National Library of Energy BETA

Sample records for hazardous waste act

  1. I.C. 39-44 - Idaho Hazardous Waste Management Act | Open Energy...

    Open Energy Info (EERE)

    44 - Idaho Hazardous Waste Management Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: I.C. 39-44 - Idaho Hazardous Waste...

  2. Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication, Environmental Protection Agency Number ID4890008952

    SciTech Connect (OSTI)

    Holzemer, Michael J.; Hart, Edward

    2015-04-01

    Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication for the Idaho National Laboratory Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Partial Permit, PER-116. This Permit Reapplication is required by the PER-116 Permit Conditions I.G. and I.H., and must be submitted to the Idaho Department of Environmental Quality in accordance with IDAPA 58.01.05.012 [40 CFR §§ 270.10 and 270.13 through 270.29].

  3. Management of hazardous waste containers and container storage areas under the Resource Conservation and Recovery Act

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    DOE`s Office of Environmental Guidance, RCRA/CERCLA Division, has prepared this guidance document to assist waste management personnel in complying with the numerous and complex regulatory requirements associated with RCRA hazardous waste and radioactive mixed waste containers and container management areas. This document is designed using a systematic graphic approach that features detailed, step-by-step guidance and extensive references to additional relevant guidance materials. Diagrams, flowcharts, reference, and overview graphics accompany the narrative descriptions to illustrate and highlight the topics being discussed. Step-by-step narrative is accompanied by flowchart graphics in an easy-to-follow, ``roadmap`` format.

  4. H. R. 2670: A bill to amend the Solid Waste Disposal Act to regulate ash from municipal solid waste incinerators as a hazardous waste, introduced in the US House of Representatives, One Hundred Second Congress, First Session, June 18, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill was introduced into the US House of Representatives on June 18, 1991 to amend the Solid Waste disposal Act to regulate ash from municipal solid waste incinerators as a hazardous waste. When garbage is burned, toxic materials are concentrated in the ash. If the ash is disposed of in a landfill, these toxic materials can contaminate the ground water or surface water by leaching toxic materials from the ash. In addition, disposing of contaminated ash improperly can pose a health hazard. New authority is provided for regulating incinerator ash as a hazardous waste.

  5. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This ...

  6. Hazardous and Radioactive Mixed Waste

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-12-31

    To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

  7. Statement of Vernon Daub, Acting Manager of DOEs Carlsbad Field Office, Regarding New Mexico Environment Departments Issuance of a Draft Hazardous Waste Facility Permit for WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Immediate Release Statement of Vernon Daub, Acting Manager of DOE's Carlsbad Field Office, Regarding New Mexico Environment Department's Issuance of a Draft Hazardous Waste Facility Permit for WIPP Carlsbad, New Mexico, November 23, 2005 - "The draft hazardous waste facility permit issued today by the New Mexico Environment Department is a significant step toward fulfilling the mission of WIPP. We very much appreciate the focused, hard work by the NMED staff and senior management. DOE

  8. Vermont Hazardous Waste Management Regulations | Open Energy...

    Open Energy Info (EERE)

    Hazardous Waste Management Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Vermont Hazardous Waste Management...

  9. WIPP Documents - Hazardous Waste Facility Permit (RCRA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Facility Permit The WIPP Hazardous Waste Facility Permit (HWFP) effective April 15, 2011 WIPP Hazardous Waste Facility Permit Authorizes the U.S. Department of Energy to manage, store, and dispose of contact-handled and remote-handled transuranic mixed waste at the Waste Isolation Pilot Plant. Mixed waste contains radioactive and chemically hazardous components. Information Repository Documents related to the Hazardous Waste Facility Permit

  10. Hazardous and Radioactive Mixed Waste Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1989-02-22

    To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

  11. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  12. CRAD, Hazardous Waste Management- December 4, 2007

    Broader source: Energy.gov [DOE]

    Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

  13. NRS 459 Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    59 Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: NRS 459 Hazardous WasteLegal Abstract Nevada statute setting...

  14. HMPT: Hazardous Waste Transportation Live 27928, Test 27929 ...

    Office of Scientific and Technical Information (OSTI)

    HMPT: Hazardous Waste Transportation Live 27928, Test 27929 Citation Details In-Document Search Title: HMPT: Hazardous Waste Transportation Live 27928, Test 27929 HMPT: Hazardous ...

  15. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  16. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, Robert C. W. (Martinez, GA)

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  17. Energy and solid/hazardous waste

    SciTech Connect (OSTI)

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  18. Hazardous waste identification: A guide to changing regulations

    SciTech Connect (OSTI)

    Stults, R.G. )

    1993-03-01

    The Resource Conservation and Recovery Act (RCRA) was enacting in 1976 and amended in 1984 by the Hazardous and Solid Waste Amendments (HSWA). Since then, federal regulations have generated a profusion of terms to identify and describe hazardous wastes. Regulations that5 define and govern management of hazardous wastes are codified in Title 40 of the code of Federal Regulations, Protection of the environment''. Title 40 regulations are divided into chapters, subchapters and parts. To be defined as hazardous, a waste must satisfy the definition of solid waste any discharged material not specifically excluded from regulation or granted a regulatory variance by the EPA Administrator. Some wastes and other materials have been identified as non-hazardous and are listed in 40 CFR 261.4(a) and 261.4(b). Certain wastes that satisfy the definition of hazardous waste nevertheless are excluded from regulation as hazardous if they meet specific criteria. Definitions and criteria for their exclusion are found in 40 CFR 261.4(c)-(f) and 40 CFR 261.5.

  19. Mr. James Bearzi Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bearzi Hazardous Waste Bureau Department of Energy Carlsbad Field Office P. O . Box 3090 Carlsbad. New Mexico 88221 May 26, 2009 New Mexico Environment Department 2905 E. Rodeo...

  20. Hazardous waste operational plan for site 300

    SciTech Connect (OSTI)

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  1. Vitrification of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  2. Hazardous waste cleanup: the preliminaries

    SciTech Connect (OSTI)

    Amos, K.

    1985-08-01

    This article describes the lengthiness and cost of the preliminary steps in a hazardous waste cleanup. The article describes the S-Area lawsuit, an area near Niagara Falls, New York which was an inactive chemical dump. Contaminated sludge was found at a nearby water treatment plant and was traced back to S-Area. In the past five years, S-Area negotiations have cost the U.S. Environmental Protection Agency two million dollars for advice on how work should proceed for the plant and the landfill. This lawsuit was one of the first in the U.S. against a chemical company for endangering the public through unsound waste disposal practices. Negotiation was selected instead of a trial for several reasons which are outlined. S-Area may serve as a model for other such settlements, as it provides for a flexible plan, open to consideration of alternate technologies that may be developed in the future. It contains a phased approach to both defining and evaluating existing problems, then suggesting remedies. It also requires monitoring for at least 35 years or until no danger remains.

  3. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect (OSTI)

    Kirk, N.

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  4. Audit of Selected Hazardous Waste Remedial Actions Program Costs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 PDF icon Audit of Selected Hazardous Waste ...

  5. Federal-facilities Hazardous-Waste Compliance Manual. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-01-09

    In the continuing effort to achieve a higher level of compliance with the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) at Federal facilities, the Federal Facilities Hazardous Waste Compliance Office (FFHWCO) has developed the Federal Facilities Hazardous Waste Compliance Manual. The manual includes an overview of the Federal-facilities hazardous-waste compliance program, relevant statutory authorities, model provisions for Federal facility agreements, enforcement and other applicable guidance, Federal facilities docket and NPL listings, data-management information, selected DOD and DOE program guidance, and organization charts and contacts. This compendium is intended to be used as a reference by Regional RCRA and CERCLA enforcement personnel and Regional Counsels, particularly as an orientation guide for new Federal facilities staff.

  6. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    there were no actual or potential hazards to human health or the environment due to exposure to hazardous waste or waste constituents. Further assessment of actual or...

  7. Utah Department of Environmental Quality Hazardous Waste Permits...

    Open Energy Info (EERE)

    Hazardous Waste Permits Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Department of Environmental Quality Hazardous Waste Permits...

  8. Hawaii DOH Hazardous Waste Section Webpage | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Section Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii DOH Hazardous Waste Section Webpage Abstract This webpage...

  9. Hawaii Department of Health Solid and Hazardous Waste Branch...

    Open Energy Info (EERE)

    and Hazardous Waste Branch Jump to: navigation, search Name: Hawaii Department of Health Solid and Hazardous Waste Branch Address: 919 Ala Moana Boulevard 212 Place: Honolulu,...

  10. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Class 1 Permit Modification Notification to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number: NM4890139088-TSDF Dear Mr. Kieling: Enclosed is a Class 1 Permit Modification Notification: * Update Resource Conservation and Recovery Act Emergency Coordinator List We certify under penalty of law that this document and all attachments were prepared under our

  11. 40 CFR Part 266, Standards for the Management of Specific Hazardous Wastes and Specific Types of Hazardous Waste Management Facilities (DOE)

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) regulates the management of hazardous waste through Title 40 of the Code of Federal Regulations (40 CFR) Part 266, under the authority of the Resource Conservation and Recovery Act (RCRA).

  12. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  13. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  14. Nuclear Waste Policy Act | Department of Energy

    Energy Savers [EERE]

    Nuclear Waste Policy Act Nuclear Waste Policy Act Document on the Nuclear Waste Policy Act of 1982 An Act to provide for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development, and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel, and for other purposes. PDF icon Nuclear Waste Policy Act.doc More Documents & Publications Letter BodmanLetterToPelosi.pdf

  15. Evaluation of cement kiln laboratories testing hazardous waste derived fuels

    SciTech Connect (OSTI)

    Nichols, R.E.

    1998-12-31

    Cement kiln operators wishing to burn hazardous waste derived fuels in their kilns must submit applications for Resource Conservation Recovery Act permits. One component of each permit application is a site-specific Waste Analysis Plan. These Plans describe the facilities` sampling and analysis procedures for hazardous waste derived fuels prior to receipt and burn. The Environmental Protection Agency has conducted on-site evaluations of several cement kiln facilities that were under consideration for Resource Conservation Recovery Act permits. The purpose of these evaluations was to determine if the on-site sampling and laboratory operations at each facility complied with their site-specific Waste Analysis Plans. These evaluations covered sampling, laboratory, and recordkeeping procedures. Although all the evaluated facilities were generally competent, the results of those evaluations revealed opportunities for improvement at each facility. Many findings were noted for more than one facility. This paper will discuss these findings, particularly those shared by several facilities (specific facilities will not be identified). Among the findings to be discussed are the ways that oxygen bombs were scrubbed and rinsed, the analytical quality control used, Burn Tank sampling, and the analysis of pH in hazardous waste derived fuels.

  16. Encapsulation of hazardous wastes into agglomerates

    SciTech Connect (OSTI)

    Guloy, A.

    1992-01-28

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

  17. Title 40 CFR 260: Hazardous Waste Management System: General...

    Open Energy Info (EERE)

    : Hazardous Waste Management System: General Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 40 CFR 260: Hazardous...

  18. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad , New Mexico 88221 October 12, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Results of Evaluation of Sampling Line Loss, Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number NM4890139088 - TSDF Dear Mr. Bearzi: As required under Permit Condition IV.F.5.e, the Permittees are hereby notifying the New Mexico Environment Department (NMED) of the results of the evaluation of the loss of

  19. Ground freezing for containment of hazardous waste

    SciTech Connect (OSTI)

    Sayles, F.N.; Iskandar, I.K.

    1998-07-01

    The freezing of ground for the containment of subsurface hazardous waste is a promising method that is environmentally friendly and offers a safe alternative to other methods of waste retention in many cases. The frozen soil method offers two concepts for retaining waste. One concept is to freeze the entire waste area into a solid block of frozen soil thus locking the waste in situ. For small areas where the contaminated soil does not include vessels that would rupture from frost action, this concept may be simpler to install. A second concept, of course, is to create a frozen soil barrier to confine the waste within prescribed unfrozen soil boundaries; initial research in this area was funded by EPA, Cincinnati, OH, and the Army Corps of Engineers. The paper discusses advantages and limitations, a case study from Oak Ridge, TN, and a mesh generation program that simulates the cryogenic technology.

  20. Management of hazardous medical waste in Croatia

    SciTech Connect (OSTI)

    Marinkovic, Natalija Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar; Pavic, Tomo

    2008-07-01

    This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

  1. Montana Hazardous Waste Program Webpage | Open Energy Information

    Open Energy Info (EERE)

    Waste Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Hazardous Waste Program Webpage Abstract Provides overview of permitting...

  2. EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program

    Broader source: Energy.gov [DOE]

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

  3. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fe, NM 87502-5469 Subject: Request for Additional Extension of Storage Time at the Waste Isolation Pilot Plant Facility, Hazardous Waste Facility Permit Number...

  4. Hazardous Waste: Resource Pack for Trainers and Communicators...

    Open Energy Info (EERE)

    Waste: Resource Pack for Trainers and Communicators Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hazardous Waste: Resource Pack for Trainers and Communicators Agency...

  5. 6 CCR 1007-3: Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    CCR 1007-3: Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 6 CCR 1007-3: Hazardous WasteLegal Abstract...

  6. EPA Hazardous Waste TSDF Guide | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: EPA Hazardous Waste TSDF GuideLegal Abstract Guidance document prepared by the EPA for hazardous waste...

  7. Hazardous Waste Facility Permit Fact Sheet | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Facility Permit Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Hazardous Waste Facility Permit Fact...

  8. RCRA Hazardous Waste Part A Permit Application: Instructions...

    Open Energy Info (EERE)

    Hazardous Waste Part A Permit Application: Instructions and Form (EPA Form 8700-23) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RCRA Hazardous Waste...

  9. ADEQ Managing Hazardous Waste Handbook | Open Energy Information

    Open Energy Info (EERE)

    Managing Hazardous Waste Handbook Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Managing Hazardous Waste HandbookLegal...

  10. NMED Hazardous Waste Bureau website | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Bureau website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NMED Hazardous Waste Bureau websiteLegal Abstract The...

  11. ADEQ Hazardous Waste Management website | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Management website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Hazardous Waste Management websiteLegal...

  12. Oregon DEQ Hazardous Waste Fact Sheet | Open Energy Information

    Open Energy Info (EERE)

    DEQ Hazardous Waste Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Oregon DEQ Hazardous Waste Fact...

  13. NMAC 20.4 Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    4 Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 20.4 Hazardous WasteLegal Abstract Regulations...

  14. ARM 17-53 - Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    3 - Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 17-53 - Hazardous WasteLegal Abstract Sets forth...

  15. EPA Citizens Guide to Hazardous Waste Permitting Process | Open...

    Open Energy Info (EERE)

    Citizens Guide to Hazardous Waste Permitting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Citizens Guide to Hazardous Waste Permitting...

  16. WIPP Hazardous Waste Facility Permit - 2008 Update

    SciTech Connect (OSTI)

    Kehrman, R.F.; Most, W.A.

    2008-07-01

    Important new changes to the Hazardous Waste Facility Permit (HWFP) were implemented during 2007. The challenge was to implement these changes without impacting shipping schedules. Many of the changes required advanced preparation and coordination in order to transition to the new waste analysis paradigm, both at the generator sites and at the WIPP without interrupting the flow of waste to the disposal facility. Not only did aspects of waste characterization change, but also a new Permittees' confirmation program was created. Implementing the latter change required that new equipment and facilities be obtained, personnel hired, trained and qualified, and operating procedures written and approved without interruption to the contact-handled (CH) transuranic (TRU) waste shipping schedule. This was all accomplished successfully with no delayed or cancelled shipments. Looking forward to 2008 and beyond, proposed changes that will deal with waste in the DOE TRU waste complex is larger than the TRUPACT-IIs can handle. Size reduction of the waste would lead to unnecessary exposure risk and ultimately create more waste. The WIPP is working to have the Nuclear Regulatory Commission (NRC) certify the TRUPACT-III. The TRUPACT-III will be able to accommodate larger sized TRU mixed waste. Along with this new NRC-certified shipping cask, a new disposal container, the Standard Large Box, must be proposed in a permit modification. Containers for disposal of TRU mixed waste at the WIPP must meet the DOT 7A standards and be filtered. Additionally, as the TRUPACT-III/Standard Large Box loads and unloads from the end of the shipping cask, the proposed modification will add horizontal waste handling techniques to WIPP's vertical CH TRU waste handling operations. Another major focus will be the Hazardous Waste Facility Permit reapplication. The WIPP received its HWFP in October of 1999 for a term of ten years. The regulations and the HWFP require that a new permit application be submitted 180-days before the expiration date of the HWFP. At that time, the WIPP will request only one significant change, the permitting of Panel 8 to receive TRU mixed waste. (author)

  17. Method and apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Korenberg, Jacob (York, PA)

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  18. Mr. James Bearzi Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bearzi Hazardous Waste Bureau Department of Energy Carlsbad Field Office P. O . Box 3090 Carlsbad. New Mexico 88221 May 26, 2009 New Mexico Environment Department 2905 E. Rodeo Park Drive, Building 1 Santa Fe, NM 87502 Subject: Requesllo Invoke Dispute Resolution Related to Final Audit Report A-09 - 08 of the Idaho National Laboratory/Central Characterization Project Reference: Letter From Mr. James Bearzi to Dr. Dave Moody and Mr. Farok Sharif dated May 18, 2009 Dear Mr. Bearzi: This letter is

  19. Staged mold for encapsulating hazardous wastes

    DOE Patents [OSTI]

    Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  20. Staged mold for encapsulating hazardous wastes

    DOE Patents [OSTI]

    Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  1. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    SciTech Connect (OSTI)

    Dominick, J

    2008-12-18

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

  2. The First Recovery Act Funded Waste Shipment depart from the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The First Recovery Act Funded Waste Shipment departs from the Advanced Mixed Waste Treatment Facility A shipment of mixed low-level waste left DOEs Advanced Mixed Waste...

  3. RCRA information on hazardous wastes for publicly owned treatment works. Technical report

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    The guidance manual provides guidance to municipal personnel in understanding hazardous waste requirements of the Resource Conservation and Recovery Act (RCRA) and the implications of these RCRA requirements for the wastewater treatment plant operated by your municipality, for your local pretreatment program, and for local industries served by the treatment plant. The primary purpose of the manual is the RCRA notification requirement specified in the General Pretreatment Regulations. The manual focuses on Subtitle C requirements. (Subtitle C is directly applicable to industries since this program regulates generators, transporters, and disposers of hazardous waste). The manual also provides a general understanding of how federal RCRA requirements for hazardous waste affect industrial users. The manual also will be helpful in complying with any applicable federal requirements incumbent upon your POTW under Subtitle C of RCRA. The appendices contain lists of hazardous wastes regulated by federal requirements; selected EPA-approved forms for hazardous waste facilities to use; RCRA information brochure which briefly outlines the Act's impact on industries that generate or transport hazardous wastes; and EPA pamphlets summarizing information for generators of small quantities of hazardous waste.

  4. Exclusions and exemptions from RCRA hazardous waste regulation. RCRA Information Brief

    SciTech Connect (OSTI)

    Powers, J.

    1993-05-01

    The provisions in 40 CFR 261 establish which solid waste and are regulated under Subtitle C of the Resource Considered hazardous waste and are regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA). These provisions also exclude or exempt certain wastes from regulation. Wastes are excluded or exempted from coverage for a variety of reasons. The original RCRA legislation excluded a number of wastes that did not present a significant threat to human health or the environment or that were managed under other environmental programs. Other wastes were excluded by EPA to encourage their recycling or reuse as feedstocks in manufacturing processes. Some exclusions or exemptions serve to establish when a waste material becomes subject to regulation or when waste quantities are too minimal to be fully covered by the Federal hazardous waste regulatory program. As new regulations have caused the universe of RCRA generators and facilities to increase, the number of exclusions and exemptions have increased as well. This information Brief provides an overview of the types of waste and hazardous waste management units/facilities that may be excluded or exempted from regulation under the Federal hazardous waste (RCRA) Subtitle C) regulatory program. These wastes and units/facilities may or may not be excluded or exempted from coverage under authorized State RCRA programs.

  5. Audit of Selected Hazardous Waste Remedial Actions Program Costs,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ER-B-97-04 | Department of Energy of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 PDF icon Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 More Documents & Publications Audit Report: CR-B-97-04 Audit Report: IG-0443 Inspection Report: IG-0369

  6. EPA Hazardous Waste Generators Website | Open Energy Information

    Open Energy Info (EERE)

    Generators Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Hazardous Waste Generators Website Abstract This webpage provides general...

  7. Oregon Procedure and Criteria for Hazardous Waste Treatment,...

    Open Energy Info (EERE)

    Procedure and Criteria for Hazardous Waste Treatment, Storage or Disposal Permits Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  8. Hazardous Waste Generator Treatment Permit by Rule | Open Energy...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Hazardous Waste Generator Treatment Permit by RulePermittingRegulatory GuidanceGuideHandbook...

  9. Vermont Instructions for Preparing the VT Hazardous Waste Handler...

    Open Energy Info (EERE)

    Instructions for Preparing the VT Hazardous Waste Handler Site ID Form Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  10. ORNL grouting technologies for immobilizing hazardous wastes

    SciTech Connect (OSTI)

    Dole, L.R.; Trauger, D.B.

    1983-01-01

    The Cement and Concrete Applications Group at the Oak Ridge National Laboratory (ORNL) has developed versatile and inexpensive processes to solidify large quantities of hazardous liquids, sludges, and solids. By using standard off the shelf processing equipment, these batch or continuous processes are compatible with a wide range of disposal methods, such as above-ground storage, shallow-land burial, deep geological disposal, sea-bed dumping, and bulk in-situ solidification. Because of their economic advantages, these latter bulk in-situ disposal scenarios have received the most development. ORNL's experience has shown that tailored cement-based formulas can be developed which tolerate wide fluctuations in waste feed compositions and still maintain mixing properties that are compatible with standard equipment. In addition to cements, these grouts contain pozzolans, clays and other additives to control the flow properties, set-times, phase separations and impacts of waste stream fluctuation. The cements, fly ashes and other grout components are readily available in bulk quantities and the solids-blends typically cost less than $0.05 to 0.15 per waste gallon. Depending on the disposal scenario, total disposal costs (material, capital, and operating) can be as low as $0.10 to 0.50 per gallon.

  11. Method for disposing of hazardous wastes

    DOE Patents [OSTI]

    Burton, Frederick G. (West Richland, WA); Cataldo, Dominic A. (Kennewick, WA); Cline, John F. (Prosser, WA); Skiens, W. Eugene (Richland, WA)

    1995-01-01

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  12. Guidance manual for hazardous waste incinerator permits. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-07-01

    The manual provides guidance to the permit writer for designating facility - specific operating conditions necessary to comply with the RCRA standards for hazardous waste incinerators. Each section of the incineration regulation is addressed, including: waste analysis, designation of principal organic hazardous constituents and requirements for operation, inspection and monitoring. Guidance is also provided for evaluating incinerator performance data and trial burn procedures.

  13. Fire hazards analysis for solid waste burial grounds

    SciTech Connect (OSTI)

    McDonald, K.M.

    1995-09-28

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  14. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    SciTech Connect (OSTI)

    COVEY, L.I.

    2000-11-28

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  15. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P 0. Box 3090 Carlsbad , New Mexico 88221 FEB 2 9 2016 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant 2015 Biennial Hazardous Waste Report Dear Mr. Kieling: In accordance with the requirements of Part 2, Section 2.14.2 of the Hazardous Waste Facility Permit NM4890139088-TSDF, please find the enclosed CD-ROM and hardcopy of the 2015 Biennial Hazardous Waste Report (Report) for the

  16. Characterizing cemented TRU waste for RCRA hazardous constituents

    SciTech Connect (OSTI)

    Yeamans, D.R.; Betts, S.E.; Bodenstein, S.A. [and others

    1996-06-01

    Los Alamos National Laboratory (LANL) has characterized drums of solidified transuranic (TRU) waste from four major waste streams. The data will help the State of New Mexico determine whether or not to issue a no-migration variance of the Waste Isolation Pilot Plant (WIPP) so that WIPP can receive and dispose of waste. The need to characterize TRU waste stored at LANL is driven by two additional factors: (1) the LANL RCRA Waste Analysis Plan for EPA compliant safe storage of hazardous waste; (2) the WIPP Waste Acceptance Criteria (WAC) The LANL characterization program includes headspace gas analysis, radioassay and radiography for all drums and solids sampling on a random selection of drums from each waste stream. Data are presented showing that the only identified non-metal RCRA hazardous component of the waste is methanol.

  17. AGREEMENT BETWEEN NEW MEXICO ENVIRONMENT DEPARTMENT HAZARDOUS WASTE BUREAU

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGREEMENT BETWEEN NEW MEXICO ENVIRONMENT DEPARTMENT HAZARDOUS WASTE BUREAU AND WASTE ISOLATION PILOT PLANT PERMITTEES REGARDING A TIME EXTENSION FOR DISPUTE RESOLUTION RELATED TO FINAL AUDIT REPORT A-09-08 OF THE IDAHO NATIONAL LABORATORY/CENTRAL CHARACTERIZATION PROJECT BACKGROUND 1. In a letter dated May 18,2009, the Hazardous Waste Bureau of the New Mexico Environment Department (NMED) provided comments on the Idaho National Laboratory/Central Characterization Project (INLlCCP) Audit Report

  18. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Project 2014 Waste Minimization Report, Permit Number NM4890139088-TSDF Dear Mr. Kieling: The purpose of this letter is to provide you with the Waste Isolation Pilot Plant {WIPP) Project 2014 Waste Minimization Report. This report, required by and prepared in accordance with the W IPP Hazardous Waste Facility Permit Part 2,

  19. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect (OSTI)

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  20. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect (OSTI)

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  1. Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Waste

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harmless | Department of Energy Feeds Bacteria to Render Hazardous Groundwater Waste Harmless Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Waste Harmless April 2, 2012 - 12:00pm Addthis Neil Smith puts a trained eye on the pressure and flow of a food-grade com¬pound being injected into an under¬ground plume of hazardous waste near the X-720 Maintenance Facility at the DOE Piketon Site. The sodium lactate compound promotes bacterial growth in the groundwater that turns

  2. Iron phosphate compositions for containment of hazardous metal waste

    DOE Patents [OSTI]

    Day, D.E.

    1998-05-12

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

  3. Iron phosphate compositions for containment of hazardous metal waste

    DOE Patents [OSTI]

    Day, Delbert E.

    1998-01-01

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  4. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 0 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of Waste Isolation Pilot Plant Annual Geotechnical Analysis Report Dear Mr. Kieling : The purpose of this letter is to submit the following annual report as required by the Waste Isolation Pilot Plant Hazardous Waste Facility Permit No. NM4890139088-TSDF, Part 4, Section 4.6.1.2. * Waste Isolation Pilot Plant Geotechnical Ana lysis Report for July 2013- June

  5. EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct the Hazardous Waste Staging Facility that would help to alleviate capacity problems as well as provide a single compliant...

  6. ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste...

    Open Energy Info (EERE)

    ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste and Materials Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ORS...

  7. Title 40 CFR 261 Identification and Listing of Hazardous Waste...

    Open Energy Info (EERE)

    1 Identification and Listing of Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 40...

  8. Vermont Hazardous Waste Handler Site ID Form | Open Energy Information

    Open Energy Info (EERE)

    to library Legal Document- Permit ApplicationPermit Application: Vermont Hazardous Waste Handler Site ID FormLegal Abstract This form is used to notify the Vermont Agency of...

