Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

TOLERANCE OF HEAVY METALS IN VASCULAR PLANTS: ARSENIC HYPERACCUMULATIONBY  

E-Print Network [OSTI]

CHAPTER 28 b TOLERANCE OF HEAVY METALS IN VASCULAR PLANTS: ARSENIC HYPERACCUMULATIONBY CHINESE the roots take up colossal amounts of a toxic metal from soils and rapidly sequester into their above hyperaccumulation in the light of accumulated knowledge on heavy metal tolerance in higher plants. 1.INTRODUCTION

Ma, Lena

2

Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste  

SciTech Connect (OSTI)

A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

1997-05-01T23:59:59.000Z

3

Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water  

DOE Patents [OSTI]

Systems and methods for use of magnesium hydroxide, either directly or through one or more precursors, doped with a divalent or trivalent metal cation, for removing arsenic from drinking water, including water distribution systems. In one embodiment, magnesium hydroxide, Mg(OH).sub.2 (a strong adsorbent for arsenic) doped with a divalent or trivalent metal cation is used to adsorb arsenic. The complex consisting of arsenic adsorbed on Mg(OH).sub.2 doped with a divalent or trivalent metal cation is subsequently removed from the water by conventional means, including filtration, settling, skimming, vortexing, centrifugation, magnetic separation, or other well-known separation systems. In another embodiment, magnesium oxide, MgO, is employed, which reacts with water to form Mg(OH).sub.2. The resulting Mg(OH).sub.2 doped with a divalent or trivalent metal cation, then adsorbs arsenic, as set forth above. The method can also be used to treat human or animal poisoning with arsenic.

Moore, Robert C; Holt-Larese, Kathleen C; Bontchev, Ranko

2013-08-13T23:59:59.000Z

4

arsenic trioxide cytotoxicity: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil Environmental Management and Restoration Websites Summary: Effects of plant arsenic uptake...

5

arsenic trioxide modulates: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil Environmental Management and Restoration Websites Summary: Effects of plant arsenic uptake...

6

arsenic trioxide ato: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil Environmental Management and Restoration Websites Summary: Effects of plant arsenic uptake...

7

arsenic trioxide anticancer: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil Environmental Management and Restoration Websites Summary: Effects of plant arsenic uptake...

8

Iron phosphate compositions for containment of hazardous metal waste  

DOE Patents [OSTI]

An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

Day, D.E.

1998-05-12T23:59:59.000Z

9

Iron phosphate compositions for containment of hazardous metal waste  

DOE Patents [OSTI]

An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

Day, Delbert E. (Rolla, MO)

1998-01-01T23:59:59.000Z

10

Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.  

SciTech Connect (OSTI)

In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

2012-02-01T23:59:59.000Z

11

arsenic trioxide as2o3-mediated: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil Environmental Management and Restoration Websites Summary: Effects of plant arsenic uptake...

12

E-Print Network 3.0 - arsenic-induced health hazards Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

information systems will provide... environmental hazards and noninfectious diseases or other health effects. The mission of EPHT is to improve... or other disabilities...

13

Method for mobilization of hazardous metal ions in soils  

DOE Patents [OSTI]

A microbial process for removing heavy metals such as bismuth, cadmium, lead, thorium, uranium and other transuranics from soils and sediments, utilizing indigenous, or isolates of indigenous, microorganisms and reducing agents, such as cysteine or sodium thioglycollate, or complexing agents such as the amino acid glycine, to effect the mobilization or release of the metals from the soil particles.

Dugan, Patrick R. (Idaho Falls, ID); Pfister, Robert M. (Powell, OH)

1995-01-01T23:59:59.000Z

14

Method for mobilization of hazardous metal ions in soils  

DOE Patents [OSTI]

A microbial process is revealed for removing heavy metals such as bismuth, cadmium, lead, thorium, uranium and other transuranics from soils and sediments. The method utilizes indigenous, or isolates of indigenous, microorganisms and reducing agents, such as cysteine or sodium thioglycollate, or complexing agents such as the amino acid glycine, to effect the mobilization or release of the metals from the soil particles. 5 figs.

Dugan, P.R.; Pfister, R.M.

1995-06-27T23:59:59.000Z

15

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

James T. Cobb, Jr.

2003-09-12T23:59:59.000Z

16

Metal and arsenic impacts to soils, vegetation communities and wildlife habitat in southwest Montana uplands contaminated by smelter emissions. 1: Field evaluation  

SciTech Connect (OSTI)

Concentrations of arsenic and metals in soils surrounding a smelter in southwest Montana were correlated with vegetative community structure and composition and wildlife habitat quality. Soils in the uplands surrounding the smelter were highly enriched with arsenic and metals. Concentrations of these analytes decreased with distance from the smelter and with soil depth, suggesting that the smelter is the source of the enrichment. In enriched areas, marked modifications to the native vegetation community structure and composition were observed. These included replacement of evergreen forest with bare unvegetated ground; species impoverishment and increased dominance by weed species in grasslands; and reductions in the vertical complexity of the habitat. Significant negative correlations existed between soil arsenic and metals concentrations and the extent of vegetative cover and the vertical diversity of plant communities. Loss of vegetative cover in the affected areas has been accompanied by reductions in their capacity to support indigenous wildlife populations.

Galbraith, H.; LeJeune, K.; Lipton, J. [Hagler Bailly Consulting, Inc., Boulder, CO (United States)

1995-11-01T23:59:59.000Z

17

Chemical and Mineralogical Characterization of Arsenic, Lead, Chromium, and Cadmium in a Metal-contaminated Histosol  

SciTech Connect (OSTI)

The chemical and mineralogical forms of As, Pb, Cr, and Cd were studied in a metal-contaminated organic soil (Histosol) that received runoff and seepage water from a site that was once occupied by a lead smelter. Soil samples were collected from different depth intervals during both wet and dry seasons and analyzed using bulk powder X-ray diffraction (XRD), synchrotron-based micro X-ray diffraction ({mu}-XRD), and micro X-ray fluorescence ({mu}-SXRF) spectroscopy. There was a clear pattern of mineral distribution with depth that indicated the presence of an intense redox gradient. The oxidized reddish brown surface layer (0-10 cm) was dominated by goethite ({alpha}-FeOOH) and poorly crystalline akaganeite ({beta}-FeOOH). Lead and arsenic were highly associated with these Fe oxides, possibly by forming inner-sphere surface complexes. Gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O) was abundant in the layer as well, particularly for samples collected during dry periods. Fe(II)-containing minerals, such as magnetite (Fe{sub 3}O{sub 4}) and siderite (FeCO{sub 3}), were identified in the intermediate layers (10-30 cm) where the reductive dissolution of Fe(III) oxides occurred. A number of high-temperature minerals, such as mullite (3Al{sub 2}O{sub 3} {center_dot} 2Si{sub 2}O), corundum ({alpha}-Al{sub 2}O{sub 3}), hematite ({alpha}-Fe{sub 2}O{sub 3}), and wustite (FeO) were identified in the subsurface and they probably formed as a result of a burning event. Several sulfide minerals were identified in the most reduced layers at depths > 30 cm. They included realgar (AsS), alacranite (As{sub 4}S{sub 4}), galena (PbS), and sphalerite (Zn, Fe{sup 2+})S, and a series of Fe sulfides, including greigite (Fe{sup 2+}Fe{sub 2}{sup 3+} S{sub 4}), pyrrhotite (Fe{sub 1-x}S), mackinawite (FeS), marcasite (FeS{sub 2}), and pyrite (FeS{sub 2}). Most of these minerals occurred as almost pure phases in sub-millimeter aggregates and appeared to be secondary phases that had precipitated from solution. Despite the elevated levels of Cd in the soil, no specific Cd phases were identified. The complex mineralogy has important implications for risk assessment and the design of in-situ remediation strategies for this and similar metal-contaminated sites.

Gao, X.; Schulze, D

2010-01-01T23:59:59.000Z

18

Arsenic speciation in multiple metal environments II. Micro-spectroscopic investigation of a CCA contaminated soil  

E-Print Network [OSTI]

2006, Aus- tralia. stances (acid mine drainage, smelter wastes, pesticides, chro- mated copper arsenate January 2008 Abstract The speciation of arsenic (As) in a copper-chromated-arsenate (CCA) contaminated as a continuum of fully and poorly-ordered copper-arsenate precipitates with additional components being

19

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-06-01T23:59:59.000Z

20

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-05-11T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-01-01T23:59:59.000Z

22

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-05-10T23:59:59.000Z

23

E-Print Network 3.0 - arsenic alloys Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of arsenic metal include corrosion inhibition and to improve tensile strength of copper alloys... i Quantities of Arsenic Within the State of Florida Completed on June 30,...

24

Trace metals in tap water from Tehran, Iran  

SciTech Connect (OSTI)

A total of 272 tap water samples were collected from 68 homes throughout the city of Tehran. Analysis for cadmium, zinc, lead, copper, arsenic, iron and manganese showed some accumulation of these metals in household piping overnight. However, the concentration of all metals was in the parts per billion (ug/l) range and well below international standards. Heavy metals in Tehran's drinking water therefore, do not pose a significant acute health hazard. 19 references, 2 tables.

Shariatpanahi, M.; Anderson, A.C.

1986-01-01T23:59:59.000Z

25

Clean process to destroy arsenic-containing organic compounds with recovery of arsenic  

DOE Patents [OSTI]

A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic. 1 fig.

Upadhye, R.S.; Wang, F.T.

1996-08-13T23:59:59.000Z

26

Metal and arsenic impacts to soils, vegetation communities and wildlife habitat in southwest Montana uplands contaminated by smelter emissions. 2: Laboratory phytotoxicity studies  

SciTech Connect (OSTI)

Vegetation communities on metal- and arsenic-contaminated uplands surrounding a smelter in southwest Montana have been eliminated or highly modified. Laboratory toxicity tests were performed using site soils from the impacted areas to determine whether the soils limit the ability of plants to establish and grow. The germination and growth of alfalfa, lettuce, and wheat in impacted area soils was compared to germination and growth of the three species in reference soils. The degree of phytotoxicity was quantified using a species-endpoint toxicity score calculated on the magnitude of difference between germination and growth of plants in impacted and reference soils. The impacted soils exhibited substantial toxicity to plants: 5% of the sites were severely phytotoxic, 55% were highly phytotoxic, 10% were moderately phytotoxic, 20% were mildly phytotoxic, and 10% were nontoxic. Root growth was consistently the most affected endpoint (18 of 20 impacted soils) and reduction in root length and mass was observed. Correlation and partial correlation analysis was used to evaluate the causes of phytotoxicity. Concentrations of As, Cu, and Zn and, to a lesser extent, Pb and Cd were found to be positively correlated with phytotoxicity.

Kapustka, L.A. [Ecological Planning and Toxicology, Inc., Corvallis, OR (United States); Lipton, J.; Galbraith, H.; Cacela, D.; LeJeune, K. [Hagler Bailly Consulting, Inc., Boulder, CO (United States)

1995-11-01T23:59:59.000Z

27

Thermodynamic modeling of volatile hazardous metal behavior in the Vortec Vitrification System  

SciTech Connect (OSTI)

The thermochemical equilibrium calculations indicate that at the temperature of a propane--air flame, some volatilization of uranium, plutonium, technetium, and cesium will occur. The expected concentrations of plutonium, technetium, and cesium in the flame will be very low because of the small maximum concentration of these elements in the projected feed materials for the first 30-day test. The quantities volatilized can generally be decreased by operating the flame in a fuel-rich mode, although this will lead to greater carbon monoxide production, which may be more objectionable. The concentrations of chlorine and fluorine, at least at the maximum levels in the projected Vortec feed, are not projected to greatly influence the vaporization rates. Therefore, blending to reduce the concentrations of those elements would most likely not be effective in reducing metal vaporization. Most of the elements vaporized condense by the time the gas cools to 2000 F. These elements would condense either on surfaces near the front of the heat recuperator or on entrained particulates or homogeneously as relatively pure submicron particles. Cesium would be expected to condense at the lower temperatures near the rear of the recuperator, although the expected maximum concentration in the Vortec feed material is extremely low so it should be greatly diluted by other particulates. The elements that condense on other entrained particles will form enriched surface coatings. Particles larger than 10{micro}m or so will be collected in the scrubber. Smaller particles, especially the submicron particles formed from homogeneous nucleation, should be largely collected in the HEPA filter. Deposits formed in the heat recuperator can normally be handled via sootblowing. To reduce handling problems, we suggest that the recuperator be oriented vertically so that the deposits blown off of the heat exchanger fall directly into the molten glass. The large size of the deposits should help to reduce the rate of revaporization, allowing the volatile elements to be removed with the glass. The volatile elements that do not deposit on system surfaces will be concentrated in the smaller particles. Therefore, the HEPA ash will be greatly enriched in these elements. If the HEPA filter is itself sent to a melter, the elements may revaporize and multiply the problems related to metal vaporization significantly. Therefore, the HEPA filters should be disposed of without high-temperature processing. Also, to reduce the formation of these very small particles, it is helpful to include in the feed larger particles to act as condensation nuclei that can then be collected in the scrubber. This can be accomplished by using feed materials with a fraction consisting of particles small enough that they will not be collected in the cyclone in the melter, but large enough that they will easily be collected by the scrubber. This is one advantage that firing bituminous coal has over gas firing; it provides a source of ash particles of the right size range to serve as nucleation sites, but large enough (depending on the coal) so that they can usually be collected efficiently in the scrubber system.

Nowok, J.W.; Hurley, J.P.

2000-07-31T23:59:59.000Z

28

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, November 1994--February 1995  

SciTech Connect (OSTI)

This second quarterly report describes work during the second three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSI) and the Center for Hazardous Materials Research (CHMR). The report describes the activities of the project team during the reporting period. The principal work has focussed upon the acquisition of by-product samples and their initial analysis. Other efforts during the second quarter have been directed toward identifying the first hazardous waste samples and preparing for their treatment and analysis. Relatively little data has yet been collected. Major presentation of technical details and data will appear for the first time in the third quarterly report. The activity on the project during the second quarter of Phase One, as presented in the following sections, has fallen into seven areas: (1) Acquiring by-products, (2) Analyzing by-products, (3) Identifying, analyzing and treating suitable hazardous wastes, (4) Carrying out the quality assurance/quality control program, (5) Developing background, and (6) Initiating public relations

NONE

1995-03-01T23:59:59.000Z

29

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quartery report, August 1994--November 1994  

SciTech Connect (OSTI)

This first quarterly report describes work during the first three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSO and the Center for Hazardous Materials Research (CHMR)). The report states the goals of the project - both general and specific - and then describes the activities of the project team during the reporting period. All of this work has been organizational and developmental in nature. No data has yet been collected. Technical details and data will appear for the first time in the second quarterly report and be the major topic of subsequent reports.

NONE

1994-12-01T23:59:59.000Z

30

Arsenic removal from water  

DOE Patents [OSTI]

Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

Moore, Robert C. (Edgewood, NM); Anderson, D. Richard (Albuquerque, NM)

2007-07-24T23:59:59.000Z

31

Characterizing arsenic in preserved hair for assessing exposure potential and discriminating poisoning  

SciTech Connect (OSTI)

Advanced analytical techniques have been used to characterize arsenic in taxidermy specimens. Arsenic was examined to aid in discriminating its use as a preservative from that incorporated by ingestion and hence indicate poisoning (in the case of historical figures). The results are relevant to museum curators, occupational and environmental exposure concerns, toxicological and anthropological investigations. Hair samples were obtained from six taxidermy specimens preserved with arsenic in the late 1800s and early 1900s to investigate the arsenic incorporation. The presence of arsenic poses a potential hazard in museum and private collections. For one sample, arsenic was confirmed to be present on the hair with time-of-flight secondary ion mass spectrometry and then measured with neutron activation analysis to comprise 176 {mu}g g{sup -1}. The hair cross section was analysed with synchrotron micro-X-ray fluorescence to investigate the transverse distribution of topically applied arsenic. It was found that the arsenic had significantly penetrated all hair samples. Association with melanin clusters and the medulla was observed. Lead and mercury were also identified in one sample. X-ray absorption near-edge spectroscopy of the As K-edge indicated that an arsenate species predominantly existed in all samples; however, analysis was hindered by very rapid photoreduction of the arsenic. It would be difficult to discriminate arsenic consumption from topically applied arsenic based on the physical transverse distribution. Longitudinal distributions and chemical speciation may still allow differentiation.

Kempson, Ivan M.; Henry, Dermot; Francis, James; (Museum Vic.); (U. South Australia); (UWO)

2009-05-21T23:59:59.000Z

32

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, September 1995--December 1995  

SciTech Connect (OSTI)

This fifth quarterly report describes work done during the fifth three-month period of the University of Pittsburgh`s project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with the university on this project is Mill Service, Inc. This report describes the activities of the project team during the reporting period. The principal work has focussed upon completing laboratory evaluation of samples produced during Phase 1, preparing reports and presentations, and seeking environmental approvals and variances to permits that will allow the field work to proceed. The compressive strength of prepared concretes is described.

NONE

1996-03-01T23:59:59.000Z

33

Method of recycling hazardous waste  

SciTech Connect (OSTI)

The production of primary metal from ores has long been a necessary, but environmentally devastating process. Over the past 20 years, in an effort to lessen environmental impacts, the metal processing industry has developed methods for recovering metal values from certain hazardous wastes. However, these processes leave residual molten slag that requires disposal in hazardous waste landfills. A new process recovers valuable metals, metal alloys, and metal oxides from hazardous wastes, such as electric arc furnace (EAF) dust from steel mills, mill scale, spent aluminum pot liners, and wastewater treatment sludge from electroplating. At the same time, the process does not create residual waste for disposal. This new method uses all wastes from metal production processes. These hazardous materials are converted to three valuable products - mineral wool, zinc oxide, and high-grade iron.

NONE

1999-11-11T23:59:59.000Z

34

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, May 1995--August 1995  

SciTech Connect (OSTI)

This fourth quarterly report describes work done during the fourth three-month period of the University of Pittsburgh`s project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quote} Participating with the university on this project are Dravo Lime Company, Mill Service, Inc., and the Center for Hazardous Materials Research. This report describes the activities of the project team during the reporting period. The principal work has focussed upon the production of six sets of samples with high water content for solidification testing and the mixing of five dry samples for solidification testing by the Proctor method. Twenty-eight day compressive strengths are reported for five of the six sets of samples with high water content. The report also discusses completion of the format of the database and the inclusion in it of all data collected to date. Special reports presented during the quarter include the Continuation Application, a News Release, and modification to the Test Plan. Work is progressing on the NEPA report and the Topical Report. The activity on the project during the fourth quarter of Phase one, as presented in the following sections, has fallen into six major areas: (1) Completion of by-product evaluations, (2) Completion of analyses of six wastes, (3) Initiation of eleven solidification tests, (4) Continued extraction and extract analysis of solidified samples, (5) Development of the database, and (6) Production of reports.

NONE

1995-11-01T23:59:59.000Z

35

Global atmospheric transport and source-receptor1 relationships for arsenic2  

E-Print Network [OSTI]

important anthropogenic arsenic sources7-10 with45 copper smelting being the dominant source6 contributions from anthropogenic sources. Metal (copper, zinc and lead)44 smelting and coal combustion are two 11 . In China and Chile, the dominated arsenic source55 #12;4 regions in northern and southern

Wu, Shiliang

36

Replacement of lead-loaded glovebox glove with attenuation medium that are not RCRA-hazardous metals  

SciTech Connect (OSTI)

Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Radiation shielding is commonly used to protect the glovebox worker from unintentional direct and secondary radiation exposure, while working with plutonium-238 and plutonium-239. In these environments, low-energy photons, i.e., those less than 250 keY, are encountered. Shielding glove box gloves are traditionally composed of lead-based materials, but these are now considered hazardous waste. This has prompted the development of new, nonhazardous- shielding gJovebox gloves. No studies, however, have investigated the effectiveness of these new glovebox gloves. We examined both leaded and nonhazardous- shielding glovebox gloves and compared their attenuation effectiveness over the energy range of interest at TA-55. All measurements are referenced to lead sheets, allowing direct comparisons to the common industry standard of 0.1 mm lead equivalent material. The attenuation properties of both types of glovebox gloves vary with energy, making it difficult for manufacturers to claim lead equivalency across the entire energy range used at TA-55. The positions of materials' photon energy absorption edges, which are particularly important to improved attenuation performance, depending upon the choice of radiation energy range, are discussed. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations.

Cournoyer, Michael E [Los Alamos National Laboratory; George, Gerald L [Los Alamos National Laboratory; Dodge, Robert L [Los Alamos National Laboratory; Chunglo, Steve [CANBERRA INDUSTRIES

2010-01-01T23:59:59.000Z

37

E-Print Network 3.0 - arsenic implanted silicon Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics 16 Integration of Laser-Annealed Junctions in a Low-Temperature High-k Metal-Gate MISFET Summary: in Low Energy Arsenic Implanted Silicon", Proc. Ion...

38

Macroscopic and spectroscopic investigation of interactions of arsenic with synthesized pyrite  

E-Print Network [OSTI]

Sulfide minerals have been suggested to play an important role in regulating dissolved metal concentrations in anoxic environments. Pyrite is the most common sulfide mineral and it has shown an affinity for arsenic, but little is known about...

Kim, Eun Jung

2009-05-15T23:59:59.000Z

39

Characterization of Arsenic Contamination on Rust from Ton Containers  

SciTech Connect (OSTI)

The speciation and spatial distribution of arsenic on rusted steel surfaces affects both measurement and removal approaches. The chemistry of arsenic residing in the rust of ton containers that held the chemical warfare agents bis(2-chloroethyl)sulfide (sulfur mustard) and 2-chlorovinyldichloroarsine (Lewisite) is of particular interest, because while the agents have been decontaminated, residual arsenic could pose a health or environmental risk. The chemistry and distribution of arsenic in rust samples was probed using imaging secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). Arsenic in the +3 and or +5 oxidation state is homogeneously distributed at the very top-most layer of the rust samples, and is intimately associated with iron. Sputter depth profiling followed by SIMS and XPS shows As at a depth of several nm, in some cases in a reduced form. The SEM/EDX experiments show that As is present at a depth of several microns, but is inhomogeneously distributed; most locations contained oxidized As at concentrations of a few percent, however several locations showed very high As in a metallic form. These results indicate that the rust material must be removed if the steel containers are to be cleared of arsenic.

Gary S. Groenewold; Recep Avci; Robert V. Fox; Muhammedin Deliorman; Jayson Suo; Laura Kellerman

2013-01-01T23:59:59.000Z

40

Removal of arsenic compounds from petroliferous liquids  

DOE Patents [OSTI]

Described is a process for removing arsenic from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic bound to it from contacting petroliferous liquid as described above and involves: a. treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10 and, b. separating the solids and liquids from each other. Preferably the regeneration treatment is in two steps wherein step (a) is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, steps (a) and (b) are repeated using a bicarbonate.

Fish, Richard H. (Berkeley, CA)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hazardous Waste Program (Alabama)  

Broader source: Energy.gov [DOE]

This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

42

Arsenic Speciation in Wastes Resulting From Pressure Oxidation, Roasting and Smelting  

SciTech Connect (OSTI)

Arsenic commonly occurs in elevated concentrations in some gold and base-metal deposits. Mining and metallurgical processing of gold and base-metal ores results in solid wastes, effluents, and air emissions containing high concentrations of arsenic. Such wastes form an important source of anthropogenic arsenic in the environment. The nature and occurrence of arsenic in solid wastes are complex and highly variable. A combination of microanalytical tools and techniques including XAFS were used to determine the form and speciation of arsenic in wastes resulting from pressure oxidation, roasting and smelting, and impacted soil. As K-edge and Fe K-edge XAFS analyses of the pressure oxidation residues indicate that arsenic in tetrahedral coordination is corner-linked to 5 to 6 FeO{sub 6} octahedra that are edge- and perhaps face-sharing. During roasting of refractory gold ores, oxidation of As to As{sub 2}O{sub 5} species may be incomplete, which is detrimental to not only gold recovery but also the tailings management options. As K-edge XANES spectra indicate that more than one-third of the arsenic released from a copper smelter stack is composed of As{sup 3+} species. Most likely arsenic species in the smelter-impacted soil include arsenolite, goethite with adsorbed As{sup 5+}, monomethylarsonic acidm, and tetramethylarsonium iodide.

Paktunc, D. (CCM)

2010-11-01T23:59:59.000Z

43

Hazards Survey and Hazards Assessments  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

1997-08-21T23:59:59.000Z

44

Arsenic removal and stabilization by synthesized pyrite  

E-Print Network [OSTI]

hydride generation atomic absorption spectrometry method for measuring arsenic species (As(III), As(V)). The synthesized pyrite was applied to remove arsenic and its maximum capacity for arsenic removal was measured in batch adsorption experiments to be 3...

Song, Jin Kun

2009-05-15T23:59:59.000Z

45

Removing Arsenic from Drinking Water  

ScienceCinema (OSTI)

See how INL scientists are using nanotechnology to remove arsenic from drinking water. For more INL research, visit http://www.facebook.com/idahonationallaboratory

None

2013-05-28T23:59:59.000Z

46

Removal of arsenic compounds from petroliferous liquids  

DOE Patents [OSTI]

The present invention in one aspect comprises a process for removing arsenic from petroliferous-derived liquids by contacting said liquid with a divinylbenzene-crosslinked polystyrene polymer (i.e. PS-DVB) having catechol ligands anchored to said polymer, said contacting being at an elevated temperature. In another aspect, the invention is a process for regenerating spent catecholated polystyrene polymer by removal of the arsenic bound to it from contacting petroliferous liquid in accordance with the aspect described above which regenerating process comprises: (a) treating said spent catecholated polystyrene polymer with an aqueous solution of at least one member selected from the group consisting of carbonates and bicarbonates of ammonium, alkali metals, and alkaline earth metals, said solution having a pH between about 8 and 10, and said treating being at a temperature in the range of about 20/sup 0/ to 100/sup 0/C; (b) separating the solids and liquids from each other. In a preferred embodiment the regeneration treatment is in two steps wherein step: (a) is carried out with an aqueous alcoholic carbonate solution which includes at least one lower alkyl alcohol, and, steps (c) and (d) are added. Steps (c) and (d) comprise: (c) treating the solids with an aqueous alcoholic solution of at least one ammonium, alkali or alkaline earth metal bicarbonate at a temperature in the range of about 20 to 100/sup 0/C; and (d) separating the solids from the liquids.

Fish, R.H.

1984-04-06T23:59:59.000Z

47

Trace metal capture by various sorbents during fluidized bed coal combustion  

SciTech Connect (OSTI)

Toxic trace metallic elements such as arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, and selenium are usually contained in coal in various forms and trace amounts. These metals will either stay in the ash or be vaporized during high temperature combustion. Portions of the vaporized metals may eventually be emitted from a combustion system in the form of metal fumes or particulates with diameters less than 1 micron, which are potentially hazardous to the environment. Current practice of controlling trace metal emissions during coal combustion employs conventional air pollution control devices (APCDs), such as electrostatic precipitators and baghouses, to collect fly ash and metal fumes. The control may not always be effective on metal fumes due to their extremely fine sizes. This study is to explore the opportunities for improved control of toxic trace metal emissions from coal-fired combustion systems. Specifically, the technology proposed is to employ suitable sorbents to reduce the amount of metal volatilization and capture volatilized metal vapors during fluidized bed coal combustion. The objective of the study was to investigate experimentally and theoretically the metal capture process.

Ho, T.C.; Ghebremeskel, A.N.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

1996-12-31T23:59:59.000Z

48

Drinking Water Problems: Arsenic  

E-Print Network [OSTI]

, including industrial and commercial facilities; 7 per- cent of these wells were unused. High arsenic con- centrations that are believed to be naturally occurring have been found in the southern High Plains (Ogallala aquifer), in several West Texas counties... treatment system will remove, its maintenance requirements and its costs. Treatment systems certified by an independent agency such as the National Sanitation Foundation (NSF) usually effectively live up to manufacturer?s claims. After well owners install a...

Lesikar, Bruce J.; Melton, Rebecca; Hare, Michael; Hopkins, Janie; Dozier, Monty

2005-12-02T23:59:59.000Z

49

Production of selenium-72 and arsenic-72  

DOE Patents [OSTI]

Methods and apparatus for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short.

Phillips, Dennis R. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

50

Production of selenium-72 and arsenic-72  

DOE Patents [OSTI]

Methods and apparatus for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short.

Phillips, Dennis R. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

51

Production of selenium-72 and arsenic-72  

DOE Patents [OSTI]

Methods and apparatus are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short. 2 figures.

Phillips, D.R.

1994-12-06T23:59:59.000Z

52

E-Print Network 3.0 - aromatic metal clusters Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cluster investigation were no different from levels... elevated levels of arsenic, tungsten and six additional metals as well as six nonpersistent pesticides... County Leukemia...

53

Production of selenium-72 and arsenic-72  

DOE Patents [OSTI]

Methods are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72.

Phillips, D.R.

1993-04-20T23:59:59.000Z

54

Arsenic in your water?: Economists study perceptions of risks from drinking water high in arsenic  

E-Print Network [OSTI]

Arsenic in water?your tx H2O | pg. 27 Story by Kathy Wythe Economists study perceptions of risks from drinking water high in arsenic In several ?hot spots? across the United States people may be drinking water with high levels of naturally... occurring arsenic without understanding the associated risks, according to agricultural economists. ?Many households in arsenic ?hot spots? are in fact being exposed to harmful doses of arsenic,? said Dr. Douglass Shaw, professor of agricultural...

Wythe, Kathy

2010-01-01T23:59:59.000Z

55

Arsenic in human history and modern societies  

SciTech Connect (OSTI)

Chapter 5 contains a section titled: Arsenic in coal and oil shale utilization and their by-products.

Kevin R. Henke; David A. Atwood [University of Kentucky, Lexington, KY (United States). Dept. of Chemistry

2009-03-15T23:59:59.000Z

56

Surface characterizatin of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas  

SciTech Connect (OSTI)

Coal gasification with subsequent cleanup of the resulting fuel gas is a way to reduce the impact of mercury and arsenic in the environment during power generation and on downstream catalytic processes in chemical production, The interactions of mercury and arsenic with PdlAl2D3 model thin film sorbents and PdlAh03 powders have been studied to determine the relative affinities of palladium for mercury and arsenic, and how they are affected by temperature and the presence of hydrogen sulfide in the fuel gas. The implications of the results on strategies for capturing the toxic metals using a sorbent bed are discussed.

Baltrus, J.P.; Granite, E.J.; Pennline, H.W.; Stanko, D.; Hamilton, H.; Rowsell, L.; Poulston, S.; Smith, A.; Chu, W.

2010-01-01T23:59:59.000Z

57

Abbreviations: As(V) Arsenate; As(III) Arsenite; MS Murashige and Skoog; PC Phytochelatin; SOD Superoxide dismutase Fig. 1 Inorganic forms of arsenic most prevalent in the  

E-Print Network [OSTI]

with metal ores of copper, lead and gold. Arsenate (AsV) and arsenite (AsIII) are the most common inorganic smeltering, coal combustion, mine tailings, hide tanning waste, dyes, chemical weapons and arsenic pesticides

Ma, Lena

58

Mineralogical characterization of steel industry hazardous waste and refractory sulfide ores for zinc and gold recovery processing  

SciTech Connect (OSTI)

The steel industry generates dust as a waste product from high temperature electric arc furnaces (EAF), which is a major step in processing scrap metal into steel. The Environmental Protection Agency (EPA) has classified EAF dust as KO61 hazardous waste, due to its lead, cadmium, and chromium content. The dust also contains valuable zinc, averaging 19%. Detailed mineralogical characterization show the zinc is present as crystals of franklinite-magnetite-jacobsite solid solutions in calcium-iron-silicate glass spheres and as zincite mostly as very small individual spheres. Much of the chromium is present in an insoluble form in solid solution in the iron spinels. This microscopic research is a valuable tool in determining treatment processes for the 600,000 tons of dust generated annually in the US. Refractory gold ores, pyrite and arsenopyrite, have been studied to determine additional, cost-effective methods of processing. One technique under investigation involves roasting sulfide mineral particles to hematite to create porosity through which a leach can permeate to recover the gold. Portlandite, Ca(OH)[sub 2], is added to the roast for retention of hazardous sulfur and arsenic. Modern microscopic and spectroscopic techniques, such electron spectroscopy for chemical analysis, cathodoluminescence microscopy, and electron microprobe, have been applied, as well as reflected light and dark field microscopy, and scanning electron microscopy to determine the mineralogy of the sulfur, arsenic, and iron phases, and the extent of porosity, permeability, and oxidation state of the ore particles at various roasting temperatures. It is concluded that mineralogical techniques can be effectively applied to the solution of environmental problems.

