National Library of Energy BETA

Sample records for hazardous materials safety

  1. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Enhancing Railroad Hazardous Materials Transportation Safety Presented by Kevin R. Blackwell, Radioactive Materials Program Manager. Enhancing Railroad Hazardous Materials...

  2. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin Blackwell for the NTSF annual meeting held from May 14-16,...

  3. Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-20

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  4. Chemical and Hazardous Materials Department of Environmental Health and Safety

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Chemical and Hazardous Materials Safety Department of Environmental Health and Safety 800 West information useful in the recognition, evaluation, and control of workplace hazards and environmental factors safety, fire safety, and hazardous waste disposal. Many chemicals have properties that make them

  5. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Mercury used in many laboratory areas on campus. All laboratory areas and former laboratory areas should. Cleanup by a hazardous materials contractor is required before demolition or construction can begin

  6. HAZARDOUS MATERIAL SAFETY Effective Date: January 1, 1992

    E-Print Network [OSTI]

    Cui, Yan

    HAZARDOUS MATERIAL SAFETY PROCEDURES Effective Date: January 1, 1992 Revised Date: March 1993 UT Memphis shall implement a program that protects its employees from hazardous chemical in accordance with Section 1910.1200 of the Occupational Safety and Health Act (OSHA), entitled ³Hazard Communication

  7. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Site of specifications for projects in areas with site contamination. Overview Many locations on University of Washington industrial activities such as fuel storage or dispensing or hazardous material spills prior to University

  8. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Fluorescent are hazardous waste, so take care to ensure the tubes remain intact during removal and storage. Fluorescent offsite locations, the EH&S Environmental Programs Office (EPO) will arrange directly with the recycling

  9. Hazardous Material Identification and Material Safety Data Sheets UT-B Contracts Div Page 1 of 1

    E-Print Network [OSTI]

    Pennycook, Steve

    Hazardous Material Identification and Material Safety Data Sheets UT-B Contracts Div July 2006 Page 1 of 1 haz-mat-id-msds-ext-july06.doc HAZARDOUS MATERIAL IDENTIFICATION AND MATERIAL SAFETY DATA SHEETS (July 2006) (a) "Hazardous material," as used in this clause, means any material defined

  10. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  11. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    to construction debris recycling facilities even if the lead concentrations are below Hazardous Waste levels in construction debris. It is most often found in pipes, copper pipes with lead solder, and interior and exterior, lead-containing materials have the potential to negatively impact the health of construction workers

  12. DRAFT - DOE O 460.1D, Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  13. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office`s program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  14. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  15. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Conroy U S Department of Transportation - 1 - U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety...

  16. Materials SafetyProper Disposal of Waste Contaminated with Hazardous Solvents

    E-Print Network [OSTI]

    Materials SafetyProper Disposal of Waste Contaminated with Hazardous Solvents A M e s s a g e f r o released from solvent-soaked polishing cloths that had been improperly tossed in a general trash can in the hallway. As the janitor removed the bag from the trashcan, she inhaled concentrated solvent vapor

  17. Hazardous Materials Packaging and Transportation Safety - DOE Directives,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for Accidental Releases of HazardousDelegations,

  18. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals, accidentally spilled, or released. In addition to laboratory chemicals, hazardous materials may include common not involve highly toxic or noxious hazardous materials, a fire, or an injury requiring medical attention

  19. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up, or there is a small spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  20. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  1. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up personnel trained in Hazardous Material clean up or an appropriate spill kit is not available? Call 561

  2. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  3. HAZARDOUS MATERIALS EMERGENCY RESPONSE

    E-Print Network [OSTI]

    ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

  4. The Safety Data Sheet, or SDS, is written or printed material used to convey the hazards of a hazardous chemical product. It contains 16 sections of important chemical information, including

    E-Print Network [OSTI]

    The Safety Data Sheet, or SDS, is written or printed material used to convey the hazards of a hazardous chemical product. It contains 16 sections of important chemical information, including: Chemical characteristics; Physical and health hazards, including relevant exposure limits; Precautions for safe handling

  5. HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY

    E-Print Network [OSTI]

    Calgary, University of

    HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY EH&S Hazard Alert - 2010.06.18 HAZARD ALERT ­ Reaction Manual. http://www.ucalgary.ca/safety/files/safety/LaboratoryFumeHoodUserStandard.pdf #12;HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY EH&S Hazard Alert - 2010.06.18 In the recent incident the sash was closed while

  6. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P. [National Renewable Energy Lab., Golden, CO (United States); Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States)

    1992-07-01

    To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

  7. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect (OSTI)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  8. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  9. Radiation Safety Training Materials

    Broader source: Energy.gov [DOE]

    The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

  10. Transportation of Hazardous Evidentiary Material.

    SciTech Connect (OSTI)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being shipped, and will otherwise maintain it as nearly as possible in its original condition.The recommendations provided are short-term solutions to the problems of shipping evidence, and have considered only currently commercially available containers. These containers may not be appropriate for all cases. Design, testing, and certification of new transportation containers would be necessary to provide a container appropriate for all cases.Table 1 provides a summary of the recommendations for each class of hazardous material.Table 1: Summary of RecommendationsContainerCost1-quart paint can with ArmlockTM seal ringLabelMaster(r)%242.90 eachHazard Class 3, 4, 5, 8, or 9 Small ContainersTC Hazardous Material Transport ContainerCurrently in Use4 DraftDraftDraftTable 1: Summary of Recommendations (continued)ContainerCost55-gallon open or closed-head steel drumsAll-Pak, Inc.%2458.28 - %2473.62 eachHazard Class 3, 4, 5, 8, or 9 Large Containers95-gallon poly overpack LabelMaster(r)%24194.50 each1-liter glass container with plastic coatingLabelMaster(r)%243.35 - %243.70 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Small ContainersTC Hazardous Material Transport ContainerCurrently in Use20 to 55-gallon PIH overpacksLabelMaster(r)%24142.50 - %24170.50 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Large Containers65 to 95-gallon poly overpacksLabelMaster(r)%24163.30 - %24194.50 each1-liter transparent containerCurrently in UseHazard Class 6 Division 6.2 Infectious Material Small ContainersInfectious Substance ShipperSource Packaging of NE, Inc.%24336.00 eachNone Commercially AvailableN/AHazard Class 6 Division 6.2 Infectious Material Large ContainersNone Commercially Available N/A5

  11. Safety Analysis: Evaluation of Accident Risks in the Transporation of Hazardous Materials by Truck and Rail at the Savannah River Plant

    SciTech Connect (OSTI)

    Blanchard, A.

    1999-04-15

    This report presents an analysis of the consequences and risks of accidents resulting from hazardous material transportation at the Savannah River Plant.

  12. Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory. Volume 2, Appendices

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01

    To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

  13. Hazardous Materials Alert Departmental Contact(s)

    E-Print Network [OSTI]

    Hickman, Mark

    Hazardous Materials Alert Departmental Contact(s): Name ___________________________________________________________________________________ Hazardous Materials Alert If the release of a hazardous chemical or gas is affecting people in your area yourself at risk. 2. isOlATE the hazardous material by clearing the area, close the doors. If safe to do so

  14. Hazard Assessment for Personal Protective Equipment Northwestern University Office for Research Office for Research Safety

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Hazard Assessment for Personal Protective Equipment Northwestern University Office for Research Office for Research Safety Page 1 of 1 H:\\Courses\\Laboratory Standard\\Course Materials\\PPE_Hazard_Assess.doc Name: PI and Department: Date: Eye Hazards - Tasks that can cause eye hazards include: Working

  15. Process safety management for highly hazardous chemicals

    SciTech Connect (OSTI)

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  16. ENVIRONMENTAL HEALTH AND PUBLIC SAFETY Hazardous Materials Management Trailer 201 S. Ahlers Rd. West Lafayette, IN 47907-5991

    E-Print Network [OSTI]

    Pittendrigh, Barry

    of the University or his designee may declare a Wind Chill, Snow, or Ice Emergency for the West Lafayette campus, and Lafayette municipal offices by Environmental Health and Public Safety staff members. Wind Chill Emergency Conditions When existing or predicted low temperatures and wind conditions have the potential to pose

  17. Hazard screening application guide. Safety Analysis Report Update Program

    SciTech Connect (OSTI)

    1992-06-01

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

  18. Weather and the Transport of Hazardous Materials | Department...

    Office of Environmental Management (EM)

    Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials More Documents & Publications The...

  19. Weather and the Transport of Hazardous Materials | Department...

    Office of Environmental Management (EM)

    Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials More Documents & Publications...

  20. Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon

    E-Print Network [OSTI]

    Jones, Robert; Wills, Brandon; Kang, Christopher

    2010-01-01

    Chlorine Gas: An Evolving Hazardous Material Threat andChlorine gas represents a hazardous material threat fromrepresents a persistent hazardous material (HAZMAT) threat.

  1. Determining risks for hazardous material operations

    SciTech Connect (OSTI)

    Cournoyer, M. E.; Dare, J. H.

    2002-01-01

    Integrated Safety Management (ISM) is structured to manage and control work at the activity level. Fundamental to ISM is that all work will be performed safely while meeting the applicable institutional-, facility-, and activity-level expectations. High and medium initial risk activities require certain levels of independent peer and/or Environmental, Health & Safety subject matter expert reviews prior to authorization. A key responsibility of line management and chemical workers is to assign initial risk adequately, so that the proper reviews are obtained. Thus, the effectiveness of an ISM system is largely dependent upon the adequacy and accuracy of this initial risk determination. In the following presentation, a Risk Determination Model (RDM) is presented for physical, health and ecological hazards associated with materials. Magnitude of exposure (Le., dose or concentration), frequency, duration, and quantity are the four factors most difficult to capture in a research and development setting. They are factored into the determination, as a function of the quantity of material. Quantity and magnitude of exposure components are simplified by using boundary criteria. This RDM will promote conformity and consistency in the assignment of risk to hazardous material activities. In conclusion, the risk assessors (line manager and chemical worker) should be capable of more accurately assessing the risk of exposure to a specific chemical with regard to the employee, public, and the environment.

  2. Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work-

    E-Print Network [OSTI]

    Tennessee, University of

    Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work- ing with hazardous materials should receive annual training that address- es lab safety, personal protective equipment, storage, use, and disposal of hazardous materials, emergency procedures

  3. Hazardous Material Packaging for Transport - Administrative Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-30

    To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

  4. Hazardous Waste Collection in Safety Cans HOW DOES THIS WORK?

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Hazardous Waste Collection in Safety Cans HOW DOES THIS WORK? o Labs that generate large volumes of solvent hazardous waste can contact EHS @ 255-8200 for approval of the use of safety cans. Once EHS approves the use we will provide the can. o A hang pocket will be placed on the can that states "Hazardous

  5. General Safety Guidelines for Bio-Hazardous Waste Disposal

    E-Print Network [OSTI]

    Holland, Jeffrey

    General Safety Guidelines for Bio-Hazardous Waste Disposal · Determine if you have a Bio-Hazardous, cell cultures, Petri dishes, and etc. NOT fitting the category 1 description. · ALL BIO-HAZARDOUS WASTE OF CATEGORY 1 NEEDS TO BE TREATED BY AUTOCLAVE OR WITH HIV/HBV KILLING AGENT BEFORE PICK-UP · Bio-hazardous

  6. HAZARD COMMUNICATION PROGRAM The______________________________ Department has developed a Hazard Communication

    E-Print Network [OSTI]

    Zhang, Yuanlin

    HAZARD COMMUNICATION PROGRAM The______________________________ Department has developed a Hazard about chemical hazards and other hazardous substances via our comprehensive Hazard Communication Program. The Hazard Communication Program will include: WORKPLACE CHEMICAL LIST MATERIAL SAFETY DATA SHEETS CONTAINER

  7. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K. (Idaho Falls, ID); Grey, Alan E. (Idaho Falls, ID)

    1994-01-01

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  8. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K.; Grey, Alan E.

    1994-04-05

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  9. UNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all students, staff, and

    E-Print Network [OSTI]

    Northern British Columbia, University of

    UNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all students, staff, and faculty. Hazardous waste must be handled and disposed of in a manner that ensures these materials do not pose a hazardous threat to others or end up in municipal sewers or landfills. Improper

  10. Hazardous Material Code Identification NFPA 704, 1996 Edition

    E-Print Network [OSTI]

    Slatton, Clint

    Hazardous Material Code Identification NFPA 704, 1996 Edition Identification of Health Hazard Color offer no hazard. 00 Materials that will not burn. 00 Materials that in themselves are normally stable DAMAGE TO LIVING TISSUE. MATERIALS POSSESSING RADIOACTIVITY HAZARDS. The identification systems

  11. Apparatus for transporting hazardous materials

    DOE Patents [OSTI]

    Osterman, Robert A. (Canonsburg, PA); Cox, Robert (West Mifflin, PA)

    1992-01-01

    An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

  12. Federal program for regulating highly hazardous materials finally takes off

    SciTech Connect (OSTI)

    Lessard, P.C. [Block Environmental Services Inc., Pleasant Hill, CA (United States)

    1996-11-01

    The Risk Management Program (RMP) rule, Section 112(r) of the Clean Air Act (CAA), was signed on May 24 and finalized on June 20. RMP is one of the most comprehensive, technically based regulatory programs for preventing, detecting and responding to accidental hazardous materials releases to have been issued in recent times. Although facilities have three years to comply, EPA estimates that the rule will affect an estimated 66,000 facilities that store highly hazardous or acutely toxic materials. The 1990 CAA Amendments are designed to prevent accidental releases of highly hazardous chemicals from stationary sources. Two significant regulatory programs that have emerged from the revised CAA are the Process Safety Management (PSM) standard and RMP. PSM is designed to protect employees and regulated by the Occupational Safety and Health Administration. RMP`s purpose is to protect the public and the environment from highly hazardous chemicals. It authorizes EPA to create a list of substances (distinct from the list generated under PSM) known to cause serious adverse effects and to implement a program for accidental chemical release prevention.

  13. HAZARDOUS DRUG SAFETY AND HEALTH PLAN FOR HANDLING ANTINEOPLASTIC OTHER HAZARDOUS DRUGS IN CLINICAL ENVIRONMENTS

    E-Print Network [OSTI]

    Kim, Duck O.

    HAZARDOUS DRUG SAFETY AND HEALTH PLAN FOR HANDLING ANTINEOPLASTIC AND OTHER HAZARDOUS DRUGS IN CLINICAL ENVIRONMENTS (5/3/2013) Introduction Drugs have a successful history of use in treating diseases and are responsible for many medical advances over the past century. However, virtually every drug has side effects

  14. Health and Safety Procedures Manual for hazardous waste sites

    SciTech Connect (OSTI)

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  15. Hazardous Materials Shipping Policy for Laboratories Policy Statement

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Page 1 Hazardous Materials Shipping Policy for Laboratories Policy Statement In order to ensure compliance with all regulations governing transportation of hazardous materials, all University faculty, staff, and students who work in laboratories and intend to ship hazardous materials from the University

  16. POLICY FOR THE MANAGEMENT OF HAZARDOUS MATERIALS Effective Date: February 15, 2010 Originating Office: Office of the

    E-Print Network [OSTI]

    Doedel, Eusebius

    is responsible for the safe handling and disposal of hazardous waste (including transport as per TDG regulations. For the purposes of this Policy, hazardous materials includes chemicals, biological, and radioactive materials. Radiation Safety Policy (VPS-46) outlines the management of radioactive materials as required

  17. NIH POLICY MANUAL 3034 -Working with Hazardous Materials

    E-Print Network [OSTI]

    Bandettini, Peter A.

    NIH POLICY MANUAL 3034 - Working with Hazardous Materials Issuing Office: ORS/DOHS (301) 496 and procedure governing work with hazardous chemicals as described in the NIH Hazard Communication Program page. A. Purpose: This chapter establishes the NIH policy for working with hazardous chemicals

  18. Journal of Hazardous Materials 132 (2006) 98110 Assessment of environmental radon hazard using human

    E-Print Network [OSTI]

    Yu, Peter K.N.

    2006-01-01

    Journal of Hazardous Materials 132 (2006) 98­110 Assessment of environmental radon hazard using Abstract Radon is a natural radioactive gas derived from geological materials. It has been estimated to assess the health hazard from environmental radon is reviewed. A short history of dosimetric models

  19. Commercial Vehicle Safety Alliance Commercial Vehicle Safety...

    Office of Environmental Management (EM)

    Program Update: Ensuring Safe Transportation of Radioactive Material Carlisle Smith Director, Hazardous Materials Programs Commercial Vehicle Safety Alliance Email:...

  20. Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100

    SciTech Connect (OSTI)

    Borgeson, M.E.

    1994-11-09

    The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations.

  1. Shop Safety -Machine Shop Hazards, Machine Tool

    E-Print Network [OSTI]

    materials (oily rags, paper,...) away from source of heat. Know where the fire extinguishers are located side if using a file on revolving work. Guard all transmission parts. Use a brush to remove chips ­ Machine Shop Milling Machine (Continued) Guard all transmission parts. Clean up oil spots

  2. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    -Hexane (ACGIH:OSHA) * Hexanen (Dutch) * Hexyl hydride * NCI-C60571 RTECS Number: MN9275000 Section 3 - Hazards in a cool dry place. Section 8 - Exposure Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath

  3. Are you shipping a DOT Hazardous Material? Is your material listed

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Are you shipping a DOT Hazardous Material? Is your material listed on the DOT Hazmat Table? http://www.myregs.com/dotrspa/ (select Hazmat Table upper left) Your material is a Hazardous Material and must be shipped following the full regulations. Follow the instructions on the linked page, select the hazard of the material

  4. Mr. Steve lappe, Project Leader Hazardous Materials Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lappe, Project Leader Hazardous Materials Bureau Department of Energy Carlsbad Field Office P o. Box 3090 Carlsbad, New Mexico 88221 FEB I 3110 New Mexico Environment Department...

  5. Enhancing Railroad Hazardous Materials Transportation Safety

    Office of Environmental Management (EM)

    June 1 2009 * Production version online June 1, 2009 Introduction The Rail Corridor Risk Management System (RCRMS) is a tool to be used by rail carriers (RCRMS) is a tool to...

  6. Incompatible Hazardous Materials Each material must be individually evaluated to determine where and how it should be stored. The

    E-Print Network [OSTI]

    de Lijser, Peter

    Incompatible Hazardous Materials Each material must be individually evaluated to determine where compounds) detergents/soaps, oxidizers heat, fire hazard compressed gases (oxygen, acetylene, propane, helium) heat sources fire hazard, explosion hazards corrosion preventative compounds (corrosion

  7. Emergency Action Plan For incidents involving hazardous materials, fires, explosions, or natural gas

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    -492-6025. For Non-Emergency Fire and Natural Gas Questions call the CU Fire Marshall @ 303-492-4042. AdditionalEmergency Action Plan For incidents involving hazardous materials, fires, explosions, or natural gas leaks, the following actions should be taken: 1) Life Safety First 2) Evacuate Immediate Area 3

  8. MATERIAL SAFETY DATA SHEET Virex II 256 One-Step Disinfectant Cleaner & Deodorant (CAN)

    E-Print Network [OSTI]

    Wikswo, John

    with good industrial hygiene and safety practice Corrosive material (See sections 8 and 10). Handling: Avoid be more susceptible to irritating effects Unusual hazards: Hygiene measures: Handle in accordance

  9. R/V Thomas G. Thompson Hazardous Material Storage and Inventory Sheet All hazardous material must be inventoried and accounted for by a Marine Technician BEFORE being

    E-Print Network [OSTI]

    Wilcock, William

    R/V Thomas G. Thompson Hazardous Material Storage and Inventory Sheet · All hazardous material must and placarded in accordance with the IMDG Code, CFRs and MARPOL 73/78. · All hazardous material to be brought hazardous material containers, no matter how small or how many, must be labeled with the name and phone

  10. Hazardous Material Identification With StreetLab Mobile | GE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Material Identification With StreetLab Mobile Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

  11. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  12. Hazardous Materials Handling High Pressure Cylinders

    E-Print Network [OSTI]

    Boynton, Walter R.

    NOT FILL CYLINDERS #12;The US Dept. of Labor, Occupational Safety Health Administration (OSHA) regulates do propose a risk,through proper handling,storage, use and filling the risk may be reduced

  13. Environmental Health and Safety Department

    E-Print Network [OSTI]

    . Fire Safety, Radiation Safety and Hazardous Materials Facility are at other locations on campus://www.ehs.gatech.edu/EHS_Policy_Statement.pdf #12;EHS The main Georgia Tech Environmental Health and Safety Office is located at 490 Tenth Street: Radiation Safety Fire SafetyHazardous Materials #12;SAFETY RESPONSIBILITY Safety is a shared responsibility

  14. Conversion of hazardous materials using supercritical water oxidation

    DOE Patents [OSTI]

    Rofer, Cheryl K. (Los Alamos, NM); Buelow, Steven J. (Los Alamos, NM); Dyer, Richard B. (Los Alamos, NM); Wander, Joseph D. (Parker, FL)

    1992-01-01

    A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The harzardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

  15. Chapter 13 Employee Health and Safety 13.03 Hazardous Employment Injury

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Chapter 13 Employee Health and Safety 13.03 Hazardous Employment Injury · Policy Wisconsin Statutes of hazardous employment are entitled to continued payment of full base pay without deduction of sick leave. The employee is treated as if she/he is still in pay status. Employees eligible for hazardous employment injury

  16. Chapter 13 Employee Health and Safety 13.05 Abnormally Hazardous Tasks

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Chapter 13 Employee Health and Safety 13.05 Abnormally Hazardous Tasks · Form The Abnormally Hazardous Task Report Form http://oser.state.wi.us/docview.asp?docid=1116 is available to an employee who the "Abnormally Hazardous Task Report" shall review the situation with the employee and attempt to resolve

  17. Hazardous Waste Pick-up DEPARTMENT of ENVIRONMENTAL HEALTH and SAFETY

    E-Print Network [OSTI]

    Emmons, Scott

    Hazardous Waste Pick-up Form DEPARTMENT of ENVIRONMENTAL HEALTH and SAFETY Albert Einstein College: Principal Investigator: Extension: Location of Waste: Email: Waste Description If mixed, list all known Hazardous Waste label. Any container without a Hazardous Waste label cannot be picked up by Environmental

  18. Hazardous Material Shipments | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for Accidental Releases of Hazardous

  19. Removal of radioactive and other hazardous material from fluid waste

    DOE Patents [OSTI]

    Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  20. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2010-10-25

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

  1. MATERIAL SAFETY DATA SHEET Glance SC Glass Multi-Surface Cleaner

    E-Print Network [OSTI]

    Wikswo, John

    hazards: Hygiene measures: Handle in accordance with good industrial hygiene and safety practice Corrosive

  2. Method and apparatus for the management of hazardous waste material

    DOE Patents [OSTI]

    Murray, H. Jr.

    1995-02-21

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

  3. Method and apparatus for the management of hazardous waste material

    DOE Patents [OSTI]

    Murray, Jr., Holt (Hopewell, NJ)

    1995-01-01

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

  4. University of Connecticut Health Center Policy for Transporting, Shipping, Importing / Exporting Hazardous Materials

    E-Print Network [OSTI]

    Kim, Duck O.

    Hazardous Materials Policy The University of Connecticut Health Center requires that all materials classified as "hazardous materials" by the U.S. Department of Transportation and/or the State of Connecticut be transported in approved containers and in compliance with all transportation regulations. Hazardous materials

  5. Journal of Hazardous Materials 192 (2011) 16161622 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Sparks, Donald L.

    2011-01-01

    Journal of Hazardous Materials 192 (2011) 1616­1622 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Effects of dissolved

  6. Journal of Hazardous Materials 175 (2010) 872882 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    2010-01-01

    Journal of Hazardous Materials 175 (2010) 872­882 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Model for a solid­liquid stirred tank

  7. Journal of Hazardous Materials 191 (2011) 190195 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    2011-01-01

    Journal of Hazardous Materials 191 (2011) 190­195 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Treatment of substituted phenol

  8. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

  9. Hazardous Materials Reporting UT-B Contracts Div Page 1 of 1

    E-Print Network [OSTI]

    Hazardous Materials Reporting UT-B Contracts Div July 2006 Page 1 of 1 haz-mat-rept-ext-venx-july06.doc HAZARDOUS MATERIALS REPORTING (July 2006) (a) The Company is required by regulations to maintain records and report on quantities of hazardous materials that are on site at U. S. Department

  10. EOC Title: Hazardous Materials Liaison (Emergency Support Function #10) Coordinating Campus Unit: EH&S

    E-Print Network [OSTI]

    Walker, Matthew P.