  9. Hazardous Waste Part A Permit Application | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Hazardous Waste Part A Permit ApplicationLegal Abstract Detailed instructions for filing a RCRA...

  10. Title 40 CFR 270: EPA Administered Programs: The Hazardous Waste...

    Open Energy Info (EERE)

    270: EPA Administered Programs: The Hazardous Waste Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 40 CFR...

  11. Process development accomplishments: Waste and hazard minimization, FY 1991

    SciTech Connect (OSTI)

    Homan, D.A.

    1991-11-04

    This report summarizes significant technical accomplishments of the Mound Waste and Hazard Minimization Program for FY 1991. The accomplishments are in one of eight major areas: environmentally responsive cleaning program; nonhalogenated solvent trials; substitutes for volatile organic compounds; hazardous material exposure minimization; nonhazardous plating development; explosive processing waste reduction; tritium capture without conversion to water; and robotic assembly. Program costs have been higher than planned.

  12. National Environmental Policy Act Hazards Assessment for the TREAT Alternative

    SciTech Connect (OSTI)

    Boyd D. Christensen; Annette L. Schafer

    2013-11-01

    This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

  13. National Environmental Policy Act Hazards Assessment for the TREAT Alternative

    SciTech Connect (OSTI)

    Boyd D. Christensen; Annette L. Schafer

    2014-02-01

    This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

  14. Grout formulation for disposal of low-level and hazardous waste streams containing fluoride

    DOE Patents [OSTI]

    McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

    1987-06-02

    A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

  15. Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

  16. Hazards assessment for the Waste Experimental Reduction Facility

    SciTech Connect (OSTI)

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  17. Removal of radioactive and other hazardous material from fluid waste

    DOE Patents [OSTI]

    Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  18. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O. Box 3090 Carlsbad, New Mexico 88221 N O V 2 4 2015 Ms. Kathryn Roberts, Director Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 New Mexico Environment Department Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Subject: Written Notice Regarding Application of Environmental Protection Agency Hazardous Waste Number 0001 to Waste Containers Disposed at the Waste Isolation Pilot

  19. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resou rce Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 New Mexico Environment Department Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Subject: Written Notice Regarding Application of Environmental Protection Agency Hazardous Waste Numbers D001 and D002 to Waste Containers Disposed at the Waste Isolation Pilot Plant Reference: Los Alamos National Laboratory Correspondence from Charles

  20. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  1. Wastes Hazardous or Solid | Open Energy Information

    Open Energy Info (EERE)

    or Solid Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWastesHazardousorSolid&oldid612186" Feedback Contact needs updating Image...

  2. Los Alamos National Laboratory Hazardous Waste Permit

    Office of Environmental Management (EM)

    ATTACHMENTS Attachment A Technical Area Unit Descriptions Attachment B Part A Application Attachment C Waste Analysis Plan Attachment D Contingency Plan Attachment E Inspection...

  3. Hazards Assessment Document of the New Waste Transfer Facility (NWTF)

    SciTech Connect (OSTI)

    Pareizs, J.M.

    1993-06-01

    This Hazards Assessment Document for the New Waste Transfer Facility (NWTF) has been prepared in accordance with the Interim Hazards Classification Guide for Non-Reactor Facilities at Savannah River Site. The conclusion of this assessment is that the facility is a High Hazard Nuclear Facility. The NWTF consists of all facilities installed by Project S-3122. The NWTF contains three segments. Segment 1 consists of the cells containing the diversion box and pump pits, with a Facility Segment Use Category (FSUC) determined to be High Hazard. Segment 2 is the building that encloses the cells. The FSUC of Segment 2 has been determined to be Low Hazard. Segment 3 consists of all parts of the facility external to the main building; this segment contains the ventilation system and HEPA filters and includes the diesel fuel tank. The FSUC of Segment 3 is Low Hazard.

  4. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOE Patents [OSTI]

    Lewis, Michele A. (Naperville, IL); Johnson, Terry R. (Wheaton, IL)

    1993-01-01

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  5. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOE Patents [OSTI]

    Lewis, Michele A.; Johnson, Terry R.

    1993-09-07

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  6. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 4 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Annual Report Dear Mr. Kieling: The purpose of this letter is to provide the following annual report as requ ired by the Waste Isolation Pilot Plant Hazardous Waste Facility Permit No. NM4890139088-TSDF, Part 4, Section 4.6.1.2. * Waste Isolation Pilot Plant Geotechnical Analysis Report for July 2012- June 2013, DOEIW

  7. Hazardous waste site characterization (on cd-rom). Data file

    SciTech Connect (OSTI)

    1996-07-01

    Site characterization is one facet of hazardous waste site investigations. Environmental scientists and engineers within and outside the regulated community are becoming overwhelmed by the increasing number of guidance manuals, directives, documents and software products relating to the characterization of hazardous waste sites. People in the private sector, academia, and government are looking for convenient, definitive sources for this information. This CD-ROM combines into a single source a collection of useful references. The CD-ROM contains over 3,200 pages of EPA`s RCRA and Superfund Directives and Manuals that may be searched by key words or printed. It also contains a compilation of EPA-developed computer programs and documents to aid environmental professionals in the characterization of hazardous waste sites.

  8. WIPP Hazardous Waste Permit - Approved Modifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Solid Waste Management Units and Areas of Concern - August 2007 Final Class 1 WTS Mgr Change 9-05-07 Class 1 Permit Notifications final 9-12-07 Class 2 Monitoring Filled...

  9. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    28, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Sampling Line Loss, Waste Isolation Pilot...

  10. Stabilization solutions to hazardous metals laden waste

    SciTech Connect (OSTI)

    Kramer, M.

    1996-12-31

    This paper is limited to treatment of bottom and fly ash waste resulting from WTE and RTE Cogeneration plants, commonly known as trash burners. The body of the paper defines waste generation and conventional treatment schemes. This paper does not identify a best treatment, however, it does offer a general perspective of the treatments to lead the reader to further investigation. Advantages and disadvantages of the ash treatments is discussed in each treatment section. 29 refs., 1 fig.

  11. Method of recovering hazardous waste from phenolic resin filters

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Bourne, Gary L. (Idaho Falls, ID); McFee, John N. (Albuquerque, NM); Burdge, Bradley G. (Idaho Falls, ID); McConnell, Jr., John W. (Idaho Falls, ID)

    1991-01-01

    The invention is a process for the recovery of hazardous wastes such as heavy metals and radioactive elements from phenolic resin filter by a circulating a solution of 8 to 16 molar nitric acid at a temperature of 110 to 190 degrees F. through the filter. The hot solution dissolves the filter material and releases the hazardous material so that it can be recovered or treated for long term storage in an environmentally safe manner.

  12. Sources and management of hazardous waste in Papua New Guinea

    SciTech Connect (OSTI)

    Singh, K.

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises; it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.

  13. Health and Safety Procedures Manual for hazardous waste sites

    SciTech Connect (OSTI)

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  14. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APR 2 2 2015 Ms. Kathryn Roberts, Division Director Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Request for Additional Extension of Storage Time at the Waste Isolation Pilot Plant Facility, Hazardous Waste Facility Permit Number NM4890139088-TSDF Reference: New Mexico Environment Department correspondence from Ryan Flynn to

  15. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 0 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Mr. Tom Blaine, Division Director Environmental Health Division Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Written Notice Regarding Application of EPA Hazardous Waste Number D001 to Some Nitrate Salt Bearing Waste Containers Dear Mr. Kieling and Mr. Blaine: The purpose of this letter is to provide you written notice that the Department of

  16. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAR 2 3 2015 Ms. Kathryn Roberts, Director Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 New Mexico Environment Department Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Written Notice Regarding Application of EPA Hazardous Waste Number 0001 to Additional Nitrate Salt Bearing Waste Containers Dear Mr. Kieling and Ms. Roberts: The purpose of this letter is to provide you

  17. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAY 8 2015 Ms. Kathryn Roberts, Division Director Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Written Notice Regarding Application and Removal of EPA Hazardous Waste Number D001 to Nitrate Salt Bearing Waste Containers Dear Mr. Kieling and Ms. Roberts: The purpose of this letter is to provide you written notice that the U.

  18. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carl sbad, New Mexico 88221 FEB 1 3 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Class 1 Permit Modification Notification to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number: NM4890139088-TSDF Dear Mr. Kieling: Enclosed is the following Class 1 Permit Modification Notification consisting of the following items: * Clarify the Date When Laboratory Procedures are Provided to NMED * Add

  19. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APR 2 8 201 4 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505 Subject: Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April 11, 2014 Dear Mr. Kieling: The purpose of this letter is to provide the Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April 11, 2014. This report is required by the

  20. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  1. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad, New Mexico 88221 September 02 , 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe , New Mexico 87505-6303 Subject: Notification of Sampling Line Loss, Waste Isolation Pilot Plant Permit Number NM4890139088-TSDF Dear Mr. Bearzi: The purpose of this letter is to transmit notification to the New Mexico Environment Department (NMED) of the loss of a hydrogen and methane monitoring sampling line as required under Permit Condition IV.F.5.e. The sampling

  2. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    28, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Sampling Line Loss, Waste Isolation Pilot Plant Permit Number NM4890139088-TSDF Dear Mr. Bearzi: The purpose of this letter is to transmit notification to the New Mexico Environment Department (NMED) of the loss of a hydrogen and methane monitoring sampling line as required under Permit Condition IV.F.5.e. The sampling line involved , identified as line Panel

  3. U.A.C. R315-5: Hazardous Waste Generator Requirements | Open...

    Open Energy Info (EERE)

    5: Hazardous Waste Generator Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: U.A.C. R315-5: Hazardous Waste...

  4. Title 40 CFR 260-270 Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    -270 Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 40 CFR 260-270 Hazardous WasteLegal Abstract...

  5. RCRA Uniform Hazardous Waste Manifest (EPA Form 8700-22) | Open...

    Open Energy Info (EERE)

    Uniform Hazardous Waste Manifest (EPA Form 8700-22) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RCRA Uniform Hazardous Waste Manifest (EPA Form...

  6. H.A.R. 11-261 - Hazardous Waste Management | Open Energy Information

    Open Energy Info (EERE)

    1 - Hazardous Waste Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 11-261 - Hazardous Waste...

  7. Title 46 Alaska Statutes Section 03.302 Hazardous Waste Permit...

    Open Energy Info (EERE)

    02 Hazardous Waste Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 46 Alaska Statutes Section 03.302 Hazardous Waste...

  8. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect (OSTI)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-12-31

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  9. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect (OSTI)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  10. Remediation of DOE hazardous waste sites: Planning and integration requirements

    SciTech Connect (OSTI)

    Geffen, C.A.; Garrett, B.A.; Cowan, C.E.; Siegel, M.R.; Keller, J.F. )

    1989-09-01

    The US Department of Energy (DOE) is faced with a immense challenge in effectively implementing a program to mitigate and manage the environmental impacts created by current operations and from past activities at its facilities. The current regulatory framework and public interest in the environmental arena have made operating DOE facilities in an environmentally responsible manner a compelling priority. This paper provides information on the results of a project funded by DOE to obtain a better understanding of the regulatory and institutional drivers in the hazardous waste market and the costs and timeframes required for remediation activities. Few realize that before remediating a hazardous waste site, a comprehensive planning process must be conducted to characterize the nature and extent of site contamination, calculate the risk to the public, and assess the effectiveness of various remediation technologies. The US Environmental Protection Agency (EPA) and others have found that it may take up to 7 years to complete the planning process at an average cost of $1.0 million per site. While cost information is not yet available for DOE sites, discussions with hazardous waste consulting firms indicate that average characterization and assessment costs will be 5 to 10 times this amount for DOE sites. The higher costs are expected because of the additional administrative requirements placed on DOE sites, the need to handle mixed wastes, the amount and extent of contamination at many of these sites, and the visibility of the sites. 15 refs., 1 fig., 2 tabs.

  11. Method for solidification of radioactive and other hazardous waste

    DOE Patents [OSTI]

    Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana A. (Krasnoyarsk, RU); Voskresenskaya, Elena N. (Krasnoyarsk, RU); Kostin, Eduard M. (Zheleznogorsk, RU); Pavlov, Vyacheslav F. (Krasnoyarsk, RU); Revenko, Yurii A. (Zheleznogorsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Sharonova, Olga M. (Krasnoyarsk, RU); Aloy, Albert S. (Saint-Petersburg, RU); Sapozhnikova, Natalia V. (Saint-Petersburg, RU); Knecht, Dieter A. (Idaho Falls, ID); Tranter, Troy J. (Idaho Falls, ID); Macheret, Yevgeny (Idaho Falls, ID)

    2002-01-01

    Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

  12. Lessons learned from the EG&G consolidated hazardous waste subcontract and ESH&Q liability assessment process

    SciTech Connect (OSTI)

    Fix, N.J.

    1995-03-01

    Hazardous waste transportation, treatment, recycling, and disposal contracts were first consolidated at the Idaho National Engineering Laboratory in 1992 by EG&G Idaho, Inc. At that time, disposition of Resource, Conservation and Recovery Act hazardous waste, Toxic Substance Control Act waste, Comprehensive Environmental Response, Compensation, and Liability Act hazardous substances and contaminated media, and recyclable hazardous materials was consolidated under five subcontracts. The wastes were generated by five different INEL M&O contractors, under the direction of three different Department of Energy field offices. The consolidated contract reduced the number of facilities handling INEL waste from 27 to 8 qualified treatment, storage, and disposal facilities, with brokers specifically prohibited. This reduced associated transportation costs, amount and cost of contractual paperwork, and environmental liability exposure. EG&G reviewed this approach and proposed a consolidated hazardous waste subcontract be formed for the major EG&G managed DOE sites: INEL, Mound, Rocky Flats, Nevada Test Site, and 10 satellite facilities. After obtaining concurrence from DOE Headquarters, this effort began in March 1992 and was completed with the award of two master task subcontracts in October and November 1993. In addition, the effort included a team to evaluate the apparent awardee`s facilities for environment, safety, health, and quality (ESH&Q) and financial liability status. This report documents the evaluation of the process used to prepare, bid, and award the EG&G consolidated hazardous waste transportation, treatment, recycling, and/or disposal subcontracts and associated ESH&Q and financial liability assessments; document the strengths and weaknesses of the process; and propose improvements that would expedite and enhance the process for other DOE installations that used the process and for the re-bid of the consolidated subcontract, scheduled for 1997.

  13. WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint

    Office of Energy Efficiency and Renewable Energy (EERE)

    CARLSBAD, N.M., August 1, 2011 The U.S. Department of Energys (DOEs) Carlsbad Field Office (CBFO) reduced the nuclear waste footprint by using American Recovery and Reinvestment Act funds to expedite the clean up of five transuranic (TRU) waste storage sites and to make important infrastructure improvements at the Waste Isolation Pilot Plant (WIPP).

  14. Hazardous Waste Facility Permit Public Comments to Community Relations Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Summary of Comments for July 2012 through August 2013 Last saved on: 8/30/2013 Annual Summary of CRP comment for July 2011- August 2012 1 SECTION COMMENT POST? 2.0 & 4.0 1. Fix broken links on pages 3 and 4 for the HWA permit. Yes 2.0 2. Revise a sentence on page 4 to: "Limits on LANL waste facilities may be found in Attachment J of the Permit." Yes 3. Delete Section 5.3.7 on RACER. Provide a description of Intellus. Yes 2.0 Yes 5.1 Yes Hazardous Waste Facility Permit

  15. System for enhanced destruction of hazardous wastes by in situ vitrification of soil

    DOE Patents [OSTI]

    Timmerman, Craig L. (Richland, WA)

    1991-01-01

    The present invention comprises a system for promoting the destruction of volatile and/or hazardous contaminants present in waste materials during in situ vitrification processes. In accordance with the present invention, a cold cap (46) comprising a cohesive layer of resolidified material is formed over the mass of liquefied soil and waste (40) present between and adjacent to the electrodes (10, 12, 14, 16) during the vitrification process. This layer acts as a barrier to the upward migration of any volatile type materials thereby increasing their residence time in proximity to the heated material. The degree of destruction of volatile and/or hazardous contaminants by pyrolysis is thereby improved during the course of the vitrification procedure.

  16. Method for encapsulating hazardous wastes using a staged mold

    DOE Patents [OSTI]

    Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

    1989-01-01

    A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  17. Waste Issues Associated with the Safe Movement of Hazardous Chemicals

    SciTech Connect (OSTI)

    Dare, J. H.; Cournoyer, M. E.

    2002-02-26

    Moving hazardous chemicals presents the risk of exposure for workers engaged in the activity and others that might be in the immediate area. Adverse affects are specific to the chemicals and can range from minor skin, eye, or mucous membrane irritation, to burns, respiratory distress, nervous system dysfunction, or even death. A case study is presented where in the interest of waste minimization; original shipping packaging was removed from a glass bottle of nitric acid, while moving corrosive liquid through a security protocol into a Radiological Control Area (RCA). During the transfer, the glass bottle broke. The resulting release of nitric acid possibly exposed 12 employees with one employee being admitted overnight at a hospital for observation. This is a clear example of administrative controls to reduce the generation of suspect radioactive waste being implemented at the expense of employee health. As a result of this event, material handling procedures that assure the safe movement of hazardous chemicals through a security protocol into a radiological control area were developed. Specifically, hazardous material must be transferred using original shipping containers and packaging. While this represents the potential to increase the generation of suspect radioactive waste in a radiological controlled area, arguments are presented that justify this change. Security protocols for accidental releases are also discussed. In summary, the 12th rule of ''Green Chemistry'' (Inherently Safer Chemistry for Accident Prevention) should be followed: the form of a substance used in a chemical process (Movement of Hazardous Chemicals) should be chosen to minimize the potential for chemical accidents, including releases.

  18. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    SciTech Connect (OSTI)

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  19. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    SciTech Connect (OSTI)

    T. M. Blakley; W. D. Schofield

    2007-09-10

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  20. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  1. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  2. NEW MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA MARTINEZ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA MARTINEZ Governor 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505*6303 Phone (50S) 476-6000 Fax (50S) 476-6030 www.lfmenv.stale.nm.IU RYAN FLYNN Cabinet Secretary Designate JOHN A, SANCHr - :Z Lieutenant Governor CERTIFIED MAIL - RETURN RECEIPT REQUESTED SeplelIlber 20, 201 3 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 Carlsbad, New Mexico 88221-3090 M. Farok Sharif, Project Manager

  3. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6303 Subject: Notification of Planned Physical Alteration to the Permitted Facility, Hazardous Waste Facility Permit, Number: NM4890139088-TSDF Dear Mr. Kieling: The purpose of this letter is to notify you of a planned physical alteration to the permitted facility in accordance with Permit Part 1, Section 1.7.11. (20.4.1.900 New Mexico Administrative Code (NMAC) incorporating Title 40 of the Code

  4. Use of hazardous waste in cement kilns backed

    SciTech Connect (OSTI)

    Krieger, J.

    1993-07-19

    Cement kiln operators who are making use of hazardous waste as a partial substitute for fossil fuel now have a better engineering foundation for determining what is going on in the kilns and how to optimize their operations. A just-released study by a scientific advisory board of experts commissioned by the Cement Kiln Recycling Coalition (CKRC) in Washington, DC, has provided an in-depth look, at such operations and finds the practice to be a fundamentally sound' technology. Long residence times and high temperatures in cement kilns maximize the combustion efficiency for waste-derived fuels, according to the study report. The scientific advisory board notes that all organic compounds can be destroyed in a kiln at 99.9999% efficiency. Also, the behavior of metals in cement kilns can be readily measured, predicted, and controlled. Cement kilns are extremely efficient in reducing metals emissions.

  5. Method and apparatus for the management of hazardous waste material

    DOE Patents [OSTI]

    Murray, H. Jr.

    1995-02-21

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

  6. Method and apparatus for the management of hazardous waste material

    DOE Patents [OSTI]

    Murray, Jr., Holt (Hopewell, NJ)

    1995-01-01

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

  7. AAC R-18-8-260 Hazardous Waste Management System | Open Energy...

    Open Energy Info (EERE)

    AAC R-18-8-260 Hazardous Waste Management System Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: AAC R-18-8-260 Hazardous...

  8. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 7 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Mr. Tom Blaine, Division Director Environmental Health Division Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Supplement to Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April 11, 2014 Dear Mr. Kieling and Mr. Blaine: On April11, 2014, the Department of Energy

  9. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUG 1 8 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Mr. Tom Blaine, Division Director Environmental Health Division Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Second Supplement to Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April 11 , 2014 Dear Mr. Kieling and Mr. Blaine: On April 11 , 2014 , the Department

  10. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 2015 Ms. Kathryn Roberts, Division Director Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Fourth Supplement to the Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April11 , 2014 Dear Mr. Kieling and Ms. Roberts: On April11, 2014, the Department

  11. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 New Mexico Environment Department Harold Runnels Bu ildi ng 1190 Saint Francis Drive, PO Box 5496 Santa Fe, NM 87502-5469 Subject: Fifth Supplement to the Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April 11, 2014 Dear Mr. Kieling and Ms. Roberts: On April11 , 2014, the Department of

  12. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JAN 0 6 2015 Mr. Butch Tongate New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Deputy Secretary and Acting Division Director Environmental Health Division New Mexico Environment Department Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Information Regarding the Underground Derived Waste Storage Plan Dear Mr. Kieling and Mr. Tongate: The purpose of this letter is to provide the information requested in

  13. Guidance manual for the identification of hazardous wastes delivered to publicly owned treatment works by truck, rail, or dedicated pipe

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    The manual is directed towards two types of facilities: First, guidance is to POTWs that wish to preclude the entry of hazardous wastes into their facilities and avoid regulation and liability under RCRA. Administrative/technical recommendations for control of such wastes is provided, many of which are already in use by POTWs. Second, the responsibilities of POTWs that choose to accept hazardous wastes from truck, rail, or dedicated pipeline are discussed, including relevant regulatory provisions, strict liability and corrective action requirements for releases, and recommended procedures for waste acceptance/management. The manual describes the RCRA regulatory status of wastes that POTW operators typically may encounter. The manual includes a Waste Monitoring Plan. Appendices give the following: RCRA lists; RCRA listed hazardous wastes; examples of POTW sewer use ordinance language, waste hauler permit; waste tracking form, notification of hazardous waste activity; uniform hazardous waste manifest; biennial hazardous waste report; and state hazardous waste contacts.

  14. Hazardous waste site inspectors and operators: Their perceptions of the media and environmental groups

    SciTech Connect (OSTI)

    Graber, D.R.; Musham, C.

    1995-12-01

    This study assesses and compares the views and opinions of two groups (representing the `regulators` and the `regulated`) in one area of environmental management - the operation of commercial hazardous waste sites. A survey, sent to 141 managers of commercial treatment, storage, and disposal sites and 110 hazardous waste inspectors. This paper reports on their views of the role and influence of the media. In addition, the expectations for hazardous waste management by several stakeholder groups was examined.

  15. OSS 19.5 Hazardous Waste Operations and Emergency Response 3/21/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to ensure that workers who are performing activities associated with characterizing, handling, processing, storing or transporting hazardous wastes are...

  16. Property-close source separation of hazardous waste and waste electrical and electronic equipment - A Swedish case study

    SciTech Connect (OSTI)

    Bernstad, Anna; Cour Jansen, Jes la; Aspegren, Henrik

    2011-03-15

    Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems.

  17. Plasma destruction of North Carolina`s hazardous waste based on hazardous waste generated between the years of 1989 and 1992

    SciTech Connect (OSTI)

    Williams, D.L.

    1994-12-31

    The purpose of this research is to analyze the applicability of the plasma waste destruction technology to North Carolina hazardous waste streams. This study outlines the current regulations, existing technologies, and innovative technologies being considered as hazardous waste treatment alternatives. From this foundation, the study proceeds to identify the superiority of the plasma waste destruction technology. Specific areas of discussion include: temperature capabilities, waste residence time requirements, destruction removal efficiencies, operational efficiencies, economic issues, safety, and maintenance. This study finds the plasma destruction technology to be fully effective and superior to conventional facilities. The technology completely destroys hydrocarbons and can reduce the volume of many other hazardous wastes on the order of one part per million. The required residence time of waste in a plasma facility for effective destruction is a fraction of a second, while the rotary kiln incinerator maintains an average residence time of approximately 5 seconds. Also mass and heat balance calculations are performed to quantify the effectiveness and efficiency of this technology. It is found that one day`s average amount of hazardous waste generated in the state of North Carolina can be destroyed in approximately thirty seconds using a standard one megawatt power source. Yet, before this technology is adopted as North Carolina`s primary hazardous waste destruction technology, further study is needed so that all issues considered in this research can be conducted in great detail.

  18. Public invited to comment on additional proposed modications to WIPP hazardous waste permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Invited to Comment on Additional Proposed Modifications To WIPP Hazardous Waste Permit CARLSBAD, N.M., April 26, 2000 - The public is invited to comment on additional proposed modifications to the hazardous waste facility permit for the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). Earlier this month, DOE and the Westinghouse Waste Isolation Division requested -- through three Class 2 permit modification submittals -- that the New Mexico Environment Department

  19. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOE Patents [OSTI]

    Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  20. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    SciTech Connect (OSTI)

    N /A

    2004-02-13

    This Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) ongoing and proposed waste management practices at the Hanford Site in Washington State. The HSW EIS updates some analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS; DOE 1997c) Records of Decision (RODs). The draft HSW EIS was initially issued in April 2002 for public comment (DOE 2002b). A revised draft HSW EIS was issued in March 2003 to address new waste management alternatives that had been proposed since the initial draft HSW EIS was prepared, and to address comments received during the public review period for the first draft (DOE 2003d). The revised draft HSW EIS also incorporated alternatives for disposal of immobilized low-activity waste (ILAW) from treatment of Hanford Site tank waste in the waste treatment plant (WTP) currently under construction, an activity that was not included in the first draft (68 FR 7110). This final HSW EIS describes the DOE preferred alternative, and in response to public comments received on the March 2003 revised draft, provides additional analyses for some environmental consequences associated with the preferred alternative, with other alternatives, and with cumulative impacts. Public comments on the revised draft HSW EIS are addressed in the comment response document (Volume III of this final EIS). This HSW EIS describes the environmental consequences of alternatives for constructing, modifying, and operating facilities to store, treat, and/or dispose of low-level (radioactive) waste (LLW), transuranic (TRU) waste, ILAW, and mixed low-level waste (MLLW) including WTP melters at Hanford. In addition, the potential long-term consequences of LLW, MLLW, and ILAW disposal on groundwater and surface water are evaluated for a 10,000-year period, although the DOE performance standards only require assessment for the first 1000 years after disposal (DOE 2001f). This document does not address non-radioactive waste that contains ''hazardous'' or ''dangerous'' waste, as defined under the Resource Conservation and Recovery Act (RCRA) of 1976 (42 USC 6901) and Washington State Dangerous Waste regulations (WAC 173-303). Following a previous National Environmental Policy Act (NEPA, 42 USC 4321) review (DOE 1997d), DOE decided to dispose of TRU waste in New Mexico at the Waste Isolation Pilot Plant (WIPP), a repository that meets the requirements of 40 CFR 191 (63 FR 3623). This HSW EIS has been prepared in accordance with NEPA, the DOE implementing procedures for NEPA 10 CFR 1021, and the Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 CFR 1500-1508).

  1. Monitoring genetic damage to ecosystems from hazardous waste

    SciTech Connect (OSTI)

    Anderson, S.L.