Hagni, A.M.; Hagni, R.D. (Univ. of Missouri, Rolla, MO (United States). Geology Geophysics Dept.)

1994-04-01T23:59:59.000Z

59

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, February--May 1995  

SciTech Connect (OSTI)

This report describes the activities of the project team during the reporting period. The principal work has focused upon the laboratory treatment of six wastes with three by-products and the evaluation of the stability of the resulting eighteen materials. Other efforts during the third quarter have been directed toward completion of the collection and analysis of by-products, the identification of a suitable fourth by-product, and the definition of the approach to the solidification tests. The activity on the project during the third quarter of Phase One has fallen into three major areas: acquiring and analyzing by-products; treating hazardous wastes with by-products in the laboratory and analyzing the results; and conducting administrative activities, including public relations and personnel additions. The hazardous wastes that are used include industrial wastewater treatment residue from battery manufacturing plant; contaminated soil from a remediation project conducted at a munitions depot; contaminated soil from a remediation project conducted at an abandoned industrial site; contaminated soil from a remediation project conducted at a former sewage treatment plant; air pollution control dust from basic oxygen furnace steel production; and air pollution control ash from municipal waste incineration.

NONE

1995-07-01T23:59:59.000Z

60

Hazard Baseline Documentation  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This standard establishes uniform Office of Environmental Management (EM) guidance on hazard baseline documents that identify and control radiological and non-radiological hazards for all EM facilities.

1995-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver  

SciTech Connect (OSTI)

A comprehensive thermodynamic database based on the Helgeson-Kirkham-Flowers (HKF) equation of state was developed for metal complexes in hydrothermal systems. Because this equation of state has been shown to accurately predict standard partial molal thermodynamic properties of aqueous species at elevated temperatures and pressures, this study provides the necessary foundation for future exploration into transport and depositional processes in polymetallic ore deposits. The HKF equation of state parameters for gold, arsenic, antimony, mercury, and silver sulfide and hydroxide complexes were derived from experimental equilibrium constants using nonlinear regression calculations. In order to ensure that the resulting parameters were internally consistent, those experiments utilizing incompatible thermodynamic data were re-speciated prior to regression. Because new experimental studies were used to revise the HKF parameters for H2S0 and HS-1, those metal complexes for which HKF parameters had been previously derived were also updated. It was found that predicted thermodynamic properties of metal complexes are consistent with linear correlations between standard partial molal thermodynamic properties. This result allowed assessment of several complexes for which experimental data necessary to perform regression calculations was limited. Oxygen fugacity-temperature diagrams were calculated to illustrate how thermodynamic data improves our understanding of depositional processes. Predicted thermodynamic properties were used to investigate metal transport in Carlin-type gold deposits. Assuming a linear relationship between temperature and pressure, metals are predicted to predominantly be transported as sulfide complexes at a total aqueous sulfur concentration of 0.05 m. Also, the presence of arsenic and antimony mineral phases in the deposits are shown to restrict mineralization within a limited range of chemical conditions. Finally, at a lesser aqueous sulfur concentration of 0.01 m, host rock sulfidation can explain the origin of arsenic and antimony minerals within the paragenetic sequence.

Bessinger, Brad; Apps, John A.

2003-03-23T23:59:59.000Z

62

Journal of Hazardous Materials B89 (2002) 213232 Characteristics of chromated copper  

E-Print Network [OSTI]

Journal of Hazardous Materials B89 (2002) 213­232 Characteristics of chromated copper arsenate. When chromated copper arsenate (CCA)-treated wood is present as part of the wood fuel mix, concentrations of arsenic, chromium, and copper become elevated in the ash. The objectives of this study were

Florida, University of

63

Removal of arsenic compounds from spent catecholated polymer  

DOE Patents [OSTI]

Described is a process for removing arsenic from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic bound to it from contacting petroliferous liquid as described above and involves: a. treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10 and, b. separating the solids and liquids from each other. Preferably the regeneration treatment is in two steps wherein step (a) is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, steps (a) and (b) are repeated using a bicarbonate.

Fish, Richard H. (Berkeley, CA)

1985-01-01T23:59:59.000Z

64

Hazardous Waste Management Training  

E-Print Network [OSTI]

Hazardous Waste Management Training Persons (including faculty, staff and students) working with hazardous materials should receive annual training that addresses storage, use, and disposal of hazardous before handling hazardous waste. Departments are re- quired to keep records of training for as long

Dai, Pengcheng

65

HAZARDOUS MATERIALS EMERGENCY RESPONSE  

E-Print Network [OSTI]

ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

66

Track 3: Exposure Hazards  

Broader source: Energy.gov [DOE]

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

67

Method and apparatus for reclaiming metal values from electric arc furnace flue dust and sludge and rendering residual solids recyclable or non-hazardous  

SciTech Connect (OSTI)

This patent describes an apparatus for treating dust and sludge contaminated with heavy metals and heavy metal oxides, comprising: waste material storage means; a mixer; means communicating with the waste material storage means and the mixer for introducing the waste material, solid carbonaceous material, and an organic binder to the mixer; a pelletizing device; means for introducing material from the mixer into the pelletizing device; pelletizer discharge means; an inclined rotary reduction smelter vessel having a charging and pouring opening in one end thereof; means for introducing pellets from the pelletizer discharge means to the rotary reduction smelter vessel; retractable burner means for heating the interior of the smelter vessel; means for rotating the smelter vessel about its inclined axis; and means for tilting the smelter vessel about a horizontal axis.

Bishop, N.G.; Bottinelli, N.E.; Kotraba, N.L.

1988-07-19T23:59:59.000Z

68

Biogenic formation of photoactive arsenic-sulfide nanotubes by...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41 . Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41 ....

69

Controls on arsenic mobility in contaminated wetland and riverbed streams  

E-Print Network [OSTI]

Arsenic mobility and transport in the environment are strongly influenced by associations with solid phases. This dissertation investigates the mechanisms affecting arsenic retention in contaminated wetland and riverbed ...

Keon, Nicole E. (Nicole Elise), 1974-

2002-01-01T23:59:59.000Z

70

arsenic health effects: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Sciences and Ecology Websites Summary: HealthUC Berkeley, School of Public Health 12;WORLDWIDE ARSENIC EXPOSURE 12;Why Should You Care? 12ARSENIC IN...

71

arsenic oxides: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

can Sparks, Donald L. 4 Bacteria-Mediated Arsenic Oxidation and Reduction in the Growth Media of Arsenic Hyperaccumulator Pteris vittata Environmental Management and Restoration...

72

Method of arsenic removal from water  

DOE Patents [OSTI]

A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

Gadgil, Ashok (El Cerrito, CA)

2010-10-26T23:59:59.000Z

73

Integrated Biogeochemical and Hydrologic Processes Driving Arsenic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biogeochemical and Hydrologic Processes Driving Arsenic Release from Shallow Sediments to Groundwaters of the Mekong Integrated Biogeochemical and Hydrologic Processes Driving...

74

In-tank recirculating arsenic treatment system  

DOE Patents [OSTI]

A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

Brady, Patrick V. (Albuquerque, NM); Dwyer, Brian P. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM); Chwirka, Joseph D. (Tijeras, NM)

2009-04-07T23:59:59.000Z

75

Georgia Hazardous Waste Management Act  

Broader source: Energy.gov [DOE]

The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

76

Hazardous Waste Management (Arkansas)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7...

77

Hazardous Waste Management (Delaware)  

Broader source: Energy.gov [DOE]

The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

78

Hazard Analysis Database report  

SciTech Connect (OSTI)

This document describes and defines the Hazard Analysis Database for the Tank Waste Remediation System Final Safety Analysis Report.

Niemi, B.J.

1997-08-12T23:59:59.000Z

79

Hazard analysis results report  

SciTech Connect (OSTI)

This document describes and defines the Hazard Analysis Results for the Tank Waste Remediation System Final Safety Analysis Report.

Niemi, B.J., Westinghouse Hanford

1996-09-30T23:59:59.000Z

80

WEATHER HAZARDS Basic Climatology  

E-Print Network [OSTI]

Prediction Center (SPC) Watch Atmospheric conditions are right for hazardous weather ­ hazardous weather is likely to occur Issued by SPC Warning Hazardous weather is either imminent or occurring Issued by local NWS office #12;Outlooks--SPC Storm Prediction Center (SPC) Outlook=Convective Outlook Day 1 Day 2

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Metal articles having ultrafine particles dispersed therein  

SciTech Connect (OSTI)

This patent describes a metal article of manufacture. It comprises: a metal selected from the group consisting of copper, silver, gold, lead, tin, nickel, zinc, cobalt, antimony, bismuth, iron, cadmium, chromium, germanium, gallium, selenium, tellurium, mercury, tungsten arsenic, manganese, iridium, indium, ruthenium, rhenium, rhodium, molybdenum, palladium, osmium and platinum; and a plurality of ultrafine particles.

Alexander, G.B.; Nadkarni, R.A.

1992-07-28T23:59:59.000Z

82

E-Print Network 3.0 - arsenic metabolism neurological Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: arsenic metabolism neurological Page: << < 1 2 3 4 5 > >> 1 Associations Between Drinking Water and Urinary Arsenic Levels and Skin Lesions in Summary: arsenic levels,...

83

Doctoral Defense "Biogeochemical evaluation of disposal options for arsenic-  

E-Print Network [OSTI]

of arsenic. Arsenic contamination is particularly severe in Bangladesh and India, where access to landfills from groundwater in West Bengal, India. Under a range of leaching tests, determinants of arsenic fate in non-landfill disposal conditions and provide additional insight on arsenic

Kamat, Vineet R.

84

Hazard Analysis Database Report  

SciTech Connect (OSTI)

The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for U S . Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR). The FSAR is part of the approved Authorization Basis (AB) for the River Protection Project (RPP). This document describes, identifies, and defines the contents and structure of the Tank Farms FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The Hazard Analysis Database supports the preparation of Chapters 3 ,4 , and 5 of the Tank Farms FSAR and the Unreviewed Safety Question (USQ) process and consists of two major, interrelated data sets: (1) Hazard Analysis Database: Data from the results of the hazard evaluations, and (2) Hazard Topography Database: Data from the system familiarization and hazard identification.

GRAMS, W.H.

2000-12-28T23:59:59.000Z

85

Ferrihydrite as an Enterosorbent for Arsenic  

E-Print Network [OSTI]

Arsenic in drinking water is a problem in many developing nations such as Taiwan and Bangladesh. Currently, no oral binding agent exists for the mitigation of arsenic toxicity. The goals of this research were to 1) screen a variety of sorbents...

Taylor, John Floyd

2012-02-14T23:59:59.000Z

86

Hazardous Materials and Controlled Hazardous Substances (Maryland)  

Broader source: Energy.gov [DOE]

A permit is required to own, establish, operate, or maintain a facility in the state of Maryland that transfers quantities of a single hazardous material in excess of 100,000 pounds at any time...

87

On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage  

SciTech Connect (OSTI)

If carbon dioxide stored in deep saline aquifers were to leak into an overlying aquifer containing potable groundwater, the intruding CO{sub 2} would change the geochemical conditions and cause secondary effects mainly induced by changes in pH In particular, hazardous trace elements such as lead and arsenic, which are present in the aquifer host rock, could be mobilized. In an effort to evaluate the potential risks to potable water quality, reactive transport simulations were conducted to evaluate to what extent and mechanisms through which lead and arsenic might be mobilized by intrusion of CO{sub 2}. An earlier geochemical evaluation of more than 38,000 groundwater quality analyses from aquifers throughout the United States and an associated literature review provided the basis for setting up a reactive transport model and examining its sensitivity to model variation. The evaluation included identification of potential mineral hosts containing hazardous trace elements, characterization of the modal bulk mineralogy for an arenaceous aquifer, and augmentation of the required thermodynamic data. The reactive transport simulations suggest that CO{sub 2} ingress into a shallow aquifer can mobilize significant lead and arsenic, contaminating the groundwater near the location of intrusion and further downstream. Although substantial increases in aqueous concentrations are predicted compared to the background values, the maximum permitted concentration for arsenic in drinking water was exceeded in only a few cases, whereas that for lead was never exceeded.

Zheng, L.; Apps, J.A.; Zhang, Y.; Xu, T.; Birkholzer, J.T.

2009-07-01T23:59:59.000Z

88

Arsenic distribution in soils surrounding the Utah copper smelter  

SciTech Connect (OSTI)

We investigated the extent of arsenic contamination from a Utah copper smelter as reflected by arsenic residue accumulated in the surface soil. The highest arsenic concentrations occurred within 3 km of the smelter. Arsenic soil contamination was evident up to 10 km from the smelter, with the major transport direction being ESE. Data from the subsurface soil samples indicated that arsenic has also leached through the soil.

Ball, A.L. (Univ. of Utah Coll. of Engineering, Salt Lake City); Rom, W.N.; Glenne, B.

1983-05-01T23:59:59.000Z

89

Speciation of Arsenic in An Anaerobic Treatment System at a Pb-Zn Smelter Site, Gold Roaster Products, Cu Smelter Stack Dust And Impacted Soil  

SciTech Connect (OSTI)

Mining and metallurgical processing of gold and base metal ores often results in solid wastes and effluents containing high concentrations of arsenic. In addition, arsenic can be released to the atmosphere from gold roasters and base metal smelters. Speciation of arsenic in roaster products, in a stack sample from a copper smelter, in organic soils impacted by smelter emissions, and in an anaerobic effluent treatment system at a smelter site was determined in order to broaden our understanding of the nature and occurrence of arsenic in a wider range of metallurgical wastes. Micro-XANES spectra obtained from iron oxide particles forming in a gold roaster indicate preferential enrichment of As{sup 3+} species in maghemite-rich domains and microlayers. In comparison, haematite-rich iron oxide particles are dominated by As{sup 5+} species. It appears that maghemite is retarding oxidation of arsenic and its volatilisation during roasting. Arsenic occurs as both As{sup 3+} and As{sup 5+} species in a stack sample emitted from a Cu smelter, confined to fine-grained secondary product layers accumulated on the surfaces of spherical Cu particles. This is probably resulting from condensation of As species upon cooling following their volatilisation during the combustion process. Soil samples collected at various distances from the Cu smelter are dominated by As{sup 5+} species including monomethylarsonic acid and tetramethylarsonium iodide as the organic arsenic species. The presence of reduced As{sup 3+} species highlights the importance of organic material influencing the speciation of arsenic and mineralogical transformations taking place within the soil profile. The XANES spectra indicate that arsenic occurs predominantly as aqueous arsenite species in the anaerobic treatment system, contrary to the conventional thinking of As retention by the formation of secondary sulfides.

Paktunc, D.

2009-05-28T23:59:59.000Z

90

Speciation of arsenic in an anaerobic treatment system at a Pb-Zn smelter site, gold roaster products, Cu smelter stack dust and impacted soil  

SciTech Connect (OSTI)

Mining and metallurgical processing of gold and base metal ores often results in solid wastes and effluents containing high concentrations of arsenic. In addition, arsenic can be released to the atmosphere from gold roasters and base metal smelters. Speciation of arsenic in roaster products, in a stack sample from a copper smelter, in organic soils impacted by smelter emissions, and in an anaerobic effluent treatment system at a smelter site was determined in order to broaden our understanding of the nature and occurrence of arsenic in a wider range of metallurgical wastes. Micro-XANES spectra obtained from iron oxide particles forming in a gold roaster indicate preferential enrichment of As{sup 3+} species in maghemite-rich domains and microlayers. In comparison, haematite-rich iron oxide particles are dominated by As{sup 5+} species. It appears that maghemite is retarding oxidation of arsenic and its volatilisation during roasting. Arsenic occurs as both As{sup 3+} and As{sup 5+} species in a stack sample emitted from a Cu smelter, confined to fine-grained secondary product layers accumulated on the surfaces of spherical Cu particles. This is probably resulting from condensation of As species upon cooling following their volatilisation during the combustion process. Soil samples collected at various distances from the Cu smelter are dominated by As{sup 5+} species including monomethylarsonic acid and tetramethylarsonium iodide as the organic arsenic species. The presence of reduced As{sup 3+} species highlights the importance of organic material influencing the speciation of arsenic and mineralogical transformations taking place within the soil profile. The XANES spectra indicate that arsenic occurs predominantly as aqueous arsenite species in the anaerobic treatment system, contrary to the conventional thinking of As retention by the formation of secondary sulfides.

Paktunc, D. (CCM)

2008-09-30T23:59:59.000Z

91

Increased lung cancer risks are similar whether arsenic is ingested ALLAN H. SMITHa  

E-Print Network [OSTI]

and workers inhaling arsenic in copper smelters (IARC, 1980). At the same time that arsenic inhalation smelter workers inhaling arsenic, and a lung cancer case­control study involving ingestion of arsenic

California at Berkeley, University of

92

Hazardous Wastes Management (Alabama)  

Broader source: Energy.gov [DOE]

This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

93

Surveillance Guides - Hazards Control  

Broader source: Energy.gov (indexed) [DOE]

briefings adequately address controls for the identified hazards? Examples would be lockouttagout requirements, hold points, confined space, radiological work permits, fire...

94

Radiation Hazards Program (Minnesota)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

95

Hazardous Material Security (Maryland)  

Broader source: Energy.gov [DOE]

All facilities processing, storing, managing, or transporting hazardous materials must be evaluated every five years for security issues. A report must be submitted to the Department of the...

96

ARSENIC HYPERACCUMULATION BY Pteris vittata L. AND ITS POTENTIAL FOR PHYTOREMEDIATION OF ARSENIC-CONTAMINATED SOILS  

E-Print Network [OSTI]

needed assistance in harvesting ferns and soil sampling. I also wish to thank the past and present ...............................................................................................8 Arsenic in Water.................

Ma, Lena

97

Electrochemical arsenic remediation for rural Bangladesh  

SciTech Connect (OSTI)

Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water collected from three regions to below the WHO limit of 10 mu g=L. Prototype fabrication and field testing are currently underway.

Addy, Susan Amrose

2009-01-01T23:59:59.000Z

98

Stabilization solutions to hazardous metals laden waste  

SciTech Connect (OSTI)

This paper is limited to treatment of bottom and fly ash waste resulting from WTE and RTE Cogeneration plants, commonly known as trash burners. The body of the paper defines waste generation and conventional treatment schemes. This paper does not identify a best treatment, however, it does offer a general perspective of the treatments to lead the reader to further investigation. Advantages and disadvantages of the ash treatments is discussed in each treatment section. 29 refs., 1 fig.

Kramer, M. [Ashland Chemical Co., Boonton, NJ (United States)

1996-12-31T23:59:59.000Z

99

K Basin Hazard Analysis  

SciTech Connect (OSTI)

The K East (KE)/K West (KW) Basins in the 100 K Area of the Hanford Site have been used for storage of irradiated N Reactor and single-pass reactor fuel. Remaining spent fuel is continuing to be stored underwater in racks and canisters in the basins while fuel retrieval activities proceed to remove the fuel from the basins. The Spent Nuclear Fuel (SNF) Project is adding equipment to the facility in preparation for removing the fuel and sludge from the basins In preparing this hazard analysis, a variety of hazard analysis techniques were used by the K Basins hazard analysis team, including hazard and operability studies, preliminary hazard analyses, and ''what if'' analyses (WHC-SD-SNF-PHA-001, HNF-2032, HNF-2456, and HNF-SD-SNF-SAD-002). This document summarizes the hazard analyses performed as part of the safety evaluations for the various modification projects and combines them with the original hazard analyses to create a living hazard analysis document. As additional operational activities and modifications are developed, this document will be updated as needed to ensure it covers all the hazards at the K Basins in a summary form and to ensure the subsequent safety analysis is bounding. This hazard analysis also identifies the preliminary set of design features and controls that the facility could rely on to prevent or reduce the frequency or mitigate consequences of identified accident conditions based on their importance and significance to safety. The operational controls and institutional programs relied on for prevention or mitigation of an uncontrolled release are identified as potential technical safety requirements. All operational activities and energy sources at the K Basins are evaluated in this hazard analysis. Using a systematic approach, this document identifies hazards created by abnormal operating conditions and external events (e.g., earthquakes) that have the potential for causing undesirable consequences to the facility worker, the onsite individual, or the public. This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and complies with the requirements of 10 CFR 830.

SEMMENS, L.S.

2001-04-20T23:59:59.000Z

100

Urinary arsenic profile affects the risk of urothelial carcinoma even at low arsenic exposure  

SciTech Connect (OSTI)

Arsenic exposure is associated with an increased risk of urothelial carcinoma (UC). To explore the association between individual risk and urinary arsenic profile in subjects without evident exposure, 177 UC cases and 313 age-matched controls were recruited between September 2002 and May 2004 for a case-control study. Urinary arsenic species including the following three categories, inorganic arsenic (As{sup III} + As{sup V}), monomethylarsonic acid (MMA{sup V}) and dimethylarsinic acid (DMA{sup V}), were determined with high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Arsenic methylation profile was assessed by percentages of various arsenic species in the sum of the three categories measured. The primary methylation index (PMI) was defined as the ratio between MMA{sup V} and inorganic arsenic. Secondary methylation index (SMI) was determined as the ratio between DMA{sup V} and MMA{sup V}. Smoking is associated with a significant risk of UC in a dose-dependent manner. After multivariate adjustment, UC cases had a significantly higher sum of all the urinary species measured, higher percent MMA{sup V}, lower percent DMA{sup V}, higher PMI and lower SMI values compared with controls. Smoking interacts with the urinary arsenic profile in modifying the UC risk. Differential carcinogenic effects of the urinary arsenic profile, however, were seen more prominently in non-smokers than in smokers, suggesting that smoking is not the only major environmental source of arsenic contamination since the UC risk differs in non-smokers. Subjects who have an unfavorable urinary arsenic profile have an increased UC risk even at low exposure levels.

Pu, Y.-S. [Department of Urology, National Taiwan University College of Medicine, Taipei, Taiwan (China); Yang, S.-M. [Graduate Institute of Public Health, Taipei Medical University, Taipei, Taiwan (China); Huang, Y.-K. [Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan (China); Chung, C.-J. [Graduate Institute of Public Health, Taipei Medical University, Taipei, Taiwan (China); Huang, Steven K. [Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, Chi-Mei Medical Center, Tainan, Taiwan (China); Chiu, Allen Wen-Hsiang [Department of Urology, Chi-Mei Medical Center, Tainan, Taiwan (China); Department of Urology, Taipei City Hospital, Taipei, Taiwan (China); Yang, M.-H. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu, Taiwan (China); Chen, C.-J. [Graduate Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Hsueh, Y.-M. [Department of Public Health, School of Medicine, Taipei Medical University, Taipei, No. 250 Wu-Hsing Street, Taipei 110, Taiwan (China)]. E-mail: ymhsueh@tmu.edu.tw

2007-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Spectroscopic and Microspectroscopic Investigation of Arsenic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arsenic Speciation and Distribution in Mine Wastes Monday, June 30, 2014 Figure 1. Micro-XRF maps of the (a) 250-500 m, (b) 75-125 m, (c) 32-45 m, and (d) <20 m size...

102

Organic and inorganic hazardous waste stabilization using combusted oil shale  

SciTech Connect (OSTI)

A laboratory study was conducted at the Western Research Institute to evaluate the ability of combusted oil shale to stabilize organic and inorganic constituents of hazardous wastes. The oil shale used in the research was a western oil shale retorted in an inclined fluidized-bed reactor. Two combustion temperatures were used, 1550{degrees}F and 1620{degrees}F (843{degrees}C and 882{degrees}C). The five wastes selected for experimentation were an API separator sludge, creosote-contaminated soil, mixed metal oxide/hydroxide waste, metal-plating sludge, and smelter dust. The API separator sludge and creosote-contaminated soil are US EPA-listed hazardous wastes and contain organic contaminants. The mixed metal oxide/hydroxide waste, metal-plating sludge (also an EPA-listed waste), and smelter dust contain high concentrations of heavy metals. The smelter dust and mixed metal oxide/hydroxide waste fail the Toxicity Characteristic Leaching Procedure (TCLP) for cadmium, and the metalplating sludge fails the TCLP for chromium. To evaluate the ability of the combusted oil shales to stabilize the hazardous wastes, mixtures involving varying amounts of each of the shales with each of the hazardous wastes were prepared, allowed to equilibrate, and then leached with deionized, distilled water. The leachates were analyzed for the hazardous constituent(s) of interest.

Sorini, S.S.; Lane, D.C.

1991-04-01T23:59:59.000Z

103

Workshop overview: Arsenic research and risk assessment  

SciTech Connect (OSTI)

The chronic exposure of humans through consumption of high levels of inorganic arsenic (iAs)-contaminated drinking water is associated with skin lesions, peripheral vascular disease, hypertension, and cancers. Additionally, humans are exposed to organic arsenicals when used as pesticides and herbicides (e.g., monomethylarsonic acid, dimethylarsinic acid (DMA{sup V}) also known as cacodylic acid). Extensive research has been conducted to characterize the adverse health effects that result from exposure to iAs and its metabolites to describe the biological pathway(s) that lead to adverse health effects. To further this effort, on May 31, 2006, the United States Environmental Protection Agency (USEPA) sponsored a meeting entitled 'Workshop on Arsenic Research and Risk Assessment'. The invited participants from government agencies, academia, independent research organizations and consultants were asked to present their current research. The overall focus of these research efforts has been to determine the potential human health risks due to environmental exposures to arsenicals. Pursuant in these efforts is the elucidation of a mode of action for arsenicals. This paper provides a brief overview of the workshop goals, regulatory context for arsenical research, mode of action (MOA) analysis in human health risk assessment, and the application of MOA analysis for iAs and DMA{sup V}. Subsequent papers within this issue will present the research discussed at the workshop, ensuing discussions, and conclusions of the workshop.

Sams, Reeder [Integrated Risk Information System Program, National Center for Environmental Assessment, MC: B-243 01, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)], E-mail: sams.reeder@epa.gov; Wolf, Douglas C. [Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Ramasamy, Santhini; Ohanian, Ed [Health and Ecological Criteria Division, Office of Science and Technology, Office of Water, United States Environmental Protection Agency, Washington, DC 20460 (United States); Chen, Jonathan [Antimicrobials Division, Office of Pesticide Programs, United States Environmental Protection Agency, Washington, DC 20460 (United States); Lowit, Anna [Health Effects Division, Office of Pesticide Programs, United States Environmental Protection Agency, Washington, DC 20460 (United States)

2007-08-01T23:59:59.000Z

104

Hazardous Waste Management (New Mexico)  

Broader source: Energy.gov [DOE]

The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

105

Hazardous Sites Cleanup Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

This Act tasks the Pennsylvania Department of Environmental Protection with regulating hazardous waste. The department is charged with siting, review, permitting and development of hazardous waste...

106

Arsenic removal from gaseous streams  

SciTech Connect (OSTI)

Uranium feed materials, depending on the production process, have been found to contain arsenic (As) as a contaminant. Analyses show the As to be present as As pentafluoride (AsF{sub 5}) and/or hexafluoroarsenic acid (HAsF{sub 6}) and enter the enrichment cycle through contaminated hydrogen fluoride (HF). Problems related to corrosion of cylinder valves and plugging of feed lines and valves have been attributed to the As. Techniques to separate AsF{sub 5} from uranium hexafluoride (UF{sub 6}) using sodium fluoride (NaF) as a trapping media were successful and will be discussed. Procedures to significantly reduce (up to 97%) the level of As in HF will also be reported. 5 figs., 9 tabs.

Russell, R.G.; Otey, M.G.

1989-11-22T23:59:59.000Z

107

In Situ Iron Oxide Emplacement for Groundwater Arsenic Remediation  

E-Print Network [OSTI]

for additional arsenic removal. Several bench-scale experiments revealed that the resultant IOCS could treat arsenic-laden groundwater for extended periods of time before approaching its effective life cycle. The adsorption capacity for As(III) and As...

Abia, Thomas Sunday

2012-02-14T23:59:59.000Z

108

Release of Arsenic to the Environment from CCA-Treated  

E-Print Network [OSTI]

a one-year period, rainwater runoff from the decks and rainwater infiltrating through 0.7 m of sand below the decks was collected and analyzed for arsenic species by HPLC-ICP-MS. The average arsenic

Florida, University of

109

Outcomes of Chronic Arsenic Exposure on Aquatic Insects  

E-Print Network [OSTI]

sp. from an old arsenic smelter site. Applied Organometallicants from an old arsenic smelter site, Kuehnelt et al. (and a long history of smelters releasing copper as an air

Mogren, Christina Loraine

2013-01-01T23:59:59.000Z

110

Solid materials for removing arsenic and method thereof  

SciTech Connect (OSTI)

Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

Coronado, Paul R. (Livermore, CA); Coleman, Sabre J. (Oakland, CA); Sanner, Robert D. (Livermore, CA); Dias, Victoria L. (Livermore, CA); Reynolds, John G. (San Ramon, CA)

2010-09-28T23:59:59.000Z

111

Solid materials for removing arsenic and method thereof  

DOE Patents [OSTI]

Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

Coronado, Paul R. (Livermore, CA); Coleman, Sabre J. (Oakland, CA); Sanner, Robert D. (Livermore, CA); Dias, Victoria L. (Livermore, CA); Reynolds, John G. (San Ramon, CA)

2008-07-01T23:59:59.000Z

112

Hazardous Waste Management (Michigan)  

Broader source: Energy.gov [DOE]

A person shall not generate, dispose, store, treat, or transport hazardous waste in this state without complying with the requirements of this article. The department, in the conduct of its duties...

113

Hazardous Waste Management (Oklahoma)  

Broader source: Energy.gov [DOE]

This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

114

Proceedings Hazards and Disasters  

E-Print Network [OSTI]

Liang-Chun Chen, Jie-Ying Wu, Yi-Chung Liu, Sung-Ying Chien HAZARDS EDUCATION BY GEOGRAPHERS: A DECADE-DISASTER CONDOMINIUM HOUSING RECONSTRUCTION AND HOUSEHOLD CHARACTERISTICS............. 35 Jie-Ying Wu, Liang-Chun Chen

Wang, Hai

115

K Basins Hazard Analysis  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

WEBB, R.H.

1999-12-29T23:59:59.000Z

116

K Basin Hazard Analysis  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

PECH, S.H.

2000-08-23T23:59:59.000Z

117

Automated Job Hazards Analysis  

Broader source: Energy.gov [DOE]

AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.

118

ORIGINAL PAPER Fractionation and speciation of arsenic in fresh  

E-Print Network [OSTI]

Coal waste Á Arsenic Á Species Á HPLC-ICP-MS Á Environmental pollution Introduction Arsenic (As to harm- ful levels in air, water, food, and forage (Blssen and Frimmel 2003; Yudovich and Ketris 2005, such as coal-mining activities, and to understand the fate of arsenic following environmen- tal release

Hu, Qinhong "Max"

119

A Chemical Stain for Identifying Arsenic-Treated Wood  

E-Print Network [OSTI]

A Chemical Stain for Identifying Arsenic-Treated Wood (FINAL) Submitted June 23, 2006 Amy Omae.2 Motivation 4 I.3 Objectives 5 CHAPTER II, DEVELOPMENT OF A CHEMICAL STAIN FOR IDENTIFYING ARSENIC-TREATED Applications 22 II.5 Resulting Stain to Identify Arsenic-Treated Wood and Methods of Testing 25 CHAPTER III

Florida, University of

120

Lung Cancer and Arsenic Concentrations in Drinking Water in Chile  

E-Print Network [OSTI]

Lung Cancer and Arsenic Concentrations in Drinking Water in Chile Catterina Ferreccio,1,2 Claudia in northern Chile had arsenic concentrations of 860 g/liter in drinking water in the period 1958­1970. Concen and arsenic in drinking water in northern Chile in a case-control study involving patients diagnosed with lung

California at Berkeley, University of

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Arsenic in drinking water Increases mortality from cardiovascular disease  

E-Print Network [OSTI]

Arsenic in drinking water Increases mortality from cardiovascular disease Allan H Smith professor of inorganic arsenic in drinking water causes cancer of the skin, bladder, lung, liver, and kidney.1 2 Mounting of a link between cardiovascular disease and arsenic in drinking water came in 1980 from Antofagasta, Chile

California at Berkeley, University of

122

Arsenic (+ 3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice  

SciTech Connect (OSTI)

Arsenic (+ 3 oxidation state) methyltransferase (As3mt) catalyzes formation of mono-, di-, and tri-methylated metabolites of inorganic arsenic. Distribution and retention of arsenic were compared in adult female As3mt knockout mice and wild-type C57BL/6 mice using a regimen in which mice received daily oral doses of 0.5 mg of arsenic as arsenate per kilogram of body weight. Regardless of genotype, arsenic body burdens attained steady state after 10 daily doses. At steady state, arsenic body burdens in As3mt knockout mice were 16 to 20 times greater than in wild-type mice. During the post dosing clearance period, arsenic body burdens declined in As3mt knockout mice to {approx} 35% and in wild-type mice to {approx} 10% of steady-state levels. Urinary concentration of arsenic was significantly lower in As3mt knockout mice than in wild-type mice. At steady state, As3mt knockout mice had significantly higher fractions of the body burden of arsenic in liver, kidney, and urinary bladder than did wild-type mice. These organs and lung had significantly higher arsenic concentrations than did corresponding organs from wild-type mice. Inorganic arsenic was the predominant species in tissues of As3mt knockout mice; tissues from wild-type mice contained mixtures of inorganic arsenic and its methylated metabolites. Diminished capacity for arsenic methylation in As3mt knockout mice prolongs retention of inorganic arsenic in tissues and affects whole body clearance of arsenic. Altered retention and tissue tropism of arsenic in As3mt knockout mice could affect the toxic or carcinogenic effects associated with exposure to this metalloid or its methylated metabolites.