    OPERATIONS EOC Title: Hazardous Materials Liaison (Emergency Support Function #10) Coordinating Campus Unit: EH&S General Description The Hazardous Materials Emergency Support Function coordinates response to and recovery from an actual or potential discharge and/or release of a hazardous material

  11. Modeling and Simulation of Hazardous Material Releases for Homeland Security Applications

    E-Print Network [OSTI]

    Magee, Joseph W.

    i Modeling and Simulation of Hazardous Material Releases for Homeland Security Applications DRAFT in the breakout track on Hazardous Material Release at the workshop on Homeland Security Modeling & Simulation...........................................................................................................................................................1 2. Introduction to Hazardous Material Releases (HMR) and Associated DHS Guidance

  12. SOFTWARE TOOLS THAT ADDRESS HAZARDOUS MATERIAL ISSUES DURING NUCLEAR FACILITY D and D

    SciTech Connect (OSTI)

    M. COURNOYER; R. GRUNDEMANN

    2001-03-01

    The 49-year-old Chemistry and Metallurgy Research (CMR) Facility is where analytical chemistry and metallurgical studies on samples of plutonium and nuclear materials are conduct in support of the Department of Energy's nuclear weapons program. The CMR Facility is expected to be decontaminated and decommissioned (D and D) over the next ten to twenty years. Over the decades, several hazardous material issues have developed that need to be address. Unstable chemicals must be properly reassigned or disposed of from the workspace during D and D operation. Materials that have critical effects that are primarily chronic in nature, carcinogens, reproductive toxin, and materials that exhibit high chronic toxicity, have unique decontamination requirements, including the decontrolling of areas where these chemicals were used. Certain types of equipment and materials that contain mercury, asbestos, lead, and polychlorinated biphenyls have special provisions that must be addressed. Utilization of commercially available software programs for addressing hazardous material issues during D and D operations such as legacy chemicals and documentation are presented. These user-friendly programs eliminate part of the tediousness associated with the complex requirements of legacy hazardous materials. A key element of this approach is having a program that inventories and tracks all hazardous materials. Without an inventory of chemicals stored in a particular location, many important questions pertinent to D and D operations can be difficult to answer. On the other hand, a well-managed inventory system can address unstable and highly toxic chemicals and hazardous material records concerns before they become an issue. Tapping into the institutional database provides a way to take advantage of the combined expertise of the institution in managing a cost effective D and D program as well as adding a quality assurance element to the program. Using laboratory requirements as a logic flow diagram, quality and cost effective methods are used to provide necessary information of programmatic, quality, and safety issues concerns. In summary, by seamlessly managing non-programmatic issues, chemical software programs allow scientists in nuclear research facilities more time to concentrate on their technical areas of interest.

  13. Social Media: Rip Currents/Beach Hazards #SummerSafety

    E-Print Network [OSTI]

    to stay hydrated and apply sunscreen regularly. www.weather.gov/heatsafety #SummerSafety Twitter: Beat the Heat! Stay hydrated and apply sunscreen. www.weather.gov/heatsafety #Summer

  14. Monthly Theme January 2010 Movement of Hazardous Materials between or within buildings Monthly Theme January 2010

    E-Print Network [OSTI]

    Calgary, University of

    Monthly Theme January 2010 ­ Movement of Hazardous Materials between or within buildings Monthly Theme ­ January 2010 MOVEMENT OF HAZARDOUS MATERIALS BETWEEN OR WITHIN BUILDINGS Effective immediately for pick-up. This will reduce the transport hazard and cost when purchasing from Chemistry Stores (40% mark

  15. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  16. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  17. Safety Requirements for the Packaging and Transportation of Hazardous Materials, Hazardous Substances, and Hazardous Wastes

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1985-07-09

    Cancels Chapter 3 of DOE 5480.1A. Canceled by DOE O 460.1 of 9-27-1995 and by DOE N 251.4 & Para. 9c canceled by DOE O 231.1 of 9-30-1995.

  18. Safe Handling of Cryogenic Liquids This document describes the principal hazards and appropriate safety procedures associated

    E-Print Network [OSTI]

    Yaghi, Omar M.

    they can rapidly freeze human tissue and cause frostbite. Even a brief contact with a cryogenic liquid92 Safe Handling of Cryogenic Liquids This document describes the principal hazards and appropriate safety procedures associated with three cryogenic liquids that are commonly used in the College: liquid N

  19. Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards not found in most

    E-Print Network [OSTI]

    Maroncelli, Mark

    Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards not found in most laboratory environments. The NMR facilities maintain superconducting magnets which have the units. Facility design and installation: Design and installation of a new NMR facility requires a number

  20. Joint probability safety assessment for NPP defense infrastructure against extreme external natural hazards

    SciTech Connect (OSTI)

    Guilin, L.; Defu, L.; Huajun, L.; Fengqing, W.; Tao, Z.

    2012-07-01

    With the increasing tendency of natural hazards, the typhoon, hurricane and tropical Cyclone induced surge, wave, precipitation, flood and wind as extreme external loads menacing Nuclear Power Plants (NPP) in coastal and inland provinces of China. For all of planned, designed And constructed NPP the National Nuclear Safety Administration of China and IAEA recommended Probable Maximum Hurricane /Typhoon/(PMH/T), Probable Maximum Storm Surge (PMSS), Probable Maximum Flood (PMF), Design Basis Flood (DBF) as safety regulations for NPP defense infrastructures. This paper discusses the joint probability analysis of simultaneous occurrence typhoon induced extreme external hazards and compare with IAEA 2006-2009 recommended safety regulation design criteria for some NPP defense infrastructures along China coast. (authors)

  1. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    VIOLET 548-62-9 Yes Ingredient Name CAS # Percent SARA 313 CRYSTAL VIOLET 548-62-9 90 No ZINC FOIL 7440 - Hazards Identification EMERGENCY OVERVIEW Toxic. Dangerous for the environment. #12;May cause cancer. May clothing to prevent contact with skin and eyes. Specific Hazard(s): Emits toxic fumes under fire conditions

  2. Life-cycle analysis of hazardous chemicals in the Department of Materials Science & Engineering

    E-Print Network [OSTI]

    Chia, Valerie Jing-chi

    2013-01-01

    MIT policies set forth by the Department of Environment, Health, and Safety (EHS) require that all laboratories maintain a chemical inventory to properly document the use of hazardous chemicals. While EHS has provided a ...

  3. Permit Fees for Hazardous Waste Material Management (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe applicable fees for permit application, modification, and transfer for permits related to hazardous waste management.

  4. The California State University, Fullerton Emergency Management Plan establishes the framework for campus response to emergency situations. The Hazardous Material

    E-Print Network [OSTI]

    de Lijser, Peter

    the framework for campus response to emergency situations. The Hazardous Material Contingency Plan (plan) defines specific actions and information for responding to campus hazardous materials incidents. II personnel in the event of an unplanned release or spill of hazardous materials or hazardous waste. B

  5. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    thoroughly after handling. Wash contaminated clothing before reuse. EXPOSURE LIMITS, RTECS Country Source DECOMPOSITION PRODUCTS Hazardous Decomposition Products: Carbon monoxide, Car

  6. Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection

    SciTech Connect (OSTI)

    Barbara H. Dolphin; William D. RIchins; Stephen R. Novascone

    2010-10-01

    The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision points such as; crash, location, etc. For each pass through the routines, when a crash is randomly selected, crash parameters are then used to determine if failure has occurred using either external look up tables, correlations functions from deterministic calculations, or built in data libraries. The effectiveness of the software was recently demonstrated in safety analyses of the transportation of radioisotope systems for the US Dept. of Energy. These methods are readily adaptable to estimating risks associated with a variety of hazardous shipments such as spent nuclear fuel, explosives, and chemicals.

  7. Journal of Hazardous Materials 180 (2010) 662667 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Ma, Lena

    2010-01-01

    Journal of Hazardous Materials 180 (2010) 662­667 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Optimum P levels for arsenic removal Hyperaccumulation Groundwater a b s t r a c t Optimization of arsenic uptake by Pteris vittata may reduce

  8. Reducing the Risk of Rail Transport of Hazardous Materials by Route Rationalization

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Reducing the Risk of Rail Transport of Hazardous Materials by Route Rationalization Athaphon;Kawprasert & Barkan 08-2801 2 ABSTRACT Hazardous materials traffic originates and terminates at numerous different locations throughout the North American railroad network. Rerouting of this traffic, especially

  9. Safety Slide 1 Hydrofluoric (HF) Acid Hazards http://www.emsworld.com/web/online/Education/Hydrofluoric-Acid-/5$12949

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Slide 1 ­ Hydrofluoric (HF) Acid Hazards http://www.emsworld.com/web may be delayed for up to 24 hours, even with dilute solutions. HF burns affect deep tissue layers

  10. Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation made by Kevin Blackwell for the NTSF annual meeting held from May 14-16, 2013 in Buffalo, NY

  11. Hazardous Materials Packaging and Transportation Safety (For Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-23

    This draft has been scheduled for final review before the Directives Review Board on 11-4-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 11-2-15.

  12. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  13. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  14. Mr. John Kieling, Acting Chief Hazardous Materials Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory to certify waste in accordance with the Waste Isolation Pilot Plant Hazardous Waste Facility Permit. The audit was conducted on June 7-9, 2011. I certify under...

  15. Intention to Ship Hazardous Materials Complete and submit this form to EHS if you intend to ship material that may be

    E-Print Network [OSTI]

    Intention to Ship Hazardous Materials Complete and submit this form to EHS if you intend to ship material that may be classified as hazardous material. EHS will determine if the shipment is regulated and/supervisor Department Phone Email Description of material (commercial product name, chemical name, etc.): Known hazards

  16. Journal of Hazardous Materials 254255 (2013) 206213 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    2013-01-01

    Journal of Hazardous Materials 254­255 (2013) 206­213 Contents lists available at SciVerse ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Simultaneous

  17. Materials Safety Liquid Nitrogen Safety! ! A Message from Rick Kelly

    E-Print Network [OSTI]

    (special cryo- gen gloves or leather) and safety glasses with side shields. When dispensing liquid nitrogen from a pressurized dewar, or at any time that a splash may occur, a face shield should also be used as possible. Dispensing from Bulk Stor! age Tanks: Anyone who will be handling liquid nitrogen must complete

  18. CCB Laboratory Safety Orientation Checklist Laboratory Safety Training Review

    E-Print Network [OSTI]

    Heller, Eric

    ) Location and use of hazardous waste accumulation areas Location of Safety Data hazardous materials, equipment, or processes that pertain to the research program and meeting area Location of fire extinguishers and closest pull station Location

  19. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    , chemical safety goggles, rubber boots, and ALDRICH - 439215 www.sigma-aldrich.com Page 2 #12;heavy rubber. Keep away from heat, sparks, and open flame. Store under nitrogen. SPECIAL REQUIREMENTS Test Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Use nonsparking tools. Mechanical exhaust

  20. Regulatory and extra-regulatory testing to demonstrate radioactive material packaging safety

    SciTech Connect (OSTI)

    Ammerman, D.J.

    1997-06-01

    Packages for the transportation of radioactive material must meet performance criteria to assure safety and environmental protection. The stringency of the performance criteria is based on the degree of hazard of the material being transported. Type B packages are used for transporting large quantities of radioisotopes (in terms of A{sub 2} quantities). These packages have the most stringent performance criteria. Material with less than an A{sub 2} quantity are transported in Type A packages. These packages have less stringent performance criteria. Transportation of LSA and SCO materials must be in {open_quotes}strong-tight{close_quotes} packages. The performance requirements for the latter packages are even less stringent. All of these package types provide a high level of safety for the material being transported. In this paper, regulatory tests that are used to demonstrate this safety will be described. The responses of various packages to these tests will be shown. In addition, the response of packages to extra-regulatory tests will be discussed. The results of these tests will be used to demonstrate the high level of safety provided to workers, the public, and the environment by packages used for the transportation of radioactive material.

  1. Journal of Hazardous Materials 252253 (2013) 355366 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Reid, Scott A.

    2013-01-01

    Journal of Hazardous Materials 252­253 (2013) 355­366 Contents lists available at SciVerse ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Chitosan. / Journal of Hazardous Materials 252­253 (2013) 355­366 Scheme 1. Structure of microcystins. due

  2. POLICY FOR THE MANAGEMENT OF HAZARDOUS MATERIALS Effective Date: February 15, 2010 Originating Office: Office of the

    E-Print Network [OSTI]

    Doedel, Eusebius

    POLICY FOR THE MANAGEMENT OF HAZARDOUS MATERIALS Effective Date: February 15, 2010 Originating, storage, removal or disposal of chemicals or other hazardous chemical products on University premises. For the purposes of this Policy, hazardous materials includes chemicals, biological, and radioactive materials

  3. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    * Phene * Phenyl hydride * Pyrobenzol * Pyrobenzole * RCRA waste number U019 RTECS Number: CY1400000 - Exposure Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Use nonsparking tools. Use only

  4. An evaluation of current hazardous material management procedures for the Texas Department of Transportation 

    E-Print Network [OSTI]

    Lovell, Cheryl Alane

    1993-01-01

    with all current regulatory requirements. This study evaluates the current hazardous material management procedures that the Texas Department of Transportation (TXDOT) is utilizing to ensure that if falls within the legal scope of the law and to provide...

  5. Sandia National Laboratories, California Hazardous Materials Management Program annual report : February 2009.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental anagement ystem Program Manual. This program annual report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  6. Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C

    SciTech Connect (OSTI)

    Gary Mecham; Don Konoyer

    2009-11-01

    The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the rerouting and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of at minimal risk to human health, safety or the environment.

  7. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    /A FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N

  8. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    % Upper: 8 % AUTOIGNITION TEMP 251 °C FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon Safety shower and eye bath. Mechanical exhaust required. ALDRICH - 258741 www.sigma-aldrich.com Page 2 Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N/A Decomposition

  9. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N

  10. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    /A EXTINGUISHING MEDIA Suitable: Carbon dioxide, dry chemical powder, or appropriate foam. Water spray - Exposure Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required/A Odor Threshold N/A Volatile% N/A VOC Content N/A Water Content N/A Solvent Content N/A Evaporation Rate

  11. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    : closed cup #12;AUTOIGNITION TEMP 480 °C FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE/A Volatile% N/A VOC Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N

  12. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    /A AUTOIGNITION TEMP N/A FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N/A Decomposition Temp. N/A Flash

  13. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    : Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Protective Equipment - 305197 www.sigma-aldrich.com Page 2 #12;ENGINEERING CONTROLS Safety shower and eye bath. Mechanical N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity 0.005 Pas 25 °C Surface

  14. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N/A Decomposition Temp. N/A Flash

  15. SIGMA-ALDRICH Material Safety Data Sheet

    E-Print Network [OSTI]

    Choi, Kyu Yong

    spray or fog nozzle to keep cylinder cool. Move cylinder away from fire if there is no risk. #12;SPECIAL ENGINEERING CONTROLS Mechanical exhaust required. Safety shower and eye bath. WORK PRACTICES Store and use/A Vapor Density 1.38 g/l 21 °C Saturated Vapor Conc. N/A Evaporation Rate N/A Bulk Density N

  16. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT SIGMA - MB1 www/A Volatile% N/A VOC Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N

  17. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    Measures FLASH POINT N/A AUTOIGNITION TEMP N/A FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N

  18. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Protective Equipment: Wear place. Section 8 - Exposure Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N

  19. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Vakni, David

    : Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Protective Equipment Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition

  20. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Vakni, David

    N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N

  1. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    /A AUTOIGNITION TEMP N/A FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Wear% N/A VOC Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface

  2. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    .1 % Upper: 13.7 % AUTOIGNITION TEMP 371 °C FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Use nonsparking tools. Mechanical exhaust/A Water Content N/A Solvent Content N/A Evaporation Rate 1 Viscosity 2 Pas Surface Tension N/A Partition

  3. Material Safety Data Sheet acc. to OSHA and ANSI

    E-Print Network [OSTI]

    Garmestani, Hamid

    , the following can be released: Carbon monoxide and carbon dioxide ¡ Protective equipment: Wear self immediate medical advice. l 5 Fire fighting measures ¡ Suitable extinguishing agents Carbon dioxide hazards caused by the material, its products of combustion or resulting gases: In case of fire

  4. pamphlet04.doc SAFETY INFORMATION

    E-Print Network [OSTI]

    pamphlet04.doc SAFETY INFORMATION EMPLOYEE HANDOUT EMERGENCY ASSISTANCE (Fire, Police, Accident of Hazardous Materials Into/Outside the UCHC #12;pamphlet04.doc 1. SAFETY POLICY: The Health Center continually

  5. Hazard Communication Program 1.0 REFERENCE

    E-Print Network [OSTI]

    de Lijser, Peter

    Hazard Communication Program 1.0 REFERENCE California Code of Regulations, Title 8, Sections 337 the properties and potential safety and health hazards of the materials which they use or to which they are exposed. Employees who use or may be exposed to potentially hazardous substances or harmful physical

  6. Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment

    SciTech Connect (OSTI)

    Gerald Sehlke; Paul Wichlacz

    2010-12-01

    This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: • Determination of the design basis flood (DBFL) • Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

  7. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    SciTech Connect (OSTI)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  8. Applying radiological emergency planning experience to hazardous materials emergency planning within the nuclear industry

    SciTech Connect (OSTI)

    Foltman, A.; Newsom, D.; Lerner, K.

    1988-01-01

    The nuclear industry has extensive radiological emergency planning (REP) experience that is directly applicable to hazardous materials emergency planning. Recently, the Feed Materials Production Center near Cincinnati, Ohio, successfully demonstrated such application. The REP experience includes conceptual bases and standards for developing plans that have been tested in hundreds of full-scale exercises. The exercise program itself is also well developed. Systematic consideration of the differences between chemical and radiological hazards shows that relatively minor changes to the REP bases and standards are necessary. Conduct of full-scale, REP-type exercises serves to test the plans, provide training, and engender confidence and credibility.

  9. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

    E-Print Network [OSTI]

    Schaefer, Marcus

    HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non- Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

  10. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    E-Print Network [OSTI]

    Eisenberg, DA; Yu, M; Lam, CW; Ogunseitan, OA; Schoenung, JM

    2013-01-01

    nickel alloy Titanium Polyimide Flexible polymers Notes:hazard substrate material is: polyimide. The only metal backdioxide Molybdenum Polyimide Notes: This is a subset of all

  11. Journal of Hazardous Materials 179 (2010) 650657 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    2010-01-01

    of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Calcium polysulfide treatment of Cr(VI)-contaminated-ray absorption spectroscopy a b s t r a c t Batch treatability studies for a Cr(VI)-contaminated glacial soil et al. [1] summarize the main attributes of the environmental chemistry of Cr. Toxic and car

  12. Packaging performance evaluation and performance oriented packaging standards for large packages for poison inhalation hazard materials

    SciTech Connect (OSTI)

    Griego, N.R.; Mills, G.S.; McClure, J.D. [and others

    1997-07-01

    The U.S. Department of Transportation Research & Special Programs Administration (DOT-RSPA) has sponsored a project at Sandia National Laboratories to evaluate the protection provided by current packagings used for truck and rail transport of materials that have been classified as Poison Inhalation Hazards (PIH) and to recommend performance standards for these PIH packagings. Hazardous materials span a wide range of toxicity and there are many parameters used to characterize toxicity; for any given hazardous material, data are not available for all of the possible toxicity parameters. Therefore, it was necessary to select a toxicity criterion to characterize all of the PIH compounds (a value of the criterion was derived from other parameters in many cases) and to calculate their dispersion in the event of a release resulting from a transportation accident. Methodologies which account for material toxicity and dispersal characteristics were developed as a major portion of this project and applied to 72 PIH materials. This report presents details of the PIH material toxicity comparisons, calculation of their dispersion, and their classification into five severity categories. 16 refs., 5 figs., 7 tabs.

  13. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  14. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Supersedes DOE O 460.1B.

  15. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  16. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  17. Chemical hazard evaluation of material disposal area (MDA) B closure project

    SciTech Connect (OSTI)

    Laul, Jagdish C

    2010-04-19

    TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

  18. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOE Patents [OSTI]

    Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  19. Test Methods and Protocols for Environmental and Safety Hazards Associated with Home Energy Retrofits

    SciTech Connect (OSTI)

    Cautley, D.; Viner, J.; Lord, M.; Pearce, M.

    2012-12-01

    A number of health hazards and hazards to the durability of homes may be associated with energy retrofitting and home renovation projects. Among the hazards associated with energy retrofit work, exposure to radon is thought to cause more than 15,000 deaths per year in the U.S., while carbon monoxide poisoning results in about 20,000 injuries and 450 deaths per year. Testing procedures have been developed for identifying and quantifying hazards during retrofitting. These procedures commonly include a battery of tests to screen combustion appliances for safe operation, including worst case depressurization measurement, backdrafting (spillage) under depressurized or normal conditions, and carbon monoxide production.

  20. Preliminary hazards analysis -- vitrification process

    SciTech Connect (OSTI)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  1. FFaacciilliittiieess MMaannaaggeemmeenntt//EEnnvviirroonnmmeennttaall HHeeaalltthh && SSaaffeettyy Hazardous Work Area/Equipment Repair Form

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Hazardous Work Area/Equipment Repair Form Form Instructions: Client is responsible for completing this form to assure that equipment and/or immediate work areas are not contaminated with any hazardous materials, tissue, etc.) Do Safety Hazards exist in the work area? N ___ Y ___ (Electrical, burn, or trip hazards

  2. Storing Hazardous Waste In Your Laboratory EPA Compliance Fact Sheet: Revision 1

    E-Print Network [OSTI]

    Wikswo, John

    Storing Hazardous Waste In Your Laboratory EPA Compliance Fact Sheet: Revision 1 Vanderbilt.safety.vanderbilt.edu HAZARDOUS WASTE CONTAINERS Hazardous waste must be stored in containers (including lids) made of materials that are compatible with the waste. Hazardous waste containers must be in good condition and free of leaks or any

  3. Material Safety Data Sheet According to 93/112/EC

    E-Print Network [OSTI]

    Wikswo, John

    Hazardous Combustion Products Thermal decomposition may emit carbon monoxide and carbon dioxide. Upper

  4. MATERIAL SAFETY DATA SHEET Product number 841-005

    E-Print Network [OSTI]

    Wikswo, John

    . Alcohol foam. Dry chemical. Carbon dioxide (CO2). Extinguishing media space Specific hazards arising from

  5. Addressing Control of Hazardous Energy (COHE) Requirements in a Laser Safety Program

    SciTech Connect (OSTI)

    Woods, Michael; /SLAC

    2012-02-15

    OSHA regulation 29CFR1910.147 specifies control of hazardous energy requirements for 'the servicing and maintenance of machines and equipment in which the unexpected energization or start up of the machines or equipment, or release of stored energy could cause injury to employees.' Class 3B and Class 4 laser beams must be considered hazardous energy sources because of the potential for serious eye injury; careful consideration is therefore needed to safely de-energize these lasers. This paper discusses and evaluates control of hazardous energy principles in this OSHA regulation, in ANSI Z136.1 ''Safe Use of Lasers,'' and in ANSI Z244.1 ''Control of Hazardous Energy, Lockout/Tagout and Alternative Methods.'' Recommendations are made for updating and improving CoHE (control of hazardous energy) requirements in these standards for their applicability to safe laser operations.

  6. Hazard analysis results report

    SciTech Connect (OSTI)

    Niemi, B.J., Westinghouse Hanford

    1996-09-30

    This document describes and defines the Hazard Analysis Results for the Tank Waste Remediation System Final Safety Analysis Report.

