spectroscopy (EIS) was performed to monitor the breakdown of the protective oxide film on the surface of the material as a function of time and temperature. These results also correlated with those from the cyclic polarization and coupon tests.

Wiersma, B.; Mickalonis, J.

1991-03-28T23:59:59.000Z

223

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity, December 2012  

Broader source: Energy.gov (indexed) [DOE]

the Hanford Site the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background.......................................................................................................................................... 1 3.0 Scope and Methodology... ................................................................................................................... 1

224

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity, December 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Hanford Site the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background.......................................................................................................................................... 1 3.0 Scope and Methodology... ................................................................................................................... 1

225

Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Import Statement, Richland, Washington  

Broader source: Energy.gov (indexed) [DOE]

COVER SHEET 1 COVER SHEET 1 U.S. Department of Energy, Richland Operations Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE/EIS-0286D2) 6 7 CONTACT: 8 For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland Operations Office U.S. Department of Energy, A6-38 P.O. Box 550 Richland, Washington 99352-0550 Telephone: (800) 426-4914 Fax: (509) 372-1926 Email: hsweis@rl.gov For further information on the Department's National Environmental Policy Act process, contact: Ms. Carol M. Borgstrom, Director Office of NEPA Policy and Compliance, EH-42 U.S. Department of Energy 1000 Independence Avenue, S.W.

226

Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division  

Office of Legacy Management (LM)

AUG 0 3 1998 AUG 0 3 1998 Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division Colorado Department of Public Health and Environment 4300 Cherry Creek Dr. S. Denver, Colorado 80222-1530 _,l ' 7. ,;:""" I,!._ -~~ . Dear Mr. Simpson: We have reviewed your letter of July 10, 1998, requesting that the Department of Energy (DOE) reconsider its decision to exclude the Marion Millsite in Boulder County, Colorado, from remediation under the Formerly Utilized Sites Remedial Action Program (FUSRAP). As you may know, FUSRAP is no longer administered and executed by DOE as Congress transferred the program to the U.S. Army Corps of Engineers beginning.in fiscal year 1998. Nonetheless, we weighed the information included in your letter against the

227

Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington  

Broader source: Energy.gov (indexed) [DOE]

COVER SHEET COVER SHEET U.S. Department of Energy, Richland Operations Office TITLE: Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Benton County, Washington (DOE/EIS-0286F) CONTACT: For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland Operations Office U.S. Department of Energy, A6-38 P.O. Box 550 Richland, Washington 99352-0550 Telephone: (509) 376-6536 Fax: (509) 372-1926 Email: hsweis@rl.gov For further information on the Department's National Environmental Policy Act (NEPA) process, contact: Ms. Carol M. Borgstrom, Director Office of NEPA Policy and Compliance, EH-42 U.S. Department of Energy 1000 Independence Avenue, S.W.

228

Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing  

Broader source: Energy.gov (indexed) [DOE]

Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R. Jensen 2 , Ryan R. Jensen 3 , John Gladden 4 , Jody Waugh 5 and Mike Serrato 4 1 Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA 2 Department of Geography, University of South Carolina, Columbia, SC 29208, USA; E-Mail: johnj@mailbox.sc.edu 3 Department of Geography, Brigham Young University, Provo, UT 84605, USA; E-Mail: ryan.jensen@byu.edu 4 Savannah River National Laboratory, Department of Energy, Aiken, SC 29808, USA;

229

Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Import Statement, Richland, Washington - Summary  

Broader source: Energy.gov (indexed) [DOE]

Link to Main Report Link to Main Report RESPONSIBLE AGENCY: COVER SHEET 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 U.S. Department of Energy, Richland Operations Office TITLE: Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Benton County, Washington (DOE/EIS-0286D2) CONTACT: For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland Operations Office U.S. Department of Energy, A6-38 P.O. Box 550 Richland, Washington 99352-0550 Telephone: (800) 426-4914 Fax: (509) 372-1926 Email: hsweis@rl.gov For further information on the Department's National Environmental Policy Act process,

230

Portable sensor for hazardous waste. Final report, March 31, 1995--May 31, 1997  

SciTech Connect (OSTI)

This report summarizes accomplishments for the second phase of a 5-year program designed to develop a portable monitor for sensitive hazardous waste detection. The approach is to excite atomic fluorescence by the technique of Spark-Induced Breakdown Spectroscopy (SIBS). The principal goals for this second phase of the program were to demonstrate sensitive detection of additional species, both RCRA metals (Sb, Be, Cd, Cr, Pb, As, Hg) and radionuclides (U, Th, Tc); to identify potential applications and develop instrument component processes, including, sample collection and excitation, measurement and test procedures, and calibration procedures; and to design a prototype instrument. Successful completion of these task results in being able to fabricate and field test a prototype of the instrument during the program`s third phase.

Piper, L.G.; Hunter, A.J.R.; Fraser, M.E.; Davis, S.H.; Finson, M.L.

1997-12-31T23:59:59.000Z

231

Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995  

SciTech Connect (OSTI)

During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters.

NONE

1995-06-01T23:59:59.000Z

232

Multiattribute utility analysis as a framework for public participation siting a hazardous waste facility  

SciTech Connect (OSTI)

How can the public play a role in decisions involving complicated scientific arguments? This paper describes a public participation exercise in which stakeholders used multiattribute utility analysis to select a site for a hazardous waste facility. Key to success was the ability to separate and address the two types of judgements inherent in environmental decisions: technical judgements on the likely consequences of alternative choices and value judgements on the importance or seriousness of those consequences. This enabled technical specialists to communicate the essential technical considerations and allowed stakeholders to establish the value judgements for the decision. Although rarely used in public participation, the multiattribute utility approach appears to provide a useful framework for the collaborative resolution of many complex environmental decision problems.

Merkhofer, M.W. [Applied Decision Analysis, Inc., Menlo Park, CA (United States); Conway, R. [Sandia National Labs., Albuquerque, NM (United States); Anderson, R.G. [Los Alamos National Lab., NM (United States)

1996-05-01T23:59:59.000Z

233

Options for improving hazardous waste cleanups using risk-based criteria  

SciTech Connect (OSTI)

This paper explores how risk- and technology-based criteria are currently used in the RCRA and CERCLA cleanup programs. It identifies ways in which risk could be further incorporated into RCRA and CERCLA cleanup requirements and the implications of risk-based approaches. The more universal use of risk assessment as embodied in the risk communication and risk improvement bills before Congress is not addressed. Incorporating risk into the laws and regulations governing hazardous waste cleanup, will allow the use of the best scientific information available to further the goal of environmental protection in the United States while containing costs. and may help set an example for other countries that may be developing cleanup programs, thereby contributing to enhanced global environmental management.

Elcock, D.

1995-06-01T23:59:59.000Z

234

Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) |  

Broader source: Energy.gov (indexed) [DOE]

Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Free Forced Air Furnace: $400 Dual Fuel Furnace: $300 Tankless Water Heater: $300 Tank Water Heater: $200 Power Vent Water Heater: $250 Space Heater: $100 Provider Columbia Gas of Kentucky Columbia Gas of Kentucky offers rebates to residential customers for the purchase and installation of energy efficient appliances and equipment. Water heaters, furnaces and space heating equipment are available for cash

235

M-Area Hazardous Waste Management Facility groundwater monitoring and corrective-action report. Second quarter 1995, Volume 1  

SciTech Connect (OSTI)

This report describes the corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site during second quarter 1995. Topics include: changes in sampling, analysis, and reporting; water levels; remedial action of groundwater; and hydrology of the affected aquifer zones.

NONE

1995-08-01T23:59:59.000Z

236

H-Area Hazardous Waste Management Facility groundwater monitoring report. Third and fourth quarters 1996, Volume 1  

SciTech Connect (OSTI)

The groundwater in the uppermost aquifer beneath the H-Area Hazardous Waste Management Facility (HWMF), also known as the H-Area Seepage Basins, at the Savannah River Site (SRS) is monitored periodically for various hazardous and radioactive constituents as required by Module III, Section D, of the 1995 Resource Conservation and Recovery ACT (RCRA) Renewal Permit (South Carolina Hazardous and Mixed Waste Permit SC1-890-008-989), effective October 5, 1995. Currently, the H-Area HWMF monitoring network consists of 130 wells of the HSB series and 8 wells of the HSL series screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the H-Area HWMF. This report presents the results of the required groundwater monitoring program as identified in provision IIIDH.11.c

NONE

1997-03-01T23:59:59.000Z

237

Evaluation of a self-guided transport vehicle for remote transportation of transuranic and other hazardous waste  

SciTech Connect (OSTI)

Between 1952 and 1970, over two million cubic ft of transuranic mixed waste was buried in shallow pits and trenches in the Subsurface Disposal Area at the Idaho National Engineering Laboratory`s Radioactive Waste Management Complex. Commingled with this two million cubic ft of waste is up to 10 million cubic ft of fill soil. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. The main contaminants are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides. Retrieval, treatment, and disposal is one of the options being considered for the waste. This report describes the results of a field demonstration conducted to evaluate a technology for transporting exhumed transuranic wastes at the Idaho National Engineering and Environmental Laboratory (INEEL) and at other hazardous or radioactive waste sites through the U.S. Department of Energy complex. The full-scale demonstration, conducted at the INEEL Robotics Center in the summer of 1995, evaluated equipment performance and techniques for remote transport of exhumed buried waste. The technology consisted of a Self-Guided Transport Vehicle designed to remotely convey retrieved waste from the retrieval digface and transport it to a receiving/processing area with minimal human intervention. Data were gathered and analyzed to evaluate performance parameters such as precision and accuracy of navigation and transportation rates.

Rice, P.M.; Moody, S.J.; Peterson, R. [and others

1997-04-01T23:59:59.000Z

238

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwate Monitoring and Corrective-Action Report, First and Second Quarters 1998, Volumes I, II, & III  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah river Site (SRS) during first and second quarters 1998. This program is required by South Carolina Hazardous Waste Permit SC1-890-008-989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. Report requirements are described in the 1995 RCRA Renewal Permit, effective October 5, 1995, Section IIIB.H.11.b for the M-Area HWMF and Section IIIG.H.11.b for the Met Lab HWMF.

Chase, J.

1998-10-30T23:59:59.000Z

239

Hazard Analysis Database report  

SciTech Connect (OSTI)

This document describes and defines the Hazard Analysis Database for the Tank Waste Remediation System Final Safety Analysis Report.

Niemi, B.J.

1997-08-12T23:59:59.000Z

240

Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes various hazards identified between 1978 when Yucca Mountain, located in arid southern Nevada, was first proposed as a potential site and 2008 when the license application to construct a repository for spent nuclear fuel and high-level radioactive waste was submitted. Although advantages of an arid site are many, hazard identification and scenario development have generally recognized fractures in the tuff as important features; climate change, water infiltration and percolation, and an oxidizing environment as important processes; and igneous activity, seismicity, human intrusion, and criticality as important disruptive events to consider at Yucca Mountain. Some of the scientific and technical challenges encountered included a change in the repository design from in-floor emplacement with small packages to in-drift emplacement with large packages without backfill. This change, in turn, increased the importance of igneous and seismic hazards.

Rob P. Rechard; Geoff A. Freeze; Frank V. Perry

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Adaption of the Magnetometer Towed Array geophysical system to meet Department of Energy needs for hazardous waste site characterization  

SciTech Connect (OSTI)

This report documents US Department of Energy (DOE)-funded activities that have adapted the US Navy`s Surface Towed Ordnance Locator System (STOLS) to meet DOE needs for a ``... better, faster, safer and cheaper ...`` system for characterizing inactive hazardous waste sites. These activities were undertaken by Sandia National Laboratories (Sandia), the Naval Research Laboratory, Geo-Centers Inc., New Mexico State University and others under the title of the Magnetometer Towed Array (MTA).

Cochran, J.R. [Sandia National Labs., Albuquerque, NM (United States); McDonald, J.R. [Naval Research Lab., Washington, DC (United States); Russell, R.J. [Geo-Centers, Inc., Newton, MA (United States); Robertson, R. [Hughes Associates, Inc., Washington, DC (United States); Hensel, E. [New Mexico State Univ., Las Cruces, NM (United States). Dept. of Mechanical Engineering

1995-10-01T23:59:59.000Z

242

Kentucky.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kentucky Kentucky www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

243

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

NONE

1997-03-01T23:59:59.000Z

244

RCRA Permit for a Hazardous Waste Management Facility, Permit Number NEV HW0101, Annual Summary/Waste Minimization Report  

SciTech Connect (OSTI)

This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

Arnold, Patrick [NSTec] [NSTec

2014-02-14T23:59:59.000Z

245

Kentucky | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kentucky Kentucky Last updated on 2013-08-02 Current News Kentucky moves forward with the 2009 IECC by reference in their updated 2007 Kentucky Building Code. 2009 IECC is effective 3/6/2011 with mandatory compliance beginning 6/1/2011. Kentucky residential code was also updated to the 2009 IECC. The code is effective 7/1/2012 with an enforcement date of 10/1/2012. Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Amendments are contained in the latest update to the 2007 Kentucky Building Code. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Kentucky (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC

246

Feature - Government of Kentucky Visit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kentucky Government Officials View Argonne Battery, Transportation Technology Projects Kentucky Government Officials View Argonne Battery, Transportation Technology Projects Glenn Keller (ES), section leader for vehicle systems (right), takes Kentucky Governor Steve Beshear on a tour of Argonne's Advanced Powertrain Research Facility. Photo by George Joch. Governor Steve Beshear of Kentucky, members of the Kentucky government, and Kentucky university officials visited Argonne's battery materials and vehicle systems groups, among others, on November 5, 2008. The visitors explored collaborative opportunities with Argonne during their stay. Vehicle Systems Manager Glenn Keller said of the visit, "The State of Kentucky has the third highest concentration of U.S. automobile production and represents a perfect synergistic partner for Argonne in terms of collaboration on advanced technologies for sustainable transportation."

247

E-Print Network 3.0 - agency listed hazardous Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Listing of Hazardous Waste 40 CFR... Hazardous Waste Management Regulations 6 NYCRR 371 Identification and Listing of Hazardous Waste 6 NYCRR 372... Substance Bulk Storage...