Hughes, Michael F.; Edwards, Brenda C.; Herbin-Davis, Karen M. [Pharmacokinetics Branch, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Saunders, Jesse; Styblo, Miroslav [Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Thomas, David J., E-mail: thomas.david@epa.gov [Pharmacokinetics Branch, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

2010-12-15T23:59:59.000Z

123

DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites  

SciTech Connect (OSTI)

The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites.

Not Available

1989-03-01T23:59:59.000Z

124

HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY  

E-Print Network [OSTI]

- Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL: Generator Building Dept. Please fill out the hazardous waste label on line and download labels on to a plainHAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non

Schaefer, Marcus

125

Hazardous Waste Disposal Sites (Iowa)  

Broader source: Energy.gov [DOE]

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

126

State of Colorado Wildfire Hazard  

E-Print Network [OSTI]

State of Colorado Wildfire Hazard Mitigation Plan Colorado Multi-Hazards Mitigation Plan July 2002 the May 2001 Report to the Governor, Colorado Wildland Urban Interface; Section 2 includes the Hazard the status of the Wildland Urban Interface in Colorado; the hazards that exist; mitigation measures

127

Chemical process hazards analysis  

SciTech Connect (OSTI)

The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

NONE

1996-02-01T23:59:59.000Z

128

Identification of Aircraft Hazards  

SciTech Connect (OSTI)

Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

K. Ashley

2006-12-08T23:59:59.000Z

129

Residues of lead, cadmium, and arsenic in livers of Mexican free-tailed bats  

SciTech Connect (OSTI)

Since 1936, the size of the summer population of Mexican free-tailed bats, Tadarida brasiliensisat Carlsbad Caverns, New Mexico, declined from an estimated 8.7 million to 700,000 in 1991. This decline has been attributed primarily to human disturbance and the heavy agricultural use of organochlorine pesticides. Members of this species forage extensively over heavily agricultural areas, feeding on insects potentially contaminated with high levels of insecticides and trace metals. However, contamination from elements such as lead, cadmium, and arsenic have not been examined. The accumulation of these elements in wild vertebrates is often a primary reflection of contamination of the food supply. The presence of elemental contaminants in body tissues of bats is poorly documented. The objectives of this study were to examine and compare lead, cadmium, and arsenic contamination in livers of adult T. Brasiliensis from Carlsbad Caverns and Vickery Cave, a maternity colony in northwestern Oklahoma. Lead, cadmium, and arsenic were specifically selected because of their documented toxic and/or reproductive effects and their potential availability to this species. Large quantities of tetraethyl lead have been released into the environment and other lead compounds continue to be released by industrial manufacturing and petroleum refinement processes. Cadmium is used in a number of industrial processes such as metal plating and fabrication of alloys and is released from phosphate fertilizers and combusted coals. Teratogenicity appears to be greater for cadmium than for other elements. Arsenical compounds have been commonly used as herbicides and defoliants. These compounds have been demonstrated to cause abnormal embryonic development, degenerative tissue changes, cancer, chromosomal damage, and death in domestic animals.

Thies, M.; Gregory, D. (Oklahoma State Univ., Stillwater (United States))

1994-05-01T23:59:59.000Z

130

Method and apparatus for using hazardous waste form non-hazardous aggregate  

SciTech Connect (OSTI)

This patent describes an apparatus for converting hazardous waste into non-hazardous, non-leaching aggregate, the apparatus. It comprises: a source of particulate solid materials, volatile gases and gaseous combustion by-products; oxidizing means comprising at least one refractory-lined, water-cooled, metal-walled vessel; means for introducing the particulate solid material, volatile gases and gaseous combustion by-products to the oxidizing means; means for inducing combustion in the oxidizing means, the heat of combustion forming molten slag and noncombustible fines from noncombustible material; means for accumulating the slag; means for introducing the noncombustible fines to the molten slag; means for removing the mixture from the apparatus; and means for cooling the mixture to form the non-hazardous, non-leaching aggregates.

Kent, J.M.; Robards, H.L. Jr.

1992-07-28T23:59:59.000Z

131

Arsenic biomineralization: The role of the sulfur cycle in preventing arsenic  

E-Print Network [OSTI]

contamination Lucia Rodriguez-Freire Dr. James A Field and Dr. Reyes Sierra-Alvarez Chemical and Environmental of sulfur cycle in preventing arsenic groundwater contamination Lucia Rodriguez-Freire 1 1. Introduction

Fay, Noah

132

ARSENIC UPTAKE BY TWO HYPERACCUMULATOR FERNS FROM FOUR ARSENIC CONTAMINATED SOILS  

E-Print Network [OSTI]

(Cai et al., 2002). Smelting and mining sites are often significant sources Water, Air, and Soil Pollution (2005) 168: 71­89 C Springer 2005 #12;72 A. O. FAYIGA AND L. Q. MA of arsenic contamination

Ma, Lena

133

Arsenic species in soil solution and plant uptake of arsenic under flooded conditions  

E-Print Network [OSTI]

, fresh and salt waters, and soils. Sources of As in the environment include the weathering of As bearing minerals, stack gases from smelters, fly ash from coal burning plants, and the application of various agriculturally important compounds... Arsenic is present in over 200 naturally occurring minerals and is commonly found in conjunction with iron, copper, and cobalt ores, as well as sedimentary deposits such as coal. Arsenic is released to the environment with the weathering, burning...

Onken, Blake Morgan

1988-01-01T23:59:59.000Z

134

Environmental Hazards and  

E-Print Network [OSTI]

. 2. Pollution -Mexico. 3. Transboundary pollution. 4. Conservation of natural resources - UnitedEnvironmental Hazards and Bioresource Management in the United States- Mexico Borderlands Edited. -(Special studies ;v. 3) Includes bibliographical references. ISBN 0-87903-503-X 1. Pollution -United States

Murphy, Bob

135

E-Print Network 3.0 - acute arsenic exposure Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chloride 100-44-7) and benzoyl chloride 98-88-4 (combined exposures) IARC-2A Acrolein Acutely... OSHAReproToxin Arsenic 7440-38-2 and arsenic compounds IARC-1 Arsenic...

136

The modeling of arsenic removal from contaminated water using coagulation and sorption  

E-Print Network [OSTI]

To achieve predictive capability for complex environmental systems with coagulation and arsenic sorption, a unified improved coagulation model coupled with arsenic sorption was developed. A unified coagulation model coupled with arsenic sorption...

Kim, Jin-Wook

2005-11-01T23:59:59.000Z

137

Missouri Hazardous Waste Management Law (Missouri)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

138

Author's personal copy Arsenic-resistant bacteria solubilized arsenic in the growth media  

E-Print Network [OSTI]

such as diabetes, skin diseases, and nervous and cardio- vascular problems (Vahter, 2007). The health hazards

Ma, Lena

139

Hazardous Waste Management (North Dakota)  

Broader source: Energy.gov [DOE]

The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and...

140

Montana Hazardous Waste Act (Montana)  

Broader source: Energy.gov [DOE]

This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental...

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites. Final report and users` guide  

SciTech Connect (OSTI)

The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites.

Not Available

1989-03-01T23:59:59.000Z

142

QUANTIFICATION OF POTENTIAL ARSENIC BIOAVAILABILITY IN SPATIALLY VARYING GEOLOGIC ENVIRONMENTS AT THE WATERSHED SCALE USING CHELATING RESINS  

E-Print Network [OSTI]

as an evaluation process of potential ecological effects that may occur or may be occurring due to exposure to stressors (Gregorich et al., 2001). Stressors can be a result of natural geologic processes and/or, most often, results of anthropogenic activities... to be weathered and eroded, or erosion of undisturbed sediments containing metals such as arsenic, 9 sulfur, or iron. These eroded sediments can then be transported by wind, subjected to runoff, and/or anthropogenically relocated to areas of harsh...

LAKE, GRACIELA ESTHER

143

Distribution of Arsenic in Presque Isle, PA, Pond Sediments Jason Murnock, Master of Science Candidate,  

E-Print Network [OSTI]

Distribution of Arsenic in Presque Isle, PA, Pond Sediments Jason Murnock, Master of Science........................................................................................ 3 Arsenic in Soil & Sediments......................................................................................... 12 Sediment Digestion and Analysis

Short, Daniel

144

E-Print Network 3.0 - arsenic methylation profiles Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: , urinary arsenic methylation profiles, and urothelial carcinoma susceptibility. Food Chem. Toxicol. 46, 929... and in vitro studies suggest that methylated arsenic...

145

E-Print Network 3.0 - arsenic-induced proliferative diseases...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

results for: arsenic-induced proliferative diseases Page: << < 1 2 3 4 5 > >> 1 Environmental Health Perspectives VOLUME 108 | NUMBER 7 | July 2000 617 Arsenic-Induced Skin...

146

E-Print Network 3.0 - arsenic ions Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alnus glutinosa under elevated Summary: ). The presence of other ions also affected arsenic Soil Samplingavailability and phytotoxicity (Fowler, 1983... TU & MA: ARSENIC...

147

Removing Arsenic from Contaminated Drinking Water in Rural Bangladesh: Recent Fieldwork Results and Policy Implications  

E-Print Network [OSTI]

for Arsenic-Free, Safe Drinking Water in Bangladesh. Worldburden from arsenic in drinking water in Bangladesh. Remediation of Bangladesh Drinking Water using Iron-oxide

Mathieu, Johanna L.

2010-01-01T23:59:59.000Z

148

Arsenic remediation of drinking water using iron-oxide coated coal bottom ash  

E-Print Network [OSTI]

M. Contamination of drinking-water by arsenic in Bangladesh:Arsenic Removal from Drinking Water, Dhaka, Bangladesh, Maytechnologies for drinking water treatment. Rev. Environ.

MATHIEU, JOHANNA L.

2010-01-01T23:59:59.000Z

149

E-Print Network 3.0 - arsenic exposure increases Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

levels. At high levels, inorganic arsenic can cause death. Exposure... and swelling. Organic arsenic compounds are less toxic than inorganic ... Source: Kane, Andrew S. - Aquatic...

150

E-Print Network 3.0 - arsenic rich iron Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Processes conducive to the release and transport of arsenic into aquifers of Bangladesh Summary: then by reductive dissolution of iron and arsenic during the ensuing...

151

E-Print Network 3.0 - arsenic shallow implant Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of California at Berkeley Collection: Physics 46 Arsenic in groundwater in Bangladesh: A geostatistical and epidemiological framework Summary: observed arsenic...

152

E-Print Network 3.0 - arsenic represses transcription Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Restoration Technologies 3 ORIGINAL ARTICLE Arsenic Exposure and Risk of Spontaneous Abortion, Summary: ORIGINAL ARTICLE Arsenic Exposure and Risk of Spontaneous Abortion,...

153

E-Print Network 3.0 - arsenic exposure area Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology and Medicine 28 ORIGINAL ARTICLE Arsenic Exposure and Risk of Spontaneous Abortion, Summary: range of arsenic exposure. METHODS Study Area The study was carried out...

154

E-Print Network 3.0 - arsenic exposure affects Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology and Medicine 32 ORIGINAL ARTICLE Arsenic Exposure and Risk of Spontaneous Abortion, Summary: ORIGINAL ARTICLE Arsenic Exposure and Risk of Spontaneous Abortion,...

155

Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer  

DOE Patents [OSTI]

Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

Fish, Richard H. (Berkeley, CA)

1987-01-01T23:59:59.000Z

156

Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids  

DOE Patents [OSTI]

Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids (shale oil, SRC, etc.) by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20/sup 0/ to 100/sup 0/C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

Fish, R.H.

1985-05-17T23:59:59.000Z

157

Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer  

DOE Patents [OSTI]

Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20 to 100 C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

Fish, R.H.

1987-04-21T23:59:59.000Z

158

Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids  

DOE Patents [OSTI]

Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

Fish, Richard H. (Berkeley, CA)

1986-01-01T23:59:59.000Z

159

Metabolites of arsenic and increased DNA damage of p53 gene in arsenic plant workers  

SciTech Connect (OSTI)

Recent studies have shown that monomethylarsonous acid is more cytotoxic and genotoxic than arsenate and arsenite, which may attribute to the increased levels of reactive oxygen species. In this study, we used hydride generation-atomic absorption spectrometry to determine three arsenic species in urine of workers who had been working in arsenic plants,and calculated primary and secondary methylation indexes. The damages of exon 5, 6, 8 of p53 gene were determined by the method developed by Sikorsky, et al. Results show that the concentrations of each urinary arsenic species,and damage indexes of exon 5 and 8 of p53 gene in the exposed population were significantly higher, but SMI was significantly lower than in the control group. The closely positive correlation between the damage index of exon 5 and PMI,MMA, DMA were found, but there was closely negative correlation between the damage index of exon 5 and SMI. Those findings suggested that DNA damage of exon 5 and 8 of p53 gene existed in the population occupationally exposed to arsenic. For exon 5, the important factors may include the model of arsenic metabolic transformation, the concentrations of MMA and DMA, and the MMA may be of great importance. - Research Highlights: > In our study, the mean SMI for workers came from arsenic plants is 4.06, so they may be in danger. > There are more MMA, there are more damage of exon 5 of p53 gene. > MMA and damage of exon 5 of p53 gene may be useful biomarkers to assess adverse health effects caused by arsenic.

Wen Weihua, E-mail: Dongsijiehua@sina.com [Department of Occupational Health, Yunnan Provincial Center for Disease Control and Prevention, No. 158, Dongsi Street, Kunming, Yunnan, 650022 (China); Public Health College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan City, Hubei, 430030 (China); Wen Jinghua [Guizhou College of Finance and Economics, No. 276, Chongguan Road, Guiyang, Guizhou, 550004 (China); Lu Lin [Department of Occupational Health, Yunnan Provincial Center for Disease Control and Prevention, No. 158, Dongsi Street, Kunming, Yunnan, 650022 (China); Liu Hua [The First Affiliated Hospital of Kunming Medical College, No. 295 Xichang Road, Kunming, Yunnan, 650032 (China); Yang Jun; Cheng Huirong [Department of Occupational Health, Yunnan Provincial Center for Disease Control and Prevention, No. 158, Dongsi Street, Kunming, Yunnan, 650022 (China); Che Wangjun [The First Division of Public Health, Kunming Center for Disease Control and Prevention, No. 4, Ziyun Road, Xishan District, Kunming, Yunnan 650228 (China); Li Liang [Honghe Zhou Center for Disease Control and Prevention, No. 1, Guannan Road, Mengzi City, Yunnan, 661100 (China); Zhang Guanbei [Yunnan Institute for Drug Abuse, Kunming, 650028 (China)

2011-07-01T23:59:59.000Z

160

PUREX facility hazards assessment  

SciTech Connect (OSTI)

This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

Sutton, L.N.

1994-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Enhancing Railroad Hazardous Materials Transportation Safety...  

Office of Environmental Management (EM)

Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin...

162

ARSENIC IN PRIVATE WELLS IN NH YEAR 1 FINAL REPORT  

E-Print Network [OSTI]

performed geospatial analysis of the well water arsenic estimates and survey results and produced the maps .................................................................................................. 7 Well water quality...................................................................................................... 7 Well water testing

Bucci, David J.

163

Multiple metals predict prolactin and thyrotropin (TSH) levels in men  

SciTech Connect (OSTI)

Exposure to a number of metals can affect neuroendocrine and thyroid signaling, which can result in adverse effects on development, behavior, metabolism, reproduction, and other functions. The present study assessed the relationship between metal concentrations in blood and serum prolactin (PRL) and thyrotropin (TSH) levels, markers of dopaminergic, and thyroid function, respectively, among men participating in a study of environmental influences on male reproductive health. Blood samples from 219 men were analyzed for concentrations of 11 metals and serum levels of PRL and TSH. In multiple linear regression models adjusted for age, BMI and smoking, PRL was inversely associated with arsenic, cadmium, copper, lead, manganese, molybdenum, and zinc, but positively associated with chromium. Several of these associations (Cd, Pb, Mo) are consistent with limited studies in humans or animals, and a number of the relationships (Cr, Cu, Pb, Mo) remained when additionally considering multiple metals in the model. Lead and copper were associated with non-monotonic decrease in TSH, while arsenic was associated with a dose-dependent increase in TSH. For arsenic these findings were consistent with recent experimental studies where arsenic inhibited enzymes involved in thyroid hormone synthesis and signaling. More research is needed for a better understanding of the role of metals in neuroendocrine and thyroid function and related health implications.

Meeker, John D., E-mail: meekerj@umich.edu [Department of Environmental Health Sciences, University of Michigan School of Public Health, 6635 SPH Tower, 109 S. Observatory St., Ann Arbor, MI 48109 (United States); Rossano, Mary G. [Department of Animal and Food Sciences, University of Kentucky, Lexington, KY (United States)] [Department of Animal and Food Sciences, University of Kentucky, Lexington, KY (United States); Protas, Bridget [Department of Epidemiology, Michigan State University, East Lansing, MI (United States)] [Department of Epidemiology, Michigan State University, East Lansing, MI (United States); Diamond, Michael P.; Puscheck, Elizabeth [Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI (United States)] [Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI (United States); Daly, Douglas [Grand Rapids Fertility and IVF, Grand Rapids, MI (United States)] [Grand Rapids Fertility and IVF, Grand Rapids, MI (United States); Paneth, Nigel [Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI (United States)] [Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI (United States); Wirth, Julia J. [Department of Epidemiology, Michigan State University, East Lansing, MI (United States) [Department of Epidemiology, Michigan State University, East Lansing, MI (United States); Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI (United States)

2009-10-15T23:59:59.000Z

164

Life Redefined: Microbes Built with Arsenic  

SciTech Connect (OSTI)

Life can survive in many harsh environments, from extreme heat to the presence of deadly chemicals. However, life as we know it has always been based on the same six elements -- carbon, oxygen, nitrogen, hydrogen, sulfur and phosphorus. Now it appears that even this rule has an exception. In the saline and poisonous environment of Mono Lake, researchers have found a bacterium that can grow by incorporating arsenic into its structure in place of phosphorus. X-ray images taken at SLAC's synchrotron light source reveal that this microbe may even use arsenic as a building block for DNA. Please join us as we describe this discovery, which rewrites the textbook description of how living cells work.

Webb, Sam (SLAC and Felisa Wolfe-Simon, NASA and U.S. Geological Survey) [SLAC and Felisa Wolfe-Simon, NASA and U.S. Geological Survey

2011-03-22T23:59:59.000Z

165

Hazardous Materials Introduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSiteAboutRadioactiveHazardous

166

ORISE: Hazard Assessments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK Mapping ApplicationEnvironment AtGraduateHazard

167

Fire Hazards Listing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:EpitaxialtransatlanticUnified| DepartmentFindingHazards Listing

168

Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany  

SciTech Connect (OSTI)

Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm and soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.

Zellmer, S.D.; Schneider, J.F.

1993-05-01T23:59:59.000Z

169

Arsenic in Drinking Water and Skin Lesions: Dose-Response Data from West Bengal, India  

E-Print Network [OSTI]

Arsenic in Drinking Water and Skin Lesions: Dose-Response Data from West Bengal, India Reina Haque the dose-re- sponse relation between low arsenic concentrations in drinking water and arsenic-induced skin peak arsenic concentration in drinking water was 325 g/liter for cases and 180 g/liter for controls

California at Berkeley, University of

170

Hazardous Substances Act (South Carolina)  

Broader source: Energy.gov [DOE]

The Commissioner of the Department of Agriculture has the authority to promulgate regulations declaring specified substances to be hazardous and establishing labeling, transportation, storage, and...

171

Hazardous Waste Facilities Siting (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

172

Hazardous Waste Transporter Permits (Connecticut)  

Broader source: Energy.gov [DOE]

Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide information about obtaining permits and other permit...

173

Nebraska Hazardous Waste Regulations (Nebraska)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal...

174

Hazardous Waste Act (New Mexico)  

Broader source: Energy.gov [DOE]

"Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may: cause or significantly...

175

Release of Arsenic to the Environment from CCA-Treated  

E-Print Network [OSTI]

Release of Arsenic to the Environment from CCA-Treated Wood. 2. Leaching and Speciation during International University, Miami, Florida 33199 Wood treated with chromated copper arsenate (CCA) is primarily of arsenic leaching from landfills containing CCA-treated wood. In control lysimeters where untreated wood

Florida, University of

176

Background Concentrations of Trace Metals in  

E-Print Network [OSTI]

of Florida State University System of Florida FLORIDA CENTER FOR SOLID AND HAZARDOUS WASTE MANAGEMENT 2207 NW for evaluating land application of non-hazardous waste materials and monitoring the mobility of trace metals from 8,000 archived samples. l To validate the sampling protocol used by the Florida Cooperative Soil

Ma, Lena

177

Arsenic and diabetes and hypertension in human populations: A review  

SciTech Connect (OSTI)

Long-term exposure to ingested arsenic from drinking water has been well documented to be associated with an increased risk of diabetes mellitus and hypertension in a dose-response relationship among residents of arseniasis-endemic areas in southwestern Taiwan and Bangladesh. An increased risk of self-reported hypertension but not diabetes was reported in a community-based study of residents who consumed drinking water with a low level of arsenic. Increased glycosylated hemoglobin level and systolic blood pressure were observed in workers occupationally exposed to arsenic. Inconsistent findings of arsenic and diabetes in occupational studies may result from the healthy worker effect and the variation in exposure measurement, age composition, number of patients, accuracy in diagnosis and classification of underlying causes of death, competing causes of death, and method to detect diabetes. The dose-response relationship and toxicological mechanisms of arsenic-induced diabetes and hypertension need further elucidation.

Chen, C.-J. [Genomics Research Center, Academia Sinica, 128 Academia Road Section 2, Nankang, Taipei 11529, Taiwan (China); Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (China); Department of Internal Medicine, National Taiwan University, Taipei, Taiwan (China); School of Public Health, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, Tzu-Chi University, Hualien, Taiwan (China); Graduate Institute of Preventive Medicine, National Taiwan University, Taipei, Taiwan (China)], E-mail: cjchen@ha.mc.ntu.edu.tw; Wang, S.-L.; Chiou, J.-M.; Tseng, C.-H.; Chiou, H.-Y.; Hsueh, Y.-M.; Chen, S.-Y.; Wu, M.-M.; Lai, M.-S. [Genomics Research Center, Academia Sinica, 128 Academia Road Section 2, Nankang, Taipei 11529, Taiwan (China); Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (China); Department of Internal Medicine, National Taiwan University, Taipei, Taiwan (China); School of Public Health, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, Tzu-Chi University, Hualien, Taiwan (China); Graduate Institute of Preventive Medicine, National Taiwan University, Taipei, Taiwan (China)

2007-08-01T23:59:59.000Z

178

Containment and stabilization technologies for mixed hazardous and radioactive wastes  

SciTech Connect (OSTI)

A prevalent approach to the cleanup of waste sites contaminated with hazardous chemicals and radionuclides is to contain and/or stabilize wastes within the site. Stabilization involves treating the wastes in some fashion, either in situ or above ground after retrieval, to reduce the leachability and release rate of waste constituents to the environment. This approach is generally reserved for radionuclide contaminants, inorganic hazardous contaminants such as heavy metals, and nonvolatile organic contaminants. This paper describes the recent developments in the technical options available for containing and stabilizing wastes. A brief description of each technology is given along with a discussion of the most recent developments and examples of useful applications.

Buelt, J.L.

1993-05-01T23:59:59.000Z

179

Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator,  

E-Print Network [OSTI]

Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake, or biosolid compost. Phosphate amendments sig- nificantly enhanced plant As uptake from the two tested soils was responsible for the enhanced mobility of As and subsequent increased plant uptake. Compost additions

Ma, Lena

180

Abstract Arsenic hyperaccumulator Pteris vittata L. (Chinese brake fern) grows well in arsenic-contami-  

E-Print Network [OSTI]

and plated on medium containing 4 mM of arsenate, a common form of arsenic in the environment. The deduced ubiquitous in the environment. It is present both as arsenite (AsIII) and arsenate (AsV) in the environment

Ma, Lena

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Systematic Engineering of Phytochelatin Synthesis and Arsenic Transport for Enhanced Arsenic  

E-Print Network [OSTI]

Wilfred Chen1 1 Department of Chemical and Environmental Engineering, University of California, Riverside), which ranks 1st on the Environmental Protection Agency's (EPA) priority list of drinking water in surface water and As (III) in ground water. Arsenic exposure has been associated with many diseases

Chen, Wilfred

182

Distribution of hazardous air pollutant trace elements, total sulfur, and ash in coals from five Tertiary basins in the Rocky Mountain Region  

SciTech Connect (OSTI)

Arithmetic mean values of the contents of hazardous air pollutant (HAP) trace elements named in the 1990 Clean Air Act Amendments (antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium), ash, and total sulfur were statistically compared on a whole-coal basis for Paleocene coals from five Tertiary basins in the Rocky Mountain Region. The study of proximate and elemental analyses indicate a relationship between trace element contents and paleogeography.

Ellis, M.S.; Stricker, G.D.; Flores, R.M. [Geological Survey, Denver, CO (United States)

1994-12-31T23:59:59.000Z

183

REPORT NO. 8 radiation hazards  

E-Print Network [OSTI]

REPORT NO. 8 REVISED guidance for the control of radiation hazards in uranium mining SEPTEMBER 1967 OF RADIATION HAZARDS IN URANIUM MINING SEPTEMBER 1967 Staff Report of the FEDERAL RADIATION COUNCIL #12;FEDERAL...... .... .._ _.... Section I. Introduction. . . Section II. The Radiation Environment AssociatedWith Uranium Mining. Section

184

Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report.  

SciTech Connect (OSTI)

The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

Everett, Randy L.; Siegel, Malcolm Dean; McConnell, Paul E.; Kirby, Carolyn (Comforce Technical Services, Inc.)

2006-09-01T23:59:59.000Z

185

Hazardous Waste Management Standards and Regulations (Kansas)  

Broader source: Energy.gov [DOE]

This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

186

Hazardous Waste Facility Siting Program (Maryland)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level...

187

Arsenic exposure in children living near a former copper smelter  

SciTech Connect (OSTI)

About 10,000 people live in communities surrounding the former copper smelter at Anaconda, Montana. Most of these people live in the town of Anaconda, which is generally upwind of the smelter. The smelter ceased operations in 1980, after almost a century of ore processing. Soil and dust on the smelter site and in the vicinity remain contaminated with arsenic, although at this time air and drinking water arsenic levels are not elevated. Results of soil and dust sampling for arsenic in the communities around the smelter are reported. In the town of Anaconda, surface soil arsenic levels from residential sites have averaged around 100 ppm or greater. Young children are generally believed to be the population with the most nonoccupational exposure to soil. Several models of exposure to environmental arsenic in the Anaconda area have predicted that children living in all communities surrounding the smelter would be having significant and measurable exposure to arsenic. Two exposures surveys, conducted while the smelter was operative, demonstrated that excess exposure to arsenic was occurring in young children. Until the present surveys, no exposure data had been collected since the smelter was closed.

Binder, S.; Forney, D.; Kaye, W.; Paschal, D.

1987-07-01T23:59:59.000Z

188

Factors affecting lead, cadmium, and arsenic levels in house dust in a smelter town in eastern Germany  

SciTech Connect (OSTI)

Hettstedt, a city in eastern Germany with a long history of mining and smelting of nonferrous ores, has several industrial sources of heavy metals. The indoor exposure to metals of children (5 to 14 years old) in the Hettstedt area was assessed by measuring the levels of lead, cadmium, and arsenic contamination in sedimented house dust. Factors which influence the dust loading rate and the surface loading rates of these contaminants in house dust were investigated. The geometric mean of the dust loading rate was 8.9 mg/m[sup 2] day. The geometric means of surface loading rates were 1.14, 0.024, and 0.023 [micro]g/m[sup 2] day for lead, cadmium, and arsenic, respectively. Factors that were significantly associated with surface loading rates included the city area of residence, automobile traffic near home, parent with occupational exposure to heavy metals, type of heating, housing characteristics, whether child's home is damp, number of persons living in the child's home,and parents' education. The most significant of these factors was the city area of residence, which reflects the distance from the metal sources; this factor accounted for about half of the variances explained by the regression models.

Meyer, I.; Heinrich, J. (GSF-Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg (Germany). Inst. fuer Epidemiologie); Lippold, U. (Inst. fuer Wasser-, Boden- und Lufthygiene des Umweltbundesamtes Berlin (Germany))

1999-07-01T23:59:59.000Z

189

Advanced Membrane Systems: Recovering Wasteful and Hazardous...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

190

Hazardous and Industrial Waste (Minnesota)  

Broader source: Energy.gov [DOE]

This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a...

191

Hazardous Waste Management Regulations (Mississippi)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Management Regulations follow the EPA's definitions and guidelines for the most part, which are listed in 40 CFR parts 260-282. In addition to these federal regulations the...

192

Hazardous Waste Management (North Carolina)  

Broader source: Energy.gov [DOE]

These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for...

193

Health Hazards in Indoor Air  

E-Print Network [OSTI]

Health Hazards in Indoor Air. In Proceedings of the 2010for VOCs from post-1990 indoor air concentration studies inUnion project on indoor air pollutants. Allergy, 2008. 63(

Logue, Jennifer M.

2012-01-01T23:59:59.000Z

194

FIRE HAZARDS ANALYSIS - BUSTED BUTTE  

SciTech Connect (OSTI)

The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

R. Longwell; J. Keifer; S. Goodin

2001-01-22T23:59:59.000Z

195

LOG HAZARD REGRESSION Huiying Sun  

E-Print Network [OSTI]

LOG HAZARD REGRESSION by Huiying Sun Ph.D, Harbin Institute of Technology, Harbin, CHINA, 1991 .................................................................... .................................................................... .................................................................... .................................................................... THE UNIVERSITY OF BRITISH COLUMBIA September, 1999 c flHuiying Sun, 1999 #12; Abstract We propose using

Heckman, Nancy E.

196

Toxic hazards of underground excavation  

SciTech Connect (OSTI)

Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

1982-09-01T23:59:59.000Z

197

Rapid guide to hazardous air pollutants  

SciTech Connect (OSTI)

Concise and easy to use, this book brings together a wealth of hard-to-gather information in one compact pocket guide. It offers--in alphabetical order--detailed profiles of the 189 elements and compounds determined to be hazardous air pollutants by the 1990 Amendments of the Clean Air Act. The profile for each pollutant includes: fundamental identification data (CAS number, molecular formula, formula weight, synonyms); uses (primarily in the manufacture of chemicals and as a component in the manufacturing process); physical properties (such as boiling point, density, vapor pressures, color); chemical properties (such as air/water reactivity, reactivity with skin or metal, flash point, heat of combustion); health risks, including toxic exposure guidelines, toxicity data, and acute and chronic risks; hazard risks (the substance`s potential for accidents, fires, explosions, corrosion, and chemical incompatibility); exposure routes tracking the activities, environment, sources, and occupations that tend to lead to exposure; regulatory status, listing the primary laws and citations of regulated chemicals; and important additional information on symptoms, first aid, firefighting methods, protective equipment, and safe storage.

Beim, H.J.; Spero, J.; Theodore, L.