    1992-03-01

    Applications of ecological toxicity testing to hazardous waste management have increased dramatically over the last few years, resulting in a greater awareness of the need for improved biomonitoring techniques. Our laboratory is developing advanced techniques to assess the genotoxic effects of environmental contamination on ecosystems. We have developed a novel mutagenesis assay using the nematode Caenorhabditis elegans, which is potentially applicable for multimedia studies in soil, sediment, and water. In addition, we are conducting validation studies of a previously developed anaphase aberration test that utilizes sea urchin embryos. Other related efforts include field validation studies of the new tests, evaluation of their potential ecological relevance, and analysis of their sensitivity relative to that of existing toxicity tests that assess only lethal effects, rather than genetic damage.

  2. Mr. John Kieling, Acting Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P O. Box 3090 Carlsbad, New Mexico 88221 JUl 2 0 2011 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6303 Subject: Notification of...

  3. Mr. John Kieling, Acting Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P. O. Box 3090 Carlsbad, New Mexico 88221 JUN 2 6 2012 New Mexico Environment Department 2905 E. Rodeo Park Dr. Bldg. 1 Santa Fe, New Mexico 87505-6303 Subject: Annual Proposed Acceptable Knowledge Sufficiency Determination List Reference: DOE Memorandum CBFO:OESH:GTB:ANC:11 :0781 :UFC 5822.00 from E.J. Ziemianski and M.F. Sharif to Mr. John Kieling, dated June 22,2011, Subject: Annual Proposed Acceptable Knowledge Sufficiency Determination List Dear Mr. Kieling: Pursuant to Permit Attachment C,

  4. Mr. John Kieling, Acting Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P O. Box 3090 Carlsbad, New Mexico 88221 JUl 2 0 2011 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6303 Subject: Notification of Exceedance of a Disposal Room Volatile Organic Compound Monitoring Action Level for Carbon Tetrachloride Dear Mr. Kieling: The purpose of this letter is to notify you of the receipt of validated analytical results for a volatile organic compound (VOC), carbon tetrachloride, which exceeded the 50 percent action level listed

  5. Mr. John Kieling, Acting Chief Hazardous Waste Bureau Depa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Depa rtm ent of En e rgy Carlsbad Fie ld Office P. O. Box 3090 Ca rlsbad , New Mexico 88221 JUN 2 2 2011 New Mexico Environment Department 2905 E. Rodeo Park Drive Building 1 Santa Fe, New Mexico 87505*6303 Subject: Annual Proposed Acceptable Knowledge Sufficiency Determination List Dear Mr. Kieling : Pursuant to Permit Cond ition Attachment C, Section C-Ob , Acceptable Knowledge Suffi ciency Determination (AKSD) . the Permittees are required to submit to Ihe New Mexico Environment Department a

  6. Mr. John Kieling, Acting Chief Hazardous Waste Bureau Depa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Depa rtm ent of En e rgy Carlsbad Fie ld Office P. O. Box 3090 Ca rlsbad , New Mexico 88221 JUN 2 2 2011 New Mexico Environment Department 2905 E. Rodeo Park Drive Building 1 Santa...

  7. Mr. John Kieling, Acting Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P. O. Box 3090 Carlsbad, New Mexico 88221 JUN 2 6 2012 New Mexico Environment Department 2905 E. Rodeo Park Dr. Bldg. 1 Santa Fe, New Mexico 87505-6303 Subject: Annual Proposed...

  8. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, P.D.; Colombo, P.

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  9. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, P.D.; Colombo, P.

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  10. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, P.D.; Colombo, P.

    1997-07-15

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  11. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, Paul D. (21 Barnes Road, Wading River, NY 11792); Colombo, Peter (44 N. Pinelake Dr., Patchogue, NY 11772)

    1997-01-01

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  12. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  13. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  14. Characterization of household hazardous waste from Marin County, California, and New Orleans, Louisiana

    SciTech Connect (OSTI)

    Rathje, W.L.; Wilson, D.C.; Lambou, V.W.; Herndon, R.C.

    1987-09-01

    There is a growing concern that certain constituents of common household products, that are discarded in residential garbage, may be potentially harmful to human health and the environment by adversely affecting the quality of ground and surface water. A survey of hazardous wastes in residential garbage from Marin County, California, and New Orleans, Louisiana, was conducted in order to determine the amount and characteristics of such wastes that are entering municipal landfills. The results of the survey indicate that approximately 642 metric tons of hazardous waste are discarded per year for the New Orleans study area and approximately 259 metric tons are discarded per year for the Marin County study area. Even though the percent of hazardous household waste in the garbage discarded in both study areas was less than 1%, it represents a significant quantity of hazardous waste because of the large volume of garbage involved.

  15. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  16. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year's data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B.

  17. Investigation of separation, treatment, and recycling options for hazardous paint blast media waste. Final report

    SciTech Connect (OSTI)

    Boy, J.H.; Race, T.D.; Reinbold, K.A.

    1996-02-01

    U.S. Army depot depaint operations generate over 4 million kg per year of contaminated paint blast media wastes. The objective of this work was to investigate technologies that might significantly mitigate this Army hazardous waste disposal problem. Most of the technologies investigated either failed to meet acceptable TCLP levels for hazardous metals content, or failed to meet Army disposal requirements. However, based on a review of several commercially available services, it is recommended that Army depot depaint operations consider processing hazardous blast media waste through properly regulated contractors that offer safe, effective, and economical stabilization, fixation, and recycling technologies.

  18. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    SciTech Connect (OSTI)

    Tonn, B.; Hwang, Ho-Ling; Elliot, S.; Peretz, J.; Bohm, R.; Hendrucko, B.

    1994-04-01

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also.

  19. Quality assurance/quality control (QA/QC) procedures for hazardous-waste incineration. Handbook

    SciTech Connect (OSTI)

    Dux, T.; Gilford, P.; Bergman, F.; Boomer, B.; Hooton, D.

    1990-01-01

    The Environmental Protection Agency (EPA) has promulgated regulations for hazardous waste incinerators under the Resource Conservation and Recovery Act. These regulations require the permit applicant to conduct trial burns to demonstrate compliance with the regulatory limits and provide data needed to write the individual permits. Trial burns require a Quality Assurance Project Plan (QAPjP) with quality assurance/quality control (QA/QC) procedures to control and evaluate data quality. The primary focus of the handbook is the trial burn itself; however, a discussion of the QA/QC for routine incinerator monitoring and permit compliance is included in a separate chapter. The area has slightly different requirements and objectives from those of the trial burn. The trial burn should be viewed as a short-term project with a defined beginning and end, while compliance monitoring is considered an ongoing process.

  20. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2010-10-25

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

  1. Solid waste landfills under the Resource Conservation and Recovery Act Subtitle D

    SciTech Connect (OSTI)

    1995-11-01

    This document provides guidance for meeting: (1) Guidelines for the Land Disposal of Solid Waste (40 CFR 241); (2) Criteria for Classification of Solid Waste Disposal Facilities and Practices (40 CFR 257); and (3) Criteria for Municipal Solid Waste Landfills (MSWLFs) (40 CFR Part 258). Revisions to 40 CFR 257 and a new Part 258 were published in the Federal Register (56 FR 50978, 10/9/91). The Guidelines for the Land Disposal of Solid Waste set requirements and recommended procedures to ensure that the design, construction, and operation of land disposal sites is done in a manner that will protect human health and the environment. These regulations are applicable to MSWLFs and non-MSWLFs (e.g., landfills used only for the disposal of demolition debris, commercial waste, and/or industrial waste). These guidelines are not applicable to the, land disposal of hazardous, agricultural, and/or mining wastes. These criteria are to be used under the Resource Conservation and Recovery Act (RCRA) in determining which solid waste disposal facilities pose a reasonable possibility of adversely affecting human health or the environment. Facilities failing to satisfy these criteria will be considered to be open dumps which are prohibited under Section 4005 of RCRA. The Criteria for MSWLFs are applicable only to MSWLFs, including those MSWLFs in which sewage sludge is co-disposed with household waste. Based on specific criteria, certain MSWLFs are exempt from some, or all, of the regulations of 40 CFR 258. MSWLFs that fail to satisfy the criteria specified in 40 CFR 258 are also considered open dumps for the purposes of Section 4005 of RCRA. Through the use of a series of interrelated flow diagrams, this guidance document directs the reader to each design, operation, maintenance, and closure activity that must be performed for MSWLFs and non-MSWLFs.

  2. Nuclear Waste Policy Act Signed | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Waste Policy Act Signed | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at

  3. 42 U.S.C. 6901 - Solid Waste Disposal Act | Open Energy Information

    Open Energy Info (EERE)

    6901 - Solid Waste Disposal Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 42 U.S.C. 6901 - Solid Waste Disposal ActLegal...

  4. Hazardous Waste Acceptance and Pick-up Guide | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Acceptance and Pick-up Guide Version Number: 0 Document Number: Guide 10200.011 Effective Date: 022013 File (public): PDF icon guide10200.011rev0...

  5. U.A.C. R315: Environmental Quality, Solid and Hazardous Waste...

    Open Energy Info (EERE)

    : Environmental Quality, Solid and Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: U.A.C. R315:...

  6. IDAPA 58.01.05 - Rules and Standards for Hazardous Waste | Open...

    Open Energy Info (EERE)

    5 - Rules and Standards for Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: IDAPA 58.01.05 - Rules and...

  7. Function-based Biosensor for Hazardous Waste Toxin Detection

    SciTech Connect (OSTI)

    James J Hickman

    2008-07-09

    There is a need for new types of toxicity sensors in the DOE and other agencies that are based on biological function as the toxins encountered during decontamination or waste remediation may be previously unknown or their effects subtle. Many times the contents of the environmental waste, especially the minor components, have not been fully identified and characterized. New sensors of this type could target unknown toxins that cause death as well as intermediate levels of toxicity that impair function or cause long term impairment that may eventually lead to death. The primary question posed in this grant was to create an electronically coupled neuronal cellular circuit to be used as sensor elements for a hybrid non-biological/biological toxin sensor system. A sensor based on the electrical signals transmitted between two mammalian neurons would allow the marriage of advances in solid state electronics with a functioning biological system to develop a new type of biosensor. Sensors of this type would be a unique addition to the field of sensor technology but would also be complementary to existing sensor technology that depends on knowledge of what is to be detected beforehand. We integrated physics, electronics, surface chemistry, biotechnology, and fundamental neuroscience in the development of this biosensor. Methods were developed to create artificial surfaces that enabled the patterning of discrete cells, and networks of cells, in culture; the networks were then aligned with transducers. The transducers were designed to measure electromagnetic fields (EMF) at low field strength. We have achieved all of the primary goals of the project. We can now pattern neurons routinely in our labs as well as align them with transducers. We have also shown the signals between neurons can be modulated by different biochemicals. In addition, we have made another significant advance where we have repeated the patterning results with adult hippocampal cells. Finally, we demonstrated that patterned cardiac cells on microelectrode arrays could act as sensors as well.

  8. Ecological investigation of a hazardous waste site, Warner Robins, Georgia

    SciTech Connect (OSTI)

    Wade, M.; Billig, P.

    1993-05-01

    Landfill No. 4 and the sludge lagoon at Robins Air Force Base, Warner Robins, Georgia, were added to the United States Environmental Protection Agency (EPA) National Priorities List in 1987 because of highpotential for contaminant migration. Warner Robins is located approximately 90 miles southeast of Atlanta. In 1990 CH2M HILL conducted a Remedial Investigation at the base that recommended that further ecological assessment investigations be conducted (CH2M HILL 1990). The subject paper is the result of this recommendation. The ecological study was carried out by the Hazardous Waste Remedial Actions Program (HAZWRAP)Division of Martin Marietta Energy Systems, Inc., working jointly with its subcontractor CDM (CDM 1992a). The primary area of investigation (Zone 1) included the sludge lagoon, Landfill No. 4, the wetland area east of the landfill and west of Hannah Road (including two sewage treatment ponds), and the area between Hannah Road and Horse Creek (Fig. 1). The bottomland forest wetlands of Zone 1 extend from the landfill east to Horse Creek. Surface water and groundwater flow across Zone 1 is generally in an easterly direction toward Horse Creek. Horse Creek is a south-flowing tributary of the Ocmulgee River Floodplain. The objective of the study was to perform a quantitative analysis of ecological risk associated with the ecosystems present in Zone 1. This investigation was unique because the assessment was to be based upon many measurement endpoints resulting in both location-specific data and data that would assess the condition of the overall ecosystem. The study was segregated into five distinct field investigations: hydrology, surface water and sediment, aquatic biology, wetlands ecology, and wildlife biology.

  9. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEP 3 0 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Subject: Information Regarding the Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan Dear Mr. Kieling: The purpose of this letter is to provide the information requested in your August 5, 2014 letter regarding the Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan. The following are enclosed with the letter: * Waste Isolation

  10. Recovery Act Funding Leads to Record Year for Transuranic Waste Shipments

    Broader source: Energy.gov [DOE]

    With the help of American Recovery and Reinvestment Act funding, the Waste Isolation Pilot Plant (WIPP) received the most transuranic waste shipments in a single year since waste operations began...

  11. F-Area Hazardous Waste Management Facility Semiannual Correction Action Report, Vol. I and II

    SciTech Connect (OSTI)

    Chase, J.

    1999-11-18

    The groundwater in the uppermost aquifer beneath the F-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site is routinely monitored for selected hazardous and radioactive constituents. This report presents the results of the required groundwater monitoring program.

  12. FY 1993 Projection Capability Assurance Program waste and hazard minimization. Quarterly report, October--December 1993

    SciTech Connect (OSTI)

    Haws, L.D.; Homan, D.A.

    1993-01-15

    Waste and hazard minimization efforts in the following areas are described: (1) environmentally responsive cleaning, (2) hazardous material exposure, (3) explosive processing, (4) flex circuit manufacturing, (5) tritium capture w/o conversion to water, (6) ES&H compatible pyrotechnic materials, and (7) remote explosive component assembly.

  13. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  14. Science, society, and America`s nuclear waste: Unit 3, The Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  15. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  16. Waste management facilities cost information for transportation of radioactive and hazardous materials

    SciTech Connect (OSTI)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  17. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico 87505-6303 Subject: Transmittal of Waste Isolation Pilot Plant Annual Geotechnical Analysis Report Dear Mr. Kieling : The purpose of this letter is to submit the...

  18. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from compatible waste U* Containers with liquid on containment pallet Containment pallets in good condition U* Adjacent mine pager phones operational U* UG phone...

  19. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cartridges * Electrical Ballasts * Used oi l and oil filters * Electronics * Wood pallets, spools, * Lamps timbers. and waste * Metals In FY 20 14, 185 .36 metric tons of...

  20. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waste that was mixed with a desiccant called Swheat Scoop, a wheat-based organic kitty litter. For the purposes of this evaluation, the exothermic reaction in drum...

  1. Hazardous Waste Facility Permit Public Comments to Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Laboratory's corrective action and waste management activities and associated environmental issues. It is composed of citizens representing the communities and pueblos of...

  2. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    denotes electronic distribution CBFO:EPD:GTB:MN:15-2222:UFC 5487.00 Sincerely, Philip J. Breidenbach, Project Manager Nuclear Waste Partnership LLC Original Signatures on...

  3. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad , New Mexico 88221 NOV 1 4 2013 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Sa nta Fe, New Mexico 87505-6303 Subject: Transm ittal of the Waste Isolation Pilot Pl ant Annua l Waste Minimization Report Dea r Mr. Kieling : The purpose of this letter is to provide you wi th the Waste Isola lion Pilot Plant (W IPP) Annua l Waste Minimi za tion Report. This report is required by and has bee n prepared in accordance with the W IPP Haza rdou s Was te Faci lity

  4. B Plant complex hazardous, mixed and low level waste certification plan

    SciTech Connect (OSTI)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria.

  5. Effects of hazardous wastes on housing and urban development and mitigation of impacts

    SciTech Connect (OSTI)

    Boyer, K.R.; Conrad, E.T.; Kane, P.F.; McLaughlin, M.W.; Morgan, J.T.

    1980-10-10

    This report determines the nature and scope of the hazardous waste problem affecting HUD programs and community development and redevelopment activities. It defines the problem and develops categories of hazardous wastes most applicable to HUD. The report identifies sources of hazardous waste and gives examples of their impacts. The role of HUD and other agencies in controlling hazardous waste is reviewed, and recommendations are made for mitigating known and potential impacts. Three case studies -- in Dover Township and Elizabeth, N.J., and in Richmond, Va., illustrate the wide range of impacts made possible because of improper handling of or lack of appreciation for hazardous substances. The report suggests that a Hazard Identification Guidebook be developed, similar to others addressing housing safety and noise assessment, that would require HUD personnel to carry out a number of investigations on and around a site. This process is briefly described here and could serve as a basis for a guidebook. Flow charts illustrate this process. Tables and 23 references are supplied.

  6. Process and material that encapsulates solid hazardous waste

    DOE Patents [OSTI]

    O'Brien, Michael H.; Erickson, Arnold W.

    1999-01-01

    A method of encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150.degree. C. and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200.degree. C. and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.

  7. Investigating the construction of pyramid super-structures to dispose of radioactive and hazardous waste

    SciTech Connect (OSTI)

    Miller, D.J.

    1994-12-31

    Since the 1950`s, the United States and other countries have focused on utilizing {open_quotes}natural barriers{close_quotes} for disposing of dangerous radioactive and hazardous waste. The Waste Isolation Pilot Projects and Yucca Mountain Project seem practical as well as economical. However, the technical challenges involved in disposing of the waste have been underestimated. For example, geological waste disposal has difficulty in demonstrating reliability, guaranteeing protection against climatic changes or natural disasters (or combinations thereof), or ability to retrieve waste under adverse scenarios. Much has changed since the 1950`s. Technology has advanced dramatically in the areas of materials, science, and engineering. As a result, traditional approaches to waste disposal should be rethought, focusing instead on ways to apply technology breakthroughs to waste disposal problems. This paper proposes investigating the construction of fully retrievable waste disposal systems that resemble pyramid structures and rely totally on engineered barriers and preventive measurements to dispose and store radioactive and hazardous waste. This paper will describe problems currently faced by waste disposal systems that rely on natural barriers. Specific benefits demonstrated will detail the structures flexibility and durability in a number of areas.

  8. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... HAZMAT trailer Medical Resources Ambulance 1 Equipped as per Federal Specifications KKK-A-1822 and New Mexico Emergency Medical Services Act General Order 35; equipped with a ...

  9. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Santa Fe, NM 87502-5469 Subject: Information Regarding the Underground Derived Waste Storage Plan Dear Mr. Kieling and Mr. Tongate: The purpose of this letter is to provide the...

  10. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014, it has been determined that a drum located in a seven-pack assembly of 55-gallon drums located in Row 16 Column 4 top of the waste stack, shows evidence of a thermal...

  11. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A UG 1 7 2012 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe , New Mexico 87505-6303 Subject: Notification of Sampling Line Loss, Waste Isolation...

  12. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Santa Fe, NM 87502-5469 Subject: Underground Compliance Plan and Underground Derived Waste Storage Plan, as requested per Item 17a and 17b of the May 12, 2014, NMED...

  13. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEP 1 7 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Subject: Update to the Information provided to the New Mexico Environment Department Regarding the WIPP Nitrate Salt Bearing Waste Container Isolation Plan dated September 5, 2014 Reference: New Mexico Environment Department Correspondence from Ryan Flynn, Secretary, to Jose Franco, Carlsbad Field Office and Robert L. McQuinn, Nuclear Waste Partnership LLC, dated August 7, 2014, subject:

  14. Superfund at work: Hazardous waste cleanup efforts nationwide, Spring 1993 (Powersville site profile, Peach County, Georgia)

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The US Environmental Protection Agency (EPA) encountered much more than a municipal landfill at the Powersville site in Peach County, Georgia. Contamination from improperly dumped hazardous wastes and pesticides tainted an old quarry used for household garbage. Chemicals migrating into area ground water threatened local drinking water supplies. To address these issues, EPA's Superfund program designed a cleanup strategy that included: negotiating with the county and chemical companies to contain the hazardous wastes on site underneath a protective cover; investigating reports of drinking water contamination and extending municipal water lines to affected residents; and conducting a tailored community relations program to inform and educate residents about the site.

  15. Tank waste remediation system FSAR hazard identification/facility configuration verification report

    SciTech Connect (OSTI)

    Mendoza, D.P., Westinghouse Hanford

    1996-05-01

    This document provides the results of the Tank Waste Remediation System Final Safety Analysis Report (TWRS FSAR) hazards identification/facility configuration activities undertaken from the period of March 7, 1996 to May 31, 1996. The purpose of this activity was to provide an independent overview of the TWRS facility specific hazards and configurations that were used in support of the TWRS FSAR hazards and accident analysis development. It was based on a review of existing published documentation and field inspections. The objective of the verification effort was to provide a `snap shot` in time of the existing TWRS facility hazards and configurations and will be used to support hazards and accident analysis activities.

  16. Hazardous waste dislodging and conveyance: The confined sluicing method

    SciTech Connect (OSTI)

    Summers, D.A.; Fossey, R.D.; Mann, M.D.; Blaine, J.G. [Univ. of Missouri, Rolla, MO (United States). High Pressure Waterjet Lab.; Rinker, M.W. [Pacific Northwest Lab., Richland, WA (United States)

    1994-09-01

    This report describes an investigation of a means for dislodging and conveying waste currently stored in underground storage tanks. A series of experiments have been carried out to evaluate the potential of a medium pressure, medium flow rate cutting system as a means of dislodging the waste. It has been found that waterjets at a pressure of 10,000 psi can effectively cut the material which has been chosen to simulate the hardened saltcake within the storage tanks. Based on a parameterization test it has thus been calculated that an inlet flow volume of approximately 30 gallons per minute will be sufficient to excavate 30 gallons per minute of waste from a tank. In order to transport the resulting slurry from the tank, a modified jet pump has been developed and has demonstrated its capability of conveying fluid and waste particles, up to one inch in diameter, to a height of more than 60 feet. Experiments were conducted to examine different configurations to achieve the production levels required for waste removal and to clean the walls of residual material. It was found more effective to clean the walls using an inclined angle of impact rather than a perpendicular angle of impact in order to provide a safeguard against driving the water through any cracks in the containment. It was demonstrated that excavation can take place with almost total immediate extraction of the water and debris from the cutting process. The results have qualitatively shown the potential of a medium pressure waterjet system for achieving the required results for underground storage tank waste retrieval.

  17. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAR 1 4 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Subject: Notification of the Use of Surge Storage in the Waste Handling Building Reference: DOE Memorandum CBFO:OESH:GB:MN:14-1427;UFC:5487 from Mr. Jose R. Franco and Mr. M. F. Sharif to Mr. John Kieling, dated February 26, 2014, subject: Request for an Extension to the Storage Times for the Parking Area Unit and Waste Handling Building Dear Mr. Kieling: The purpose of this letter is to

  18. H. R. 1272: A Bill to amend the Internal Revenue Code of 1954 to provide a refundable income tax credit for the recycling of hazardous wastes, introduced in the House of Representatives, One Hundred Second Congress, First Session, March 5, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill was introduced into the US House of Representatives on March 7, 1991 to amend the Internal Revenue Code of 1954 to provide a refundable income tax credit for the recycling of hazardous wastes. A credit of 2 cents is allowed for each pound of qualified hazardous waste recycled during the taxable year. To qualify as hazardous the waste must be listed by the EPA under section 3001 of the Solid Waste Act and is a waste product generated by the taxpayer in a trade or business.

  19. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    SciTech Connect (OSTI)

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-09-18

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

  20. 3Q/4Q99 F-Area Hazardous Waste Management Facility Corrective Action Report - Third and Fourth Quarter 1999, Volumes I and II

    SciTech Connect (OSTI)

    Chase, J.

    2000-05-12

    Savannah River Site (SRS) monitors groundwater quality at the F-Area Hazardous Waste management Facility (HWMF) and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the Resource Conservation and Recovery Act (RCRA) permit. SRS also performs monthly sampling of the Wastewater Treatment Unit (WTU) effluent in accordance with Section C of the Underground Injection Control (UIC) application.

  1. Mr. James Bearzi, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico ~8221 JUN"1 G 2009 New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for Waste Stream SR-BCLDP.004.003 Dear Mr. Bearzi: We are submitting for your evaluation, a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for the Central Characterization Project (CCP) at

  2. Mr. James Bearzi, Bureau Chief Hazardous Waste Bureau Departmen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Departmen t of Energy Carlsbad Field Office . P. O. Box 3090 Carlsbad , New Mexico 8822 1 AY 2 () 2009 New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for Waste Stream SR-BCLDP.001.001 Dear Mr. Bearzi: We are submitting for your evaluation , a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for the Central Characterization Project (CCP)

  3. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 7 2015 Ms. Kathryn Roberts, Director Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 New Mexico Environment Department Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Standard Operating Procedures for the Underground Derived Waste Storage Plan Reference: Department of Energy Carlsbad Field Office Memorandum, CBFO:EPD:GTB:MN: 14-2666:UFC 5486.00 from Jose Franco, CBFO, to

  4. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg.1 Santa Fe, NM 87505-6303 Subject: Transmittal of the Final Audit Report for CBFO Audit A-14-26 , SNL/CCP TRU Waste Characterization and Certification Activities Dear Mr. Kieling : This letter transmits the Final Audit Report for the Carlsbad Field Office (CBFO) Audit A-14-26 of the Sandia National Laboratories/Central Characterization Program (SNL/CCP) performing characterization and certification activities as required

  5. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  6. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  7. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  8. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  9. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JUN 2 5 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Mr. Tom Blaine, Division Director Environmental Health Division Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Underground Compliance Plan and Underground Derived Waste Storage Plan, as requested per Item 17a and 17b of the May 12, 2014, NMED Administrative Order Dear Mr. Kieling and Mr. Blaine: The purpose of this letter is to transmit the

  10. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad , New Mexico 88221 OCT 2 3 2 014 New Mexico Environment Departm ent 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6303 Subject: Transmittal of the Final Audit Report for CBFO Audit A-14-19 of the LANLICCP Dear Mr. Kie ling: This letter transmits the Final Audit Report for the Carlsbad Field Office (CBFO) Audit A-14- 19 of the Los Alamos National Laboratory (LANL) Central Characterization Program (CCP) for processes performed to characterize and certify waste in accordance

  11. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEC 0 9 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6303 Certified Mail/Return Receipt Subject: Transmittal of the Final Report for CBFO Audit A-15-21 of the LANLICCP Dear Mr. Kieling : This letter transmits the Final Audit Report for Carlsbad Field Office (CBFO) Audit A 15-21 of the Los Alamos National Laboratory (LANL) Central Characterization Program (CCP) for processes performed to characterize and certify waste in accordance with the

  12. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FEB 2 9 2016 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6303 Subject: Transmittal of the Final Audit Report for Recertification Audit A-16-02 of th e Savannah River Site Central Characterization Program Dear Mr. Kieling: This letter transmits the Final Audit Report for Carlsbad Field Office (CBFO) Recertification Aud it A-16-02 of the Savannah Rive r Site Central Characterization Program for processes performed to characterize and certify waste in

  13. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEP 0 4 2012 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Results of Evaluation of Sampling Line Loss, Waste Isolation Pilot Plant Dear Mr. Kieling: As required under Permit Section 4.6.5.5. the Permittees are hereby notifying the New Mexico Environment Department (NMED) of the results of the evaluation of a loss of a hydrogen and methane monitoring sampling line. The sampling line involved was in Panel 4 Room

  14. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OCT 2 9 2012 New Mexico Environment Department 2905 Rodeo Park Drive East. Building 1 Santa Fe. New Mexico 87505-6303 Subject: Notification of Results of Evaluation of Sampling Line Loss. Waste Isolation Pilot Plant Dear Mr. Kieling: As required under Permit Section 4.6.5.5. the Permittees are hereby notifying the New Mexico Environment Department (NMED) of the results of the evaluation of a loss of a hydrogen and methane monitoring sampling line. The sampling line involved was in Panel 3 Room

  15. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A UG 1 7 2012 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe , New Mexico 87505-6303 Subject: Notification of Sampling Line Loss, Waste Isolation Pilot Plant Permit Number N M4890 139088-TS DF Dear Mr. Kieling : The purpose of this letter is to transmit notification of the loss of a hydrogen and methane monitoring system sampling line as required under Permit Condition 4.6.5.5. The sampling line that was lost is identified as line Panel 4 Room 5E, which is on

  16. Radiation dose assessment methodology and preliminary dose estimates to support US Department of Energy radiation control criteria for regulated treatment and disposal of hazardous wastes and materials

    SciTech Connect (OSTI)

    Aaberg, R.L.; Baker, D.A.; Rhoads, K.; Jarvis, M.F.; Kennedy, W.E. Jr.