  7. Sage MSDS 131 1 MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Wikswo, John

    : CO, CO2 #12;Sage MSDS 131 3 6 HEALTH HAZARD DATA IMMEDIATE HEALTH HAZARD DATA: Skin Absorption: Estimated Flammable Limits in Air: Non-Flammable Extinguishing Media Includes: Foam or water Special Fire

  8. Converting environmentally hazardous materials into clean energy using a novel nanostructured photoelectrochemical fuel cell

    SciTech Connect (OSTI)

    Gan, Yong X.; Gan, Bo J.; Clark, Evan; Su, Lusheng; Zhang, Lihua

    2012-09-15

    Highlights: ? A photoelectrochemical fuel cell has been made from TiO{sub 2} nanotubes. ? The fuel cell decomposes environmentally hazardous materials to produce electricity. ? Doping the anode with a transition metal oxide increases the visible light sensitivity. ? Loading the anode with a conducting polymer enhances the visible light absorption. -- Abstract: In this work, a novel photoelectrochemical fuel cell consisting of a titanium dioxide nanotube array photosensitive anode and a platinum cathode was made for decomposing environmentally hazardous materials to produce electricity and clean fuel. Titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in an ammonium fluoride and glycerol-containing solution. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were determined. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as proven by the decomposition tests on urea, ammonia, sodium sulfide and automobile engine coolant under ultraviolet (UV) radiation. To improve the efficiency of the fuel cell, doping the TiO{sub 2} NTs with a transition metal oxide, NiO, was performed and the photosensitivity of the doped anode was tested under visible light irradiation. It is found that the NiO-doped anode is sensitive to visible light. Also found is that polyaniline-doped photosensitive anode can harvest photon energy in the visible light spectrum range much more efficiently than the NiO-doped one. It is concluded that the nanostructured photoelectrochemical fuel cell can generate electricity and clean fuel by decomposing hazardous materials under sunlight.

  9. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  10. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  11. Criticality safety analysis on fissile materials in Fukushima reactor cores

    SciTech Connect (OSTI)

    Liu, Xudong; Lemaitre-Xavier, E.; Ahn, Joonhong [Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA 94720 (United States); Hirano, Fumio [Japan Atomic Energy Agency, Geological Isolation Research and Development Directorate, Tokai-mura, Ibaraki 319-1194 (Japan)

    2013-07-01

    The present study focuses on the criticality analysis for geological disposal of damaged fuels from Fukushima reactor cores. Starting from the basic understanding of behaviors of plutonium and uranium, a scenario sequence for criticality event is considered. Due to the different mobility of plutonium and uranium in geological formations, the criticality safety is considered in two parts: (1) near-field plutonium system and (2) far-field low enriched uranium (LEU) system. For the near-field plutonium system, a mathematical analysis for pure-solute transport was given, assuming a particular buffer material and waste form configuration. With the transport and decay of plutonium accounted, the critical mass of plutonium was compared with the initial load of a single canister. Our calculation leads us to the conclusion that our system with the initial loading being the average mass of plutonium in an assembly just before the accident is very unlikely to become critical over time. For the far-field LEU system, due to the uncertainties in the geological and geochemical conditions, calculations were made in a parametric space that covers the variation of material compositions and different geometries. Results show that the LEU system could not remain sub-critical within the entire parameter space assumed, although in the iron-rich rock, the neutron multiplicity is significantly reduced.

  12. Life safety and seismic hazards: Selecting buildings for review and questions still to answer

    SciTech Connect (OSTI)

    Keller, M.D.

    1993-11-01

    Los Alamos National Laboratory (LANL) is situated on the eastern flank of the Jemez Mountains in which lies the Valles Caldera, a volcanic center that erupted 1.1 to 1.5 million years ago. Los Alamos is also situated within the western margin of the Rio Grande Rift system, where there is a possibility for seismic activity. Within the Los Alamos area are numerous faults, some within a kilometer or two of LANL structures, some even closer. Many of the permanent structures within Los Alamos were designed and constructed in accordance with applicable building codes in the 1950s. These codes have now been determined to be deficient with respect to both forcing functions of seismic events and structure design. LANL, in response to a letter from the University of California dated October 29, 1990, began the Seismic Hazards Investigation Program to determine the characteristics of a probable seismic event at Los Alamos and to determine the ability of the existing structures to withstand the forces generated by such an event. In the Seismic Hazards Investigation Program, paleoseismic methods are used to determine seismic characterization and a systematic method is needed to investigate existing structures, systems, and components for the ability to resist seismic forces. This paper presents the methodology for determining seismic characterizations and structure prioritization and analysis at LANL for the Seismic Hazards Investigation Program.

  13. Chapter 13 Employee Health and Safety 13.04 Safety Committees

    E-Print Network [OSTI]

    Sheridan, Jennifer

    compliance in hazardous waste management, environmental permits and other issues related to chemical safety involving use of hazardous biological materials including recombinant DNA for compliance with NIH guidelines and tuberculosis prevention are areas of special concern. Contacts can be made with these committees or with safety

  14. Analysis of Flood Hazards for the Materials and Fuels Complex at the Idaho National Laboratory Site

    SciTech Connect (OSTI)

    Skaggs, Richard; Breithaupt, Stephen A.; Waichler, Scott R.; Kim, Taeyun; Ward, Duane L.

    2010-11-01

    Researchers at Pacific Northwest National Laboratory conducted a flood hazard analysis for the Materials and Fuels Complex (MFC) site located at the Idaho National Laboratory (INL) site in southeastern Idaho. The general approach for the analysis was to determine the maximum water elevation levels associated with the design-basis flood (DBFL) and compare them to the floor elevations at critical building locations. Two DBFLs for the MFC site were developed using different precipitation inputs: probable maximum precipitation (PMP) and 10,000 year recurrence interval precipitation. Both precipitation inputs were used to drive a watershed runoff model for the surrounding upland basins and the MFC site. Outflows modeled with the Hydrologic Engineering Centers Hydrologic Modeling System were input to the Hydrologic Engineering Centers River Analysis System hydrodynamic flood routing model.

  15. University of California, Irvine Environmental Health and Safety www.ehs.uci.edu Questions Call: (949) 824-6200 Version 3.0 Hazardous Chemical Waste Training

    E-Print Network [OSTI]

    Mease, Kenneth D.

    . · An aerosol container must have its contents and pressure completely dispensed, and the spray mechanism to evaporate chemicals. Empty Hazardous Material Container Management: · At no time should full or partially

  16. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Winfree, Erik

    HAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office@caltech.edu http://safety.caltech.edu #12;Hazardous Waste Management Reference Guide Page 2 of 36 TABLE OF CONTENTS Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT Labeling

  17. Safety and Security Technologies for Radioactive Material Shipments

    Office of Environmental Management (EM)

    Technologies Study Emerging Technologies Continued 7. Nanopiezoelectronics. 8. Plastic thin-film organic solar cells. 9. Container integrity. Safety & Security Technologies...

  18. Journal of Hazardous Materials B132 (2006) 244252 Zeolite synthesis from paper sludge ash at low temperature

    E-Print Network [OSTI]

    Downs, Robert T.

    2006-01-01

    Journal of Hazardous Materials B132 (2006) 244­252 Zeolite synthesis from paper sludge ash at low 2005 Available online 4 November 2005 Abstract Paper sludge ash was partially converted into zeolites by reaction with 3 M NaOH solution at 90 C for 24 h. The paper sludge ash had a low abundance of Si

  19. Material Safety Data Sheet MICRO ESSENTIAL LABORATORY , INC.

    E-Print Network [OSTI]

    Wikswo, John

    . After first aid, get appropriate in-plant, paramedic, or community medical support. HMIS H F R # 0 # 0: ONLY PERSONS PROPERLY QUALIFIED TO RESPOND TO AN EMERGENCY INVOLVING HAZARDOUS SUBSTANCES MAY RESPOND. Section 7 - Handling and Storage Storage Requirements: STORE AT CONTROLLED ROOM TEMP. IN DRY LOCATION

  20. Waste collection in developing countries - Tackling occupational safety and health hazards at their source

    SciTech Connect (OSTI)

    Bleck, Daniela; Wettberg, Wieland

    2012-11-15

    Waste management procedures in developing countries are associated with occupational safety and health risks. Gastro-intestinal infections, respiratory and skin diseases as well as muscular-skeletal problems and cutting injuries are commonly found among waste workers around the globe. In order to find efficient, sustainable solutions to reduce occupational risks of waste workers, a methodological risk assessment has to be performed and counteractive measures have to be developed according to an internationally acknowledged hierarchy. From a case study in Addis Ababa, Ethiopia suggestions for the transferral of collected household waste into roadside containers are given. With construction of ramps to dump collected household waste straight into roadside containers and an adaptation of pushcarts and collection procedures, the risk is tackled at the source.

  1. Material Safety Data Sheet according to ANSI Z400.1-2004 and 29 CFR 1910.1200

    E-Print Network [OSTI]

    Wikswo, John

    Material Safety Data Sheet according to ANSI Z400.1- 2004 and 29 CFR 1910.1200 WINDEX® ORIGINAL;Material Safety Data Sheet according to ANSI Z400.1- 2004 and 29 CFR 1910.1200 WINDEX® ORIGINAL GLASS AND PETS. #12;Material Safety Data Sheet according to ANSI Z400.1- 2004 and 29 CFR 1910.1200 WINDEX

  2. Chapter 1 -Hazard Communication Hazard Communication and Training Act

    E-Print Network [OSTI]

    and Training Act require employers to inform workers about hazardous chemicals in their work areas13 Chapter 1 - Hazard Communication Hazard Communication and Training Act The Hazard Communication and Safety (EH&S) to administer a program to comply with this law. Hazardous Chemicals Index EH&S maintains

  3. Integrated approach to nuclear materials safety management in the U.S. and Russia

    SciTech Connect (OSTI)

    Jardine, L.J.

    1997-06-01

    The United States and Russia are dismantling nuclear weapons and generating hundreds of tons of excess plutonium and high enriched uranium fissile nuclear materials that require disposition. The U.S. Department of Energy and the Ministry of the Russian Federation for Atomic Energy (Minatom) organizations are planning and implementing safe, secure storage and disposition operations for these materials in numerous facilities. This provides a new opportunity for technical exchanges between Russian and Western scientists that can establish an integrated and improved common safety culture for handling these materials. The development and use of personal relationships and joint projects among Russian and Western participants involved in fissile nuclear materials safety management contributes to improving nuclear materials nonproliferation and to making a safer world. Technical exchanges and workshops are being used to systematically identify opportunities in the nuclear fissile materials facilities to improve and ensure the safety of workers, the public, and the environment.

  4. Reducing nuclear danger through intergovernmental technical exchanges on nuclear materials safety management

    SciTech Connect (OSTI)

    Jardine, L.J. [Lawrence Livermore National Lab., CA (United States); Peddicord, K.L. [Texas A and M Univ., College Station, TX (United States); Witmer, F.E.; Krumpe, P.F. [USDOE, Washington, DC (United States); Lazarev, L.; Moshkov, M. [Radievyj Inst., Leningrad (Russian Federation)

    1997-04-09

    The United States and Russia are dismantling nuclear weapons and generating hundreds of tons of excess plutonium and high enriched uranium fissile nuclear materials that require disposition. The U.S. Department of Energy and Russian Minatom organizations.are planning and implementing safe, secure storage and disposition operations for these materials in numerous facilities. This provides a new opportunity for technical exchanges between Russian and Western scientists that can establish an improved and sustained common safety culture for handling these materials. An initiative that develops and uses personal relationships and joint projects among Russian and Western participants involved in fissile nuclear materials safety management contributes to improving nuclear materials nonproliferation and to making a safer world. Technical exchanges and workshops are being used to systematically identify opportunities in the nuclear fissile materials facilities to improve and ensure the safety of workers, the public, and the environment.

  5. TRUE COLORS: LEDS AND THE RELATIONSHIP BETWEEN CCT, CRI, OPTICAL SAFETY, MATERIAL DEGRADATION, AND PHOTOBIOLOGICAL STIMULATION

    SciTech Connect (OSTI)

    Royer, Michael P.

    2014-08-30

    This document analyzes the optical, material, and photobiological hazards of LED light sources compared to conventional light sources. It documents that LEDs generally produce the same amount of blue light, which is the primary contributor to the risks, as other sources at the same CCT. Duv may have some effect on the amount of blue light, but CRI does not.

  6. Evaluation of ferrocyanide/nitrate explosive hazard

    SciTech Connect (OSTI)

    Cady, H.H.

    1992-06-01

    Los Alamos National Laboratory agreed to assist Pacific Northwest Laboratory in the Ferrocyanide Safety Evaluation Program by helping to evaluate the explosive hazard of several mixtures of simulated ferrocyanide waste-tank sludge containing sodium nitrite and sodium nitrate. This report is an evaluation of the small-scale safety tests used to assess the safety of these materials from an explosive point of view. These tests show that these materials are not initiated by mechanical insult, and they require an external heat source before any exothermic chemical reaction can be observed.

  7. Pipeline Safety Program Oak Ridge National Laboratory

    E-Print Network [OSTI]

    .S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows support to the U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration and hazardous liquid pipelines. To assist PHMSA accomplish this mission, ORNL Subject Matter Experts (SMEs) who

  8. Hazardous waste operational plan for site 300

    SciTech Connect (OSTI)

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  9. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-04

    To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

  10. Chemical Hygiene and Safety Plan

    E-Print Network [OSTI]

    Ricks Editor, R.

    2009-01-01

    extraction, painting, electroplating) (3) Identification ofextraction, paltering, electroplating) Hazardous Materials (

  11. Hazardous Waste Management Training

    E-Print Network [OSTI]

    Dai, Pengcheng

    Hazardous Waste Management Training Persons (including faculty, staff and students) working with hazardous materials should receive annual training that addresses storage, use, and disposal of hazardous before handling hazardous waste. Departments are re- quired to keep records of training for as long

  12. Hazardous materials in Aquatic environments of the Mississippi River basin. Quarterly project status report, 1 January 1994--30 March 1994

    SciTech Connect (OSTI)

    Abdelghani, A.

    1994-06-01

    Projects associated with this grant for studying hazardous materials in aquatic environments of the Mississippi River Basin are reviewed and goals, progress and research results are discussed. New, one-year initiation projects are described briefly.

  13. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  14. How to Translate a Material Safety Data Sheet (MSDS)

    E-Print Network [OSTI]

    Sherrill, David

    will determine how to get it out before it reaches the water system. Vapor Pressure The pressure exerted Alcohol = 33 mm Hg (20C) Vapor Pressure is Important Because... · It determines how easily a substance at which the material's vapor pressure equals atmospheric pressure. Examples: Water = 212F(100C), Propane

  15. Gasification characteristics of an activated carbon catalyst during the decomposition of hazardous waste material in supercritical water

    SciTech Connect (OSTI)

    Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

    1996-12-31

    Recently, carbonaceous materials including activated carbon were proven to be effective catalysts for hazardous waste gasification in supercritical water. Using coconut shell activated carbon catalyst, complete decomposition of industrial organic wastes including methanol and acetic acid was achieved. During this process, the total mass of the activated carbon catalyst changes by two competing processes: a decrease in weight via gasification of the carbon by supercritical water, or an increase in weight by deposition of carbonaceous materials generated by incomplete gasification of the biomass feedstocks. The deposition of carbonaceous materials does not occur when complete gasification is realized. Gasification of the activated carbon in supercritical water is often favored, resulting in changes in the quality and quantity of the catalyst. To thoroughly understand the hazardous waste decomposition process, a more complete understanding of the behavior of activated carbon in pure supercritical water is needed. The gasification rate of carbon by water vapor at subcritical pressures was studied in relation to coal gasification and generating activated carbon.

  16. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  17. Waste management facilities cost information for transportation of radioactive and hazardous materials

    SciTech Connect (OSTI)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  18. Safety evaluation for packaging 222-S laboratory cargo tank for onetime type B material shipment

    SciTech Connect (OSTI)

    Nguyen, P.M.

    1994-08-19

    The purpose of this Safety Evaluation for Packaging (SEP) is to evaluate and document the safety of the onetime shipment of bulk radioactive liquids in the 222-S Laboratory cargo tank (222-S cargo tank). The 222-S cargo tank is a US Department of Transportation (DOT) MC-312 specification (DOT 1989) cargo tank, vehicle registration number HO-64-04275, approved for low specific activity (LSA) shipments in accordance with the DOT Title 49, Code of Federal Regulations (CFR). In accordance with the US Department of Energy, Richland Operations Office (RL) Order 5480.1A, Chapter III (RL 1988), an equivalent degree of safety shall be provided for onsite shipments as would be afforded by the DOT shipping regulations for a radioactive material package. This document demonstrates that this packaging system meets the onsite transportation safety criteria for a onetime shipment of Type B contents.

  19. Environment, Safety and Health Self-Assessment Report Fiscal Year 2010

    E-Print Network [OSTI]

    Robinson, Scott

    2011-01-01

    Ergonomics New Projects Hazards Analysis Line Management Safety Walkthrough Program Job Hazards Evaluations

  20. The Use of Small Scale Fire Test Data for the Hazard Assessment of Bulk Materials 

    E-Print Network [OSTI]

    Foley, Marianne

    1995-01-01

    An experimental study of fire testing of solid materials has been carried out to investigate whether or not these tests yield useful data for the burning of materials stored in bulk, for example in warehouses. Tests were ...

  1. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-Print Network [OSTI]

    Kim, Duck O.

    Biological Safety Officer Ergonomic Specialist 2723 Radiation Safety 2250 Facilities Management Office 2125. ANNUAL REVIEW AND EVALUATION OF EFFECTIVENESS OF THE CHEMICAL HYGIENE PLAN 9. HAZARD COMMUNICATION PLAN

  2. Preliminary Hazards Analysis Plasma Hearth Process

    SciTech Connect (OSTI)

    Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P.

    1993-11-01

    This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

  3. CARBON DIOXIDE -CO2 MSDS (DOCUMENT #001013) PAGE 1 OF 12 MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    CARBON DIOXIDE - CO2 MSDS (DOCUMENT #001013) PAGE 1 OF 12 MATERIAL SAFETY DATA SHEET Prepared to U in an emergency? 1. PRODUCT IDENTIFICATION CHEMICAL NAME; CLASS: CARBON DIOXIDE - CO2, GASEOUS CARBON DIOXIDE - CO2, CRYOGENIC CARBON DIOXIDE - CO2, SOLID Document Number: 001013 PRODUCT USE: For general analytical

  4. PROPANE -C3H8 MSDS (Document # 001045) PAGE 1 OF 8 MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    PROPANE - C3H8 MSDS (Document # 001045) PAGE 1 OF 8 MATERIAL SAFETY DATA SHEET Prepared to U in an emergency? 1. PRODUCT IDENTIFICATION CHEMICAL NAME; CLASS: PROPANE - C3H8 Document Number: 001045 PRODUCT IN AIR ACGIH OSHA TLV STEL PEL STEL IDLH OTHER ppm ppm ppm ppm ppm Propane 74-98-6 > 96.0 Simple

  5. Gasification characteristics of an activated carbon catalyst during the decomposition of hazardous waste materials in supercritical water

    SciTech Connect (OSTI)

    Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

    1996-10-01

    Recently, carbonaceous materials were proved to be effective catalysts for hazardous waste decomposition in supercritical water. Gasification of the carbonaceous catalyst itself is also expected, however, under supercritical conditions. Thus, it is essential to determine the gasification rate of the carbonaceous materials during this process to determine the active lifetime of the catalysts. For this purpose, the gasification characteristics of granular coconut shell activated carbon in supercritical water alone (600-650{degrees}C, 25.5-34.5 MPa) were investigated. The gasification rate at subatmospheric pressure agreed well with the gasification rate at supercritical conditions, indicating the same reaction mechanism. Methane generation under these conditions is via pyrolysis, and thus is not affected by the water pressure. An iodine number increase of 25% was observed as a result of the supercritical water gasification.

  6. Natural Phenomena Hazards Modeling Project: Seismic Hazard Models for Department of Energy Sites

    SciTech Connect (OSTI)

    Coats, D.W.; Murray, R.C.

    1984-11-01

    Lawrence Livermore National Laboratory (LLNL) has developed seismic and wind hazard models for the Office of Nuclear Safety (ONS), Department of Energy (DOE). The work is part of a three-phase effort aimed at establishing uniform building design criteria for seismic and wind hazards at DOE sites throughout the US. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. In Phase 2, development of seismic and wind hazard models, was initiated. These hazard models express the annual probability that the site will experience an earthquake or wind speed greater than some specified magnitude. This report summarizes the final seismic hazard models and response spectra recommended for each site and the methodology used to develop these models. 15 references, 2 figures, 1 table.

  7. Compliance of SLAC_s Laser Safety Program with OSHA Requirements for the Control of Hazardous Energy

    SciTech Connect (OSTI)

    Woods, Michael; /SLAC

    2009-01-15

    SLAC's COHE program requires compliance with OSHA Regulation 29CFR1910.147, 'The control of hazardous energy (lockout/tagout)'. This regulation specifies lockout/tagout requirements during service and maintenance of equipment in which the unexpected energization or start up of the equipment, or release of stored energy, could cause injury to workers. Class 3B and Class 4 laser radiation must be considered as hazardous energy (as well as electrical energy in associated equipment, and other non-beam energy hazards) in laser facilities, and therefore requires careful COHE consideration. This paper describes how COHE is achieved at SLAC to protect workers against unexpected Class 3B or Class 4 laser radiation, independent of whether the mode of operation is normal, service, or maintenance.

  8. NOTE: Required questions apply to all laboratories. Optional questions, indicated with "N", are dependent on the PI's safety profile.

    E-Print Network [OSTI]

    Shull, Kenneth R.

    hazard,locations and workers on the profile is current. Registrations for lasers, radioactive materials in the chemical inventory. Safety Data Sheets (SDS) for all hazardous chemicals are accessible to all personnel where no skin is exposed, use a lab coat or other protective clothing when working with hazardous

  9. Final Hazard Categorization and Auditable Safety Analysis for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2006-03-01

    This report presents the initial hazard categorization, final hazard categorization and auditable safety analysis for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  10. Solid waste burial grounds interim safety analysis

    SciTech Connect (OSTI)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  11. Radiation Hazards Program (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

  12. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  13. Emergency response planning for railroad transportation related spills of oil or other hazardous materials 

    E-Print Network [OSTI]

    Reeder, Geoffrey Benton

    1995-01-01

    In December 1984 an unintentional release of poison gas from a chemical plant in Bhopal, India killed over 2,500 people. Thousands of others were injured. Although this material was not in transportation at the time, this accident raised public...

  14. Hazard Analysis Database Report

    SciTech Connect (OSTI)

    GAULT, G.W.

    1999-10-13

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR). The FSAR is part of the approved TWRS Authorization Basis (AB). This document describes, identifies, and defines the contents and structure of the TWRS FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The TWRS Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The database supports the preparation of Chapters 3,4, and 5 of the TWRS FSAR and the USQ process and consists of two major, interrelated data sets: (1) Hazard Evaluation Database--Data from the results of the hazard evaluations; and (2) Hazard Topography Database--Data from the system familiarization and hazard identification.

  15. Chemical agents for conversion of chrysotile asbestos into non-hazardous materials

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY); Petrakis, Leon (Port Jefferson, NY)

    1998-06-09

    A composition and methods for converting a chrysotile asbestos-containing material to a non-regulated environmentally benign solid which comprises a fluoro acid decomposing agent capable of dissociating the chrysotile asbestos to non-regulated components, wherein non-regulated components are non-reactive with the environment, and a binding agent which binds the non-regulated components to form an environmentally benign solid.

  16. Chemical process hazards analysis

    SciTech Connect (OSTI)

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  18. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  20. Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Employee Radiological HS4240-W Chemical Safety HS4680-W PPE To access these training modules link here LTRAIN from inside LLNL, or here from anywhere. All JLF...

  1. OSHA safety regulation calls for step-by-step approach

    SciTech Connect (OSTI)

    Bellomo, P.J. (Arthur D. Little Inc., Houston, TX (US))

    1992-06-01

    The U.S. Occupational Safety and Health Administration's long-awaited process safety management (PSM) regulation mandates the implementation of a PSM program at facilities handling highly hazardous materials, including oil refineries and petrochemical plants. This article presents a step-by-step PSM program compliance strategy, delineated and explored through practical examples.