248

Reducing hazardous waste incinerator emissions through blending: A study of 1,1,1-trichloroethane injection  

SciTech Connect (OSTI)

We investigate whether blending liquid hazardous wastes with hydrocarbons such as alkanes can improve the destruction efficiency and reduce the combustion byproduct levels in the post-flame region of a laboratory scale combustor. Outlet species concentrations are measured with an FTIR spectrometer for mixtures of 1,1,1-trichloroethane and 25% (by volume) dodecane or heptane injected as a spray of droplets. We also inject sprays of liquid pure 1,1,1-trichloroethane, gaseous pure 1,1,1-trichloroethane, and gaseous 1,1,1-trichloroethane with 25% (by volume) heptane. Once vaporized, the 1,1,1-trichloroethane decomposes to form CO{sub 2} and HCl through the intermediates 1,1-dichloroethylene, phosgene, acetylene, and carbon monoxide. The 1,1,1-trichloroethane/alkane mixtures also form the intermediate ethylene. No significant differences are observed between injecting the compounds as a droplet spray or as a gaseous jet, not as unexpected result as the mixing time of the gas jet is longer than the vaporization time of the droplets. The addition of heptane or dodecane to 1,1,1-trichloroethane produces two principal effects: an increase in ethylene, acetylene and carbon monoxide levels for injection temperatures between 950 to 1040 K, and a decrease in 1,1-dichloroethylene, phosgene, acetylene, and carbon monoxide levels for injection temperatures greater than 1050 K. Reaction of the injected alkane causes the former effect, while the additional heat of combustion of the alkane additives causes the latter. 17 refs., 6 figs., 3 tabs.

Thomson, M.; Koshland, C.P.; Sawyer, R.F. [Univ. of California, Berkeley, CA (United States)] [and others

1996-12-31T23:59:59.000Z

249

Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Second quarter 1995  

SciTech Connect (OSTI)

During second quarter 1995, samples from seven new AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for a comprehensive list of constituents. Two parameters exceeded standards during the quarter. Lead and nickel appear to exceed final Primary Drinking Water Standards (PDWS) in AMB-18A. These data were suspect and a rerun of the samples showed levels below flagging criteria. This data will be monitored in 3Q95. Aluminum, iron, manganese, boron, silver and total organic halogens exceeded Flag 2 criteria in at least one well each during second quarter 1995. This data, as well, will be confirmed by 3Q95 testing. Groundwater flow directions in the M-Area Aquifer Zone were similar to previous quarters; the flow rate estimate, however, differs because of an error noted in the scales of measurements used for previous estimates. The estimate was 470 ft/year during second quarter 1995. Reliable estimates of flow directions and rates in the Upper Lost Lake Aquifer Zone could not be determined in previous quarters because data were insufficient. The first estimate from second quarter 1995 shows a 530 ft/year rate. Reliable estimates of flow directions and rates in the Lower Lost Lake Aquifer Zone and in the Middle Sand Aquifer Zone of the CBCU could not be calculated because of the low horizontal gradient and the near-linear distribution of the monitoring wells. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and was completed in March of this year. Analytical data from these wells are presented in this report for the first time.

Chase, J.A.

1995-09-01T23:59:59.000Z

250

Kentucky Power - Commercial Energy Efficiency Rebate Program (Kentucky) |  

Broader source: Energy.gov (indexed) [DOE]

Kentucky Power - Commercial Energy Efficiency Rebate Program Kentucky Power - Commercial Energy Efficiency Rebate Program (Kentucky) Kentucky Power - Commercial Energy Efficiency Rebate Program (Kentucky) < Back Eligibility Commercial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount T5 Fixtures (T12 Replacement): $3 - $12 T5 HO High-Bay Fixtures: $15 - $74 T8 Fixtures: $1 - $16 T8 High-Bay Fixtures: $21 - $34 CFL Fixtures: $4 - $35 CFL/LED Bulbs: $2 LED Pole Light Replacement: $30 - $88 LED Interior/Exterior Lights: $5 - $30 Pulse Start Metal Halide: $12 - $24 Tubular Skylight: $121

251

Preliminary fire hazard analysis for the PUTDR and TRU trenches in the Solid Waste Burial Ground  

SciTech Connect (OSTI)

This document represents the Preliminary Fire Hazards Analysis for the Pilot Unvented TRU Drum Retrieval effort and for the Transuranic drum trenches in the low level burial grounds. The FHA was developed in accordance with DOE Order 5480.7A to address major hazards inherent in the facility.

Gaschott, L.J.

1995-06-16T23:59:59.000Z

252

H-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1  

SciTech Connect (OSTI)

Groundwater at the H-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental control (SCDHEC) Groundwater Protection Standard (GWPS). Historically as well as currently, nitrate-nitrite as nitrogen, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constituents also exceeded the GWPS in the second half of 1995. Elevated constituents were found primarily in the water table (Aquifer Zone IIB{sub 2}), however, constitutents exceeding standards also occurred in several different aquifer zones monitoring wells. Water-level maps indicate that the groundwater flow rates and directions at the H-Area HWMF have remained relatively constant since the basins ceased to be active in 1988.

NONE

1996-03-01T23:59:59.000Z

253

Autonomous Hazardous Waste Inspection Vehicle Eric Byler, Wendell Chun, William Hoff, Dan Layne  

E-Print Network [OSTI]

Engineering Laboratory, and Rocky Flats Plant). 1.1 Problem Most waste storage facilities contain 5,000 to 20

Hoff, William A.

254

Kentucky Save Energy Now Program  

Broader source: Energy.gov [DOE]

This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Kentucky.

255

Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York  

SciTech Connect (OSTI)

A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

Weaver, Phyllis C.

2012-08-29T23:59:59.000Z

256

Ground-water levels and tritium concentrations at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky, June 1984 to April 1989  

SciTech Connect (OSTI)

The Maxey Flats disposal site, Kentucky encompasses about 280 acres near the edge of a flat-topped ridge. The ridge is underlain by fractured shale and sandstone beds of the Nancy Member and the Farmers Member of the Borden Formation of Mississippian age. Groundwater flow in the strata beneath the site occurs through fractures, and flow patterns are difficult to delineate. The potentiometric surface also is difficult to delineate because several saturated and unsaturated zones are present in the rocks. Generally, ground-water levels in wells intersecting permeable fractures fluctuated seasonally and were lowest from December through June and highest from July through November. Water levels in the disposal trenches fluctuations less than those in wells, and for most trenches the fluctuations were less than 0.5 foot. From June 1984 to April 1989, tritium concentrations in groundwater ranged from 0 to 2,402,200 picocuries/ml. The greatest and most variable tritium concentrations were in wells along the northwest side of the site. The major conduit of groundwater flow from the trenches in the northwestern part of the site is a fractured sandstone bed that forms the base of most trenches. Elsewhere along the site perimeter, elevated levels of tritium were not detected in wells, and mean tritium were not detected in wells, and mean tritium concentrations showed little change between 1986 and 1988.

Wilson, K.S.; Lyons, B.E. (Geological Survey, Reston, VA (United States))

1991-01-01T23:59:59.000Z

257

Kentucky/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Geothermal Kentucky/Geothermal < Kentucky Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kentucky Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kentucky No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kentucky No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kentucky No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kentucky Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

258

Hazard Evaluation for Storage of Spent Nuclear Fuel (SNF) Sludge at the Solid Waste Treatment Facility  

SciTech Connect (OSTI)

As part of the Spent Nuclear Fuel (SNF) storage basin clean-up project, sludge that has accumulated in the K Basins due to corrosion of damaged irradiated N Reactor will be loaded into containers and placed in interim storage. The Hanford Site Treatment Complex (T Plant) has been identified as the location where the sludge will be stored until final disposition of the material occurs. Long term storage of sludge from the K Basin fuel storage facilities requires identification and analysis of potential accidents involving sludge storage in T Plant. This report is prepared as the initial step in the safety assurance process described in DOE Order 5480.23, Nuclear Safety Analysis Reports and HNF-PRO-704, Hazards and Accident Analysis Process. This report documents the evaluation of potential hazards and off-normal events associated with sludge storage activities. This information will be used in subsequent safety analyses, design, and operations procedure development to ensure safe storage. The hazards evaluation for the storage of SNF sludge in T-Plant used the Hazards and Operability Analysis (HazOp) method. The hazard evaluation identified 42 potential hazardous conditions. No hazardous conditions involving hazardous/toxic chemical concerns were identified. Of the 42 items identified in the HazOp study, eight were determined to have potential for onsite worker consequences. No items with potential offsite consequences were identified in the HazOp study. Hazardous conditions with potential onsite worker or offsite consequences are candidates for quantitative consequence analysis. The hazardous conditions with potential onsite worker consequences were grouped into two event categories, Container failure due to overpressure - internal to T Plant, and Spill of multiple containers. The two event categories will be developed into accident scenarios that will be quantitatively analyzed to determine release consequences. A third category, Container failure due to overpressure--external to T Plant, was included for completeness but is not within the scope of the hazards evaluation. Container failures external to T Plant will be addressed as part of the transportation analysis. This document describes the HazOp analysis performed for the activities associated with the storage of SNF sludge in the T Plant.

SCHULTZ, M.V.

2000-08-22T23:59:59.000Z

259

Microsoft Word - kentucky.doc  

Gasoline and Diesel Fuel Update (EIA)

Kentucky Kentucky NERC Region(s) ....................................................................................................... RFC/SERC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 20,453 21 Electric Utilities ...................................................................................................... 18,945 16 Independent Power Producers & Combined Heat and Power ................................ 1,507 38 Net Generation (megawatthours) ........................................................................... 98,217,658 17

260

Surfactant-enhanced extraction of hazardous wastes from soils. First report  

SciTech Connect (OSTI)

Through combined efforts, researchers at Clark Atlanta University and Savannah River Site propose to develop improved soil washing techniques for decontaminating soils containing organic, inorganic and radioactive wastes. This project encompasses several tasks including (1) identification of organic, inorganic and radioactive pollutants in selected soils, (2) separation of soils into various fractions and the determination of wastes in each fraction, (3) soil decontamination by washing with surfactants and evaluation of the effectiveness of various types of surfactants in removing contaminants from soils, (4) determination of soil remediation and the effects of the surfactant concentration and wash solution-to-soil ratio on the desorption and removal of organic wastes from soils, (5) assessment of soil particle size distribution on waste efficiency, (6) evaluating the effects of temperature, mixing rates, and extraction times on waste solubilization and extraction, and (7) determination of the influence of surface charge properties and the pHs of the souls slurries on the decontamination efficiency.

Abotsi, G.; Davies, I.; Saha, G.

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Performance evaluation of the PITBULL{trademark} pump for the removal of hazardous waste  

SciTech Connect (OSTI)

One objective of the Waste Removal Project at the Department of Energy`s Savannah River Site (SRS) is to explore methods to successfully remove waste heels that will remain in the high-level waste tanks after bulk waste removal has been completed. Tank closure is not possible unless this residue is removed. As much as 151,000 liters of residue can remain after a conventional waste removal campaign. The waste heels can be comprised of sludge, zeolite, and silica. The heels are generally hardened or compacted insoluble particulate with relatively rapid settling velocities. A PITBULL{trademark} pump is being considered by SRS to retrieve sludge-type waste from Tank 19. Sections 1 through 4 of this report present the scope and objectives of the test program, describe the principles of operation of the PITBULL, and present the test approach, set-up, and instrumentation. Test results, including pumping rates with water and slurry, are provided in Section 5, along with considerations for remote operation. Conclusions and recommendations are provided in Section 6.

Hatchell, B.K.; Combs, W.H.; Hymas, C.R.; Powell, M.R.; Rinker, M.W.; White, M.

1998-09-01T23:59:59.000Z

262

Climate Action Plan (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kentucky) Kentucky) Climate Action Plan (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Climate Policies Provider Kentucky Department for Energy Development and Independence The Commonwealth of Kentucky established the Kentucky Climate Action Plan

263

Kentucky/Incentives | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Kentucky/Incentives < Kentucky Jump to: navigation, search Contents 1 Financial Incentive Programs for Kentucky 2 Rules, Regulations and Policies for Kentucky Download All Financial Incentives and Policies for Kentucky CSV (rows 1 - 125) Financial Incentive Programs for Kentucky Download Financial Incentives for Kentucky CSV (rows 1 - 70) Incentive Incentive Type Active Atmos Energy - Natural Gas and Weatherization Efficiency Program (Kentucky) Utility Rebate Program Yes Biomass Energy Grants (Kentucky) State Grant Program No Blue Grass Energy - Heating System Tune-Up Discount (Kentucky) Utility Rebate Program No

264

Alternative Fuels Data Center: Kentucky Information  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Kentucky Information Kentucky Information to someone by E-mail Share Alternative Fuels Data Center: Kentucky Information on Facebook Tweet about Alternative Fuels Data Center: Kentucky Information on Twitter Bookmark Alternative Fuels Data Center: Kentucky Information on Google Bookmark Alternative Fuels Data Center: Kentucky Information on Delicious Rank Alternative Fuels Data Center: Kentucky Information on Digg Find More places to share Alternative Fuels Data Center: Kentucky Information on AddThis.com... Kentucky Information This state page compiles information related to alternative fuels and advanced vehicles in Kentucky and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

265

M-Area Hazardous Waste Management Facility. Fourth Quarter 1994, Groundwater Monitoring Report  

SciTech Connect (OSTI)

The unlined settling basin operated from 1958 until 1985, receiving waste water that contained volatile organic solvents used for metal degreasing and chemical constituents and depleted uranium from fuel fabrication process in M Area. The underground process sewer line transported M-Area process waste waters to the basin. Water periodically overflowed from the basin through the ditch to the seepage area adjacent to the ditch and to Lost Lake.

Chase, J.A.

1995-04-20T23:59:59.000Z

266

Waste Disposal (Illinois)  

Broader source: Energy.gov [DOE]

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

267

Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities  

SciTech Connect (OSTI)

In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

Sasser, K.

1994-06-01T23:59:59.000Z

268

Trench water chemistry at commercially operated low-level radioactive waste disposal sites. [Trench waters from Maxey Flats, Kentucky and West Valley, New York  

SciTech Connect (OSTI)

Water samples from the disposal trenches of two low-level radioactive-waste-disposal sites were analyzed for their inorganic, organic, and radionuclide contents. Since oxidation of the trench waters can occur during their movement along the groundwater flow path, experiments were performed to measure the chemical and physical changes that occur in these waters upon oxidation. Low concentrations of chelating agents, shown to exist in trench waters, may be responsible for keeping radionuclides, particularly /sup 60/Co, in solution. 4 figures, 5 tables.

Pietrzak, R.F.; Dayal, R.; Kinsley, M.T.; Clinton, J.; Czyscinski, K.S.; Weiss, A.J.