1998-12-31T23:59:59.000Z

198

The Hazard Posed by Depleted Uranium Munitions  

E-Print Network [OSTI]

This paper assesses the radiological and chemical hazards resulting from the use of depleted uranium (DU) munitions. Due to the low radioactivity of DU, radiological hazards to individuals would become significant in comparison to natural background radiation doses only in cases of prolonged contact---for example, when shards of a DU penetrator remain embedded in a soldier's body. Although the radiation doses to virtually all civilians would be very low, the cumulative "population dose" resulting from the dispersal of hundreds of tons of DU, as occurred during the Gulf War, could result in up to ten cancer deaths. It is highly unlikely that exposures of persons downwind from the use of DU munitions or consuming food or water contaminated by DU dust would reach the estimated threshold for chemical heavy-metal effects. The exposures of soldiers in vehicles struck by DU munitions could be much higher, however, and persons who subsequently enter such vehicles without adequate respiratory protection could potentially be at risk. Soldiers should be trained to avoid unnecessary exposure to DU, and vehicles struck by DU munitions should be made inaccessible to curious civilians. INTRODUCTION

Steve Fetter And; Steve Fetter A

199

Preliminary hazards analysis -- vitrification process  

SciTech Connect (OSTI)

This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

1994-06-01T23:59:59.000Z

200

Factors influencing the efficiency of arsenic extraction by phosphate  

E-Print Network [OSTI]

, phosphate concentration, principal counterion, reaction pH, and reaction time. The extraction efficiency was impacted by the influence of these individual factors on reaction kinetics and accessibility of arsenic adsorption sites for ligand exchange...

Yean, Su Jin

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Treatment of arsenic-contaminated water using akaganeite adsorption  

DOE Patents [OSTI]

The present invention comprises a method and composition using akaganeite, an iron oxide, as an ion adsorption medium for the removal of arsenic from water and affixing it onto carrier media so that it can be used in filtration systems.

Cadena C., Fernando (Las Cruces, NM); Johnson, Michael D. (Las Cruces, NM)

2008-01-01T23:59:59.000Z

202

arsenic complexes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Michael N. Bates; Helen M. Goeden; L Irva Hertz; Michael J. Kosnett; Martyn T. Smith 1992-01-01 48 ARSENIC 395 8. REGULATIONS AND ADVISORIES CiteSeer Summary: The...

203

Arsenic in public water supplies and cardiovascular mortality in Spain  

SciTech Connect (OSTI)

Background: High-chronic arsenic exposure in drinking water is associated with increased cardiovascular disease risk. At low-chronic levels, as those present in Spain, evidence is scarce. In this ecological study, we evaluated the association of municipal drinking water arsenic concentrations during the period 1998-2002 with cardiovascular mortality in the population of Spain. Methods: Arsenic concentrations in drinking water were available for 1721 municipalities, covering 24.8 million people. Standardized mortality ratios (SMRs) for cardiovascular (361,750 deaths), coronary (113,000 deaths), and cerebrovascular (103,590 deaths) disease were analyzed for the period 1999-2003. Two-level hierarchical Poisson models were used to evaluate the association of municipal drinking water arsenic concentrations with mortality adjusting for social determinants, cardiovascular risk factors, diet, and water characteristics at municipal or provincial level in 651 municipalities (200,376 cardiovascular deaths) with complete covariate information. Results: Mean municipal drinking water arsenic concentrations ranged from <1 to 118 {mu}g/L. Compared to the overall Spanish population, sex- and age-adjusted mortality rates for cardiovascular (SMR 1.10), coronary (SMR 1.18), and cerebrovascular (SMR 1.04) disease were increased in municipalities with arsenic concentrations in drinking water >10 {mu}g/L. Compared to municipalities with arsenic concentrations <1 {mu}g/L, fully adjusted cardiovascular mortality rates were increased by 2.2% (-0.9% to 5.5%) and 2.6% (-2.0% to 7.5%) in municipalities with arsenic concentrations between 1-10 and>10 {mu}g/L, respectively (P-value for trend 0.032). The corresponding figures were 5.2% (0.8% to 9.8%) and 1.5% (-4.5% to 7.9%) for coronary heart disease mortality, and 0.3% (-4.1% to 4.9%) and 1.7% (-4.9% to 8.8%) for cerebrovascular disease mortality. Conclusions: In this ecological study, elevated low-to-moderate arsenic concentrations in drinking water were associated with increased cardiovascular mortality at the municipal level. Prospective cohort studies with individual measures of arsenic exposure, standardized cardiovascular outcomes, and adequate adjustment for confounders are needed to confirm these ecological findings. Our study, however, reinforces the need to implement arsenic remediation treatments in water supply systems above the World Health Organization safety standard of 10 {mu}g/L.

Medrano, Ma Jose, E-mail: pmedrano@isciii.es [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); Boix, Raquel; Pastor-Barriuso, Roberto [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain)] [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); Palau, Margarita [Subdireccion General de Sanidad Ambiental y Salud Laboral, Direccion General de Salud Publica y Sanidad Exterior, Ministerio de Sanidad y Politica Social, Madrid (Spain)] [Subdireccion General de Sanidad Ambiental y Salud Laboral, Direccion General de Salud Publica y Sanidad Exterior, Ministerio de Sanidad y Politica Social, Madrid (Spain); Damian, Javier [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain)] [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); Ramis, Rebeca [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain) [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); CIBER en Epidemiologia y Salud Publica (CIBERESP), Madrid (Spain); Barrio, Jose Luis del [Departamento de Salud Publica, Universidad Rey Juan Carlos, Madrid (Spain)] [Departamento de Salud Publica, Universidad Rey Juan Carlos, Madrid (Spain); Navas-Acien, Ana [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States) [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Department of Epidemiology, Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States)

2010-07-15T23:59:59.000Z

204

Methyl arsenic adsorption and desorption behavior on iron oxides  

E-Print Network [OSTI]

METHYL ARSENIC ADSORPTION AND DESORPTION BEHAVIOR ON IRON OXIDES A Thesis by BRANDON JAMES LAFFERTY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 2004 Major Subject: Soil Science METHYL ARSENIC ADSORPTION AND DESORPTION BEHAVIOR ON IRON OXIDES A Thesis by BRANDON JAMES LAFFERTY Submitted to Texas A&M University...

Lafferty, Brandon James

2005-08-29T23:59:59.000Z

205

Significance of the modes of occurrence of arsenic in coal  

SciTech Connect (OSTI)

Although modes of occurrence can be determined with a variety of techniques, electron microscopy allows documentation and quantification of trace elements in mineral phases. In these studies, the authors have used scanning electron and electron-beam microscopy to analyze pyrite grains in coal samples that contain high arsenic and to determine its mode of occurrence. Information obtained from these studies may prove valuable in predicting and modeling the fate of arsenic in coal utilization.

Ruppert, L.F. [Geological Survey, Reston, VA (United States); Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Eble, C.F. [Kentucky Geological Survey, Lexington, KY (United States)

1995-12-31T23:59:59.000Z

206

CRAD, Hazardous Waste Management- December 4, 2007  

Broader source: Energy.gov [DOE]

Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

207

Bulletin No. 233 Ergonomic Hazards of the  

E-Print Network [OSTI]

July, 2004 Bulletin No. 233 Ergonomic Hazards of the Seated Posture Ergonomic Hazards of the Seated it is possible for these injuries to heal themselves when the ergonomic hazard is removed, cases do exist where;PAGE 2 ERGONOMIC HAZARDS of the SEATED POSTURE BULLETIN NO. 233 Ergonomic interventions to reduce

Martin, Jeff

208

Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico  

SciTech Connect (OSTI)

Inorganic arsenic exposure in drinking water has been recently related to diabetes mellitus. To evaluate this relationship the authors conducted in 2003, a case-control study in an arseniasis-endemic region from Coahuila, a northern state of Mexico with a high incidence of diabetes. The present analysis includes 200 cases and 200 controls. Cases were obtained from a previous cross-sectional study conducted in that region. Diagnosis of diabetes was established following the American Diabetes Association criteria, with two fasting glucose values {>=}126 mg/100 ml ({>=}7.0 mmol/l) or a history of diabetes treated with insulin or oral hypoglycemic agents. The next subject studied, subsequent to the identification of a case in the cross-sectional study was taken as control. Inorganic arsenic exposure was measured through total arsenic concentrations in urine, measured by hydride-generation atomic absorption spectrophotometry. Subjects with intermediate total arsenic concentration in urine (63.5-104 {mu}g/g creatinine) had two-fold higher risk of having diabetes (odds ratio=2.16; 95% confidence interval: 1.23, 3.79), but the risk was almost three times greater in subjects with higher concentrations of total arsenic in urine (odds ratio=2.84; 95% confidence interval: 1.64, 4.92). This data provides additional evidence that inorganic arsenic exposure may be diabetogenic.

Coronado-Gonzalez, Jose Antonio [Clinical Epidemiologic Research Unit, General Regional Hospital 1 'Gabriel Mancera', Mexican Institute of the Social Security, Mexico, D.F. (Mexico); Razo, Luz Maria del [Toxicology Departament, Cinvestav, Mexico D.F. (Mexico); Garcia-Vargas, Gonzalo [School of Medicine, Durango State Juarez University, Gomez Palacio, Durango (Mexico); Biomedical Research Center, Coahuila, Autonomous University, Torreon, Coahuila (Mexico); Sanmiguel-Salazar, Francisca [Biomedical Research Center, Coahuila, Autonomous University, Torreon, Coahuila (Mexico); Escobedo-de la Pena, Jorge [Clinical Epidemiologic Research Unit, General Regional Hospital 1 'Gabriel Mancera', Mexican Institute of the Social Security, Mexico, D.F. (Mexico)]. E-mail: jorgeep@servidor.unam.mx

2007-07-15T23:59:59.000Z

209

Process for electrolytically preparing uranium metal  

DOE Patents [OSTI]

A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

Haas, Paul A. (Knoxville, TN)

1989-01-01T23:59:59.000Z

210

Radiological hazards of alpha-contaminated waste  

SciTech Connect (OSTI)

The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process.

Rodgers, J.C.

1982-01-01T23:59:59.000Z

211

Metal resistance sequences and transgenic plants  

SciTech Connect (OSTI)

The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

Meagher, Richard Brian (Athens, GA); Summers, Anne O. (Athens, GA); Rugh, Clayton L. (Athens, GA)

1999-10-12T23:59:59.000Z

212

Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort  

E-Print Network [OSTI]

RESEARCH Arsenic exposure from drinking water and mortality from cardiovascular disease the association. Design Prospective cohort study with arsenic exposure measured in drinking water from wells was 214.3 per 100 000 person years in people drinking water containing

van Geen, Alexander

213

THE FATE AND SPECIATION OF ARSENIC IN SOILS AND POULTRY PRODUCTION SYSTEMS  

E-Print Network [OSTI]

THE FATE AND SPECIATION OF ARSENIC IN SOILS AND POULTRY PRODUCTION SYSTEMS by Jennifer M. Seiter AND SPECIATION OF ARSENIC IN SOILS AND POULTRY PRODUCTION SYSTEMS by Jennifer M. Seiter Approved

Sparks, Donald L.

214

E-Print Network 3.0 - arsenic promotes angiogenesis Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Interior U.S. Geological Survey Arsenic in Ground Water of the Willamette... RESOURCES DEPARTMENT 12;U.S. Department of the Interior U.S. Geological Survey Arsenic in...

215

Artificial Cellulosomes and Arsenic Cleanup: From Single Cell Programming to Synthetic Yeast Consortium  

E-Print Network [OSTI]

biofuel production and arsenic bioremediation indicates that sophisticated metabolic techniques will continue to be implemented to advance

Tsai, Shen-Long

2011-01-01T23:59:59.000Z

216

E-Print Network 3.0 - arsenic trioxide phosphorylates Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Remediation of Arsenic Contaminated ... Source: Ma, Lena - Soil and Water Science Department, University of Florida Collection: Environmental Sciences and...

217

E-Print Network 3.0 - arsenic groundwater system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department, University of Florida Collection: Environmental Sciences and Ecology ; Environmental Management and Restoration Technologies 2 Arsenic Occurrence in Groundwater...

218

E-Print Network 3.0 - arsenic exposed residents Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department, University of Florida Collection: Environmental Sciences and Ecology ; Environmental Management and Restoration Technologies 2 Unsaturated Zone Arsenic Distribution...

219

E-Print Network 3.0 - arsenic induces mitochondria-dependent...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department, University of Florida Collection: Environmental Sciences and Ecology ; Environmental Management and Restoration Technologies 2 CHRONIC ARSENIC TOXICITY Environmental...

220

E-Print Network 3.0 - arsenic 81 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department, University of Florida Collection: Environmental Sciences and Ecology ; Environmental Management and Restoration Technologies 2 CHRONIC ARSENIC TOXICITY Environmental...

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

E-Print Network 3.0 - arsenic detoxification potential Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department, University of Florida Collection: Environmental Sciences and Ecology ; Environmental Management and Restoration Technologies 2 Characteristics of arsenic accumulation...

222

E-Print Network 3.0 - arsenic alters vascular Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department, University of Florida Collection: Environmental Sciences and Ecology ; Environmental Management and Restoration Technologies 2 CHRONIC ARSENIC TOXICITY Environmental...

223

E-Print Network 3.0 - arsenic trioxide synergistically Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arsenic ... Source: Chen, Wilfred - Department of Chemical and Environmental Engineering, University of California at Riverside Collection: Biotechnology ;...

224

E-Print Network 3.0 - arsenic exposure results Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Sciences and Ecology ; Geosciences ; Multidisciplinary Databases and Resources 64 Arsenic in groundwater in Bangladesh: A geostatistical and epidemiological...

225

Plant and Environment Interactions Arsenic Accumulation in the Hyperaccumulator Chinese Brake and Its Utilization  

E-Print Network [OSTI]

in a greenhouse. At recently, however, has Chinese brake (Pteris vittata L.)harvest, the Chinese brake produced soils (0.47­7.56 mg As kg 1 ),concentration to water-soluble arsenic in soil) of 1450 and a transloca to remediate arsenic contaminated soils. schullat, 2000), soil arsenic concentration (Jiang and Singh, 1994

Ma, Lena

226

THE ROLE OF IRON PLAQUES IN IMMOBILIZING ARSENIC IN THE RICE-ROOT ENVIRONMENT  

E-Print Network [OSTI]

THE ROLE OF IRON PLAQUES IN IMMOBILIZING ARSENIC IN THE RICE-ROOT ENVIRONMENT by Cecily Eiko Moyer Rights Reserved #12;THE ROLE OF IRON PLAQUES IN IMMOBILIZING ARSENIC IN THE RICE-ROOT ENVIRONMENT 1.1 Arsenic in the Environment

Sparks, Donald L.

227

AREA 5 WASTE DISPOSAL RESEARCH ARTICLE Biomass reduction and arsenic transformation  

E-Print Network [OSTI]

AREA 5 · WASTE DISPOSAL · RESEARCH ARTICLE Biomass reduction and arsenic transformation during X-ray diffraction (XRD) and scanning electron microscopy equipped with X-ray energy dispersive Arsenic-rich biomass . Arsenic speciation . Composting . Phytoextraction . Pteris vittata L . Waste

Ma, Lena

228

Associations Between Drinking Water and Urinary Arsenic Levels and Skin Lesions in  

E-Print Network [OSTI]

Associations Between Drinking Water and Urinary Arsenic Levels and Skin Lesions in Bangladesh Graziano, PhD The present study examined the associations between drinking water and urinary arsenic levels currently drinking water containing concentrations of arsenic 50 g/L. The risk for skin lesions in relation

van Geen, Alexander

229

ARSENIC IN DRINKINGARSENIC IN DRINKING WATER: HEALTH EFFECTS ANDWATER: HEALTH EFFECTS AND  

E-Print Network [OSTI]

ARSENIC IN DRINKINGARSENIC IN DRINKING WATER: HEALTH EFFECTS ANDWATER: HEALTH EFFECTS AND CURRENT;EPA. National Primary Drinking Water Regulations; Arsenic and Clarification to Compliance and New National Occurrence and Exposure to Arsenic in Public Drinking Water Supplies (Revised Draft). Washington

230

Increased Childhood Liver Cancer Mortality and Arsenic in Drinking Water in Northern Chile  

E-Print Network [OSTI]

Increased Childhood Liver Cancer Mortality and Arsenic in Drinking Water in Northern Chile Jane, California Environmental Protection Agency, Oakland, California Abstract Arsenic in drinking water of elevated arsenic levels in drinking water, in particular from 1958 to 1970. This unique exposure scenario

California at Berkeley, University of

231

Contamination of drinking-water by arsenic in Bangladesh: a public health emergency  

E-Print Network [OSTI]

Contamination of drinking-water by arsenic in Bangladesh: a public health emergency Allan H. Smith the history of the discovery of arsenic in drinking-water in Bangladesh and recommends intervention strategies in groundwater indicate that 1 in 10 people who drink water containing 500 mg of arsenic per litre may ultimately

California at Berkeley, University of

232

Decrements in Lung Function Related to Arsenic in Drinking Water in West Bengal, India  

E-Print Network [OSTI]

Decrements in Lung Function Related to Arsenic in Drinking Water in West Bengal, India Ondine S­2000, the authors investigated relations between lung function, respiratory symptoms, and arsenic in drinking water. Worldwide, populations have been identified that con- sume drinking water with arsenic concentrations above

California at Berkeley, University of

233

INTERNAL HAZARDS ANALYSIS FOR LICENSE APPLICATION  

SciTech Connect (OSTI)

The purpose of this internal hazards analysis is to identify and document the internal hazards and potential initiating events associated with preclosure operations of the repository at Yucca Mountain. Internal hazards are those hazards presented by the operation of the facility and by its associated processes that can potentially lead to a radioactive release or cause a radiological hazard. In contrast to external hazards, internal hazards do not involve natural phenomena and external man-made hazards. This internal hazards analysis was performed in support of the preclosure safety analysis and the License Application for the Yucca Mountain Project. The methodology for this analysis provides a systematic means to identify internal hazards and potential initiating events that may result in a radiological hazard or radiological release during the repository preclosure period. These hazards are documented in tables of potential internal hazards and potential initiating events (Section 6.6) for input to the repository event sequence categorization process. The results of this analysis will undergo further screening and analysis based on the criteria that apply to the performance of event sequence analyses for the repository preclosure period. The evolving design of the repository will be re-evaluated periodically to ensure that internal hazards that have not been previously evaluated are identified.

R.J. Garrett

2005-02-17T23:59:59.000Z

234

Repeated surveillance of exposure to cadmium, manganese, and arsenic in school-age children living in rural, urban, and nonferrous smelter areas in Belgium  

SciTech Connect (OSTI)

The intensity of exposure to Cd, As, Mn in groups of school-age children living around a lead smelter was assessed. By comparison, groups of children living in an urban and a rural area were also examined. The metal content of blood, urine, hand-rinsing, air, dust, and dirt collected in the school-playground was compared. The urinary excretion of cadmium in children living around the lead smelter is greater than in those living in the urban and in the rural area. In the latter there seems to exist a time-dependent trend in the renal accumulation of cadmium. This suggests that the overall pollution of the environment by cadmium in Belgium is progressively increasing. In the smelter area, both the oral and pulmonary routes play a role in the children's exposure to cadmium. Their relative contribution to the amount of cadmium absorbed appears similar. The concentration of arsenic in urine of children living around the smelter is significantly higher than that of rural children. Speciation of the chemical forms of arsenic in urine indicates that the difference is not due to different dietary habits of the children examined but to different intensity of exposure to inorganic arsenic. The amount of arsenic on the hand of children living at less than 1 km from the smelter (anti X = 17.6 ..mu..g As/hand) was more than 10 times that found in children living at 2.5 km from the plant (anti X = 1.5 ..mu..g As/hand) whereas that found in children living in urban and rural areas was below 0.2 ..mu..g As/hand. The arsenic concentration of dust and dirt collected in the school-playground in the different areas follows the same trend.

Buchet, J.P. (Univ. of Louvain, Brussels, Belgium); Roels, H.; Lauwerys, R.; Bruaux, P.; Claeys-Thoreau, F.; Lafontaine, A.; Verduyn, G.

1980-06-01T23:59:59.000Z

235

Interaction Between Trace Metals, Sodium and Sorbents in Combustion.  

SciTech Connect (OSTI)

The proposed research is directed at an understanding of how to exploit interactions between sodium, toxic metals and sorbents, in order to optimize sorbents injection procedures, which can be used to capture and transform these metals into environmentally benign forms. The research will use a 17kW downflow, laboratory combustor, to yield data that can be interpreted in terms of fundamental kinetic mechanisms. Metals to be considered are lead, cadmium, and arsenic. Sorbents will be kaolinite, bauxite, and limestone. The role of sulfur will also be determined.

Wendt, O.L.; Davis, S.

1997-10-17T23:59:59.000Z

236

Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes  

SciTech Connect (OSTI)

This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

Dominick, J

2008-12-18T23:59:59.000Z

237

Standard test methods for arsenic in uranium hexafluoride  

E-Print Network [OSTI]

1.1 These test methods are applicable to the determination of total arsenic in uranium hexafluoride (UF6) by atomic absorption spectrometry. Two test methods are given: Test Method AArsine Generation-Atomic Absorption (Sections 5-10), and Test Method BGraphite Furnace Atomic Absorption (Appendix X1). 1.2 The test methods are equivalent. The limit of detection for each test method is 0.1 ?g As/g U when using a sample containing 0.5 to 1.0 g U. Test Method B does not have the complete collection details for precision and bias data thus the method appears as an appendix. 1.3 Test Method A covers the measurement of arsenic in uranyl fluoride (UO2F2) solutions by converting arsenic to arsine and measuring the arsine vapor by flame atomic absorption spectrometry. 1.4 Test Method B utilizes a solvent extraction to remove the uranium from the UO2F2 solution prior to measurement of the arsenic by graphite furnace atomic absorption spectrometry. 1.5 Both insoluble and soluble arsenic are measured when UF6 is...

American Society for Testing and Materials. Philadelphia

2005-01-01T23:59:59.000Z

238

WHC fire hazards analysis policy  

SciTech Connect (OSTI)

The purpose of this document is to establish the fire protection policy for Westinghouse Hanford Company (WHC) relative to US Department of Energy (DOE) directives for Fire Hazards Analyses (FHAs) and their relationship to facility Safety Analysis Reports (SARs) as promulgated by the DOE Richland Operations Office.

Evans, C.B.

1994-04-01T23:59:59.000Z

239

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network [OSTI]

of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover bodies (without needles) Container: Sturdy and leakproof with Hazardous Glass label. Either: Plastic resistant, leakproof plastic carboy with green sharps label. Do not fill these containers completely. Leave

Sheridan, Jennifer

240

An ecological study examining the correlation of end-stage renal disease and ground water heavy metal content in Texas counties  

E-Print Network [OSTI]

An ecological study was conducted to examine the correlation of end-stage renal disease (ESRD) and the ground water heavy metal level of lead, arsenic, cadmium, mercury and the cumulative level of all four metals in Texas counties. The heavy meal...

Bishop, Scott Alan

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Stabilization of Electrocatalytic Metal Nanoparticles at Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

242

Precipitates Suppress Mobility Of Metals in Soil and Water  

E-Print Network [OSTI]

and water with hazardous metals ­ such as cadmium, copper, lead, and nickel ­ is a national environ- mental increased over time. This increase may be due to activi- ties at industries like tanneries and smelters

Sparks, Donald L.

243

Massachusetts Hazardous Waste Management Act (Massachusetts)  

Broader source: Energy.gov [DOE]

This Act contains regulations for safe disposal of hazardous waste, and establishes that a valid license is required to collect, transport, store, treat, use, or dispose of hazardous waste. Short...

244

Oklahoma Hazardous Waste Management Act (Oklahoma)  

Broader source: Energy.gov [DOE]

A hazardous waste facility permit from the Department of Environmental Quality is required to store, treat or dispose of hazardous waste materials, or to construct, own or operate any facility...

245

Georgia Hazardous Site Response Act (Georgia)  

Broader source: Energy.gov [DOE]

The Georgia Hazardous Site Response Act is Georgias version of Superfund. The Act provides for graduated fees on the disposal of hazardous waste, a trust fund to enable the EPD to clean up or plan...

246

D-Area Preliminary Hazards Analysis  

SciTech Connect (OSTI)

A comprehensive review of hazards associated with the D-Area was performed to identify postulated event scenarios.

Blanchard, A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Paik, I.R. [Westinghouse Safety Management Solutions, , ()

1998-04-01T23:59:59.000Z

247

CONTROL OF HAZARDOUS ENERGY 12.A GENERAL  

E-Print Network [OSTI]

on or near any system that produces, uses, or stores hazardous energy, a hazardous energy control program by the contractor-managed HECP (e.g., QA's on construction sites, etc.), they shall comply with the contractor and implementation of these activities. Each shall inform the other of their HECPs and Hazardous Energy Control (HEC

US Army Corps of Engineers

248

Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste  

E-Print Network [OSTI]

-hazardous solid chemicals may go in the trash. Have you disposed of "waste-like", legacy and unknown c Manage anyFocus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

Wilcock, William

249

Geochemistry of arsenic and antimony in Galveston Bay, Texas  

E-Print Network [OSTI]

spoils remain which continue to contribute arsenic to the estuary. In Puget Sound, Washington, stack dust and liquid effluent from a large copper smelter contributed 1. 5 x 108 g As/yr as fine particles, 4 x 107 g As/yr as liquid effluent and 1. 5 x... Sound is a copper smelter which raises the concentration of arsenic and antimony for the southern third of the Sound by 20/o which is transported to the sediments or mixed and diluted with Pacific water. The Tejo River estuary, Portugal has...

Tripp, Anthony Roy

1988-01-01T23:59:59.000Z

250

Canister Storage Building (CSB) Hazard Analysis Report  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safety analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.

POWERS, T.B.

2000-03-16T23:59:59.000Z

251

INCOMPATIBILITY OF COMMON LABORATORY CHEMICALS When certain hazardous chemicals are stored or mixed together, violent reactions may occur because the chemicals are  

E-Print Network [OSTI]

. Classes of incompatible chemicals should be segregated from each other during storage, according to hazard class. Use the following general guidelines for hazard class storage: · Flammable/Combustible Liquids as butane, propane benzene, turpentine, acids, bases, oxidizers, plastics #12;etc.) Hydrofluoric acid metals

Cho, Junghyun

252

Implementation of the hazardous debris rule  

SciTech Connect (OSTI)

Hazardous debris includes objects contaminated with hazardous waste. Examples of debris include tree stumps, timbers, boulders, tanks, piping, crushed drums, personal protective clothing, etc. Most of the hazardous debris encountered comes from Superfund sites and other facility remediation, although generators and treaters of hazardous waste also generate hazardous debris. Major problems associated with disposal of debris includes: Inappropriateness of many waste treatments to debris; Difficulties in obtaining representative samples; Costs associated with applying waste specific treatments to debris; Subtitle C landfill space was being used for many low hazard debris types. These factors brought about the need for debris treatment technologies and regulations that addressed these issues. The goal of such regulation was to provide treatment to destroy or remove the contamination if possible and, if this is achieved, to dispose of the cleaned debris as a nonhazardous waste. EPA has accomplished this goal through promulgation of the Hazardous Debris Rule, August 18, 1992.

Sailer, J.E.

1993-01-05T23:59:59.000Z

253

Remediation of arsenic-contaminated soils and groundwaters  

DOE Patents [OSTI]

An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

Peters, Robert W. (Naperville, IL); Frank, James R. (Glen Ellyn, IL); Feng, Xiandong (West Richland, WA)

1998-01-01T23:59:59.000Z

254

Investigating the Use of Biosorbents to Remove Arsenic from Water  

E-Print Network [OSTI]

, As (III), and arsenate, As (V), from water. Batch reactors were employed to assess the percent removal, reaction kinetics, adsorption capacity, and desorption of each arsenic species onto/from biosorbents under pH buffered and non?buffered conditions...

Erapalli, Shreyas

2011-02-22T23:59:59.000Z

255

Integration of Arsenic Trisulfide and Titanium Diffused Lithium Niobate Waveguides  

E-Print Network [OSTI]

A chalcogenide glass (arsenic-trisulfide, As2S3) optical waveguide is vertically integrated onto titanium-diffused lithium-niobate (Ti:LiNbO3) waveguides to add optical feedback paths and to create more compact optical circuits. Lithium...

Solmaz, Mehmet E.

2011-08-08T23:59:59.000Z

256

Iron Biomineralization: Implications on the Fate of Arsenic in Landfills  

E-Print Network [OSTI]

, the U.S. Environmental Protection Agency lowered the Maximum Contaminant Level (MCL) of arsenic on groundwater, this issue of contamination of groundwater is of particular importance to the state. Groundwater the treatment of ion exchange/membrane processes brine solutions. Sodium arsenate heptahydrate (Na2HAsO4.7H2O

Fay, Noah

257

Characterization and stabilization of arsenic in water treatment residuals  

E-Print Network [OSTI]

-arsenic compounds. However, it is suggested that the ordinary Portland cement (OPC) should be added with the lime for the long term stabilization because lime can be slowly consumed when directly exposed to atmospheric CO2. The solidification and stabilization (S...

Wee, Hun Young

2004-11-15T23:59:59.000Z

258

Toxicology 198 (2004) 3944 Arsenic drinking water regulations in developing  

E-Print Network [OSTI]

Toxicology 198 (2004) 39­44 Arsenic drinking water regulations in developing countries identified 10 g/l as a goal which later became the World Health Organization Guideline for drinking water in 1992. Epidemiological studies have shown that about one in 10 people drinking water containing 500 g

California at Berkeley, University of

259

Interactions of Arsenic and the Dissolved Substances Derived from  

E-Print Network [OSTI]

As trapping and transport within porous soil media and in developing comprehensive plans for managingInteractions of Arsenic and the Dissolved Substances Derived from Turf Soils Z H A N G R O N G C H University, Miami, Florida 33199, Southeast Environmental Research Center, Florida International University

Florida, University of

260

In situ remediation process using divalent metal cations  

DOE Patents [OSTI]

An in situ process for treating ambient solid materials (e.g., soils, aquifer solids, sludges) by adding one or more divalent metal cations to the ambient solid material. The added divalent metal cations, such as Cu.sup.2+ or Zn.sup.2+, combine with metal oxide/hydroxides (e.g., ferric oxide/hydroxide or aluminum oxide/hydroxide) already present in the ambient solid material to form an effective sorbent material having a large number of positively-charged surface complexes that binds and immobilizes anionic contaminant species (e.g., arsenic or chromate). Divalent metal cations can be added, for example, by injecting an aqueous solution of CuSO.sub.4 into an aquifer contaminated with arsenic or chromate. Also, sludges can be stabilized against leaching of anionic contaminants through the addition of divalent metal cations. Also, an inexpensive sorbent material can be easily formed by mixing divalent metal cations with soil that has been removed from the ground.

Brady, Patrick V.; Khandaker, Nadim R.; Krumhansl, James L.; Teter, David M.

2004-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Metal hydrides as electrode/catalyst materials for oxygen evolution/reduction in electrochemical devices  

DOE Patents [OSTI]

An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

Bugga, Ratnakumar V. (Arcadia, CA); Halpert, Gerald (Pasadena, CA); Fultz, Brent (Pasadena, CA); Witham, Charles K. (Pasadena, CA); Bowman, Robert C. (La Mesa, CA); Hightower, Adrian (Whittier, CA)

1997-01-01T23:59:59.000Z

262

Metal aminoboranes  

DOE Patents [OSTI]

Metal aminoboranes of the formula M(NH2BH3)n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya; Shrestha, Roshan P.

2010-05-11T23:59:59.000Z

263

NGNP SITE 2 HAZARDS ASSESSMENT  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) Project initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act, is based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite-moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, to generate process heat in addition to producing electricity, which is the principal application of current LWRs. Nuclear energy in the form of LWRs has been used in the U.S. and internationally principally for the generation of electricity. However, because the HTGR operates at higher temperatures than LWRs, it can be used to displace the use of fossil fuels in many industrial applications. It also provides a carbon emission-free energy supply. For example, the energy needs for the recovery and refining of petroleum, for the petrochemical industry and for production of transportation fuels and feedstocks using coal conversion processes require process heat provided at temperatures approaching 800 C. This temperature range is readily achieved by the HTGR technology. This report summarizes a site assessment authorized by INL under the NGNP Project to determine hazards and potential challenges that site owners and HTGR designers need to be aware of when developing the HTGR design for co-location at industrial facilities, and to evaluate the site for suitability considering certain site characteristics. The objectives of the NGNP site hazard assessments are to do an initial screening of representative sites in order to identify potential challenges and restraints to be addressed in design and licensing processes; assure the HTGR technology can be deployed at variety of sites for a range of applications; evaluate potential sites for potential hazards and describe some of the actions necessary to mitigate impacts of hazards; and, provide key insights that can inform the plant design process. The report presents a summary of the process methodology and the results of an assessment of hazards typical of a class of candidate sites for the potential deployment of HTGR reactor technology. The assessment considered health and safety, and other important siting characteristics to determine the potential impact of identified hazards and potential challenges presented by the location for this technology. A four reactor module nuclear plant (2000 to 2400 MW thermal), that co-generates steam, electricity for general use in the plant, and hot gas for use in a nearby chemical processing facility, to provide the requisite performance and reliability was assumed for the assessment.