    1995-07-01

    This report provides unit dose to concentration levels that may be used to develop control criteria for radionuclide activity in hazardous waste; if implemented, these criteria would be developed to provide an adequate level of public and worker health protection, for wastes regulated under U.S, Environmental Protection Agency (EPA) requirements (as derived from the Resource Conservation and Recovery Act [RCRA] and/or the Toxic Substances Control Act [TSCA]). Thus, DOE and the US Nuclear Regulatory Commission can fulfill their obligation to protect the public from radiation by ensuring that such wastes are appropriately managed, while simultaneously reducing the current level of dual regulation. In terms of health protection, dual regulation of very small quantities of radionuclides provides no benefit.

  17. Hazardous waste minimization. Part 3. Waste minimization in the paint and allied products industry

    SciTech Connect (OSTI)

    Lorton, G.A.

    1988-04-01

    This paper looks at waste minimization practices available to the paint and coatings industry. The paper begins with an introduction to the industry and a description of the products. The steps involved in the manufacture of paints and coatings are then described. The paper then identifies the wastes generated. Source reduction and recycling techniques are the predominant means of minimizing waste in this industry. Equipment cleaning wastes are the largest category of wastes, and the paper concentrates on equipment and techniques available to reduce or eliminate these wastes. Techniques are described to reduce the other wastes from manufacturing operations. The paper concludes with a discussion of changing industry product trends and the effect that these trends will have on the generation of waste.

  18. RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES

    Broader source: Energy.gov [DOE]

    Carlsbad, NM - The recent completion of transuranic (TRU) waste cleanup at Vallecitos Nuclear Center (VNC) and Lawrence Livermore National Laboratory (LLNL) Site 300 in California brings the total number of sites cleared of TRU waste to 17.

  19. Evaluation of bulk paint worker exposure to solvents at household hazardous waste collection events

    SciTech Connect (OSTI)

    Cameron, M.

    1995-09-01

    In fiscal year 93/94, over 250 governmental agencies were involved in the collection of household hazardous wastes in the State of California. During that time, over 3,237,000 lbs. of oil based paint were collected in 9,640 drums. Most of this was in lab pack drums, which can only hold up to 20 one gallon cans. Cost for disposal of such drums is approximately $1000. In contrast, during the same year, 1,228,000 lbs. of flammable liquid were collected in 2,098 drums in bulk form. Incineration of bulked flammable liquids is approximately $135 per drum. Clearly, it is most cost effective to bulk flammable liquids at household hazardous waste events. Currently, this is the procedure used at most Temporary Household Hazardous Waste Collection Facilities (THHWCFs). THHWCFs are regulated by the Department of Toxic Substances Control (DTSC) under the new Permit-by Rule Regulations. These regulations specify certain requirements regarding traffic flow, emergency response notifications and prevention of exposure to the public. The regulations require that THHWCF operators bulk wastes only when the public is not present. [22 CCR, section 67450.4 (e) (2) (A)].Santa Clara County Environmental Health Department sponsors local THHWCF`s and does it`s own bulking. In order to save time and money, a variance from the regulation was requested and an employee monitoring program was initiated to determine actual exposure to workers. Results are presented.

  20. A blasting additive that renders wastes non hazardous in lead paint abatement projects

    SciTech Connect (OSTI)

    Clark, R.; Rapp, D.J.; McGrew, M.

    1994-12-31

    Maintenance of steel structures often produces abrasive wastes that are considered toxic and hazardous due to the lead content of the old paint system present in spent abrasives. Environmental regulations in the US and Canada effectively preclude on-site treatment and disposal of these wastes, thereby forcing them into costly transport and secure disposal options. The authors have developed an abrasive additive that allows dry or wet blasting to remove old paint systems, but the resultant wastes are considered non-hazardous and are eligible for recycling or non-hazardous waste disposal, both at sharply reduced costs. The agent does not ``mask`` environmental test results, but does produce a stable residue suitable for long term disposal or reuse. Surface conditions after application of abrasives appear to be amenable to virtually all paint systems tested. The process is in use on an estimated 10% of all steel based lead paint abatement projects in the US, and is experiencing considerable growth in market acceptance. The technology may allow disposal cost reductions in excess of 50%.

  1. Ultraviolet reflector materials for solar detoxification of hazardous waste

    SciTech Connect (OSTI)

    Jorgensen, G.; Govindarajan, R.

    1991-07-01

    Organic waste detoxification requires cleavage of carbon bonds. Such reactions can be photo-driven by light that is energetic enough to disrupt such bonds. Alternately, light can be used to activate catalyst materials, which in turn can break organic bonds. In either case, photons with wavelengths less than 400 nm are required. Because the terrestrial solar resource below 400 nm is so small (roughly 3% of the available spectrum), highly efficient optical concentrators are needed that can withstand outdoor service conditions. In the past, optical elements for solar application have been designed to prevent ultraviolet (uv) radiation from reaching the reflective layer to avoid the potentially harmful effects of such light on the collector materials themselves. This effectively forfeits the uv part of the spectrum in return for some measure of protection against optical degradation. To optimize the cost/performance benefit of photochemical reaction systems, optical materials must be developed that are not only highly efficient but also inherently stable against the radiation they are designed to concentrate. The requirements of uv optical elements in terms of appropriate spectral bands and level of reflectance are established based upon the needs of photochemical applications. Relevant literature on uv reflector materials is reviewed which, along with discussions with industrial contacts, allows the establishment of a data base of currently available materials. Although a number of related technologies exist that require uv reflectors, to date little attention has been paid to achieving outdoor durability required for solar applications. 49 refs., 3 figs.

  2. Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Colombo, Peter (Patchogue, NY); Kalb, Paul D. (Wading River, NY); Heiser, III, John H. (Bayport, NY)

    1997-11-14

    The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

  3. Los Alamos National Laboratory Hazardous Waste Facility Permit Draft Community Relations Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Facility Permit Draft Community Relations Plan Comment/Suggestion Form Instructions for completing the form: Please reference the section in the plan that your comments and suggestions address. Example: Section 1.0. General comments are also useful to plan improvment. Please include ideas for implementation of your suggestion, and your contact information for further discussion. Public comments and suggestions are received year round. A summary of comments are posted each year at

  4. Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division

    Office of Legacy Management (LM)

    AUG 0 3 1998 Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division Colorado Department of Public Health and Environment 4300 Cherry Creek Dr. S. Denver, Colorado 80222-1530 _,l ' 7. ,;:""" I,!._ -~~ . Dear Mr. Simpson: We have reviewed your letter of July 10, 1998, requesting that the Department of Energy (DOE) reconsider its decision to exclude the Marion Millsite in Boulder County, Colorado, from remediation under the Formerly

  5. Hazardous medical waste generation rates of different categories of health-care facilities

    SciTech Connect (OSTI)

    Komilis, Dimitrios; Fouki, Anastassia; Papadopoulos, Dimitrios

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We calculated hazardous medical waste generation rates (HMWGR) from 132 hospitals. Black-Right-Pointing-Pointer Based on a 22-month study period, HMWGR were highly skewed to the right. Black-Right-Pointing-Pointer The HMWGR varied from 0.00124 to 0.718 kg bed{sup -1} d{sup -1}. Black-Right-Pointing-Pointer A positive correlation existed between the HMWGR and the number of hospital beds. Black-Right-Pointing-Pointer We used non-parametric statistics to compare rates among hospital categories. - Abstract: Goal of this work was to calculate the hazardous medical waste unit generation rates (HMWUGR), in kg bed{sup -1} d{sup -1}, using data from 132 health-care facilities in Greece. The calculations were based on the weights of the hazardous medical wastes that were regularly transferred to the sole medical waste incinerator in Athens over a 22-month period during years 2009 and 2010. The 132 health-care facilities were grouped into public and private ones, and, also, into seven sub-categories, namely: birth, cancer treatment, general, military, pediatric, psychiatric and university hospitals. Results showed that there is a large variability in the HMWUGR, even among hospitals of the same category. Average total HMWUGR varied from 0.012 kg bed{sup -1} d{sup -1}, for the public psychiatric hospitals, to up to 0.72 kg bed{sup -1} d{sup -1}, for the public university hospitals. Within the private hospitals, average HMWUGR ranged from 0.0012 kg bed{sup -1} d{sup -1}, for the psychiatric clinics, to up to 0.49 kg bed{sup -1} d{sup -1}, for the birth clinics. Based on non-parametric statistics, HMWUGR were statistically similar for the birth and general hospitals, in both the public and private sector. The private birth and general hospitals generated statistically more wastes compared to the corresponding public hospitals. The infectious/toxic and toxic medical wastes appear to be 10% and 50% of the total hazardous medical wastes generated by the public cancer treatment and university hospitals, respectively.

  6. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    SciTech Connect (OSTI)

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

  7. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-02-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  8. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-05-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  9. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-10-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  10. Trends in characteristics of hazardous waste-derived fuel burned for energy recovery in cement kilns

    SciTech Connect (OSTI)

    Lusk, M.G.; Campbell, C.S.

    1996-12-31

    The Cement Kiln Recycling Coalition (CKRC) is a national trade association representing virtually all the U.S. cement companies involved in the use of waste-derived fuel in the cement manufacturing process as well as those companies involved in the collection, processing, managing, and marketing of such fuel. CKRC, in conjunction with the National Association of Chemical Recyclers (NACR), completed several data collection activities over the past two years to provide the Environmental Protection Agency (EPA) and other interested parties with industry-wide trend analyses. The analyses evaluated the content of specific metals in waste fuels utilized by cement kilns, average Btu value of substitute fuels used by kilns, and provides insight into the trends of these properties. With the exception of the data collected by NACR, the study did not evaluate materials sent to hazardous waste incinerators or materials that are combusted at {open_quotes}on-site{close_quotes} facilities.

  11. Vitrification of M-Area Mixed (Hazardous and Radioactive) F006 Wastes: I. Sludge and Supernate Characterization

    SciTech Connect (OSTI)

    Jantzen, C.M.

    2001-10-05

    Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert low-level and mixed (hazardous and radioactive) wastes to a solid stabilized waste form for permanent disposal. One of the alternative technologies is vitrification into a borosilicate glass waste form. The Environmental Protection Agency (EPA) has declared vitrification the Best Demonstrated Available Technology (BDAT) for high-level radioactive mixed waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The DOE Office of Technology Development (OTD) has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Stabilization of low level and hazardous wastes in glass are in accord with the 1988 Savannah River Technology Center (SRTC), then the Savannah River Laboratory (SRL), Professional Planning Committee (PPC) recommendation that high nitrate containing (low-level) wastes be incorporated into a low temperature glass (via a sol-gel technology). The investigation into this new technology was considered timely because of the potential for large waste volume reduction compared to solidification into cement.

  12. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  13. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  14. Recovery Act Workers Remediate and Restore Former Waste Sites...

    Office of Environmental Management (EM)

    technologies. A video of the revegetation is available at the DOE-Richland Operations YouTube site at www.youtube.comHanfordSite. Left Photo: Recovery Act workers with CH2M HILL...

  15. Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce

    Office of Environmental Management (EM)

    Cold War Footprint | Department of Energy Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint The Hanford Site is looking greener these days after American Recovery and Reinvestment Act workers revegetated 166 acres across 12 waste sites, planting over 1,100 pounds of seeds and about 280,000 pounds of mulch. The largest of the sites, known as the BC Control Area, is an

  16. DOE Reaches Recovery Act Goal With Cleanup of All Legacy Transuranic Waste

    Office of Environmental Management (EM)

    at Sandia National Laboratories | Department of Energy Reaches Recovery Act Goal With Cleanup of All Legacy Transuranic Waste at Sandia National Laboratories DOE Reaches Recovery Act Goal With Cleanup of All Legacy Transuranic Waste at Sandia National Laboratories May 3, 2012 - 12:00pm Addthis Media Contact Deb Gill, U.S. DOE Carlsbad Field Office, (575) 234-7270 CARLSBAD, N.M., May 3, 2012 -The U.S. Department of Energy (DOE) completed cleanup of the Cold War legacy transuranic (TRU) waste

  17. Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Import Statement, Richland, Washington - Summary

    Office of Environmental Management (EM)

    Link to Main Report RESPONSIBLE AGENCY: COVER SHEET 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 U.S. Department of Energy, Richland Operations Office TITLE: Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Benton County, Washington (DOE/EIS-0286D2) CONTACT: For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland

  18. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  19. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R. Jensen 2 , Ryan R. Jensen 3 , John Gladden 4 , Jody Waugh 5 and Mike Serrato 4 1 Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA 2

  20. Superfund at work: Hazardous waste cleanup efforts nationwide, Winter 1994 (Seymour recycling site profile, Seymour, Indiana)

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    Leaking barrels of chemicals reacted and erupted into spontaneous fires and explosions at the Seymour Recycling Corporation in the 1970s. The poorly managed and overburdened hazardous waste storage and incineration facility polluted soil and ground water with solvents, acids, and heavy metals. With help from the Indiana Department of Environmental Management (IDEM) and the City of Seymour, cooperative efforts lead to an effective remediation of the site including: an immediate removal of drums, tanks and soil; a comprehensive ground water treatment system and extension of the municipal water supply to affected residents; and use of two innovative technologies, bioremediation and soil vapor extraction.

  1. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    Office of Environmental Management (EM)

    COVER SHEET U.S. Department of Energy, Richland Operations Office TITLE: Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Benton County, Washington (DOE/EIS-0286F) CONTACT: For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland Operations Office U.S. Department of Energy, A6-38 P.O. Box 550 Richland, Washington 99352-0550 Telephone: (509) 376-6536 Fax: (509) 372-1926 Email:

  2. Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Import Statement, Richland, Washington

    Office of Environmental Management (EM)

    COVER SHEET 1 U.S. Department of Energy, Richland Operations Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE/EIS-0286D2) 6 7 CONTACT: 8 For further information on this document, write or call: Mr. Michael S. Collins HSW EIS Document Manager Richland Operations Office U.S. Department of Energy, A6-38 P.O. Box 550 Richland, Washington 99352-0550 Telephone: (800) 426-4914 Fax:

  3. Science, society, and America`s nuclear waste: Unit 3, The Nuclear Waste Policy Act. Teacher guide

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  4. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    This volume includes the following chapters: Waste Isolation Pilot Plant RCRA A permit application; facility description; waste analysis plan; groundwater monitoring; procedures to prevent hazards; RCRA contingency plan; personnel training; corrective action for solid waste management units; and other Federal laws.

  5. Predicting the impact from significant storm events on a hazardous waste site

    SciTech Connect (OSTI)

    Singh, U.P.; Dixon, N.P.; Mitchell, J.S.

    1994-12-31

    The Stringfellow Hazardous Waste Site is a former Class 1 industrial waste disposal facility located near the community of Glen Avon in southern California. In response to community concerns regarding flooding and possible exposure to contaminants via the surface water pathway, a study was performed to evaluate the potential effect significant/episodic storm events may have on the site and its engineered structures as they exist during present day conditions. Specific storm events such as significant recorded historic storms as well as synthetic design storms were considered and the impact on the onsite area and surface channels in Pyrite Canyon downstream of the site was evaluated. Conclusions were reached, and recommendations were made to minimize the potential flood impacts and exposure to contaminants via the surface water pathway in the areas downstream of the site.

  6. U.S. Environmental Protection Agency Region VIII Hazardous Waste Management Division

    Office of Legacy Management (LM)

    la) Monticello Vicinity Properties (MVP) Site (San Juan County, Utah) I. Introduction Authority Statement. Purpose. This review was conducted pursuant to Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) section 121(c), National Contingency Plan (NCP) section 300.430(f)(4)(ii), and Office of Solid Waste and Emergency Response (OSWER) Directives 9355.7-02 (May 23, 1991) and 9355.7-02A (July 26, 1994). The U.S. Department of Energy (DOE) Grand Junction Office (GJO)

  7. Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2012-05-01

    The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

  8. Recovery Act: Waste Energy Project at AK Steel Corporation Middletown

    SciTech Connect (OSTI)

    Joyce, Jeffrey

    2012-06-30

    In 2008, Air Products and Chemicals, Inc. (Air Products) began development of a project to beneficially utilize waste blast furnace topgas generated in the course of the iron-making process at AK Steel Corporations Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

  9. Portable sensor for hazardous waste. Final report, March 31, 1995--May 31, 1997

    SciTech Connect (OSTI)

    Piper, L.G.; Hunter, A.J.R.; Fraser, M.E.; Davis, S.H.; Finson, M.L.

    1997-12-31

    This report summarizes accomplishments for the second phase of a 5-year program designed to develop a portable monitor for sensitive hazardous waste detection. The approach is to excite atomic fluorescence by the technique of Spark-Induced Breakdown Spectroscopy (SIBS). The principal goals for this second phase of the program were to demonstrate sensitive detection of additional species, both RCRA metals (Sb, Be, Cd, Cr, Pb, As, Hg) and radionuclides (U, Th, Tc); to identify potential applications and develop instrument component processes, including, sample collection and excitation, measurement and test procedures, and calibration procedures; and to design a prototype instrument. Successful completion of these task results in being able to fabricate and field test a prototype of the instrument during the program`s third phase.

  10. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect (OSTI)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  11. Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran

    SciTech Connect (OSTI)

    Sharifi, Mozafar Hadidi, Mosslem Vessali, Elahe Mosstafakhani, Parasto Taheri, Kamal Shahoie, Saber Khodamoradpour, Mehran

    2009-10-15

    The evaluation of a hazardous waste disposal site is a complicated process because it requires data from diverse social and environmental fields. These data often involve processing of a significant amount of spatial information which can be used by GIS as an important tool for land use suitability analysis. This paper presents a multi-criteria decision analysis alongside with a geospatial analysis for the selection of hazardous waste landfill sites in Kurdistan Province, western Iran. The study employs a two-stage analysis to provide a spatial decision support system for hazardous waste management in a typically under developed region. The purpose of GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of a multi-criteria decision analysis (MCDA) to identify the most suitable sites using the information provided by the regional experts with reference to new chosen criteria. Using 21 exclusionary criteria, as input layers, masked maps were prepared. Creating various intermediate or analysis map layers a final overlay map was obtained representing areas for hazardous waste landfill sites. In order to evaluate different landfill sites produced by the overlaying a landfill suitability index system was developed representing cumulative effects of relative importance (weights) and suitability values of 14 non-exclusionary criteria including several criteria resulting from field observation. Using this suitability index 15 different sites were visited and based on the numerical evaluation provided by MCDA most suitable sites were determined.

  12. Hazardous constituent source term. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1994-11-17

    The Department of Energy (DOE) has several facilities that either generate and/or store transuranic (TRU)-waste from weapons program research and production. Much of this waste also contains hazardous waste constituents as regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA). Toxicity characteristic metals in the waste principally include lead, occurring in leaded rubber gloves and shielding. Other RCRA metals may occur as contaminants in pyrochemical salt, soil, debris, and sludge and solidified liquids, as well as in equipment resulting from decontamination and decommissioning activities. Volatile organic compounds (VOCS) contaminate many waste forms as a residue adsorbed on surfaces or occur in sludge and solidified liquids. Due to the presence of these hazardous constituents, applicable disposal regulations include land disposal restrictions established by Hazardous and Solid Waste Amendments (HSWA). The DOE plans to dispose of TRU-mixed waste from the weapons program in the Waste Isolation Pilot Plant (WIPP) by demonstrating no-migration of hazardous constituents. This paper documents the current technical basis for methodologies proposed to develop a post-closure RCRA hazardous constituent source term. For the purposes of demonstrating no-migration, the hazardous constituent source term is defined as the quantities of hazardous constituents that are available for transport after repository closure. Development of the source term is only one of several activities that will be involved in the no-migration demonstration. The demonstration will also include uncertainty and sensitivity analyses of contaminant transport.

  13. Development of a plasma arc system for the destruction of U.S. Department of Defense hazardous waste

    SciTech Connect (OSTI)

    Sartwell, B.D.; Gehrman, F.H. Jr.; Telfer, T.R.

    1999-07-01

    The Naval Base, Norfolk, located in the northern portion of the city of Norfolk, Virginia, is the world's largest naval base and home of the Atlantic Fleet. Activities at the naval base generate approximately 1.4 million kilograms (3.0 million pounds) of industrial waste (hazardous and non-hazardous) annually. Significant components of the waste stream include used paint, cleaning rags, cleaning compounds, solvents, and other chemicals used in industrial operations. The costs of disposing of this waste are significant and are currently over $4 million annually, representing an average of $3.30 per kilogram ($1.50 per pound). Plasma arc technology has been identified as having the potential to cost-effectively treat and destroy various types of waste materials, including contaminated soil, ordnance, pyrotechnics, and low-level radioactive waste. There are currently several pilot-scale plasma arc units being tested in the United States, but at present there are no fully-permitted production-scale units in operation. In July 1995 a project was awarded to the Naval Research Laboratory and Norfolk Naval Base under the DOD Environmental Security Technology Certification Program with the objective of establishing a production scale demonstration plasma arc hazardous waste treatment facility (PAHWTF) at the Naval Base that would be capable of destroying both solid and liquid waste on a production basis and obtaining operational data necessary to determine the cost effectiveness of the process. This paper provides a detailed description of the PAHWTF, which was designed and built by Retech in Ukiah, CA, and also provides results of treatability tests. Information is also provided on the status of an Environmental Impact Statement and of RCRA Research, Development, and Demonstration, and air permits.

  14. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1 Santa...

  15. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report: First quarter 1992

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility (Metlab HWMF) at Savannah River Plant were visited for sampling. Groundwater samples were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. This report describes the results that exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) and the Savannah River Site flagging criteria during the quarter. Tetrachloroethylene exceeded the PDWS in wells AMB 4A, 5, and 7A; trichloroethylene exceeded the PDWS in wells AMB 4A, 4B, 4D, 5, and 7A; and total alpha-emitting radium (radium-224 and radium-226) exceeded the PDWS in well AMB 5. Total organic halogens exceeded the Flag 2 criterion in wells AMB 4A, 5, 6, 7A, 7B, and IODD; manganese was elevated in wells AMB 4D and TODD; iron was elevated in well AMB TODD; and pH was elevated in well AMB 10A.

  16. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Fourth quarter 1992 and 1992 summary

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year`s data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B.

  17. Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste Rob P. Rechard a,n , Geoff A. Freeze b , Frank V. Perry c a Nuclear Waste Disposal Research & Analysis, Sandia National Laboratories, P.O. Box 5800, Albuquerque 87185-0747, NM, USA b Applied Systems Analysis & Research, Sandia National Laboratories, P.O. Box 5800, Albuquerque 87185-0747, NM, USA c Earth and Environmental Sciences Division, Los Alamos National

  18. Public acceptability of the use of gamma rays from spent nuclear fuel as a hazardous waste treatment process

    SciTech Connect (OSTI)

    Mincher, B.J.; Wells, R.P.; Reilly, H.J.

    1992-01-01

    Three methods were used to estimate public reaction to the use of gamma irradiation of hazardous wastes as a hazardous waste treatment process. The gamma source of interest is spent nuclear fuel. The first method is Benefit-Risk Decision Making, where the benefits of the proposed technology are compared to its risks. The second analysis compares the proposed technology to the other, currently used nuclear technologies and estimates public reaction based on that comparison. The third analysis is called Analysis of Public Consent, and is based on the professional methods of the Institute for Participatory Management and Planning. The conclusion of all three methods is that the proposed technology should not result in negative public reaction sufficient to prevent implementation.

  19. RCRA Permit for a Hazardous Waste Management Facility, Permit Number NEV HW0101, Annual Summary/Waste Minimization Report

    SciTech Connect (OSTI)

    Arnold, Patrick

    2014-02-14

    This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  20. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    J. D. Ludowise

    2006-12-12

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

  1. Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects

    Energy Savers [EERE]

    STD-5507-2013 February 2013 DOE STANDARD Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects [This Standard describes acceptable, but not mandatory means for complying with requirements. Standards are not requirements documents and are not to be construed as requirements in any audit or appraisal for compliance with associated rule or directives.] U.S. Department of Energy SAFT

  2. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad, New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report Dear Mr. Kieling: This letter provides the submittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report. This report is required by and has bee n prepared in accordance with the WIPP

  3. Savannah River Site, Liquid Waste Program, Savannah River Remediation American Recovery and Reinvestment Act Benefits and Lessons Learned - 12559

    SciTech Connect (OSTI)

    Schmitz, Mark A.; Crouse, Thomas N.

    2012-07-01

    Utilizing funding provided by the American Recovery and Reinvestment Act (ARRA), the Liquid Waste Program at Savannah River site successfully executed forty-one design, procurement, construction, and operating activities in the period from September 2009 through December 2011. Project Management of the program included noteworthy practices involving safety, integrated project teams, communication, and cost, schedule and risk management. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure were accomplished. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually identified and applied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. The funding of a portion of the Liquid Waste Program at SRS by ARRA was a major success. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure was accomplished. Integrated Project Teams ensured quality products and services were provided to the Operations customers. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually reviewed and reapplied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. (authors)

  4. Waste Disposal and Recovery Act Efforts at the Oak Ridge Reservation,OAS-RA-L-12-01

    Broader source: Energy.gov (indexed) [DOE]

    Inspection Report Waste Disposal and Recovery Act Efforts at the Oak Ridge Reservation INS-RA-L-12-01 December 2011 Department of Energy Washington, DC 20585 December 16, 2011 MEMORANDUM FOR THE MANAGER, OAK RIDGE OFFICE FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on "Waste Disposal and Recovery Act Efforts at the Oak Ridge Reservation" BACKGROUND The Department of Energy's (Department) expends

  5. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Chapter E, Appendix E1, Chapter L, Appendix L1: Volume 12, Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP) Project was authorized by the US Department of Energy 5 (DOE) National Security and Military Applications of the Nuclear Energy Authorization Act of 1980 (Public Law 96-164). Its legislative mandate is to provide a research and development facility to demonstrate the safe disposal of radioactive waste resulting from national defense programs and activities. To fulfill this mandate, the WIPP facility has been designed to perform scientific investigations of the behavior of bedded salt as a repository medium and the interactions between the soft and radioactive wastes. In 1991, DOE proposed to initiate a experimental Test Phase designed to demonstrate the performance of the repository. The Test Phase activities involve experiments using transuranic (TRU) waste typical of the waste planned for future disposal at the WIPP facility. Much of this TRU waste is co-contaminated with chemical constituents which are defined as hazardous under HWMR-7, Pt. II, sec. 261. This waste is TRU mixed waste and is the subject of this application. Because geologic repositories, such as the WIPP facility, are defined under the Resource Conservation and Recovery Act (RCRA) as land disposal facilities, the groundwater monitoring requirements of HWMR-7, PLV, Subpart X, must be addressed. HWMR-7, Pt. V, Subpart X, must be addressed. This appendix demonstrates that groundwater monitoring is not needed in order to demonstrate compliance with the performance standards; therefore, HWMR-7, Pt.V, Subpart F, will not apply to the WIPP facility.