1982-01-01T23:59:59.000Z

269

Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington  

Broader source: Energy.gov (indexed) [DOE]

HSW HSW EIS January 2004 1.6 Figure 1.2. States with Radioactive Waste Disposal Activities Final HSW EIS January 2004 1.12 Figure 1.3. Relationship of the HSW EIS to Other Hanford Cleanup Operations, Material Management Activities, and Key Environmental Reviews 2.17 Final HSW EIS January 2004 Figure 2.6. Waste Receiving and Processing Facility Figure 2.7. X-Ray Image of Transuranic Waste Drum Contents M0212-0286.11 HSW EIS 12-10-02 M0212-0286.12 HSW EIS 12-10-02 2.17 Final HSW EIS January 2004 Figure 2.6. Waste Receiving and Processing Facility Figure 2.7. X-Ray Image of Transuranic Waste Drum Contents M0212-0286.11 HSW EIS 12-10-02 M0212-0286.12 HSW EIS 12-10-02 Final HSW EIS January 2004 2.34 Figure 2.18. Typical Liner System Final HSW EIS January 2004 2.36

270

E-Print Network 3.0 - annual mixed waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

annually to the Kentucky Division of Waste Management... the Chemical Waste Management Procedures ... Source: Corbitt, Cynthia - Department of Biology, University of Louisville...

271

Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects  

Broader source: Energy.gov (indexed) [DOE]

STD-5507-2013 STD-5507-2013 February 2013 DOE STANDARD Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects [This Standard describes acceptable, but not mandatory means for complying with requirements. Standards are not requirements documents and are not to be construed as requirements in any audit or appraisal for compliance with associated rule or directives.] U.S. Department of Energy SAFT Washington, D.C. 20585 Distribution Statement: A. Approved for public release; distribution is unlimited This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services,

272

Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility  

SciTech Connect (OSTI)

The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

1998-03-01T23:59:59.000Z

273

M-area hazardous waste management facility groundwater monitoring and corrective-action report, First quarter 1995, Volume 1  

SciTech Connect (OSTI)

This report, in three volumes, describes the ground water monitoring and c corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during the fourth quarter 1994 and first quarter 1995. Concise description of the program and considerable data documenting the monitoring and remedial activities are included in the document. This is Volume 1 covering the following topics: sampling and results; hydrogeologic assessment; water quality assessment; effectiveness of the corrective-action program; corrective-action system operation and performance; monitoring and corrective-action program assessment; proposed monitoring and corrective-action program modifications. Also included are the following appendicies: A-standards; B-flagging criteria; C-figures; D-monitoring results tables; E-data quality/usability assessment.

NONE

1995-05-01T23:59:59.000Z

274

Disposal of Hazardous Medical Waste Policy and Procedures Commencement Date: 27 November, 1996  

E-Print Network [OSTI]

Manipulation Advisory Committee's publication, Guidelines for the Storage, Transport and Disposal of Medical" and must comply with the Guidelines for the Storage, Transport and Disposal of Medical Waste issued of their chemical, biological or physical properties. Sharps Means objects or devices having acute rigid corners

275

Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.

NONE

1996-03-01T23:59:59.000Z

276

Options for Kentucky's Energy Future  

SciTech Connect (OSTI)

Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energys (DOEs) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentuckys most abundant indigenous resource and an important industry the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealths economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentuckys electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

Larry Demick

2012-11-01T23:59:59.000Z

277

Hazard ranking system evaluation of CERCLA inactive waste sites at Hanford: Volume 2: Engineered-facility sites (HISS data base)  

SciTech Connect (OSTI)

The purpose of this report is to formally document the assessment activities at the US Department of Energy (DOE) Hanford Site. These activities were carried out pursuant to the DOE orders that address the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Program for the cleanup of inactive waste sites. The DOE orders incorporate the US Environmental Protection Agency methodology, which is based on the Superfund Amendments and Reauthorization Act of 1986. This methodology includes: PA/SI, remedial investigation/feasibility study, record of decision, design and implementation of remedial action, operation and monitoring, and verification monitoring. Volume 1 of this report discusses the CERCLA inactive waste-site evaluation process, assumptions, and results of the Hazard Ranking System methodology employed. Volume 2 presents the data on the individual CERCLA engineered-facility sites at Hanford, as contained in the Hanford Inactive Site Surveillance (HISS) Data Base. Volume 3 presents the data on the individual CERCLA unplanned-release sites at Hanford, as contained in the HISS Data Base. 13 refs.

Jette, S.J.; Lamar, D.A.; McLaughlin, T.J.; Sherwood, D.R.; Van Houten, N.C.; Stenner, R.D.; Cramer, K.H.; Higley, K.A.

1988-10-01T23:59:59.000Z

278

Rural Innovation Fund (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Innovation Fund (Kentucky) Innovation Fund (Kentucky) Rural Innovation Fund (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Nonprofit Residential Retail Supplier Systems Integrator Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Equity Investment Grant Program Provider Kentucky Science and Technology Corp. This fund provides capital to early-stage technology companies located in rural areas of Kentucky. Companies may apply for a $30,000 grant or an investment up to $100,000.

279

Coal Mining Regulations (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Coal Mining Regulations (Kentucky) Coal Mining Regulations (Kentucky) Coal Mining Regulations (Kentucky) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Retail Supplier Program Info State Kentucky Program Type Environmental Regulations Siting and Permitting Provider Kentucky Department for Energy Development and Independence Kentucky Administrative Regulation Title 405 chapters 1, 2, 3, 5, 7, 8, 10, 12, 16, 18 and 20 establish the laws governing coal mining in the state. The Department of Natural Resources under the authority of the Energy and Environment Cabinet is responsible for enforcing these laws and assuring compliance with the 1977 Federal Surface Mining Control Act (SMCRA). The Division of Mine Reclamation and Enforcement is responsible for inspecting

280

Using Helicopter Electromagnetic Surveys to Identify Potential Hazards at Mine Waste Impoundments  

SciTech Connect (OSTI)

In July 2003, helicopter electromagnetic surveys were conducted at 14 coal waste impoundments in southern West Virginia. The purpose of the surveys was to detect conditions that could lead to impoundment failure either by structural failure of the embankment or by the flooding of adjacent or underlying mine works. Specifically, the surveys attempted to: 1) identify saturated zones within the mine waste, 2) delineate filtrate flow paths through the embankment or into adjacent strata and receiving streams, and 3) identify flooded mine workings underlying or adjacent to the waste impoundment. Data from the helicopter surveys were processed to generate conductivity/depth images. Conductivity/depth images were then spatially linked to georeferenced air photos or topographic maps for interpretation. Conductivity/depth images were found to provide a snapshot of the hydrologic conditions that exist within the impoundment. This information can be used to predict potential areas of failure within the embankment because of its ability to image the phreatic zone. Also, the electromagnetic survey can identify areas of unconsolidated slurry in the decant basin and beneath the embankment. Although shallow, flooded mineworks beneath the impoundment were identified by this survey, it cannot be assumed that electromagnetic surveys can detect all underlying mines. A preliminary evaluation of the data implies that helicopter electromagnetic surveys can provide a better understanding of the phreatic zone than the piezometer arrays that are typically used.

Hammack, R.W.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry, CRAD 64-30  

Broader source: Energy.gov (indexed) [DOE]

Within the Office of Independent Oversight, the Office of Environment, Safety and Health Within the Office of Independent Oversight, the Office of Environment, Safety and Health (ES&H) Evaluations' mission is to assess the effectiveness of those environment, safety, and health systems and practices used by field orgailizatioils in implementing Integrated Safety Management and to provide clear, concise, and independent evaluations of perfomlance in protecting our workers, the public, and the environment from the hazards associated with Department of Energy (DOE) activities and sites. A key to success is the rigor and comprehensiveness of our process; and as with any process, we continually strive to improve and provide additional value and insight to field operations. Integral to this is our commitment to enhance our program. Therefore, we have revised our Inspection Criteria, Approach, and Lines

282

Evaluation of high-level nuclear waste tanks having a potential flammable gas hazard  

SciTech Connect (OSTI)

In 1990 the U.S. Department of Energy declared an unreviewed safety question as a result of the behavior of tank 241-SY-101. This tank exhibited episodic releases of flammable gases that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years a considerable amount of knowledge has been gained about the chemical and physical processes that govern the behavior of tank 241-SY-101 and the other tanks associated with a potential flammable gas hazard. This paper presents an overview of the current understanding of gas generation, retention, and release and covers the results of direct sampling of the tanks to determine the gas composition and the amount of stored gas.

Johnson, G.D.; Barton, W.B.; Hill, R.C.; et al, Fluor Daniel Hanford

1997-02-14T23:59:59.000Z

283

Making Decisions about Hazardous Waste Remediation When Even Considering a Remediation Technology Is Controversial  

Science Journals Connector (OSTI)

This public participation venue also held promise for our plans for future work to track actual dialogues over time in a subset of SSABs through audio and video recordings of full-group meetings. ... For example, while Bradbury and Branch (47) characterize some Hanford public involvement activities as collaborative problem-solving among local, regional, and national stakeholder organizations, such collaboration largely has been absent at Oak Ridge. ... For instance, at a March 1998 Oak Ridge SSAB meeting, participants discussed the need for on-site treatment of wastes within the context of regulatory and legal restrictions as well as state equity issues. ...

Amy K. Wolfe; David J. Bjornstad; Nichole D. Kerchner

2003-03-20T23:59:59.000Z

284

Clean Cities: Kentucky Clean Cities Partnership coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Kentucky Clean Cities Partnership Coalition Kentucky Clean Cities Partnership Coalition The Kentucky Clean Cities Partnership coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Kentucky Clean Cities Partnership coalition Contact Information Melissa M. Howell 502-452-9152 or 502-593-3846 mhowell@kentuckycleanfuels.org Coalition Website Clean Cities Coordinator Melissa M. Howell Photo of Melissa M. Howell Melissa Howell has served as the executive director of the Kentucky Clean Cities Partnership (KCCP) since 1993. The Kentucky Clean Fuels Coalition, a nonprofit organization, houses the Kentucky Clean Cities Partnership. The Clean Cities program in Kentucky is one of the original 20 coalitions designated in 1994. The 1999 Clean Cities National Conference was hosted in Louisville, and the

285

Selection of Steady-State Process Simulation Software to Optimize Treatment of Radioactive and Hazardous Waste  

SciTech Connect (OSTI)

The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from ''road tests'' that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment.

Nichols, T. T.; Barnes, C. M.; Lauerhass, L.; Taylor, D. D.

2001-06-01T23:59:59.000Z

286

Regulatory requirements and tools for environmental assessment of hazardous wastes: Understanding tribal and stakeholder concerns using Department of Energy sites  

Science Journals Connector (OSTI)

Many US governmental and Tribal Nation agencies, as well as state and local entities, deal with hazardous wastes within regulatory frameworks that require specific environmental assessments. In this paper we use Department of Energy (DOE) sites as examples to examine the relationship between regulatory requirements and environmental assessments for hazardous waste sites and give special attention to how assessment tools differ. We consider federal laws associated with environmental protection include the National Environmental Policy Act (NEPA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), as well as regulations promulgated by the Nuclear Regulatory Commission, Tribal Nations and state agencies. These regulatory regimes require different types of environmental assessments and remedial investigations, dose assessments and contaminant pathways. The DOE case studies illustrate the following points: 1) there is often understandable confusion about what regulatory requirements apply to the site resources, and what environmental assessments are required by each, 2) the messages sent on site safety issued by different regulatory agencies are sometimes contradictory or confusing (e.g.Oak Ridge Reservation), 3) the regulatory frameworks being used to examine the same question can be different, leading to different conclusions (e.g. Brookhaven National Laboratory), 4) computer models used in support of groundwater models or risk assessments are not necessarily successful in convincing Native Americans and others that there is no possibility of risk from contaminants (e.g. Amchitka Island), 5) when given the opportunity to choose between relying on a screening risk assessments or waiting for a full site-specific analysis of contaminants in biota, the screening risk assessment option is rarely selected (e.g. Amchitka, Hanford Site), and finally, 6) there needs to be agreement on whether there has been adequate characterization to support the risk assessment (e.g. Hanford). The assessments need to be transparent and to accommodate different opinions about the relationship between characterizations and risk assessments. This paper illustrates how many of the problems at DOE sites, and potentially at other sites in the U.S. and elsewhere, derive from a lack of either understanding of, or consensus about, the regulatory process, including the timing and types of required characterizations and data in support of site characterizations and risk assessments.

Joanna Burger; Charles Powers; Michael Gochfeld

2010-01-01T23:59:59.000Z

287

U.S. Environmental Protection Agency Region VIII Hazardous Waste Management Division  

Office of Legacy Management (LM)

Ia) Ia) Monticello Mill Tailings Site (San Juan County, Utah) I. Introduction Authority Statement. Purpose. This review was conducted pursuant to Comprehensive Environmental Response, Compensation, and Liability (CERCLA) section 121(c), National Contingency Plan (NCP) section 300.430(f)(4)(ii), and Office of Solid Waste and Emergency Response (OSWER) Directives 9355.7-02 (May 23, 1991) and 9355.7-02A (July 26, 1994). The U.S. Department of Energy (DOE) Grand Junction Office (GJO) conducted the review for the U.S. Environmental Protection Agency (EPA) Region VIII in accordance with the Monticello Site Federal Facilities Agreement (FFA), dated December 1988, and with Executive Order 12580. This is a statutory review. The purpose of a five- year review is to ensure that a remedial action remains protective of public health and the

288

Issues related to uncertainty in projections of hazardous and mixed waste volumes in the U.S. Department of Energy`s environmental restoration program  

SciTech Connect (OSTI)

Projected volumes of contaminated media and debris at US Department of Energy (DOE) environmental restoration sites that are potentially subject to the hazardous waste provisions of the Resource Conservation and Recovery Act are needed to support programmatic planning. Such projections have been gathered in various surveys conducted under DOE`s environmental restoration and waste management programs. It is expected that reducing uncertainty in the projections through review of existing site data and process knowledge and through further site characterization will result in substantially lowered projections. If promulgated, the US Environmental Protection Agency`s Hazardous Waste Identification Rule would result in potentially even greater reductions in the projections when site conditions are reviewed under the provisions of the new rule. Reducing uncertainty in projections under current and future waste identification rules may be necessary to support effective remediation planning. Further characterization efforts that may be conducted should be designed to limit uncertainty in identifying volumes of wastes to the extent needed to support alternative selection and to minimize costs of remediation.

Picel, K.C.