  2. MARSHALL UNIVERSITY HAZARDOUS WASTE DISPOSAL

    E-Print Network [OSTI]

    Sanyal, Suman

    /16/2005 1 #12;Marshall University Hazardous Waste Program POLICY STATEMENT- Hazardous Materials Management of the Hazardous Waste Management Program is to ensure that proper handling and legal disposal of hazardous wastes Management Program will apply to the following: 1. Any liquid, semi-solid, solid or gaseous substance defined

  3. NIOSH (National Institute for Occupational Safety and Health) testimony to DOL (Department of Labor) on the Occupational Safety and Health Administration's proposed rule on the control of hazardous energy sources (lockout/tagout) by R. W. Niemeier, September 8, 1988

    SciTech Connect (OSTI)

    Not Available

    1988-09-08

    The testimony addressed the proposed rule on control of hazardous energy sources and was offered in support of the position of the Occupational Safety and Health Administration on this issue. Provisions already in existence for cranes, derricks, and power presses require lockout provisions for electrical connections. The proposed rule will extend these protections to nonelectric power sources and add a requirement for isolating nonelectric hazards. The new rule requires a written procedure and training program. NIOSH opposed the use of tags instead of locks, as tags only provide a warning and are subject to several abuses including removal before maintenance is complete and negligence in removing the tag by the service operator when maintenance is completed. Over 20 electrically related fatalities were noted where a deenergized locked-out electrical circuit would have prevented the fatality. In a review of 160 responses concerning injuries where the equipment was turned off, six indicated the equipment was tagged out. Concern was also expressed over the simple tagout permitted for mechanical power transmission systems. NIOSH recommends that each worker should apply and remove his or her own lock.

  4. Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication, Environmental Protection Agency Number ID4890008952

    SciTech Connect (OSTI)

    Holzemer, Michael J.; Hart, Edward

    2015-04-01

    Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication for the Idaho National Laboratory Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Partial Permit, PER-116. This Permit Reapplication is required by the PER-116 Permit Conditions I.G. and I.H., and must be submitted to the Idaho Department of Environmental Quality in accordance with IDAPA 58.01.05.012 [40 CFR §§ 270.10 and 270.13 through 270.29].

  5. Material Safety Data Sheet Ashland Chemical Co. Date Prepared: 01/06/98

    E-Print Network [OSTI]

    Rubloff, Gary W.

    vapors, carbon dioxide and carbon monoxide. Fire and Explosion Hazards Vapors are heavier than air 4.0 Upper 19.9 % Autoignition Temperature No data Hazardous Products of Combustion May form: acid

  6. Transfer Employee Exposure Assessment PURPOSE: The purpose of this assessment is to determine your required health & safety training by

    E-Print Network [OSTI]

    Nicholson, Bruce J.

    Generator's Course & Site-Specific Chemical Hazard Training Human blood, tissues, cell lines, regulated Ice Radioactive materials Fundamentals of Laboratory Radiation Safety X-ray or other radiation/Campus:___________________________Work Phone: ___________________________________ Job Title

  7. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  8. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  9. Disposing of Hazardous Waste EPA Compliance Fact Sheet: Revision 1

    E-Print Network [OSTI]

    Wikswo, John

    Disposing of Hazardous Waste EPA Compliance Fact Sheet: Revision 1 Vanderbilt Environmental Health and Safety Telephone: 322-2057 Fax: 343-4957 After hours pager: 835-4965 www.safety.vanderbilt.edu HAZARDOUS WASTE COLLECTION PROGRAM VEHS has implemented a Hazardous Waste Collection Program to collect hazardous

  10. Stanford University Department of Environmental Health and Safety G:\\CAP\\CAP Team Forms \\StorageAreaInspFillableForm.pdf Enter Inspection Date

    E-Print Network [OSTI]

    as Hazardous Materials Storage Areas (not laboratories or work areas). 2. Evaluate the storage area during-9999 (24 hours). Building Number Building Name Room Number HAZARDOUS MATERIALS STORAGE AREA: MONTHLYStanford University Department of Environmental Health and Safety G:\\CAP\\CAP Team Forms \\StorageArea

  11. Environment, safety and health compliance assessment, Feed Materials Production Center, Fernald, Ohio

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    The Secretary of Energy established independent Tiger Teams to conduct environment, safety, and health (ES H) compliance assessments at US Department of Energy (DOE) facilities. This report presents the assessment of the Feed Materials Production Center (FMPC) at Fernald, Ohio. The purpose of the assessment at FMPC is to provide the Secretary with information regarding current ES H compliance status, specific ES H noncompliance items, evaluation of the adequacy of the ES H organizations and resources (DOE and contractor), and root causes for noncompliance items. Areas reviewed included performance under Federal, state, and local agreements and permits; compliance with Federal, state and DOE orders and requirements; adequacy of operations and other site activities, such as training, procedures, document control, quality assurance, and emergency preparedness; and management and staff, including resources, planning, and interactions with outside agencies.

  12. Material Safety Data Sheet Printing date 02/27/2013 Reviewed on 02/27/2013

    E-Print Network [OSTI]

    Wikswo, John

    measures · Extinguishing media · Suitable extinguishing agents CO2, extinguishing powder or water spray. Fight larger fires with water spray or alcohol resistant foam. · Special hazards arising from

  13. Identification of Hazards, 3/9/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs.  Surveillance activities encompass maintenance and implementation of safety...

  14. Safety analysis report for packaging (onsite) steel drum

    SciTech Connect (OSTI)

    McCormick, W.A.

    1998-09-29

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

  15. Construction safety program for the National Ignition Facility, Appendix A

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-06-26

    Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction.

  16. Methylene Blue MSDS 20 November 2013 Page 1 MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Wikswo, John

    Extinguishing Media: Dry chemical powder, carbon dioxide, foam and water spray. Hazards from Combustion products carbon monoxide, carbon dioxide, nitrogen oxides, oxides of sulphur and hydrogen sulphide. Specific Hazards: Combustible solid. This product will burn if exposed to fire. This product in sufficient quantity

  17. Development of a pilot safety information document (PSID) for the replacement of radioactive liquid waste treatment facility at Los Alamos National Laboratory 

    E-Print Network [OSTI]

    Selvage, Ronald Derek

    1995-01-01

    Radioactive Liquid Waste Treatment Facility. The PSID documents risk analysis for the proposed facility and some of the alternatives, accident analysis, radioactive and hazardous material doses to off-site individuals, and the cumulative safety risk from...

  18. Hazardous materials in aquatic environments of the Mississippi River Basin Project management. Technical quarterly progress report, April 1, 1996--June 30, 1996

    SciTech Connect (OSTI)

    McLachlan, J.; Ide, C.F.; O`Connor, S.

    1996-08-01

    This quarterly report summarizes accomplishments for the Project examining hazardous materials in aquatic environments of the Mississippi River Basin. Among the many research areas summarized are the following: assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure; hazardous wastes in aquatic environment;ecological sentinels of aquatic contamination in the lower Mississippi River System; remediation of selected contaminants; rapid on-site immunassay for heavy metal contamination; molecular mechanisms of developmental toxicity induced by retinoids and retinoid-like molecules; resuseable synthetic membranes for the removal of aromatic and halogenated organic pollutants from waste water; Effects of steroid receptor activation in neurendocrine cell of the mammalian hypothalamus; modeling and assessment of environmental quality of louisiana bayous and swamps; enhancement of environmental education. The report also contains a summary of publications resulting from this project and an appendix with analytical core protocals and target compounds and metals.

  19. Office of Nuclear Safety

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  20. Journal of Hazardous Materials A135 (2006) 2131 Leaching of chromated copper arsenate (CCA)-treated wood in a

    E-Print Network [OSTI]

    Florida, University of

    2006-01-01

    , and chromium, is a concern to the solid waste management community. Landfills are often the final repository, but management as a solid wastebegins.DiscardedCCA-treatedwoodisexemptfromchar- acterization as a hazardous waste, mining waste, or wood. The feasibility of managing CCA-treated wood in monofills was examined using

  1. Written Hazard Communication (HAZCOM) Program

    E-Print Network [OSTI]

    Jia, Songtao

    chemicals The potential hazards of chemicals in the work area How to protect yourself from these potential for their respective work areas MSDS's shall be maintained by each department for all hazardous chemicals&S office has developed several employee training modules for specific work areas and hazardous materials

  2. Hazard Sampling Dialog General Layout

    E-Print Network [OSTI]

    Zhang, Tao

    1 Hazard Sampling Dialog General Layout The dialog's purpose is to display information about the hazardous material being sampled by the UGV so either the system or the UV specialist can identify the risk level of the hazard. The dialog is associated with the hazmat reading icons (Table 1). Components

  3. HAZARD ANALYSIS SOFTWARE

    SciTech Connect (OSTI)

    Sommer, S; Tinh Tran, T

    2008-04-08

    Washington Safety Management Solutions, LLC developed web-based software to improve the efficiency and consistency of hazard identification and analysis, control selection and classification, and to standardize analysis reporting at Savannah River Site. In the new nuclear age, information technology provides methods to improve the efficiency of the documented safety analysis development process which includes hazard analysis activities. This software provides a web interface that interacts with a relational database to support analysis, record data, and to ensure reporting consistency. A team of subject matter experts participated in a series of meetings to review the associated processes and procedures for requirements and standard practices. Through these meetings, a set of software requirements were developed and compiled into a requirements traceability matrix from which software could be developed. The software was tested to ensure compliance with the requirements. Training was provided to the hazard analysis leads. Hazard analysis teams using the software have verified its operability. The software has been classified as NQA-1, Level D, as it supports the analysis team but does not perform the analysis. The software can be transported to other sites with alternate risk schemes. The software is being used to support the development of 14 hazard analyses. User responses have been positive with a number of suggestions for improvement which are being incorporated as time permits. The software has enforced a uniform implementation of the site procedures. The software has significantly improved the efficiency and standardization of the hazard analysis process.

  4. LAB HAZARD CHECKLIST Please check the hazards that are associated with your lab and complete the section

    E-Print Network [OSTI]

    Firestone, Jeremy

    LAB HAZARD CHECKLIST Please check the hazards that are associated with your lab and complete of Environmental Health and Safety. HAZARDS: Biological Hazard ­ Biosafety levels 2 or 3 organisms present Laser Radiation Hazards ­Any work involving class 3b or 4 lasers Flammable Gas ­ Compressed gas cylinders

  5. Hazard Priority and Remediation Hazards are prioritized according to the severity of the resulting injury, potential damage, and the

    E-Print Network [OSTI]

    de Lijser, Peter

    Hazard Priority and Remediation Hazards are prioritized according to the severity of the resulting injury, potential damage, and the probability of occurrence. Imminent and serious procedures or hazards Description Correction Date 1 EMERGENCY HAZARD Emergency Hazards threaten life safety or health, property

  6. E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division

    E-Print Network [OSTI]

    material areas (work areas where unsealed radioactive material is handled) and radioactive material storage) 75A Old Hazardous Waste Facility 75S Tritium Storage Locker 76 Radioanalytical Laboratory 83 LifeE.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division Environmental

  7. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect (OSTI)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  8. LASER Safety Manual August 2007

    E-Print Network [OSTI]

    UW LASER Safety Manual August 2007 Radiation Safety Office Environmental Health and Safety;Contents 1. Laser Basics 1.1 Laser Theory 1.2 Types of Lasers 2. Hazards and Safety Standards 2 2.6.4 Other Hazards 2.7 Hazard Classes 2.7.1 Introduction 2.7.2 Class 3B Lasers 2.7.3 Class 4 Lasers

  9. (650) 725-7520 Department of Environmental Health and Safety

    E-Print Network [OSTI]

    Hazardous Waste Containers Locating Commonly Used Hazardous Waste Containers Chart Summary Questions Chapter(650) 725-7520 Department of Environmental Health and Safety HAZARDOUS CHEMICAL WASTE MANAGEMENT is intended to provide guidance regarding the management of hazardous chemical wastes generated

  10. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    SciTech Connect (OSTI)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  11. Environment, Safety and Health Self-Assessment Report Fiscal Year 2010

    E-Print Network [OSTI]

    Robinson, Scott

    2011-01-01

    of Satellite Hazardous Waste Accumulation Areas On-the-JobArea Inspection Job Hazards Analysis Field Observations Work Outside Normal Hours Accelerator Safety Hazardous

  12. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect (OSTI)

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  13. Liquid Effluent Retention Facility (LERF) Final Hazard Category Determination

    SciTech Connect (OSTI)

    HUTH, L.L.

    2001-06-06

    The Liquid Effluent Retention Facility was designed to store 242-A Evaporator process condensate and other liquid waste streams for treatment at the 200 East Area Effluent Treatment Facility. The Liquid Effluent Retention Facility has been previously classified as a Category 3 Nonreactor Nuclear Facility. As defined in Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports (DOE 1992, DOE 1997), Category 3 Nuclear Facilities have the potential for significant localized (radiological) consequences. However, based on current facility design, operations, and radioactive constituent concentrations, the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences and is categorized as a Radiological Facility. This report documents the final hazard categorization process performed in accordance with DOE Order 5480.23, Nuclear Safety Analysis Reports. This report describes the current configuration and operations of the Liquid Effluent Retention Facility. Also included is a preliminary hazard categorization, which is based on current and proposed radioactive and hazardous material inventories, a preliminary hazards and accident analysis, and a final hazard category determination. The results of the hazards and accident analysis, based on the current configuration and operations of the Liquid Effluent Retention Facility and the current and proposed radioactive and hazardous material inventories, demonstrate that the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences. Based on the final hazard category analysis, the Liquid Effluent Retention Facility is a Radiological Facility. The final hazard category determination is based on a comparative evaluation of the consequence basis for the Category 3 threshold quantities to the calculated consequences for credible releases The basis for the Category 3 threshold quantities is 10 rem-equivalent man at 30 meters (98 feet) (DOE 1992, DOE 1997). The calculated 12 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, are 3.50 rem and 1.32 rem, respectively, which based upon the original hazard categorization criteria (DOE 1992) classified the Liquid Effluent Retention Facility as a Radiological Facility. Comparison of the calculated 24 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, 7.00 rem and 2.64 rem respectively, confirmed the Liquid Effluent Retention Facility classification as a Radiological Facility under the current hazard categorization criteria (DOE 1997). Both result in dose consequence values less than the allowable, 10 rem, meeting the requirements for categorizing the Liquid Effluent Retention Facility as a Radiological Facility.

  14. Fourth DOE Natural Phenomena Hazards Mitigation Conference: Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This conference allowed an interchange in the natural phenomena area among designers, safety professionals, and managers. The papers presented in Volume I of the proceedings are from sessions I - VIII which cover the general topics of: DOE standards, lessons learned and walkdowns, wind, waste tanks, ground motion, testing and materials, probabilistic seismic hazards, risk assessment, base isolation and energy dissipation, and lifelines and floods. Individual papers are indexed separately. (GH)

  15. NIOSH comments to DOL on the Occupational Safety and Health Administration's proposed rule on the control of hazardous energy sources (lockout/tagout) by R. A. Lemen, June 28, 1988

    SciTech Connect (OSTI)

    Not Available

    1988-06-28

    The testimony presented the position of NIOSH regarding the proposed rule of OSHA concerning lockout/tagout procedures for controlling hazardous energy sources. The proposed rule fills a need for requirements to prevent employee injuries and fatalities due to exposure to such hazards during servicing and maintenance. Specific sections of the rule include the use of the Bureau of Labor statistics work injury report study for accident data; the scope, application and purpose of the suggested rule; definitions applicable to the section; protective materials and hardware; and the verification of isolation. Several questions concerning the appropriateness of the rule for construction, the modification of the rule to make it more responsive to the unique hazards and working conditions found at construction sites, the use of additional accident and injury data for developing proposals in the area, and recommendations concerning record keeping were addressed.

  16. GUIDELINES FOR HANDLING HAZARDOUS CHEMICAL WASTE

    E-Print Network [OSTI]

    Tennessee, University of

    GUIDELINES FOR HANDLING HAZARDOUS CHEMICAL WASTE The proper management of hazardous waste and regulatory compliance are achieved: 1. Make sure that no hazardous materials are placed into regular solid in the departmental chemical hygiene plan (CHP) before you begin to use hazardous substances. 3. Make sure you know

  17. MATERIAL SAFETY DATA SHEET Glance SC Glass Multi-Surface Cleaner (1:20 Dilution)

    E-Print Network [OSTI]

    Wikswo, John

    under normal use conditions. Handling: Handle in accordance with good industrial hygiene and safety practice. FOR COMMERCIAL AND INDUSTRIAL USE ONLY. Hygiene measures: Handle in accordance with good industrial hygiene and safety practice. 6. ACCIDENTAL RELEASE MEASURES Storage: Protect from freezing. Keep

  18. R&D for Safety Codes and Standards: Materials and Components Compatibility

    SciTech Connect (OSTI)

    Somerday, Brian P.; LaFleur, Chris; Marchi, Chris San

    2015-08-01

    This project addresses the following technical barriers from the Safety, Codes and Standards section of the 2012 Fuel Cell Technologies Office Multi-Year Research, Development and Demonstration Plan (section 3.8): (A) Safety data and information: limited access and availability (F) Enabling national and international markets requires consistent RCS (G) Insufficient technical data to revise standards.

  19. Safety-Critical Universit at

    E-Print Network [OSTI]

    Peleska, Jan - Fachbereich 3

    . Hazard Analysis and Risk Assessment 5. Design Criteria for Safety-Critical Systems 6. Validation, Veri#12. Hazard Analysis and Risk Assessment 5. Design Criteria for Safety-Critical Systems 6. Validation, Veri#12Safety-Critical Systems Prof. Dr. Jan Peleska Universit at Bremen | TZI Dr. Ing. Cornelia Zahlten

  20. The Greening of a Plutonium Facility through Personnel Safety, Operational Efficiency, and Infrastructure Improvements - 12108

    SciTech Connect (OSTI)

    Dodge, Robert L.; Cournoyer, Michael E.

    2012-07-01

    Chemical and metallurgical operations involving plutonium and other hazardous materials account for most activities performed at the Los Alamos National Laboratory's Plutonium Facility (TA-55). Engineered barriers provide the most effective protection from hazardous materials. These safety features serve to protect workers and provide defense in depth against the hazards associated with operations. Although not designed to specifically meet environmental requirements the safety-based design does meet or exceed the requirements of the environmental regulations enacted during and since its construction. TA-55's Waste Services Group supports this safety methodology by ensuring safe, efficient and compliant management of all radioactive and hazardous wastes generated at the TA-55. A key function of this group is the implementation of measures that lower the overall risk of radiological and hazardous material operations. Processes and procedures that reduce waste generation compared to current, prevalent processes or procedures used for the same purpose are identified. Some of these 'Best Practices' include implementation of a chemical control system, elimination of aerosol cans, reduction in hazardous waste, implementation of zero liquid discharge, and the re-cyclization of nitric acid. P2/WMin opportunities have been implemented in the areas of personnel and facility attributes, environmental compliance, energy conservation, and green focused infrastructure expansion with the overall objective of minimizing raw material and energy consumption and waste generation. This increases technical knowledge and augments operational safety. (authors)

  1. uWaterloo Annual Department Health, Safety and Environment (HSE) Report (Workwell Version) Reporting Year: 2012 Department: ______________________________________________

    E-Print Network [OSTI]

    Czarnecki, Krzysztof

    ) Occupational Health and Safety Act (OHSA) Poster with names and locations of Faculty/Dept. Health and Safety Co (JHSC) membership. j) Location of Department HSE Board? Building) Classroom Emergency Procedures Poster? (April 11) e) In chemical labs and areas with hazardous materials

  2. Transportation Safety Excellence in Operations Through Improved Transportation Safety Document

    SciTech Connect (OSTI)

    Dr. Michael A. Lehto; MAL

    2007-05-01

    A recent accomplishment of the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Nuclear Safety analysis group was to obtain DOE-ID approval for the inter-facility transfer of greater-than-Hazard-Category-3 quantity radioactive/fissionable waste in Department of Transportation (DOT) Type A drums at MFC. This accomplishment supported excellence in operations through safety analysis by better integrating nuclear safety requirements with waste requirements in the Transportation Safety Document (TSD); reducing container and transport costs; and making facility operations more efficient. The MFC TSD governs and controls the inter-facility transfer of greater-than-Hazard-Category-3 radioactive and/or fissionable materials in non-DOT approved containers. Previously, the TSD did not include the capability to transfer payloads of greater-than-Hazard-Category-3 radioactive and/or fissionable materials using DOT Type A drums. Previous practice was to package the waste materials to less-than-Hazard-Category-3 quantities when loading DOT Type A drums for transfer out of facilities to reduce facility waste accumulations. This practice allowed operations to proceed, but resulted in drums being loaded to less than the Waste Isolation Pilot Plant (WIPP) waste acceptance criteria (WAC) waste limits, which was not cost effective or operations friendly. An improved and revised safety analysis was used to gain DOE-ID approval for adding this container configuration to the MFC TSD safety basis. In the process of obtaining approval of the revised safety basis, safety analysis practices were used effectively to directly support excellence in operations. Several factors contributed to the success of MFC’s effort to obtain approval for the use of DOT Type A drums, including two practices that could help in future safety basis changes at other facilities. 1) The process of incorporating the DOT Type A drums into the TSD at MFC helped to better integrate nuclear safety requirements with waste requirements. MFC’s efforts illustrate that utilizing the requirements of other disciplines, beyond nuclear safety, can provide an efficient process. Analyzing current processes to find better ways of meeting the requirements of multiple disciplines within a safety basis can lead to a more cost-effective, streamlined process. 2) Incorporating the DOT Type A drums into the MFC TSD was efficient because safety analysts utilized a transportation plan that provided analysis that could also be used for the change to the TSD addendum. In addition, because the plan they used had already been approved and was in use by the Idaho Cleanup Project (ICP) at the INL, justification for the change to the TSD was more compelling. MFC safety analysts proved that streamlining a process can be made more feasible by drawing from analysis that has already been completed.

  3. Canister storage building hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.; Garvin, L.J.

    1997-07-01

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  4. OSHA`s process safety management standard

    SciTech Connect (OSTI)

    Morelli, J.A.

    1994-12-31

    On February 24, 1992, OSHA published the final rule for its Process Safety Management Standard (PSM) mandated by the Clean Air Act Amendments of 1990. (see Federal Register 57 FR 6356-6417). This standard imposes several responsibilities upon employers whose processes can cause large accident releases that could result in processes can cause large accident releases that could result in catastrophes. In contrast to OSHA`s Hazard Communication standard which focuses on routine daily exposures to hazardous materials, the PSM Standard is concerned with processes whereby the use, storage, manufacturing, handling or on-site movement of highly hazardous chemicals which exceed threshold quantities, provides potential for a catastrophic release. The PSM Standard requires: a written program, plans, training, hazard analysis and compliance auditing. This paper outlines the provisions under this Standard pursuant to OSHA regulation 29 Code of Federal Regulation 1910.119.

  5. Environment, Health and Safety http://ehs.ucsd.edu

    E-Print Network [OSTI]

    Aluwihare, Lihini

    ://blink.ucsd.edu/go/lab Chemical Hygiene Plan -· http://blink.ucsd.edu/go/chp Material Safety Data Sheets -· http Hygiene Plan (CHP) Do you know what the LMS and CHP are and how to access them?· Are you familiar with the contents of both?· Do you have shortcuts to the LMS and CHP on your computer desktop?· Chemical Hazard Use

  6. Compressed Gas Cylinder Safety I. Background. Due to the nature

    E-Print Network [OSTI]

    Zhang, Zhongfei "Mark"

    Compressed Gas Cylinder Safety I. Background. Due to the nature of gas cylinders hazards of a ruptured cylinder. There are almost 200 different types of materials in gas cylinders, there are several general procedures to follow for safe storage and handling of a compressed gas cylinder: II

  7. Pipeline Safety Program The Oak Ridge National Laboratory (ORNL)

    E-Print Network [OSTI]

    of natural gas and hazardous liquid pipelines. To assist PHMSA accomplish this mission, ORNL Subject Matter testing, · liquefied natural gas facilities, · loss of gas or liquid containment, · material science pipeline safety regulations, · fracture mechanics and metallurgy, · hydrogen and natural gas pipeline

  8. Hazards assessment for the Hazardous Waste Storage Facility

    SciTech Connect (OSTI)

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency.