  6. Treatability study on the use of by-product sulfur in Kazakhstan for the stabilization of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Kalb, P.D.; Milian, L.W.; Yim, S.P.; Dyer, R.S.; Michaud, W.R.

    1997-12-01

    The Republic of Kazakhstan generates significant quantities of excess elemental sulfur from the production and refining of petroleum reserves. In addition, the country also produces hazardous, and radioactive wastes which require treatment/stabilization. In an effort to find secondary uses for the elemental sulfur, and simultaneously produce a material which could be used to encapsulate, and reduce the dispersion of harmful contaminants into the environment, BNL evaluated the use of the sulfur polymer cement (SPC) produced from by-product sulfur in Kazakhstan. This thermoplastic binder material forms a durable waste form with low leaching properties and is compatible with a wide range of waste types. Several hundred kilograms of Kazakhstan sulfur were shipped to the US and converted to SPC (by reaction with 5 wt% organic modifiers) for use in this study. A phosphogypsum sand waste generated in Kazakhstan during the purification of phosphate fertilizer was selected for treatment. Waste loadings of 40 wt% were easily achieved. Waste form performance testing included compressive strength, water immersion, and Accelerated Leach Testing.

  7. Treatability study on the use of by-product sulfur in Kazakhstan for the stabilization of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Yim, Sung Paal; Kalb, P.D.; Milian, L.W.

    1997-08-01

    The Republic of Kazakhstan generates significant quantities of excess sulfur from the production and refining of petroleum reserves. In addition, the country also produces hazardous, and radioactive wastes which require treatment/stabilization. In an effort to find secondary uses for the elemental sulfur, and simultaneously produce a material which could be used to encapsulate, and reduce the dispersion of harmful contaminants into the environment, BNL evaluated the use of the sulfur polymer cement (SPC) produced from by-product sulfur in Kazakhstan. This thermoplastic binder material forms a durable waste form with low leaching properties and is compatible with a wide range of waste types. Several hundred kilograms of Kazakhstan sulfur were shipped to the U.S. and converted to SPC (by reaction with 5 wt% organic modifiers) for use in this study. A phosphogypsum sand waste generated in Kazakhstan during the purification of phosphate fertilizer was selected for treatment. Waste loading of 40 wt% were easily achieved. Waste form performance testing included compressive strength, water immersion, and Accelerated Leach Testing. 14 refs., 7 figs., 6 tabs.

  8. Study of lay people's perceptions of appropriate management of gasoline/soil mixtures, hazardous waste mixtures, and trash/garbage mixtures

    SciTech Connect (OSTI)

    Simon, L.E.

    1988-01-01

    The method used was a researcher-developed questionnaire that was given to San Diego residents who were either Naval Reservists or worked at the corporate headquarters of a fast food chain. The respondents were chosen to yield a cross section of lay people. The forced-choice questionnaire asked identical questions about each of the wastes. The sequence in which each waste appeared was varied in order not to imply a ranking. One-way ANOVA and Bonferroni's Method was used to identify any significant differences. On all eight elements, there was a significant difference between each of the wastes at the p < .05 level. Lay people perceive a significant difference in what constitutes appropriate management of the three waste mixtures. Lay people who participated in the study saw Gasoline/Soil Mixtures as requiring management that was significantly more lenient that what they saw as needed for Hazardous Waste Mixtures and significantly more strict than what they saw as needed for Trash/Garbage Mixtures. The establishment of an intermediate category of solid waste between the existing categories of Hazardous Waste and Non-Hazardous Waste was clearly identified as a possibility by the respondents. If such a category were established it would: (1) clarify and resolve existing contradictions between various regulations; (2) reduce unnecessary filling of scarce hazardous waste disposal capacity; (3) reduce uncertainty, delay and expense to businesses trying to comply with the regulations.

  9. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP). Attachments: Volume 4 of 4

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    Volume IV contains the following attachments for Module IV: VOC monitoring plan for bin-room tests (Appendix D12); bin emission control and VOC monitoring system drawings; bin scale test room ventilation drawings; WIPP supplementary roof support system, underground storage area, room 1, panel 1, DOE/WIPP 91-057; and WIPP supplementary roof support system, room 1, panel 1, geotechnical field data analysis bi-annual report, DOE/WIPP 92-024.

  10. Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York

    SciTech Connect (OSTI)

    Weaver, Phyllis C.

    2012-08-29

    A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

  11. HIGH LEVEL WASTE (HLW) VITRIFICATION EXPERIENCE IN THE US: APPLICATION OF GLASS PRODUCT/PROCESS CONTROL TO OTHERHLW AND HAZARDOUS WASTES

    SciTech Connect (OSTI)

    Jantzen, C; James Marra, J

    2007-09-17

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. At the Savannah River Site (SRS) actual HLW tank waste has successfully been processed to stringent product and process constraints without any rework into a stable borosilicate glass waste since 1996. A unique 'feed forward' statistical process control (SPC) has been used rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. In SQC, the glass product is sampled after it is vitrified. Individual glass property models form the basis for the 'feed forward' SPC. The property models transform constraints on the melt and glass properties into constraints on the feed composition. The property models are mechanistic and depend on glass bonding/structure, thermodynamics, quasicrystalline melt species, and/or electron transfers. The mechanistic models have been validated over composition regions well outside of the regions for which they were developed because they are mechanistic. Mechanistic models allow accurate extension to radioactive and hazardous waste melts well outside the composition boundaries for which they were developed.

  12. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 2, Chapter C, Appendix C1--Chapter C, Appendix C3 (beginning), Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    This volume contains appendices for the following: Rocky Flats Plant and Idaho National Engineering Laboratory waste process information; TRUPACT-II content codes (TRUCON); TRUPACT-II chemical list; chemical compatibility analysis for Rocky Flats Plant waste forms; chemical compatibility analysis for waste forms across all sites; TRU mixed waste characterization database; hazardous constituents of Rocky Flats Transuranic waste; summary of waste components in TRU waste sampling program at INEL; TRU waste sampling program; and waste analysis data.

  13. Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Low-Activity Waste Facility Hazards Analysis Reports for the Melter and Melter Offgas Systems … September 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanford Site Waste Treatment and Immobilization Plant Low-Activity Waste Facility Hazards Analysis Reports for the Melter and Melter Offgas Systems September 2015 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms

  14. Waste collection in developing countries - Tackling occupational safety and health hazards at their source

    SciTech Connect (OSTI)

    Bleck, Daniela; Wettberg, Wieland

    2012-11-15

    Waste management procedures in developing countries are associated with occupational safety and health risks. Gastro-intestinal infections, respiratory and skin diseases as well as muscular-skeletal problems and cutting injuries are commonly found among waste workers around the globe. In order to find efficient, sustainable solutions to reduce occupational risks of waste workers, a methodological risk assessment has to be performed and counteractive measures have to be developed according to an internationally acknowledged hierarchy. From a case study in Addis Ababa, Ethiopia suggestions for the transferral of collected household waste into roadside containers are given. With construction of ramps to dump collected household waste straight into roadside containers and an adaptation of pushcarts and collection procedures, the risk is tackled at the source.

  15. S. 1429: A Bill to amend the Natural Gas Pipeline Safety Act of 1968, as amended, and the Hazardous Liquid Pipeline Safety Act of 1979, as amended, to authorize appropriations for fiscal years 1992 and 1993, and for other purposes, introduced in the Senate of the United States, One Hundred Second Congress, First Session, June 28, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill would further amend the Natural Gas Pipeline Safety Act of 1968 and the Hazardous Liquid Pipeline Safety Act of 1979 to authorize appropriations for fiscal years 1992 and 1993. The bill authorizes $5,562,000 as appropriations for the Natural Gas Pipeline Safety Act and $1,391,000 as appropriations for the Hazardous Liquid Pipeline Safety Act for fiscal year ending September 30, 1992 and such sums as may be necessary for the fiscal year ending September 30, 1993.

  16. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    Office of Environmental Management (EM)

    HSW EIS January 2004 1.6 Figure 1.2. States with Radioactive Waste Disposal Activities Final HSW EIS January 2004 1.12 Figure 1.3. Relationship of the HSW EIS to Other Hanford Cleanup Operations, Material Management Activities, and Key Environmental Reviews 2.17 Final HSW EIS January 2004 Figure 2.6. Waste Receiving and Processing Facility Figure 2.7. X-Ray Image of Transuranic Waste Drum Contents M0212-0286.11 HSW EIS 12-10-02 M0212-0286.12 HSW EIS 12-10-02 2.17 Final HSW EIS January 2004

  17. Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982

    Broader source: Energy.gov [DOE]

    Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982

  18. Site 300 hazardous-waste-assessment project. Interim report: December 1981. Preliminary site reconnaissance and project work plan

    SciTech Connect (OSTI)

    Raber, E.; Helm, D.; Carpenter, D.; Peifer, D.; Sweeney, J.

    1982-01-20

    This document was prepared to outline the scope and objectives of the Hazardous Waste Assessment Project (HWAP) at Site 300. This project was initiated in October, 1981, to investigate the existing solid waste landfills in an effort to satisfy regulatory guidelines and assess the potential for ground-water contamination. This involves a site-specific investigation (utilizing geology, hydrology, geophysics and geochemistry) with the goal of developing an effective ground-water quality monitoring network. Initial site reconnaissance work has begun and we report the results, to date, of our geologic hydrogeologic studies. All known solid waste disposal locations are underlain by rocks of either the Late Miocene Neroly Formation or the Cierbo Formation, both of which are dominantly sandstones interbedded with shale and claystone. The existence of a regional confined (artesian) aquifer, as well as a regional water-table aquifer is postulated for Site 300. Preliminary analysis has led to an understanding of directions and depths of regional ground-water flow.

  19. Comprehensive Environmental Response, Compensation, and Liability Act |

    Energy Savers [EERE]

    Department of Energy Services » Environment » Environmental Policy and Assistance » Comprehensive Environmental Response, Compensation, and Liability Act Comprehensive Environmental Response, Compensation, and Liability Act Congress passed the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or commonly known as Superfund) in response to a growing national concern about the release of hazardous substances from abandoned waste sites. Under CERCLA Congress gave

  20. Permit applicants' guidance manual for exposure information requirements under RCRA (Resource Conservation and Recovery Act) Section 3019. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-07-03

    The purpose of this document is to provide owners and operators of hazardous-waste landfills and surface impoundments that are subject to permitting under the Resource Conservation and Recovery Act (RCRA) with guidance for submitting information on the potential for public exposure to hazardous wastes, as required by Section 3019 of RCRA.

  1. Evaluations in support of regulatory and research decisions by the U. S. Environmental Protection Agency for the control of toxic hazards from hazardous wastes, glyphosate, dalapon, and synthetic fuels

    SciTech Connect (OSTI)

    Scofield, R.

    1984-01-01

    This report includes toxicological and regulatory evaluations performed in support of U.S. EPA regulation of toxic materials and hazardous wastes. The first section of the report describes evaluations which support: (a) the regulation of small-volume generators of hazardous wastes, (b) the regulation of hazardous wastes from pesticide manufacturing, and (c) the disposal of the herbicide, silvex. The second section describes the environmental fate, transport, and effect of glyphosate and dalapon. The third section deals with synthetic fuels, including evaluations of synfuel-product toxicity, uncontrolled air emissions, and particular focus on the toxicity of products from several indirect coal liquefaction processes including methanol synthesis, Fischer-Tropsch, Mobil M-Gasoline, and Lurgi gasification technologies. Three direct coal liquefaction processes were examined for product toxicity and air emissions: Solvent Refined Coal (I and II) and the Exxon Donor Solvent Process. Also described in the third section is an evaluation of environmental and health hazards associated with the use of synthetic fuels from indirect coal liquefaction, direct coal liquefaction, and shale oil. Finally, the fourth section discusses some problems associated with performing, on a contractual basis, scientific and technical evaluations in support of U.S. EPA regulatory and research decisions.

  2. Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report

    SciTech Connect (OSTI)

    1996-03-01

    The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.

  3. U.S. Environmental Protection Agency Region VIII Hazardous Waste Management Division

    Office of Legacy Management (LM)

    Ia) Monticello Mill Tailings Site (San Juan County, Utah) I. Introduction Authority Statement. Purpose. This review was conducted pursuant to Comprehensive Environmental Response, Compensation, and Liability (CERCLA) section 121(c), National Contingency Plan (NCP) section 300.430(f)(4)(ii), and Office of Solid Waste and Emergency Response (OSWER) Directives 9355.7-02 (May 23, 1991) and 9355.7-02A (July 26, 1994). The U.S. Department of Energy (DOE) Grand Junction Office (GJO) conducted the

  4. Best demonstrated available technology (BDAT) background document for universal standards. Volume B. Universal standards for wastewater forms of listed hazardous wastes. Final report

    SciTech Connect (OSTI)

    1994-07-01

    The Environmental Protection Agency (EPA) is establishing Best Demonstrated Available Technology (BDAT) universal standards for the listed wastes identified in Title 40, Code of Federal Regulations, Section 261.31 (40 CFR 261.31). A universal standard is a single concentration-based treatment standard established for a specific constituent; a constituent has the same treatment standard in each waste code in which it is regulated. The background document provides the Agency`s rationale and technical support for selecting the constituents for regulation under universal standards and for developing the universal standards for wastewater forms of listed hazardous wastes.

  5. Best demonstrated available technology (BDAT) background document for universal standards. Volume A. Universal standards for nonwastewater forms of listed hazardous wastes. Final report

    SciTech Connect (OSTI)

    1994-07-01

    The Environmental Protection Agency (EPA or the Agency) is establishing Best Demonstrated Available Technology (BDAT) universal standards for the listed wastes identified in Title 40, Code of Federal Regulations Section 261.31 (40 CFR 261.31). A universal treatment standard (i.e., universal standard) is a single concentration-based treatment standard established for a specific constituent; a constituent has the same treatment standard in each waste code in which it is regulated. The background document provides the Agency`s rationale and technical support for selecting the constituents for regulation under universal standards and for developing the universal standards for nonwastewater forms of listed hazardous wastes.

  6. Using Helicopter Electromagnetic Surveys to Identify Potential Hazards at Mine Waste Impoundments

    SciTech Connect (OSTI)

    Hammack, R.W.

    2008-01-01

    In July 2003, helicopter electromagnetic surveys were conducted at 14 coal waste impoundments in southern West Virginia. The purpose of the surveys was to detect conditions that could lead to impoundment failure either by structural failure of the embankment or by the flooding of adjacent or underlying mine works. Specifically, the surveys attempted to: 1) identify saturated zones within the mine waste, 2) delineate filtrate flow paths through the embankment or into adjacent strata and receiving streams, and 3) identify flooded mine workings underlying or adjacent to the waste impoundment. Data from the helicopter surveys were processed to generate conductivity/depth images. Conductivity/depth images were then spatially linked to georeferenced air photos or topographic maps for interpretation. Conductivity/depth images were found to provide a snapshot of the hydrologic conditions that exist within the impoundment. This information can be used to predict potential areas of failure within the embankment because of its ability to image the phreatic zone. Also, the electromagnetic survey can identify areas of unconsolidated slurry in the decant basin and beneath the embankment. Although shallow, flooded mineworks beneath the impoundment were identified by this survey, it cannot be assumed that electromagnetic surveys can detect all underlying mines. A preliminary evaluation of the data implies that helicopter electromagnetic surveys can provide a better understanding of the phreatic zone than the piezometer arrays that are typically used.

  7. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    SciTech Connect (OSTI)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

  8. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    SciTech Connect (OSTI)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  9. Applications of Atomistic Simulation to Radioactive and Hazardous Waste Glass Formulation Development

    SciTech Connect (OSTI)

    Kielpinski, A.L.

    1995-03-01

    Glass formulation development depends on an understanding of the effects of glass composition on its processibility and product quality. Such compositional effects on properties in turn depend on the microscopic structure of the glass. Historically, compositional effects on macroscopic properties have been explored empirically, e.g., by measuring viscosity at various glass compositions. The relationship of composition to structure has been studied by microstructural experimental methods. More recently, computer simulation has proved a fruitful complement to these more traditional methods of study. By simulating atomic interaction over a period of time using the molecular dynamics method, a direct picture of the glass structure and dynamics is obtained which can verify existing concepts as well as permit ``measurement`` of quantities inaccessible to experiment. Atomistic simulation can be of particular benefit in the development of waste glasses. As vitrification is being considered for an increasing variety of waste streams, process and product models are needed to formulate compositions for an extremely wide variety of elemental species and composition ranges. The demand for process and product models which can predict over such a diverse composition space requires mechanistic understanding of glass behavior; atomistic simulation is ideally suited for providing this understanding. Moreover, while simulation cannot completely eliminate the need for treatability studies, it can play a role in minimizing the experimentation on (and therefore contact handling of) such materials. This paper briefly reviews the molecular dynamics method, which is the primary atomistic simulation tool for studying glass structure. We then summarize the current state of glass simulation, emphasizing areas of importance for waste glass process/product modeling. At SRS, glass process and product models have been formulated in terms of glass structural concepts.

  10. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 112: AREA 23 HAZARDOUS WASTE TRENCHES, NEVADA TEST SITE, NEVADA; FOR THE PERIOD OCTOBER 2003 - SEPTEMBER 2004

    SciTech Connect (OSTI)

    BECHTEL NEVADA

    2004-12-01

    Corrective Action Unit (CAU) 112, Area 23 Hazardous Waste Trenches, Nevada Test Site (NTS), Nevada, is a Resource Conservation and Recovery Act (RCRA) unit located in Area 23 of the NTS. This annual Post-Closure Inspection and Monitoring Report provides the results of inspections and monitoring for CAU 112. This report includes a summary and analysis of the site inspections, repair and maintenance, meteorological information, and neutron soil moisture monitoring data obtained at CAU 112 for the current monitoring period, October 2003 through September 2004. Inspections of the CAU 112 RCRA unit were performed quarterly to identify any significant physical changes to the site that could impact the proper operation of the waste unit. The overall condition of the covers and facility was good, and no significant findings were observed. The annual subsidence survey of the elevation markers was conducted on August 23, 2004, and the results indicated that no cover subsidence4 has occurred at any of the markers. The elevations of the markers have been consistent for the past 11 years. The total precipitation for the current reporting period, october 2003 to September 2004, was 14.0 centimeters (cm) (5.5 inches [in]) (National Oceanographic and Atmospheric Administration, Air Resources Laboratory, Special Operations and Research Division, 2004). This is slightly below the average rainfall of 14.7 cm (5.79 in) over the same period from 1972 to 2004. Post-closure monitoring verifies that the CAU 112 trench covers are performing properly and that no water is infiltrating into or out of the waste trenches. Sail moisture measurements are obtained in the soil directly beneath the trenches and compared to baseline conditions for the first year of post-closure monitoring, which began in october 1993. neutron logging was performed twice during this monitoring period along 30 neutron access tubes to obtain soil moisture data and detect any changes that may indicate moisture movement beneath each trench. Soil moisture results obtained to date indicate that the compliance criterion of less than 5% Residual Volumetric Moisture Content was met. Soil conditions remain dry and stable beneath the trenches, and the cover is functioning as designed within the compliance limits.

  11. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    1988-01-01

    Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

  12. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, November 1994--February 1995

    SciTech Connect (OSTI)

    1995-03-01

    This second quarterly report describes work during the second three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSI) and the Center for Hazardous Materials Research (CHMR). The report describes the activities of the project team during the reporting period. The principal work has focussed upon the acquisition of by-product samples and their initial analysis. Other efforts during the second quarter have been directed toward identifying the first hazardous waste samples and preparing for their treatment and analysis. Relatively little data has yet been collected. Major presentation of technical details and data will appear for the first time in the third quarterly report. The activity on the project during the second quarter of Phase One, as presented in the following sections, has fallen into seven areas: (1) Acquiring by-products, (2) Analyzing by-products, (3) Identifying, analyzing and treating suitable hazardous wastes, (4) Carrying out the quality assurance/quality control program, (5) Developing background, and (6) Initiating public relations

  13. A systematic assessment of the state of hazardous waste clean-up technologies. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect (OSTI)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.

  14. Mr. J . Kieling, Acting Chief Ha

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mr. J . Kieling, Acting Chief Ha zardous Waste Bureau Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad , New Mexico 88221 DEC 1 6 2011 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe , New Mexico 87505-6303 Subject: Notification of Class 1 Permit Modification to the Hazardous Waste Facility Permit, Number: NM4890139088-TSDF Dear Mr. Kieling : Enclosed is the following Class 1 Permit Modification Notification: * Continuing Training Tim eframe We

  15. Toxic Substances Control Act (TSCA) Polychlorinated Biphenyl (PCB)/Radioactive Waste Annual Inventory for Calendar Year 2014

    SciTech Connect (OSTI)

    Layton, Deborah L.

    2015-06-01

    The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) to submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.

  16. Toxic Substances Control Act (TSCA) Polychlorinated Biphenyl (PCB)/Radioactive Waste Annual Inventory for Calendar Year 2013

    SciTech Connect (OSTI)

    no author on report

    2014-06-01

    The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) to submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.

  17. Reduction of COD in leachate from a hazardous waste landfill adjacent to a coke-making facility

    SciTech Connect (OSTI)

    Banerjee, K.; O`Toole, T.J.

    1995-12-01

    A hazardous waste landfill adjacent to a coke manufacturing facility was in operation between July 1990 and December 1991. A system was constructed to collect and treat the leachate from the landfill prior to discharge to the river. Occasionally, the discharge from the treatment facility exceeded the permit limitations for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), and Total Organic Carbon (TOC). The objectives of this study were to determine treatment methods which would enable compliance with the applicable discharge limits; to establish the desired operating conditions of the process; and to investigate the effect of various parameters such as pH, catalyst dosage, and reaction time on the COD destruction efficiency. The characteristics of the landfill leachate in question were significantly variable in terms of chemical composition. A review of the influent quality data suggests that the COD concentration ranges between 80 and 390 mg/l. The oxidation processes using Fenton`s reagent or a combination of UV/hydrogen peroxide/catalyst are capable of reducing the COD concentration of the leachate below the discharge limitation of 35 mg/l. The estimated capital cost associated with the Fenton`s reagent process is approximately $525,000, and the annual operating and maintenance cost is $560,000. The estimated capital cost for the UV/hydrogen peroxide/catalyst treatment system is $565,000. The annual operating and maintenance cost of this process would be approximately $430,000.

  18. Preparation of waste analysis plans under the Resource Conservation and Recovery Act (Interim guidance)

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    This document is organized to coincide with the suggested structure of the actual Waste Analysis Plans (WAP) discussed in the previous section. The contents of the remaining eleven chapters and appendices that comprise this document are described below: Chapter 2 addresses waste streams, test parameters, and rationale for sampling and analytical method selection; test methods for analyzing parameters; proceduresfor collecting representative samples; and frequency of sample collection and analyses. These are the core WAP requirements. Chapter 3 addresses analysis requirements for waste received from off site. Chapter 4addresses additional requirements for ignitable, reactive, or incompatible wastes. Chapter 5 addresses unit-specific requirements. Chapter 6 addresses special procedures for radioactive mixed waste. Chapter 7 addresses wastes subject to the land disposal restrictions. Chapter 8 addresses QA/QC procedures. Chapter 9 compares the waste analysis requirements of an interim status facility with those of a permitted facility. Chapter 10 describes the petition process required for sampling and analytical procedures to deviate from accepted methods, such as those identified in promulgated regulations. Chapter 11 reviews the process for modification of WAPs as waste type or handling practices change at a RCRA permitted TSDF. Chapter 12 is the list of references that were used in the preparation of this guidance. Appendix A is a sample WAP addressing physical/chemical treatment and container storage. Appendix B is a sample WAP addressing an incinerator and tank systems. Appendix C discusses the relationship of the WAP to other permitting requirements and includes specific examples of how waste analysis is used to comply with certain parts of a RCRA permit. Appendix D contains the exact wording for the notification/certification requirements under theland disposal restrictions.

  19. Small Business Awarded Contract for Recovery Act Work at DOE Waste Facility

    Broader source: Energy.gov [DOE]

    Louisiana small business to provide geosynthetic materials and installation services for expansion of the Department of Energys Environmental Management Waste Management Facility (EMWMF) on the Oak Ridge Reservation.

  20. Waste management units - Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  1. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2

    SciTech Connect (OSTI)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

  2. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7

    SciTech Connect (OSTI)

    1988-01-01

    The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  3. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1

    SciTech Connect (OSTI)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

  4. DOE Completes Five Recovery Act Projects | Department of Energy

    Office of Environmental Management (EM)

    Completes Five Recovery Act Projects DOE Completes Five Recovery Act Projects August 18, 2011 - 12:00pm Addthis OAK RIDGE, Tenn. - The U.S. Department of Energy's (DOE) Environmental Management (EM) program recently completed five projects at the Oak Ridge site funded through the American Recovery and Reinvestment Act. The projects included the expansion of two landfills at the Oak Ridge Reservation (ORR). The Sanitary Landfill, a designated area for non-hazardous waste, was expanded by 385,000

  5. U.S. Department of Energy Carlsbad Field Office Waste Isolation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the 10-year WIPP Hazardous Waste Facility Permit Renewal. He has also served in an acting role as the Director of the Office of Site Operations and Director of the National TRU...

  6. An assessment of potential environmental impacts of cement kiln dust produced in kilns co-fired with hazardous waste fuels

    SciTech Connect (OSTI)

    Goad, P.T.; Millner, G.C.; Nye, A.C.

    1998-12-31

    The Keystone Cement Company (Keystone), located in Bath, Pennsylvania, produces cement in two kilns that are co-fired with hazardous waste-derived fuels. Beginning in the late 1970`s Keystone began storing cement kiln dust (CKD) in an aboveground storage pile located on company property adjacent to the cement kilns. Storm water runoff from the CKD pile is channeled into a storm water settling pond which in turn discharges into Monocacy Creek, a stream running along the eastern property boundary. Monocacy Creek sustains a thriving trout fishery and is routinely fished during the open recreational fishing season in pennsylvania. The CKD pile has a surface area of approximately 12 acres, with an average height of approximately 35 feet. The southern edge of the pile is contiguous with an adjacent company-owned field in which field corn is grown for cattle feed. Some of the corn on the edges of the field is actually grown in direct contact with CKD that comprises the edge of the storage pile. The CKD pile is located approximately 150 yards to the west of Monocacy Creek. In 1995--1996 water, sediment and fish (trout) samples were obtained from Monocacy Creek sampling stations upstream and downstream of the point of discharge of storm water runoff from the CKD pile. In addition, corn samples were obtained from the field contiguous with the CKD pile and from a control field located distant to the site. The sediment, water, fish, and corn samples were analyzed for various chemicals previously identified as chemicals of potential concern in CKD. These data indicate that chemical constituents of CKD are not contaminating surface water or sediment in the stream, and that bioaccumulation of organic chemicals and/or metals has not occurred in field corn grown in direct contact with undiluted CKD, or in fish living in the waters that receive CKD pile runoff.