1995-03-01T23:59:59.000Z

289

Forestry Policies (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Forestry Policies (Kentucky) Forestry Policies (Kentucky) < Back Eligibility Agricultural Commercial Developer Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kentucky Program Type Environmental Regulations Provider Kentucky Department of Natural Resources Kentucky's forests are managed by the State Energy and Environment Cabinet, Department of Natural Resources, Division of Forestry. In 2010 the Division completed its Statewide Assessment of Forest Resources and Strategy: http://forestry.ky.gov/landownerservices/pages/forestlandassessment.aspx The document identifies several goals with respect to forest biomass for energy. The document does not directly create legislation in that regard,

290

Microenterprise Loan Program (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Microenterprise Loan Program (Kentucky) Microenterprise Loan Program (Kentucky) Microenterprise Loan Program (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Loan Program Provider Cabinet for Economic Development In partnership with Community Ventures Corporation, a non-profit community based lender, the Kentucky Cabinet for Economic Development has expanded

291

3Q/4Q99 F-Area Hazardous Waste Management Facility Corrective Action Report - Third and Fourth Quarter 1999, Volumes I and II  

SciTech Connect (OSTI)

Savannah River Site (SRS) monitors groundwater quality at the F-Area Hazardous Waste management Facility (HWMF) and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the Resource Conservation and Recovery Act (RCRA) permit. SRS also performs monthly sampling of the Wastewater Treatment Unit (WTU) effluent in accordance with Section C of the Underground Injection Control (UIC) application.

Chase, J.

2000-05-12T23:59:59.000Z

292

RSP-MW UNIVERSITY OF HAWAII RADIOACTIVE MIXED WASTE PICKUP REQUEST FORM Revision, 4/04 (WASTE CONTAINING BOTH RADIOISOTOPES AND HAZARDOUS CHEMICALS)  

E-Print Network [OSTI]

RSP-MW UNIVERSITY OF HAWAII RADIOACTIVE MIXED WASTE PICKUP REQUEST FORM Revision, 4/04 (WASTE AND UNDERSTAND ALL CONDITIONS ON THIS FORM. GENERATOR CERTIFICATION: I certify the above waste contains

Browder, Tom

293

EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky  

Broader source: Energy.gov (indexed) [DOE]

59: Uranium Hexafluoride Conversion Facility at the Paducah, 59: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site Summary This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold. This EIS also considers a no action alternative that assumes continued storage of DUF6 at the Paducah site. A

294

Radiation dose assessment methodology and preliminary dose estimates to support US Department of Energy radiation control criteria for regulated treatment and disposal of hazardous wastes and materials  

SciTech Connect (OSTI)

This report provides unit dose to concentration levels that may be used to develop control criteria for radionuclide activity in hazardous waste; if implemented, these criteria would be developed to provide an adequate level of public and worker health protection, for wastes regulated under U.S, Environmental Protection Agency (EPA) requirements (as derived from the Resource Conservation and Recovery Act [RCRA] and/or the Toxic Substances Control Act [TSCA]). Thus, DOE and the US Nuclear Regulatory Commission can fulfill their obligation to protect the public from radiation by ensuring that such wastes are appropriately managed, while simultaneously reducing the current level of dual regulation. In terms of health protection, dual regulation of very small quantities of radionuclides provides no benefit.

Aaberg, R.L.; Baker, D.A.; Rhoads, K.; Jarvis, M.F.; Kennedy, W.E. Jr.

1995-07-01T23:59:59.000Z

295

EIS-0318: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project, Trapp, Kentucky (Clark County)  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to provide cost-shared financial support for The Kentucky Pioneer IGCC Demonstration Project, an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky.

296

RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada  

SciTech Connect (OSTI)

This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

,

2013-02-21T23:59:59.000Z

297

RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2011  

SciTech Connect (OSTI)

This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream; a description and quantity of each waste stream in tons and cubic feet received at the facility; the method of treatment, storage, and/or disposal for each waste stream; a description of the waste minimization efforts undertaken; a description of the changes in volume and toxicity of waste actually received; any unusual occurrences; and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

NSTec Environmental Restoration

2012-02-16T23:59:59.000Z

298

Natural Gas Regulations (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Regulations (Kentucky) Natural Gas Regulations (Kentucky) Natural Gas Regulations (Kentucky) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Kentucky Program Type Environmental Regulations Siting and Permitting Provider Department For Natural Resources Kentucky Administrative Regulation title 805 promulgates the rules and regulations pertaining to natural gas production in Kentucky. In addition to KAR title 405, chapter 30, which pertains to any oil shale operation, these regulations govern natural gas operations throughout the state. The following information is found in KAR title 404 chapter 30: Oil shale operations or related activity require a valid permit covering

299

Categorical Exclusion Determinations: Kentucky | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kentucky Kentucky Categorical Exclusion Determinations: Kentucky Location Categorical Exclusion Determinations issued for actions in Kentucky. DOCUMENTS AVAILABLE FOR DOWNLOAD September 23, 2013 CX-010919: Categorical Exclusion Determination Advanced Catalytic Solvent for Carbon Dioxide (CO2) Capture CX(s) Applied: B3.6 Date: 09/23/2013 Location(s): Kentucky Offices(s): National Energy Technology Laboratory September 23, 2013 CX-010921: Categorical Exclusion Determination Advanced Catalytic Solvent for Carbon Dioxide (CO2) Capture CX(s) Applied: A9 Date: 09/23/2013 Location(s): Kentucky Offices(s): National Energy Technology Laboratory July 25, 2013 CX-010606: Categorical Exclusion Determination Development of Subsurface Brine Disposal Framework in the Northern Appalachian Basin

300

Control technology assessment of hazardous-waste-disposal operations in chemicals manufacturing: in-depth survey report of San Juan Cement Company, Dorado, Puerto Rico, November 1981  

SciTech Connect (OSTI)

A visit was made to the San Juan Cement Company, Dorado, Puerto Rico to evaluate control methods for a storage and delivery system for hazardous wastes used in a demonstration project as a supplemental fuel for cofiring a cement kiln. Analysis of the material during the visit revealed the presence of methylene chloride, carbon-tetrachloride, chloroform, acetone, hexane, ethanol, and ethyl acetate. Steel storage tanks were placed on an impermeable concrete slab surrounded by a sealed retaining wall. Steel piping with all welded joints carried the waste fuels from storage tanks to the kiln, where fuels were injected through a specially fabricated burner. Vapor emissions were suppressed by venting the displaced vapor through a recycle line. Exhaust gases from the kiln passed through a bag house type dust collector, and were vented to the atmosphere through a single stack. Half-mask air-purifying respirators were used when in the hazardous-waste storage/delivery area. Neoprene gloves were used when performing tasks with potential skin contact. Hard hats, safety glasses, and safety boots were all worn. The author concludes that the control methods used seemed effective in suppressing vapor emissions.

Crandall, M.S.

1982-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant LAW Melter and Melter Off-gas Process System Hazards Analysis _Oct 21-31  

Broader source: Energy.gov (indexed) [DOE]

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-10-21 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities Dates of Activity : 10/21/13 - 10/31/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS), Office of Safety and Emergency Management Evaluations (Independent Oversight) reviewed the Insight software hazard evaluation (HE) tables for hazard analysis (HA) generated to date for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter and Off-gas systems, observed a

302

Kenergy- Residential Energy Efficiency Rebate Program (Kentucky)  

Broader source: Energy.gov [DOE]

Kenergy is an electric cooperative that serves 51,000 households and commercial customers in 14 western Kentucky counties. Currently, Kenergy offers three rebate programs for residential customers...

303

Kentucky Department of Agriculture | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Agriculture Kentucky Department of Agriculture At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Wilbur Frye (Office of Consumer...

304

Kentucky Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

305

Kentucky Utilities Co (Tennessee) | Open Energy Information  

Open Energy Info (EERE)

Tennessee) Jump to: navigation, search Name: Kentucky Utilities Co (Tennessee) Place: Tennessee References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861...

306

State Energy Program: Kentucky Implementation Model Resources  

Broader source: Energy.gov [DOE]

Below are resources associated with the U.S. Department of Energy's Weatherization and Intergovernmental Programs Office State Energy Program Kentucky Implementation Model.

307

Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy...  

Broader source: Energy.gov (indexed) [DOE]

Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER Sherwin-Williams' Richmond, Kentucky,...

308

Study of chemical toxicity of low-level wastes. Volume 1. Main report  

SciTech Connect (OSTI)

The chemical composition of fuel-cycle wastes is reasonably well known. By comparison, there is little information on the chemical composition of non-fuel cycle wastes. Such non-fuel cycle wastes come from a variety of sources - industrial, chemical, and medical. Because of the paucity of information, it is difficult to define the chemical characteristics and to evaluate potential hazards of non-fuel cycle wastes as a result of chemical toxicity. This report provides an assessment of the chemical toxicity of low-level radioactive wastes based on literature reviews, preparation of bibliographies and monographs, and application of a variety of methodologies either being currently applied or being proposed for relative hazard assessments. The report relies primarily on data from the Maxey Flats, Kentucky waste disposal site. While there are differences between humid and dry sites, the findings are believed to be generally applicable to evaluating the chemical toxicity of wastes at all low-level radioactive waste burial sites.

Not Available

1980-11-01T23:59:59.000Z

309

Study of chemical toxicity of low-level wastes. Volume 2. Monographs  

SciTech Connect (OSTI)

The chemical composition of fuel-cycle wastes is reasonably well known. By comparison, there is little information on the chemical composition of non-fuel cycle wastes. Such non-fuel cycle wastes come from a variety of sources - industrial, chemical, and medical. Because of the paucity of information, it is difficult to define the chemical characteristics and to evaluate potential hazards of non-fuel cycle wastes as a result of chemical toxicity. This report provides an assessment of the chemical toxicity of low-level radioactive wastes based on literature reviews, preparation of bibliographies and monographs, and application of a variety of methodologies either being currently applied or being proposed for relative hazard assessments. The report relies primarily on data from the Maxey Flats, Kentucky waste disposal site. While there are differences between humid and dry sites, the findings are believed to be generally applicable to evaluating the chemical toxicity of wastes at all low-level radioactive waste burial sites.

Not Available

1980-11-01T23:59:59.000Z

310

A PROFILE OF KENTUCKY MEDICAID MENTAL HEALTH  

E-Print Network [OSTI]

can be advanced--among patients, health care providers, and the community at large. This workA PROFILE OF KENTUCKY MEDICAID MENTAL HEALTH DIAGNOSES, 2000-2010 #12; #12; i A Profile of Kentucky Medicaid Mental Health Diagnoses, 20002010 BY Michael T. Childress

Hayes, Jane E.

311

Global Emissions of Trace Gases, Particulate Matter, and Hazardous Air Pollutants from Open Burning of Domestic Waste  

Science Journals Connector (OSTI)

For each country, the amount of waste burned (WB) is estimated using the general guidelines from section 5.3.2 in the 2006 IPCC Guidelines for National GHG Inventories:(4)(2)where P is the national population, Pfrac is the fraction of the population assumed to burn some of their waste, MSWP is the mass of annual per capita waste production, and Bfrac is the fraction of waste available to be burned that is actually burned. ... In urban areas, waste that is not collected is assumed to be burnable. ... Among the most important sources, open fires in agriculture/forests as well as open burning of wastes have been identified as the major sources of PCDD/PCDF. ...

Christine Wiedinmyer; Robert J. Yokelson; Brian K. Gullett

2014-07-14T23:59:59.000Z

312

Nuclear Waste Disposal: Can the Geologist Guarantee Isolation?  

Science Journals Connector (OSTI)

...to check whether waste disposal really does need an almost...been reported recently at Maxey Flats (Kentucky) (26...radioactive waste burial site, inside a fractured rock...effect of the geological disposal is to con-centrate 3530...

G. de Marsily; E. Ledoux; A. Barbreau; J. Margat

1977-08-05T23:59:59.000Z

313

New Energy Ventures (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Ventures (Kentucky) Ventures (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on August 29, 2013. EZFeed Policy Place Kentucky Applies to States or Provinces Kentucky Name New Energy Ventures (Kentucky) Policy Category Financial Incentive Policy Type Equity Investment, Grant Program Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Hydroelectric, Hydroelectric (Small), Natural Gas, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Primary Website http://startups.kstc.com/index.php/funding-opportunities/kef-funds Information Source http://startups.kstc.com/images/resource_docs/knev%20guidelines%20revision%2020121112.pdf

314

Microenterprise Loan Program (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Microenterprise Loan Program (Kentucky) Microenterprise Loan Program (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on November 28, 2013. EZFeed Policy Place Kentucky Applies to States or Provinces Kentucky Name Microenterprise Loan Program (Kentucky) Policy Category Financial Incentive Policy Type Loan Program Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Primary Website http://thinkkentucky.com/smbd/SMBB.aspx Information Source http://www.thinkkentucky.com/kyedc/pdfs/KMEL%20Fact%20Sheet.pdf

315

Rural Innovation Fund (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Innovation Fund (Kentucky) Innovation Fund (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on August 29, 2013. EZFeed Policy Place Kentucky Applies to States or Provinces Kentucky Name Rural Innovation Fund (Kentucky) Policy Category Financial Incentive Policy Type Equity Investment, Grant Program Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Primary Website http://startups.kstc.com/index.php/funding-opportunities/kef-funds Information Source http://startups.kstc.com/images/resource_docs/rif%20guidelines%2020130131.pdf

316

Recovery Act State Memos Kentucky  

Broader source: Energy.gov (indexed) [DOE]

5 5 $5.9 billion $78.8 million $28.6 million $13 million Ford Motor Company closed a $5.9 billion loan arrangement under the Department of Energy's Advanced Technology Vehicles Manufacturing program to transform factories across Illinois, Kentucky, Michigan, Missouri, and Ohio to produce 13 more fuel efficient models. The company estimates the project will transform nearly 35,000 employees to green engineering and manufacturing jobs. Paducah Remediation Services, LLC was awarded $78.8 million to accelerate the complete demolition of three facilities at the Paducah Gaseous Diffusion Plant. ZF Steering Systems, LLC in Florence was awarded a clean energy

317

Recovery Act State Memos Kentucky  

Broader source: Energy.gov (indexed) [DOE]

6 6 $5.9 billion $78.8 million $28.6 million $13 million Ford Motor Company closed a $5.9 billion loan arrangement under the Department of Energy's Advanced Technology Vehicles Manufacturing program to transform factories across Illinois, Kentucky, Michigan, Missouri, and Ohio to produce 13 more fuel efficient models. The company estimates the project will transform nearly 35,000 employees to green engineering and manufacturing jobs. Paducah Remediation Services, LLC was awarded $78.8 million to accelerate the complete demolition of three facilities at the Paducah Gaseous Diffusion Plant. ZF Steering Systems, LLC in Florence was awarded a clean energy

318

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network [OSTI]

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Fluorescent are hazardous waste, so take care to ensure the tubes remain intact during removal and storage. Fluorescent

Wilcock, William

319

Alternative Fuels Data Center: Kentucky Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Kentucky Points of Kentucky Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Kentucky Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Kentucky Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Kentucky Points of Contact on Google Bookmark Alternative Fuels Data Center: Kentucky Points of Contact on Delicious Rank Alternative Fuels Data Center: Kentucky Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Kentucky Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Points of Contact The following people or agencies can help you find more information about Kentucky's clean transportation laws, incentives, and funding

320

Alternative Fuels Data Center: Kentucky Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Kentucky Laws and Kentucky Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Kentucky. Your Clean Cities coordinator at

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Apatite- and monazite-bearing glass-crystal composites for the immobilization of low-level nuclear and hazardous wastes  

SciTech Connect (OSTI)

This study demonstrates that glass-crystal composite waste forms can be produced from waste streams containing high proportions of phosphorus, transition metals, and/or halides. The crystalline phases produced in crucible-scale melts include apatite, monazite, spinels, and a Zr-Si-Fe-Ti phase. These phases readily incorporated radionuclide and toxic metals into their crystal structures, while corrosion tests have demonstrated that glass-crystal composites can be up to 300-fold more durable than simulated high-level nuclear waste glasses, such as SRL 202U.