  9. Simplifying documentation while approaching site closure: integrated health & safety plans as documented safety analysis

    SciTech Connect (OSTI)

    Brown, Tulanda

    2003-06-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). By isolating any remediation activities that deal with Enriched Restricted Materials, the SBRs and PRs assure that the hazard categories of former nuclear facilities undergoing remediation remain less than Nuclear. These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D&D) of over 150 structures, including six major nuclear production plants. This paper presents the FCP method for maintaining safety basis documentation, using the D&D I-HASP as an example.

  10. Management of radioactive material safety programs at medical facilities. Final report

    SciTech Connect (OSTI)

    Camper, L.W.; Schlueter, J.; Woods, S. [and others

    1997-05-01

    A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.

  11. Environmental, safety, and health engineering

    SciTech Connect (OSTI)

    Woodside, G.; Kocurek, D.

    1997-12-31

    A complete guide to environmental, safety, and health engineering, including an overview of EPA and OSHA regulations; principles of environmental engineering, including pollution prevention, waste and wastewater treatment and disposal, environmental statistics, air emissions and abatement engineering, and hazardous waste storage and containment; principles of safety engineering, including safety management, equipment safety, fire and life safety, process and system safety, confined space safety, and construction safety; and principles of industrial hygiene/occupational health engineering including chemical hazard assessment, personal protective equipment, industrial ventilation, ionizing and nonionizing radiation, noise, and ergonomics.

  12. Coding Hazardous Tree Failures for a Data Management System

    E-Print Network [OSTI]

    Standiford, Richard B.

    Terms: hazard trees; hazard reduction; recreation areas; urban forestry; safety standards; dataCoding Hazardous Tree Failures for a Data Management System Lee A. Paine PACIFIC SOUTHWEST hazardous tree failures for a data management system. Gen. Tech. Rep. PSW-29, 108 p., illus. Pacific

  13. Page 1 of 3 ENVIRONMENTAL HEALTH AND SAFETY

    E-Print Network [OSTI]

    , sensitive materials). Hazardous chemicals and radioactive materials are delivered only to the location of hazardous materials stored in occupied buildings by providing safe centralized storage of chemicals. Reduce available. Receive and inspect all incoming hazardous chemicals and radioactive materials. Maintain

  14. Page 1 of 5 Issue date 01-Feb-2012 MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Wikswo, John

    . Handling and Storage space Handling Use good industrial hygiene practices in handling this material. space

  15. Oak Ridge Health Studies Phase 1 report, Volume 2: Part D, Dose Reconstruction Feasibility Study. Tasks 6, Hazard summaries for important materials at the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Bruce, G.M.; Walker, L.B.; Widner, T.E.

    1993-09-01

    The purpose of Task 6 of Oak Ridge Phase I Health Studies is to provide summaries of current knowledge of toxic and hazardous properties of materials that are important for the Oak Ridge Reservation. The information gathered in the course of Task 6 investigations will support the task of focussing any future health studies efforts on those operations and emissions which have likely been most significant in terms of off-site health risk. The information gathered in Task 6 efforts will likely also be of value to individuals evaluating the feasibility of additional health,study efforts (such as epidemiological investigations) in the Oak Ridge area and as a resource for citizens seeking information on historical emissions.

  16. Laboratory Safety OSHA 3404-11R 2011

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Laboratory Safety Guidance OSHA 3404-11R 2011 #12;Occupational Safety and Health Act of 1970 "To-1999; teletypewriter (TTY) number: 1-877- 889-5627. #12;Laboratory Safety Guidance Occupational Safety and Health Hazards 9 Laboratory Standard 9 Hazard Communication Standard 13 Specific Chemical Hazards 13 Air

  17. Facility Safety | Department of Energy

    Office of Environmental Management (EM)

    improved DOE program and field implementation of nuclear safety management programs and fire protection and natural phenomena hazard control requirements. Nuclear facility program...

  18. Identification of Aircraft Hazards

    SciTech Connect (OSTI)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  19. Safety Training for the Hydrogen Economy

    SciTech Connect (OSTI)

    Fassbender, Linda L.; Kinzey, Bruce R.; Akers, Bret M.

    2006-04-11

    PNNL and the Volpentest Hazardous Materials Management and Emergency Response (HAMMER) Training and Education Center are helping to prepare emergency responders and permitting/code enforcement officials for their respective roles in the future Hydrogen Economy. Safety will be a critical component of the anticipated hydrogen transition. Public confidence goes hand in hand with perceived safety to such an extent that, without it, the envisioned transition is unlikely to occur. Stakeholders and the public must be reassured that hydrogen, although very different from gasoline and other conventional fuels, is no more dangerous. Ensuring safety in the hydrogen infrastructure will require a suitably trained emergency response force for containing the inevitable incidents as they occur, coupled with knowledgeable code officials to ensure that such incidents are kept to a minimum. PNNL and HAMMER are, therefore, designing a hydrogen safety training program, funded by DOE's Hydrogen, Fuel Cells, and Infrastructure Technologies Program, and modeled after the Occupational Safety and Health Administration’s multi-tiered approach to hazardous materials training. Capabilities under development at HAMMER include classroom and long-distance (i.e., satellite and internet broadcast) learning, as well as life-size, hands-on hydrogen burn props for “training as real as it gets.” This paper presents insights gained from the early emergency response hydrogen safety training courses held in 2005 and current plans for design and construction of a number of hydrogen burn props.

  20. Wind tunnel simulation of wind effects and associated displacement hazards on flat surface construction materials such as plywood 

    E-Print Network [OSTI]

    Madeley, Jack T.

    1996-01-01

    decking material with the air stream flowing over the stack until top sheet separated or lifted from the stack. Next, a half-scale model was placed in the test section of the tunnel with pressure ports attached to a high speed sampling transducer...

  1. Integrating Chemical Hazard Assessment into the Design of Inherently Safer Processes 

    E-Print Network [OSTI]

    Lu, Yuan

    2012-02-14

    Reactive hazard associated with chemicals is a major safety issue in process industries. This kind of hazard has caused the occurrence of many accidents, leading to fatalities, injuries, property damage and environment pollution. Reactive hazards...

  2. Hazards Survey and Hazards Assessments

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

  3. A Domain-Specific Safety Analysis for Digital Nuclear Plant Protection Systems

    E-Print Network [OSTI]

    Tree Analysis), FMEA (Failure Mode and Effect Analysis), HAZOP (Hazard and Operability study). · Safety

  4. Plutonium Finishing Plant safety evaluation report

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

  5. _____________________________ Environment, Health, & Safety _________ __________________ Training Program

    E-Print Network [OSTI]

    _____________________________ Environment, Health, & Safety _________ __________________ Training-based Training Frequency: One Time Course Purpose: This training contains general requirements and information. This training will familiarize you with the hazards of electricity and the requirements for electrical safety

  6. Use of hazard assessments to achieve risk reduction in the USDOE Stockpile Stewardship (SS-21) Program

    SciTech Connect (OSTI)

    Fischer, S.R.; Konkel, H.; Bott, T.; Eisenhawer, S.W. [Los Alamos National Lab., NM (United States); DeYoung, L.; Hockert, J. [Odgen Environmental and Energy Services, Albuquerque, NM (United States)

    1995-07-01

    This paper summarizes the nuclear explosive hazard assessment activities performed to support US Department of Energy (DOE) Stockpile Stewardship Demonstration Project SS-21, better known as the ``Seamless Safety`` program. Past practice within the DOE Complex has dictated the use of a significant number of post-design/fabrication safety reviews to analyze the safety associated with operations on nuclear explosives and to answer safety questions. These practices have focused on reviewing-in or auditing-in safety vs incorporating safety in the design process. SS-21 was proposed by the DOE as an avenue to develop a program to ``integrate established, recognized, verifiable safety criteria into the process at the design stage rather than continuing the reliance on reviews, evaluations and audits.`` The entire Seamless Safety design and development process is verified by a concurrent hazard assessment (HA). The primary purpose of the SS-21 Demonstration Project HA was to demonstrate the feasibility of performing concurrent HAs as part of an engineering design and development effort and then to evaluate the use of the HA to provide an indication in the risk reduction or gain in safety achieved. To accomplish this objective, HAs were performed on both baseline (i.e., old) and new (i.e. SS-21) B61-0 Center Case Section disassembly processes. These HAs were used to support the identification and documentation of weapon- and process-specific hazards and safety-critical operating steps. Both HAs focused on identifying accidents that had the potential for worker injury, public health effects, facility damage, toxic gas release, and dispersal of radioactive materials. A comparison of the baseline and SS-21 process risks provided a semi-quantitative estimate of the risk reduction gained via the Seamless Safety process.

  7. In an emergency CALL 911 from any campus phone or cell phone. Non-emergency: 803-777-4215 Emergency and Safety Procedures

    E-Print Network [OSTI]

    In an emergency CALL 911 from any campus phone or cell phone. Non-emergency: 803-777-4215 Emergency and Safety Procedures Emergency Phone Numbers Introduction Safety Tips Workplace Violence Severe Weather / Tornado / Flash Flood Fire Hazardous Material Release Suspicious Activity Active Shooter Medical Emergency

  8. October 2014 Natural Phenomena Hazards (NPH) Meeting - Wednesday...

    Office of Environmental Management (EM)

    Flooding Hazard Assessment Los Alamos National Laboratory Plutonium Facility (PF-4) Seismic Safety Implementation of DOE NPH Requirements at the Thomas Jefferson National...

  9. Safety considerations for the use of sulfur in sulfur-modified pavement materials 

    E-Print Network [OSTI]

    Jacobs, Carolyn Yuriko

    1980-01-01

    Liquid Sulfur Page v111 ix 33 33 35 IV Symptoms of Poisoning . First Aid SULFUR IN THE PAVING INDUSTRY General Sand-Asphalt-Sulfur Pavements (SAS) ', , Sulfur-Extended Asphalt Pavements (SEA) Sulfur Concrete EVALUATION OF RISKS AND SAFETY... RECOMMENDATIONS General Stationary Sources Mobile Sources Maintenance 40 41 43 43 44 45 46 Hot-Mix Recycling VI EMISSIONS MONITORING METHODS General Area Monitoring - Continuous Samplina Short Term Sampling (" Grab" Sampling) Personnel Monitoring...

  10. THE ODTX SYSTEM FOR THERMAL IGNITION AND THERMAL SAFETY STUDY OF ENERGETIC MATERIALS

    SciTech Connect (OSTI)

    Hsu, P C; Hust, G; Howard, M; Maienschein, J L

    2010-03-03

    Understanding the response of energetic material to thermal event is very important for the storage and handling of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory (LLNL) can precisely measure times to explosion and minimum ignition temperatures of energetic materials at elevated temperatures. These measurements provide insight into the relative ease of thermal ignition and allow for the determination of kinetic parameters. The ODTX system can potentialy be a good tool to measure violence of the thermal ignition by monitoring the size of anvil cavity. Recent ODTX experimental data on various energetic materials (solid and liquids) are reported in this paper.

  11. Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  12. Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  13. Safety Design Strategy for the Advanced Test Reactor Primary Coolant Pump and Motor Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  14. SR-30 Soluble Support Material Safety Data Sheet 108454-0002

    E-Print Network [OSTI]

    Rollins, Andrew M.

    equipment. Extinguishing Media Water spray, dry powder, carbon dioxide, or foam. Avoid using solid water jet: carbon monoxide, carbon dioxide. 6. ACCIDENTAL RELEASE MEASURES General Allow molten material to solidify/molten material, wear heat resistant clothing, gloves, and footwear. 9. PHYSICAL & CHEMICAL PROPERTIES Physical

  15. Module Safety Issues (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2012-02-01

    Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

  16. Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102

    SciTech Connect (OSTI)

    SHULTZ, M.V.

    1999-04-05

    Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

  17. Safety Evaluation for Packaging (onsite) T Plant Canyon Items

    SciTech Connect (OSTI)

    OBRIEN, J.H.

    2000-07-14

    This safety evaluation for packaging (SEP) evaluates and documents the ability to safely ship mostly unique inventories of miscellaneous T Plant canyon waste items (T-P Items) encountered during the canyon deck clean off campaign. In addition, this SEP addresses contaminated items and material that may be shipped in a strong tight package (STP). The shipments meet the criteria for onsite shipments as specified by Fluor Hanford in HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments.

  18. Electrical safety guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  19. DOE handbook electrical safety

    SciTech Connect (OSTI)

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  20. Revised 4/15/2002 _____________________________ Environment, Health, & Safety _________ __________________

    E-Print Network [OSTI]

    Eisen, Michael

    , and the areas for storage of various hazardous, radioactive and mixed wastes. Instructors: Howard Hansen RudyardRevised 4/15/2002 _____________________________ Environment, Health, & Safety at Building 85, the Hazardous Waste Handling Facility (HWHF), regarding the safety, alarm, fire detection

  1. Safety in Buildings 

    E-Print Network [OSTI]

    Hutcheon, N. B.

    Building codes are essentially sets of safety regulations in respect of structure, fire, and health. They were originally developed in response to frequently demonstrated hazards of structural collapse, catastrophic fires, ...

  2. What Every Public Safety Officer Should Know About Radiation and Radioactive Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos andSeminars andWeyl FermionsEvery Public Safety

  3. Hazard evaluation

    SciTech Connect (OSTI)

    Vervalin, C.H.

    1986-12-01

    Recent major disasters in the hydrocarbon processing industry (HPI) have inspired renewed interest in the fine-tuning of hazard evaluation methods. In addition to traditional risk-study methods, the computer promises eventual expert systems to vastly improve the speed of assembling and using loss-prevention information. But currently, the computerization of hazard evaluation finds the HPI taking a back seat to aerospace/nuclear industries. The complexity of creating computer databases and expert systems has not-however-kept some HPI companies from plunging in. Arabian American Oil Co. (Aramco) has used computer-generated information in working with probabilistic risk analysis. Westinghouse has used its risk-analysis experience in the nuclear field to build a computer-based program for HPI clients. An Exxon plant has a huge data bank as the basis for its Hazard Loss Information System.

  4. H.R. 432: A Bill to amend chapter 601 of title 49, United States Code, to improve natural gas and hazardous liquid pipeline safety, in response to the natural gas pipeline accident in Edison, New Jersey, and for other purposes. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    This document contains H.R. 432, A Bill to amend chapter 601 of title 49, United States Code, to improve natural gas and hazardous liquid pipeline safety, in response to the natural gas pipeline accident in Edison, New Jersey, and for other purposes. This Bill was introduced in the House of Representatives, 104th Congress, First Session, January 5, 1995.

  5. Automation of System Safety Analysis: Possibilities and Pitfalls Andrew Galloway, University of York, Heslington, York YO10 5DD UK

    E-Print Network [OSTI]

    Pumfrey, David

    hazard identification/analysis and confirmatory safety analyses, e.g. FMEA and FTA, present significant

  6. Reproductive Hazards in the Lab Reproductive Hazards

    E-Print Network [OSTI]

    de Lijser, Peter

    Reproductive Hazards in the Lab Reproductive Hazards The term reproductive hazard refers to agents healthy children. Reproductive hazards may have harmful effects on libido, sexual behavior, or sperm the effects of reproductive hazards may be reversible for the parent, the effects on the fetus or offspring

  7. HAZARDOUS MATERIALS Hazardous materials can be silent killers.

    E-Print Network [OSTI]

    Markopoulou, Athina

    can be very dangerous - bleach mixed with ammonia creates poisonous gas(es) #12;Isolation: · Close off, ammonia, bleach Laundry · bleach, spot removers, cleaners Garage · gasoline, solvents, pesticides, paints at the building entrance or in the storage area. #12;The 704 Diamond is divided into four quadrants. Each quadrant

  8. Hazards Control Department annual technology review, 1987

    SciTech Connect (OSTI)

    Griffith, R.V.; Anderson, K.J.

    1988-07-01

    This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

  9. SSC Safety Review Document

    SciTech Connect (OSTI)

    Toohig, T.E. [ed.

    1988-11-01

    The safety strategy of the Superconducting Super Collider (SSC) Central Design Group (CDG) is to mitigate potential hazards to personnel, as far as possible, through appropriate measures in the design and engineering of the facility. The Safety Review Document identifies, on the basis of the Conceptual Design Report (CDR) and related studies, potential hazards inherent in the SSC project independent of its site. Mitigative measures in the design of facilities and in the structuring of laboratory operations are described for each of the hazards identified.

  10. Compliance of Hazardous Waste Satellite Accumulation Areas (SAAs)

    E-Print Network [OSTI]

    Compliance of Hazardous Waste Satellite Accumulation Areas (SAAs) All Hazardous waste generated to be chemically hazardous and shall be kept in a Satellite Accumulation Area (SAA). The safety coordinator will keep a list of all SAA's in the division and must be notified before an accumulation area

  11. Hazardous Materials Incident Response Procedure

    Broader source: Energy.gov [DOE]

    The purpose of this procedure is to provide guidance for developing an emergency response plan, as outlined in OSHA’s 29 CFR 1910.120(q), for facility response.  This model has been adopted and...

  12. HAZARDOUS WASTE [Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    HAZARDOUS WASTE MANUAL [Written Program] Cornell University [10/7/13 #12;Hazardous Waste Program................................................... 8 3.0 MINIMIZING HAZARDOUS WASTE GENERATION.........................................................10 4.0 HAZARDOUS WASTE GENERATOR REQUIREMENTS.....................................................10

  13. Emergency preparedness source term development for the Office of Nuclear Material Safety and Safeguards-Licensed Facilities

    SciTech Connect (OSTI)

    Sutter, S.L.; Mishima, J.; Ballinger, M.Y.; Lindsey, C.G.

    1984-08-01

    In order to establish requirements for emergency preparedness plans at facilities licensed by the Office of Nuclear Materials Safety and Safeguards, the Nuclear Regulatory Commission (NRC) needs to develop source terms (the amount of material made airborne) in accidents. These source terms are used to estimate the potential public doses from the events, which, in turn, will be used to judge whether emergency preparedness plans are needed for a particular type of facility. Pacific Northwest Laboratory is providing the NRC with source terms by developing several accident scenarios for eleven types of fuel cycle and by-product operations. Several scenarios are developed for each operation, leading to the identification of the maximum release considered for emergency preparedness planning (MREPP) scenario. The MREPP scenarios postulated were of three types: fire, tornado, and criticality. Fire was significant at oxide fuel fabrication, UF/sub 6/ production, radiopharmaceutical manufacturing, radiopharmacy, sealed source manufacturing, waste warehousing, and university research and development facilities. Tornadoes were MREPP events for uranium mills and plutonium contaminated facilities, and criticalities were significant at nonoxide fuel fabrication and nuclear research and development facilities. Techniques for adjusting the MREPP release to different facilities are also described.

  14. Ferrocyanide safety program: Final report on adiabatic calorimetry and tube propagation tests with synthetic ferrocyanide materials

    SciTech Connect (OSTI)

    Fauske, H.F. [Fauske and Associates, Inc. (United States); Meacham, J.E.; Cash, R.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-09-29

    Based on Fauske and Associates, Inc. Reactive System Screening Tool tests, the onset or initiation temperature for a ferrocyanide-nitrate propagating reaction is about 250 degrees Celcius. This is at about 200 degrees Celcius higher than current waste temperatures in the highest temperature ferrocyanide tanks. Furthermore, for current ambient waste temperatures, the tube propagation tests show that a ferrocyanide concentration of 15.5 wt% or more is required to sustain a propagation reaction in the complete absence of free water. Ignoring the presence of free water, this finding rules out propagating reactions for all the Hanford flowsheet materials with the exception of the ferrocyanide waste produced by the original In Farm flowsheet

  15. TECHNICAL BASIS DOCUMENT FOR NATURAL EVENT HAZARDS

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2006-07-31

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls.

  16. Radioactive Material or Multiple Hazardous Materials Decontamination

    Broader source: Energy.gov [DOE]

    The purpose of this procedure is to provide guidance for performing decontamination of individuals who have entered a “hot zone” during transportation incidents involving  radioactive.

  17. UC Irvine Construction Related Hazardous Waste Some construction related wastes are hazardous and require special handling. Examples of such wastes

    E-Print Network [OSTI]

    Mease, Kenneth D.

    UC Irvine Construction Related Hazardous Waste Scope Some construction related wastes are hazardous the hazardous waste manifest. Process 1. When a construction project will generate hazardous wastes, the project and require special handling. Examples of such wastes include: · Asbestos Containing Materials · Mercury

  18. What is Hazardous Hazardous waste is

    E-Print Network [OSTI]

    de Lijser, Peter

    What is Hazardous Waste? Hazardous waste is any product charac- terized or labeled as toxic may be harmful to human health and/ or the environment. Hazardous Waste Disposal EH&S x7233 E.calrecycle.ca.gov www.earth911.com Campus Hazardous Waste Roundup Roundups conducted the last week of: January April

  19. Hazardous Location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for Accidental Releases of Hazardous Gases090041

  20. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    SciTech Connect (OSTI)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  1. PROPER SAFETY EQUIPMENT Safety Glasses -Proper eye

    E-Print Network [OSTI]

    Jia, Songtao

    be managed as Hazardous Waste. Paint Material Storage location: Right side of Grove tunnel heading towards. Universal Waste not placed in proper storage locations is a violation of environmental regulations and is punishable by a fine, it also poses a hazard to the many people and vehicles that use the Grove everyday

  2. Laboratory Safety Manual Table of Contents

    E-Print Network [OSTI]

    Natelson, Douglas

    Laboratory Safety Manual Table of Contents I. Emergency Procedures a. Laboratory Contact Information b. Location of Laboratory Emergency Equipment c. Laboratory Hazard and Evacuation Maps d. University Emergency Procedures II. University Policies and Procedures a. Rice University Laboratory Safety

  3. Motor carrier safety evaluation conducted at University of California, Los Alamos National Laboratory (UC/LANL), Los Alamos, NM

    SciTech Connect (OSTI)

    Garrison, R.F.

    1992-11-01

    The U.S. Department of Transportation Federal Highway Administration (DOT) conducts motor carrier safety evaluations for the purpose of determining a motor carrier`s safety fitness rating. Because it was believed that DOT or the State of New Mexico may not recognize UC/LANL exempt status and desire to inspect its transportation system and evaluate compliance with applicable laws and regulations, the lab contracted Garrison Associates to conduct a simulated motor carrier safety evaluation. This report enumerates the goals of this evaluation relevant to the Hazardous Materials Transportation Uniform Safety Act (HMTUSA) of 1990. The report describes the methodology of the evaluation and lists observations in order of importance.

  4. Toxic hazards of underground excavation

    SciTech Connect (OSTI)

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  5. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    SciTech Connect (OSTI)

    GARVIN, L J; JENSEN, M A

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  6. Reducing Physical Hazards: Encouraging Inherently Safer Production (Chapter 17)

    E-Print Network [OSTI]

    Ashford, Nicholas A.

    Physical hazards differ from hazards related to the toxicity of chemicals and materials in a number of ways. Their origin is the sudden and accidental release of chemicals and/ or energy - that is, chemical accidents, ...

  7. Material Safety Data Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter By Sarah Schlieder * JulyUsing VASP at NERSCMaterial

  8. Nuclear Safety. Technical Progress Journal, October--December 1991: Volume 32, No. 4

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  9. Avoiding Mold Hazards In Your Flooded Home

    E-Print Network [OSTI]

    Avoiding Mold Hazards In Your Flooded Home A flood-damaged home requires special attention to avoid or correct a mold population explosion. Mold is likely to multiply on materials that stay wet for more than two or three days. The longer mold is allowed to grow, the greater the hazard and the harder

  10. The Environment, Health and Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hazardous chemicals * SPCC Training records and material are kept on in an online data base at the PSFC. *MIT will begin using centralized training record data base summer...