Wayne Moe

2011-10-01T23:59:59.000Z

264

Incorporating Perceived Mortality Risks from Arsenic into Models of Drinking Water Behavior and Valuation of Arsenic Risk Reductions: Preliminary Results  

E-Print Network [OSTI]

and estimating values for arsenic reduction risks. Several studies have been undertaken to examine the costs of compliance with the new standard, mainly in the form of capital cost for improved or new public system of Economics Texas A&M University Mark Walker, Associate Professor Dept. of Natural Resource and Environmental

Shaw, W. Douglass

265

Hazardous and Radioactive Mixed Waste  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

1982-12-31T23:59:59.000Z

266

ARM - SGP Rural Driving Hazards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstrumentsPolarExtendedRural Driving Hazards

267

Recovery of non-ferrous metals from smelter flue dusts and sludges  

SciTech Connect (OSTI)

A method is described for treating a smelter by-product so as to recover copper, nickel, zinc, an cobalt metal therefrom and convert any arsenic and sulfur in the smelter by-product into non-leachable forms of arsenic and sulfur, the method comprising: (a) mixing the smelter by-product with hydrated lime to form a paste; (b) forming the paste into agglomerates, (c) roasting the agglomerates in air at a temperature sufficient to oxidize the arsenic and sulfur therein and cause said oxidized arsenic and sulfur to react with the lime in the agglomerates to form non-leachable arsenic-containing and sulfur-containing calcium compounds within the roasted agglomerates; and (d) contacting the roasted agglomerates with a basic aqueous lixiviant solution comprising dissolved ammonia and an ammonium salt so as to dissolve copper, nickel, zinc and cobalt from the roasted agglomerates into the lixiviant solution, thereby converting the lixiviant solution to a pregnant liquor enriched in said copper, nickel, zinc and cobalt.

Bartlett, R.W.

1993-08-10T23:59:59.000Z

268

Hazardous waste management in the Pacific basin  

SciTech Connect (OSTI)

Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

1994-11-01T23:59:59.000Z

269

Freeze Concentration Applied to Hazardous Waste Management  

E-Print Network [OSTI]

steps to remove or destroy the hazardous components prior to discharge. Incineration is widely used to destroy a broad range of these hazardous components. Its disposal efficiency is often used when defining the Best Available Technology for EPA... standards. However, high water content streams are expensive to incinerate since the incinerator must be designed to handle the feed volume even though the water in the feed is in itself harmless. Some hazardous components require operating temperatures...

Ruemekorf, R.

270

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Broader source: Energy.gov [DOE]

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

271

DC Hazardous Waste Management (District of Columbia)  

Broader source: Energy.gov [DOE]

This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces or eliminates waste at the source. It is the policy of...

272

Hazardous Waste Management System-General (Ohio)  

Broader source: Energy.gov [DOE]

This chapter of the law establishes that the Ohio Environmental Protection Agency provides general regulations regarding hazardous waste, including landfills. Specific passages refer to the...

273

Chapter 38 Hazardous Waste Permitting Process (Kentucky)  

Broader source: Energy.gov [DOE]

This administrative regulation establishes the general provisions for storage, treatment, recycling, or disposal of hazardous waste. It provides information about permits and specific requirements...

274

Hazardous Waste Minimum Distance Requirements (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations set minimum distance requirements between certain types of facilities that generate, process, store, and dispose of hazardous waste and other land uses. The regulations require an...

275

Identification of Hazards, 3/9/95  

Broader source: Energy.gov [DOE]

The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs. Surveillance activities encompass maintenance and implementation of safety...

276

Mission Support Alliance, LLC Volpentest Hazardous Materials...  

Broader source: Energy.gov (indexed) [DOE]

Organization (FERO) roles and responsibilities, training requirements and the conduct of operations. Each project is responsible for developing and maintaining EP Hazards...

277

Canister storage building hazard analysis report  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis was performed in accordance with the DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', and meets the intent of HNF-PRO-704, ''Hazard and Accident Analysis Process''. This hazard analysis implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports''.

POWERS, T.B.

1999-05-11T23:59:59.000Z

278

Hazardous Material Transportation Safety (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation authorizes the Division of Highway Safety, in the Department of Public Safety, to promulgate regulations pertaining to the safe transportation of hazardous materials by a motor...

279

Hazardous Material Packaging for Transport - Administrative Procedures  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

1986-09-30T23:59:59.000Z

280

Louisiana Hazardous Waste Control Law (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Environmental Quality is responsible for administering the Louisiana Hazardous Waste Control Law and the regulations created under that law.

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fire hazards analysis of central waste complex  

SciTech Connect (OSTI)

This document analyzes the fire hazards associated with operational the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

Irwin, R.M.

1996-05-30T23:59:59.000Z

282

Extremely Hazardous Substances Risk Management Act (Delaware)  

Broader source: Energy.gov [DOE]

This act lays out provisions for local governments to implement regulations and standards for the management of extremely hazardous substances, which are defined and categorized as follows:

283

Oil and Hazardous Substance Discharge Preparedness (Minnesota)  

Broader source: Energy.gov [DOE]

Anyone who owns or operates a vessel or facility that transports, stores, or otherwise handles hazardous wastes must take reasonable steps to prevent the discharge of those materials.

284

E-Print Network 3.0 - arsenic-related skin lesions Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 | July 2002 729 Family Correlations of Arsenic Methylation Patterns in Children and Parents Summary: various health effects, including can- cers of the bladder, skin, and...

285

E-Print Network 3.0 - arsenic-contaminated soils anexperimental...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

most notorious poisons. Consumption of arsenic- contaminated waters... + and use the energy released for growth. They are found in many ... Source: Crawford, Ian - Department...

286

E-Print Network 3.0 - arsenic alters pulmonary Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as ABSTRACT Reduction of iron oxyhydroxide (FeOOH) and release of its sorbed arsenic load to solution... is an important mechanism by which groundwater worldwide becomes...

287

E-Print Network 3.0 - arsenic skin lesions Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

who had a substantially increased risk of stillbirth... concentrations greater than 400 lgliter and also showed signs of arsenic-caused skin lesions were se- lected......

288

E-Print Network 3.0 - arsenic cadmium lead Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the history of the discovery of arsenic in drinking-water in Bangladesh and recommends intervention strategies Source: California at Berkeley, University of - School of Public...

289

E-Print Network 3.0 - arsenic isotopes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Environmental Management and Restoration Technologies 87 Risd-M -1633 Danish Atomic Energy Commission Summary: DEPARTMENT ARSENIC IN STANDARD REFERENCE MATERIAL 1571 (Orchard...

290

E-Print Network 3.0 - arsenic lead cadmium Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the history of the discovery of arsenic in drinking-water in Bangladesh and recommends intervention strategies Source: California at Berkeley, University of - School of Public...

291

E-Print Network 3.0 - arsenic methylation capability Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the discovery of arsenic in drinking-water in Bangladesh and recommends intervention strategies Source: California at Berkeley, University of - School of Public Health,...

292

E-Print Network 3.0 - arsenic 78 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department, University of Florida Collection: Environmental Sciences and Ecology ; Environmental Management and Restoration Technologies 2 TU & MA: ARSENIC UPTAKE BY THE...

293

E-Print Network 3.0 - arsenic 90 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department, University of Florida Collection: Environmental Sciences and Ecology ; Environmental Management and Restoration Technologies 2 Absorption of foliar-applied arsenic by...

294

E-Print Network 3.0 - arsenic 86 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department, University of Florida Collection: Environmental Sciences and Ecology ; Environmental Management and Restoration Technologies 2 Absorption of foliar-applied arsenic by...

295

E-Print Network 3.0 - arsenic bromides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Florida Collection: Environmental Sciences and Ecology ; Environmental Management and Restoration Technologies 2 Evaluation of Two New Arsenic Field Test Kits Capable...

296

E-Print Network 3.0 - arsenic trioxide as2o3 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department, University of Florida Collection: Environmental Sciences and Ecology ; Environmental Management and Restoration Technologies 2 Quantities of Arsenic Within the State...

297

E-Print Network 3.0 - arsenic 84 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department, University of Florida Collection: Environmental Sciences and Ecology ; Environmental Management and Restoration Technologies 2 Absorption of foliar-applied arsenic by...

298

E-Print Network 3.0 - arsenic promotes progressive Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department, University of Florida Collection: Environmental Sciences and Ecology ; Environmental Management and Restoration Technologies 2 0268-2605C3802?01191'%0150 Arsenic in...

299

E-Print Network 3.0 - arsenic 92 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department, University of Florida Collection: Environmental Sciences and Ecology ; Environmental Management and Restoration Technologies 3 TU & MA: ARSENIC UPTAKE BY THE...

300

E-Print Network 3.0 - aluminium nickel arsenic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and electrothermal Summary: , copper, nickel and palladium nitrates on the arsenic atomic absorption signal magnitude were examined... stabilisation of platform); C, nickel...

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

E-Print Network 3.0 - arsenic hydrides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(2002) 1080-703902.50 Summary: for arsenic species using hydride generation and atomic absorption spectroscopy. The detec- tion limit for As... by ASP Estimation of...

302

E-Print Network 3.0 - arsenic iodides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COLUMNARSINE GENERATOR Keywords Methylated arsenic species, zinc column arsinegeneration, atomic absorption... atomic absorption at efficients of variation at the 0.05 gml monome...

303

E-Print Network 3.0 - arsenic pilot plant Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sediments Jason Murnock, Master of Science Candidate, Summary: conflicting. The Erie wastewater treatment plant sludge incinerator flue gas contains arsenic but pilot tests......

304

E-Print Network 3.0 - arsenic cadmium chromium Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science 14 STATE OF COLORlOO Bill Ritter, Jr., Governor Summary: . The analysis of arsenic, barium, cadmium chromium, lead, mercury, silver, and vanadium will...

305

Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.)  

E-Print Network [OSTI]

coupled with atomic fluorescence spectrometry. The impacts of air-drying on arsenic species Science Ltd. doi:10.1016/S0269-7491(02)00470-0 Enviro

Ma, Lena

306

E-Print Network 3.0 - arsenic contaminated water Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water Search Powered by Explorit Topic List Advanced Search Sample search results for: arsenic contaminated water Page: << < 1 2 3 4 5 > >> 1 Soil and Water Science Department...

307

E-Print Network 3.0 - address arsenic manganese Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HYPERACCUMULATOR Pteris vittata L Summary: ). 12;6 Remediation of Arsenic Contaminated Soils Many remediation techniques are available to address... EFFECTS OF SOIL AND PLANT ON...

308

E-Print Network 3.0 - arsenic 80 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

prototype for a low-cost arsenic ... Source: Agogino, Alice M. - Department of Mechanical Engineering, University of California at Berkeley Collection: Engineering 51...

309

E-Print Network 3.0 - arsenic exposure induces Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ecology ; Environmental Management and Restoration Technologies 6 Associations Between Drinking Water and Urinary Arsenic Levels and Skin Lesions in Summary: to the exposure...

310

E-Print Network 3.0 - arsenic exposure predicted Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

years. r... predict true exposure relies on the assumption that arsenic concentrations in drinking water sources... be used to accurately predict ... Source: California at...

311

E-Print Network 3.0 - analysis reveals arsenic-induced Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Sciences, Texas Tech University Collection: Biology and Medicine 3 Arsenic in Drinking Water and Skin Lesions: Dose-Response Data from West Bengal, India Summary: the...

312

E-Print Network 3.0 - arsenic selenides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Environmental Sciences and Ecology 4 INVENTORY -EDITED SARA TITLE III TOXIC CHEMICALS Department Summary: (gas) 7664-41-7 Argon (liquid) 7440-37-1 Arsenic...

313

E-Print Network 3.0 - arsenic trioxide combined Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ABSTRACT Reduction of iron oxyhydroxide (FeOOH) and release of its sorbed arsenic load to solution... is an important mechanism by which groundwater worldwide becomes polluted with...

314

E-Print Network 3.0 - arsenic requires sphingosine-1-phosphate...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ABSTRACT Reduction of iron oxyhydroxide (FeOOH) and release of its sorbed arsenic load to solution... is an important mechanism by which groundwater worldwide becomes polluted with...

315

E-Print Network 3.0 - arsenic-contaminated pyrite wastes Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies 10 Proc. Natl. Acad. Sci. USA Vol. 96, pp. 34553462, March 1999 Summary: of Thailand result from arsenic contamination of the shallow groundwaters be- cause of...

316

E-Print Network 3.0 - arsenic induced skin-lesions Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RESULTS Arsenic is a natural Source: District of Columbia, University of the - Water Resources Research Institute Collection: Environmental Sciences and Ecology ;...

317

E-Print Network 3.0 - arsenic poisoning Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of arsenic compounds i.e. the ... Source: Schweik, Charles M. - Department of Natural Resources Conservation, University of Massachusetts at Amherst Collection: Environmental...

318

E-Print Network 3.0 - arsenic mouse micronucleus Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Sciences and Ecology ; Geosciences ; Multidisciplinary Databases and Resources 8 Chronic Exposure to Arsenic Causes Increased Cell Survival, DNA Damage, and...

319

E-Print Network 3.0 - arsenic poisoning caused Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of arsenic compounds i.e. the ... Source: Schweik, Charles M. - Department of Natural Resources Conservation, University of Massachusetts at Amherst Collection: Environmental...

320

E-Print Network 3.0 - arsenic family elements Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of arsenic compounds i.e. the ... Source: Schweik, Charles M. - Department of Natural Resources Conservation, University of Massachusetts at Amherst Collection: Environmental...

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

E-Print Network 3.0 - arsenic fluorides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(F), selenium (Se), uranium (U), and radium... : arsenic, fluoride, nitrate, selenium, uranium, and ... Source: Scanlon, Bridget R. - Bureau of Economic Geology, Department of...

322

Comparison of Hazard Analysisp y Requirements of I&C  

E-Print Network [OSTI]

) M di l D i A id tShip Accident (Ferry Sewol) Medical Device Accident (Therac-25) 3 NPP Accident­ Software Fault Tree Analysis ­ By AECL, Nancy Leveson Name of Software Hazards No % Remarks For construct hazard 4 7For construct hazard 4 7 Initialization hazard 4 7 IF-THEN-ELSE construct hazard 38 67 CASE

323

Association between As and Cu renal cortex accumulation and physiological and histological alterations after chronic arsenic intake  

SciTech Connect (OSTI)

Arsenic (As) is one of the most abundant hazards in the environment and it is a human carcinogen. Related to excretory functions, the kidneys in humans, animal models or naturally exposed fauna, are target organs for As accumulation and deleterious effects. Previous studies carried out using X-ray fluorescence spectrometry by synchrotron radiation (SR-{mu}XRF) showed a high concentration of As in the renal cortex of chronically exposed rats, suggesting that this is a suitable model for studies on renal As accumulation. This accumulation was accompanied by a significant increase in copper (Cu) concentration. The present study focused on the localization of these elements in the renal cortex and their correlation with physiological and histological As-related renal effects. Experiments were performed on nine male Wistar rats, divided into three experimental groups. Two groups received 100 {mu}g/ml sodium arsenite in drinking water for 60 and 120 consecutive days, respectively. The control group received water without sodium arsenite (<50 ppb As). For histological analysis, 5-{mu}m-thick sections of kidneys were stained with hematoxylin and eosin. Biochemical analyses were used to determine concentrations of plasma urea and creatinine. The As and Cu mapping were carried out by SR-{mu}XRF using a collimated white synchrotron spectrum (300 {mu}mx300 {mu}m) on kidney slices (2 mm thick) showing As and Cu co-distribution in the renal cortex. Then, renal cortical slices (100 {mu}m thick) were scanned with a focused white synchrotron spectrum (30 {mu}mx30 {mu}m). Peri-glomerular accumulation of As and Cu at 60 and 120 days was found. The effects of 60 days of arsenic consumption were seen in a decreased Bowman's space as well as a decreased plasma blood urea nitrogen (BUN)/creatinine ratio. Major deleterious effects; however, were seen on tubules at 120 days of exposition. This study supports the hypothesis that tubular accumulation of As-Cu may have some bearing on the arsenic-associated nephrotoxicological process.

Rubatto Birri, Paolo N. [Instituto de Biologia Celular, Facultad de Ciencias Medicas (FCM), Universidad Nacional de Cordoba (UNC), Ciudad Universitaria, Cordoba (Argentina)] [Instituto de Biologia Celular, Facultad de Ciencias Medicas (FCM), Universidad Nacional de Cordoba (UNC), Ciudad Universitaria, Cordoba (Argentina); Perez, Roberto D. [Facultad de Matematica, Astronomia y Fisica (FAMAF-UNC), Ciudad Universitaria, Cordoba (Argentina) [Facultad de Matematica, Astronomia y Fisica (FAMAF-UNC), Ciudad Universitaria, Cordoba (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Buenos Aires (Argentina); Cremonezzi, David [Catedra Anatomia Patologica, Hospital Nacional de Clinicas (FCM-UNC), Cordoba (Argentina)] [Catedra Anatomia Patologica, Hospital Nacional de Clinicas (FCM-UNC), Cordoba (Argentina); Perez, Carlos A. [Laboratorio Nacional de Luz Sincrotron (LNLS), Linha D09B-XRF, Campinas SP (Brazil)] [Laboratorio Nacional de Luz Sincrotron (LNLS), Linha D09B-XRF, Campinas SP (Brazil); Rubio, Marcelo [Facultad de Matematica, Astronomia y Fisica (FAMAF-UNC), Ciudad Universitaria, Cordoba (Argentina) [Facultad de Matematica, Astronomia y Fisica (FAMAF-UNC), Ciudad Universitaria, Cordoba (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Buenos Aires (Argentina); Bongiovanni, Guillermina A., E-mail: gbongiovanni@conicet.gov.ar [Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Buenos Aires (Argentina); Laboratorio de Investigaciones Bioquimicas, Quimicas y de Medio Ambiente (LIBIQUIMA), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Universidad Nacional del Comahue, Buenos Aires 1400, CP 8300 Neuquen (Argentina)

2010-07-15T23:59:59.000Z

324

Strategies for the Engineered Phytoremediation of Mercury and Arsenic Pollution  

SciTech Connect (OSTI)

Phytoremediation is the use of plants to extract, transport, detoxify and/or sequester pollutants of the land, water or air. Mercury and arsenic are among the worst environmental pollutants, adversely affecting the health of hundreds of millions of people worldwide. We have demonstrated that plants can be engineered to take up and tolerate several times the levels of mercury and arsenic that would kill most plant species. Starting with methylmercury and/or ionic mercury contamination, mercury is detoxified, stored below or above ground, and even volatilized as part of the transpiration process and keeping it out of the food chain. Initial efforts with arsenate demonstrate that it can be taken up, transported aboveground, electrochemically reduced to arsenite in leaves and sequestered in thiol-rich peptide complexes. The transgenic mercury remediation strategies also worked in cultivated and wild plant species like canola, rice and cottonwood.

Dhankher, Om Parkash; Meagher, Richard B.

2003-03-26T23:59:59.000Z

325

Frozen Ground 9 PERMAFROST HAZARDS IN MOUNTAINS  

E-Print Network [OSTI]

and other forms of creeping mountain permafrost may be the source of a number of hazards. Rock glaciers of large rock avalanche disasters are examples of mountain hazards. In the case of the September 20, 2002, rock-ice avalanche at Kolka-Karmadon in the Russian Caucasus, a combined rock-ice avalanche

Kb, Andreas

326

Why is Eastern Redcedar a Hazardous Fuel?  

E-Print Network [OSTI]

Why is Eastern Redcedar a Hazardous Fuel? Why is Eastern Redcedar a Hazardous Fuel? Homes built the destruction of fire-tolerant trees if a wildfire moves through the area. Creating fuel breaks (such ignite it. When ERC grows in forests and wood- lands, it acts as a ladder fuel to allow fire to climb

Balasundaram, Balabhaskar "Baski"

327

THE GRADUATE CERTIFICATE IN ENVIRONMENTAL HAZARD MANAGEMENT  

E-Print Network [OSTI]

THE GRADUATE CERTIFICATE IN ENVIRONMENTAL HAZARD MANAGEMENT Offered by The College of Architecture and The Hazard Reduction and Recovery Center Texas A&M University #12;2 THE GRADUATE CERTIFICATE IN ENVIRONMENTAL..................................................................................3 C. Approved Courses in the College of Architecture .............................4 D. Approved

328

Natural phenomena hazards, Hanford Site, Washington  

SciTech Connect (OSTI)

This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity.

Conrads, T.J.

1998-09-29T23:59:59.000Z

329

Fire and explosion hazards of oil shale  

SciTech Connect (OSTI)

The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

Not Available

1989-01-01T23:59:59.000Z

330

Energy and solid/hazardous waste  

SciTech Connect (OSTI)

This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

None

1981-12-01T23:59:59.000Z

331

Sulfide-Driven Arsenic Mobilization from Arsenopyrite and Black Shale Pyrite  

SciTech Connect (OSTI)

We examined the hypothesis that sulfide drives arsenic mobilization from pyritic black shale by a sulfide-arsenide exchange and oxidation reaction in which sulfide replaces arsenic in arsenopyrite forming pyrite, and arsenide (As-1) is concurrently oxidized to soluble arsenite (As+3). This hypothesis was tested in a series of sulfide-arsenide exchange experiments with arsenopyrite (FeAsS), homogenized black shale from the Newark Basin (Lockatong formation), and pyrite isolated from Newark Basin black shale incubated under oxic (21% O2), hypoxic (2% O2, 98% N2), and anoxic (5% H2, 95% N2) conditions. The oxidation state of arsenic in Newark Basin black shale pyrite was determined using X-ray absorption-near edge structure spectroscopy (XANES). Incubation results show that sulfide (1 mM initial concentration) increases arsenic mobilization to the dissolved phase from all three solids under oxic and hypoxic, but not anoxic conditions. Indeed under oxic and hypoxic conditions, the presence of sulfide resulted in the mobilization in 48 h of 13-16 times more arsenic from arsenopyrite and 6-11 times more arsenic from isolated black shale pyrite than in sulfide-free controls. XANES results show that arsenic in Newark Basin black shale pyrite has the same oxidation state as that in FeAsS (-1) and thus extend the sulfide-arsenide exchange mechanism of arsenic mobilization to sedimentary rock, black shale pyrite. Biologically active incubations of whole black shale and its resident microorganisms under sulfate reducing conditions resulted in sevenfold higher mobilization of soluble arsenic than sterile controls. Taken together, our results indicate that sulfide-driven arsenic mobilization would be most important under conditions of redox disequilibrium, such as when sulfate-reducing bacteria release sulfide into oxic groundwater, and that microbial sulfide production is expected to enhance arsenic mobilization in sedimentary rock aquifers with major pyrite-bearing, black shale formations.

Zhu, W.; Young, L; Yee, N; Serfes, M; Rhine, E; Reinfelder, J

2008-01-01T23:59:59.000Z

332

Removing Arsenic from Contaminated Drinking Water in Rural Bangladesh: Recent Fieldwork Results and Policy Implications  

SciTech Connect (OSTI)

ARUBA (Arsenic Removal Using Bottom Ash) has proven effective at removing high concentrations of arsenic from drinking water in Bangladesh. During fieldwork in four sub-districts of the country, ARUBA reduced arsenic levels ranging from 200 to 900 ppb to below the Bangladesh standard of 50 ppb. The technology is cost-effective because the substrate--bottom ash from coal fired power plants--is a waste material readily available in South Asia. In comparison to similar technologies, ARUBA uses less media for arsenic removal due to its high surface area to volume ratio. Hence, less waste is produced. A number of experiments were conducted in Bangladesh to determine the effectiveness of various water treatment protocols. It was found that (1) ARUBA removes more than half of the arsenic from water within five minutes of treatment, (2) ARUBA, that has settled at the bottom of a treatment vessel, continues to remove arsenic for 2-3 days, (3) ARUBA's arsenic removal efficiency can be improved through sequential partial dosing (adding a given amount of ARUBA in fractions versus all at once), and (4) allowing water to first stand for two to three days followed by treatment with ARUBA produced final arsenic levels ten times lower than treating water directly out of the well. Our findings imply a number of tradeoffs between ARUBA's effective arsenic removal capacity, treatment system costs, and waste output. These tradeoffs, some a function of arsenic-related policies in Bangladesh (e.g., waste disposal regulations), must be considered when designing an arsenic removal system. We propose that the most attractive option is to use ARUBA in communityscale water treatment centers, installed as public-private partnerships, in Bangladeshi villages.

Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Addy, Susan E.A.

2009-09-17T23:59:59.000Z

333

Relationship between Pyrite Stability and Arsenic Mobility During  

E-Print Network [OSTI]

in the storage zone (1-3). Although arsenic can be removed from recovered water during treatment, mobilization in Southwest Central Florida G R E G G W . J O N E S * A N D T H O M A S P I C H L E R Southwest Florida Water in water recovered from aquifer storage and recovery (ASR) systems in west-central Florida that store

Pichler, Thomas

334

Brief Original Contribution Case-Control Study of Arsenic in Drinking Water and Kidney Cancer in Uniquely  

E-Print Network [OSTI]

Brief Original Contribution Case-Control Study of Arsenic in Drinking Water and Kidney Cancer for publication March 11, 2013. Millions of people worldwide are exposed to arsenic in drinking water of dose-response, we believe there is now sufficient evidence in humans that drinking-water arsenic causes

California at Berkeley, University of

335

Metal inks  

DOE Patents [OSTI]

Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

2014-02-04T23:59:59.000Z

336

Sustainable System for Residual Hazards Management  

SciTech Connect (OSTI)

Hazardous, radioactive and other toxic substances have routinely been generated and subsequently disposed of in the shallow subsurface throughout the world. Many of todays waste management techniques do not eliminate the problem, but rather only concentrate or contain the hazardous contaminants. Residual hazards result from the presence of hazardous and/or contaminated material that remains on-site following active operations or the completion of remedial actions. Residual hazards pose continued risk to humans and the environment and represent a significant and chronic problem that require continuous longterm management (i.e. >1000 years). To protect human health and safeguard the natural environment, a sustainable system is required for the proper management of residual hazards. A sustainable system for the management of residual hazards will require the integration of engineered, institutional and land-use controls to isolate residual contaminants and thus minimize the associated hazards. Engineered controls are physical modifications to the natural setting and ecosystem, including the site, facility, and/or the residual materials themselves, in order to reduce or eliminate the potential for exposure to contaminants of concern (COCs). Institutional controls are processes, instruments, and mechanisms designed to influence human behavior and activity. System failure can involve hazardous material escaping from the confinement because of system degradation (i.e., chronic or acute degradation) or by externalintrusion of the biosphere into the contaminated material because of the loss of institutional control. An ongoing analysis of contemporary and historic sites suggests that the significance of the loss of institutional controls is a critical pathway because decisions made during the operations/remedial action phase, as well as decisions made throughout the residual hazards management period, are key to the longterm success of the prescribed system. In fact, given that society has become more reliant on and confident of engineered controls, there may be a growing tendency to be even less concerned with institutional controls.

Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

2004-06-01T23:59:59.000Z

337

Trace metal capture by various sorbents during fluidized bed coal combustion  

SciTech Connect (OSTI)

This study investigated the potential of employing suitable sorbents to capture toxic trace metallic substances during fluidized bed coal combustion. Metal capture experiments were carried out in a 25.4 mm (1 inch) quartz fluidized bed combustor enclosed in an electric furnace. The metals involved were cadmium, lead, chromium, arsenic and selenium, and the sorbents tested included bauxite, zeolite and lime. In addition to the experimental investigations, potential metal-sorbent reactions were also identified through chemical equilibrium calculations based on the minimization of system free energy. The observed experimental results indicated that metal capture by sorbents can be as high as 88% depending on the metal species and sorbent involved. Results from thermodynamic equilibrium simulations suggested the formation of metal-sorbent compounds such as Pb{sub 2}SiO{sub 4}(s), CdAl{sub 2}O{sub 4}(s) and CdSiO{sub 3}(s) under the combustion conditions.

Ho, T.C.; Ghebremeskel, A.; Wang, K.S.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

1997-07-01T23:59:59.000Z

338

Uintah -a scalable framework for hazard analysis Martin Berzins  

E-Print Network [OSTI]

Uintah - a scalable framework for hazard analysis Martin Berzins Scientific Computing and Imaging of Uintah to a petascale problem in hazard analysis arising from "sympathetic" explosions in which. Devices containing such materials undergo extensive testing for hazard classification prior

Utah, University of

339

Analytica Chimica Acta 477 (2003) 279291 Measurement of arsenic species in marine sediments by  

E-Print Network [OSTI]

Analytica Chimica Acta 477 (2003) 279­291 Measurement of arsenic species in marine sediments 2002 Abstract Extraction of sediments with phosphoric acid (0.5 M) and hydroxylamine hydrochloride (0 to separate arsenic species. Recoveries of sediments spiked with As(V) were quantitative whereas for sediments

Canberra, University of

340

Quantities of Arsenic-Treated Wood in Demolition Debris Generated by  

E-Print Network [OSTI]

Research Quantities of Arsenic-Treated Wood in Demolition Debris Generated by Hurricane Katrina B R of the demolition debris is wood waste of which a significant proportion is treated with preservatives, including preservatives containing arsenic. As a result of the large scale destruction of treated wood structures

Florida, University of

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Original Contribution Arsenic Exposure from Drinking Water and Risk of Premalignant Skin Lesions  

E-Print Network [OSTI]

Original Contribution Arsenic Exposure from Drinking Water and Risk of Premalignant Skin Lesions, 2006. Millions of persons around the world are exposed to low doses of arsenic through drinking water from drinking water over a significant period of time. The authors evaluated dose-response relations

van Geen, Alexander

342

TSNo s02-arai135528-P Microscale Arsenic (As) Chemical Speciation in Poultry Litter.  

E-Print Network [OSTI]

TSNo s02-arai135528-P Title Microscale Arsenic (As) Chemical Speciation in Poultry Litter. abstract environments from poultry manure/litter amendments. The origin of As in the poultry manure/litter is organo-arsenical compounds (e.g., Roxasone) that are present in poultry feed to control coccidiosis and to improve feed

Sparks, Donald L.

343

The Fate and Speciation of Arsenic in Soils and Poultry Production Systems  

E-Print Network [OSTI]

The Fate and Speciation of Arsenic in Soils and Poultry Production Systems by: Jennifer Seiter in soil environments. One source of As in Delaware soils is the incorporation of poultry litter into agricultural fields. The most common source of As in poultry litter is an organic arsenical called roxarsone

Sparks, Donald L.

344

Determination of Arsenic Poisoning and Metabolism in Hair by Synchrotron Radiation: The Case of Phar Lap  

SciTech Connect (OSTI)

Fresh physical evidence about the demise of the racehorse Phar Lap (see photograph) has been gathered from the study of mane hair samples by synchrotron radiation analysis with high resolution X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) analyses. The results are indicative of arsenic ingestion and metabolism, and show that the racing champion died from arsenic poisoning.

Kempson, Ivan M.; Henry, Dermot A. (Museum Vic.); (U. South Australia)

2010-08-26T23:59:59.000Z

345

Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus  

SciTech Connect (OSTI)

Chronic exposure to high concentrations of arsenic in drinking water is associated with an increased risk for developing type 2 diabetes. The present revision focuses on the effect of arsenic on tissues that participate directly in glucose homeostasis, integrating the most important published information about the impairment of the expression of genes related to type 2 diabetes by arsenic as one of the possible mechanisms by which it leads to the disease. Many factors are involved in the manner in which arsenic contributes to the occurrence of diabetes. The reviewed studies suggest that arsenic might increase the risk for type 2 diabetes via multiple mechanisms, affecting a cluster of regulated events, which in conjunction trigger the disease. Arsenic affects insulin sensitivity in peripheral tissue by modifying the expression of genes involved in insulin resistance and shifting away cells from differentiation to the proliferation pathway. In the liver arsenic disturbs glucose production, whereas in pancreatic beta-cells arsenic decreases insulin synthesis and secretion and reduces the expression of antioxidant enzymes. The consequences of these changes in gene expression include the reduction of insulin secretion, induction of oxidative stress in the pancreas, alteration of gluconeogenesis, abnormal proliferation and differentiation pattern of muscle and adipocytes as well as peripheral insulin resistance.