Wronkiewicz, D.J.; Wolf, S.F.; DiSanto, T.S.

1995-12-31T23:59:59.000Z

322

Proceedings of the 1980 UCC-ND and GAT waste management seminar  

SciTech Connect (OSTI)

Papers and/or abstracts of 42 papers presented at this waste management seminar are included in this volume. Separate abstracts of 27 papers have been prepared for inclusion in the Energy Data Base (EDB). There are 8 papers represented in the proceedings by abstract only and are not included separately in EDB. The subjects covered in these abstracts include: requirements and compliance for the issuance of the second round NPDES permit for the Portsmouth Plant; performance of the pollution abatement facilities at the Portsmouth Plant; the impact of the Kentucky hazardous waste regulations on the Paducah Plant; control of R-114 losses at the gaseous diffusion plants; innovative alternatives to pollution control projects; evaluating the fate and potential radiological impacts of Technetium-99 released to the environment; and technical support interfacing for the FY-1981 line item project control of water pollution and solid wastes at the Paducah Plant. There are 15 other papers which were previously input to the EDB. (RJC)

None

1980-12-01T23:59:59.000Z

323

Journal of Hazardous Materials B114 (2004) 7591 Leaching of CCA-treated wood: implications for waste disposal  

E-Print Network [OSTI]

Journal of Hazardous Materials B114 (2004) 75­91 Leaching of CCA-treated wood: implications, and copper from chromated copper arsenate (CCA)-treated wood poses possible environmental risk when disposed. Samples of un-weathered CCA-treated wood were tested using a variety of the US regulatory leaching

Florida, University of

324

Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky: Energy Resources Kentucky: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8393332,"lon":-84.2700179,"alt":0,"address":"Kentucky","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Enterprise Assessments Operational Awareness Record, Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))...

326

Categorical Exclusion Determinations: Kentucky | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 2, 2010 June 2, 2010 CX-002501: Categorical Exclusion Determination Beneficiation of Fine Size Powder River Basin Coal CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Lexington, Kentucky Office(s): Fossil Energy, National Energy Technology Laboratory June 2, 2010 CX-003128: Categorical Exclusion Determination University of Kentucky Research Foundation -A Solvent/Membrane Hybrid Post-combustion Carbon Dioxide Capture Process CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Kentucky Office(s): Advanced Research Projects Agency - Energy May 27, 2010 CX-002516: Categorical Exclusion Determination Industrial Facility Retrofit Showcase - Arch Chemicals, Inc. CX(s) Applied: B5.1 Date: 05/27/2010 Location(s): Brandenburg, Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy

327

Carbon Capture Pilots (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Pilots (Kentucky) Pilots (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 12, 2013. EZFeed Policy Place Kentucky Name Carbon Capture Pilots (Kentucky) Policy Category Other Policy Policy Type Industry Recruitment/Support Affected Technologies Coal with CCS Active Policy Yes Implementing Sector State/Province Primary Website http://energy.ky.gov/carbon/Pages/default.aspx Summary Support for the Carbon Management Research Group (CMRG), a public/private partnership consisting of most of the Commonwealth's utilities, the Electric Power Research Institute, the Center for Applied Energy Research (CAER), and the Department for Energy Development and Independence (DEDI),

328

Energy Incentive Programs, Kentucky | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kentucky Kentucky Energy Incentive Programs, Kentucky October 29, 2013 - 11:29am Addthis Updated December 2012 What public-purpose-funded energy efficiency programs are available in my state? Kentucky has no public-purpose-funded energy efficiency programs. The state's utilities budgeted over $50 million for energy efficiency and load management programs in 2011. What utility energy efficiency programs are available to me? Duke Energy offers the Smart Saver Incentive Program for rebates on high efficiency lighting, VFDs, pumps, HVAC equipment (including chillers), industrial processes, and food service equipment. Beside the prescriptive offerings, there is also a new Custom Incentive Program to cover measures outside of the prescriptive program's scope. Incentives are based on the

329

Kentucky/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Wind Resources Kentucky/Wind Resources < Kentucky Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Kentucky Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

330

1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000.

Chase, J.

2000-10-24T23:59:59.000Z

331

Implementation of the hazardous debris rule  

SciTech Connect (OSTI)

Hazardous debris includes objects contaminated with hazardous waste. Examples of debris include tree stumps, timbers, boulders, tanks, piping, crushed drums, personal protective clothing, etc. Most of the hazardous debris encountered comes from Superfund sites and other facility remediation, although generators and treaters of hazardous waste also generate hazardous debris. Major problems associated with disposal of debris includes: Inappropriateness of many waste treatments to debris; Difficulties in obtaining representative samples; Costs associated with applying waste specific treatments to debris; Subtitle C landfill space was being used for many low hazard debris types. These factors brought about the need for debris treatment technologies and regulations that addressed these issues. The goal of such regulation was to provide treatment to destroy or remove the contamination if possible and, if this is achieved, to dispose of the cleaned debris as a nonhazardous waste. EPA has accomplished this goal through promulgation of the Hazardous Debris Rule, August 18, 1992.

Sailer, J.E.

1993-01-05T23:59:59.000Z

332

Chapter 52 Permits, Registrations, and Prohibitory Rules (Kentucky) |  

Broader source: Energy.gov (indexed) [DOE]

Chapter 52 Permits, Registrations, and Prohibitory Rules (Kentucky) Chapter 52 Permits, Registrations, and Prohibitory Rules (Kentucky) Chapter 52 Permits, Registrations, and Prohibitory Rules (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kentucky Program Type Environmental Regulations Siting and Permitting Provider Kentucky Department for Environmental Protection Kentucky Administrative Regulation Chapter 52, entitled Air Quality: Permits, Registrations, and Prohibitory Rules, is promulgated under the authority of the Division of Air Quality within the Energy and Environment Cabinet's Department for Environmental Protection. Chapter 52 outlines the permitting requirements for all air pollution sources within the state;

333

Chapter 53 Ambient Air Quality (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3 Ambient Air Quality (Kentucky) 3 Ambient Air Quality (Kentucky) Chapter 53 Ambient Air Quality (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kentucky Program Type Environmental Regulations Safety and Operational Guidelines Provider Kentucky Department for Environmental Protection Kentucky Administrative Regulation Chapter 53, entitled Ambient Air Quality, is promulgated under the authority of the Division of Air Quality within the Energy and Environment Cabinet's Department for Environmental Protection. Chapter 53 sets the air quality standards for pollutants regulated under the federally mandated Clean Air Act. The purpose of the

334

Control technology assessment of hazardous waste disposal operations in chemicals manufacturing: walk-through survey report of E. I. Du Pont de Nemours and Company, Chambers Works, Deepwater, New Jersey  

SciTech Connect (OSTI)

A walk through survey was conducted to assess control technology for hazardous wastes disposal operations at du Pont de Nemours and Company (SIC-2800), Deepwater, New Jersey in November 1981. Hazardous wastes generated at the facility were disposed of by incineration, wastewater and thermal treatment, and landfilling. Engineering controls for the incineration process and at the landfill were noted. At the landfill, water from a tank trailer was sprayed periodically to suppress dust generation. Vapor control devices, such as spot scrubbers, were used during transfer of organic wastes from trailers and drums to storage prior to incineration. Wastes were also recirculated to prevent build up of grit in the strainers. The company conducted area monitoring for nitrobenzene (98953) and amines at the landfill and personal monitoring for chloramines at the incinerator. Half mask dust respirators were worn by landfill operators. Operators who unloaded and emptied drums at the incinerator were required to wear face masks, rubber gloves, and boots. The author concludes that disposal of hazardous wastes at the facility is state of the art. An in depth survey is recommended.

Anastas, M.

1984-01-01T23:59:59.000Z

335

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 7. Accident analysis; selection and assessment of potential release scenarios  

SciTech Connect (OSTI)

In this part of the assessment, several accident scenarios are identified that could result in significant releases of chemicals into the environment. These scenarios include ruptures of storage tanks, large magnitude on-site spills, mixing of incompatible wastes, and off-site releases caused by tranpsortation accidents. In evaluating these scenarios, both probability and consequence are assessed, so that likelihood of occurrence is coupled with magnitude of effect in characterizing short term risks.

NONE

1997-05-01T23:59:59.000Z

336

Oil and Hazardous Substance Discharge Preparedness (Minnesota)  

Broader source: Energy.gov [DOE]

Anyone who owns or operates a vessel or facility that transports, stores, or otherwise handles hazardous wastes must take reasonable steps to prevent the discharge of those materials.

337

Alternative Fuels Data Center: Kentucky Laws and Incentives for Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Grants to someone by E-mail Grants to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Grants on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Grants on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Grants on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Grants on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Grants on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Grants The list below contains summaries of all Kentucky laws and incentives

338

Alternative Fuels Data Center: Kentucky Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives Listed below are the summaries of all current Kentucky laws, incentives, regulations, funding opportunities, and other initiatives related to

339

Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Ethanol The list below contains summaries of all Kentucky laws and incentives

340

Kentucky Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Kentucky are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Kentucky's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Kentucky to play an important role in the new energy economy of the future. Kentucky Recovery Act State Memo More Documents & Publications

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Kentucky Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Kentucky are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Kentucky's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Kentucky to play an important role in the new energy economy of the future. Kentucky Recovery Act State Memo More Documents & Publications

342

Alternative Fuels Data Center: Kentucky Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Biodiesel The list below contains summaries of all Kentucky laws and incentives

343

Alternative Fuels Data Center: Kentucky Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Other The list below contains summaries of all Kentucky laws and incentives

344

Alternative Fuels Data Center: Kentucky Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Other The list below contains summaries of all Kentucky laws and incentives

345

Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hybrid Electric Hybrid Electric Horsepower for Kentucky Schools to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on AddThis.com... April 7, 2011 Hybrid Electric Horsepower for Kentucky Schools " The hybrid school bus project not only serves as a means to improve

346

Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for EVs The list below contains summaries of all Kentucky laws and incentives

347

Alternative Fuels Data Center: Kentucky Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Other The list below contains summaries of all Kentucky laws and incentives

348

Categorical Exclusion Determinations: Kentucky | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 10, 2009 December 10, 2009 CX-000342: Categorical Exclusion Determination Kentucky Hybrid School Bus Project CX(s) Applied: A1, A9 Date: 12/10/2009 Location(s): Frankfort, Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 4, 2009 CX-000332: Categorical Exclusion Determination Kentucky Revision 2 - Industrial Facility Retrofit Showcase CX(s) Applied: B1.4, B1.15, B1.22, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 12/04/2009 Location(s): Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 3, 2009 CX-000331: Categorical Exclusion Determination Kentucky Revision 2 - Commercial Office Building Retrofit Showcase CX(s) Applied: B1.4, B1.5, B1.15, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5,

349

Technically recoverable Devonian shale gas in Kentucky  

SciTech Connect (OSTI)

This report evaluates the natural gas potential of the Devonian Age shales of Kentucky. For this, the study: (1) compiles the latest geologic and reservoir data to establish the gas in-place; (2) analyzes and models the dominant gas production mechanisms; and (3) examines alternative well stimulation and production strategies for most efficiently recovering the in-place gas. The major findings of the study include the following: (1) The technically recoverable gas from Devonian shale (Lower and Upper Huron, Rhinestreet, and Cleveland intervals) in Kentucky is estimated to range from 9 to 23 trillion cubic feet (Tcf). (2) The gas in-place for the Devonian shales in eastern Kentucky is 82 Tcf. About one half of this amount is found in the Big Sandy gas field and its immediate extensions. The remainder is located in the less naturally fractured, but organically rich area to the west of the Big Sandy. (3) The highly fractured shales in the Big Sandy area in southeast Kentucky and the more shallow shales of eastern Kentucky respond well to small-scale stimulation. New, larger-scale stimulation technology will be required for the less fractured, anisotropic Devonian shales in the rest of the state. 44 refs., 49 figs., 24 tabs.

Kuuskraa, V.A.; Sedwick, K.B.; Thompson, K.B.; Wicks, D.E.

1985-05-01T23:59:59.000Z

350

Stimulating Energy Efficiency in Kentucky: An Implementation Model for States  

Broader source: Energy.gov [DOE]

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Stimulating Energy Efficiency in Kentucky.

351

Solid Waste Management Plan. Revision 4  

SciTech Connect (OSTI)

The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

NONE

1995-04-26T23:59:59.000Z

352

Pesticide use in Kentucky reservoir watershed  

SciTech Connect (OSTI)

This report summarizes information on the types, uses, and amounts of pesticides applied to Kentucky Reservoir and its immediate watershed. Estimates for the quantities and types of the various pesticides used are based primarily on the land uses in the watershed. A listing of commonly used pesticides is included describing their uses, mode of action, and potential toxicological effects. This report will inform the the public and the Kentucky Reservoir Water Resources Task Force of the general extent of pesticide usage and is not an assessment of pesticide impacts. 10 refs., 5 figs., 9 tabs.

Butkus, S.R.

1988-06-01T23:59:59.000Z

353

Area G Perimeter Surface-Soil Sampling Environmental Surveillance for Fiscal Year 1998 Hazardous and Solid Waste Group (ESH-19)  

SciTech Connect (OSTI)

Material Disposal Area G (Area G) is at Technical Area 54 at Los Alamos National Laboratory (LANL). Area G has been the principal facility for the disposal of low-level, solid-mixed, and transuranic waste since 1957. It is currently LANL's primary facility for radioactive solid waste burial and storage. As part of the annual environmental surveillance effort at Area G, surface soil samples are collected around the facility's perimeter to characterize possible radionuclide movement off the site through surface water runoff During 1998, 39 soil samples were collected and analyzed for percent moisture, tritium, plutonium-238 and 239, cesium-137 and americium-241. To assess radionuclide concentrations, the results from these samples are compared with baseline or background soil samples collected in an undisturbed area west of the active portion Area G. The 1998 results are also compared to the results from analogous samples collected during 1996 and 1997 to assess changes over this time in radionuclide activity concentrations in surface soils around the perimeter of Area G. The results indicate elevated levels of all the radionuclides assessed (except cesium-137) exist in Area G perimeter surface soils vs the baseline soils. The comparison of 1998 soil data to previous years (1996 and 1997) indicates no significant increase or decrease in radionuclide concentrations; an upward or downward trend in concentrations is not detectable at this time. These results are consistent with data comparisons done in previous years. Continued annual soil sampling will be necessary to realize a trend if one exists. The radionuclide levels found in the perimeter surface soils are above background but still considered relatively low. This perimeter surface soil data will be used for planning purposes at Area G, techniques to prevent sediment tm.nsport off-site are implemented in the areas where the highest radionuclide concentrations are indicated.