  7. Integrated Waste Feed Delivery Plan - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Integrated Waste Feed Delivery Plan Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental Integrated Waste Feed Delivery Plan Email Email Page | Print

  8. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report - Calendar Year 2014

    SciTech Connect (OSTI)

    Arnold, Patrick

    2015-02-17

    This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  9. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Arnold, P. M.

    2013-02-21

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

  10. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2011

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-02-16

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream; a description and quantity of each waste stream in tons and cubic feet received at the facility; the method of treatment, storage, and/or disposal for each waste stream; a description of the waste minimization efforts undertaken; a description of the changes in volume and toxicity of waste actually received; any unusual occurrences; and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  11. Waste management units - Savannah River Site. Volume 1, Waste management unit worksheets

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  12. Hazardous Materials Transportation Authorization Act of 1993. Introduced in the Senate of the United States. Report of the Senate Committee on Commerce, Science, and Transportation, One Hundred Third Congress, First Session

    SciTech Connect (OSTI)

    1993-12-31

    The report addresses a bill (S. 1640) to amend the Hazardous Materials Transportation Act (HMTA). The bill authorizes appropriations. This legislation would authorized funding of the HMTA by the Department of Transportation (DOT) as program manager. The DOT is required to take a number of significant steps to improve hazmat transportation safety. The legislative text of the Bill is summarized with amendments.

  13. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quartery report, August 1994--November 1994

    SciTech Connect (OSTI)

    1994-12-01

    This first quarterly report describes work during the first three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSO and the Center for Hazardous Materials Research (CHMR)). The report states the goals of the project - both general and specific - and then describes the activities of the project team during the reporting period. All of this work has been organizational and developmental in nature. No data has yet been collected. Technical details and data will appear for the first time in the second quarterly report and be the major topic of subsequent reports.

  14. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  15. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  16. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    J. D. Ludowise; K. L. Vialetti

    2008-05-12

    This report provides the final hazard categorization for the remediation of six 300-FF-2 Operable Unit Burial Grounds, the 618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 sites.

  17. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    SciTech Connect (OSTI)

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  18. Characterization, minimization and disposal of radioactive, hazardous, and mixed wastes during cleanup and rransition of the Tritium Research Laboratory (TRL) at Sandia National Laboratories/California (SNL/CA)

    SciTech Connect (OSTI)

    Garcia, T.B.; Gorman, T.P.

    1996-12-01

    This document provides an outline of waste handling practices used during the Sandia National Laboratory/California (SNL/CA), Tritium Research Laboratory (TRL) Cleanup and Transition project. Here we provide background information concerning the history of the TRL and the types of operations that generated the waste. Listed are applicable SNL/CA site-wide and TRL local waste handling related procedures. We describe personnel training practices and outline methods of handling and disposal of compactible and non-compactible low level waste, solidified waste water, hazardous wastes and mixed wastes. Waste minimization, reapplication and recycling practices are discussed. Finally, we provide a description of the process followed to remove the highly contaminated decontamination systems. This document is intended as both a historical record and as a reference to other facilities who may be involved in similar work.

  19. Class 1 Permit Modification Notification Addition of Structures within Technical Area 54, Area G, Pad 11, Dome 375 Los Alamos National Laboratory Hazardous Waste Facility Permit, July 2012

    SciTech Connect (OSTI)

    Vigil-Holterman, Luciana R.; Lechel, Robert A.

    2012-08-31

    The purpose of this letter is to notify the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of a Class 1 Permit Modification to the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit issued to the Department of Energy (DOE) and Los Alamos National Security, LLC (LANS) in November 2010. The modification adds structures to the container storage unit at Technical Area (TA) 54 Area G, Pad 11. Permit Section 3.1(3) requires that changes to the location of a structure that does not manage hazardous waste shall be changed within the Permit as a Class 1 modification without prior approval in accordance with Code of Federal Regulations, Title 40 (40 CFR), {section}270.42(a)(1). Structures have been added within Dome 375 located at TA-54, Area G, Pad 11 that will be used in support of waste management operations within Dome 375 and the modular panel containment structure located within Dome 375, but will not be used as waste management structures. The Class 1 Permit Modification revises Figure 36 in Attachment N, Figures; and Figure G.12-1 in Attachment G.12, Technical Area 54, Area G, Pad 11 Outdoor Container Storage Unit Closure Plan. Descriptions of the structures have also been added to Section A.4.2.9 in Attachment A, TA - Unit Descriptions; and Section 2.0 in Attachment G.12, Technical Area 54, Area G, Pad 11 Outdoor Container Storage Unit Closure Plan. Full description of the permit modification and the necessary changes are included in Enclosure 1. The modification has been prepared in accordance with 40 CFR {section}270.42(a)(l). This package includes this letter and an enclosure containing a description of the permit modification, text edits of the Permit sections, and the revised figures (collectively LA-UR-12-22808). Accordingly, a signed certification page is also enclosed. Three hard copies and one electronic copy of this submittal will be delivered to the NMED-HWB.

  20. "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP

    Broader source: Energy.gov [DOE]

    With the American Recovery and Reinvestment Act funding, Savannah River Site (SRS) continues to safely treat and dispose of radioactive waste created while producing materials for nuclear weapons throughout the Cold War. The DOE site in Aiken, S.C., is safely, steadily, and cost-effectively making progress to analyze, measure, and then carefully cleanup or dispose of legacy transuranic (TRU) waste remaining at SRS after the lengthy nuclear arms race.

  1. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas Utilizing proven and reliable technology and equipment Maximizing electrical efficiency Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill Maximizing equipment uptime Minimizing water consumption Minimizing post-combustion emissions The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWhs of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  2. Idaho National Engineering Laboratory response to the December 13, 1991, Congressional inquiry on offsite release of hazardous and solid waste containing radioactive materials from Department of Energy facilities

    SciTech Connect (OSTI)

    Shapiro, C.; Garcia, K.M.; McMurtrey, C.D.; Williams, K.L.; Jordan, P.J.

    1992-05-01

    This report is a response to the December 13, 1991, Congressional inquiry that requested information on all hazardous and solid waste containing radioactive materials sent from Department of Energy facilities to offsite facilities for treatment or disposal since January 1, 1981. This response is for the Idaho National Engineering Laboratory. Other Department of Energy laboratories are preparing responses for their respective operations. The request includes ten questions, which the report divides into three parts, each responding to a related group of questions. Part 1 answers Questions 5, 6, and 7, which call for a description of Department of Energy and contractor documentation governing the release of waste containing radioactive materials to offsite facilities. Offsite'' is defined as non-Department of Energy and non-Department of Defense facilities, such as commercial facilities. Also requested is a description of the review process for relevant release criteria and a list of afl Department of Energy and contractor documents concerning release criteria as of January 1, 1981. Part 2 answers Questions 4, 8, and 9, which call for information about actual releases of waste containing radioactive materials to offsite facilities from 1981 to the present, including radiation levels and pertinent documentation. Part 3 answers Question 10, which requests a description of the process for selecting offsite facilities for treatment or disposal of waste from Department of Energy facilities. In accordance with instructions from the Department of Energy, the report does not address Questions 1, 2, and 3.

  3. Mixed Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  4. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh�s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  5. Health assessment for Fletcher's Paint Works and Storage Facility Hazardous Waste Material, Milford, Hillsborough County, New Hampshire, Region 1. CERCLIS No. NHD981067614. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1990-06-11

    Fletcher's Paint Works and Storage Facility Hazardous Waste Site (Fletcher's Paint Site) in Milford, New Hampshire, consists of three distinct entities: Fletcher's Paint Works at 21 Elm Street, Fletcher's Paint Storage Facility on Mill Street, and a drainage ditch leading from the storage facility property to Hampshire Paper Company property. The aggregation of these three properties was based on the similar nature of operations and wastes, the close proximity of the areas, the same target population, and the same underlying aquifer at risk of contamination. The aggregated site has contributed to the contamination of soil, groundwater, surface water, sediment, and air with various volatile organic chemicals (VOCs), semivolatile organic chemicals (SVOCs), heavy metals, and polychlorinated biphenyls (PCBs). Environmental monitoring related to the Fletcher's Paint Site has consisted of sampling of the Keyes Well by the NH WSPCC, and sampling at the paint works, storage facility and drainage ditch by NUS Corporation and EPA's Environmental Services Division (ESD). Contaminant levels at each location is discussed individually. Based upon the available information, the Fletcher's Paint NPL Site is considered to be of potential public health concern because of the risk to public health caused by potential exposure to hazardous substances, such as VOCs, PCBs, PAHs, and heavy metals, at concentrations that may result in adverse health effects. Exposure to contaminated soil and surface water, and potentially contaminated fish may be occurring. The site is located in a densely populated part of town, while the storage facility is readily accessible to children walking to and from school.

  6. Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J.

    1997-02-01

    A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

  7. CHALLENGES WITH RETRIEVING TRANSURANIC WASTE FROM THE HANFORD BURIAL GROUNDS

    SciTech Connect (OSTI)

    SWAN, R.J.; LAKES, M.E.

    2007-08-06

    The U.S. DOE's Hanford Reservation produced plutonium and other nuclear materials for the nation's defense starting in World War II. The defense mission generated wastes that were either retrievably stored (i.e. retrievably stored waste) and/or disposed of in burial grounds. Challenges have emerged from retrieving suspect TRU waste including adequacy of records, radiological concerns, container integrity, industrial hygiene and safety issues, the lack of processing/treatment facilities, and the integration of regulatory requirements. All retrievably stored waste is managed as mixed waste and assumed to be TRU waste, unless documented otherwise. Mixed waste is defined as radioactive waste that contains hazardous constituents. The Atomic Energy Act governs waste with radionuclides, and the Resource Conservation and Recovery Act (RCRA) governs waste with hazardous constituents. Waste may also be governed by the Toxic Substances Control Act (TSCA), and a portion may be managed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In 1970, TRU waste was required to be placed in 20-year retrievable storage and segregated from other Waste. Prior to that date, segregation did not occur. Because of the changing definition of TRU over the years, and the limitations of early assay equipment, all retrievably stored waste in the burial grounds is managed as suspect TRU. Experience has shown that some of this waste will be characterized as low-level (non-TRU) waste after assay. The majority of the retrieved waste is not amenable to sampling due to waste type and/or radiological issues. Key to waste retrieval and disposition are characterization, historical investigation and research, knowledge of past handling and packaging, as well as a broad understanding and application of the regulations.

  8. H. R. 3516: A Bill to amend the Internal Revenue Code of 1954 to provide a refundable income tax credit for the recycling of hazardous wastes. Introduced in the House of Representatives, One Hundredth First Congress, First Session, October 24, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    H.R. 3516 is a bill to amend the Internal Revenue Code of 1954 to provide a refundable income tax credit for the recycling of hazardous wastes.

  9. Resource Conservation and Recovery Act (RCRA) facility assessment guidance

    SciTech Connect (OSTI)

    Rastatter, C.; Fagan, D.; Foss, D.

    1986-10-01

    Facilities that manage hazardous wastes are required to obtain permits under the Resource Conservation and Recovery Act (RCRA) of 1976. This guidance document informs RCRA permit writers and enforcement officials of procedures to be used in conducting RCRA Facility Assessments. The RCRA corrective-action program was established to investigate and require clean up of releases of hazardous wastes or constituents to the environment at facilities subject to RCRA permits. Releases to ground water, surface water, air, soil, and subsurface strata may be addressed.

  10. Pollution prevention benefits of non-hazardous shielding glovebox gloves - 11000

    SciTech Connect (OSTI)

    Cournoyer, Michael E; Dodge, Robert L

    2011-01-11

    Radiation shielding is commonly used to protect the glovebox worker from unintentional direct and secondary radiation exposure, while working with plutonium-238 and plutonium-239. Shielding glovebox gloves are traditionally composed of lead-based materials, i.e., hazardous waste. This has prompted the development of new, non-hazardous shielding glovebox gloves. No studies, however, have investigated the pollution prevention benefits of these new glovebox gloves. We examined both leaded and non-hazardous shielding glovebox gloves. The nonhazardous substitutes are higher in cost, but this is offset by eliminating the costs associated with onsite waste handling of Resource Conservation and Recovery Act (RCRA) items. In the end, replacing lead with non-hazardous substitutes eliminates waste generation and future liability.

  11. Hazardous and Corrosive Gas Production in the Radiolysis of Water/Organic Mixtures in Model TRU Waste

    SciTech Connect (OSTI)

    LaVerne, Jay A.

    2005-06-01

    Experiments in combination with diffusion-kinetic modeling incorporating track structure simulations are used to examine the radiation chemistry of aqueous systems containing chlorinated hydrocarbons. Irradiations with both Co-60 gamma rays and alpha particles are employed in order to simulate typical mixed radiation environments encountered in waste management. The goal is to determine fundamental mechanisms, kinetics, and yields for the formation of potentially explosive gases and corrosive agents, such as H2 and HCl, respectively, in the radiolysis of water-organic mixtures. The radiation chemical systems studied are found throughout the DOE portfolio and are important in radioactive waste remediation and management.

  12. Spring 2009 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post-Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    SciTech Connect (OSTI)

    Boehmer, Ann M.

    2009-05-31

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under and approved Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure plan. Vessels and spaces were grouted and then covered with a concrete cap. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment.

  13. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Waste Sharps Broken Glass Containment Hazardous Waste All waste produced in the Sample Prep Labs should be appropriately disposed of at SLAC. You are prohibited to transport waste back to your home institution. Designated areas exist in the labs for sharps, broken glass, and hazardous waste. Sharps, broken glass, and hazardous waste must never be disposed of in the trash cans or sink drains. Containment Bottles, jars, and plastic bags are available for containing chemical waste. Place

  14. Hazard Analysis Database Report

    SciTech Connect (OSTI)

    GAULT, G.W.

    1999-10-13

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR). The FSAR is part of the approved TWRS Authorization Basis (AB). This document describes, identifies, and defines the contents and structure of the TWRS FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The TWRS Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The database supports the preparation of Chapters 3,4, and 5 of the TWRS FSAR and the USQ process and consists of two major, interrelated data sets: (1) Hazard Evaluation Database--Data from the results of the hazard evaluations; and (2) Hazard Topography Database--Data from the system familiarization and hazard identification.

  15. Hanford Site annual dangerous waste report. Volume 1, Part 2, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  16. EIS-0200: Waste Management Programmatic Environmental Impact...

    Office of Environmental Management (EM)

    Waste Management Programmatic Environmental Impact Statement for Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Waste Management ...

  17. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))...

  18. Vermont Waste Management and Prevention Division | Open Energy...

    Open Energy Info (EERE)

    federal and state programs regulating hazardous wastes, solid wastes, and underground storage tanks, and manages cleanup at hazardous sites under state and federal authorities,...

  19. Vermont Conditionally Exempt Generator Handbook: A Hazardous...

    Open Energy Info (EERE)

    Conditionally Exempt Generator Handbook: A Hazardous Waste Management Guide for Smaller Vermont Business Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  20. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  1. F-Area Hazardous Waste Management Facility groundwater monitoring report. Third and fourth quarters 1996, Volume 1

    SciTech Connect (OSTI)

    1997-03-01

    SRS monitors groundwater quality at the F-Area HWMF as mandated by the permit and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the permit. The facility is describes in the introduction to Module III, Section C, of the permit. The F-Area HWMF well network monitors three district hydrostratigraphic units in the uppermost aquifer beneath the facility. The hydrostratigraphy at the F-Area HWMF is described in permit section IIIC.H.2, and the groundwater monitoring system is described in IIIC.H.4 and Appendix IIIC-B. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act (RCRA) Part B post-closure care permit application for the F-Area HWMF submitted to SCDHEC in December 1990. Sampling and analysis are conducted as required by section IIIC.H.6 at the intervals specified in permit sections IIIC.H.10 and Appendix IIIC-D for the constituents specified in Appendix IIIC-D. Groundwater quality is compared to the GWPS list in section IIIC.H.1 and Appendix IIIC-A.

  2. Independent Oversight Review, Waste Treatment and Immobilization Plant- December 2012

    Broader source: Energy.gov [DOE]

    Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity

  3. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  4. HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007

    SciTech Connect (OSTI)

    K. Winterholler

    2007-01-30

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure Plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for the Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

  5. Hazardous and Corrosive Gas Production in the Radiolysis of Water/Organic Mixtures in Model TRU Waste

    SciTech Connect (OSTI)

    LaVerne, Jay A.

    2004-12-01

    Scope. The radiation chemistry of aqueous systems containing chlorinated hydrocarbons is investigated using a multi-pronged approach employing 60Co gamma ray and alpha particle irradiation experiments in conjunction with diffusion-kinetic modeling incorporating track structure simulations. The goal is to determine mechanisms, kinetics, and yields for the formation of potentially explosive gases and corrosive agents, such as H2 and HCl, respectively, in the radiolysis of water-organic mixtures. The information obtained is of a fundamental nature, but the radiation chemical systems studied are found throughout the DOE portfolio and are important in radioactive waste remediation and management. Program Highlights. Radiation-induced production of H2 and HCl from chlorinated hydrocarbons. 60Co gamma-radiolysis experiments and stochastic kinetic modeling have been used to investigated the radiation-induced yield of H2 and Cl- from aqueous solutions of 1,2-dichloroethane (1,2-DCE) and 1,1-dichloroethane (1,1-DCE) over the concentration range 1-80 mM. In deoxygenated solution, the yield of H2 from both 1,2-DCE and 1,1-DCE solutions decreases as the concentration of DCE is increased. The decrease in the H2 yield shows that the reaction of H atom with DCE does not lead to the production of H2. This observation is unexpected and reflects the reverse of the effect seen in the gas phase, where the reaction of H atom with 1,2-DCE and 1,1-DCE leads to the production of H2. The yield of Cl- from 1,2-DCE and 1,1-DCE solutions increases slightly from 2.8 ions/100eV to 3.6 over the concentration range 10-50 mM, demonstrating the increased competition of the DCE with intra-track processes. Comparison of the measured yields of Cl- with the predictions of stochastic kinetic modeling shows that the reactions of eaq- with 1,2-DCE and with 1,1-DCE are quantitative, and that the reaction of H atom with both DCEs leads to the production of Cl- (and Haq+). In aerated solution, the yield of Cl- from 1,2-DCE and from 1,1-DCE solutions is very significantly higher ({approx} x 3-4) than from deoxygenated solution. Furthermore, the observed yield is both dose and dose rate dependent. The mechanisms for Cl- production in aerated aqueous solutions of 1,2-DCE and of 1,1-DCE are currently under investigation. Rate coefficients for the reaction of eaq- and -OH with chlorinated hydrocarbons. There is considerable disagreement over the rate coefficients for the reaction of the primary radiation-produced reducing and oxidizing radicals from water, eaq- and -OH respectively, with 1,2-DCE and with 1,1-DCE. Electron pulse-radiolysis experiments monitoring the decay of eaq- have been used to measure the rate coefficients: 1,2 DCE eaq- + CH2Cl-CH2Cl ' CH2Cl-CH2- + Cl- k1 = 2.3 x 109 dm3 mole-1 s-1 1,1 DCE eaq- + CH3Cl-CHCl2 ' CH3-CHCl- + Cl- k2 = 3.5 x 109 dm3 mole-1 s-1 while competition kinetic experiments were employed to determine the rate coefficients: 1,2 DCE -OH + CH2Cl-CH2Cl ' CH2Cl-CHCl- + H2O k3 = 1.8 x 108 dm3 mole-1 s-1 1,1 DCE -OH + CH3Cl-CHCl2 ' CH3-CCl2- + H2O k4 = 1.1 x 108 dm3 mole-1 s-1 The values obtained are similar to those measured by Asmus and co-workers, but there is a significant discrepancy from the estimate of Getoff and co-workers for k1. Rate coefficient for the reaction of OH with thiocyanide ion. The rate coefficient for the reaction of the -OH radical with a chlorinated hydrocarbon is obtained by a competition experiment, in which the change in the radiation-induced yield of (SCN)2-- from an aqueous SCN- solution is monitored on the addition of the hydrocarbon. The mechanism for the radiation-induced formation of (SCN)2-- from a SCN- is complex and involves a number of equilibria. Careful electron pulse radiolysis experiments have been performed and analyzed, employing the full, complex reaction mechanism, to re-evaluated the rate coefficient for the fundamental reaction -OH + SCN- ' (HOSCN)-- k5 = 1.4 x 1010 dm3 mole-1 s-1 This reaction is central to the experimental determination of the rate coefficient of a solute with OH using the

  6. National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility

    SciTech Connect (OSTI)

    Peggy Hinman

    2010-10-01

    The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

  7. Hanford Sitewide Probabilistic Seismic Hazard Analysis - Hanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sitewide Probabilistic Seismic Hazard Analysis Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site...

  8. Project report for the commercial disposal of mixed low-level waste debris

    SciTech Connect (OSTI)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

  9. American Recovery & Reinvestment Act Newsletter - Issue 26

    Office of Environmental Management (EM)

    on 41 Recovery Act projects to accelerate closure of 49 underground liquid waste storage tanks and high-level nuclear waste processing. Key among SRR achievements was the...

  10. An Effective Waste Management Process for Segregation and Disposal of Legacy Mixed Waste at Sandia National Laboratories/New Mexico

    SciTech Connect (OSTI)

    Hallman, Anne K.; Meyer, Dann; Rellergert, Carla A.; Schriner, Joseph A.

    1998-06-01

    Sandia National Laboratories/New Mexico (SNL/NM) is a research and development facility that generates many highly diverse, low-volume mixed waste streams. Under the Federal Facility Compliance Act, SNL/NM must treat its mixed waste in storage to meet the Land Disposal Restrictions treatment standards. Since 1989, approximately 70 cubic meters (2500 cubic feet) of heterogeneous, poorly characterized and inventoried mixed waste was placed in storage that could not be treated as specified in the SNL/NM Site Treatment Plan. A process was created to sort the legacy waste into sixteen well- defined, properly characterized, and precisely inventoried mixed waste streams (Treatability Groups) and two low-level waste streams ready for treatment or disposal. From June 1995 through September 1996, the entire volume of this stored mixed waste was sorted and inventoried through this process. This process was planned to meet the technical requirements of the sorting operation and to identify and address the hazards this operation presented. The operations were routinely adapted to safely and efficiently handle a variety of waste matrices, hazards, and radiological conditions. This flexibility was accomplished through administrative and physical controls integrated into the sorting operations. Many Department of Energy facilities are currently facing the prospect of sorting, characterizing, and treating a large inventory of mixed waste. The process described in this paper is a proven method for preparing a diverse, heterogeneous mixed waste volume into segregated, characterized, inventoried, and documented waste streams ready for treatment or disposal.

  11. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    SciTech Connect (OSTI)

    NA

    2002-03-26

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a staggering amount of radioactive waste in this country--nearly 100,000,000 gallons of high-level nuclear waste and more than 40,000 metric tons of spent nuclear fuel with more created every day. Our choice is not between, on the one hand, a disposal site with costs and risks held to a minimum, and, on the other, a magic disposal system with no costs or risks at all. Instead, the real choice is between a single secure site, deep under the ground at Yucca Mountain, or making do with what we have now or some variant of it--131 aging surface sites, scattered across 39 states. Every one of those sites was built on the assumption that it would be temporary. As time goes by. every one is closer to the limit of its safe life span. And every one is at least a potential security risk--safe for today, but a question mark in decades to come.

  12. Hazards Survey and Hazards Assessments

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

  13. Attachment C … Waste Analysis Plan

    Office of Environmental Management (EM)

    PLAN 1 Los Alamos National Laboratory Hazardous Waste Permit December 2013 TABLE OF CONTENTS LIST OF TABLES 2 WASTE ANALYSIS PLAN......

  14. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity The Office of Enforcement and...

  15. Small businesses selected for nuclear waste services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    buildings, and chemical or other hazardous wastes. Some of these materials may include trace or low levels of radioactive material. They also include transuranic waste generated...

  16. Tank farms hazards assessment

    SciTech Connect (OSTI)

    Broz, R.E.

    1994-09-30

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ``Interim Safety Basis Document, WHC-SD-WM-ISB-001`` as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process.

  17. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    SciTech Connect (OSTI)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  18. Development of biological and chemical methods for environmental monitoring of DOE waste disposal and storage facilities. Final report

    SciTech Connect (OSTI)

    1989-04-01

    Hazardous chemicals in the environment have received ever increasing attention in recent years. In response to ongoing problems with hazardous waste management, Congress enacted the Resource Conservation and Recovery Act (RCRA) in 1976. In 1980, Congress adopted the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA), commonly called Superfund to provide for emergency spill response and to clean up closed or inactive hazardous waste sites. Scientists and engineers have begun to respond to the hazardous waste challenge with research and development on treatment of waste streams as well as cleanup of polluted areas. The magnitude of the problem is just now beginning to be understood. The U.S. Environmental Protection Agency (USEPA) National Priorities List as of September 13 1985, contained 318 proposed sites and 541 final sites (USEPA, 1985). Estimates of up to 30,000 sites containing hazardous wastes (1,200 to 2,000 of which present a serious threat to public health) have been made (Public Law 96-150). In addition to the large number of sites, the costs of cleanup using available technology are phenomenal. For example, a 10-acre toxic waste site in Ohio is to be cleaned up by removing chemicals from the site and treating the contaminated groundwater. The federal government has already spent more than $7 million to remove the most hazardous wastes and the groundwater decontamination alone is expected to take at least 10 years and cost $12 million. Another example of cleanup costs comes from the State of California Commission for Economic Development which predicts a bright economic future for the state except for the potential outlay of $40 billion for hazardous waste cleanup mandated by federal and state laws.

  19. 300 Area dangerous waste tank management system: Compliance plan approach. Final report

    SciTech Connect (OSTI)

    1996-03-01

    In its Dec. 5, 1989 letter to DOE-Richland (DOE-RL) Operations, the Washington State Dept. of Ecology requested that DOE-RL prepare ``a plant evaluating alternatives for storage and/or treatment of hazardous waste in the 300 Area...``. This document, prepared in response to that letter, presents the proposed approach to compliance of the 300 Area with the federal Resource Conservation and Recovery Act and Washington State`s Chapter 173-303 WAC, Dangerous Waste Regulations. It also contains 10 appendices which were developed as bases for preparing the compliance plan approach. It refers to the Radioactive Liquid Waste System facilities and to the radioactive mixed waste.

  20. Preliminary hazards analysis -- vitrification process

    SciTech Connect (OSTI)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  1. Consolidation process for producing ceramic waste forms

    DOE Patents [OSTI]

    Hash, Harry C. (Joliet, IL); Hash, Mark C. (Shorewood, IL)

    2000-01-01

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  2. Draft Waste Management Programmatic Environmental Impact Statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume 3, Appendix A: Public response to revised NOI, Appendix B: Environmental restoration, Appendix C, Environmental impact analysis methods, Appendix D, Risk

    SciTech Connect (OSTI)

    1995-08-01

    Volume three contains appendices for the following: Public comments do DOE`s proposed revisions to the scope of the waste management programmatic environmental impact statement; Environmental restoration sensitivity analysis; Environmental impacts analysis methods; and Waste management facility human health risk estimates.

  3. Enterprise Assessments Review of the Hanford Site Waste Treatment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Immobilization Plant Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems - July 2015 | Department of Energy Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems - July 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems - July 2015 July 2015 Review of the Hanford Site Waste Treatment and Immobilization Plant Hazards Analysis

  4. Deployment at the Savannah River Site of a standardized, modular transportable and connectable hazard category 2 nuclear system for repackaging TRU waste

    SciTech Connect (OSTI)

    Lussiez, G.; Hickman, S.; Anast, K. R.; Oliver, W. B.