Diaz-Villasenor, Andrea [Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Circuito Escolar, Cd. Universitaria, Coyoacan 04510 Mexico, DF (Mexico)], E-mail: andreadv@biomedicas.unam.mx; Burns, Anna L. [Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Circuito Escolar, Cd. Universitaria, Coyoacan 04510 Mexico, DF (Mexico); Facultad de Medicina, Universidad Nacional Autonoma de Mexico (Mexico); Hiriart, Marcia [Department of Biophysics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico (Mexico); Cebrian, Mariano E. [Seccion Externa de Toxicologia, CINVESTAV, IPN (Mexico); Ostrosky-Wegman, Patricia [Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Circuito Escolar, Cd. Universitaria, Coyoacan 04510 Mexico, DF (Mexico)

2007-12-01T23:59:59.000Z

346

Original article Honey resistance to air contamination with arsenic from a  

E-Print Network [OSTI]

Original article Honey resistance to air contamination with arsenic from a copper processing plant surrounding the Bor smelter plant (East Serbia region), poisoning and mass killing of bee colonies by arsenic mellifera - Bloindikator #12;Introduction In the area surrounding a copper smelting plant (East Serbia

Paris-Sud XI, Université de

347

Predicting arsenic concentrations in porewaters of buried uranium mill tailings  

SciTech Connect (OSTI)

The proposed JEB Tailings Management Facility (TMF) to be emplaced below the groundwater table in northern Saskatchewan, Canada, will contain uranium mill tailings from McClean Lake, Midwest and Cigar Lake ore bodies, which are high in arsenic (up to 10%) and nickel (up to 5%). A serious concern is the possibility that high arsenic and nickel concentrations may be released from the buried tailings, contaminating adjacent groundwaters and a nearby lake. Laboratory tests and geochemical modeling were performed to examine ways to reduce the arsenic and nickel concentrations in TMF porewaters so as to minimize such contamination from tailings buried for 50 years and longer. The tests were designed to mimic conditions in the mill neutralization circuit (3 hr tests at 25 C), and in the TMF after burial (5--49 day aging tests). The aging tests were run at 50, 25 and 4 C (the temperature in the TMF). In order to optimize the removal of arsenic by adsorption and precipitation, ferric sulfate was added to tailings raffinates having Fe/As ratios of less than 3--5. The acid raffinates were then neutralized by addition of slaked lime to nominal pH values of 7, 8, or 9. Analysis and modeling of the test results showed that with slaked lime addition to acid tailings raffinates, relatively amorphous scorodite (ferric arsenate) precipitates near pH 1, and is the dominant form of arsenate in slake limed tailings solids except those high in Ni and As and low in Fe, in which cabrerite-annabergite (Ni, Mg, Fe(II) arsenate) may also precipitate near pH 5--6. In addition to the arsenate precipitates, smaller amounts of arsenate are also adsorbed onto tailings solids. The aging tests showed that after burial of the tailings, arsenic concentrations may increase with time from the breakdown of the arsenate phases (chiefly scorodite). However, the tests indicate that the rate of change decreases and approaches zero after 72 hrs at 25 C, and may equal zero at all times in the TMF at 4 C. Consistent with a kinetic model that describes the rate of breakdown of scorodite to form hydrous ferric oxide, the rate of release of dissolved arsenate to tailings porewaters from slake limed tailings: (1) is proportional to pH above pH 6--7; (2) decreases exponentially as the total molar Fe/As ratio of tailings raffinates is increased from 1/1 to greater than 5/1; and (3) is proportional to temperature with an average Arrhenius activation energy of 13.4 {+-} 4.2 kcal/mol. Study results suggest that if ferric sulfate and slaked lime are added in the tailings neutralization circuit to give a raffinate Fe/As molar ratio of at least 3--5 and a nominal (initial) pH of 8 (final pH of 7--8), arsenic and nickel concentrations of 2 mg/L or less, are probable in porewaters of individual tailings in the TMF for 50 to 10,000 yrs after tailings disposal. However, the tailings will be mixed in the TMF, which will contain about 35% tailings with Fe/As = 3.0, and 65% tailings with Fe/As = 5.0--7.7. Thus, it seems likely that average arsenic pore water concentrations in the TMF may not exceed 1 mg/L.

Langmuir, D.; Mahoney, J.; MacDonald, A.; Rowson, J.

1999-10-01T23:59:59.000Z

348

Outcomes of Chronic Arsenic Exposure on Aquatic Insects  

E-Print Network [OSTI]

mechanisms of heavy metal pollution from urban runoff inWhitby LM. 1974. Heavy metal pollution in the Sudbury miningas an index of heavy- metal pollution? A test using snails

Mogren, Christina Loraine

2013-01-01T23:59:59.000Z

349

ElectroChemical Arsenic Removal (ECAR) for Rural Bangladesh--Merging Technology with Sustainable Implementation  

SciTech Connect (OSTI)

Today, 35-77 million Bangladeshis drink arsenic-contaminated groundwater from shallow tube wells. Arsenic remediation efforts have focused on the development and dissemination of household filters that frequently fall into disuse due to the amount of attention and maintenance that they require. A community scale clean water center has many advantages over household filters and allows for both chemical and electricity-based technologies to be beneficial to rural areas. Full cost recovery would enable the treatment center to be sustainable over time. ElectroChemical Arsenic Remediation (ECAR) is compatible with community scale water treatment for rural Bangladesh. We demonstrate the ability of ECAR to reduce arsenic levels> 500 ppb to less than 10 ppb in synthetic and real Bangladesh groundwater samples and examine the influence of several operating parameters on arsenic removal effectiveness. Operating cost and waste estimates are provided. Policy implication recommendations that encourage sustainable community treatment centers are discussed.

Addy, Susan E.A.; Gadgil, Ashok J.; Kowolik, Kristin; Kostecki, Robert

2009-12-01T23:59:59.000Z

350

Silicone metalization  

DOE Patents [OSTI]

A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

2008-12-09T23:59:59.000Z

351

Silicone metalization  

DOE Patents [OSTI]

A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

2006-12-05T23:59:59.000Z

352

Assessment of Health Hazards of Repeated Inhalation of Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with...

353

Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi)  

Broader source: Energy.gov [DOE]

The purpose of the Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations is to help maintain accountability and track data on the hazardous and nonhazardous waste sites in...

354

DOE Standard 1020 - Natural Phenomena Hazard analysis and Design...  

Broader source: Energy.gov (indexed) [DOE]

1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities...

355

CRAD, Packaging and Transfer of Hazardous Materials and Materials...  

Office of Environmental Management (EM)

CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

356

Evaluation of the SRS Seismic Hazard Considering the EPRI 2013...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation of the SRS Seismic Hazard Considering the EPRI 2013 Ground Motion Model Evaluation of the SRS Seismic Hazard Considering the EPRI 2013 Ground Motion Model Evaluation of...

357

New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Laboratories developed the Solar Glare Hazard Analysis Tool (SGHAT), a free Web-based tool that can quickly calculate potential visual hazards from proposed solar...

358

A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity...  

Open Energy Info (EERE)

atmospheric hazards caused by explosive volcanic activity. The hazard posed by fine silicate ash with long residence time in the atmosphere is probably much less serious than...

359

Hazardous Waste Compliance Program Plan  

SciTech Connect (OSTI)

The Hazardous Waste Compliance Program Plan (HWCPP) describes how the Rocky Flats Plant institutes a more effective waste management program designed to achieve and maintain strict adherence to the Resource Conservation and Recovery Act (RCRA) requirements. Emphasis is given to improve integration of line operations with programmatic and functional support activities necessary to achieve physical compliance to RCRA regulated equipment, facilities and operations at the floor level. This program focuses on specific activities occurring or which need to occur within buildings containing RCRA regulated units and activities. The plan describes a new approach to achieving and maintaining compliance. This approach concentrates authority and accountability for compliance with the line operating personnel, with support provided from the programmatic functions. This approach requires a higher degree of integration and coordination between operating and program support organizations. The principal changes in emphases are; (1) increased line operations involvement, knowledge and accountability in compliance activities, (2) improved management systems to identify, correct and/or avoid deficiencies and (3) enhanced management attention and employee awareness of compliance related matters.

Potter, G.L.; Holstein, K.A.

1994-05-01T23:59:59.000Z

360

Apparatus for incinerating hazardous waste  

DOE Patents [OSTI]

An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

Chang, Robert C. W. (Martinez, GA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Apparatus for incinerating hazardous waste  

DOE Patents [OSTI]

An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

Chang, R.C.W.

1994-12-20T23:59:59.000Z

362

Apparatus for transporting hazardous materials  

DOE Patents [OSTI]

An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

Osterman, Robert A. (Canonsburg, PA); Cox, Robert (West Mifflin, PA)

1992-01-01T23:59:59.000Z

363

WESF natural phenomena hazards survey  

SciTech Connect (OSTI)

A team of engineers conducted a systematic natural hazards phenomena (NPH) survey for the 225-B Waste Encapsulation and Storage Facility (WESF). The survey is an assessment of the existing design documentation to serve as the structural design basis for WESF, and the Interim Safety Basis (ISB). The lateral force resisting systems for the 225-B building structures, and the anchorages for the WESF safety related systems were evaluated. The original seismic and other design analyses were technically reviewed. Engineering judgment assessments were made of the probability of NPH survival, including seismic, for the 225-B structures and WESF safety systems. The method for the survey is based on the experience of the investigating engineers,and documented earthquake experience (expected response) data.The survey uses knowledge on NPH performance and engineering experience to determine the WESF strengths for NPH resistance, and uncover possible weak links. The survey, in general, concludes that the 225-B structures and WESF safety systems are designed and constructed commensurate with the current Hanford Site design criteria.

Wagenblast, G.R., Westinghouse Hanford

1996-07-01T23:59:59.000Z

364

Mobile machine hazardous working zone warning system  

DOE Patents [OSTI]

A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

Schiffbauer, W.H.; Ganoe, C.W.

1999-08-17T23:59:59.000Z

365

Mobile machine hazardous working zone warning system  

DOE Patents [OSTI]

A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

Schiffbauer, William H. (Connellsville, PA); Ganoe, Carl W. (Pittsburgh, PA)

1999-01-01T23:59:59.000Z

366

283-E and 283-W hazards assessment  

SciTech Connect (OSTI)

This report documents the hazards assessment for the 200 area water treatment plants 283-E and 283-W located on the US DOE Hanford Site. Operation of the water treatment plants is the responsibility of ICF Kaiser Hanford Company (ICF KH). This hazards assessment was conducted to provide emergency planning technical basis for the water treatment plants. This document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A which requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

Sutton, L.N.

1994-09-26T23:59:59.000Z

367

Hazards Control Department annual technology review, 1987  

SciTech Connect (OSTI)

This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

Griffith, R.V.; Anderson, K.J. (eds.)

1988-07-01T23:59:59.000Z

368

Hazardous waste operational plan for site 300  

SciTech Connect (OSTI)

This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

Roberts, R.S.

1982-02-12T23:59:59.000Z

369

Characterization and Transcription of Arsenic Respiration and Resistance Genes During In Situ Uranium Bioremediation  

SciTech Connect (OSTI)

The possibility of arsenic release and the potential role of Geobacter in arsenic biogeochemistry during in situ uranium bioremediation was investigated because increased availability of organic matter has been associated with substantial releases of arsenic in other subsurface environments. In a field experiment conducted at the Rifle, CO study site, groundwater arsenic concentrations increased when acetate was added. The number of transcripts from arrA, which codes for the alpha subunit of dissimilatory As(V) reductase, and acr3, which codes for the arsenic pump protein Acr3, were determined with quantitative RT-PCR. Most of the arrA (> 60%) and acr3-1 (> 90%) sequences that were recovered were most similar to Geobacter species, while the majority of acr3-2 (>50%) sequences were most closely related to Rhodoferax ferrireducens. Analysis of transcript abundance demonstrated that transcription of acr3-1 by the subsurface Geobacter community was correlated with arsenic concentrations in the groundwater. In contrast, Geobacter arrA transcript numbers lagged behind the major arsenic release and remained high even after arsenic concentrations declined. This suggested that factors other than As(V) availability regulated transcription of arrA in situ even though the presence of As(V) increased transcription of arrA in cultures of G. lovleyi, which was capable of As(V) reduction. These results demonstrate that subsurface Geobacter species can tightly regulate their physiological response to changes in groundwater arsenic concentrations. The transcriptomic approach developed here should be useful for the study of a diversity of other environments in which Geobacter species are considered to have an important influence on arsenic biogeochemistry.

Giloteaux, L.; Holmes, Dawn E.; Williams, Kenneth H.; Wrighton, Kelly C.; Wilkins, Michael J.; Montgomery, Alison P.; Smith, Jessica A.; Orellana, Roberto; Thompson, Courtney A.; Roper, Thomas J.; Long, Philip E.; Lovley, Derek R.

2013-02-04T23:59:59.000Z

370

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1998-05-12T23:59:59.000Z

371

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

372

Author's personal copy Journal of Hazardous Materials 185 (2011) 983989  

E-Print Network [OSTI]

), a carcinogenic metalloid, is ubiquitous in the environment. Human activities including mining, smelting, and As to arsenic via drinking con- taminated water (>50 g/L) leads to cancers, birth defects, and other diseases [3

Ma, Lena

373

Effects of Soil Composition and Mineralogy on the Bioaccessibility of Arsenic from Tailings and Soil in Gold Mine Districts of Nova Scotia  

SciTech Connect (OSTI)

Bioaccessibility tests and mineralogical analyses were performed on arsenic-contaminated tailings and soils from gold mine districts of Nova Scotia, Canada, to examine the links between soil composition, mineralogy, and arsenic bioaccessibility. Arsenic bioaccessibility ranges from 0.1% to 49%. A weak correlation was observed between total and bioaccessible arsenic concentrations, and the arsenic bioaccessibility was not correlated with other elements. Bulk X-ray absorption near-edge structure analysis shows arsenic in these near-surface samples is mainly in the pentavalent form, indicating that most of the arsenopyrite (As{sup 1-}) originally present in the tailings and soils has been oxidized during weathering reactions. Detailed mineralogical analyses of individual samples have identified up to seven arsenic species, the relative proportions of which appear to affect arsenic bioaccessibility. The highest arsenic bioaccessibility (up to 49%) is associated with the presence of calcium-iron arsenate. Samples containing arsenic predominantly as arsenopyrite or scorodite have the lowest bioaccessibility (<1%). Other arsenic species identified (predominantly amorphous iron arsenates and arsenic-bearing iron(oxy)hydroxides) are associated with intermediate bioaccessibility (1 to 10%). The presence of a more soluble arsenic phase, even at low concentrations, results in increased arsenic bioaccessibility from the mixed arsenic phases associated with tailings and mine-impacted soils.

Meunier, Louise; Walker, Stephen R.; Wragg, Joanna; Parsons, Michael B.; Koch, Iris; Jamieson, Heather E.; Reimer, Kenneth J. (Queens); (Brit. Geo.); (Royal); (NRC)

2010-10-20T23:59:59.000Z

374

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts)  

Broader source: Energy.gov [DOE]

This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct,...

375

Hazardous Waste Management Act (South Dakota)  

Broader source: Energy.gov [DOE]

It is the public policy of the state of South Dakota to regulate the control and generation, transportation, treatment, storage, and disposal of hazardous wastes. The state operates a comprehensive...

376

Improving Tamper Detection for Hazardous Waste Security  

SciTech Connect (OSTI)

Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

2003-02-26T23:59:59.000Z

377

Hazardous Materials Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

2015-04-20T23:59:59.000Z

378

Oil or Hazardous Spills Releases Law (Georgia)  

Broader source: Energy.gov [DOE]

The Oil or Hazardous Spills Law requires notice to the Environmental Protection Division of the State Department of Natural Resources Emergency Operations Center when there is a spill or release of...

379

CONTROL of SUBSTANCES HAZARDOUS TO HEALTH (COSHH)  

E-Print Network [OSTI]

working practice and will encourage the evolution of a positive health and safety culture within the orgCONTROL of SUBSTANCES HAZARDOUS TO HEALTH (COSHH) Guidance Notes on Risk Assessment HEALTH & SAFETY............................................................................................................9 2.6. Safety Data Sheets (SDS

380

Rainfall-induced Landslide Hazard Rating System  

E-Print Network [OSTI]

This research develops a Landslide Hazard Rating System for the rainfall-induced landslides in the Chenyulan River basin area in central Taiwan. This system is designed to provide a simplified and quick evaluation of the ...

Chen, Yi-Ting, Civ. E., Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hazardous materials transportation and emergency response programs  

SciTech Connect (OSTI)

This presentation consists of the following visual aids; (1) detailed routing capabilities of truck, rail, barge; (2) legislative data base for hazardous materials; and (3) emergency response of accident site Eddyville, Kentucky (airports in vicinity of Eddyville, KY).

Joy, D.S.; Fore, C.S.

1983-01-01T23:59:59.000Z

382

Exploratory Studies Facility Subsurface Fire Hazards Analysis  

SciTech Connect (OSTI)

The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

Richard C. Logan

2002-03-28T23:59:59.000Z

383

Exploratory Studies Facility Subsurface Fire Hazards Analysis  

SciTech Connect (OSTI)

The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events.

J. L. Kubicek

2001-09-07T23:59:59.000Z

384

Arsenic methylation and lung and bladder cancer in a case-control study in northern Chile  

SciTech Connect (OSTI)

In humans, ingested inorganic arsenic is metabolized to monomethylarsenic (MMA) then to dimethylarsenic (DMA), although this process is not complete in most people. The trivalent form of MMA is highly toxic in vitro and previous studies have identified associations between the proportion of urinary arsenic as MMA (%MMA) and several arsenic-related diseases. To date, however, relatively little is known about its role in lung cancer, the most common cause of arsenic-related death, or about its impacts on people drinking water with lower arsenic concentrations (e.g., < 200 ?g/L). In this study, urinary arsenic metabolites were measured in 94 lung and 117 bladder cancer cases and 347 population-based controls from areas in northern Chile with a wide range of drinking water arsenic concentrations. Lung cancer odds ratios adjusted for age, sex, and smoking by increasing tertiles of %MMA were 1.00, 1.91 (95% confidence interval (CI), 0.993.67), and 3.26 (1.766.04) (p-trend < 0.001). Corresponding odds ratios for bladder cancer were 1.00, 1.81 (1.063.11), and 2.02 (1.153.54) (p-trend < 0.001). In analyses confined to subjects only with arsenic water concentrations < 200 ?g/L (median = 60 ?g/L), lung and bladder cancer odds ratios for subjects in the upper tertile of %MMA compared to subjects in the lower two tertiles were 2.48 (1.085.68) and 2.37 (1.015.57), respectively. Overall, these findings provide evidence that inter-individual differences in arsenic metabolism may be an important risk factor for arsenic-related lung cancer, and may play a role in cancer risks among people exposed to relatively low arsenic water concentrations. - Highlights: Urine arsenic metabolites were measured in cancer cases and controls from Chile. Higher urine %MMA values were associated with increased lung and bladder cancer. %MMA-cancer associations were seen at drinking water arsenic levels < 200 ?g/L.

Melak, Dawit [Global Health Sciences, University of California, San Francisco, San Francisco, CA (United States); Ferreccio, Catterina [Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago (Chile); Kalman, David [School of Public Health and Community Medicine, University of Washington, Seattle, WA (United States); Parra, Roxana [Hospital Regional de Antofagasta, Antofagasta (Chile); Acevedo, Johanna; Prez, Liliana; Corts, Sandra [Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago (Chile); Smith, Allan H.; Yuan, Yan; Liaw, Jane [Arsenic Health Effects Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA (United States); Steinmaus, Craig, E-mail: craigs@berkeley.edu [Arsenic Health Effects Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA (United States); Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA (United States)

2014-01-15T23:59:59.000Z

385

Hazard Categorization Reduction via Nature of the Process Argument  

SciTech Connect (OSTI)

This paper documents the Hazard Categorization (HC) and Critical Safety Evaluation (CSE) for activities performed using an Inspection Object (IO) in excess of the single parameter subcritical limit of 700 g of U-235. By virtue of exceeding the single parameter subcritical limit and the subsequent potential for criticality, the IO HC is initially categorized as HC2. However, a novel application of the nature of the process argument was employed to reduce the IO HC from HC2 to less than HC3 (LTHC3). The IO is composed of five separate uranium metal plates that total no greater than 3.82 kg of U-235 (U(20)). The IO is planned to be arranged in various configurations. As the IO serves as a standard for experimentation aimed at establishing techniques for detection of fissionable materials, it may be placed in close proximity to various reflectors, moderators, or both. The most reactive configurations of the IO were systematically evaluated and shown that despite the mass of U-235 and potential positioning near various reflectors and moderators, the IO cannot be assembled into a critical configuration. Therefore, the potential for criticality does not exist. With Department of Energy approval, a Hazards Assessment Document with high-level (facility-level) controls on the plates negates the potential for criticality and satisfies the nature of the process argument to reduce the HC from HC2 to LTHC3.

Chelise A. Van De Graaff; Dr. Chad Pope; J. Todd Taylor

2012-05-01T23:59:59.000Z

386

Hazard Baseline Downgrade Effluent Treatment Facility  

SciTech Connect (OSTI)

This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility.

Blanchard, A.

1998-10-21T23:59:59.000Z

387

Process safety management for highly hazardous chemicals  

SciTech Connect (OSTI)

Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

NONE

1996-02-01T23:59:59.000Z

388

Canister storage building hazard analysis report  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

Krahn, D.E.; Garvin, L.J.

1997-07-01T23:59:59.000Z

389

Cold Vacuum Drying Facility hazard analysis report  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

Krahn, D.E.

1998-02-23T23:59:59.000Z

390

Advanced Technology for Railway Hydraulic Hazard Forecasting  

E-Print Network [OSTI]

Page 1.1 Map of Total Railway Hydraulic Hazard Events from 1982-2011 ............ 2 1.2 90 mi Effective Radar Coverage for Reliable Rainfall Rate Determination ....................................................................... 5 3... Administration (FRA) for the period of 1982-2011. This data was compiled from the FRA Office of Safety Analysis website (FRA, 2011). A map of the railway hydraulic hazard events over the same time period is displayed in Figure 1.1. Table 1.1. U.S. Railway...

Huff, William Edward 1988-

2012-12-05T23:59:59.000Z

391

Design characteristics for facilities which process hazardous particulate  

SciTech Connect (OSTI)

Los Alamos National Laboratory is establishing a research and processing capability for beryllium. The unique properties of beryllium, including light weight, rigidity, thermal conductivity, heat capacity, and nuclear properties make it critical to a number of US defense and aerospace programs. Concomitant with the unique engineering properties are the health hazards associated with processing beryllium in a particulate form and the potential for worker inhalation of aerosolized beryllium. Beryllium has the lowest airborne standard for worker protection compared to all other nonradioactive metals by more than an order of magnitude. This paper describes the design characteristics of the new beryllium facility at Los Alamos as they relate to protection of the workforce. Design characteristics to be reviewed include; facility layout, support systems to minimize aerosol exposure and spread, and detailed review of the ventilation system design for general room air cleanliness and extraction of particulate at the source.

Abeln, S.P.; Creek, K.; Salisbury, S.

1998-12-01T23:59:59.000Z

392

Compositions and methods for removing arsenic in water  

DOE Patents [OSTI]

Compositions and methods and for contaminants from water are provided. The compositions comprise ferric hydroxide and ferric oxyhydride coated substrates for use in removing the contaminant from the water. Contacting water bearing the contaminant with the substrates can substantially reduce contaminant levels therein. Methods of oxidizing the contaminants in water to facilitate their removal by the ferric hydroxide and ferric oxyhydride coated substrates are also provided. The contaminants include, but are not limited to, arsenic, selenium, uranium, lead, cadmium, nickel, copper, zinc, chromium and vanadium, their oxides and soluble salts thereof.

Gadgil, Ashok Jagannth (El Cerrito, CA)

2011-02-22T23:59:59.000Z

393

Rules and Regulations for Hazardous Waste Management (Rhode Island)  

Broader source: Energy.gov [DOE]

These regulations establish permitting and operational requirements for hazardous waste facilities. They are designed to minimize...

394

umces-safety@umces.edu Hazard Communication umces-  

E-Print Network [OSTI]

umces- safety@umces.edu Hazardous chemicals can be found in laboratory refrigerators, freezers, cabinets

Boynton, Walter R.

395

umces-safety@umces.edu Hazard Communication umces-  

E-Print Network [OSTI]

Communication umces- safety@umces.edu Hazardous chemicals can be found in laboratory refrigerators, freezers

Boynton, Walter R.

396

Arsenic remediation of drinking water using iron-oxide coated coal bottom ash  

SciTech Connect (OSTI)

We describe laboratory and field results of a novel arsenic removal adsorbent called 'Arsenic Removal Using Bottom Ash' (ARUBA). ARUBA is prepared by coating particles of coal bottom ash, a waste material from coal fired power plants, with iron (hydr)oxide. The coating process is simple and conducted at room temperature and atmospheric pressure. Material costs for ARUBA are estimated to be low (~;;$0.08 per kg) and arsenic remediation with ARUBA has the potential to be affordable to resource-constrained communities. ARUBA is used for removing arsenic via a dispersal-and-removal process, and we envision that ARUBA would be used in community-scale water treatment centers. We show that ARUBA is able to reduce arsenic concentrations in contaminated Bangladesh groundwater to below the Bangladesh standard of 50 ppb. Using the Langmuir isotherm (R2 = 0.77) ARUBA's adsorption capacity in treating real groundwater is 2.6x10-6 mol/g (0.20 mg/g). Time-to-90percent (defined as the time interval for ARUBA to remove 90percent of the total amount of arsenic that is removed at equilibrium) is less than one hour. Reaction rates (pseudo-second-order kinetic model, R2>_ 0.99) increase from 2.4x105 to 7.2x105 g mol-1 min-1 as the groundwater arsenic concentration decreases from 560 to 170 ppb. We show that ARUBA's arsenic adsorption density (AAD), defined as the milligrams of arsenic removed at equilibrium per gram of ARUBA added, is linearly dependent on the initial arsenic concentration of the groundwater sample, for initial arsenic concentrations of up to 1600 ppb and an ARUBA dose of 4.0 g/L. This makes it easy to determine the amount of ARUBA required to treat a groundwater source when its arsenic concentration is known and less than 1600 ppb. Storing contaminated groundwater for two to three days before treatment is seen to significantly increase ARUBA's AAD. ARUBA can be separated from treated water by coagulation and clarification, which is expected to be less expensive than filtration of micron-scale particles, further contributing to the affordability of a community-scale water treatment center.

MATHIEU, JOHANNA L.; GADGIL, ASHOK J.; ADDY, SUSAN E.A.; KOWOLIK, KRISTIN

2010-06-01T23:59:59.000Z

397

The influence of calcium on the inhibition of arsenic desorption from treatment residuals in extreme environments  

E-Print Network [OSTI]

of emissions of arsenic and lead from the ASARCO copper and lead smelters into the El Paso community ambient air have resulted in contamination of the soil in residential areas in the city of El Paso. The EPA began its investigation to determine the extent..., chlorine, and sulfur and is referred to as inorganic arsenic. Over 150 arsenic-bearing minerals have been identified which occur mainly as sulphides and which are usually associated with ores containing copper, lead, zinc, gold and silver (Norman, 1998...

Camacho, Julianna G.

2006-04-12T23:59:59.000Z

398

Metal resistant plants and phytoremediation of environmental contamination  

DOE Patents [OSTI]

The present disclosure provides a method of producing transgenic plants which are resistant to at least one metal ion by transforming the plant with a recombinant DNA comprising a nucleic acid encoding a bacterial arsenic reductase under the control of a plant expressible promoter, and a nucleic acid encoding a nucleotide sequence encoding a phytochelatin biosynthetic enzyme under the control of a plant expressible promoter. The invention also relates a method of phytoremediation of a contaminated site by growing in the site a transgenic plant expressing a nucleic acid encoding a bacterial arsenate reductase and a nucleic acid encoding a phytochelatin biosynthetic enzyme.

Meagher, Richard B.; Li, Yujing; Dhankher, Om P.

2010-04-20T23:59:59.000Z

399

Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations  

DOE Patents [OSTI]

A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

Wasserman, Stephen R. (Darien, IL); Anderson, Kenneth B. (Lisle, IL); Song, Kang (Woodridge, IL); Yuchs, Steven E. (Naperville, IL); Marshall, Christopher L. (Naperville, IL)

1998-01-01T23:59:59.000Z

400

E-Print Network 3.0 - arsenic-based antineoplastic drugs Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Occupational Exposures to Antineoplastic and Other Hazardous Drugs in Health Care Settings" (http... Group 1 Carcinogens, Chemotherapy Waste and other Hazardous Drug...

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Metal impacts on microbial biomass in the anoxic sediments of a contaminated lake  

SciTech Connect (OSTI)

Little is known about the long-term impacts of metal contamination on the microbiota of anoxic lake sediments. In this study, we examined microbial biomass and metals (arsenic, cadmium, chromium, copper, iron, lead, manganese, and zinc) in the sediments of Lake DePue, a backwater lake located near a former zinc smelter. Sediment core samples were examined using two independent measures for microbial biomass (total microscopic counts and total phospholipid-phosphate concentrations), and for various fractions of each metal (pore water extracts, sequential extractions, and total extracts of all studied metals and zinc speciation by X-ray absorption fine structure (XAFS). Zinc concentrations were up to 1000 times higher than reported for sediments in the adjacent Illinois River, and ranged from 21,400 mg/kg near the source to 1,680 mg/kg near the river. However, solid metal fractions were not well correlated with pore water concentrations, and were not good predictors of biomass concentrations. Instead, biomass, which varied among sites by as much as two-times, was inversely correlated with concentrations of pore water zinc and arsenic as established by multiple linear regression. Monitoring of other parameters known to naturally influence biomass in sediments (e.g., organic carbon concentrations, nitrogen concentrations, pH, sediment texture, and macrophytes) revealed no differences that could explain observed biomass trends. This study provides strong support for control of microbial abundance by pore water metal concentrations in contaminated freshwater sediments.

Gough, Heidi L.; Dahl, Amy L.; Nolan, Melissa A.; Gaillard, Jean-Francois; Stahl, David A.

2008-04-26T23:59:59.000Z

402

Repository Subsurface Preliminary Fire Hazard Analysis  

SciTech Connect (OSTI)

This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M&O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents.

Richard C. Logan

2001-07-30T23:59:59.000Z

403

TECHNICAL BASIS DOCUMENT FOR NATURAL EVENT HAZARDS  

SciTech Connect (OSTI)

This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls.

KRIPPS, L.J.

2006-07-31T23:59:59.000Z

404

Advanced Materials Laboratory hazards assessment document  

SciTech Connect (OSTI)

The Department of Energy Order 55OO.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the AML. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets.

Barnett, B.; Banda, Z.

1995-10-01T23:59:59.000Z

405

Interactions between trace metals, sodium and sorbents in combustion. Quarterly report No. 3, April 1, 1995--June 30, 1995  

SciTech Connect (OSTI)

The proposed research is directed at an understanding of how to exploit interactions between sodium, toxic metals and sorbents, in order to optimize sorbents injection procedures, which can be used to capture and transform these metals into environmentally benign forms. The research will use a 17kW downflow, laboratory combustor, to yield data that can be interpreted in terms of fundamental kinetic mechanisms. Metals to be considered are lead, cadmium, and arsenic. Sorbents will be kaolinite, bauxite, and limestone. The role of sulfur will also be determined.

Wendt, J.O.L.

1995-09-06T23:59:59.000Z

406

Interactions between trace metals, sodium and sorbents in combustion. Quarterly report No. 4, July 1, 1995--September 30, 1995  

SciTech Connect (OSTI)

The proposed research is directed at an understanding of how to exploit interactions between sodium, toxic metals and sorbents, in order to optimize sorbents injection procedures, which can be used to capture and transform these metals into environmentally benign forms. The research will use a 17kW downflow, laboratory combustor, to yield data that can be interpreted in terms of fundamental kinetic mechanisms. Metals to be considered are lead, cadmium, and arsenic. Sorbents will be kaolinite, bauxite, and limestone. The role of sulfur will also be determined.

Wendt, J.O.L.; Davis, S.