Marquis Childs

1999-09-01T23:59:59.000Z

354

Records of wells and chemical analyses of water from wells for the period June 13, 1984 to December 4, 1986 at the Maxey Flats radioactive waste disposal site, Kentucky  

SciTech Connect (OSTI)

Lithologic data are presented for 113 wells drilled at the Maxey Flats Radioactive Waste Disposal Site for the period June 13, 1984 to December 4, 1986. Water levels, tritium concentrations, and specific conductance are also presented for wells yielding sufficient water for measuring and sampling. At least one sample was collected from most wells for the determination of gross alpha and beta activity. These activities and the results for gamma emitting radionuclides (Cobalt 60 and Cesium 137) are also presented.

Lyverse, M.A.

1987-01-01T23:59:59.000Z

355

KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) |  

Broader source: Energy.gov (indexed) [DOE]

KRS Chapter 278: Electric Generation and Transmission Siting KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) < Back Eligibility Commercial Developer Investor-Owned Utility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Environmental Regulations Provider Kentucky Public Service Commission No person shall commence to construct a merchant electric generating facility until that person has applied for and obtained a construction certificate for the facility from the Kentucky State Board on Electric Generation and Transmission. The construction certificate shall be valid

356

Small Business Tax Credit (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Small Business Tax Credit (Kentucky) Small Business Tax Credit (Kentucky) Small Business Tax Credit (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Low-Income Residential Multi-Family Residential Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Corporate Tax Incentive Personal Tax Incentives Provider Cabinet for Economic Development The Kentucky Small Business Tax Credit (KSBTC) program is designed to encourage small business growth and job creation by providing a nonrefundable state income tax credit to eligible small businesses hiring

357

Remedial Action Assessment System (RAAS): Evaluation of selected feasibility studies of CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) hazardous waste sites  

SciTech Connect (OSTI)

Congress and the public have mandated much closer scrutiny of the management of chemically hazardous and radioactive mixed wastes. Legislative language, regulatory intent, and prudent technical judgment, call for using scientifically based studies to assess current conditions and to evaluate and select costeffective strategies for mitigating unacceptable situations. The NCP requires that a Remedial Investigation (RI) and a Feasibility Study (FS) be conducted at each site targeted for remedial response action. The goal of the RI is to obtain the site data needed so that the potential impacts on public health or welfare or on the environment can be evaluated and so that the remedial alternatives can be identified and selected. The goal of the FS is to identify and evaluate alternative remedial actions (including a no-action alternative) in terms of their cost, effectiveness, and engineering feasibility. The NCP also requires the analysis of impacts on public health and welfare and on the environment; this analysis is the endangerment assessment (EA). In summary, the RI, EA, and FS processes require assessment of the contamination at a site, of the potential impacts in public health or the environment from that contamination, and of alternative RAs that could address potential impacts to the environment. 35 refs., 7 figs., 1 tab.

Whelan, G. (Pacific Northwest Lab., Richland, WA (USA)); Hartz, K.E.; Hilliard, N.D. (Beck (R.W.) and Associates, Seattle, WA (USA))

1990-04-01T23:59:59.000Z

358

Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Propane (LPG)

359

CO2 Geologic Storage (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) < Back Eligibility Industrial Program Info State Kentucky Program Type Industry Recruitment/Support Provider Consultant, Division of Carbon Management Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon dioxide (CO2) in Kentucky. In 2012, KGS conducted a test of carbon dioxide enhanced natural gas recovery in the Devonian Ohio Shale, Johnson County, east Kentucky. During the test, 87 tons of CO2 were injected through perforations in a cased, shut-in shale gas well. Industry partners for this research included Crossrock Drilling, Advanced Resources International, Schlumberger, Ferus Industries, and

360

Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Driving / Idling

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alternative Fuels Data Center: Kentucky Laws and Incentives for Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Tax Incentives

362

The University of Kentucky Web Homework System  

E-Print Network [OSTI]

WHS: The University of Kentucky Web Homework System WHS is a web-based instructional support system materials such as web pages and streaming video, and the hosting of sets of homework assignments account. In either case the first step is to select the "Web Homework" link on the mathclass.com main page

Lee, Carl

363

Massachusetts Oil and Hazardous Material Release Prevention and Response Act, State Superfund Law (Massachusetts)  

Broader source: Energy.gov [DOE]

This Act contains information on prevention strategies for hazardous material release, permits for facilities managing hazardous waste, and response tactics and liability in the event such release...

364

Dendrogeomorphic approach to estimating slope retreat, Maxey Flats, Kentucky  

SciTech Connect (OSTI)

A dendrogeomorphic study of slope retreat was conducted at the Maxey Flats nuclear-waste disposal site in northeastern Kentucky. Tree roots exposed by surface lowering were used as an indicator of ground surface at the time of germination. The amount of lowering was measured and divided by tree-ring-determined tree age. Surface lowering and slope degradation rates were estimated for three slopes below waste-burial trenches and compared with data obtained from sediment troughs and erosion frames at the site. Mean rates of slope retreat ranged from 1.92 to 3.16 mm/yr. Sediment-trough results are two to three orders of magnitude less than dendrogeomorphic and erosion-frame estimates of slope degradation, which suggests that piping and solution-weathering processes may be important in slope degradation. Slope aspect and declivity may be important factors affecting retreat of slopes with a uniform lithology. Dendrogeomorphic techniques provide results comparable to those in the literature and offer a rapid method for estimating slope retreat that integrates slope processes over many years.

Hupp, C.R. (Geological Survey, Reston, VA (USA)); Carey, W.P. (Geological Survey, Lakewood, CO (USA))

1990-07-01T23:59:59.000Z

365

CO2 Geologic Storage (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 12, 2013. EZFeed Policy Place Kentucky Name CO2 Geologic Storage (Kentucky) Policy Category Other Policy Policy Type Industry Recruitment/Support , Technical Feasibility Projects Affected Technologies Coal with CCS Active Policy Yes Implementing Sector State/Province Program Administrator Brandon Nutall, Division of Carbon Management Primary Website http://energy.ky.gov/carbon/Pages/default.aspx Summary Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon dioxide (CO2) in Kentucky. In

366

Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Producer to someone by E-mail Producer to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Producer on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Producer on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Producer on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Producer on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Producer on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Producer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

367

Alternative Fuels Data Center: Kentucky Laws and Incentives for Aftermarket  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Aftermarket Conversions to someone by E-mail Aftermarket Conversions to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Aftermarket Conversions on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Aftermarket Conversions on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Aftermarket Conversions on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Aftermarket Conversions on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Aftermarket Conversions on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Aftermarket Conversions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

368

Alternative Fuels Data Center: Kentucky Laws and Incentives for Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

369

Kentucky Utilities Company - Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Kentucky Utilities Company - Residential Energy Efficiency Rebate Kentucky Utilities Company - Residential Energy Efficiency Rebate Program (Kentucky) Kentucky Utilities Company - Residential Energy Efficiency Rebate Program (Kentucky) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Water Heating Windows, Doors, & Skylights Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Heat Pump Water Heater: $300 Refrigerator: $100 Freezer: $50 Clothes Washer: $75 Dishwasher: $50 Window Film: 50% of material cost, up to $200 Central AC: $100, plus $100 for each SEER above minimum federal high efficiency standard Air-Source Heat Pump: $100, plus $100 for each SEER above minimum federal

370

Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Purchaser to someone by E-mail Alternative Fuel Purchaser to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Purchaser on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Purchaser on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Purchaser on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Purchaser on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Purchaser on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Purchaser on AddThis.com... More in this section... Federal State

371

Alternative Fuels Data Center: Kentucky Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Production / Quality to someone by E-mail Fuel Production / Quality to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Fuel Production / Quality on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Fuel Production / Quality on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Fuel Production / Quality on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Fuel Production / Quality on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Fuel Production / Quality on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Fuel Production / Quality on AddThis.com... More in this section... Federal State Advanced Search

372

Small Business Credit Initiative (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Credit Initiative (Kentucky) Credit Initiative (Kentucky) Small Business Credit Initiative (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Retail Supplier Rural Electric Cooperative Schools Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Funding Source State Small Business Credit Initiative legislation, 12 U.S.C. §§5701-5710 State Kentucky Program Type Loan Program Provider Kentucky Cabinet for Economic Development The Kentucky Cabinet for Economic Development has been approved by the United States Department of Treasury to receive the Commonwealth of

373

Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Dealer to someone by E-mail Dealer to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Dealer on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Dealer on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Dealer on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Dealer on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

374

Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

375

Alternative Fuels Data Center: Kentucky Laws and Incentives for Acquisition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

376

Alternative Fuels Data Center: Kentucky Laws and Incentives for AFV  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFV Manufacturer/Retrofitter to someone by E-mail AFV Manufacturer/Retrofitter to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for AFV Manufacturer/Retrofitter on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for AFV Manufacturer/Retrofitter on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for AFV Manufacturer/Retrofitter on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for AFV Manufacturer/Retrofitter on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for AFV Manufacturer/Retrofitter on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for AFV Manufacturer/Retrofitter on AddThis.com... More in this section...

377

DOE Headquarters Review Focuses on Improved LATA Kentucky Worker Safety |  

Broader source: Energy.gov (indexed) [DOE]

Headquarters Review Focuses on Improved LATA Kentucky Worker Headquarters Review Focuses on Improved LATA Kentucky Worker Safety DOE Headquarters Review Focuses on Improved LATA Kentucky Worker Safety July 1, 2012 - 12:00pm Addthis Kevin Dressman, director of the DOE Office of Worker Safety and Health Enforcement, addresses LATA Kentucky employees during a training session. The June regulatory assistance review was aimed at ensuring worker safety. Kevin Dressman, director of the DOE Office of Worker Safety and Health Enforcement, addresses LATA Kentucky employees during a training session. The June regulatory assistance review was aimed at ensuring worker safety. PADUCAH, Ky. - DOE Office of Health, Safety and Security headquarters representatives recently spent three days at the Paducah site helping EM cleanup contractor LATA Kentucky better identify and correct issues before

378

Alternative Fuels Data Center: Kentucky Laws and Incentives for Fueling /  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling / TSE Infrastructure Owner to someone by E-mail Fueling / TSE Infrastructure Owner to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Fueling / TSE Infrastructure Owner on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Fueling / TSE Infrastructure Owner on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Fueling / TSE Infrastructure Owner on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Fueling / TSE Infrastructure Owner on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Fueling / TSE Infrastructure Owner on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Fueling / TSE Infrastructure Owner on

379

Alternative Fuels Data Center: Kentucky Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

380

Radcliff, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Radcliff, Kentucky: Energy Resources Radcliff, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.8403456°, -85.9491298° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8403456,"lon":-85.9491298,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

382

Hickman, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky: Energy Resources Kentucky: Energy Resources (Redirected from Hickman, KY) Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.5711721°, -89.1861791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.5711721,"lon":-89.1861791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Somerset, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky: Energy Resources Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.0920222°, -84.6041084° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.0920222,"lon":-84.6041084,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Kentucky Natural Gas Gross Withdrawals and Production  

Gasoline and Diesel Fuel Update (EIA)

Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Gross Withdrawals NA NA NA NA NA NA 1991-2013 From Gas Wells NA NA NA NA NA NA 1991-2013

385

Kentucky Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

386

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 220,359 220,359 220,368 221,751 221,751 221,751 1988-2012

387

Kentucky Utilities Co | Open Energy Information  

Open Energy Info (EERE)

Kentucky Kentucky Utility Id 10171 Utility Location Yes Ownership I NERC SERC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS (General Service) 3 phase Commercial PS (Power Service Secondary) Commercial RS Residential TODS (Time-Of-Day-Secondary Service) Commercial Average Rates Residential: $0.0754/kWh Commercial: $0.0731/kWh Industrial: $0.0557/kWh

388

Kentucky Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 165,997 174,089 181,856 187,293 192,663 201,374 1990-2013

389

Upton, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Upton, Kentucky: Energy Resources Upton, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.4650577°, -85.8932982° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4650577,"lon":-85.8932982,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Tennessee Valley Authority (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Tennessee Valley Authority Tennessee Valley Authority Place Kentucky Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0455/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Kentucky). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 68,976 1,670,768 22 68,976 1,670,768 22

391

Adairville, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Adairville, Kentucky: Energy Resources Adairville, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.6675425°, -86.8519417° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.6675425,"lon":-86.8519417,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

Kentucky Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Volumes Delivered to Consumers

393

Utica, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Utica, Kentucky: Energy Resources Utica, Kentucky: Energy Resources (Redirected from Utica, KY) Jump to: navigation, search GeoNames ID 4311915 Coordinates 37.60227°, -87.11305° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.60227,"lon":-87.11305,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Elizabethtown, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Elizabethtown, Kentucky: Energy Resources Elizabethtown, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.693952°, -85.8591285° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.693952,"lon":-85.8591285,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

Kentucky Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

396

Muldraugh, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Muldraugh, Kentucky: Energy Resources Muldraugh, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9370158°, -85.9916308° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9370158,"lon":-85.9916308,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Kentucky Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

398

Columbus, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Columbus, Kentucky: Energy Resources Columbus, Kentucky: Energy Resources (Redirected from Columbus, KY) Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.7597791°, -89.1033998° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.7597791,"lon":-89.1033998,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Sonora, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sonora, Kentucky: Energy Resources Sonora, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.524226°, -85.8930192° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.524226,"lon":-85.8930192,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Hopkinsville, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky: Energy Resources Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.8656008°, -87.4886186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.8656008,"lon":-87.4886186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Chapter 10 Water Quality Standards (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

10 Water Quality Standards (Kentucky) 10 Water Quality Standards (Kentucky) Chapter 10 Water Quality Standards (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection This administrative regulation establishes procedures to protect the

402

,"Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2012,"6302007"...