  11. JOB SAFETY ASSESSMENT ENVIRONMENTAL

    E-Print Network [OSTI]

    Hartman, Chris

    /vapors/mists) Hazardous/Oxygen Deficient Atmospheres Adequate Ventilation Asbestos Containing Materials (ACM) Ignition Sources Adequate Lighting Wet Locations Other:_________________________ NOTES: PHYSICAL Confined Space Entry (Permit/Non-Permit) Crowd Control/Security Electrical Hazards Excavating/Trenching/Shoring Fall

  12. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

  13. Hazards assessment for the Waste Experimental Reduction Facility

    SciTech Connect (OSTI)

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  14. Track 3: Exposure Hazards

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

  15. Proceedings Hazards and Disasters

    E-Print Network [OSTI]

    Wang, Hai

    Proceedings Hazards and Disasters Researchers Meeting of the Boulder, Colorado July 11­12, 2007 #12;Hazards and Disasters Researchers Meeting Beginning in 1997, hazards and disaster researchers gathered in the field of hazards and disasters. As a new feature of this year's meeting, short papers based

  16. Hazardous Chemical Waste Management Reference Guide for Laboratories 11 Empty Container Decision Tree

    E-Print Network [OSTI]

    Ford, James

    Hazardous Chemical Waste Management Reference Guide for Laboratories 11 Empty Container Decision Tree Chemical waste materials must be handled as hazardous unless they are on the Non-Hazardous Waste List. Used hazardous materials containers are an exception, however. They have their own resource

  17. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Boyd D. Chirstensen

    2012-04-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  18. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Boyd D. Chirstensen

    2012-08-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  19. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Gary Mecham

    2010-05-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  20. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Gary Mecham

    2010-10-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  1. Health assessment for Fletcher's Paint Works and Storage Facility Hazardous Waste Material, Milford, Hillsborough County, New Hampshire, Region 1. CERCLIS No. NHD981067614. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1990-06-11

    Fletcher's Paint Works and Storage Facility Hazardous Waste Site (Fletcher's Paint Site) in Milford, New Hampshire, consists of three distinct entities: Fletcher's Paint Works at 21 Elm Street, Fletcher's Paint Storage Facility on Mill Street, and a drainage ditch leading from the storage facility property to Hampshire Paper Company property. The aggregation of these three properties was based on the similar nature of operations and wastes, the close proximity of the areas, the same target population, and the same underlying aquifer at risk of contamination. The aggregated site has contributed to the contamination of soil, groundwater, surface water, sediment, and air with various volatile organic chemicals (VOCs), semivolatile organic chemicals (SVOCs), heavy metals, and polychlorinated biphenyls (PCBs). Environmental monitoring related to the Fletcher's Paint Site has consisted of sampling of the Keyes Well by the NH WSPCC, and sampling at the paint works, storage facility and drainage ditch by NUS Corporation and EPA's Environmental Services Division (ESD). Contaminant levels at each location is discussed individually. Based upon the available information, the Fletcher's Paint NPL Site is considered to be of potential public health concern because of the risk to public health caused by potential exposure to hazardous substances, such as VOCs, PCBs, PAHs, and heavy metals, at concentrations that may result in adverse health effects. Exposure to contaminated soil and surface water, and potentially contaminated fish may be occurring. The site is located in a densely populated part of town, while the storage facility is readily accessible to children walking to and from school.

  2. Software Safety Tutorial Status Update 1 Software Safety Tutorial

    E-Print Network [OSTI]

    Tian, Jeff

    ? · Software safety: The property of being accident- free for (embedded) software systems. Accident: failures with severe consequences Hazard: condition for accident Specialized techniques · Software safety engineering./property/environment damage excess energy/dangerous substance computers relatively safe but computer control accidents

  3. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    SciTech Connect (OSTI)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  4. Health and safety plan for the Environmental Restoration Program at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Clark, C. Jr.; Burman, S.N.; Cipriano, D.J. Jr.; Uziel, M.S.; Kleinhans, K.R.; Tiner, P.F.

    1994-08-01

    This Programmatic Health and Safety plan (PHASP) is prepared for the U.S. Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program. This plan follows the format recommended by the U.S. Environmental Protection Agency (EPA) for remedial investigations and feasibility studies and that recommended by the EM40 Health and Safety Plan (HASP) Guidelines (DOE February 1994). This plan complies with the Occupational Safety and Health Administration (OSHA) requirements found in 29 CFR 1910.120 and EM-40 guidelines for any activities dealing with hazardous waste operations and emergency response efforts and with OSHA requirements found in 29 CFR 1926.65. The policies and procedures in this plan apply to all Environmental Restoration sites and activities including employees of Energy Systems, subcontractors, and prime contractors performing work for the DOE ORNL ER Program. The provisions of this plan are to be carried out whenever activities are initiated that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and best management practices to minimize hazards to human health and safety and to the environment from event such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to air, soil, or surface water.

  5. UNIVERSITY OF TORONTO LASER SAFETY COMMITTEE / RADIATION PROTECTION SERVICE LASER SAFETY COURSE

    E-Print Network [OSTI]

    Chan, Hue Sun

    UNIVERSITY OF TORONTO LASER SAFETY COMMITTEE / RADIATION PROTECTION SERVICE LASER SAFETY COURSE 9 Lasers Stimulated Emission of Radiation Beam Characteristics Laser operation: CW, Pulsed, Q Chemicals, Biological, Compressed Gas Radiation (ionizing) Other 11:25 ­ 12:30 HAZARD CONTROLS Hazard

  6. FAQS Qualification Card – Criticality Safety

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  7. ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste...

    Open Energy Info (EERE)

    Apps Datasets Community Login | Sign Up Search Page Edit with form History ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste and Materials Jump to: navigation, search...

  8. Safety evaluation for packaging (onsite) for the concrete-shielded RH TRU drum for the 327 Postirradiation Testing Laboratory

    SciTech Connect (OSTI)

    Smith, R.J.

    1998-03-31

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments. The drum will be used for transport of 327 Building legacy waste from the 300 Area to a solid waste storage facility on the Hanford Site.

  9. Safety evaluation for packaging (onsite) for concrete-shielded RHTRU waste drum for the 327 postirradiation testing laboratory

    SciTech Connect (OSTI)

    Adkins, H.E.

    1996-10-29

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete- Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per WHC-CM-2-14, Hazardous Material Packaging and Shipping. The drum will be used for transport of 327 Building legacy waste from the 300 Area to the Transuranic Waste Storage and Assay Facility in the 200 West Area and on to a Solid Waste Storage Facility, also in the 200 Area.

  10. Safety of Decommissioning of Nuclear Facilities

    SciTech Connect (OSTI)

    Batandjieva, B.; Warnecke, E.; Coates, R. [International Atomic Energy Agency, Vienna (Austria)

    2008-01-15

    Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

  11. Radiation Safety Reference Material Policy: 7.01 Created: 08/29/2014 Version: 1.0 Revised

    E-Print Network [OSTI]

    Jia, Songtao

    ­ National Council on Radiation Protection and Measurements NRC ­ United States Nuclear Regulatory Commission NUREG ­ Regulatory guides published by NRC NYC ­ New York City NYS ­ New York State RARAF Safety program. After the list of regulatory codes there are some guidance documents listed for use

  12. Electrical Safety and Arc Flash Protections

    SciTech Connect (OSTI)

    R. Camp

    2008-03-04

    Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we will review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.

  13. Generic safety documentation model

    SciTech Connect (OSTI)

    Mahn, J.A.

    1994-04-01

    This document is intended to be a resource for preparers of safety documentation for Sandia National Laboratories, New Mexico facilities. It provides standardized discussions of some topics that are generic to most, if not all, Sandia/NM facilities safety documents. The material provides a ``core`` upon which to develop facility-specific safety documentation. The use of the information in this document will reduce the cost of safety document preparation and improve consistency of information.

  14. Hazardous Waste Management (Delaware)

    Broader source: Energy.gov [DOE]

    The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

  15. Program desk manual for occupational safety and health -- U.S. Department of Energy Richland Operations, Office of Environment Safety and Health

    SciTech Connect (OSTI)

    Musen, L.G.

    1998-08-27

    The format of this manual is designed to make this valuable information easily accessible to the user as well as enjoyable to read. Each chapter contains common information such as Purpose, Scope, Policy and References, as well as information unique to the topic at hand. This manual can also be provided on a CD or Hanford Internet. Major topics include: Organization and program for operational safety; Occupational medicine; Construction and demolition; Material handling and storage; Hoisting and rigging; Explosives; Chemical hazards; Gas cylinders; Electrical; Boiler and pressure vessels; Industrial fire protection; Industrial hygiene; and Safety inspection checklist.

  16. HAZARD COMMUNICATION Procedure: 9.06 Created: 10/08/2012

    E-Print Network [OSTI]

    Jia, Songtao

    HAZARD COMMUNICATION POLICY Procedure: 9.06 Created: 10/08/2012 Version: 2.01 Revised: 10/04/2013 Page 1 of 9 A. Purpose The Occupational Health and Safety Administration (OSHA) Hazard Communication University (CU) has developed a comprehensive Hazard Communication Program (HCP) to ensure

  17. Earthquakes and faults in the Krahnjkar area Review of hazards and recommended further studies

    E-Print Network [OSTI]

    Sigmundsson, Freysteinn

    . Introduction 2. Seismic safety of dams and estimates of hazards 3. Experience from other areas in Iceland not ensure the individual authors consensus on all the details presented in the text 2. Seismic safety the hazards in a qualitative way but with limited quantitative assessment or an attempt to assess

  18. Estimated airborne release of plutonium from Atomics International's Nuclear Materials Development Facility in the Santa Susana site, California, as a result of postulated damage from severe wind and earthquake hazard

    SciTech Connect (OSTI)

    Mishima, J.; Ayer, J.E.

    1981-09-01

    The potential mass of airborne releases of plutonium (source term) that could result from wind and seismic damage is estimated for the Atomics International Company's Nuclear Materials Development Facility (NMDF) at the Santa Susana site in California. The postulated source terms will be useful as the basis for estimating the potential dose to the maximum exposed individual by inhalation and to the total population living within a prescribed radius of the site. The respirable fraction of airborne particles is thus the principal concern. The estimated source terms are based on the damage ratio, and the potential airborne releases if all enclosures suffer particular levels of damage. In an attempt to provide a realistic range of potential source terms that include most of the normal processing conditions, a best estimate bounded by upper and lower limits is provided. The range of source terms is calculated by combining a high best estimate and a low damage ratio, based on a fraction of enclosures suffering crush or perforation, with the airborne release from enclosures based upon an upper limit, average, and lower limit inventory of dispersible materials at risk. Two throughput levels are considered. The factors used to evaluate the fractional airborne release of materials and the exchange rates between enclosed and exterior atmospheres are discussed. The postulated damage and source terms are discussed for wind and earthquake hazard scenarios in order of their increasing severity.

  19. Office of Nuclear Safety Basis and Facility Design

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety Basis & Facility Design establishes safety basis and facility design requirements and expectations related to analysis and design of nuclear facilities to ensure protection of workers and the public from the hazards associated with nuclear operations.

  20. UVM chemical use planning form.docx; 2012 Version 4 Page 1 of 6 Risk Management & Safety

    E-Print Network [OSTI]

    Hayden, Nancy J.

    UVM chemical use planning form.docx; 2012 Version 4 Page 1 of 6 Risk Management & Safety Your Laboratory Safety Partners http://www.uvm.edu/safety/ UVM CHEMICAL USE PLANNING FORM Chemical Hygiene Plan. Hazard Identification: a) Identify the Hazardous Chemical or Hazard Group: 1. List chemical name and CAS

  1. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterials Materials Access to

  2. Recent Accomplishments and Future Directions in US Fusion Safety & Environmental Program

    SciTech Connect (OSTI)

    David A. Petti; Brad J. Merrill; Phillip Sharpe; L. C. Cadwallader; L. El-Guebaly; S. Reyes

    2006-07-01

    The US fusion program has long recognized that the safety and environmental (S&E) potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behavior of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state of the art S&E computer codes and risk tools for safety assessment, and evaluating S&E issues associated with current fusion designs. In this paper, recent accomplishments are reviewed and future directions outlined.

  3. Health hazard evaluation report rdHETA 90-145-2086, Map International, Fairmont, West Virginia. Final report

    SciTech Connect (OSTI)

    Cornwell, R.J.; Knutti, E.; Lyman, M.

    1990-11-01

    In response to a request from the International Brotherhood of Teamsters, Chauffeurs, Warehousemen, and Helpers of America, a study was conducted of possible hazardous working conditions at MAP International (SIC-3296), Fairmont, West Virginia. The facility manufactured fibrous-glass for thermal and acoustical insulation. Personal breathing zone samples and area air samples were taken and analyzed for exposure to fibrous-glass (14808607), formaldehyde (50000), phenol (108952), ammonia (7664417), and organic vapors. The levels detected were all below allowable standards. Workers were not following recommended safety and health procedures prescribed in the Material Safety Data Sheets for the materials they were using. The medical questionnaires indicated workers were experiencing symptoms consistent with exposure to fibrous-glass and the materials used in its production. Eye irritation, upper respiratory irritation, skin irritation, chronic cough, and shortness of breath were demonstrated. The author recommends specific measures to reduce exposures and improve work practices.

  4. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    SciTech Connect (OSTI)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C. [Oak Ridge National Lab., TN (United States). Technical Programs and Services; Brock, W.R.; Denton, D.R. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1995-12-31

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  5. Incompatible Chemicals The following list is to be used only as a general guideline. Please refer to your Material Safety

    E-Print Network [OSTI]

    Slatton, Clint

    : Acetic acid Chromic acid, nitric acid, hydroxyl compounds, ethylene glycol, perchloric acid, peroxides, sulfur, finely divided organic or combustible materials Chromic acid and chromium trioxide Acetic acid, ammonia Nitrates Acids Nitric acid (concentrated) Acetic acid, aniline, chromic acid, hydrocyanic acid

  6. HAZARDOUS WASTE & HAZARDOUS MATERIALS Volume 13, Number 2, 1996

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    bioremediation systems in Brazil. INTRODUCTION Groundwater contamination by petroleum hydrocarbons contamination by the toxic and water soluble components such as benzene, toluene, and xylenes (BTX promise as a cost-effective approach to hydrocarbon plume management. This technique requires thorough

  7. WORKPLACE HAZARD ASSESSMENT Location: Task

    E-Print Network [OSTI]

    Rubloff, Gary W.

    WORKPLACE HAZARD ASSESSMENT Location: Task: Performed by: Date: This form may be used as an aid in performing hazard assessment. Review listed hazard classifications, identify all hazards, possible hazards and their sources. Hazard classification listing is not intended to be complete but is provided as a guide

  8. University of California, Irvine Environmental Health and Safety www.ehs.uci.edu Questions Call: (949) 824-6200 Version 1.0 The Arts Department generates a variety of wastes that are regulated as a hazardous waste by local, state, and federal

    E-Print Network [OSTI]

    George, Steven C.

    as a hazardous waste by local, state, and federal laws. A waste is considered a hazardous waste if it contains on how to determine if your waste is hazardous visit http://www.ehs.uci.edu/programs/enviro/hwasteguidelines.html Hazardous Chemical Waste Training: · All hazardous chemical waste generators must complete the Hazardous

  9. Radiation Safety System

    SciTech Connect (OSTI)

    Vylet, Vaclav; Liu, James C.; Walker, Lawrence S.; /Los Alamos

    2012-04-04

    The goal of this work is to provide an overview of a Radiation safety system (RSS) designed for protection from prompt radiation hazard at accelerator facilities. RSS design parameters, functional requirements and constraints are derived from hazard analysis and risk assessment undertaken in the design phase of the facility. The two main subsystems of a RSS are access control system (ACS) and radiation control system (RCS). In this text, a common approach to risk assessment, typical components of ACS and RCS, desirable features and general design principles applied to RSS are described.

  10. The dual axis radiographic hydrodynamic test (DARHT) facility personnel safety system (PSS) control system

    SciTech Connect (OSTI)

    Jacquez, Edward B [Los Alamos National Laboratory

    2008-01-01

    The mission of the Dual Axis Radiograph Hydrodynamic Test (DARHT) Facility is to conduct experiments on dynamic events of extremely dense materials. The PSS control system is designed specifically to prevent personnel from becoming exposed to radiation and explosive hazards during machine operations and/or the firing site operation. This paper will outline the Radiation Safety System (RSS) and the High Explosive Safety System (HESS) which are computer-controlled sets of positive interlocks, warning devices, and other exclusion mechanisms that together form the PSS.

  11. Hazards and operability study for the surface moisture monitoring system

    SciTech Connect (OSTI)

    Board, B.D.

    1996-04-04

    The Hanford Nuclear Reservation Tank Farms` underground waste tanks have been used to store liquid radioactive waste from defense materials production since the 1940`s. Waste in certain of the tanks may contain material in the form of ferrocyanide or various organic compounds which could potentially be susceptible to condensed phase chemical reactions. Because of the presence of oxidizing materials (nitrate compounds) and heat sources (radioactive decay and chemical reactions), the ferrocyanide or organic material could potentially fuel a propagating exothermic reaction with undesirable consequences. Analysis and experiments indicate that the reaction propagation and/or initiation may be prevented by the presence of sufficient moisture in the waste. Because the reaction would probably be initiated at the surface of the waste, evidence of sufficient moisture concentration would help provide evidence that the tank waste can continue to be safely stored. The Surface Moisture Measurement System (SMMS) was developed to collect data on the surface moisture in the waste by inserting two types of probes (singly) into a waste tank-a neutron probe and an electromagnetic inductance (EMI) probe. The sensor probes will be placed on the surface of the waste utilizing a moveable deployment arm to lower them through an available riser. The movement of the SMMS within the tank will be monitored by a camera lowered through an adjacent riser. The SMMS equipment is the subject of this study. Hazards and Operability Analysis (HAZOP) is a systematic technique for assessing potential hazards and/or operability problems for a new activity. It utilizes a multidiscipline team of knowledgeable individuals in a systematic brainstorming effort. The results of this study will be used as input to an Unreviewed Safety Question determination.

  12. November 2014 Laboratory Safety Manual Section 3 -Chemical Waste Management

    E-Print Network [OSTI]

    Brown, Sally

    November 2014 Laboratory Safety Manual Section 3 - Chemical Waste Management UW Environmental Health and Safety Page 3-1 Section 3 - Chemical Waste Management Contents A. HAZARDOUS CHEMICAL WASTE Section 3 - Chemical Waste Management Laboratory Safety Manual UW Environmental Health and Safety Page 3

  13. Ferrocyanide Safety Project: FY 1991 annual report

    SciTech Connect (OSTI)

    Hallen, R.T.; Burger, L.L.; Hockey, R.L.; Lilga, M.A.; Scheele, R.D.; Tingey, J.M.

    1992-06-01

    The Hanford Ferrocyanide Task Team is addressing issues involving ferrocyanide precipitates in the single-shell waste storage tanks (SSTs), in particular the risk of explosion. This Task Team, which is composed of researchers from Westinghouse Hanford Company (WHC), Pacific Northwest Laboratory (PNL), an outside consultants, was formed in response to the need for an updated analysis of safety questions on the Hanford SSTSs. The Ferrocyanide Safety Project, discussed in this report, is being conducted by PNL as part of the Waste Tank Safety Program led by WHC. The overall purpose of the WHC program, which is sponsored by the US Department of Energy's Tank Safety Project Office, is to provide technical information on ferrocyanide chemistry and its interaction and reactive behavior with other tank constituents. Ultimately, this information will be used to maintain the tanks in a safe condition, implement interim stabilization strategies, and identify optimal disposal options. While by itself ferrocyanide is a stable complex of ferrous ion and cyanide, it can be made to explode in the laboratory in the presence of oxidizing materials such as nitrates and/or nitrites temperatures above 280{degree}C or by sufficient electrical spark. The specific goal of the PNL project is so determine the conditions necessary for the ferrocyanide-bearing wastes in Hanford SSTs to represent a hazard, to determine the conditions where these same wastes am not a hazard, or to determine the conditions which are necessary to assure the wastes are safe prior to treatment for permanent disposal. This annual report gives the results of the work conducted by PNL in FY 1991. The activities mainly focused on preparing and characterizing synthetic wastes and alkali nickel ferrocyanides produced using the In-Farm cesium scavenging flowsheet and pure potential nickel ferrocyanides that could be produced by all of the cesium scavenging flowsheets.

  14. Ferrocyanide Safety Project: FY 1991 annual report

    SciTech Connect (OSTI)

    Hallen, R.T.; Burger, L.L.; Hockey, R.L.; Lilga, M.A.; Scheele, R.D.; Tingey, J.M.

    1992-06-01

    The Hanford Ferrocyanide Task Team is addressing issues involving ferrocyanide precipitates in the single-shell waste storage tanks (SSTs), in particular the risk of explosion. This Task Team, which is composed of researchers from Westinghouse Hanford Company (WHC), Pacific Northwest Laboratory (PNL), an outside consultants, was formed in response to the need for an updated analysis of safety questions on the Hanford SSTSs. The Ferrocyanide Safety Project, discussed in this report, is being conducted by PNL as part of the Waste Tank Safety Program led by WHC. The overall purpose of the WHC program, which is sponsored by the US Department of Energy`s Tank Safety Project Office, is to provide technical information on ferrocyanide chemistry and its interaction and reactive behavior with other tank constituents. Ultimately, this information will be used to maintain the tanks in a safe condition, implement interim stabilization strategies, and identify optimal disposal options. While by itself ferrocyanide is a stable complex of ferrous ion and cyanide, it can be made to explode in the laboratory in the presence of oxidizing materials such as nitrates and/or nitrites temperatures above 280{degree}C or by sufficient electrical spark. The specific goal of the PNL project is so determine the conditions necessary for the ferrocyanide-bearing wastes in Hanford SSTs to represent a hazard, to determine the conditions where these same wastes am not a hazard, or to determine the conditions which are necessary to assure the wastes are safe prior to treatment for permanent disposal. This annual report gives the results of the work conducted by PNL in FY 1991. The activities mainly focused on preparing and characterizing synthetic wastes and alkali nickel ferrocyanides produced using the In-Farm cesium scavenging flowsheet and pure potential nickel ferrocyanides that could be produced by all of the cesium scavenging flowsheets.

  15. Hanford Site Wide Transportation Safety Document [SEC 1 Thru 3

    SciTech Connect (OSTI)

    MCCALL, D L

    2002-06-01

    This safety evaluation report (SER) documents the basis for the US Department of Energy (DOE), Richland Operations Office (RL) to approve the Hanford Sitewide Transportation Safety Document (TSD) for onsite Transportation and Packaging (T&P) at Hanford. Hanford contractors, on behalf of DOE-RL, prepared and submitted the Hanford Sitewide Transportation Safety Document, DOE/RL-2001-0036, Revision 0, (DOE/RL 2001), dated October 4, 2001, which is referred to throughout this report as the TSD. In the context of the TSD, Hanford onsite shipments are the activities of moving hazardous materials, substances, and wastes between DOE facilities and over roadways where public access is controlled or restricted and includes intra-area and inter-area movements. The TSD sets forth requirements and standards for onsite shipment of radioactive and hazardous materials and wastes within the confines of the Hanford Site on roadways where public access is restricted by signs, barricades, fences, or other means including road closures and moving convoys controlled by Hanford Site security forces.

  16. Environmental Health and Safety's Laboratory Safety Trainings Title of Training Description Required Training

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    modules: 1. Laboratory Safety 2. Hazardous Waste 3. Right to Know Classroom training schedules are posted thereafter you may renew on- line with the Biosafety Training Module. Classroom training schedules are posted Radiation safety training consists of two modules. The first training module covers general radiation safety

  17. Safety analysis approaches or mixed transuranic waste.

    SciTech Connect (OSTI)

    Courtney, J. C.; Dwight, C. C.; Forrester, R. J.; Lehto, M. A.; Pan, Y. C.

    1999-02-10

    Argonne National Laboratory (ANL) has completed a survey of assumptions and techniques used for safety analyses at seven sites that handle or store mixed transuranic (TRU) waste operated by contractors for the US Department of Energy (DOE). While approaches to estimating on-site and off-site consequences of hypothetical accidents differ, there are commonalities in all of the safety studies. This paper identifies key parameters and methods used to estimate the radiological consequences associated with release of waste forms under abnormal conditions. Specific facilities are identified by letters with their safety studies listed in a bibliography rather than as specific references so that similarities and differences are emphasized in a nonjudgmental manner. References are provided for specific parameters used to project consequences associated with compromise of barriers and dispersion of potentially hazardous materials. For all of the accidents and sites, estimated dose commitments are well below guidelines even using highly conservative assumptions. Some of the studies quantified the airborne concentrations of toxic materials; this paper only addresses these analyses briefly, as an entire paper could be dedicated to this subject.