1995-10-15T23:59:59.000Z

407

E-Print Network 3.0 - arsenic antimony mercury Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

32. Nickel 7. Tantalum 20. Lead 33. Lithium 8. Arsenic 21... 12. Cesium 25. Mercury 13. Curium 26. Germanium 14. Zinc 27. Boron Short list for anagram element Source: Le Roy,...

408

In Situ Groundwater Arsenic Removal Using Iron Oxide-Coated Sand  

E-Print Network [OSTI]

the sand filter suggest that both reversible adsorption and irreversible precipitation are responsible for removing arsenic from the water. Unlike conventional excavate-and-fill permeable reactive barriers, the treatment capacity of our in situ created...

Yu, Hongxu

2010-10-12T23:59:59.000Z

409

Transformation of 2-line ferrihydrite and its effect on arsenic adsorption  

E-Print Network [OSTI]

Although the impacts of foreign species on aqueous transformations and arsenic adsorption by 2-line ferrihydrite (FH2) have been extensively studied, much less is known about the impact of transformation inhibitors on solid-state transformation...

Her, Namryong

2009-05-15T23:59:59.000Z

410

Effect of hydrological flow pattern on groundwater arsenic concentration in Bangladesh by Khandaker Ashfaque.  

E-Print Network [OSTI]

Widespread arsenic contamination of groundwater has become a major concern in Bangladesh since the water supply, particularly in rural areas, is heavily dependent on groundwater. However, relative to the extent of research ...

Ashfaque, Khandaker

2007-01-01T23:59:59.000Z

411

E-Print Network 3.0 - arsenic chlorides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that the chloride anion was responsible for the difference in the effect of CaCO3 and CaCl2 on plant arsenic uptake... depends on plant species and chloride concentration. The...

412

Comment on "A Bacterium That Can Grow by Using Arsenic Instead  

E-Print Network [OSTI]

olfe-Simon et al. (1) reported that arsenic can substitute for phosphorous in the biomolecules in the growth medium would have provided enough phosphorous (P) for all of the cell growth seen in this medium

Redfield, Rosemary J. "Rosie"

413

Cumulative exposure to arsenic and its relationship to respiratory cancer among copper-smelter employees  

SciTech Connect (OSTI)

To explore the role of arsenic as a human carcinogen, the respiratory cancer-mortality experience (1938 to 1977) of 8045 white-male smelter employees in Montana was examined relative to cumulative exposure to arsenic trioxide and was compared with that of the white male population of the same region. Exposure to arsenic was estimated for various work areas from industrial-hygiene reports of average concentrations present in the smelter. Respiratory cancer mortality was analyzed further by time period of first employment and maximum lifetime exposure to arsenic trioxide. When exposure was estimated with arithmetic means of measured concentrations among men first employed prior to 1925, respiratory cancer mortality increased linearly with increasing cumulative exposure group, ranging from two to nine times expected; among those first employed in the period 1925 to 1947 it also increased linearly with increasing cumulative exposure group.

Lee-Feldstein, A.

1986-01-01T23:59:59.000Z

414

Arsenic exposure, smoking, and lung cancer in smelter workers--a case-control study  

SciTech Connect (OSTI)

A cohort of 3,916 Swedish copper smelter workers employed for at least 3 months between 1928 and 1967 was followed up through 1981. Arsenic exposure was estimated for different time periods at each workplace within the smelter. Detailed job records were linked to the exposure matrix, thus forming individual cumulative arsenic exposure measures for each smelter worker. Smoking history was collected for 107 lung cancer cases and 214 controls from the cohort. Lung cancer risks were positively related to cumulative arsenic exposure with smoking standardized relative risks ranging from 0.7 to 8.7 in different exposure groups. A negative confounding by smoking was suggested in the higher exposure categories. The interaction between arsenic and smoking for the risk of developing lung cancer was intermediate between additive and multiplicative and appeared less pronounced among heavy smokers.

Jaerup, L.P.; Pershagen, G. (Department of Environmental Hygiene, Karolinska Institutet, Stockholm (Sweden))

1991-09-15T23:59:59.000Z

415

Cumulative exposure to arsenic and its relationship to respiratory cancer among copper smelter employees  

SciTech Connect (OSTI)

To explore the role of arsenic as a human carcinogen, the respiratory cancer mortality experience (1938 to 1977) of 8,045 while male smelter employees in Montana was examined relative to cumulative exposure to arsenic trioxide and was compared with that of the white male population of the same region. Exposure to arsenic was estimated for various work areas from industrial hygiene reports of average concentrations present in the smelter. Respiratory cancer mortality was analyzed further by time period of first employment and maximum lifetime exposure to arsenic trioxide. When exposure was estimated with arithmetic means of measured concentrations among men first employed prior to 1925, respiratory cancer mortality increased linearly with increasing cumulative exposure group, ranging from two to nine times expected; among those first employed in the period 1925 to 1947 it also increased linearly with increasing cumulative exposure group.

Lee-Feldstein, A.

1986-04-01T23:59:59.000Z

416

E-Print Network 3.0 - arsenic cadmium mercury Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CARR,AND H. MILLER. 1972. Total... mercury. (Lond.)254:238-239. 12;LUNDE, G. 1970. Analysis of arsenic and selenium in marine raw materials... MERCURY AND SELENIUM IN BLUE...

417

E-Print Network 3.0 - arsenic 82 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unseen Problem in Nebraska Drinking Water Summary: said. Of the 82 public systems affected by the new arsenic rule, some may be able to meet the new... with the specter of...

418

Problems with low exposure Latency of arsenic caused cancer is 30 years or  

E-Print Network [OSTI]

-MALIGNANT LUNG DISEASE? 150 people without arsenic-caused skin lesions Number with chronic cough 33 (31%) OR = 3 in Drinking Water in West Bengal, India (In press, Epidemiology) Those with chronic cough #12;Figure 2

419

The hydrogeochemistry of pond and rice field recharge : implications for the arsenic contaminated aquifers in Bangladesh  

E-Print Network [OSTI]

The shallow aquifers in Bangladesh, which provide drinking water for millions and irrigation water for innumerable rice fields, are severely contaminated with geogenic arsenic. Water mass balance calculations show that ...

Neumann, Rebecca B

2010-01-01T23:59:59.000Z

420

Development of a scalable model for predicting arsenic transport coupled with oxidation and adsorption reactions  

E-Print Network [OSTI]

modeling; Contaminant transport; Scaling; Numerical modeling 1. Introduction Management of groundwaterDevelopment of a scalable model for predicting arsenic transport coupled with oxidation is critical for predicting its transport dynamics in groundwater systems. We completed batch experiments

Clement, Prabhakar

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Arsenic remediation of drinking water using iron-oxide coated coal bottom ash  

E-Print Network [OSTI]

using Iron-oxide Coated Coal Ash. In Arsenic Contaminationwaterusing iron?oxidecoatedcoalbottomash JohannaL. using iron-oxide coated coal bottom ash JOHANNA L. MATHIEU

MATHIEU, JOHANNA L.

2010-01-01T23:59:59.000Z

422

Metal oxide films on metal  

DOE Patents [OSTI]

A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

1995-01-01T23:59:59.000Z

423

Robots, systems, and methods for hazard evaluation and visualization  

DOE Patents [OSTI]

A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximate the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.

Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.; Hartley, Robert S.; Gertman, David I.; Kinoshita, Robert A.; Whetten, Jonathan

2013-01-15T23:59:59.000Z

424

ELECTROCHEMICAL REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER RESULTS OF PROTOTYPE FIELD TESTS IN BANGLADESH  

SciTech Connect (OSTI)

According to the World Health Organization (WHO), more than 50 million people in Bangladesh drink arsenic-laden water, making it the largest case of mass poisoning in human history. Many methods of arsenic removal (mostly using chemical adsorbents) have been studied, but most of these are too expensive and impractical to be implemented in poor countries such as Bangladesh. This project investigates ElectroChemical Arsenic Remediation (ECAR) as an affordable means of removing arsenic. Experiments were performed on site in Bangladesh using a prototype termed sushi. This device consists of carbon steel sheets that serve as electrodes wrapped into a cylinder, separated by plastic mesh and surrounded by a tube-like container that serves as a holding cell in which the water is treated electrochemically. During the electrochemical process, current is applied to both electrodes causing iron to oxidize to various forms of iron (hydr)oxides. These species bind to arsenic(V) with very high affi nity. ECAR also has the advantage that As(III), the more toxic form of arsenic, oxidizes to As(V) in situ. Only As(V) is known to complex with iron (hydr)oxides. One of the main objectives of this research is to demonstrate the ability of the new prototype to reduce arsenic concentrations in Bangladesh groundwater from >200 ppb to below the WHO limit of 10 ppb. In addition, varying fl ow rate and dosage and the effect on arsenic removal was investigated. Experiments showed that ECAR reduced Bangladeshi water with an initial arsenic concentration as high as 250 ppb to below 10 ppb. ECAR proved to be effective at dosages as high as 810 Coulombs/Liter (C/L) and as low as 386 C/L (current 1 A, voltage 12 V). These results are encouraging and provide great promise that ECAR is an effi cient method in the remediation of arsenic from contaminated groundwater. A preliminary investigation of arsenic removal trends with varying Coulombic dosage, complexation time and fi ltration methods is also presented.

Kowolik, K; Addy, S.E.A.; Gadgil, A.

2009-01-01T23:59:59.000Z

425

Remote vacuum compaction of compressible hazardous waste  

DOE Patents [OSTI]

A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

426

Remote vacuum compaction of compressible hazardous waste  

DOE Patents [OSTI]

A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

1998-10-06T23:59:59.000Z

427

Hanford Site radioactive hazardous materials packaging directory  

SciTech Connect (OSTI)

The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

McCarthy, T.L.

1995-12-01T23:59:59.000Z

428

Disruption of canonical TGF?-signaling in murine coronary progenitor cells by low level arsenic  

SciTech Connect (OSTI)

Exposure to arsenic results in several types of cancers as well as heart disease. A major contributor to ischemic heart pathologies is coronary artery disease, however the influences by environmental arsenic in this disease process are not known. Similarly, the impact of toxicants on blood vessel formation and function during development has not been studied. During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types including smooth muscle cells which contribute to the coronary vessels. The TGF? family of ligands and receptors is essential for developmental cardiac epithelial to mesenchymal transition (EMT) and differentiation into coronary smooth muscle cells. In this in vitro study, 18 hour exposure to 1.34 ?M arsenite disrupted developmental EMT programming in murine epicardial cells causing a deficit in cardiac mesenchyme. The expression of EMT genes including TGF?2, TGF? receptor-3, Snail, and Has-2 are decreased in a dose-dependent manner following exposure to arsenite. TGF?2 cell signaling is abrogated as detected by decreases in phosphorylated Smad2/3 when cells are exposed to 1.34 ?M arsenite. There is also loss of nuclear accumulation pSmad due to arsenite exposure. These observations coincide with a decrease in vimentin positive mesenchymal cells invading three-dimensional collagen gels. However, arsenite does not block TGF?2 mediated smooth muscle cell differentiation by epicardial cells. Overall these results show that arsenic exposure blocks developmental EMT gene programming in murine coronary progenitor cells by disrupting TGF?2 signals and Smad activation, and that smooth muscle cell differentiation is refractory to this arsenic toxicity. - Highlights: Arsenic blocks TGF?2 induced expression of EMT genes. Arsenic blocks TGF?2 triggered Smad2/3 phosphorylation and nuclear translocation. Arsenic blocks epicardial cell differentiation into cardiac mesenchyme. Arsenic does not block TGF?2 induced smooth muscle cell differentiation.

Allison, Patrick; Huang, Tianfang; Broka, Derrick; Parker, Patti [Department of Pharmacology and Toxicology College of Pharmacy, Southwest Environmental Health Sciences Center, Steele Children's Research Center and Bio5 Institute, University of Arizona, Tucson, AZ 85721 (United States); Barnett, Joey V. [Department of Pharmacology, Vanderbilt Medical University, Nashville, TN (United States); Camenisch, Todd D., E-mail: camenisch@pharmacy.arizona.edu [Department of Pharmacology and Toxicology College of Pharmacy, Southwest Environmental Health Sciences Center, Steele Children's Research Center and Bio5 Institute, University of Arizona, Tucson, AZ 85721 (United States)

2013-10-01T23:59:59.000Z

429

Variability of Grain Arsenic Concentration and Speciation in Rice (Oryza sativa L.)  

E-Print Network [OSTI]

-As concentration is a desirable goal. 3.1.1. Causes of Variable Arsenic Availability to Rice High As concentrations in rice grain have been linked to both soils high in As and the use of As-contaminated irrigation water (Xie and Huang, 1998; Van Geen et al... VARIABILITY OF GRAIN ARSENIC CONCENTRATION AND SPECIATION IN RICE (Oryza sativa L.) A Dissertation by TUSHARA RAGHVAN PILLAI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

Pillai, Tushara Raghvan

2011-02-22T23:59:59.000Z

430

Impact of Two Water Management Systems on Arsenic Speciation and Microbial Populations in Rice Rhizosphere  

E-Print Network [OSTI]

IMPACT OF TWO WATER MANAGEMENT SYSTEMS ON ARSENIC SPECIATION AND MICROBIAL POPULATIONS IN RICE RHIZOSPHERE A Dissertation by ANIL KUMAR C. SOMENAHALLY Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2010 Major Subject: Soil Science Impact of Two Water Management Systems on Arsenic Speciation and Microbial...

Somenahally, Anil Kumar C.

2012-02-14T23:59:59.000Z

431

Urinary 8-hydroxydeoxyguanosine and urothelial carcinoma risk in low arsenic exposure area  

SciTech Connect (OSTI)

Arsenic is a well-documented human carcinogen and is known to cause oxidative stress in cultured cells and animals. A hospital-based case-control study was conducted to evaluate the relationship among the levels of urinary 8-hydroxydeoxyguanosine (8-OHdG), the arsenic profile, and urothelial carcinoma (UC). Urinary 8-OHdG was measured by using high-sensitivity enzyme-linked immunosorbent assay (ELISA) kits. The urinary species of inorganic arsenic and their metabolites were analyzed by high-performance liquid chromatography (HPLC) and hydride generator-atomic absorption spectrometry (HG-AAS). This study showed that the mean urinary concentration of total arsenics was significantly higher, at 37.67 {+-} 2.98 {mu}g/g creatinine, for UC patients than for healthy controls of 21.10 {+-} 0.79 {mu}g/g creatinine (p < 0.01). Urinary 8-OHdG levels correlated with urinary total arsenic concentrations (r = 0.19, p < 0.01). There were significantly higher 8-OHdG levels, of 7.48 {+-} 0.97 ng/mg creatinine in UC patients, compared to healthy controls of 5.95 {+-} 0.21 ng/mg creatinine. Furthermore, female UC patients had higher 8-OHdG levels of 9.22 {+-} 0.75 than those of males at 5.76 {+-} 0.25 ng/mg creatinine (p < 0.01). Multiple linear regression analyses revealed that high urinary 8-OHdG levels were associated with increased total arsenic concentrations, inorganic arsenite, monomethylarsonic acid (MMA), and dimethylarsenate (DMA) as well as the primary methylation index (PMI) even after adjusting for age, gender, and UC status. The results suggest that oxidative DNA damage was associated with arsenic exposure, even at low urinary level of arsenic.

Chung, C.-J.; Huang, C.-J. [Graduate Institute of Public Health, Taipei Medical University, Taipei, Taiwan (China); Pu, Y.-S. [Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China); Su, C.-T. [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Huang, Y.-K.; Chen, Y.-T. [Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Y.-M. [Department of Public Health, School of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei 110, Taiwan (China)], E-mail: ymhsueh@tmu.edu.tw

2008-01-01T23:59:59.000Z

432

In utero and early life arsenic exposure in relation to long-term health and disease  

SciTech Connect (OSTI)

Background: There is a growing body of evidence that prenatal and early childhood exposure to arsenic from drinking water can have serious long-term health implications. Objectives: Our goal was to understand the potential long-term health and disease risks associated with in utero and early life exposure to arsenic, as well as to examine parallels between findings from epidemiological studies with those from experimental animal models. Methods: We examined the current literature and identified relevant studies through PubMed by using combinations of the search terms arsenic, in utero, transplacental, prenatal and fetal. Discussion: Ecological studies have indicated associations between in utero and/or early life exposure to arsenic at high levels and increases in mortality from cancer, cardiovascular disease and respiratory disease. Additional data from epidemiologic studies suggest intermediate effects in early life that are related to risk of these and other outcomes in adulthood. Experimental animal studies largely support studies in humans, with strong evidence of transplacental carcinogenesis, atherosclerosis and respiratory disease, as well as insight into potential underlying mechanisms of arsenic's health effects. Conclusions: As millions worldwide are exposed to arsenic and evidence continues to support a role for in utero arsenic exposure in the development of a range of later life diseases, there is a need for more prospective studies examining arsenic's relation to early indicators of disease and at lower exposure levels. - Highlights: We review in utero and early-life As exposure impacts on lifelong disease risks. Evidence indicates that early-life As increases risks of lung disease, cancer and CVD. Animal work largely parallels human studies and may lead to new research directions. Prospective studies and individual exposure assessments with biomarkers are needed. Assessing intermediary endpoints may aid early intervention and establish causality.

Farzan, Shohreh F.; Karagas, Margaret R. [Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH 03755 (United States); Section of Biostatistics and Epidemiology, Department of Community and Family Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States); Chen, Yu, E-mail: yu.chen@nyumc.org [Department of Population Health, New York University School of Medicine, New York, NY 10016 (United States)

2013-10-15T23:59:59.000Z

433

Speciation of arsenic in pyrite by micro-X-ray absorption fine- structure spectroscopy (XAFS)  

SciTech Connect (OSTI)

Pyrite (FeS2) often contains variable levels of arsenic, regardless of the environment of formation. Arsenian pyrite has been reported in coals, sediments and ore deposits. Arsenian pyrite having As concentrations of up to 10 wt % in sedimentary rocks (Kolker et al. 1997), about 10 wt% in gold deposits (Fleet et al. 1993), 12 wt % in a refractory gold ore (Paktunc et al. 2006) and 20 wt % in a Carlin-type gold deposit in Nevada (Reich et al. 2005) have been reported. Arsenian pyrite is the carrier of gold in hydrothermal Carlin-type gold deposits, and gold concentrations of up to 0.9 wt % have been reported (Reich et al. 2005; Paktunc et al. 2006). In general, high Au concentrations correlate with As-rich zones in pyrite (Paktunc et al. 2006). Pyrite often ends up in mining and metallurgical wastes as an unwanted mineral and consititutes one of the primary sources of As in the wastes. Arsenic can be readily released to the environment due to rapid oxidative dissolution of host pyrite under atmospheric conditions. Pyrite is also the primary source of arsenic in emissions and dust resulting from combustion of bituminous coals. Despite the importance of arsenian pyrite as a primary source of anthropogenic arsenic in the environment and its economic significance as the primary carrier of gold in Carlin-type gold deposits, our understanding of the nature of arsenic in pyrite is limited. There are few papers dealing with the mode of occurrence of arsenic by bulk XAFS in a limited number of pyrite-bearing samples. The present study documents the analysis of pyrite particles displaying different morphologies and a range of arsenic and gold concentrations to determine the nature and speciation of arsenic.

Paktunc, D. (CCM)

2008-09-30T23:59:59.000Z

434

Reactive oxygen species mediate arsenic induced cell transformation and tumorigenesis through Wnt/{beta}-catenin pathway in human colorectal adenocarcinoma DLD1 cells  

SciTech Connect (OSTI)

Long term exposure to arsenic can increase incidence of human cancers, such as skin, lung, and colon rectum. The mechanism of arsenic induced carcinogenesis is still unclear. It is generally believed that reactive oxygen species (ROS) may play an important role in this process. In the present study, we investigate the possible linkage between ROS, {beta}-catenin and arsenic induced transformation and tumorigenesis in human colorectal adenocarcinoma cell line, DLD1 cells. Our results show that arsenic was able to activate p47{sup phox} and p67{sup phox}, two key proteins for activation of NADPH oxidase. Arsenic was also able to generate ROS in DLD1 cells. Arsenic increased {beta}-catenin expression level and its promoter activity. ROS played a major role in arsenic-induced {beta}-catenin activation. Treatment of DLD1 cells by arsenic enhanced both transformation and tumorigenesis of these cells. The tumor volumes of arsenic treated group were much larger than those without arsenic treatment. Addition of either superoxide dismutase (SOD) or catalase reduced arsenic induced cell transformation and tumor formation. The results indicate that ROS are involved in arsenic induced cell transformation and tumor formation possible through Wnt/{beta}-catenin pathway in human colorectal adenocarcinoma cell line DLD1 cells. - Highlights: > Arsenic activates NADPH oxidase and increases reactive oxygen species generation in DLD1 cells. > Arsenic increases {beta}-catenin expression. > Inhibition of ROS induced by arsenic reduce {beta}-catenin expression. > Arsenic increases cell transformation in DLD1 cells and tumorigenesis in nude mice. > Blockage of ROS decrease cell transformation and tumorigenesis induced by arsenic.

Zhang Zhuo [Department of Preventive Medicine and Environmental Health, University of Kentucky, 121 Washington Avenue, Lexington, KY 40536 (United States); Wang Xin; Cheng Senping; Sun Lijuan; Son, Young-Ok [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Yao Hua [Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003 (China); Li Wenqi [Department of Preventive Medicine and Environmental Health, University of Kentucky, 121 Washington Avenue, Lexington, KY 40536 (United States); Budhraja, Amit [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Li Li [Department of Family Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States); Shelton, Brent J.; Tucker, Thomas [Markey Cancer Control Program, University of Kentucky, 2365 Harrodsburg Rd, Lexington, KY 40504 (United States); Arnold, Susanne M. [Markey Cancer Center, University of Kentucky, 800 Rose street, Lexington, KY 40536 (United States); Shi Xianglin, E-mail: Xianglin.sh@uky.edu [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States)

2011-10-15T23:59:59.000Z

435

Association between body mass index and arsenic methylation efficiency in adult women from southwest U.S. and northwest Mexico  

SciTech Connect (OSTI)

Human arsenic methylation efficiency has been consistently associated with arsenic-induced disease risk. Interindividual variation in arsenic methylation profiles is commonly observed in exposed populations, and great effort has been put into the study of potential determinants of this variability. Among the factors that have been evaluated, body mass index (BMI) has not been consistently associated with arsenic methylation efficiency; however, an underrepresentation of the upper BMI distribution was commonly observed in these studies. This study investigated potential factors contributing to variations in the metabolism of arsenic, with specific interest in the effect of BMI where more than half of the population was overweight or obese. We studied 624 adult women exposed to arsenic in drinking water from three independent populations. Multivariate regression models showed that higher BMI, arsenic (+ 3 oxidation state) methyltransferase (AS3MT) genetic variant 7388, and higher total urinary arsenic were significantly associated with low percentage of urinary arsenic excreted as monomethylarsonic acid (%uMMA) or high ratio between urinary dimethylarsinic acid and uMMA (uDMA/uMMA), while AS3MT genetic variant M287T was associated with high %uMMA and low uDMA/uMMA. The association between BMI and arsenic methylation efficiency was also evident in each of the three populations when studied separately. This strong association observed between high BMI and low %uMMA and high uDMA/uMMA underscores the importance of BMI as a potential arsenic-associated disease risk factor, and should be carefully considered in future studies associating human arsenic metabolism and toxicity.

Gomez-Rubio, Paulina [Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ (United States); Roberge, Jason; Arendell, Leslie; Harris, Robin B.; O'Rourke, Mary K.; Chen, Zhao [Division of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ (United States); Cantu-Soto, Ernesto; Meza-Montenegro, Maria M. [Department of Environmental Sciences, Instituto Tecnologico de Sonora, Ciudad Obregon, Sonora (Mexico); Billheimer, Dean [Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, AZ (United States); Lu Zhenqiang [Arizona Statistical Consulting Laboratory, University of Arizona, Tucson, AZ (United States); Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.edu [Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ (United States)

2011-04-15T23:59:59.000Z

436

Distribution and metabolism of four different dimethylated arsenicals in hamsters  

SciTech Connect (OSTI)

Arsenic toxicity and distribution are highly dependent on animal species and its chemical species. Recently, thioarsenical has been recognized in highly toxic arsenic metabolites, which was commonly found in human and animal urine. In the present study, we revealed the mechanism underlying the distribution and metabolism of non-thiolated and thiolated dimethylarsenic compounds such as dimethylarsinic acid (DMA{sup V}), dimethylarsinous acid (DMA{sup III}), dimethylmonothioarsinic acid (DMMTA{sup V}), and dimethyldithioarsinic acid (DMDTA{sup V}) after the administration of them into femoral vein of hamsters. DMA{sup V} and DMDTA{sup V} distributed in organs and body fluids were in their unmodified form, while DMA{sup III} and DMMTA{sup V} were bound to proteins and transformed to DMA{sup V} in organs. On the other hand, DMA{sup V} and DMDTA{sup V} were mostly excreted into urine as their intact form 1 h after post-injection, and more than 70% of the doses were recovered in urine as their intact form. By contrast, less than 8-14% of doses were recovered in urine as DMA{sup V}, while more than 60% of doses were distributed in muscles and target organs (liver, kidney, and lung) of hamsters after the injection of DMMTA{sup V} and DMA{sup III}. However, in red blood cells (RBCs), only a small amount of the arsenicals was distributed (less than 4% of the doses) after the injection of DMA{sup III} and DMMTA{sup V}, suggesting that the DMA{sup III} and DMMTA{sup V} were hardly accumulated in hamster RBCs. Based on these observations, we suggest that although DMMTA{sup V} and DMDTA{sup V} are thioarsenicals, DMMTA{sup V} is taken up efficiently by organs, in a manner different from that of DMDTA{sup V}. In addition, the distribution and metabolism of DMMTA{sup V} are like in manner similar to DMA{sup III} in hamsters, while DMDTA{sup V} is in a manner similar to DMA{sup V}.

Naranmandura, Hua, E-mail: narenman@zju.edu.c [Institute of Pharmacology and Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675 (Japan); Iwata, Katsuya; Suzuki, Kazuo T. [Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675 (Japan); Ogra, Yasumitsu [Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University, Machida, Tokyo 194-8543 (Japan)

2010-05-15T23:59:59.000Z

437

Pathways of human exposure to arsenic in a community surrounding a copper smelter  

SciTech Connect (OSTI)

Several studies have found elevated levels of urinary arsenic among residents living near a copper smelter in Tacoma, Washington. To assess pathways of exposure to arsenic from the smelter, biological and environmental samples were collected longitudinally from 121 households up to 8 miles from the smelter. The concentration of inorganic and methylated arsenic compounds in spot urine samples was used as the primary measure of exposure to environmental arsenic. Urinary concentration of arsenic dropped off to a constant background level within one-half mile of the smelter in contrast to environmental concentrations, which decreased more steadily with increasing distance. Among all age-sex-specific groups in all areas, only children ages 0-6 living within one-half mile of the smelter had elevated levels of arsenic in urine. A separate analysis of data for these children suggests that hand-to-mouth activity was the primary source of exposure. Inhalation of ambient air and resuspension of contaminated soil were not important sources of exposure for children or adults.

Polissar, L.; Lowry-Coble, K.; Kalman, D.A.; Hughes, J.P.; van Belle, G.; Covert, D.S.; Burbacher, T.M.; Bolgiano, D.; Mottet, N.K. (Univ. of Washington, Seattle (USA))

1990-10-01T23:59:59.000Z

438

Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation  

SciTech Connect (OSTI)

The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included.

Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

1986-11-01T23:59:59.000Z

439

Uranium Metal Analysis via Selective Dissolution  

SciTech Connect (OSTI)

Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

2008-09-10T23:59:59.000Z

440

Arsenic Removal Using AgedArsenic Removal Using Aged Rapid Sand Filter MediaRapid Sand Filter Media  

E-Print Network [OSTI]

exchangeIon exchange Coagulation / FiltrationCoagulation / Filtration Membrane filtration (Reverse Osmosis)Membrane filtration (Reverse Osmosis) Innovative adsorbents, e.g. metal oxidesInnovative adsorbents, e.g. metal oxides

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Geochemical and hydrodynamic controls on arsenic and trace metal cycling in a seasonally stratified US  

E-Print Network [OSTI]

.O. Box 1000, 61 Route 9W, Palisades, NY 10964-8000, USA c Department of Geology and Geophysics, Texas A, and U, which suggested reductive precipitation in the pond's hypolimnion. Uranium levels, however, were between surface and groundwaters with U- and As-rich geological formations rather than large- scale

Louchouarn, Patrick

442

Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata  

E-Print Network [OSTI]

as a by-product of copper (Cu) and lead (Pb) smelters (Bagga and Peterson, 2001). Smelting and mining (Chinese Brake fern) was found growing on a site in Central Florida contami- nated with chromated copper

Ma, Lena

443

Chemical hazards associated with treatment of waste electrical and electronic equipment  

SciTech Connect (OSTI)

This review paper summarizes the existing knowledge on the chemical hazards associated with recycling and other end-of-life treatment options of waste electrical and electronic equipment (e-waste). The hazards arise from the presence of heavy metals (e.g., mercury, cadmium, lead, etc.), flame retardants (e.g., pentabromophenol, polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol-A (TBBPA), etc.) and other potentially harmful substances in e-waste. If improperly managed, the substances may pose significant human and environmental health risks. The review describes the potentially hazardous content of e-waste, examines the existing e-waste management practices and presents scientific data on human exposure to chemicals, workplace and environmental pollution associated with the three major e-waste management options, i.e., recycling, incineration and landfilling. The existing e-waste management practices and associated hazards are reviewed separately for developed and developing countries. Finally, based on this review, the paper identifies gaps in the existing knowledge and makes some recommendations for future research.

Tsydenova, Oyuna [Institute for Global Environmental Strategies, 2108-11 Kamiyamaguchi, Hayama, Kanagawa 240-0115 (Japan); Bengtsson, Magnus, E-mail: bengtsson@iges.or.jp [Institute for Global Environmental Strategies, 2108-11 Kamiyamaguchi, Hayama, Kanagawa 240-0115 (Japan)

2011-01-15T23:59:59.000Z

444

Technological options for management of hazardous wastes from US Department of Energy facilities  

SciTech Connect (OSTI)

This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

1982-08-01T23:59:59.000Z

445

Metals 2000  

SciTech Connect (OSTI)

This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

Allison, S.W.; Rogers, L.C.; Slaughter, G. [Oak Ridge National Lab., TN (United States); Boensch, F.D. [6025 Oak Hill Lane, Centerville, OH (United States); Claus, R.O.; de Vries, M. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

1993-05-01T23:59:59.000Z

446

Hazardous-waste combustion in industrial processes: cement and lime kilns  

SciTech Connect (OSTI)

This report summarizes the results of several studies relating to hazardous-waste combustion in cement and lime kilns. The tests included in the study are four kilns tested by the U.S. Environmental Protection Agency, four kilns tested by State agencies or the kiln operator, two Canadian tests, and one Swedish test. The predominant types of wastes tested included chlorinated organic compounds, aromatic compounds, and metal-contaminated waste oil. The kiln types include lime kilns and cement kilns, which included the dry, wet, and preheated processes. Fabric filters and electrostatic precipitators (ESPs) were the pollution-control devices used in these processes, and the primary fuels included coal, coke, coal/coke, fuel oil, and natural gas/coke. The parameters examined in the report were Destruction and Removal Efficiency (DRE) of the Principal Organic Hazardous Constitutents, particulate and HCl emissions, metals, and the effect of burning hazardous waste on SO/sub 2/, NOx, and CO emissions. The primary conclusion of the study is that DRE's of 99.99% or greater can be obtained in properly-operated calcining kilns. Particulate matter can increase when chlorinated wastes are burned in a kiln equipped with an electrostatic precipitator. Those kilns equipped with fabric filters showed no change in emissions.

Mournighan, R.E.; Branscome, M.