403

Subcontracted R and D final report: analysis of samples obtained from GKT gasification test of Kentucky coal. Nonproprietary version  

SciTech Connect (OSTI)

A laboratory test program was performed to obtain detailed compositional data on the Gesellshaft fuer Kohle-Technologie (GKT) gasifier feed and effluent streams. GKT performed pilot gasification tests with Kentucky No. 9 coal and collected various samples which were analyzed by GKT and the Radian Corporation, Austin, Texas. The coal chosen had good liquefaction characteristics and a high gasification reactivity. No organic priority pollutants or PAH compounds were detected in the wash water, and solid waste leachates were within RCRA metals limits.

Raman, S.V.

1983-09-01T23:59:59.000Z

404

Electrical hazards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...

405

Leachate Free Hazardous Waste Landfill  

Science Journals Connector (OSTI)

Experiences of the past few decades have shown that controlling leachate cannot be done by sealing only the landfill bed, but rather by sealing landfill top cover.

Dipl.Ing. Karl Rohrhofer; Dr.Techn. Fariar Kohzad

1990-01-01T23:59:59.000Z

406

Kentucky Water Resources Research Institute Annual Technical Report  

E-Print Network [OSTI]

). In addition, the Kentucky Consortium for Energy and the Environment, headed by Lindell Ormsbee (Director for the Maxey Flats Nuclear Disposal Site and the Paducah Gaseous Diffusion Plant - Federal Facilities Agreement have a commanding effect on the modern surface and near-surface hydrology of Kentucky. Previous

407

South Kentucky Rural Electric Coop Corp | Open Energy Information  

Open Energy Info (EERE)

South Kentucky Rural Electric Cooperative Corporation) South Kentucky Rural Electric Cooperative Corporation) Jump to: navigation, search Name South Kentucky Rural Electric Coop Corp Place Somerset, Kentucky Utility Id 17564 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. South Kentucky Rural Electric Cooperative Corporation Smart Grid Project was awarded $9,538,234 Recovery Act Funding with a total project value of $19,636,295. Utility Rate Schedules Grid-background.png Commercial and Large Power Commercial Directional Flood Lights 250 watt Metal Halide (unmetered) Lighting

408

Clean Coal Incentive Tax Credit (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal Incentive Tax Credit (Kentucky) Clean Coal Incentive Tax Credit (Kentucky) Clean Coal Incentive Tax Credit (Kentucky) < Back Eligibility Developer Investor-Owned Utility Municipal/Public Utility Utility Program Info State Kentucky Program Type Property Tax Incentive Provider Kentucky Cabinet for Economic Development Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity. Before the credit is given, the Environmental and Public Protection Cabinet must certify that a facility is reducing emissions of pollutants released during electric generation through the use of clean coal equipment and technologies. The amount of the allowable credit is $2 per ton of eligible coal purchased that is used to

409

Small Business Loan Program (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Small Business Loan Program (Kentucky) Small Business Loan Program (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on August 28, 2013. EZFeed Policy Place Kentucky Applies to States or Provinces Kentucky Name Small Business Loan Program (Kentucky) Policy Category Financial Incentive Policy Type Loan Program Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Primary Website http://www.thinkkentucky.com/kyedc/pdfs/SmallBusinessLoanProgram.pdf Summary The purpose of the program is to help small businesses acquire funding

410

Qualifying RPS State Export Markets (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kentucky) Kentucky) Qualifying RPS State Export Markets (Kentucky) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Kentucky as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

411

Ethanol Production Tax Credit (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ethanol Production Tax Credit (Kentucky) Ethanol Production Tax Credit (Kentucky) Ethanol Production Tax Credit (Kentucky) < Back Eligibility Agricultural Program Info State Kentucky Program Type Corporate Tax Incentive Qualified ethanol producers are eligible for an income tax credit of $1 per gallon of corn- or cellulosic-based ethanol that meets ASTM standard D4806. The total credit amount available for all corn and cellulosic ethanol producers is $5 million for each taxable year. Unused ethanol credits from one ethanol-based cap, such as corn, may be applied to another ethanol-based cap, such as cellulosic, in the same taxable year. Unused credits may not be carried forward. Kentucky statute information regarding alternative fuel producer tax credits can be found within KRS Chapters 141.422-141.430

412

Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator  

Broader source: Energy.gov (indexed) [DOE]

Transitioning Kentucky Off Oil: An Interview with Clean Cities Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator Melissa Howell Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator Melissa Howell June 18, 2013 - 4:12pm Addthis With the help of Kentucky Clean Fuels Coalition, Mammoth Cave National Park was the first National Park fleet to use 100 percent alternative fuel. The Global Electric Motorcar (pictured above) is used by park rangers who need to travel between the Mammoth Cave Campground and the Visitor Center area. | Photo courtesy of Victor Peek Photography. With the help of Kentucky Clean Fuels Coalition, Mammoth Cave National Park was the first National Park fleet to use 100 percent alternative fuel. The Global Electric Motorcar (pictured above) is used by park rangers who need

413

KRS Chapter 278: Natural Gas (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

KRS Chapter 278: Natural Gas (Kentucky) KRS Chapter 278: Natural Gas (Kentucky) KRS Chapter 278: Natural Gas (Kentucky) < Back Eligibility Commercial Investor-Owned Utility Municipal/Public Utility Transportation Utility Program Info State Kentucky Program Type Safety and Operational Guidelines Provider Kentucky Public Service Commission The Public Service Commission may, by rule or order, authorize and require the transportation of natural gas in intrastate commerce by intrastate pipelines, or by local distribution companies with unused or excess capacity not needed to meet existing obligations of the pipeline or distribution company, for any person for one (1) or more uses, as defined by the commission by rule, in the case of:(a) Natural gas sold by a producer, pipeline or other seller to such person; or(b) Natural gas

414

South Kentucky Rural Electric Coop Corp | Open Energy Information  

Open Energy Info (EERE)

Kentucky Rural Electric Coop Corp Kentucky Rural Electric Coop Corp Jump to: navigation, search Name South Kentucky Rural Electric Coop Corp Place Somerset, Kentucky Utility Id 17564 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. South Kentucky Rural Electric Cooperative Corporation Smart Grid Project was awarded $9,538,234 Recovery Act Funding with a total project value of $19,636,295. Utility Rate Schedules Grid-background.png Commercial and Large Power Commercial Directional Flood Lights 250 watt Metal Halide (unmetered) Lighting

415

Alternative Fuel Production Facility Incentives (Kentucky) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Alternative Fuel Production Facility Incentives (Kentucky) Alternative Fuel Production Facility Incentives (Kentucky) Alternative Fuel Production Facility Incentives (Kentucky) < Back Eligibility Commercial Developer Utility Program Info State Kentucky Program Type Corporate Tax Incentive The Kentucky Economic Development and Finance Authority (KEDFA) provides tax incentives to construct, retrofit, or upgrade an alternative fuel production or gasification facility that uses coal or biomass as a feedstock. Beginning Aug. 1, 2010, tax incentives are also available for energy-efficient alternative fuel production facilities and up to five alternative fuel production facilities that use natural gas or natural gas liquids as a feedstock. Energy-efficient alternative fuels are defined as homogeneous fuels that are produced from processes designed to densify

416

Data quality objective for regulatory requirements for dangerous waste sampling and analysis  

SciTech Connect (OSTI)

Contains requirements for sampling and analysis to meet the dangerous (hazardous) waste regulations.

Mulkey, C.H., Westinghouse Hanford

1996-07-02T23:59:59.000Z

417

Hazards Survey and Hazards Assessments  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

1997-08-21T23:59:59.000Z

418

Process Waste Assessment, Mechanics Shop  

SciTech Connect (OSTI)

This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags and spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.

Phillips, N.M.

1993-05-01T23:59:59.000Z

419

Water resources data, Kentucky. Water year 1991  

SciTech Connect (OSTI)

Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

McClain, D.L.; Byrd, F.D.; Brown, A.C.

1991-12-31T23:59:59.000Z

420

Waste minimization assessment procedure  

SciTech Connect (OSTI)

Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative.

Kellythorne, L.L. (Centerior Energy, Cleveland, OH (United States))

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Process for preparing liquid wastes  

DOE Patents [OSTI]

A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

1997-01-01T23:59:59.000Z

422

WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or statements that outline goals, objectives, and methods for source reduction and recycling of hazardous and mixed waste at the facility; 2. Employee training or incentive...

423

Greater Cincinnati Energy Alliance - Residential Rebate Program (Kentucky)  

Broader source: Energy.gov (indexed) [DOE]

Rebate Program Rebate Program (Kentucky) Greater Cincinnati Energy Alliance - Residential Rebate Program (Kentucky) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Heat Pumps Commercial Lighting Lighting Water Heating Buying & Making Electricity Program Info State Kentucky Program Type Local Rebate Program Rebate Amount Home energy assessment: $100 (for homes under 3000 sq/ft) Rebates up to 50% for improvements specified in your energy assessment report The Greater Cincinnati Energy Alliance provides rebate incentives for homeowners in Hamilton, Boone, Kenton, and Campbell counties. To qualify

424

Waste disposal package  

DOE Patents [OSTI]

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

425

Zero Waste, Renewable Energy & Environmental  

E-Print Network [OSTI]

· Dioxins & Furans · The `State of Waste' in the US · WTE Technologies · Thermal Recycling ­ Turnkey dangerous wastes in the form of gases and ash, often creating entirely new hazards, like dioxins and furans

Columbia University

426

Independent Activity Report, Waste Treatment and Immobilization Plant- March 2013  

Broader source: Energy.gov [DOE]

Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18

427

Kentucky Power Co | Open Energy Information  

Open Energy Info (EERE)

Ohio Ohio Service Territory Kentucky Website www.kentuckypower.com Green Button Reference Page www.aep.com/newsroom/news Green Button Committed Yes Utility Id 22053 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RS Residential

428

City of Berea Municipal Utility, Kentucky | Open Energy Information  

Open Energy Info (EERE)

Berea Municipal Utility, Kentucky Berea Municipal Utility, Kentucky (Redirected from City of Berea Municipal Utilities, Kentucky) Jump to: navigation, search Name City of Berea Municipal Utility Place Kentucky Utility Id 49998 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rate Commercial Industrial and Large Commercial Electric Rate Industrial Large Commercial Electric Rate Commercial Net Metering Rate Commercial Primary Metering Customer Owned/Leased Transformers Industrial

429

Kentucky Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Kentucky Regions Kentucky Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Kentucky Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Kentucky Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

430

Software Helps Kentucky County Gauge Energy Use | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Software Helps Kentucky County Gauge Energy Use Software Helps Kentucky County Gauge Energy Use Software Helps Kentucky County Gauge Energy Use July 27, 2010 - 1:00pm Addthis How does it work? Software tracks energy usage, greenhouse gas levels and analyzes utility bills. County could see savings and cost recoveries of $100,000 to $200,000. Information allows county to make energy usage changes and identify retrofit needs. For county officials conscious of energy efficiency, deciphering complex utility bills and identifying both municipal energy-use trends and potential savings opportunities can be complex without sophisticated software. "We knew we needed a better system," says James Bush, energy manager for Lexington-Fayette Urban County, Kentucky. Last month, the county invested $140,000 of a $2.7 million Energy

431

City of Olive Hill, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Olive Hill, Kentucky (Utility Company) Olive Hill, Kentucky (Utility Company) Jump to: navigation, search Name Olive Hill City of Place Kentucky Utility Id 14103 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Industrial Industrial Residential Average Rates Residential: $0.0920/kWh Commercial: $0.1090/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Olive_Hill,_Kentucky_(Utility_Company)&oldid=410054

432

City of Bardwell, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bardwell, Kentucky (Utility Company) Bardwell, Kentucky (Utility Company) Jump to: navigation, search Name City of Bardwell Place Kentucky Utility Id 1205 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Residential- All Electric Residential Three Phase Church Commercial Three Phase Power Commercial Average Rates Residential: $0.0904/kWh Commercial: $0.1110/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Bardwell,_Kentucky_(Utility_Company)&oldid=409312

433

Kentucky Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Kentucky Regions Kentucky Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Kentucky Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Kentucky Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

434

South Kentucky RECC - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

South Kentucky RECC - Residential Energy Efficiency Rebate Program South Kentucky RECC - Residential Energy Efficiency Rebate Program South Kentucky RECC - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Ventilation Heat Pumps Maximum Rebate Button Up (weatherization): $400 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Caulking: Free Button Up (weatherization): $20 for every 1,000 BTU reduced in heating load Geothermal Heat Pump with Touchstone Energy Home: $500 Air-Source Heat Pump with Touchstone Energy Home: $300 Touchstone Energy Manufactured Home: $250 Geothermal Heat Pump: $200 Heat Pump/Furnace Tune-Up: $75

435

Kentucky/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Wind Resources/Full Version Kentucky/Wind Resources/Full Version < Kentucky‎ | Wind Resources Jump to: navigation, search Print PDF Kentucky Wind Resources KentuckyMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

436

City of Benham, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Benham, Kentucky (Utility Company) Benham, Kentucky (Utility Company) Jump to: navigation, search Name City of Benham Place Kentucky Utility Id 1387 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Single Phase Residential Residential Average Rates Residential: $0.0715/kWh Commercial: $0.0727/kWh Industrial: $0.0405/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Benham,_Kentucky_(Utility_Company)&oldid=40933

437

Ethanol Production Tax Credit (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Production Tax Credit (Kentucky) Production Tax Credit (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Kentucky Name Ethanol Production Tax Credit (Kentucky) Policy Category Financial Incentive Policy Type Corporate Tax Incentive Affected Technologies Biomass/Biogas Active Policy Yes Implementing Sector State/Province Primary Website http://energy.ky.gov/biofuels/Pages/biofuelsIncentives.aspx Summary Qualified ethanol producers are eligible for an income tax credit of $1 per gallon of corn- or cellulosic-based ethanol that meets ASTM standard D4806. The total credit amount available for all corn and cellulosic ethanol producers is $5 million for each taxable year. Unused ethanol credits from

438

Biodiesel Production and Blending Tax Credit (Kentucky) | Open Energy  

Open Energy Info (EERE)

Production and Blending Tax Credit (Kentucky) Production and Blending Tax Credit (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 12, 2013. EZFeed Policy Place Kentucky Name Biodiesel Production and Blending Tax Credit (Kentucky) Policy Category Financial Incentive Policy Type Corporate Tax Incentive Affected Technologies Biomass/Biogas Active Policy Yes Implementing Sector State/Province Primary Website http://energy.ky.gov/biofuels/Pages/biofuelsIncentives.aspx Summary blended biodiesel does not qualify. The biodiesel tax credit is applied against the corporation income tax imposed under KRS 141.040 and/or the limited liability entity tax (LLET) imposed under KRS 141.0401. The amount

439

City of Franklin, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Kentucky (Utility Company) Kentucky (Utility Company) Jump to: navigation, search Name City of Franklin Place Kentucky Utility Id 6718 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0869/kWh Commercial: $0.0938/kWh Industrial: $0.0724/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Franklin,_Kentucky_(Utility_Company)&oldid=409617"

440

Kentucky Utilities Company - Commercial Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Kentucky Utilities Company - Commercial Energy Efficiency Rebate Kentucky Utilities Company - Commercial Energy Efficiency Rebate Program Kentucky Utilities Company - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $50,000 per facility per calendar year Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount T5 Fixtures (T12 Replacement): $3 - $12 T5 HO High-Bay Fixtures: $15 - $74 T8 Fixtures: $1 - $16 T8 High-Bay Fixtures: $21 - $34 CFL Hardwired Fixture/Bulb: $4 CFL/LED Bulbs: $2 CFL Highbay Fixture: $35 LED Refrigerated Display Light: $6 LED Interior Lights: $5 - $10 LED Exterior Lights: $10 - $30 LED Pole Light Replacement: $30 - $88

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Inter-County Energy Efficiency Program (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Inter-County Energy Efficiency Program (Kentucky) Inter-County Energy Efficiency Program (Kentucky) Inter-County Energy Efficiency Program (Kentucky) < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Heat Pump Retrofit: $500-$1,000 Weatherization: $520-$1,370 Electric Thermal Storage: 40% discounted rate on energy usage of installed ETS heater Provider Inter-County Energy Cooperative Inter-County Energy Cooperative offers several energy efficiency and demand-side management programs for residential customers. Incentives are available for heat pumps (including geothermal, air source, and mini-split

442

SEP Success Story: Kentucky Launches State-Wide School Energy...  