  18. Job Safety

    Broader source: Energy.gov (indexed) [DOE]

    Job Safety and Health It's the law EMPLOYEES: Must have access to: DOE safety and health publications; The worker safety and health program for their location; This...

  19. Hanford safety analysis and risk assessment handbook (SARAH)

    SciTech Connect (OSTI)

    GARVIN, L.J.

    2003-01-20

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 1,2, and 3 U.S. Department of Energy (DOE) nuclear facilities. SARAH describes currently acceptable methodology for development of a Documented Safety Analysis (DSA) and derivation of technical safety requirements (TSR) based on 10 CFR 830, ''Nuclear Safety Management,'' Subpart B, ''Safety Basis Requirements,'' and provides data to ensure consistency in approach.

  20. Satellite System Safety Analysis Using STPA

    E-Print Network [OSTI]

    Dunn, Nicholas Connor

    2013-01-01

    Traditional hazard analysis techniques based on failure models of accident causality, such as the probabilistic risk assessment (PRA) method currently used at NASA, are inadequate for analyzing safety at the system level. ...

  1. 1Page ofProduct Code: 944000 Revision: 1 03 OCT 2000Issued: 7 Material Safety Data Sheet

    E-Print Network [OSTI]

    Choi, Kyu Yong

    (t-amylperoxy) propane Di-t-amyl peroxide 67567-23-1 64742-48-9 64741-65-7 26760-64-5 3052-70-8 10508-09-5 This material containers exposed to fire. Fire fighters and others who may be exposed to products of combustion should wear

  2. U of MN Department of Pharmacology Laboratory Safety Plan

    E-Print Network [OSTI]

    Thomas, David D.

    . Labeling requirements for containers of hazardous substances and equipment or work areas that generate employees from the health hazards in laboratories. This Plan is intended to meet the requirements of the federal Laboratory Safety Standard, formally known as "Occupational Exposure to Hazardous Chemicals

  3. Hazard communication program

    SciTech Connect (OSTI)

    Porter, E.A.

    1994-10-04

    Implements Internal Publication No. WHC-IP-0914. Section 1.1, providing management and employee guidance for working with hazardous chemicals and physical agents.

  4. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterial

  5. Seismic Safety Guide

    SciTech Connect (OSTI)

    Eagling, D.G.

    1983-09-01

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

  6. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-18

    Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

  7. A complete electrical hazard classification system and its application

    SciTech Connect (OSTI)

    Gordon, Lloyd B; Cartelli, Laura

    2009-01-01

    The Standard for Electrical Safety in the Workplace, NFPA 70E, and relevant OSHA electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. This leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. Examples include lasers, accelerators, capacitor banks, electroplating systems, induction and dielectric heating systems, etc. Although all such systems are fed by 50/60 Hz alternating current (ac) power, we find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50160 Hz power. Over the past 10 years there has been an effort to develop a method of classifying all of the electrical hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Initially, national electrical safety codes required the qualified worker only to know the source voltage to determine the shock hazard. Later, as arc flash hazards were understood, the fault current and clearing time were needed. These items are still insufficient to fully characterize all types of electrical hazards. The new comprehensive electrical hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards. Based on this electrical hazard classification system, many new tools have been developed, including (a) work controls for these hazards, (b) better selection of PPE for R&D work, (c) improved training, and (d) a new Severity Ranking Tool that is used to rank electrical accidents and incidents with various forms of electrical energy.

  8. Radioactive Materials Emergencies Course Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Hanford Fire Department has developed this training to assist emergency responders in understanding the hazards in responding to events involving radioactive materials, to know the fundamentals of radioactive contamination, to understand the biological affects of exposure to radioactive materials, and to know how to appropriately respond to hazardous material events involving radioactive materials.

  9. Mars mission safety

    SciTech Connect (OSTI)

    Buden, D. (EG G Idaho, Idaho Falls (USA))

    1989-06-01

    Precautions that need to be taken to assure safety on a manned Mars mission with nuclear thermal propulsion are briefly considered. What has been learned from the 1955 SNAP-10A operation of a nuclear reactor in space and from the Rover/NERVA project is reviewed. The ways that radiation hazards can be dealt with at various stages of a Mars mission are examined.

  10. Hazardous and radioactive substances in

    E-Print Network [OSTI]

    Hazardous and radioactive substances in danisH Marine Waters Ingela Dahllöf & Jesper H. Andersen University #12;#12;Hazardous and radioactive substances in danisH Marine Waters #12;#12;Hazardous Hazardous and radioactive substances in danisH Marine Waters status and teMporal trends #12;Hazardous

  11. Hazard Communication at Purdue University

    E-Print Network [OSTI]

    Holland, Jeffrey

    Hazard Communication at Purdue University Radiological and Environmental Management Written APPENDICES A OSHA Health Hazard Definitions B OSHA Method Of Hazard Determination C Expanded List Completed Work Area Forms HCP-4, HCP-5, HCP-8 I Health Hazard Warning Information 1. Health Hazard Rating 2

  12. WEATHER HAZARDS Basic Climatology

    E-Print Network [OSTI]

    WEATHER HAZARDS Basic Climatology Colorado Climate Center Funding provided by NOAA Sectoral) Wildfires (Jun 02) Recent Declared Disasters in Colorado No Map from FEMA provided #12;National Weather and Warnings Outlook Indicates that hazardous weather may develop ­ useful to those who need considerable

  13. Identification of chemical hazards for security risk analysis activities.

    SciTech Connect (OSTI)

    Jaeger, Calvin Dell

    2005-01-01

    The presentation outline of this paper is: (1) How identification of chemical hazards fits into a security risk analysis approach; (2) Techniques for target identification; and (3) Identification of chemical hazards by different organizations. The summary is: (1) There are a number of different methodologies used within the chemical industry which identify chemical hazards: (a) Some develop a manual listing of potential targets based on published lists of hazardous chemicals or chemicals of concern, 'expert opinion' or known hazards. (b) Others develop a prioritized list based on chemicals found at a facility and consequence analysis (offsite release affecting population, theft of material, product tampering). (2) Identification of chemical hazards should include not only intrinsic properties of the chemicals but also potential reactive chemical hazards and potential use for activities off-site.

  14. Technical safety appraisal of the Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    The existing Elk Hills facilities for fluid production consist of tank settings, gas and oil/water gathering pipelines, gas plants, compressor facilities, lease automatic custody transfer units which meter the crude oil going to sales, and natural gas sales meters and pipelines, water injection and source wells, and gas injection pipelines and wells. The principal safety concerns presented by operations at Elk Hills are fire, occupational safety and industrial hygiene considerations. Transportation and motor vehicle accidents are also of great concern because of the large amount of miles driven on more than 900 miles of roads. Typical operations involve hazardous materials and processing equipment such as vessels, compressors, boilers, piping and valves. The aging facilities, specifically the 35R Gas Plant (constructed in 1952) and many of the pipelines, introduce an additional element of hazard to the operations.

  15. University of California, Irvine Environmental Health and Safety www.ehs.uci.edu Questions Call: (949) 824-6200 Version 1.0 Dental clinics generate a variety of wastes that are regulated as a hazardous waste by local, state, and federal laws. A

    E-Print Network [OSTI]

    George, Steven C.

    as a hazardous waste by local, state, and federal laws. A waste is considered a hazardous waste if it contains. Common Types Of Dental Clinic Hazardous Waste Include: · Filters From Mercury Containing Amalgam is hazardous visit http://www.ehs.uci.edu/programs/enviro/hwasteguidelines.html. Hazardous Chemical Waste

  16. University of California, Irvine Environmental Health and Safety www.ehs.uci.edu Questions Call: (949) 824-6200 Version 1.0 Facilities maintenance generates a variety of wastes that are regulated as a hazardous waste by local, state, and federal

    E-Print Network [OSTI]

    George, Steven C.

    as a hazardous waste by local, state, and federal laws. A waste is considered a hazardous waste if it contains. Common Types Of Facilities Maintenance Operations Hazardous Waste Include: · Antifreeze · Lubricants if your waste is hazardous visit http://www.ehs.uci.edu/programs/enviro/hwasteguidelines.html. Hazardous

  17. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01

    radioactive waste and hazardous material handling and disposal Protect the environment Provide for spent fuel storage

  18. SAFETY DATA SHEET 1. Identification

    E-Print Network [OSTI]

    Wikswo, John

    chemical or CO2. Unsuitable extinguishing media None known. Specific hazards arising from the chemical extinguishing media Use fire-extinguishing media appropriate for surrounding materials. Water. Foam. Dry

  19. Stanley Hall Safety Committee Agenda 11:00 am 12:00 noon, Wednesday, June 9, 2010

    E-Print Network [OSTI]

    Doudna, Jennifer A.

    of hazardous materials locations. Close containers, make sure they're marked with contents and hazard be discharged first. Any equipment with potential hazards must be cleared of hazards first (refrigerant, rad refresher training on handling hazardous materials spills is required for all personnel who work

  20. Office of Environmental Health and Safety Chemical and Biological Safety Section

    E-Print Network [OSTI]

    Hammack, Richard

    including industrial hygienists, biosafety professionals, laboratory safety professionals, hazardous waste each section manages an extensive and comprehensive array of programs, this information paper addresses management professionals, and lead and asbestos management professionals. As our name and professional

  1. Nonreactor Nuclear Safety Design Guide for use with DOE O 420.1C, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    This Guide provides an acceptable approach for safety design of DOE hazard category 1, 2 and 3 nuclear facilities for satisfying the requirements of DOE O 420.1C. Supersedes DOE G 420.1-1.

  2. Emergency Work Y N LBNL Subcontractor Pre-Task Hazard Analysis Company Name: Project Name: Location: Date: .

    E-Print Network [OSTI]

    Eisen, Michael

    Emergency Work Y N LBNL Subcontractor Pre-Task Hazard Analysis Company Name: Project Name: Location: Date: . Complete this form per task, per day. 1. Fill in the project name, location and date. 2. List potential hazards involved with each work step. 4. List Safety Controls to mitigate those hazards. 5. Have

  3. INFORMATION: The Alaska Department of Labor and Workforce Development encourages employers and employees to reduce workplace hazards voluntarily

    E-Print Network [OSTI]

    Hartman, Chris

    employees about the locations and nature of operations, which could result in exposure to toxic or hazardous encourages employers and employees to reduce workplace hazards voluntarily and to develop and improve safety on the identification and elimination of hazards that could cause death, injury, or illness to employees and supervisors

  4. Hazardous Waste Management (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

  5. Modified hazard ranking system for sites with mixed radioactive and hazardous wastes. User manual.

    SciTech Connect (OSTI)

    Hawley, K.A.; Peloquin, R.A.; Stenner, R.D.

    1986-04-01

    This document describes both the original Hazard Ranking System and the modified Hazard Ranking System as they are to be used in evaluating the relative potential for uncontrolled hazardous substance facilities to cause human health or safety problems or ecological or environmental damage. Detailed instructions for using the mHRS/HRS computer code are provided, along with instructions for performing the calculations by hand. Uniform application of the ranking system will permit the DOE to identify those releases of hazardous substances that pose the greatest hazard to humans or the environment. However, the mHRS/HRS by itself cannot establish priorities for the allocation of funds for remedial action. The mHRS/HRS is a means for applying uniform technical judgment regarding the potential hazards presented by a facility relative to other facilities. It does not address the feasibility, desirability, or degree of cleanup required. Neither does it deal with the readiness or ability of a state to carry out such remedial action, as may be indicated, or to meet other conditions prescribed in CERCLA. 13 refs., 13 figs., 27 tabs.

  6. FAQS Qualification Card- Aviation Safety Officer

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  7. AUGUST AND SEPTEMBER SYSTEM SAFETY PROGRESS REPORT

    E-Print Network [OSTI]

    Rathbun, Julie A.

    failure at NOL during safety testing. 2. 2 Status The change has been incorporated into the Qual information to as sure controlled conditions during the hazardous field test sequences for the protection life cycle of the LSP Experiment. 5. 3 ATM 1056 Ground Ope rations and Safety Plan was released on 28

  8. Basic Chemical Safety and Laboratory Survival Skills

    E-Print Network [OSTI]

    Sherrill, David

    1 Basic Chemical Safety and Laboratory Survival Skills For anyone working in Georgia Tech Laboratories Deborah Wolfe-Lopez Laboratory and Chemical Safety Manager Georgia Tech EHS 404-382-2964 2010 #12 Hazardous Chemical Protection and Right to Know Law (RTK) RTK is the Georgia State Equivalent of the Federal

  9. FAQS Qualification Card – Safety Software Quality Assurance

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  10. FAQS Qualification Card – Senior Technical Safety Manager

    Office of Energy Efficiency and Renewable Energy (EERE)

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  11. FAQS Qualification Card – Nuclear Explosive Safety Study

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  12. Rice University Environmental Health and Safety Laboratory-Specific Safety Training Attendance Record

    E-Print Network [OSTI]

    Natelson, Douglas

    acute hazardous chemicals. 8. Location of all waste collection areas and review of all waste collection in the laboratory or training existing researchers on new hazards within the laboratory. It is recommended by the researcher highlighting the proper use of hazardous materials and their proper disposal. 3. Storage locations

  13. LABORATORY SAFETY CHECKLIST LABORATORY: DATE

    E-Print Network [OSTI]

    Fleming, Andrew J.

    LABORATORY SAFETY CHECKLIST LABORATORY: DATE: RESPONSIBLE OFFICER: INSPECTION BY: Boxes/A indicates the item does not apply to this laboratory. 1 HAZARD IDENTIFICATION /x/NA Comments 1 in the laboratory? 1.2 Are current copies available of: (a) permits for notifiable or prohibited carcinogens, (b

  14. Chemical Hygiene and Safety Plan

    SciTech Connect (OSTI)

    Berkner, K.

    1992-08-01

    The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

  15. Hazard Communication Site Specific Information Sheet Hazard Communication Program (HCP)

    E-Print Network [OSTI]

    Slatton, Clint

    Hazard Communication Site Specific Information Sheet Hazard Communication Program (HCP) Site Specific Information The responsible party for a unit/area should complete this section to make the Hazard Communication Program site specific. The responsible party will ensure that the Hazard Communication Program

  16. Weather and the Transport of Hazardous Materials

    Office of Environmental Management (EM)

    route so that the vehicle travels on the downwind side of a populated area; wind speed wind speed, , which could be used to determine if there will be excessive buffeting (hi h...

  17. Transporting & Shipping Hazardous Materials at LBNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts >TransportationEHSS A-Z Site Map Organization

  18. Using Process Safety Management to improve plant operability

    SciTech Connect (OSTI)

    Sutton, I.S.

    1995-12-31

    The Process Safety Management (PSM) standard, 29 CFR 1910.119, was published in draft from in July 1990 and has been in force since May 1992. The standard requires that all companies that handle hazardous materials must have in place a management program to minimize the chance of accidents, and to reduce the consequences of such accidents should they occur. The purpose of this paper is to provide some preliminary guidance as to how PSM activities can be managed so that, as the compliance part of the work is completed, the best return on the investment can be achieved. One final point should be made about safety and operability. The two are closely linked, but they are not identical. In other words, a safety improvement program will almost certainly lead to reduced economic losses, similarly a reliability improvement program will almost certainly reduce injuries, but there are some differences that need to be taken account. These include: (1) Additional safety equipment may reduce reliability. (2) A reliable plant does not undergo many shutdowns. Therefore, operators have less practice with the implementation of shutdown and startup procedures than they would otherwise. (3) Unsafe engineering practices, such as the use of temporary bypasses and jumper lines, may increase operability, but they reduce safety.

  19. Automated Job Hazards Analysis

    Broader source: Energy.gov [DOE]

    AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.

  20. National Environmental Policy Act Hazards Assessment for the TREAT Alternative

    SciTech Connect (OSTI)

    Boyd D. Christensen; Annette L. Schafer

    2014-02-01

    This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

  1. National Environmental Policy Act Hazards Assessment for the TREAT Alternative

    SciTech Connect (OSTI)

    Boyd D. Christensen; Annette L. Schafer

    2013-11-01

    This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

  2. Hot Cell Facility (HCF) Safety Analysis Report

    SciTech Connect (OSTI)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  3. Health & Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health & Safety Health & Safety1354608000000Health & SafetySome of these resources are LANL-only and will require Remote Access.NoQuestions? 667-5809library@lanl.gov Health &...

  4. Use of Technical Standards in Regulation of Oil and Gas Pipelines

    Office of Environmental Management (EM)

    Hazmat Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Kevin R. Blackwell Radioactive Materials Program Manager Hazardous Materials Division Federal...

  5. NGNP SITE 2 HAZARDS ASSESSMENT

    SciTech Connect (OSTI)

    Wayne Moe

    2011-10-01

    The Next Generation Nuclear Plant (NGNP) Project initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act, is based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite-moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, to generate process heat in addition to producing electricity, which is the principal application of current LWRs. Nuclear energy in the form of LWRs has been used in the U.S. and internationally principally for the generation of electricity. However, because the HTGR operates at higher temperatures than LWRs, it can be used to displace the use of fossil fuels in many industrial applications. It also provides a carbon emission-free energy supply. For example, the energy needs for the recovery and refining of petroleum, for the petrochemical industry and for production of transportation fuels and feedstocks using coal conversion processes require process heat provided at temperatures approaching 800 C. This temperature range is readily achieved by the HTGR technology. This report summarizes a site assessment authorized by INL under the NGNP Project to determine hazards and potential challenges that site owners and HTGR designers need to be aware of when developing the HTGR design for co-location at industrial facilities, and to evaluate the site for suitability considering certain site characteristics. The objectives of the NGNP site hazard assessments are to do an initial screening of representative sites in order to identify potential challenges and restraints to be addressed in design and licensing processes; assure the HTGR technology can be deployed at variety of sites for a range of applications; evaluate potential sites for potential hazards and describe some of the actions necessary to mitigate impacts of hazards; and, provide key insights that can inform the plant design process. The report presents a summary of the process methodology and the results of an assessment of hazards typical of a class of candidate sites for the potential deployment of HTGR reactor technology. The assessment considered health and safety, and other important siting characteristics to determine the potential impact of identified hazards and potential challenges presented by the location for this technology. A four reactor module nuclear plant (2000 to 2400 MW thermal), that co-generates steam, electricity for general use in the plant, and hot gas for use in a nearby chemical processing facility, to provide the requisite performance and reliability was assumed for the assessment.

  6. Radiation Safety Manual March 21, 2015 RADIATION SAFETY

    E-Print Network [OSTI]

    Lance, Veronica P.

    . Radioactive Drug Research Committee D. Radiation Safety Officers E. Authorized Users Chapter II: Radiation. Clinical Applications C. Loans and Transfers of Radioactive Materials Chapter VI: Occupational Exposure of Packages Containing Radioactive Materials A. Packages Delivered to the Radiation Safety Office B. Packages

  7. Hazardous Working Policy November 2012

    E-Print Network [OSTI]

    Doran, Simon J.

    for: The management of University workers performing hazardous tasks or working in hazardous areas;2 Hazardous Areas: are areas where a University worker may be exposed to risks that are considered greater1 Hazardous Working Policy November 2012 Introduction The University of Surrey acknowledges

  8. State of Colorado Wildfire Hazard

    E-Print Network [OSTI]

    State of Colorado Wildfire Hazard Mitigation Plan Colorado Multi-Hazards Mitigation Plan July 2002 and importance of the August 1995 Wildfire Hazard Mitigation Plan and its predecessors as foundation documents on which to build and judge progress in wildfire hazard mitigation. The text version of the 1995 Plan

  9. Occupational Safety Review of High Technology Facilities

    SciTech Connect (OSTI)

    Lee Cadwallader

    2005-01-31

    This report contains reviews of operating experiences, selected accident events, and industrial safety performance indicators that document the performance of the major US DOE magnetic fusion experiments and particle accelerators. These data are useful to form a basis for the occupational safety level at matured research facilities with known sets of safety rules and regulations. Some of the issues discussed are radiation safety, electromagnetic energy exposure events, and some of the more widespread issues of working at height, equipment fires, confined space work, electrical work, and other industrial hazards. Nuclear power plant industrial safety data are also included for comparison.

  10. Building a Weather-Ready Nation Winter Weather Safety

    E-Print Network [OSTI]

    Building a Weather-Ready Nation Winter Weather Safety NOAA/NWS Winter Weather Safety Seasonal Campaign www.weather.gov #12;Building a Weather-Ready Nation Winter Weather Hazards Winter Weather Safety www.weather.gov · Snow/Ice · Blizzards · Flooding · Cold Temperatures #12;Building a Weather

  11. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  12. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  13. Optimal planning and control for hazard avoidance of front-wheel steered ground vehicles

    E-Print Network [OSTI]

    Peters, Steven C. (Steven Conrad)

    2012-01-01

    Hazard avoidance is an important capability for safe operation of robotic vehicles at high speed. It is also an important consideration for passenger vehicle safety, as thousands are killed each year in passenger vehicle ...

  14. Extending and automating a systems-theoretic hazard analysis for requirements generation and analysis

    E-Print Network [OSTI]

    Thomas, John P., IV

    2013-01-01

    Systems Theoretic Process Analysis (STPA) is a powerful new hazard analysis method designed to go beyond traditional safety techniques-such as Fault Tree Analysis (FTA)-that overlook important causes of accidents like ...

  15. The Adequacy of DOE Natural Phenomena Hazards Performance Goals from an Accident Analysis Perspective

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Adequacy of DOE Natural Phenomena Hazards Performance Goals from an Accident Analysis Perspective Jeff Kimball Defense Nuclear Facilities Safety Board Staff Department of Energy NPH Conference October 26, 2011

  16. ORISE: Hazard Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    programsprocedures Reconstruction of retrospective plant operation and health and safety programs ORISE and collaborators have, for example, conducted an assessment of health...

  17. Guideline for the preparation of a contractor safety plan

    SciTech Connect (OSTI)

    Stinnett, L

    1982-04-01

    This document is only a guideline for contractors to use in formalizing a safety program or preparing a safety plan. It contains a format of a suggested safety plan as well as pertinent safety elements which should be considered for inclusion. However, consideration of only those items listed may not be sufficient. Each contractor should include in the safety plan particular reference to those elements peculiar to the inherent hazards of the contractor's specific type of construction services, whether the hazard is shown in the list of safety elements or not. Each safety plan should be reviewed annually by the contractor's management. Reissue of the safety plan is mandatory if safety requirements have changed, or if the contractor's address or management (approval signature) has changed.

  18. Lessons learned from the EG&G consolidated hazardous waste subcontract and ESH&Q liability assessment process

    SciTech Connect (OSTI)

    Fix, N.J.

    1995-03-01

    Hazardous waste transportation, treatment, recycling, and disposal contracts were first consolidated at the Idaho National Engineering Laboratory in 1992 by EG&G Idaho, Inc. At that time, disposition of Resource, Conservation and Recovery Act hazardous waste, Toxic Substance Control Act waste, Comprehensive Environmental Response, Compensation, and Liability Act hazardous substances and contaminated media, and recyclable hazardous materials was consolidated under five subcontracts. The wastes were generated by five different INEL M&O contractors, under the direction of three different Department of Energy field offices. The consolidated contract reduced the number of facilities handling INEL waste from 27 to 8 qualified treatment, storage, and disposal facilities, with brokers specifically prohibited. This reduced associated transportation costs, amount and cost of contractual paperwork, and environmental liability exposure. EG&G reviewed this approach and proposed a consolidated hazardous waste subcontract be formed for the major EG&G managed DOE sites: INEL, Mound, Rocky Flats, Nevada Test Site, and 10 satellite facilities. After obtaining concurrence from DOE Headquarters, this effort began in March 1992 and was completed with the award of two master task subcontracts in October and November 1993. In addition, the effort included a team to evaluate the apparent awardee`s facilities for environment, safety, health, and quality (ESH&Q) and financial liability status. This report documents the evaluation of the process used to prepare, bid, and award the EG&G consolidated hazardous waste transportation, treatment, recycling, and/or disposal subcontracts and associated ESH&Q and financial liability assessments; document the strengths and weaknesses of the process; and propose improvements that would expedite and enhance the process for other DOE installations that used the process and for the re-bid of the consolidated subcontract, scheduled for 1997.