    2004-01-01

    This paper describes the conception, design, fabrication and deployment of a modular, transportable, connectable Category 2 nuclear system deployed at the Savannah River site to be used for characterizing and repackaging Transuranic Waste destined for the Waste Isolation Pilot Plant (WIPP). A standardized Nuclear Category 2 and Performance Category 2 envelope called a 'Nuclear Transportainer' was conceived and designed that provides a safety envelope for nuclear operations. The Nuclear Transportainer can be outfitted with equipment that performs functions necessary to meet mission objectives, in this case repackaging waste for shipment to WIPP. Once outfitted with process and ventilation systems the Nuclear Transportainer is a Modular Unit (MU). Each MU is connectable to other MUS - nuclear or non-nuclear - allowing for multiple functions, command & control, or increasing capacity. The design took advantage of work already in-progress at Los Alamos National Laboratory (LANL) for a similar system to be deployed at LANL's Technical Area 54.

  5. Waste minimization assessment procedure

    SciTech Connect (OSTI)

    Kellythorne, L.L. )

    1993-01-01

    Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative.

  6. No-migration variance petition for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Carnes, R.G.; Hart, J.S. ); Knudtsen, K. )

    1990-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) project to provide a research and development facility to demonstrate the safe disposal of radioactive waste resulting from US defense activities and programs. The DOE is developing the WIPP facility as a deep geologic repository in bedded salt for transuranic (TRU) waste currently stored at or generated by DOE defense installations. Approximately 60 percent of the wastes proposed to be emplaced in the WIPP are radioactive mixed wastes. Because such mixed wastes contain a hazardous chemical component, the WIPP is subject to requirements of the Resource Conservation and Recovery Act (RCRA). In 1984 Congress amended the RCRA with passage of the Hazardous and Solid Waste Amendments (HSWA), which established a stringent regulatory program to prohibit the land disposal of hazardous waste unless (1) the waste is treated to meet treatment standards or other requirements established by the Environmental Protection Agency (EPA) under {section}3004(n), or (2) the EPA determines that compliance with the land disposal restrictions is not required in order to protect human health and the environment. The DOE WIPP Project Office has prepared and submitted to the EPA a no-migration variance petition for the WIPP facility. The purpose of the petition is to demonstrate, according to the requirements of RCRA {section}3004(d) and 40 CFR {section}268.6, that to a reasonable degree of certainty, there will be no migration of hazardous constituents from the WIPP facility for as long as the wastes remain hazardous. This paper provides an overview of the petition and describes the EPA review process, including key issues that have emerged during the review. 5 refs.

  7. Overview of mixed waste issues

    SciTech Connect (OSTI)

    Piciulo, P.L.; Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.

    1986-01-01

    Based on BNL's study it was concluded that there are LLWs which contain chemically hazardous components. Scintillation liquids may be considered an EPA listed hazardous waste and are, therefore, potential mixed wastes. Since November, 1985 no operating LLW disposal site will accept these wastes for disposal. Unless such wastes contain de minimis quantities of radionuclides, they cannot be disposed of at an EPA an EPA permitted site. Currently generators of LSC wastes can ship de minimis wastes to be burned at commercial facilities. Oil wastes will also eventually be an EPA listed waste and thus will have to be considered a potential radioactive mixed wasted unless NRC establishes de minimis levels of radionuclides below which oils can be managed as hazardous wastes. Regarding wastes containing lead metal there is some question as to the extent of the hazard posed by lead disposed in a LLW burial trench. Chromium-containing wastes would have to be tested to determine whether they are potential mixed wastes. There may be other wastes that are mixed wastes; the responsibility for determining this rests with the waste generator. It is believed that there are management options for handling potential mixed wastes but there is no regulatory guidance. BNL has identified and evaluated a variety of treatment options for the management of potential radioactive mixed wastes. The findings of that study showed that application of a management option with the purpose of addressing EPA concern can, at the same time, address stabilization and volume reduction concerns of NRC.

  8. Process for preparing liquid wastes

    DOE Patents [OSTI]

    Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

    1997-01-01

    A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

  9. Hazardous-waste cleanup and enforcement problems: Indiana. Hearing before the Subcommittee of the Committee on Government Operations, House of Representatives, Ninety-Seventh Congress, Second Session, June 1, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Thirteen witnesses representing the private and public sectors testified at a Seymour, Indiana hearing on hazardous materials at the Seymour Recycling facility and efforts to clean up the site. The facility began operations in 1968, and was closed down in February of 1980; the Environmental Protection Agency (EPA) had discovered during 1978 that the company was not disposing of its chemical wastes properly. Local concerns focused on why the EPA efforts slowed noticeably in the spring of 1981 and whether the site qualifies for superfund financing. Spokesmen from EPA argued that the slowdown was due to inaction at the state level, but state representatives countered that the problem was a lack of state funds to match federal funding. Other witnesses pursued health and safety issues and the efforts Seymour citizens have made to gain relief. (DCK)

  10. Hazardous Location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    090041 -0500 From "Eubanks, Cynthia M. (EUB) " <eub@bechteljacobs.org> Subject: Yellow Alert-Use of Non-Approved Electronic Equipment in a Class I, Division 2 Hazardous Location The following Bechtel Jacobs Company, LLC Lesson Learned Yellow Alert was generated as the result of a recent incident at the East Tennessee Technology Park (ETTP). This lesson learned is distributed to communicate to other DOE facilities concerns regarding the use of portable and installed electronic

  11. Social impacts of hazardous and nuclear facilities and events: Implications for Nevada and the Yucca Mountain high-level nuclear waste repository; [Final report

    SciTech Connect (OSTI)

    Freudenburg, W.R.; Carter, L.F.; Willard, W.; Lodwick, D.G.; Hardert, R.A.; Levine, A.G.; Kroll-Smith, S.; Couch, S.R.; Edelstein, M.R.

    1992-05-01

    Social impacts of a nuclear waste repository are described. Various case studies are cited such as Rocky Flats Plant, the Feed Materials Production Center, and Love Canal. The social impacts of toxic contamination, mitigating environmental stigma and loss of trust are also discussed.

  12. Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Annette Schafer, Arthur S. Rood, A. Jeffrey Sondrup

    2011-12-23

    Groundwater impacts have been analyzed for the proposed remote-handled low-level waste disposal facility. The analysis was prepared to support the National Environmental Policy Act environmental assessment for the top two ranked sites for the proposed disposal facility. A four-phase screening and analysis approach was documented and applied. Phase I screening was site independent and applied a radionuclide half-life cut-off of 1 year. Phase II screening applied the National Council on Radiation Protection analysis approach and was site independent. Phase III screening used a simplified transport model and site-specific geologic and hydrologic parameters. Phase III neglected the infiltration-reducing engineered cover, the sorption influence of the vault system, dispersion in the vadose zone, vertical dispersion in the aquifer, and the release of radionuclides from specific waste forms. These conservatisms were relaxed in the Phase IV analysis which used a different model with more realistic parameters and assumptions. Phase I screening eliminated 143 of the 246 radionuclides in the inventory from further consideration because each had a half-life less than 1 year. An additional 13 were removed because there was no ingestion dose coefficient available. Of the 90 radionuclides carried forward from Phase I, 57 radionuclides had simulated Phase II screening doses exceeding 0.4 mrem/year. Phase III and IV screening compared the maximum predicted radionuclide concentration in the aquifer to maximum contaminant levels. Of the 57 radionuclides carried forward from Phase II, six radionuclides were identified in Phase III as having simulated future aquifer concentrations exceeding maximum contaminant limits. An additional seven radionuclides had simulated Phase III groundwater concentrations exceeding 1/100th of their respective maximum contaminant levels and were also retained for Phase IV analysis. The Phase IV analysis predicted that none of the thirteen remaining radionuclides would exceed the maximum contaminant levels for either site location. The predicted cumulative effective dose equivalent from all 13 radionuclides also was less than the dose criteria set forth in Department of Energy Order 435.1 for each site location. An evaluation of composite impacts showed one site is preferable over the other based on the potential for commingling of groundwater contamination with other facilities.

  13. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  14. D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE

    Office of Environmental Management (EM)

    2 10 CFR Ch. X (1-1-12 Edition) Pt. 1022 D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE Siting, construction or expansion, and op- eration of disposal facilities for transuranic (TRU) waste and TRU mixed waste (TRU waste also containing hazardous waste as designated in 40 CFR part 261). D12 INCINERATORS Siting, construction, and operation of in- cinerators, other than research and develop- ment incinerators or incinerators for non- hazardous solid waste (as designated in 40 CFR 261.4(b)).

  15. Listed waste determination report. Environmental characterization

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    On September 23, 1988, the US Environmental Protection Agency (EPA) published a notice clarifying interim status requirements for the management of radioactive mixed waste thereby subjecting the Idaho National Engineering Laboratory (INEL) and other applicable Department of Energy (DOE) sites to regulation under the Resource Conservation and Recovery Act (RCRA). Therefore, the DOE was required to submit a Part A Permit application for each treatment, storage, and disposal (TSD) unit within the INEL, defining the waste codes and processes to be regulated under RCRA. The September 1990 revised Part A Permit application, that was approved by the State of Idaho identified 101 potential acute and toxic hazardous waste codes (F-, P-, and U- listed wastes according to 40 CFR 261.31 and 40 CFR 261.33) for some TSD units at the Idaho Chemical Processing Plant. Most of these waste were assumed to have been introduced into the High-level Liquid Waste TSD units via laboratory drains connected to the Process Equipment Waste (PEW) evaporator (PEW system). At that time, a detailed and systematic evaluation of hazardous chemical use and disposal practices had not been conducted to determine if F-, P-, or Unlisted waste had been disposed to the PEW system. The purpose of this investigation was to perform a systematic and detailed evaluation of the use and disposal of the 101 F-, P-, and Unlisted chemicals found in the approved September 1990 Part A Permit application. This investigation was aimed at determining which listed wastes, as defined in 40 CFR 261.31 (F-listed) and 261.33 (P & Unlisted) were discharged to the PEW system. Results of this investigation will be used to support revisions to the RCRA Part A Permit application.

  16. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-12-29

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source documents from the U.S. Nuclear RegulatoryCommission (NRC) and the New Mexico Environment Department (NMED) for acomprehensive and detailed listing of the requirements.This CH-WAC does not address the subject of waste characterization relating to adetermination of whether the waste is hazardous; rather, the sites are referred to theWaste Analysis Plan (WAP) contained in the WIPP Hazardous Waste Facility Permit fordetails of the sampling and analysis protocols to be used in determining compliance withthe required physical and chemical properties of the waste. Requirements andassociated criteria pertaining to a determination of the radiological properties of thewaste, however, are addressed in appendix A of this document. The collectiveinformation obtained from waste characterization records and acceptable knowledge(AK) serves as the basis for sites to certify that their CH-TRU waste satisfies the WIPPwaste acceptance criteria listed herein.

  17. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams

    SciTech Connect (OSTI)

    NONE

    1996-07-01

    The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE`s waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE`s mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters.

  18. Trash, ash and the phoenix : a fifth anniversary review of the Supreme Court's City of Chicago waste-to-energy combustion ash decision.

    SciTech Connect (OSTI)

    Puder, M. G.; Environmental Assessment

    1999-01-01

    In 1994, the U.S. Supreme Court held that ash generated by waste-to-energy (WTE) facilities was not exempt from Subtitle C hazardous waste management regulations under the Resource Conservation and Recovery Act (RCRA). As a result of City of Chicago v. Environmental Defense Fund, Inc., WTE installations are required to test their combustion ash and determine whether it is hazardous. The WTE industry and the municipalities utilizing WTE technologies initially feared that if significant amounts of their ash tested hazardous, the costs and liabilities associated with RCRA Subtitle C hazardous waste management requirements would pose a serious threat to the continued viability of the WTE concept. In this article, the author presents a review of the WTE industry in the five years following the decision, and finds that the specter of the decline of WTE has not materialized.

  19. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  20. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    SciTech Connect (OSTI)

    Not Available

    1987-02-01

    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs.

  1. Preliminary plan for treating mixed waste

    SciTech Connect (OSTI)

    Vandegrift, G.F.; Conner, C.; Hutter, J.C.; Leonard, R.A.; Nunez, L.; Sedlet, J.; Wygmans, D.G.

    1993-06-01

    A preliminary waste treatment plan was developed for disposing of radioactive inorganic liquid wastes that contain hazardous metals and/or hazardous acid concentrations at Argonne National Laboratory. This plan, which involves neutralization and sulfide precipitation followed by filtration, reduces the concentration of hazardous metals and the acidity so that the filtrate liquid is simply a low-level radioactive waste that can be fed to a low-level waste evaporator.

  2. Independent Activity Report, Waste Treatment and Immobilization Plant- March 2013

    Broader source: Energy.gov [DOE]

    Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18

  3. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Broader source: Energy.gov (indexed) [DOE]

    Waste Treatment and Immobilization Plant Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems July 2015 Office of Nuclear Safety and Environmental...

  4. Transuranic (TRU) Waste

    Broader source: Energy.gov [DOE]

    Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste with half-lives greater than 20 years, except for (A)...

  5. Fire Hazards Listing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazards Listing Fire Hazards Listing Focusing on fire prevention and protection. Contact Fire Management Officer Manuel J. L'Esperance Emergency Management (505) 667-1692 Email Currently reported fire hazards Below are the currently reported fire hazards. The list is updated each day by the close of business. Current fire hazards Hazard Description Date Submitted Status No hazards currently reported. Legend: R=Resolved, P=Pending, NAR=No Action Required

  6. Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glare Hazard Analysis Tool - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  7. American Recovery & Reinvestment Act Newsletter - Issue 22

    Office of Environmental Management (EM)

    high-level nuclear waste processing and closure of 49 underground liquid waste storage tanks. SRR had spent nearly 124 million from the Recovery Act by early 2011. SRR's...

  8. Resource Conservation and Recovery Act Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 7: Revision 1.0

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This permit application (Vol. 7) for the WIPP facility contains appendices related to the following information: Ground water protection; personnel; solid waste management; and memorandums concerning environmental protection standards.

  9. Resource Conservation and Recovery Act: Part B, Permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revison 1.0

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report contains information related to the permit application for the WIPP facility. Information is presented on solid waste management; personnel safety; emergency plans; site characterization; applicable regulations; decommissioning; and ground water monitoring requirements.

  10. Process Waste Assessment - Paint Shop

    SciTech Connect (OSTI)

    Phillips, N.M.

    1993-06-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is {open_quote}Paint Shop waste{close_quotes} -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are made for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so.

  11. EIS-0200: Waste Management Programmatic Environmental Impact Statement for

    Office of Environmental Management (EM)

    Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste | Department of Energy 0: Waste Management Programmatic Environmental Impact Statement for Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Waste Management Programmatic Environmental Impact Statement for Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This Programmatic EIS evaluates the potential environmental and cost impacts of strategic

  12. WIPP - Freedom of Information Act (FOIA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Freedom of Information Act (FOIA) Mission Statement The mission of the Carlsbad Field Office (CBFO) is to protect human health and the environment by operating the Waste...

  13. TRA Closure Plan REV 0-9-20-06 HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007

    SciTech Connect (OSTI)

    Winterholler, K.

    2007-01-31

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump were characterized as having managed hazardous waste. The reactor drain tank and canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

  14. Documentation of acceptable knowledge for LANL Plutonium Facility transuranic waste streams

    SciTech Connect (OSTI)

    Montoya, A.J.; Gruetzmacher, K.; Foxx, C.; Rogers, P.S.Z.

    1998-07-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site-specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the transuranic waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility`s mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC.

  15. Documentation of acceptable knowledge for Los Alamos National Laboratory Plutonium Facility TRU waste stream

    SciTech Connect (OSTI)

    Montoya, A.J.; Gruetzmacher, K.M.; Foxx, C.L.; Rogers, P.Z.

    1998-03-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the TRU waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility`s mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC.

  16. The WIPP RCRA Part B permit application for TRU mixed waste disposal

    SciTech Connect (OSTI)

    Johnson, J.E. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.; Snider, C.A. [USDOE Carlsbad Area Office, NM (United States)

    1995-12-31

    In August 1993, the New Mexico Environment Department (NMED) issued a draft permit for the Waste Isolation Pilot Plant (WIPP) to begin experiments with transuranic (TRU) mixed waste. Subsequently, the Department of Energy (DOE) decided to cancel the on-site test program, opting instead for laboratory testing. The Secretary of the NMED withdrew the draft permit in 1994, ordering the State`s Hazardous and Radioactive Waste Bureau to work with the DOE on submittal of a revised permit application. Revision 5 of the WIPP`s Resource Conservation and Recovery Act (RCRA) Part B Permit Application was submitted to the NMED in May 1995, focusing on disposal of 175,600 m{sup 3} of TRU mixed waste over a 25 year span plus ten years for closure. A key portion of the application, the Waste Analysis Plan, shifted from requirements to characterize a relatively small volume of TRU mixed waste for on-site experiments, to describing a complete program that would apply to all DOE TRU waste generating facilities and meet the appropriate RCRA regulations. Waste characterization will be conducted on a waste stream basis, fitting into three broad categories: (1) homogeneous solids, (2) soil/gravel, and (3) debris wastes. Techniques used include radiography, visually examining waste from opened containers, radioassay, headspace gas sampling, physical sampling and analysis of homogeneous wastes, and review of documented acceptable knowledge. Acceptable knowledge of the original organics and metals used, and the operations that generated these waste streams is sufficient in most cases to determine if the waste has toxicity characteristics, hazardous constituents, polychlorinated biphenyls (PBCs), or RCRA regulated metals.

  17. HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System

    SciTech Connect (OSTI)

    K. Winterholler

    2007-01-31

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

  18. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washinton TRU Solutions LLC

    2002-09-30

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2000, to March 31, 2002. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Field Office's (CBFO) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. In the prior BECR, the CBFO and the management and operating contractor (MOC)committed to discuss resolution of a Letter of Violation that had been issued by the New Mexico Environment Department (NMED) in August 1999, which was during the previous BECR reporting period. This Letter of Violation alleged noncompliance with hazardous waste aisle spacing, labeling, a nd tank requirements. At the time of publication of the prior BECR, resolution of the Letter of Violation was pending. On July 7, 2000, the NMED issued a letter noting that the aisle spacing and labeling concerns had been adequately addressed and that they were rescinding the violation alleging that the Exhaust Shaft Catch Basin failed to comply with the requirements for a hazardous waste tank. During the current reporting period, WIPP received a Notice of Violation and a compliance order alleging the violation of the New Mexico Hazardous Waste Regulations and the WIPP Hazardous Waste Facility Permit (HWFP).

  19. Hanford Site Hazards Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Hazards Guide 2016 Approved for Public Release; Further Dissemination Unlimited Hanford Site Hazards Guide Contents ASBESTOS .............................................................................................................................................. 2 BERYLLIUM ........................................................................................................................................... 4 CHEMICAL SAFETY

  20. Hazard Baseline Documentation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-12-04

    This standard establishes uniform Office of Environmental Management (EM) guidance on hazard baseline documents that identify and control radiological and non-radiological hazards for all EM facilities.

  1. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOV 2 3 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transm ittal of the Waste Isolation Pilot Plant Project 2015 Waste Minimization Report, Permit Number NM4890139088-TSDF Dear Mr. Kieling: The purpose of this letter is to provide you with the Waste Isolation Pilot Plant (WIPP) Project 2015 Waste Minimization Report. This report, required by and prepared in accordance with the WIPP Hazardous Waste Facility Permit Part 2,

  2. Waste Disposal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Waste Disposal Trucks transport debris from Oak Ridge’s cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. Trucks transport debris from Oak Ridge's cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. The low-level radiological and hazardous wastes generated from Oak Ridge's cleanup projects are disposed in the Environmental Management Waste Management Facility (EMWMF). The

  3. Hazardous waste contamination of water resources (Superfund clean-up policy and the Seymour recycling case). Hearings before the Subcommittee on Investigations and Oversight of the Committee on Public Works and Transportation, House of Representatives, Ninety-Eighth Congress, Second Session, March 13, 14, 15, 1984

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Nine witnesses testified over three days of hearings on water contamination due to illegal dumping of hazardous wastes and the administration of the Superfund Law to clean up designated sites. The witnesses were asked to evaluate the overall effect of the program and to consider whether Superfund has a positive or negative effect on the development of more environmentally benign technology. A focus for the testimony was on the Seymour waste site. The witnesses included representatives of the aluminum, automobile, chemical, and high technology industries, who were among the 24 industries making a settlement with the Environmental Protection Agency. Additional material submitted for the record by the witnesses and others follows the testimony.

  4. Waste Isolation Pilot Plant | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is contaminated with small amounts of plutonium and other TRU

  5. A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices

    SciTech Connect (OSTI)

    Mattus, C.H.; Gilliam, T.M.

    1994-03-01

    The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties.

  6. Track 3: Exposure Hazards

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

  7. U.A.C. R315-3: Application and Permit Procedures for Hazardous...

    Open Energy Info (EERE)

    3: Application and Permit Procedures for Hazardous Waste Treatment, Storage, and Disposal Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal...

  8. H.A.R. 11-265 - Hazardous Management: Interim Status Standard...

    Open Energy Info (EERE)

    Status Standard for Owners and OperatorsLegal Abstract The Hawaii State Department of Health regulates hazardous waste management through this chapter of the administrative...

  9. Enterprise Assessments Operational Awareness Record, Waste Treatment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Immobilization Plant - December 2014 | Department of Energy Waste Treatment and Immobilization Plant Low Activity Waste Facility Waste Handling Systems Hazard Analysis Activities Observation (EA-WTP-LAW-2014-08-18(b)) The Office of Nuclear Safety and Environmental Assessments, within the U.S. Department of Energy's Office of Enterprise Assessments (EA), reviewed hazard analyses (HAs) documents for the waste system of the Waste Treatment and Immobilization Plant Low Activity Waste Facility.

  10. Title 18 Alaska Administrative Code Section 60.020 Hazardous...

    Open Energy Info (EERE)

    60.020 Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 18 Alaska Administrative Code Section 60.020...

  11. Waste management units: Savannah River Site

    SciTech Connect (OSTI)

    Molen, G.

    1991-09-01

    This report indexes every waste management unit of the Savannah River Site. They are indexed by building number and name. The waste units are also tabulated by solid waste units receiving hazardous materials with a known release or no known release to the environment. It also contains information on the sites which has received no hazardous waste, and units which have received source, nuclear, or byproduct material only. (MB)

  12. Enterprise Assessments Review of the Hanford Site Waste Treatment and

    Office of Environmental Management (EM)

    Immobilization Plant Low-Activity Waste Facility Hazards Analysis Reports for the Melter and Melter Offgas Systems - September 2015 | Department of Energy Low-Activity Waste Facility Hazards Analysis Reports for the Melter and Melter Offgas Systems - September 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Low-Activity Waste Facility Hazards Analysis Reports for the Melter and Melter Offgas Systems - September 2015 September 2015 Review of the

  13. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – February 2014

    Broader source: Energy.gov [DOE]

    Hanford Waste Treatment and Immobilization Plant Low Activity Waste Facility Off-gas Systems Hazards Analysis Activities [HIAR-WTP-2014-01-27

  14. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – July 2013

    Broader source: Energy.gov [DOE]

    Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity [HIAR-WTP-2013-07-31

  15. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – February 2014

    Broader source: Energy.gov [DOE]

    Observation of the Waste Treatment and Immobilization Plant Low Activity Waste Facility Heating, Ventilation, and Air Conditioning Systems Hazards Analysis Activities [HIAR-WTP-2014-01-27

  16. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant- June 2013

    Broader source: Energy.gov [DOE]

    Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation [HIAR-WTP-2013-05-13

  17. Gas Generation Rates as an Indicator for the Long Term Stability of Radioactive Waste Products

    SciTech Connect (OSTI)

    Steyer, S.; Brennecke, P.; Bandt, G.; Kroger, H.

    2007-07-01

    Pursuant to the 'Act on the Peaceful Utilization of Atomic Energy and the Protection against its Hazards' (Atomic Energy Act) the Federal Office for Radiation Protection (Bundesamt fuer Strahlenschutz, BfS) is legally responsible for the construction and operation of federal facilities for the disposal of radioactive waste. Within the scope of this responsibility, particular due to par. 74(1) Ordinance on Radiation Protection, BfS defines all safety-related requirements on waste packages envisaged for disposal, establishes guidelines for the conditioning of radioactive waste and approves the fulfillment of the waste acceptance requirements within the radioactive waste quality control system. BfS also provides criteria to enable the assessment of methods for the treatment and packaging of radioactive waste to produce waste packages suitable for disposal according to par. 74(2) Ordinance on Radiation Protection. Due to the present non-availability of a repository in Germany, quality control measures for all types of radioactive waste products are carried out prior to interim storage with respect to the future disposal. As a result BfS approves the demonstrated properties of the radioactive waste packages and confirms the fulfillment of the respective requirements. After several years of storage the properties of waste packages might have changed. By proving, that such changes have no significant impact on the quality of the waste product, the effort of requalification could be minimized. Therefore, data on the long-term behavior of radioactive waste products need to be acquired and indicators to prove the long-term stability have to be quantified. Preferably, such indicators can be determined easily with non-destructive methods, even for legacy waste packages. A promising parameter is the gas generation rate. The relationship between gas generation rate and long term stability is presented as first result of an ongoing study on behalf of BfS. Permissible gas generation rates that ensure adequate product stability with respect to future disposal are to be identified. (authors)

  18. Revitalize American Manufacturing Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revitalize American Manufacturing Act - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  19. Hazard Communication Training - Upcoming Implementation Date for New Hazard

    Office of Environmental Management (EM)

    Communication Standard | Department of Energy Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard Hazard Communication Training - 10 CFR 851, Worker Safety and Health Program, requires all DOE Federal and contractor employees with hazardous chemicals in their workplaces to complete new Hazard Communication Training. Upcoming Implementation Date for

  20. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    SciTech Connect (OSTI)

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-02-26

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

  1. Optimal evaluation of infectious medical waste disposal companies using the fuzzy analytic hierarchy process

    SciTech Connect (OSTI)

    Ho, Chao Chung

    2011-07-15

    Ever since Taiwan's National Health Insurance implemented the diagnosis-related groups payment system in January 2010, hospital income has declined. Therefore, to meet their medical waste disposal needs, hospitals seek suppliers that provide high-quality services at a low cost. The enactment of the Waste Disposal Act in 1974 had facilitated some improvement in the management of waste disposal. However, since the implementation of the National Health Insurance program, the amount of medical waste from disposable medical products has been increasing. Further, of all the hazardous waste types, the amount of infectious medical waste has increased at the fastest rate. This is because of the increase in the number of items considered as infectious waste by the Environmental Protection Administration. The present study used two important findings from previous studies to determine the critical evaluation criteria for selecting infectious medical waste disposal firms. It employed the fuzzy analytic hierarchy process to set the objective weights of the evaluation criteria and select the optimal infectious medical waste disposal firm through calculation and sorting. The aim was to propose a method of evaluation with which medical and health care institutions could objectively and systematically choose appropriate infectious medical waste disposal firms.

  2. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permittees shall maintain a minimum aisle space of 44 inches (1.1m) between facility pallets in the CH Bay of the WHB Unit. The Permittees shall maintain adequate aisle space of...