Energy Savers [EERE]

In what could potentially be the first program of its scale, Kentucky has hired a new green team of 35 energy managers. Learn more. Addthis Related Articles Energy efficiency...

443

East Kentucky Power Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Kentucky Power Coop, Inc Kentucky Power Coop, Inc Jump to: navigation, search Name East Kentucky Power Coop, Inc Place Kentucky Utility Id 5580 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cogeneration and Small Power Production Power Purchase Rate Schedule,Less Than 100 kW Cogeneration and Small Power Production Power Purchase Rate Schedule,over 100 kW Section A

444

Greater Cincinnati Energy Alliance- Residential Loan Program (Kentucky)  

Broader source: Energy.gov [DOE]

The Greater Cincinnati Energy Alliance provides loans for single family residencies and owner occupied duplexes in Hamilton county in Ohio and Boone, Kenton, and Campbell counties in Kentucky. To...

445

Kentucky Launches State-Wide School Energy Manager Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Kentucky Launches State-Wide School Energy Manager Program Kentucky Launches State-Wide School Energy Manager Program Kentucky Launches State-Wide School Energy Manager Program August 17, 2010 - 2:00pm Addthis Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy In what could potentially be the first program of its scale, Kentucky has hired a new green team of 35 energy managers. Kentucky's School Energy Managers Project (SEMP) will implement energy solutions for 1,000 schools throughout 130 districts in the Bluegrass State

446

Draft Waste Management Programmatic Environmental Impact Statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume 3, Appendix A: Public response to revised NOI, Appendix B: Environmental restoration, Appendix C, Environmental impact analysis methods, Appendix D, Risk  

SciTech Connect (OSTI)

Volume three contains appendices for the following: Public comments do DOE`s proposed revisions to the scope of the waste management programmatic environmental impact statement; Environmental restoration sensitivity analysis; Environmental impacts analysis methods; and Waste management facility human health risk estimates.

NONE

1995-08-01T23:59:59.000Z

447

Vitrified municipal waste as a host form for high-level nuclear waste  

Science Journals Connector (OSTI)

Using glass as a safe and long term hosting matrix for hazardous wastes and for the immobilization of heavy metals and nuclear wastes has become an attractive method [3]. The most known glasses used as nuclear waste

N. A. El-Alaily; E. M. Abou-Hussein

2014-01-01T23:59:59.000Z

448

Hazardous Sites Cleanup Act (Pennsylvania) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Sites Cleanup Act (Pennsylvania) Hazardous Sites Cleanup Act (Pennsylvania) Hazardous Sites Cleanup Act (Pennsylvania) < Back Eligibility Agricultural Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Pennsylvania Program Type Environmental Regulations Grant Program Provider Department of Environmental Protection This Act tasks the Pennsylvania Department of Environmental Protection with regulating hazardous waste. The department is charged with siting, review, permitting and development of hazardous waste treatment and disposal facilities in order to protect public health and safety, foster economic growth and protect the environment. Pennsylvania law establishes a fund to provide to the Department the

449

Use of solid waste for chemical stabilization: Adsorption isotherms and {sup 13}C solid-state NMR study of hazardous organic compounds sorbed on coal fly ash  

SciTech Connect (OSTI)

Adsorption of hazardous organic compounds on the Dave Johnston plant fly ash is described. Fly ash from Dave Johnston and Laramie River power plants were characterized using elemental, x-ray, and {sup 29}Si NMR; the Dave Johnston (DJ) fly ash had higher quartz contents, while the Laramie River fly ash had more monomeric silicate anions. Adsorption data for hydroaromatics and chlorobenzenes indicate that the adsorption capacity of DJ coal fly ash is much less than that of activated carbon by a factor of >3000; but it is needed to confirm that solid-gas and solid-liquid equilibrium isotherms can indeed be compared. However, for pyridine, pentachlorophenol, naphthalene, and 1,1,2,2-tetrachloroethane, the DJ fly ash appears to adsorb these compounds nearly as well as activated carbon. {sup 13}C NMR was used to study the adsorption of hazardous org. cpds on coal fly ash; the nuclear spin relaxation times often were very long, resulting in long experimental times to obtain a spectrum. Using a jumbo probe, low concentrations of some hazardous org. cpds could be detected; for pentachlorophenol adsorbed onto fly ash, the chemical shift of the phenolic carbon was changed. Use of NMR to study the adsorption needs further study.

Netzel, D.A.; Lane, D.C.; Rovani, J.F.; Cox, J.D.; Clark, J.A.; Miknis, F.P.

1993-09-01T23:59:59.000Z

450

Impacts of Standard 90.1-2007 for Commercial Buildings at State Level - Kentucky  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kentucky Kentucky September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN KENTUCKY BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN KENTUCKY Kentucky Summary Standard 90.1-2007 contains improvements in energy efficiency over the current state code, the 2006 International Energy Conservation Code (IECC). Standard 90.1-2007 would improve energy efficiency in commercial buildings in Kentucky. The analysis of the impact of Standard 90.1-2007 resulted in energy and

451

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

/spills and subsequent clean up costs ($20,000) Sewage Sludge Volume Reduction 234,000 Radioactive Waste $910,000 $193,400 $716,600 60,000 gallons of radioactive STP liquid waste could have been disposed of through,000) Digital Imaging System Substitution 282 Hazardous Waste / Radioactive Waste / Industrial Waste $25,000 $25

452

Alternative Fuels Data Center: Kentucky Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Natural Gas The list below contains summaries of all Kentucky laws and incentives

453

Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National...  

Broader source: Energy.gov (indexed) [DOE]

Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National Science Bowl Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National Science Bowl March 31, 2014 -...

454

Natures and wars : neoliberal discourse and the contested future of east Kentucky.  

E-Print Network [OSTI]

??M.A. Coal mining has been Appalachian Kentuckys keystone industry for over a century. However, in 2012 and 2013 coal production plummeted, driving industry employment to (more)

Biesel, Shelly Annette, 1986-

2014-01-01T23:59:59.000Z

455

Health assessment for Maxey Flats Disposal Site, Morehouse, Fleming County, Kentucky, Region 4. CERCLIS No. KYD0980729107. Final report  

SciTech Connect (OSTI)

The National Priorities List Maxey Flats Disposal Site is located approximately 10 miles northwest of Morehouse, Kentucky, in Fleming County. The site was initially approved for the disposal of low level radioactive waste in 1963, and by 1977, an estimated maximum of 6 million cubic feet of wastes had been buried. In 1977, radionuclides were found in soil being excavated for additional trenches resulting in the site being closed in December of 1977. In addition to radioactive material, chemical wastes were disposed of in violation of the site license. Furthermore, water has infiltrated these trenches which now require pumping to prevent overflow. Monitoring wells on-site have detected numerous radionuclides, organic and inorganic contaminants in trench leachates produced by the flooding. The primary health concern for the site is the potential exposure to radiation received on-site by occupational workers and off-site by the general public.

Not Available

1989-04-20T23:59:59.000Z

456

City of Vanceburg, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Vanceburg, Kentucky (Utility Company) Vanceburg, Kentucky (Utility Company) Jump to: navigation, search Name City of Vanceburg Place Kentucky Utility Id 19716 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate EL-04 Commercial Fixed Load Rate EL-07 Residential Industrial Demand DE-08 Industrial Industrial Rate EL-05 Industrial Outside Lighting EL-2A (150W) Lighting Outside Lighting EL-2B (150W with Pole) Lighting Outside Lighting EL-2C (400W) Lighting Outside Lighting EL-2D (400W with Pole) Lighting

457

DOE Solar Decathlon: News Blog » Kentucky/Indiana  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kentucky/Indiana Kentucky/Indiana Below you will find Solar Decathlon news from the Kentucky/Indiana archive, sorted by date. Affordability and Market Appeal Contest Winners Announced! Thursday, October 10, 2013 Solar Decathlon At an awards ceremony this morning, winners of the U.S. Department of Energy Solar Decathlon 2013 Affordability and Market Appeal contests took center stage by demonstrating that innovative, energy-efficient houses can be cost-effective and appealing to a variety of target markets. Photo of Richard Anderson and Robert Best at a desk looking at paperwork. The Affordability Contest juror, Richard Anderson, left, speaks with Robert Best from Stanford University during the Affordability Contest walkthrough. (Credit: Eric Grigorian/U.S. Department of Energy Solar Decathlon)

458

Tri-County Elec Member Corp (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Corp (Kentucky) Corp (Kentucky) Jump to: navigation, search Name Tri-County Elec Member Corp Place Kentucky Utility Id 19162 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt HPS Lighting 100 Watt Induction Lighting 1000 Watt MH Lighting 103 Watt LED Lighting 175 Watt MV Lighting 200 Watt HPS Lighting 250 Watt HPS Lighting 400 Watt HPS Lighting 400 Watt MH Lighting 400 Watt MV Lighting 51 Watt LED Lighting 85 Watt Induction Lighting GSA-Part 1 Commercial GSA-Part 2 Commercial GSA-Part 3 Industrial Residential Residential Average Rates Residential: $0.0941/kWh Commercial: $0.1050/kWh

459

City of Bardstown, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bardstown, Kentucky (Utility Company) Bardstown, Kentucky (Utility Company) Jump to: navigation, search Name City of Bardstown Place Kentucky Utility Id 690 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png E-1 Residential Customers Residential E-2 Commercial Customers Commercial E-3 Large Power Customers Commercial E-4 Industrial Customer (City Owned Distribution Facilities) Industrial E-5 Industrial Customer (Customer Owned Distribution Facilities) Industrial SECURITY LIGHTS 175 W Lighting Average Rates Residential: $0.0748/kWh

460

South Kentucky Rural Electric Cooperative Corporation Smart Grid Project |  

Open Energy Info (EERE)

Corporation Smart Grid Project Corporation Smart Grid Project Jump to: navigation, search Project Lead South Kentucky Rural Electric Cooperative Corporation Country United States Headquarters Location Somerset, Kentucky Recovery Act Funding $9538234 Total Project Value $19636295 Coverage Area Coverage Map: South Kentucky Rural Electric Cooperative Corporation Smart Grid Project Coordinates 37.0920222°, -84.6041084° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "hazardous waste kentucky" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

City of Nicholasville, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Nicholasville, Kentucky (Utility Company) Nicholasville, Kentucky (Utility Company) Jump to: navigation, search Name City of Nicholasville Place Kentucky Utility Id 13577 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Large Commercial Large Commercial(Primary Metering) Residential Residential Security Lighting- 100W Lighting Security Lighting- 250W Lighting Security Lighting- 400W Lighting Average Rates Residential: $0.0695/kWh Commercial: $0.0765/kWh Industrial: $0.0581/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

462

City of Murray, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Murray, Kentucky (Utility Company) Murray, Kentucky (Utility Company) Jump to: navigation, search Name City of Murray Place Kentucky Utility Id 13138 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial- Demand Commercial Commercial- Large Demand General Power Rate- Schedule SGSB Commercial General Power Rate- Schedule SMSB Commercial Outdoor Lighting- 1000W High Pressure Sodium Lighting Outdoor Lighting- 1000W Incandescent Lighting Outdoor Lighting- 1000W Mercury Vapor Lighting

463

City of Mayfield Plant Board, Kentucky (Utility Company) | Open Energy  

Open Energy Info (EERE)

Plant Board, Kentucky (Utility Company) Plant Board, Kentucky (Utility Company) Jump to: navigation, search Name City of Mayfield Plant Board Place Kentucky Utility Id 11871 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Rate Schedule - GSA 1-Customers<50 KW &/OR <15,000 KWH Commercial General Power Rate Schedule - GSA 2-Customers 51 - 1000 KW OR <50 KW & >15,000 KWH Industrial General Power Rate Schedule - GSA 3-Customers >1000 KW Industrial Residential Rate Residential

464

Kentucky - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky - Seds - U.S. Energy Information Administration (EIA) Kentucky - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

465

City of Owensboro, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Owensboro, Kentucky (Utility Company) Owensboro, Kentucky (Utility Company) Jump to: navigation, search Name City of Owensboro Place Kentucky Utility Id 14268 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate-Single Phase Commercial Commercial Rate-Three Phase Commercial General Service-GSP Industrial General Service-GSS A Industrial General Service-GSS B Industrial

466

Brighter Future for Kentucky Manufacturing Plants | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Brighter Future for Kentucky Manufacturing Plants Brighter Future for Kentucky Manufacturing Plants Brighter Future for Kentucky Manufacturing Plants May 28, 2010 - 3:04pm Addthis Montaplast North America, Inc. is replacing almost 1,200 halide lights with high-efficiency fluorescent fixtures at its Frankfort, KY, facility. | Photo Courtesy of Montaplast | Montaplast North America, Inc. is replacing almost 1,200 halide lights with high-efficiency fluorescent fixtures at its Frankfort, KY, facility. | Photo Courtesy of Montaplast | Stephen Graff Former Writer & editor for Energy Empowers, EERE Consider This: Saving $90,000 a year by curbing energy use is about equal to the salaries of three operators at a typical manufacturing plant in the Bluegrass State, according to wages listed from the U.S. Bureau of Labor