  19. Method of recovering hazardous waste from phenolic resin filters

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Bourne, Gary L. (Idaho Falls, ID); McFee, John N. (Albuquerque, NM); Burdge, Bradley G. (Idaho Falls, ID); McConnell, Jr., John W. (Idaho Falls, ID)

    1991-01-01

    The invention is a process for the recovery of hazardous wastes such as heavy metals and radioactive elements from phenolic resin filter by a circulating a solution of 8 to 16 molar nitric acid at a temperature of 110 to 190 degrees F. through the filter. The hot solution dissolves the filter material and releases the hazardous material so that it can be recovered or treated for long term storage in an environmentally safe manner.

  20. Preliminary Safety Analysis Report (PSAR), The NSLS 200 MeV Linear Electron Accelerator

    SciTech Connect (OSTI)

    Blumberg, L.N.; Ackerman, A.I.; Dickinson, T.; Heese, R.N.; Larson, R.A.; Neuls, C.W.; Pjerov, S.; Sheehan, J.F.

    1993-06-15

    The radiological, fire and electrical hazards posed by a 200 MeV electron Linear Accelerator, which the NSLS Department will install and commission within a newly assembled structure, are addressed in this Preliminary Safety Analysis Report. Although it is clear that this accelerator is intended to be the injector for a future experimental facility, we address only the Linac in the present PSAR since neither the final design nor the operating characteristics of the experimental facility are known at the present time. The fire detection and control system to be installed in the building is judged to be completely adequate in terms of the marginal hazard presented - no combustible materials other than the usual cabling associated with such a facility have been identified. Likewise, electrical hazards associated with power supplies for the beam transport magnets and accelerator components such as the accelerator klystrons and electron gun are classified as marginal in terms of potential personnel injury, cost of equipment lost, program downtime and public impact perceptions as defined in the BNL Environmental Safety and Health Manual and the probability of occurrence is deemed to be remote. No unusual features have been identified for the power supplies or electrical distribution system, and normal and customary electrical safety standards as practiced throughout the NSLS complex and the Laboratory are specified in this report. The radiation safety hazards are similarly judged to be marginal in terms of probability of occurrence and potential injury consequences since, for the low intensity operation proposed - a factor of 25 less than the maximum Linac capability specified by the vendor - the average beam power is only 0.4 watts. The shielding specifications given in this report will give adequate protection to both the general public and nonradiation workers in areas adjacent to the building as well as radiation workers within the controlled access building.

  1. A Case Study of Food Safety Culture Within a Retailer Corporate Culture 

    E-Print Network [OSTI]

    Santibanez-Rivera, Rodrigo

    2011-02-22

    and the multiple cases of produce pathogen contamination. It has been shown that a scientific-based food safety system, such as, Hazard Analysis and Critical Control Points (HACCP), help reduce the likelihood of food safety incidents. Nevertheless, companies...

  2. Development of a hierarchical fuzzy model for the evaluation of inherent safety 

    E-Print Network [OSTI]

    Gentile, Michela

    2004-11-15

    Inherent safety has been recognized as a design approach useful to remove or reduce hazards at the source instead of controlling them with add-on protective barriers. However, inherent safety is based on qualitative principles that cannot easily...

  3. Natural Phenomena Hazard Analysis and Design Criteria for Department of Energy Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-08-03

    This Department of Energy (DOE) Standard (STD)-1020-2012, Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities, provides criteria and guidance for the analysis and design of facility structures, systems, and components (SSCs) that are necessary to implement the requirements of DOE Order (O) 420.1C, Facility Safety, and to ensure that the SSCs will be able to effectively perform their intended safety functions under the effects of natural phenomena hazards (NPHs).

  4. A Study of Real-Time Identification and Monitoring of Barge-Carried Hazardous Commodities

    E-Print Network [OSTI]

    A Study of Real-Time Identification and Monitoring of Barge-Carried Hazardous Commodities Yangrong 37831 Abstract-- In response to increased terrorist threats related to hazardous material movements and field test a prototype system that provides more accurate, uniform, and timely data on hazardous

  5. Hazardous fluid leak detector

    DOE Patents [OSTI]

    Gray, Harold E. (Las Vegas, NV); McLaurin, Felder M. (Las Vegas, NV); Ortiz, Monico (Las Vegas, NV); Huth, William A. (Las Vegas, NV)

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  6. Nuclear Safety Information Agreement Between the U.S. Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    Environment, Health, Safety and Security (EHSS DOE), Cathy Haney (Director, Office of Nuclear Materials Safety and Safeguards (NRC)), Marissa Bailey (Director, Division of Fuel...

  7. ORIGINAL PAPER Gray swans: comparison of natural and financial hazard

    E-Print Network [OSTI]

    Stein, Seth

    tsunamis than planned for. Mitigation planning underestimated the vulnerability of nuclear power plants, due to a belief in nuclear safety. The US economic models did not consider the hazard that would Nuclear Accident Independent Investigation Commission (2012) wrote: the subsequent accident

  8. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  9. __________________________________ Environment, Health, & Safety ________________________________ Training Program

    E-Print Network [OSTI]

    Eisen, Michael

    commercial drivers license endorsement to transport radioactive or hazardous waste. Course Objectives: After to transport Radioactive materials to an offsite location. Recall who is allowed to prepare and package radioactive materials for delivery to an offsite locations Select an appropriate vehicle for transporting

  10. Safety evaluation for packaging (onsite) plutonium recycle test reactor graphite cask

    SciTech Connect (OSTI)

    Romano, T.

    1997-09-29

    This safety evaluation for packaging (SEP) provides the evaluation necessary to demonstrate that the Plutonium Recycle Test Reactor (PRTR) Graphite Cask meets the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B, fissile, non-highway route controlled quantities of radioactive material within the 300 Area of the Hanford Site. The scope of this SEP includes risk, shieldling, criticality, and.tiedown analyses to demonstrate that onsite transportation safety requirements are satisfied. This SEP also establishes operational and maintenance guidelines to ensure that transport of the PRTR Graphite Cask is performed safely in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required.

  11. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    SciTech Connect (OSTI)

    SINGH, G.

    2000-09-06

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cited, as applicable. This FHA comprehensively assesses the risk of fire at the CVDF to ascertain whether the specific objectives of DOE 5480.7A are met. These specific fire protection objectives are: (1) Minimize the potential for the occurrence of a fire. (2) Ensure that fire does not cause an onsite or offsite release of radiological and other hazardous material that will threaten the public health and safety or the environment. (3) Establish requirements that will provide an acceptable degree of life safety to DOE and contractor personnel and ensure that there are no undue hazards to the public from fire and its effects in DOE facilities. (4) Ensure that vital DOE programs will not suffer unacceptable delays as a result of fire and related perils. (5) Ensure that property damage from fire and related perils does not exceed an acceptable level. (6) Ensure that process control and safety systems are not damaged by fire or related perils. This FHA is based on the facility as constructed and with planned operation at the time of document preparation. Changes in facility planned and actual operation require that the identified fire risks associated with the CVDF be re-evaluated. Consequently, formal documentation and future revision of this FHA may be required.

  12. Missouri Hazardous Waste Management Law (Missouri)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

  13. Hazardous waste sites and housing appreciation rates

    E-Print Network [OSTI]

    McCluskey, Jill; Rausser, Gordon C.

    2000-01-01

    WORKING PAPER NO. 906 HAZARDOUS WASTE SITES AND HOUSINGEconomics January 2000 Hazardous Waste Sites and Housingand RF. Anderson, Hazardous waste sites: the credibility

  14. CRAD, Packaging and Transfer of Hazardous Materials and Materials of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About UsEnergy MarketingAsset Score00.4| Department of Energy

  15. Geological Hazards Labs Spring 2010

    E-Print Network [OSTI]

    Chen, Po

    Geological Hazards Labs Spring 2010 TA: En-Jui Lee (http://www.gg.uwyo.edu/ggstudent/elee8/site - An Indispensible Tool in Hazard Planning 3 26/1; 27/1 Lab 2: Geologic Maps - Mapping the Hazards 4 2/2; 3/2 Lab 3: Population - People at Risk 5 9/2; 10/2 Lab 4: Plate Tectonics - Locating Geologic Hazards 6 16/2; 17/2 Lab 5

  16. August 2004 Radiation Safety Manual Section 5 -Training

    E-Print Network [OSTI]

    Wilcock, William

    August 2004 Radiation Safety Manual Section 5 - Training UW Environmental Health and Safety Page 5-1 Section 5 Radiation Safety Training Contents A. Individuals Directly Using Radioactive Materials..........................................5-1 1. Regulations for Training.................................................................. 5

  17. Safety-driven early concept analysis and development

    E-Print Network [OSTI]

    Fleming, Cody Harrison

    2015-01-01

    As aerospace systems become increasingly complex and the roles of human operators and autonomous software continue to evolve, traditional safety-related analytical methods are becoming inadequate. Traditional hazard analysis ...

  18. Microsoft Word - Results_of_the_Independent_Hanford_Traffic_Safety...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010 To: ALL HANFORD EMPLOYEES Subject: RESULTS OF INDEPENDENT HANFORD TRAFFIC SAFETY STUDY AND NEXT STEPS One of the most hazardous situations that most of us face each day is...

  19. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed a significant hazard. Bags of misc. plasticware that has been autoclaved to remove bio contamination. Syringe

  20. Appendix C: Hazardous Property Assessment

    E-Print Network [OSTI]

    Siddharthan, Advaith

    Appendix C: Hazardous Property Assessment The aim of this appendix is to: · give advice on the hazards properties H1 to H14 identified in Annex III of the HWD; · provide assessment methods and threshold concentrations for the hazards; and · advise on which test methods should be considered

  1. Facility Safety (9-23-10)--Withdrawn

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-09-23

    Withdrawn, 5-19-2014--This approval includes revision of the three implementing Guides: DOE G 420.1-1, Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety; DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and NonNuclear Facilities; and DOE G 420.1-3, Implementation Guide for DOE Fire Protection and Emergency Services Programs for Use with DOE O 420.1B, Facility Safety

  2. Sandia Energy - Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Safety Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Risk and Safety Assessment Transportation Safety Transportation SafetyTara...

  3. UC Irvine Environmental Health & Safety Section: Title: Visitors and Minors in Labs & Shops

    E-Print Network [OSTI]

    Rose, Michael R.

    for ensuring visitors' safety while in potentially hazardous areas on campus. Program guidelines cover. Visitors and minors are not permitted in potentially hazardous work areas except as outlined below. 2 the age of 14 be restricted from hazardous work areas due to their developing immune/neurological systems

  4. UMD College of Pharmacy, Pharmacy Practice and Pharmaceutical Laboratory Safety Plan

    E-Print Network [OSTI]

    Minnesota, University of

    requirements for containers of hazardous substances and equipment or work areas that generate harmful physical potential health hazards in laboratories. This plan is intended to meet the requirements of the federal Laboratory Safety Standard, formally known as "Occupational Exposure to Hazardous Chemicals in Laboratories

  5. Biological Safety

    Broader source: Energy.gov [DOE]

    The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

  6. Product name: THERMINOL XP Heat transfer fluid Page 1 / 6 Solutia Inc. Material Safety Data Sheet Date: 11/07/2003

    E-Print Network [OSTI]

    Choi, Kyu Yong

    (less than a mouthful) are swallowed. Coughing, choking and shortness of breath may occur if material

  7. Stanford University 11/29/05 Environmental Health & Safety

    E-Print Network [OSTI]

    or biohazardous materials still in use to their new designated location. · Tag all hazardous waste and request Purpose: To ensure that all hazardous materials impacted by laboratory renovation are handled and disposed materials. Coordinate disinfection of biosafety cabinets with approved vendor. Remove or deface biohazard

  8. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The Assistant Secretary for Environment has responsibility for identifying, characterizing, and ameliorating the environmental, health, and safety issues and public concerns associated with commercial operation of specific energy systems. The need for developing a safety and environmental control assessment for liquefied gaseous fuels was identified by the Environmental and Safety Engineering Division as a result of discussions with various governmental, industry, and academic persons having expertise with respect to the particular materials involved: liquefied natural gas, liquefied petroleum gas, hydrogen, and anhydrous ammonia. This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in Fiscal Year (FY)-1979 and early FY-1980. Volume 1 (Executive Summary) describes the background, purpose and organization of the LGF Program and contains summaries of the 25 reports presented in Volumes 2 and 3. Annotated bibliographies on Liquefied Natural Gas (LNG) Safety and Environmental Control Research and on Fire Safety and Hazards of Liquefied Petroleum Gas (LPG) are included in Volume 1.

  9. Safety evaluation for packaging (onsite) for cesium chloride capsules with type W overpacks

    SciTech Connect (OSTI)

    McCoy, J.C.

    1997-09-15

    This Safety Evaluation for Packaging (SEP) documents the evaluation of a new basket design and overpacked cesium chloride capsule payload for the Beneficial Uses Shipping System (BUSS) Cask in accordance with the onsite transportation requirements of the Hazardous Material Packaging and Shipping manual, WHC-CM-2-14. This design supports the one-time onsite shipment of 16 cesium chloride capsules with Type W overpacks from the 324 Building to the 224T Building at the Waste Encapsulation and Storage Facility (WESF). The SEP is valid for a one-time onsite shipment or until August 1, 1998, whichever occurs first.

  10. Method and apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Korenberg, Jacob (York, PA)

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  11. PUREX facility hazards assessment

    SciTech Connect (OSTI)

    Sutton, L.N.

    1994-09-23

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  12. 074 0 -74 5 9/13 / $ 31.0 0 2 013 I E E E M ay/Ju n e 2013 | Ie e e S o f t wa r e 35 FOCUS: Safety-CritiCal Software

    E-Print Network [OSTI]

    -Safety Requirement This step uses hazard analysis methods such as FTA (fault tree analysis), FMEA (failure mode

  13. Environmental health and safety plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Burman, S.N.; Tiner, P.F.; Gosslee, R.C.

    1998-01-01

    The Lockheed Martin Energy Systems, Inc. (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to environmental protection and safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air.

  14. Hazardous Gas Production by Alpha Particles

    SciTech Connect (OSTI)

    Jay A. LaVerne, Principal Investigator

    2001-11-26

    This project focused on the production of hazardous gases in the radiolysis of solid organic matrices, such as polymers and resins, that may be associated with transuranic waste material. Self-radiolysis of radioactive waste is a serious environmental problem because it can lead to a change in the composition of the materials in storage containers and possibly jeopardize their integrity. Experimental determination of gaseous yields is of immediate practical importance in the engineering and maintenance of containers for waste materials. Fundamental knowledge on the radiation chemical processes occurring in these systems allows one to predict outcomes in materials or mixtures not specifically examined, which is a great aid in the management of the variety of waste materials currently overseen by Environmental Management.

  15. uWaterloo Annual Faculty/Department Health, Safety and Environment (HSE) Report Reporting Year: 2013 Faculty/Department: ______________________________________________

    E-Print Network [OSTI]

    Le Roy, Robert J.

    . Hazardous Material Spills Poster in chemical labs and areas with hazardous materials,? (Sept 06 or Building Hazard (once per year): general offices, classrooms, reception areas, conference rooms b. Records 10 or newer) d. Laboratory Hazards Poster on or beside main lab entrance (where required)? e

  16. Nuclear explosive safety study process

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  17. FY 1993 Projection Capability Assurance Program waste and hazard minimization. Quarterly report, October--December 1993

    SciTech Connect (OSTI)

    Haws, L.D.; Homan, D.A.

    1993-01-15

    Waste and hazard minimization efforts in the following areas are described: (1) environmentally responsive cleaning, (2) hazardous material exposure, (3) explosive processing, (4) flex circuit manufacturing, (5) tritium capture w/o conversion to water, (6) ES&H compatible pyrotechnic materials, and (7) remote explosive component assembly.

  18. NEW - DOE O 420.1 Chg 1, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, cancels DOE O 420.1C, dated 12-4-12.

  19. Hazardous Waste Management Overview The Five L's

    E-Print Network [OSTI]

    Jia, Songtao

    Hazardous Waste Management Overview The Five L's CoLLect CoLLect all hazardous chemical waste are unsure if your chemical waste is a Hazardous Waste, consult EH&S at hazmat@columbia.edu. DO NOT - Dispose of Hazardous Waste inappropriately or prior to determining its hazards. Hazardous Waste must never

  20. Harmonization of Federal and International Regulations

    Office of Environmental Management (EM)

    DOTPHMSA Update Michael Conroy U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety Radioactive Materials...

  1. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  2. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, Robert E. (Los Alamos, NM); Ramsey, David R. (Bothel, WA); Stampfer, Joseph F. (Santa Fe, NM); Macdonald, John M. (Santa Fe, NM)

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  3. The Albert Einstein College of Medicine of Yeshiva University

    E-Print Network [OSTI]

    Jenny, Andreas

    ............................................................................................................................. 20 FIRE 21 HAZARDOUS MATERIALS ­ 22 HAZARDOUS MATERIALS ­ SPECIAL 24 HAZARD INDICATORS...................................................................................................................... 26 HAZARDOUS MATERIALS ­ 27 HAZARDOUS MATERIALS ­ 28 MAJOR NATURAL DISASTERS and Emergency Numbers......... 66 APPENDIX 4 ­ Location of Safety Data Sheet Stations...................................

  4. General Radiation Safety Information About USF Research Small amounts of radioactive materials are used in research work at the University of South Florida

    E-Print Network [OSTI]

    Arslan, Hüseyin

    Radiation Safety office strives to keep radiation doses to workers, the public, and the environment As Low in a person, he or she receives a radiation dose. Radiation doses are measured in millirems (mrem) or rems, the average background radiation dose is 300 mrem/yr. Manufactured sources contribute an additional background

  5. Reactor safety method

    DOE Patents [OSTI]

    Vachon, Lawrence J. (Clairton, PA)

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  6. Systems Theoretic Hazard Analysis (STPA) applied to the risk review of complex systems : an example from the medical device industry

    E-Print Network [OSTI]

    Antoine, Blandine

    2013-01-01

    Traditional methods to identify and document hazards, and the corresponding safety constraints, are lacking in their ability to account for human, software and sub-system interactions in highly technical systems. STAMP, a ...

  7. Safety Engineer

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will ensure DOE Federal personnel and contractors develop effective safety programs and continuously evaluates those activities to ensure compliance with DOE...

  8. SUBJECT: Laser Safety Program Purpose: The purpose of this Laser Safety Manual is to insure the safe use of lasers in

    E-Print Network [OSTI]

    SUBJECT: Laser Safety Program Purpose: The purpose of this Laser Safety Manual is to insure the safe use of lasers in research activities at the Colorado School of Mines (Mines or the School). This Laser Safety Manual outlines laser registration requirements, identifies hazards associated with using

  9. 324 Building fire hazards analysis implementation plan

    SciTech Connect (OSTI)

    Eggen, C.D.

    1998-09-16

    In March 1998, the 324 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the US Department of Energy, Richland Operations Office (DOE-RL) for implementation by B and W Hanford Company (BWHC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in six areas and provided 20 recommendations to bring the 324 Building into compliance with DOE Order 5480.7A. Additionally, one observation was provided. To date, four of the recommendations and the one observation have been completed. Actions identified for seven of the recommendations are currently in progress. Exemption requests will be transmitted to DOE-RL for three of the recommendations. Six of the recommendations are related to future shut down activities of the facility and the corrective actions are not being addressed as part of this plan. The actions for recommendations associated with the safety related part of the 324 Building and operation of the cells and support areas were evaluated using the Unreviewed Safety Question (USQ) process. Major Life Safety Code concerns have been corrected. The status of the recommendations and actions was confirmed during the July 1998 Fire Protection Assessment. BVMC will use this Implementation Plan to bring the 324 Building and its operation into compliance with DOE Order 5480.7A and RLID 5480.7.

  10. Paint and coating industry: health and safety. January 1980-March 1989 (Citations from World Surface Coatings Abstracts). Report for January 1980-March 1989

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    This bibliography contains citations concerning health and safety hazards in the paint and coating industries. The exposure to toxic chemicals, and health hazards of working with powders, solvents, and paints such as hepatitis, dermatitis, respiratory ailments are discussed. Safety regulations are included. Fire and explosion hazards in the painting industry are described. Hazards outside the workplace involving the use of these products are briefly considered. (Contains 165 citations fully indexed and including a title list.)

  11. Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and NonNuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-28

    This document provides guidance in implementing the Natural Phenomena Hazard (NPH) mitigation requirements of DOE O 420.1, Facility Safety, Section 4.4, "Natural Phenomena Hazards Mitigation." This Guide does not establish or invoke any new requirements. Any apparent conflicts arising from the NPH guidance would defer to the requirements in DOE O 420.1. No cancellation.

  12. Octob~r System Safety Progress ALSEP ARRAY E

    E-Print Network [OSTI]

    Rathbun, Julie A.

    defined to MSC System Safety. The effect of a boyd bolt shearing failure at a time when an astronaut. The plan provides detailed information to assure controlled conditions during the hazardous field test Ground Operations and Safety Plan is being updated to incorporate NASA MSC comments and the latest

  13. Natural phenomena hazards evaluation of concrete silos 1, 2, 3 and 4 at Fernald, Ohio

    SciTech Connect (OSTI)

    Char, C.V. [PARSONS Environmental Remedial Action Project, Fairfield, OH (United States); Shiner, T.J. [FERMCO, Cincinnati, OH (United States)

    1995-08-01

    Fernald Environmental Management Project (FEMP) is a United States Department of Energy (DOE) site located near Cincinnati, Ohio. FEMP was formerly established as the Feed Materials Production Center (FMPC) in 1951 under the Atomic Energy Commission. FEMP is currently undergoing site wide environmental remediation. This paper addresses four concrete silos built during the 1950s and located in Operable Unit 4 (OU-4). Silos 1 and 2 known as K-65 Silos contain residues from Uranium Ore processing. Silo 3 contains metal oxides in powder form. Silo 4 is empty. The Silos are categorized as low hazard facilities and the Natural Phenomena Hazards (NPH) performance category is PC-2, based on a recently completed safety analysis report. This paper describes the structural evaluation of concrete Silos 1, 2, 3 and 4 for NPH. Non Destructive Tests (NDT) were conducted to establish the current conditions of the silos. Analytical and computer methods were used to evaluate the stresses and displacements for different silo configurations and different loading combinations. Finite element models were developed to uniquely represent each silo, and analyzed using SAP90 computer program. The SAPLOT post processor was used for rapid determination of critical areas of concern for critical loading combinations and for varying silo configurations.

  14. Safety Policy LEAD IN PAINT POLICY

    E-Print Network [OSTI]

    Powers, Robert

    Safety Policy (10/96) LEAD IN PAINT POLICY://ehs.unl.edu/) Purpose: Lead is a recognized health hazard, and consequently, regulations have been developed to assure protection from excessive exposure to lead. Paints and coatings manufactured prior to 1978 often contained

  15. Chemical Safety Why are you here

    E-Print Network [OSTI]

    Krovi, Venkat

    Chemical Safety in the Laboratory #12;Why are you here · Work with Chemicals · Generate Hazardous Wastes · May have to respond to Chemical Spills #12;Goals Reduce injuries and illnesses related to chemical use Protect the environment Safely manage chemical wastes Comply with local, state and federal

  16. Solar PV Permitting and Safety Training Webinar

    Broader source: Energy.gov [DOE]

    This webinar provides training on two permitting resources for municipal inspectors; a prescriptive process for building inspectors and a guidance document for permitting for PV for electrical inspectors. The webinar also runs through a number of key code articles in Massachusetts 2014 electrical code and examines a variety of safety hazards commonly found during or after solar PV installations.

  17. Fire hazards evaluation for light duty utility arm system

    SciTech Connect (OSTI)

    HUCKFELDT, R.A.

    1999-02-24

    In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented.

  18. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, Robert C. W. (Martinez, GA)

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  19. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  20. Environmental Health & Safety, UC Irvine TITLE: CLEAN AREAS IN RESEARCH LABS (Non-Clinical)

    E-Print Network [OSTI]

    George, Steven C.

    . Relocate all hazardous materials use and storage from the Clean Area and maintain separation distance an adequate separation of the Clean Area from hazardous operations is not possible, splash is focused upon the adequacy of separation of the proposed Clean Area from areas in which hazardous materials