  3. Sandia National Laboratories Hazardous Waste (RCRA) Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    copies of the documents are available for review at Zimmerman Library, located near Roma Avenue and Yale Boulevard on the University of New Mexico main campus in Albuquerque....

  4. Sandia National Laboratories Hazardous Waste (RCRA) Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reading list Print Instructions for Zimmerman Library Zimmerman Library is located near Roma Avenue and Yale Boulevard on the University of New Mexico main campus in Albuquerque....

  5. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad , New Mexico 88221 October 12, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of...

  6. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad, New Mexico 88221 September 02 , 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe , New Mexico 87505-6303 Subject: Notification of...

  7. Sandia National Laboratories Hazardous Waste (RCRA) Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    requirements in the RCRA Facility Operating Permit. Proposed Location of Information Repository for Sandia National Laboratories Date: 01052015 Author: Todd Source: DOESandia...

  8. Sandia National Laboratories Hazardous Waste (RCRA) Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permit Documents in this category include the RCRA Facility Operating Permit, applications, modification requests, and correspondence. Some of these documents are also available...

  9. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2010 New Mexico Environment Department 2905 E. Rodeo Park Dr. Bldg . 1 Santa Fe, New Mexico 87505-6303 Subject: Certification by a New Mexico Registered Professional Engineer in Support of TRUPACT-III References: United States Department Of Energy letter CBFO:OESH :GTB:MAG:11- 0702:UFC 5487.00 from Edward Ziemianski and M. F. Sharif to James Bearzi, dated January 10, 2011, subject: Notification of Planned Change to the Permitted Facility to Support TRUPACT-III United States Department Of

  10. Hazard index for underground toxic material

    SciTech Connect (OSTI)

    Smith, C.F.; Cohen, J.J.; McKone, T.E.

    1980-06-01

    To adequately define the problem of waste management, quantitative measures of hazard must be used. This study reviews past work in the area of hazard indices and proposes a geotoxicity hazard index for use in characterizing the hazard of toxic material buried underground. Factors included in this index are: an intrinsic toxicity factor, formulated as the volume of water required for dilution to public drinking-water levels; a persistence factor to characterize the longevity of the material, ranging from unity for stable materials to smaller values for shorter-lived materials; an availability factor that relates the transport potential for the particular material to a reference value for its naturally occurring analog; and a correction factor to accommodate the buildup of decay progeny, resulting in increased toxicity.

  11. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 5, Chapter D, Appendix D1 (conclusion), Revision 3

    SciTech Connect (OSTI)

    Cook, Neville G.W.; Heuze, Francois E.; Miller, Hamish D.S.; Thoms, Robert L.

    1993-03-01

    The reference design for the underground facilities at the Waste Isolation Pilot Plant was developed using the best criteria available at initiation of the detailed design effort. These design criteria are contained in the US Department of Energy document titled Design Criteria, Waste Isolation Pilot Plant (WIPP). Revised Mission Concept-IIA (RMC-IIA), Rev. 4, dated February 1984. The validation process described in the Design Validation Final Report has resulted in validation of the reference design of the underground openings based on these criteria. Future changes may necessitate modification of the Design Criteria document and/or the reference design. Validation of the reference design as presented in this report permits the consideration of future design or design criteria modifications necessitated by these changes or by experience gained at the WIPP. Any future modifications to the design criteria and/or the reference design will be governed by a DOE Standard Operation Procedure (SOP) covering underground design changes. This procedure will explain the process to be followed in describing, evaluating and approving the change.

  12. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1994--March 31, 1995, Number 12. Nuclear Waste Policy Act (Section 113)

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    During the first half of fiscal year 1995, most activities at the Yucca Mountain Site Characterization Project were directed at implementing the Program Plan developed by the Office of Civilian Radioactive Waste Management. The Plan is designed to enable the Office to make measurable and significant progress toward key objectives over the next five years within the financial resources that can be realistically expected. Activities this period focused on the immediate goal of determining by 1998 whether Yucca Mountain, Nevada, is technically suitable as a possible site for a geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Work on the Project advanced in several critical areas, including programmatic activities such as issuing the Program Plan, completing the first technical basis report to support the assessment of three 10 CFR 960 guidelines, developing the Notice of Intent for the Environmental Impact Statement, submitting the License Application Annotated Outline, and beginning a rebaselining effort to conform with the goals of the Program Plan. Scientific investigation and analysis of the site and design and construction activities to support the evaluation of the technical suitability of the site also advanced. Specific details relating to all Project activities and reports generated are presented in this report.

  13. Hazard Communication Training - Upcoming Implementation Date...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard Hazard Communication Training - Upcoming Implementation Date for New Hazard ...

  14. Tank farms solid waste characterization guide with sampling and analysis plan attachment

    SciTech Connect (OSTI)

    Quigley, J.T.

    1997-04-02

    This document describes methods used, including sampling and analysis, to characterize hazardous chemical constituent in Tank Farms containerized solid waste.

  15. Natural Phenomena Hazards Program

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) Natural Phenomena Hazards Program develops and maintains state-of-the-art program standards and guidance for DOE facilities exposed to natural phenomena hazards (NPHs).

  16. Chapter 19 - Nuclear Waste Fund

    Energy Savers [EERE]

    Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the

  17. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 4, Chapter D, Appendix D1 (beginning), Revision 3

    SciTech Connect (OSTI)

    Lappin, A. R.

    1993-03-01

    The Waste Isolation Pilot Plant (WIPP), which is designed for receipt, handling, storage, and permanent isolation of defense-generated transuranic wastes, is being excavated at a depth of approximately 655 m in bedded halites of the Permian Salado Formation of southeastern New Mexico. Site-characterization activities at the present WIPP site began in 1976. Full construction of the facility began in 1983, after completion of ``Site and Preliminary Design Validation`` (SPDV) activities and reporting. Site-characterization activities since 1983 have had the objectives of updating or refining the overall conceptual model of the geologic, hydrologic, and structural behavior of the WIPP site and providing data adequate for use in WIPP performance assessment. This report has four main objectives: 1. Summarize the results of WIPP site-characterization studies carried out since the spring of 1983 as a result of specific agreements between the US Department of Energy and the State of New Mexico. 2. Summarize the results and status of site-characterization and facility-characterization studies carried out since 1983, but not specifically included in mandated agreements. 3. Compile the results of WIPP site-characterization studies into an internally consistent conceptual model for the geologic, hydrologic, geochemical, and structural behavior of the WIPP site. This model includes some consideration of the effects of the WIPP facility and shafts on the local characteristics of the Salado and Rustler Formations. 4. Discuss the present limitations and/or uncertainties in the conceptual geologic model of the WIPP site and facility. The objectives of this report are limited in scope, and do not include determination of whether or not the WIPP Project will comply with repository-performance criteria developed by the US Environmental Protection Agency (40CFR191).

  18. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, G.G.

    1999-04-06

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  19. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC)

    1999-01-01

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  20. Title III list of lists: Consolidated list of chemicals subject to the Emergency Planning and Community Right-to-Know Act (EPCRA) and section 112(r) of the Clean Air Act, as amended. Title III of the Superfund Amendments and Reauthorization Act of 1986, and Title III of the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The consolidated chemical list includes chemicals subject to reporting requirements under Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA), also known as the Emergency Planning and Community Right-to-Know Act (EPCRA), and chemicals listed under section 112(r) of Title III the Clean Air Act (CAA) Amendments of 1990. This consolidated list has been prepared to help firms handling chemicals determine whether they need to submit reports under sections 302, 304, or 313 of SARA Title III (EPCRA) and, for a specific chemical, what reports may need to be submitted. Separate lists are also provided of Resource Conservation and Recovery Act (RCRA) waste streams and unlisted hazardous wastes, and of radionuclides reportable under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). These lists should be used as reference tool, not as a definitive source of compliance information. The chemicals on the consolidated list are ordered by Chemical Abstract Service (CAS) registry number. Categories of chemicals, which do not have CAS registry numbers, but which are cited under CERCLA, EPCRA section 313, and the CAA, are placed at the end of the list. More than one chemical name may be listed for one CAS number, because the same chemical may appear on different lists under different names.

  1. Automated Hazard Analysis

    Energy Science and Technology Software Center (OSTI)

    2003-06-26

    The Automated Hazard Analysis (AHA) application is a software tool used to conduct job hazard screening and analysis of tasks to be performed in Savannah River Site facilities. The AHA application provides a systematic approach to the assessment of safety and environmental hazards associated with specific tasks, and the identification of controls regulations, and other requirements needed to perform those tasks safely. AHA is to be integrated into existing Savannah River site work control andmore » job hazard analysis processes. Utilization of AHA will improve the consistency and completeness of hazard screening and analysis, and increase the effectiveness of the work planning process.« less

  2. Enterprise Assessments Operational Awareness Record, Waste Treatment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Immobilization Plant - December 2014 | Department of Energy Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a)) The Office of Nuclear Safety and Environmental Assessments, within the U.S. Department of Energy's Office of Enterprise Assessments, reviewed the hazard analyses for the radioactive liquid waste disposal system of the Waste Treatment and Immobilization Plant

  3. Method of making nanostructured glass-ceramic waste forms

    DOE Patents [OSTI]

    Gao, Huizhen; Wang, Yifeng; Rodriguez, Mark A.; Bencoe, Denise N.

    2014-07-08

    A waste form for and a method of rendering hazardous materials less dangerous is disclosed that includes fixing the hazardous material in nanopores of a nanoporous material, reacting the trapped hazardous material to render it less volatile/soluble, and vitrifying the nanoporous material containing the less volatile/soluble hazardous material.

  4. US Department of Energy`s Federal Facility Compliance Act Chief Financial Officer`s Report to Congress for fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The Federal Facility Compliance Act of 1992 (FFCAct) (Public Law 102-386) was enacted into law on October 6, 1992. In addition to amending the Resource Conservation and Recovery Act (RCRA), the FFCAct requires the US Department of Energy (DOE) to prepare an annual report from the Chief Financial Officer to the Congress on compliance activities undertaken by the DOE with regard to mixed waste streams and provide an accounting of the fines and penalties imposed upon the DOE for violations involving mixed waste. This document has been prepared to report the necessary information. Mixed waste is defined by the FFCAct to include those wastes containing both hazardous waste as defined in the RCRA and source, special nuclear, or byproduct material subject to the Atomic Energy Act of 1954, as amended (42 U.S.C. Section 2001 et seq.). Section 2 of this report briefly summarizes DOE Headquarters` activities conducted during Fiscal Year 1993 (FY 1993) to comply with the requirements of the FFCAct. Section 3 of this report provides an overview of the site-specific RCRA compliance activities, relating to mixed waste streams, conducted in FY 1993 for those sites that currently generated or store mixed waste that are subject to regulation under RCRA. Section 4 provides information on notifications of alleged RCRA violations involving mixed waste imposed upon the DOE during FY 1993 and an accounting of any fines and penalties associated with these violations. Appendix A provides site-specific summaries of RCRA compliance activities, relating to mixed waste streams, conducted in FY 1993 for those sites that currently generate or store mixed waste that are subject to regulation under RCRA.

  5. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 3, Chapter C, Appendix C3 (conclusion)--Chapter C, Appendix C9: Revision 3

    SciTech Connect (OSTI)

    Roggenthen, D. K.; McFeeters, T. L.; Nieweg, R. G.; Blakeslee, J. J.

    1993-03-01

    This volume contains appendices for the following: results of extraction procedure (EP) toxicity data analyses; summary of headspace gas analysis in Rocky Flats Plant sampling program-FY 1988; waste drum gas generation sampling program at Rocky Flats Plant during FY 1988; TRU waste sampling program waste characterization; summary of headspace gas analyses in TRU waste sampling program; summary of volatile organic compounds analyses in TRU waste sampling program; totals analysis versus toxicity characteristic leaching procedure; Waste Isolation Pilot Plant waste characterization sampling and analysis methods; Waste Isolation Pilot Plant waste characterization analytical methods; data reduction, validation and reporting; examples of waste screening checklists; and Waste Isolation Pilot Plant generator/storage site waste screening and acceptance audit program.

  6. Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    1996-07-01

    The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements.

  7. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analyses and forms, inspection logs, equipment identification, etc.

  8. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    J.D. Ludowise

    2009-06-17

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site. A material at risk calculation was performed that determined the radiological inventory for each burial ground to be Hazard Category 3.

  9. Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Waste Management Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Read more Tank Waste and Waste Processing Tank Waste

  10. Hazardous Gas Production by Alpha Particles

    SciTech Connect (OSTI)

    Jay A. LaVerne, Principal Investigator

    2001-11-26

    This project focused on the production of hazardous gases in the radiolysis of solid organic matrices, such as polymers and resins, that may be associated with transuranic waste material. Self-radiolysis of radioactive waste is a serious environmental problem because it can lead to a change in the composition of the materials in storage containers and possibly jeopardize their integrity. Experimental determination of gaseous yields is of immediate practical importance in the engineering and maintenance of containers for waste materials. Fundamental knowledge on the radiation chemical processes occurring in these systems allows one to predict outcomes in materials or mixtures not specifically examined, which is a great aid in the management of the variety of waste materials currently overseen by Environmental Management.

  11. Hazard baseline documentation

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This DOE limited technical standard establishes uniform Office of Environmental Management (EM) guidance on hazards baseline documents that identify and control radiological and nonradiological hazards for all EM facilities. It provides a road map to the safety and health hazard identification and control requirements contained in the Department`s orders and provides EM guidance on the applicability and integration of these requirements. This includes a definition of four classes of facilities (nuclear, non-nuclear, radiological, and other industrial); the thresholds for facility hazard classification; and applicable safety and health hazard identification, controls, and documentation. The standard applies to the classification, development, review, and approval of hazard identification and control documentation for EM facilities.

  12. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-03-31

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by NDEP/BFF. The generator of permissible waste is responsible for preparing documentation related to waste acceptance criteria, waste characterization, and load verification. Waste and Water (WW) personnel are responsible for operating the disposal site and reviewing documentation to determine if the waste is acceptable.

  13. Hazard communication program

    SciTech Connect (OSTI)

    Porter, E.A.

    1994-10-04

    Implements Internal Publication No. WHC-IP-0914. Section 1.1, providing management and employee guidance for working with hazardous chemicals and physical agents.

  14. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protection Waste Treatment and Immobilization Plant, managed by Bechtel National, Inc. ... EA observed the Bechtel National, Inc. hazards analysis teams' activities associated with ...

  15. Waste Isolation Pilot Plant 2003 Site Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... . . . . . . . . . . . 6-21 Figure 6.12 - Contour Plot of the SSW Potentionmetric Surface ... HEPA high-efficiency particulate air (filter) HWDU Hazardous Waste Disposal Unit HWFP ...

  16. American Recovery & Reinvestment Act Newsletter - Issue 27

    Office of Environmental Management (EM)

    ... liquid waste stor- age tanks at SRS. Through efficien- cies, SRR has been able to increase the number of Recovery Act activities to 41, including the purchase of the manipulators. ...

  17. National Environmental Policy Act Support for EIS and Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEPA actions relating to nuclear waste management and disposal. National Environmental Policy Act Support for Environmental Impact Statements and Environmental Assessments in...

  18. Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals Ahead of Schedule

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Hanford Site recently surpassed American Recovery and Reinvestment Act goals to accelerate the cleanup of legacy waste and fuels.

  19. Safety Requirements for the Packaging and Transportation of Hazardous Materials, Hazardous Substances, and Hazardous Wastes

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1985-07-09

    Cancels Chapter 3 of DOE 5480.1A. Canceled by DOE O 460.1 of 9-27-1995 and by DOE N 251.4 & Para. 9c canceled by DOE O 231.1 of 9-30-1995.

  20. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

  1. "TRU" Success: SRS Recovery Act Prepares to Complete Shipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP "TRU" Success: SRS Recovery Act Prepares to Complete Shipment ...

  2. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions

    2000-12-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.

  3. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    K. L. Vialetti

    2008-05-20

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  4. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2006-12-06

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  5. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2007-04-12

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  6. Vitrification of NORM wastes

    SciTech Connect (OSTI)

    Chapman, C.

    1994-05-01

    Vitrification of wastes is a relatively new application of none of man`s oldest manufacturing processes. During the past 25 years it has been developed and accepted internationally for immobilizing the most highly radioactive wastes from spent nuclear fuel. By the year 2005, there will be nine operating high-level radioactive vitrification plants. Many of the technical ``lessons learned`` from this international program can be applied to much less hazardous materials such as naturally occurring radioactive material (NORM). With the deployment of low capital and operating cost systems, vitrification should become a broadly applied process for treating a large variety of wastes. In many situations, the wastes can be transformed into marketable products. This paper will present a general description of waste vitrification, summarize some of its key advantages, provide some test data for a small sample of one NORM, and suggest how this process may be applied to NORM.

  7. Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization (40 CFR {section} 761.75[c])

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions

    2002-03-19

    This initial report is being submitted pursuant to Title 40 Code of Federal Regulations (CFR) {section} 761.75(c) to request authorization to allow the disposal of transuranic (TRU) wastes containing polychlorinated biphenyls (PCBs) which are duly regulated under the Toxic Substances Control Act (TSCA). Approval of this initial report will not affect the disposal of TRU or TRU mixed wastes that do not contain PCBs. This initial report also demonstrates how the Waste Isolation Pilot Plant (WIPP) meets or exceeds the technical standards for a Chemical Waste Landfill. Approval of this request will allow the U.S. Department of Energy (DOE) to dispose of approximately 88,000 cubic feet (ft3) (2,500 cubic meters [m3]) of TRU wastes containing PCBs subject to regulation under the TSCA. This approval will include only those PCB/TRU wastes, which the TSCA regulations allow for disposal of the PCB component in municipal solid waste facilities or chemical waste landfills (e.g., PCB remediation waste, PC B articles, and bulk PCB product waste). Disposal of TRU waste by the DOE is congressionally mandated in Public Law 102-579 (as amended by the National Defense Authorization Act for Fiscal Year 1997, Pub. L. 104-201, referred to as the WIPP Land Withdrawal Act [LWA]). Portions of the TRU waste inventory contain hazardous waste constituents regulated under 40 CFR Parts 260 through 279, and/or PCBs and PCB Items regulated under 40 CFR Part 761. Therefore, the DOE TRU waste program must address the disposal requirements for these hazardous waste constituents and PCBs. To facilitate the disposal of TRU wastes containing hazardous waste constituents, the owner/operators received a Hazardous Waste Facility Permit (HWFP) from the New Mexico Environment Department (NMED) on October 27, 1999. The permit allows the disposal of TRU wastes subject to hazardous waste disposal requirements (TRU mixed waste). Informational copies of this permit and other referenced documents are available from the WIPP website. To facilitate the disposal of TRU wastes containing PCBs, the owner/operators are hereby submitting this initial report containing information required pursuant to the Chemical Waste Landfill Approval requirements in 40 CFR {section} 761.75(c). Although WIPP is defined as a miscellaneous unit and not a landfill by the New Mexico Hazardous Waste Act, WIPP meets or exceeds all applicable technical standards for chemical waste landfills by virtue of its design and programs as indicated in the Engineering Report (Attachment B). The layout of this initial report is consistent with requirements (i.e., Sections 2.0 through 12.0 following the sequence of 40 CFR {section} 761.75[c][i] -[ix] with sections added to discuss the Contingency and Training Plans; and Attachment B of this initial report addresses the requirements of 40 CFR {section} 761.75[b][1] through [9] in this order). This initial report includes a description of three proposed changes that will be subject to ''conditional approval.'' The first will allow the disposal of remote-handled (RH) PCB/TRU waste at WIPP. The second will allow the establishment of a central confirmation facility at WIPP. The third will allow for an increase in contact-handled Working Copy Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization DOE/WIPP 02-3196 (CH) waste storage capacities. These proposed changes are discussed further in Section 3.3 of this initial report. ''Conditional approval'' of these requests would allow these activities at WIPP contingent upon: - Approval of the HWFP modification (NMED) and Compliance Certification Application (CCA) change request (Environmental Protection Agency [EPA]) - Inspection of facility prior to implementing the change (if deemed necessary by the EPA) - Written approval from the EPA This initial report also includes the following three requests for waivers to the technical requirements for Chemical Waste Landfills pursuant to 40 CFR {section} 761.75(c)(4): - Hydrologic Conditions (40 CFR {section} 761.75[b][3]) - Monitoring Systems (40 CFR {sect

  8. Protocol for laboratory research on degradation, interaction, and fate of wastes disposed by deep-well injection: Final report

    SciTech Connect (OSTI)

    Collins, A.G.; Crocker, M.E.

    1987-12-01

    The objective of this research investigation was to develop a laboratory protocol for use in determining degradation, interaction, and fate of organic wastes disposed in deep subsurface reservoirs via disposal wells. Knowledge of the ultimate fate of deep-well disposed wastes is important because provisions of the Resource Conservation and Recovery Act (RCRA) require that by August 1988, the Environmental Protection Agency (EPA) must show that the disposal of specified wastes by deep-well injection is safe to human health and the environment, or the practice must be stopped. The National Institute for Petroleum and Energy Research (NIPER) developed this protocol primarily by transferring some of its expertise and knowledge of laboratory protocol relevant to improved recovery of petroleum. Phenol, because it is injected into deep, subsurface reservoirs for disposal, was selected for study by the EPA. Phenol is one waste product that has been injected into the Frio formation; therefore, a decision was made to use phenol and sedimentary rock from the Frio formation for a series of laboratory experiments to demonstrate the protocol. This study investigates the adsorption properties of a specific reservoir rock which is representative of porous sedimentary geologic formations used as repositories for hazardous organic wastes. The developed protocol can be used to evaluate mobility, adsorption, and degradation of an organic hazardous waste under simulated subsurface reservoir conditions. 22 refs., 13 figs., 16 tabs.

  9. Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex

    SciTech Connect (OSTI)

    Huebner, T.L.; Wilson, J.M.; Ruhter, A.H.; Bonney, S.J.

    1994-08-01

    This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics.

  10. Agricultural, industrial and municipal waste management

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    It is right that consideration of the environment is of prime importance when agricultural and industrial processes are being developed. This book compiles the papers presented at the Institution of Mechanical Engineers conference. The contents include: The use of wastes for land reclamation and restoration; landfill, an environmentally acceptable method of waste disposal and an economic source of energy; control of leachate from waste disposal landfill sites using bentonite; landfill gas migration from operational landfill sites, monitoring and prevention; monitoring of emissions from hazardous waste incineration; hazardous wastes management in Hong Kong, a summary of a report and recommendations; the techniques and problems of chemical analysis of waste waters and leachate from waste tips; a small scale waste burning combustor; energy recovery from municipal waste by incineration; anaerobic treatment of industrial waste; a review of developments in the acid hydrolysis of cellulosic wastes; reduction of slag deposits by magnesium hydroxide injection; integrated rural energy centres (for agriculture-based economies); resource recovery; straw as a fuel in the UK; the computer as a tool for predicting the financial implications of future municipal waste disposal and recycling projects; solid wastes as a cement kiln fuel; monitoring and control of landfill gas; the utilization of waste derived fuels; the economics of energy recovery from municipal and industrial wastes; the development and construction of a municipal waste reclamation plant by a local authority.

  11. Waste Isolation Pilot Plant Transportation Security | Department of Energy

    Office of Environmental Management (EM)

    Transportation Security Waste Isolation Pilot Plant Transportation Security PDF icon Waste Isolation Pilot Plant Transportation Security More Documents & Publications Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM Accident Investigation Report - Fire Report Fire Hazard Analysis of the Waste Isolation Pilot Plant

  12. Waste minimization in an autobody repair shop

    SciTech Connect (OSTI)

    Baria, D.N.; Dorland, D.; Bergeron, J.T.

    1994-12-31

    This work was done to document the waste minimization incorporated in a new autobody repair facility in Hermantown, Minnesota. Humes Collision Center incorporated new waste reduction techniques when it expanded its old facilities in 1992 and it was able to achieve the benefits of cost reduction and waste reduction. Humes Collision Center repairs an average of 500 cars annually and is a very small quantity generator (VSQG) of hazardous waste, as defined by the Minnesota Pollution Control Agency (MPCA). The hazardous waste consists of antifreeze, batteries, paint sludge, refrigerants, and used oil, while the nonhazardous waste consists of cardboard, glass, paint filters, plastic, sanding dust, scrap metal, and wastewater. The hazardous and nonhazardous waste output were decreased by 72%. In addition, there was a 63% reduction in the operating costs. The waste minimization includes antifreeze recovery and recycling, reduction in unused waste paint, reduction, recovery and recycle of waste lacquer thinner for cleaning spray guns and paint cups, elimination of used plastic car bags, recovery and recycle of refrigerant, reduction in waste sandpaper and elimination of sanding dust, and elimination of waste paint filters. The rate of return on the investment in waste minimization equipment is estimated from 37% per year for the distillation unit, 80% for vacuum sanding, 146% for computerized paint mixing, 211% for the refrigerant recycler, to 588% per year for the gun washer. The corresponding payback time varies from 3 years to 2 months.

  13. Report Wildland Fire Area Hazard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sighting (check box if animal poses serious threat) Trails (accessegress) Hazard Trees (falling, fire hazard) Utilities (Lab employees: use Form 1821 (pdf) to report utility...

  14. Mr. John E. Kieling, Chief Hazardous Was te Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John E. Kieling, Chief Hazardous Was te Bureau Depa rtment of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad , New Mexico 88221 NOV 0 5 2013 New Mexico Environment Department 2905 Rodeo Park Drive East. Building 1 Santa Fe, New Mexico 87505-6303 Subject: Panel 6 Closure and Final Waste Emplacement Notifications Dear Mr. Kieling : The purpose of this leiter is 1 0 notify th e New Mexico Environment Department (NMEO) that the Permittees intend to commence closure of Hazardous Waste Disposa

  15. Mr. John Kieling, Acting Chief Hazardous Materials Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Bureau Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221 OCT 26 2011 New Mexico Environment Department 2905 Rodeo Park Drive East,...

  16. Mr. John Kieling, Acting Chief Hazardous Materials Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Bureau Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221 OCT 26 2011 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Recertification Audit Report for Audit A-11-14 of the Idaho National Laboratory Central Characterization Project Dear Mr. Kieling: This letter transmits the Final Audit Report for Audit A-11-14 of the processes performed by the Central Characterization

  17. HM-ACCESS Project (Framework for the Use of Electronic Shipping Papers for the Transport of Hazardous Materials)

    Office of Environmental Management (EM)

    and Hazardous Materials Safety Administration HM-ACCESS Initiative James Simmons Acting Chief, Research and Development Office of Hazardous Materials Safety Engineering and Research Division May 2012 U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration 2 H-azardous M-aterials A-utomated C-argo C-ommunication for E-fficient and S-afe S-hipments U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Background Purpose: To

  18. AL 2012-10, Implementation of the Price-Anderson Amendments Act...

    Broader source: Energy.gov (indexed) [DOE]

    be made by DOE and NNSA Contracting Officers. Subject: Implementation of the Price-Anderson Amendments Act of 2005 References: DEAR 952.250-70, Nuclear Hazards Indemnification...

  19. ORISE: Hazard Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazard Assessments The Oak Ridge Institute for Science and Education (ORISE) analyzes accumulated data to identify potential workplace hazards to which individuals or groups of workers may be exposed. ORISE assesses both chemical and radiation exposures, and conducts both internal and external radiation dose assessments. Our capabililities include: Linkage of exposure data to site rosters Assessment of retrospective exposures Preparation of assessment protocols Design and testing of dose

  20. Automated Job Hazards Analysis

    Broader source: Energy.gov [DOE]

    AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.