1987-11-01T23:59:59.000Z

447

Arsenic methylation capability and hypertension risk in subjects living in arseniasis-hyperendemic areas in southwestern Taiwan  

SciTech Connect (OSTI)

Background: Cumulative arsenic exposure (CAE) from drinking water has been shown to be associated with hypertension in a dose-response pattern. This study further explored the association between arsenic methylation capability and hypertension risk among residents of arseniasis-hyperendemic areas in Taiwan considering the effect of CAE and other potential confounders. Method: There were 871 subjects (488 women and 383 men) and among them 372 were diagnosed as having hypertension based on a positive history or measured systolic blood pressure {>=} 140 mm Hg and/or diastolic blood pressure {>=} 90 mm Hg. Urinary arsenic species were determined by high-performance liquid chromatography-hydride generator and atomic absorption spectrometry. Primary arsenic methylation index [PMI, defined as monomethylarsonic acid (MMA{sup V}) divided by (As{sup III} + As{sup V})] and secondary arsenic methylation index (SMI, defined as dimethylarsinic acid divided by MMA{sup V}) were used as indicators for arsenic methylation capability. Results: The level of urinary arsenic was still significantly correlated with cumulative arsenic exposure (CAE) calculated from a questionnaire interview (p = 0.02) even after the residents stopped drinking the artesian well water for 2-3 decades. Hypertensive subjects had higher percentages of MMA{sup V} and lower SMI than subjects without hypertension. However, subjects having CAE > 0 mg/L-year had higher hypertension risk than those who had CAE = 0 mg/L-year disregard a high or low methylation index. Conclusion: Inefficient arsenic methylation ability may be related with hypertension risk.

Huang, Y.-K. [Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Tseng, C.-H. [National Taiwan University College of Medicine, Taipei, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (China); Department of Medical Research and Development, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan (China); Huang, Y.-L. [Department of Public Health, School of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei 110, Taiwan (China); Yang, M.-H. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu, Taiwan (China); Chen, C.-J. [Genomic Research Center, Academia Sinica, Taipei, Taiwan (China); Graduate Institute of Epidemiology, College of Public Health, National Taiwan University Taipei, Taiwan (China); Hsueh, Y.-M. [Department of Public Health, School of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei 110, Taiwan (China)]. E-mail: ymhsueh@tmu.edu.tw

2007-01-15T23:59:59.000Z

448

Dendritic metal nanostructures  

DOE Patents [OSTI]

Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

Shelnutt, John A. (Tijeras, NM); Song, Yujiang (Albuquerque, NM); Pereira, Eulalia F. (Vila Nova de Gaia, PT); Medforth, Craig J. (Winters, CA)

2010-08-31T23:59:59.000Z

449

Preliminary Hazards Analysis Plasma Hearth Process  

SciTech Connect (OSTI)

This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

1993-11-01T23:59:59.000Z

450

Control Of Hazardous Energy Lockout/Tagout  

E-Print Network [OSTI]

Control Of Hazardous Energy Lockout/Tagout Millersville University - Office Of Environmental Health & Safety Scope & Application The Lockout/Tagout program applies to the control of energy during servicing of this program is to establish procedures for affixing appropriate lockout or tagout devices to energy

Hardy, Christopher R.

451

Burning hazardous waste in cement kilns  

SciTech Connect (OSTI)

The cement manufacturing process is one of the oldest in the world, having been in practice for over 2000 years. It is also one of the most energy intensive, with up to 65 percent of the cost of the product attributable to energy consumption. In addition to high energy demand, the process conditions include extremely high temperatures. Cement clinker forms when the correct mixture of raw materials is heated to 2650/sup 0/ F. This requires combustion temperatures exceeding 3000/sup 0/ F. under oxidizing conditions. To accomplish this, gas temperatures above 2000/sup 0/ F. occur for several seconds (typically five seconds), which is much longer than residence times in permitted hazardous waste incinerators. These conditions are extremely favorable to the destruction of organic compounds and have led to extensive investigation into the potential for burning hazardous waste in cement kilns. Cement kilns consuming hazardous wastes have been tested for air emissions under various operating conditions. The substantial body of information on the emissions and handling of hazardous wastes from these studies has demonstrated that effective destruction of wastes can be accomplished with the added benefits of energy conservation and no significant change in air emissions.

Chadbourne, J.F.; Helmsteller, A.J.

1983-06-01T23:59:59.000Z

452

Hazardous and Radioactive Mixed Waste Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

1989-02-22T23:59:59.000Z

453

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD  

E-Print Network [OSTI]

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 John D. Godchaux Trinity University, San Antonio, TX Noah Hughes University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 Key Terms: earthquake

Sheehan, Anne F.

454

The Transboundary Movement of Hazardous Waste in the Mediterranean Regional Context  

E-Print Network [OSTI]

HAZARDOUS WASTE IN MEDITERRANEAN Moreover, the Mediterranean Protocol,Protocol Area by transboundary movements of hazardous wastes (wastes subject to this Protocol; Annex II: List of hazardous

Scovazzi, Tullio

2000-01-01T23:59:59.000Z

455

E-Print Network 3.0 - agency listed hazardous Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Listing of Hazardous Waste 40 CFR... Hazardous Waste Management Regulations 6 NYCRR 371 Identification and Listing of Hazardous Waste 6 NYCRR 372... Substance Bulk Storage...

456

Homogeneous and Heterogeneous Reaction and Transformation of Hg and Trace Metals in Combustion Systems  

SciTech Connect (OSTI)

The overall goal of this project was to produce a working dynamic model to predict the transformation and partitioning of trace metals resulting from combustion of a broad range of fuels. The information provided from this model will be instrumental in efforts to identify fuels and conditions that can be varied to reduce metal emissions. Through the course of this project, it was determined that mercury (Hg) and arsenic (As) would be the focus of the experimental investigation. Experiments were therefore conducted to examine homogeneous and heterogeneous mercury oxidation pathways, and to assess potential interactions between arsenic and calcium. As described in this report, results indicated that the role of SO{sub 2} on Hg oxidation was complex and depended upon overall gas phase chemistry, that iron oxide (hematite) particles contributed directly to heterogeneous Hg oxidation, and that As-Ca interactions occurred through both gas-solid and within-char reaction pathways. Modeling based on this study indicated that, depending upon coal type and fly ash particle size, vaporization-condensation, vaporization-surface reaction, and As-CaO in-char reaction all play a role in arsenic transformations under combustion conditions.

J. Helble; Clara Smith; David Miller

2009-08-31T23:59:59.000Z

457

Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations  

DOE Patents [OSTI]

A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate. 3 figs.

Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

1998-04-28T23:59:59.000Z

458

Hazardous waste management in the Texas construction industry  

E-Print Network [OSTI]

This pilot study reports the statewide, regulatory compliance of general construction contractors in Texas who generated regulated amounts of hazardous waste during 1990, defined by existing state and federal hazardous-waste-management regulations...

Sprinkle, Donald Lee

1991-01-01T23:59:59.000Z

459

Stable Metal Isotopes Reveal Copper Accumulation and Loss  

E-Print Network [OSTI]

and metalloids into food webs (3-5). The protocols for deter- mining trace metal dynamics quantify unidirectional unidirectional fluxes. However, complicated logistics, handling, and waste issues limit the useofradioisotopestolaboratoriesthathavetrainedhandlers and can maintain permits. In addition to health hazards associated with radioactivity, the lack

460

Modified hazard ranking system for sites with mixed radioactive and hazardous wastes. User manual.  

SciTech Connect (OSTI)

This document describes both the original Hazard Ranking System and the modified Hazard Ranking System as they are to be used in evaluating the relative potential for uncontrolled hazardous substance facilities to cause human health or safety problems or ecological or environmental damage. Detailed instructions for using the mHRS/HRS computer code are provided, along with instructions for performing the calculations by hand. Uniform application of the ranking system will permit the DOE to identify those releases of hazardous substances that pose the greatest hazard to humans or the environment. However, the mHRS/HRS by itself cannot establish priorities for the allocation of funds for remedial action. The mHRS/HRS is a means for applying uniform technical judgment regarding the potential hazards presented by a facility relative to other facilities. It does not address the feasibility, desirability, or degree of cleanup required. Neither does it deal with the readiness or ability of a state to carry out such remedial action, as may be indicated, or to meet other conditions prescribed in CERCLA. 13 refs., 13 figs., 27 tabs.

Hawley, K.A.; Peloquin, R.A.; Stenner, R.D.

1986-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Permit Fees for Hazardous Waste Material Management (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe applicable fees for permit application, modification, and transfer for permits related to hazardous waste management.

462

340 Waste handling Facility Hazard Categorization and Safety Analysis  

SciTech Connect (OSTI)

The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

T. J. Rodovsky

2010-10-25T23:59:59.000Z

463

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network [OSTI]

be shipped directly from site and recycled through the WA State Hazardous Waste Service Contract. Please call

Wilcock, William

464

Total and Inorganic Arsenic in Mid-Atlantic Marine Fish and Shellfish and Implications for Fish Advisories  

SciTech Connect (OSTI)

Up to 33.3 metric tons of arsenic trioxide were spilled off the Middle Atlantic coast of the United States in January of 1992 during a shipping accident. Historical fish tissue data for samples collected in the Delaware Inland Bays before and after the spill reveal a prominent spike in total arsenic in summer flounder following the spill and a gradual decline ever since. In 2002, a small study was conducted to determine whether summer flounder migrating into the Delaware Inland Bays from the Continental Shelf in the spring contain higher body burdens of arsenic than summer flounder migrating out of the Inland Bays in the fall. Total arsenic was significantly higher in the incoming fish. Considering that summer flounder overwinter at the spill site, that arsenic trioxide is a dense powder of limited solubility that would tend to incorporate into the sediments, and that summer flounder are demersal fish, we conclude that summer flounder accumulate arsenic offshore and that the likely source of their extra body burden is the spilled arsenic. Speciation of arsenic in the summer flounder, as well as in Atlantic croaker, striped bass, and hard clam reveal low concentrations (0.5 ? 20 ug/kg ww) of toxic inorganic arsenic. DMA was more than an order of magnitude greater in hard clam meats than in the other species tested, a finding attributed to arsenic uptake by phytoplankton and subsequent dietary uptake by the clam. Risk assessment using the inorganic arsenic concentrations was used to conclude that a fish advisory is not warranted.

Greene, Richard; Crecelius, Eric A.

2006-02-06T23:59:59.000Z

465

Waste Encapsulation and Storage Facility (WESF) Hazards Assessment  

SciTech Connect (OSTI)

This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

COVEY, L.I.

2000-11-28T23:59:59.000Z

466

NIH POLICY MANUAL 3034 -Working with Hazardous Materials  

E-Print Network [OSTI]

NIH POLICY MANUAL 3034 - Working with Hazardous Materials Issuing Office: ORS/DOHS (301) 496-2960 Release Date: 3/21/06 1. Explanation of Material Transmitted: This release establishes NIH policy and procedure governing work with hazardous chemicals as described in the NIH Hazard Communication Program

Bandettini, Peter A.

467

Mapping future hazards for south east London Dr Stephen Blenkinsop  

E-Print Network [OSTI]

) Vulnerability information Risk maps #12;Heat Outputs · 5km heat wave prediction grids. · 1km pro-rata disaggregated temperature & heat wave projection grids. · 1km relative heat wave hazard grid combining heat wave hazard (relative). · 200m heat wave risk grids combining relative heat wave hazard with predictions

Wirosoetisno, Djoko

468

Preliminary hazards analysis for the National Ignition Facility  

SciTech Connect (OSTI)

This report documents the Preliminary Hazards Analysis (PHA) for the National Ignition Facility (NIF). In summary, it provides: a general description of the facility and its operation; identification of hazards at the facility; and details of the hazards analysis, including inventories, bounding releases, consequences, and conclusions. As part of the safety analysis procedure set forth by DOE, a PHA must be performed for the NIF. The PHA characterizes the level of intrinsic potential hazard associated with a facility, and provides the basis for hazard classification. The hazard classification determines the level of safety documentation required, and the DOE Order governing the safety analysis. The hazard classification also determines the level of review and approval required for the safety analysis report. The hazards of primary concern associated with NIF are radiological and toxicological in nature. The hazard classification is determined by comparing facility inventories of radionuclides and chemicals with threshold values for the various hazard classification levels and by examining postulated bounding accidents associated with the hazards of greatest significance. Such postulated bounding accidents cannot take into account active mitigative features; they must assume the unmitigated consequences of a release, taking into account only passive safety features. In this way, the intrinsic hazard level of the facility can be ascertained.

Brereton, S.J.

1993-10-01T23:59:59.000Z

469

Diesel particles -a health hazard 1 Diesel particles  

E-Print Network [OSTI]

Diesel particles - a health hazard 1 Diesel particles - a health hazard #12;The Danish Ecological Council - August 20042 Diesel particles - a health hazard ISBN: 87-89843-61-4 Text by: Christian Ege 33150777 Fax no.: +45 33150971 E-mail: info@ecocouncil.dk www.ecocouncil.dk #12;Diesel particles - a health

470

Hazards and controls at the Sandia National Laboratories microelectronics development laboratory  

SciTech Connect (OSTI)

The Microelectronics Development Laboratory (MDL) contains 3,000 m{sup 2}, Which includes 1,000 m{sup 2}of Class I clean room space. There are 20 laminar flow Class I clean room bays. The MDL supplies several, full-flow process technologies which produce complementary metal oxide semiconductor (CMOS) integrated circuits using 150 nun diameter silicon wafers. All gases, chemicals and physical hazards used in the fabrication processes are controlled to levels well below regulatory requirements. Facility engineering controls in the MDL include toxic and pyrophoric gas monitoring, interlocks, ventilation, substitution and chemical segregation. Toxic and pyrophoric gases are monitored continuously inside processing tools as well as through the exhaust lines, gas cabinets, the valve boxes, and in general work areas. The toxic gas monitoring systems are interlocked to gas shutoff valves and have both low and high level alarms. In-use process gases are stored in exhausted cabinets. All chemicals and gases are segregated by chemical type. The processes are organized into eight sector areas that consist of photolithography, wet processes, dry etch, ion implant, metals, diffusion, chemical vapor deposition (CVD) and chemical mechanical polishing (CW). Each morning, engineering, safety and facilities personnel meet to review the equipment and wafer lot status and discuss processing issues. Hazards are assessed in the MDL with periodic walkthroughs, continuous toxic and pyrophoric gas monitoring and personal monitoring. All chemicals and gases proposed for use in the MDL are reviewed by the industrial hygienist and must be approved by a manager before they are purchased. All new equipment and processes are reviewed by a hazard and barrier committee and cannot be used in the MDL without the committee`s approval and an IH hazard assessment. Overall risk of operating the MDL has been reduced to a level that is as low as reasonable achievable for this research facility.

Benton, M.A.

1997-03-01T23:59:59.000Z

471

Nat. Hazards Earth Syst. Sci., 6, 779802, 2006 www.nat-hazards-earth-syst-sci.net/6/779/2006/  

E-Print Network [OSTI]

-induced hazards that are representative for a whole class of hazards: Accidents due to nuclear power plants (NPP- ments (like embassies in the case of conventional threats) dis- play in the eye of potential aggressors

Paris-Sud XI, Universit de

472

Performance testing of multi-metal continuous emissions monitors  

SciTech Connect (OSTI)

Three prototype multi-metals continuous emissions monitors (CEMs) were tested in April 1996 at the Rotary Kiln Incinerator Simulator facility at the US Environmental Protection Agency (EPA) National Risk Management Research Laboratory, Research Triangle Park, North Carolina. The CEM instruments were: Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES); Laser Induced Breakdown Spectrometry-Atomic Emission Spectroscopy (LIBS); and Laser Spark Spectrometry, another LIBS instrument. The three CEMs were tested simultaneously during test periods in which low, medium, and high concentration levels of seven toxic metals -- antimony, arsenic, beryllium, cadmium, chromium, lead, and mercury -- were maintained under carefully controlled conditions. Two methods were used to introduce the test metals into the flue gas: (1) solution atomization, introducing metal-containing aerosol directly into the secondary combustion burner, and (2) injection of fly ash particulates. The testing addressed four measures of CEM performance: relative accuracy (RA), calibration drift, zero drift, and response time. These were accomplished by comparing the toxic metal analyte concentrations reported by the CEMs to the concentrations measured using the EPA reference method (RM) for the same analytes. Overall, the test results showed the prototype nature of the test CEMs and the clear need for further development. None of the CEMs tested consistently achieved RA values of 20% or less as required by the EPA draft performance specification. Instrument size reduction and automation will also likely need additional attention before multi-metal CEMs systems become commercially available for service as envisioned by regulators and citizens.

Haas, W.J. [Ames Lab., IA (United States); French, N.B. [Sky+, Inc. (United States); Brown, C.H. [Oak Ridge National Lab., TN (United States); Burns, D.B. [Westinghouse Savannah River Co., Aiken, SC (United States); Lemieux, P.M.; Ryan, J.V. [National Risk Management Research Lab., Research Triangle Park, NC (United States); Priebe, S.J. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States); Waterland, L.R. [Acurex Environmental Corp. (United States)

1997-11-17T23:59:59.000Z

473

arsenic 77: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

leachate. Open Access Theses and Dissertations Summary: ??Transformation of heavy metals in landfill environment is currently not regulated by waste disposal guidelines....

474

arsenic 91: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

leachate. Open Access Theses and Dissertations Summary: ??Transformation of heavy metals in landfill environment is currently not regulated by waste disposal guidelines....

475

arsenic 75: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

leachate. Open Access Theses and Dissertations Summary: ??Transformation of heavy metals in landfill environment is currently not regulated by waste disposal guidelines....

476

arsenic 72: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Transformation of heavy metals in landfill environment is currently not regulated by waste disposal guidelines. Chromium,...

477

Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement  

SciTech Connect (OSTI)

Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs.

Kalb, P.D.; Heiser, J.H. III; Colombo, P.

1990-01-01T23:59:59.000Z

478

Bioavailability of Arsenic in South Texas.Bioavailability of Arsenic in South Texas. What happens when the Fe Hydroxide ModelWhat happens when the Fe Hydroxide Model  

E-Print Network [OSTI]

Access to Clean Drinking Water Source: The World Resources Institute. Data are based on surveys of national governments in 1980, 1983, 1985, 1988Source: The World Resources Institute. Data are based on surveys in Bangladesh Ground WaterArsenic in Bangladesh Ground Water 10^6 wells developed10^6 wells developed since

Herbert, Bruce

479

Split driveshaft pump for hazardous fluids  

DOE Patents [OSTI]

A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

Evans, II, Thomas P. (Aiken, SC); Purohit, Jwalit J. (Evans, GA); Fazio, John M. (Orchard Park, NY)

1995-01-01T23:59:59.000Z

480

Shedding a new light on hazardous waste  

SciTech Connect (OSTI)

The sun's ability to detoxify waterborne chemicals has long been known; polluted streams, for example, become cleaner as they flow through sunlit areas. Solar detoxification harnesses this natural degradation process for beneficial ends, producing simple, nonhazardous substances from hazardous organic chemicals. Solar detoxification systems now being developed break down these chemicals without using the fossil fuels required by conventional technologies. Sunlight destroys hazardous waste because of the distinctive properties of photons, the packets of energy that make up sunlight. Low-energy photons add thermal energy that will heat toxic chemicals; high-energy photons add the energy needed to break the chemical bonds of these chemicals. The detoxification process discussed here takes advantage of this latter group of photons found in the ultraviolet portion of the solar spectrum. 4 figs.

Reece, N.

1991-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous metals arsenic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic hazard to Hispaniola and  

E-Print Network [OSTI]

Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean region" Uri S. ten Brink, William H. Bakun), Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic

ten Brink, Uri S.

482

The HIT method: A hazard identification technique  

SciTech Connect (OSTI)

This report explains a technique for analyzing systems and operations to identify hazards and needed controls. The HIT method can be used both as a design tool and as a risk analysis tool. As a design tool, this method identifies requirements for design criteria. As part of a risk analysis effort, HIT identifies potential accident sequences that can become part of the safety analysis documentation. Within this report the HIT method is described in detail with emphasis on application of the technique.

Howard, H.H.; Faust, C.L.

1990-01-01T23:59:59.000Z

483

Natural phenomena hazards site characterization criteria  

SciTech Connect (OSTI)

The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

Not Available

1994-03-01T23:59:59.000Z

484

HAZARDOUS MATERIALS IN AQUATIC ENVIRONMENTS OF THE MISSISSIPPI RIVER BASIN  

SciTech Connect (OSTI)

In December 1992, the CBR was awarded a five-year grant of $25M from the US Department of Energy Office of Environmental Management (DOE-EM) to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project was an interdisciplinary, collaborative research and education project aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments. This project funded 15 collaborative cluster multi-year projects and 41 one-year initiation projects out of 165 submitted research proposals. This project was carried out by 134 research and technical support faculty from Xavier University (School of Arts and Sciences, and College of Pharmacy) and Tulane University (Schools of Liberal Arts and Sciences, Engineering, Medicine, and Public Health and Tropical Medicine), and 173 publications and 140 presentations were produced. More than 100 graduate and undergraduate students were trained through these collaborative cluster and initiation research projects. Nineteen Tulane graduate students received partial funding to conduct their own competitively-chosen research projects, and 28 Xavier undergraduate LIFE Scholars and 30 LIFE Interns were supported with DOE funding to conduct their mentored research projects. Studies in this project have defined: (1) the complex interactions that occur during the transport of contaminants, (2) the actual and potential impact on ecological systems and health, and (3) the mechanisms through which these impacts might be remediated. The bayou and spoil banks of Bayou Trepagnier were mapped and analyzed in terms of risks associated with the levels of hydrocarbons and metals at specific sample sites. Data from contaminated sample sites have been incorporated into a large database and used in GIS analyses to track the fate and transport of heavy metals from spoil banks into the surrounding marsh. These data are crucial to understanding how heavy metals move through wetlands environments. These data, coupled with plume characterization data, indicate that Bayou Trepagnier is a model system for understanding how wetlands populations of fish, amphibians, and plants respond to long-term hydrocarbon and metals contamination. The CBR has fifteen years of experience in developing model aquatic ecosystems for evaluating environmental problems relevant to DOE cleanup activities. Using biotechnology screens and biomarkers of exposure, this project supports other CBR research demonstrating that chemicals in the environment can signal/alter the development of species in aquatic ecosystems, and show detrimental impacts on community, population, and the ecosystem, including human health. CBR studies funded through this grant have resulted in private sector investments, international collaborations, development of new technologies, and substantial new knowledge concerning the effects of hazardous materials on human and ecosystem health. Through the CBR, Tulane and Xavier Universities partnered with DOE-EM to lay groundwork for an effective research agenda that has become part of the DOE long term stewardship science and technology program and institutional management of the DOE complex.

John A. McLachlan

2003-12-01T23:59:59.000Z

485

Mobilisation of arsenic from bauxite residue (red mud) affected soils: Effect of pH and redox conditions  

E-Print Network [OSTI]

). Typically, it comprises residual iron oxides, quartz, sodium aluminosilicates, titanium dioxide, calciumMobilisation of arsenic from bauxite residue (red mud) affected soils: Effect of pH and redox elements, including arsenic. Aerobic and anaer- obic batch experiments were prepared using soils from near

Burke, Ian

486

Evaluation of the serum catalase and myeloperoxidase activities in chronic arsenic-exposed individuals and concomitant cytogenetic damage  

SciTech Connect (OSTI)

Chronic arsenic exposure through contaminated drinking water is a major environmental health issue. Chronic arsenic exposure is known to exert its toxic effects by a variety of mechanisms, of which generation of reactive oxygen species (ROS) is one of the most important. A high level of ROS, in turn, leads to DNA damage that might ultimately culminate in cancer. In order to keep the level of ROS in balance, an array of enzymes is present, of which catalase (CAT) and myeloperoxidase (MPO) are important members. Hence, in this study, we determined the activities of these two enzymes in the sera and chromosomal aberrations (CA) in peripheral blood lymphocytes in individuals exposed and unexposed to arsenic in drinking water. Arsenic in drinking water and in urine was used as a measure of exposure. Our results show that individuals chronically exposed to arsenic have significantly higher CAT and MPO activities and higher incidence of CA. We found moderate positive correlations between CAT and MPO activities, induction of CA and arsenic in urine and water. These results indicate that chronic arsenic exposure causes higher CAT and MPO activities in serum that correlates with induction of genetic damage. We conclude that the serum levels of these enzymes might be used as biomarkers of early arsenic exposure induced disease much before the classical dermatological symptoms of arsenicosis begin to appear.

Banerjee, Mayukh; Banerjee, Nilanjana; Ghosh, Pritha [Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Kolkata (India); Das, Jayanta K. [Department of Dermatology, West Bank Hospital, Howrah (India); Basu, Santanu [Department of General Medicine, Sri Aurobindo Seva Kendra, Kolkata (India); Sarkar, Ajoy K. [Peerless Hospital and B.K Roy Research Centre, Kolkata (India); States, J. Christopher, E-mail: jcstates@louisville.ed [Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY (United States); Center for Environmental Genomics and Integrative Biology, University of Louisville, Louisville, KY (United States); Giri, Ashok K., E-mail: akgiri15@yahoo.co [Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Kolkata (India)

2010-11-15T23:59:59.000Z

487

WHC natural phenomena hazards mitigation implementation plan  

SciTech Connect (OSTI)

Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

Conrads, T.J.

1996-09-11T23:59:59.000Z

488

Staged mold for encapsulating hazardous wastes  

DOE Patents [OSTI]

A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

1990-01-01T23:59:59.000Z

489

Trending: Metal Oxo Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing...

490

Composite metal membrane  

DOE Patents [OSTI]

A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

Peachey, Nathaniel M. (Espanola, NM); Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM); Birdsell, Stephan A. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

491

Composite metal membrane  

DOE Patents [OSTI]

A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

1998-04-14T23:59:59.000Z

492

Cumulative arsenic exposure and lung cancer in smelter workers: a dose-response study  

SciTech Connect (OSTI)

The cause-specific mortality was followed through 1981 in a cohort of 3,916 male Swedish smelter workers employed for at least 3 months from 1928 through 1967. Arsenic levels in the air of all workplaces within the smelter were estimated for three different time periods. Using this exposure matrix and detailed information of the work history, cumulative arsenic exposure could be computed for each worker. Standardized mortality ratios (SMRs) were calculated for several dose categories using age-specific mortality rates from the county where the smelter was situated. A positive dose-response relationship was found between cumulative arsenic exposure and lung cancer mortality with an overall SMR of 372 (304-450, 95% confidence interval). The lung cancer mortality was related to the estimated average intensity of exposure to arsenic but not to the duration. No positive dose-response relationship was found between arsenic and ischemic heart disease or cerebrovascular disease. There was also no evident dose-response relationship between estimated exposure to sulfur dioxide and lung cancer.

Jaerup, L.P.; Pershagen, G.; Wall, S.

1989-01-01T23:59:59.000Z

493

LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells  

DOE Patents [OSTI]

An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.

Bugga, R.V.; Fultz, B.; Bowman, R.; Surampudi, S.R.; Witham, C.K.; Hightower, A.

1999-03-30T23:59:59.000Z

494

Method for solidification of radioactive and other hazardous waste  

DOE Patents [OSTI]

Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana A. (Krasnoyarsk, RU); Voskresenskaya, Elena N. (Krasnoyarsk, RU); Kostin, Eduard M. (Zheleznogorsk, RU); Pavlov, Vyacheslav F. (Krasnoyarsk, RU); Revenko, Yurii A. (Zheleznogorsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Sharonova, Olga M. (Krasnoyarsk, RU); Aloy, Albert S. (Saint-Petersburg, RU); Sapozhnikova, Natalia V. (Saint-Petersburg, RU); Knecht, Dieter A. (Idaho Falls, ID); Tranter, Troy J. (Idaho Falls, ID); Macheret, Yevgeny (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

495

Individual differences in arsenic metabolism and lung cancer in a case-control study in Cordoba, Argentina  

SciTech Connect (OSTI)

In humans, ingested inorganic arsenic is metabolized to monomethylarsenic (MMA) then to dimethylarsenic (DMA), although in most people this process is not complete. Previous studies have identified associations between the proportion of urinary MMA (%MMA) and increased risks of several arsenic-related diseases, although none of these reported on lung cancer. In this study, urinary arsenic metabolites were assessed in 45 lung cancer cases and 75 controls from arsenic-exposed areas in Cordoba, Argentina. Folate has also been linked to arsenic-disease susceptibility, thus an exploratory assessment of associations between single nucleotide polymorphisms in folate metabolizing genes, arsenic methylation, and lung cancer was also conducted. In analyses limited to subjects with metabolite concentrations above detection limits, the mean %MMA was higher in cases than in controls (17.5% versus 14.3%, p = 0.01). The lung cancer odds ratio for subjects with %MMA in the upper tertile compared to those in the lowest tertile was 3.09 (95% CI, 1.08-8.81). Although the study size was too small for a definitive conclusion, there was an indication that lung cancer risks might be highest in those with a high %MMA who also carried cystathionine {beta}-synthase (CBS) rs234709 and rs4920037 variant alleles. This study is the first to report an association between individual differences in arsenic metabolism and lung cancer, a leading cause of arsenic-related mortality. These results add to the increasing body of evidence that variation in arsenic metabolism plays an important role in arsenic-disease susceptibility.

Steinmaus, Craig, E-mail: craigs@berkeley.ed [Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA (United States); School of Public Health, University of California, Berkeley, CA (United States); Yuan Yan [School of Public Health, University of California, Berkeley, CA (United States); Kalman, Dave [School of Public Health and Community Medicine, University of Washington, Seattle, WA (United States); Rey, Omar A. [Facultad de Medicina, Universidad Catolica de Cordoba, Cordoba (Argentina); Skibola, Christine F.; Dauphine, Dave; Basu, Anamika; Porter, Kristin E.; Hubbard, Alan; Bates, Michael N.; Smith, Martyn T.; Smith, Allan H. [School of Public Health, University of California, Berkeley, CA (United States)

2010-09-01T23:59:59.000Z

496

Hazard Communication (Worker Right to Know) As a UW employee, you have the right to know about hazards to which you may be exposed as part  

E-Print Network [OSTI]

Hazard Communication (Worker Right to Know) As a UW employee, you have the right to know about hazards to which you may be exposed as part of your work assignment. The University's Hazard Communication the hazard communication training you need? A combination of hazard communication training resources

Wilcock, William

497

Natural hazards phenomena mitigation with respect to seismic hazards at the Environmental Restoration Disposal Facility  

SciTech Connect (OSTI)

This report provides information on the seismic hazard for design of the proposed Environmental Restoration Disposal Facility (ERDF), a facility designed for the disposal of wastes generated during the cleanup of Hanford Site aggregate areas. The preferred ERDF site is located south and east of 200 East and 200 West Areas. The Washington State Groundwater Protection Program (WAC 173-303-806 (4)(a)(xxi)) requires that the characteristics of local and regional hydrogeology be defined. A plan for that work has been developed (Weekes and Borghese 1993). In addition, WAC 173-303-282 provides regulatory guidance on siting a dangerous waste facility, and US Department of Energy (DOE) Order 5480.28 requires consideration of natural phenomena hazards mitigation for DOE sites and facilities. This report provides information to evaluate the ERDF site with respect to seismic hazard. The ERDF will be a Corrective Action Management Unit (CAMU) as defined by 40 CFR 260.10.

Reidel, S.P.

1994-01-06T23:59:59.000Z

498

Metal Hydrides  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |Charles Page -toMetabolic PathwaysMetal

499

Elevated sulfate reduction in metal-contaminated freshwater lake sediments  

SciTech Connect (OSTI)

Although sulfate-reducing prokaryotes have long been studied as agents of metals bioremediation, impacts of long-term metals exposure on biologically mediated sulfur cycling in natural systems remains poorly understood. The effects of long-term exposure to metal stress on the freshwater sulfur cycle were studied, with a focus on biologic sulfate reduction using a combination of microbial and chemical methods. To examine the effects after decades of adaptation time, a field-based experiment was conducted using multiple study sites in a natural system historically impacted by a nearby zinc smelter (Lake DePue, Illinois). Rates were highest at the most metals-contaminated sites (-35 {mu}mol/cm{sup 3}/day) and decreased with decreased pore water zinc and arsenic contamination levels, while other environmental characteristics (i.e., pH, nutrient concentrations and physical properties) showed little between-site variation. Correlations were established using an artificial neural network to evaluate potentially non-linear relationships between sulfate reduction rates (SRR) and measured environmental variables. SRR in Lake DePue were up to 50 times higher than rates previously reported for lake sediments and the chemical speciation of Zn was dominated by the presence of ZnS as shown by X-ray Absorption Spectroscopy (XAS). These results suggest that long-term metal stress of natural systems might alter the biogeochemical cycling of sulfur by contributing to higher rates of sulfate reduction.

Gough, H.L.; Dahl, A.L.; Tribou, E.; Noble, P.A.; Gaillard, J.-F.; Stahl, D.A. (UWASH); (NWU)

2009-01-06T23:59:59.000Z

500

Globalization and Hazardous Waste Management: From Brown to Green?  

E-Print Network [OSTI]

by the international scrap metal industry and its national/73 The waste and scrap metal industries have been heavily

O'Neill, Kate

2002-01-01T23:59:59.000Z